Observing proposals the scientific justification

The replay

From idea to data

- 1. What problem do you want to study?
- 2. What data do you need to tackle this problem?

Do you need spectra? Images? Radio-data? Do you need archival data?

3. Can you do actually do it?

It is easy to imagine scientifically interesting data that are unrealistic, or even impossible, to get.

4. What telescope should you use?

Different telescopes have different instruments, are in different hemispheres, their access rights are different and the application pressure is different.

The TAC - be understandable!

This is composed of researchers that will evaluate the proposals. For big facilities like HST or the VLT there are many sub-committees that consist of experts in a broad area. But in national TACs there is usually only one group.

The reviewer is unlikely to be an expert on your topic!

A proposal must be understandable for a non-expert!

The TAC - be concise

A TAC member for a big facility might have 50-100 proposals to read. How long will they spend on each? Maybe 15 minutes?

A proposal must be concise and clear - get your point across quickly and efficiently!

The proposal

Introduction Scientific justification

- ✓ Why is this topic important?
- ✓ What are the important questions?
- ✓ Why now?
- ✓ Links to other topics?
- ✓ Why are the proposed observations important?
- ✓ How will you do the analysis?

Technical justification

✓ Can you actually carry out your observations?

The proposal

Some hints on writing a good proposal:

- ✓ Clear and concise arguments
- ✓ Make it clear what you want to do
- ✓ Make it clear *how* you will do it
- ✓ Write clearly and in correct English sloppy writing will not help you!
- ✓ Avoid jargon and explain acronyms the first time you use them
- ✓ Carefully follow instructions!

The technical justification

- When is the object visible?
 - Ephemerides, web based tools.
- What filter should I choose and why?
 - Do you need more than one? Why?
- What exposure time do you need?
 - How bright is your object and what S/N do you need?
- How many observations are needed and at what cadence?

http://home.strw.leidenuniv.nl/~jarle/Teaching/Practicum2015/proposals.html

When

http://catserver.ing.iac.es/staralt/

Check altitude

Moving objects: Ephemerides

http://www.minorplanetcenter.net/iau/MPEph/MPEph.html

Deadlines

- **11/03** Scientific justification for observing proposal1 page
- **25/03** Technical justification (1 page) & abstract (max 10 lines)
- At this point we need to finalise our filter choices and targets
- **22/04** TAC meeting. You grade each other's proposals.

Maximum 2 pages with figures & references Font: 11 pt Times Roman

Grading

Handing in problem sets is **obligatory**!

The course grade is the mean of the problem set grades & the observational part of the course.

Handing in late next time **will result** in a grade of **0** unless I have given permission to do so (and I will only do for illness).

Maximum one 5 from the problem sets unless your average grade is >= 6.

Visual explanations

Databases and data mining in astronomy 2011

Visual explanations

The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

Making good scientific plots

- Know the audience.
- Adapt to the situation.
- Be precise, include all information needed.
- Do not mislead.
- Do not use colour without thinking. Especially bad colour choices.
- Do not overload a figure or include too little!
- Learn a couple of packages well.

Worth checking out: Rougier NP, Droettboom M, Bourne PE (2014) Ten Simple Rules for Better Figures. PLoS Comput Biol 10(9): e1003833.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833

Adapting to the audience

from: Rougier NP, Droettboom M, Bourne PE (2014)

Adapting to the siutation

Scientific paper

y position

Presentation

To help our argumentation.

To help our argumentation.

To summarise a lot of data

To help our argumentation.

To summarise a lot of data

To discover new relationships

To help our argumentation.

To summarise a lot of data

To discover new relationships

To relate different pieces of information

To help our argumentation.

To summarise a lot of data

To discover new relationships

To relate different pieces of information

To develop intuition

An example of odd data

Х	У	Х	У	Х	У	Х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

An example of odd data

Х	У	Х	У	Х	У	Х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

mean(x) = 9, mean(y) = 7.5 Var(x) = 11, Var(y) = 4.12 The correlation coefficient: 0.816 The best-fit line: y = 3 + 0.5 x

An example of odd data

Х	У	Х	У	Х	У	Х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

mean(x) = 9, mean(y) = 7.5 Var(x) = 11, Var(y) = 4.12 The correlation coefficient: 0.816 The best-fit line: y = 3 + 0.5 x So they seem to be very similar!

The bottom line: Always plot your data! (but you knew that already I hope!)

Graphical displays should:

- Show the data.
- Induce the viewer to think about the substance.
- Avoid distorting what the data have to say.
- Present many numbers in a small space.
- Make large data sets coherent.
- Encourage the eye to compare different pieces of data.
- Reveal data at several layers of detail.
- Be relevant.
- Show units, show scales!

Based on: Tufte: "The Visual Display of Quantitative Information"

The Good, the Bad and the Ugly

Function plotting. BAD: Barplot of x versus y

Function plotting. BAD: Barplot of x versus y

Distributions

Distributions - some alternatives

Alternatives to histograms (box plot):

Distributions - some alternatives

Multiple plot panels + extra information:

Techniques for visualising high-dimensional data

- 2D histograms/2D scatter plots
 - Colouring with a third variable can illustrate 3D, transparency & size can be used to add another couple.
- Scatter plot matrices
 - Arbitrary high D but not particularly powerful.
- Movies
 - By combining with coloured histograms can represent 4-5 dimensions. Often best when the time-scale of the movie actually is a time-scale and not some abstract quantity.
- Interactive visualisation (e.g. 3D rotation)
 - Very useful for data exploration but in practice hard to use past 3D although colouring can help. Not very useful for publishing.
- Dimensional reduction
 - Use an objective technique to focus on the "important" dimensions of the data, then use the other techniques to look at the results.

Populations - illustrating some more dimensions

Populations - illustrating some more dimensions

Another look on populations

How to:

R plot

Python

from pandas.tools.plotting import scatter_matrix

Show the data & be quantitative

Show the data & be quantitative

And don't waste!

Always think about whether a given shading/symbol etc. is required. Sometimes it is absolutely essential to use different colours & symbols to bring out information.

This is not just about graphics - also be careful that you only use data that are relevant. Thinking before plotting greatly helps data exploration.

Sometimes people do not....

The importance of good displays of data

Understanding cholera.

Minard's map of Napoleon's Russian campaign

Autog. par Regnier, S. Par. S. Marie S. Oth & Paris

Ing.Lith.Regnier et Dourdet.

The Milky Way

Show the data.

Sunspot numbers

Tufte (1997) Visual explanations

Show the data.

Sunspot numbers

Tufte (1997) Visual explanations

Show the data.

Sunspot numbers

Tufte (1997) Visual explanations

Some things to keep in mind...

The "Smallest effective difference"

Some things to keep in mind...

The "Smallest effective difference"

Some things to keep in mind...

The "Smallest effective difference"

The issue of colour & 2D plots

There is a tendency for astronomers to choose from a small set of colour schemes for their images and plots. Sometimes this leads you to create artificial trends where there are none.

Bad Habits

Bad Habits

An slice of an MRI scan of a human brain. Washing out of detail and artificial structure.

Bad Habits

An slice of an MRI scan of a human brain. Washing out of detail and artificial structure.

Bad Habits

Turbulent flow from a jet engine.

1.8

1,4

70

50

30

20

800

700

600

500 400

300

200

100

0.60

0.55

0.45

0.35

An slice of an MRI scan of a human brain. Washing out of detail and artificial structure.

Bad Habits

Turbulent flow from a jet engine.

Earth's magnetic field in a Cartesian projection - note the smooth structure.

A natural zero

High frequency information - best with variation of luminance

Low frequency information colour variation (saturation is good)

For more details: http://www.research.ibm.com/people/l/lloydt/color/color.HTM

One key lesson:

Try different colour maps and do not use a default one mindlessly.

A natural zero

High frequency information - best with variation of luminance

Low frequency information colour variation (saturation is good)

0.35

0.30

For more details: http://www.research.ibm.com/people/l/lloydt/color/color.HTM

0.45

0.40 0.35

0.25

Some bad graphics

An alternative view of a table

But don't do:

http://tinyurl.com/y7uhpp6

The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

Planck - fluctuations in the temperature of the Cosmic Microwave Background

Globular clusters in the Virgo cluster

Movies.

Courtesy Volker Springel

Movies.

Courtesy Volker Springel

But how can I do this?

A good place to start is the Matplotlib gallery:

http://matplotlib.org/gallery.html

Another source of ideas are the series of books by Tufte.

http://www.edwardtufte.com/tufte/

More generic visualisations: http://tylervigen.com/ http://www.informationisbeautiful.net/ http://chartporn.org/ https://eagereyes.org/