
The formation of galaxies and large-scale structure

Problem set 4

Weeks of March 3 & 10, 2014

Problem 1 Size of the horizon

How far away do you need to hold your thumb for its width to subtend an angle equal to the
angular scale of the horizon at the time of matter-radiation equality?

Hint: Approach this as a research question. Take your solutions with you to the lecture on
March 11 where we will collect them anonymously, compare results and discuss the problem
(briefly).

Problem 2 Spherical collapse

If you take the matter and the curvature terms into account, the Friedman equation becomes

1

H2
0

(
ȧ
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(a) Prove that equation ?? has the parametric solutions
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We know (e.g. Birkhoff’s theorem), that the evolution of a spherically symmetric pertur-
bation in a smooth background can be treated as a separate universe. Hence it’s evolution
is given by the Friedmann equation.

Let δ = (ρ− ρb)/ρb be, as usual, the density contrast of the perturbation relative to the
background universe which has matter density ρb. For a sufficiently early time, ti, we
have δi � 1 and we may assume that the perturbation expands with the Hubble flow
at that time. Thus the critical densities for the background and the perturbation are
approximately identical at time t = ti, and the density parameter for the perturbation
becomes
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where Ωm,i is the density parameter of the background universe evaluated at time t = ti.
For simplicity we will assume that Ωm = 1 and that ΩΛ = ΩR = 0 for the background
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universe. In that case we have Ωm(t = ti) = (1 + δi) and by setting t0 = ti, we can write
the parametric solution of the radius of a spherically symmetric perturbation with mea
n internal density contrast, δ, as
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(b) Prove that the density evolution of the perturbation is given by
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Do you expect this relation to hold for θ = 2π?

(c) In linear theory (subscript L), we have (you do not need to prove this but feel free to do
so):
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(d) Assume that δi > 0. What are the true and linear theory density contrasts at turn-around
(i.e. the time when expansion turns into collapse)?

(e) Demonstrate that the virial radius rvir = rta/2, where rta is the radius at turn-around.
[4]

(f) Assume that virialization occurs when θ = 2π. Show that after virialization, the true
density contrast is 1 + δvir = 18π2 ≈ 178, while the linear theory density contrast δL ≈
1.69.

We will assume that spherical pertrubations will virialize at ρ = 18π2ρb(z) when δL = 1.69,
even if Ωm 6= 1. It turns out that this is a very good approximation when Ωm(1 + z)3 �
(1− Ωm − ΩΛ)(1 + z)2 + ΩΛ, i.e. when matter dominates.

Problem 3 Using the Press-Schechter mass function to constrain cosmol-
ogy

The P-S mass function has its weaknesses, but it has proven very useful for fitting to the
abundance of clusters. In this problem you will find out how this works.

The best known galaxy clusters in the Universe are known as Abell clusters. A typical
Abell cluster has mass in a fairly narrow range, and it is customary to define this within the
Abell radius of rA = 1.5h−1Mpc. This mass is

MA = 7.8× 1014mAh−1M�. (9)

This mass also defines a natural density within rA and we can then calculate the overdensity
within rA which also defines the mass parameter, mA:

δ̄(rA) =
ρ− ρ̄
ρ̄

=
200mA

Ωm,0
. (10)
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(a) To connect the expressions above to the PS mass function we need the total mass of the
halo, out to the virial radius. Let us define a radius, commonly written as r200, which
encloses the region 200 times overdense relative to the background. Show that the total
mass of the halo within this radius is

Mhalo =
4π

3
r3

200ρ̄ [1 + δ(r200)] . (11)

(b) Assume that the halo mass profile is similar to an isothermal sphere over the radii in
question, so that ρ ∝ r−2. Show that we then have

r200 = m
1/2
A rA (12)

Mhalo = m
1/2
A MA (13)

(c) Show that the radius of the halo, defined through M = 4πρ̄/3 can be written as
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m r8. (14)

This shows that Abell clusters have radii fairly close to r8 since mA varies relatively little.

(d) Explain why over a small range in R can write

σ(R) = σ8

(
R

r8

)−β
, (15)

and show that for the Press-Schechter mass function you can write the number of clusters
with mass in excess of MA as

N(> MA) ≈ 2√
π
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δc√
2σ8

)3/β ∫ ∞
ymin

y−3/βe−y
2
dy, (16)

and find an expression for ymin and thereby show that number counts of clusters can be
used to constrain σ8 and Ωm.

The preceding analysis gives reasonably good results, but with today’s high-quality data
it is necessary to move past the PS formalism. A major step can be had by moving to
ellipsoidal collapse models, but the best studies in the literature (e.g. Vikhlinin et al 2009,
ApJ 692, 1060) use mass functions inferred/calibrated from numerical simulations rather than
semi-analytic studies like the PS mass-function but the principle is essentially the same.
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