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1 Recap

Last lecture we explored the effect of neutral hydrogen on the transparency of the Universe.
We saw that only a tiny amount of neutral hydrogen was sufficient to create a large optical
depth to distant objects. This effect is generally known as the Gunn-Peterson effect and
we found that

τGP ∼ 1.7× 105
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which makes it clear that τGP can actually be used to prove very small over-densities as
well if other quantities can be estimated or taken to be approximately constant.

Tracing the optical depth to hydrogen absorption back in time, it is possible to conclude
that the Universe was essentially completely ionized by z ∼ 6, so re-ionization must have
taken place before that time. However the large optical depth in Ly-α precludes its use for
probing back to sizeable neutral fractions.

Alternative methods such as the 21 cm absorption in hydrogen and polarization of the
Cosmic Microwave Background were also touched upon briefly. From observations of the
CMB we can also conclude that reionization must have taken place at z < 13 (at least for
simple reionization models).

We also looked at the characteristics of photo-ionization equilibrium. This is a situation
where (

nHi

nH

)
=

(
tion

trec

)
, (2)

where

trec =
1

neαr
, (3)

and αr ≈ 4 × 1013T−0.7
4 cm3/s is the recombination coefficient of hydrogen. Combining

the assumption of photoionization equilibrium with observations we also concluded that
τGP ≈ 1 at z ∼ 3.
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2 Reionization

How then does re-ionization proceed? To start with, a simple scenario is to consider a single
source of hydrogen ionizing photons (with energy E > 13.6eV). This can be a quasar or a
star-forming galaxy for instance. While QSOs are efficient at ionizing their surroundings,
it is believed there were too few of them at really high redshifts to explain re-ionization.
Thus currently the favoured sources for re-ionizaton are star-forming galaxies.

We assume that the source emits Ṅγ photons per second. If we consider the change in
the electron density at a distance r from the source, and we assume spherical symmetry,
we have that

∂ne
∂t

+∇ · (ne~v) = ∇ · Ṅγ

4πr2
~̂r − αrnenp, (4)

where the left hand side gives the creation/destruction of electrons as well as the flow
into/out of the region. The first term of the right-hand side gives the flow of ionizing
photons into the region, so effectively the number of ionizations, while the second term
quantifies the number of recombinations.

2.1 Strömgren sphere

If we consider an equilibrium solution to equation (4), ie. one where the left hand side
disappears, we have

∇ · Ṅγ

4πr2
~̂r = αrnenp. (5)

To make progress we now assume that we have a spherical region which is fully ionized
within a radius rS, and fully netural outside. This is generally a very good approximation
to the structure expected in a real ionized region. We can then integrate equation (5) over
a volume V and using the divergence theorem to convert the integral of the gradient to a
surface integral we have ∫

Ṅγ

4πr2
dS =

4π

3
r3
Snenpαr. (6)

Since the left-hand side integrates to Ṅγ, we have an expression for rS which is:

rS =

(
3Ṅγ

4παrnenp

)1/3

≈

(
3Ṅγ

4παrn2

)1/3

, (7)

where in the last equality we have made use of the fract that for an ionized gas ne ≈ np ≈ n,
which is true for a fully ionized gas of hydrogen and is the normal expression for the radius
of a Strömgren sphere. Note that n here is the number density of particles in the region
before it is ionized.
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2.2 Strömgren spheres in pressure equilibrium

In the preceding sub section we made the assumption that there is no net expansion of the
Strömgren sphere into the ambient medium. Whether this is a good approximation or not
depends on the time-scales in the problem, but it is generally a reasonable approximation.

If you do ionise a sphere quickly then it would become over-pressurised relative to the
surrounding medium and pressure balance will have to kick in. To study the resulting
evolution we need an estimate of ne and np. We know that for a fully ionized gas that we
have ne = 14

27
ntot and that np = 4

9
ntot. Inserting above we then get

rs =

(
3Ṅγ

4παrn2
a

)1/3(
n2
a

npne

)1/3

. (8)

The last parenthesis can be rewritten as

n2
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=
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This gives us our final expression

rfinal = rS

( 27
13
THii

Ta

)2/3

. (10)

While the resulting expansion of the sphere can be quite substantial if the ambient
medium is low temperature, it does however take quite some time.

3 Strömgren spheres in an expanding Universe

This is covered in many references, this exposition follows fairly closely that of Madau,
Haardt & Rees (1999, ApJ, 514, 648). Another good reference is Bolton & Haenhelt (2007,
MNRAS, 382, 325).

Reionization requires that the entire volume of space is reionized. It therefore makes
sense to focus on the volume of the Strömgren spheres. We therefore start with this and
then move on to how many of these you need to fill space.

We will ignore peculiar velocities in equation (4). This leads to

∂ne
∂t

= ∇ · Ṅγ

4πr2
~̂r − αrnenp. (11)

Note that in writing down this equation we have of course made the same assumptions
as in the original equation, namely that we have ignored the peculiar velocity of the ion-
izing source, and we have assumed that the surrounding medium is uniform. Relaxing
these assumptions typically requires a numerical simulation to explore the evolution of the
expanding ionized region. That is unnecessary for our needs here.
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If we integrate equation (11) over volume we have

∂

∂t

∫
nedV =

∫
∇ · Ṅγ

4πr2
~̂rdV −

∫
αrnenpdV. (12)

The first term on the right hand side can be converted to a surface integral and if we
assume that the temperature is roughly constant within the ionized region we can also
take αr (which is temperature dependent) outside the second integral on the right. If in
addition we introduce the notation for volume average quantities:

〈x〉 def
=

1

V

∫
xdV, (13)

we can re-write equation (12) as

〈ne〉
dV

dt
+ V

d〈ne〉
dt

= Ṅγ − αr〈nenp〉V. (14)

Since the Universe is expanding, we have that ne ∝ a−3 and hence

1

〈ne〉
d〈ne〉
dt

=
d ln〈ne〉
dt

= −3
ȧ

a
, (15)

so we get
dV

dt
− 3V H(t) =

Ṅγ

〈ne〉
− αr

〈nenp〉
〈ne〉

V. (16)

If we now introduce the recombination time-scale, and observe that for a fully ionized
gas, ne ≈ np ≈ nH , we have

trec =
1

αr〈ne〉
(17)

and an effective recombination time-scale

t̄rec =
〈ne〉

αr〈nenp〉
=

1

C
trec, (18)

where C = 〈nenp〉/〈ne〉2 is called the clumping factor. C plays a key role in reionization
because if matter is clumpy (as it is likely to be), recombinations are much more efficient
there (because they depend on the density squared) and hence you need more photons to
reionize the Universe.

That C > 1 for a clumpy medium you can easily verify for yourself. It is currently
thought that C ∼ 1–6, while a few years back a much large value C ∼ 30 was favoured.
Its value must be estimated using simulations at the moment.

Using this we can rewrite equation (16) as

dV

dt
=

Ṅγ

〈nH〉
− V

[
1

t̄rec

− 3H(t)

]
. (19)
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To gain an intuitive feeling for the solutions of this equation, we can look at the two
terms on the right. The first term contains the photon injection rate, and this is a property
of the source. This will depend on what kind of source we are considering. The second
term is source indpendent, so it is enlightening to explore the relative magnitude of 1/t̄rec

and 3H(t).
We can ignore the expansion term (H(t)) when

1

t̄rec

� 3H(t), (20)

and in the previous lecture we derived an expression for trec/tH ∼ trecH(t),

trec

tH
≈ 3.6hT 0.7

4

(
nH

n̄H

)−1(
Ωm

0.3

)1/2(
1 + z

4

)−3/2(
Ωb

0.023

)−1(
1 +X

1.75

)−1

. (21)

so suppressing some of the cosmology terms, and setting the temperature to T = 104K, we
see that we satisfy equation (20) when

C

(
1 + z

10

)3/2(
nH
n̄H

)
� 2.7. (22)

This is true when C � 1 or z � 9 or the over density is� 1. At early stages of reionization
this is likely to be true and we can then solve equation (19) to get

V (t) =
Ṅγtrec

C〈nH〉
[
1− e−t/trec/C

]
(23)

At early times, or when you have a lot of ionising photons so that recombinations are
inefficient, you have

t� trec

C
⇒ V (t) ≈ Ṅγ

〈nH〉
t. (24)

In the other limiting case, we have very efficient recombinations and in that case we
get

t� trec

C
⇒ V (t) ≈ Ṅγ

〈nH〉
trec

C
. (25)

This latter expression is independent of time and represents of course the Strömgren sphere
modified by the clumping factor C.

The actual process of re-ionization involves the gradual overlap of a number of sources.
This is well illustrated by Figure 1 which is taken from Iliev et al (2006; MNRAS, 369,
1625), most other simulations give a similar picture.

The reionization scenarions we are exploring here all call for a single event, but note
that since the recombination time is shorter than the Hubble time at z > 8, it is possible
to have multiple (partial) reionization events and hence a complex history of reionization.
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Figure 1: The evolution of ionized bubbles (shown in yellow) in a simulation of reionization by
Iliev et al (2006; MNRAS, 369, 1625). The darkness reflects the density and neutral regions are
shown in green. As is clear, the first ionized structures appear as separate volumes, and then as
time progress (from top left to bottom right), the ionized structures start to merge and create
large continuous regions with ionized material. At this stage reionization progresses rapidly to
fill all space.

4 The filling factor of the Universe

We now want to go from the analysis of single H ii-regions in the previous section, to
the whole Universe. To do that, we need firstly to sum over all ionization sources, thus
Ṅγ →

∑
Ṅγ,i. If we consider a volume Vtot of the Universe, we can then define a filling

factor of ionized regions,

Q =
V

Vtot

(26)

and we will define total reionization to be Q = 1.
By setting V = QVtot we can convert equation (16) to

dQ

dt
=

ṅγ
〈nH〉

− Q

t̄rec

, (27)

where ṅγ = Ṅγ/Vtot. If we focus our attention on the limiting cases identified above, we
have at early times

t� trec

C
⇒ Q(t) =

ṅγ
〈nH〉

t, (28)

which gives as condition for reionization (Q = 1) that

ṅγt = 〈nH〉, (29)
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or in other words that when recombinations are inefficient, we need one ionizing photon
per baryon to achieve reionization. We expect this to give a reasonable description of the
earliest stages of reionization.

5 Keeping the Universe reionized

An up-to-date review of this question is provided by Robertson et al (2010, 468, 49).

The preceding result gives us an indication of how a region is ionized when recombina-
tions are irrelevant. At later times, though, recombinations will become important and in
this regime we have

t� trec

C
⇒ Q(t) =

ṅγ
〈nH〉

trec

C
(30)

the requirement to keep the Universe reionized is then

ṅγ =
〈nH〉
trec/C

, (31)

in other words that the rate of photoionizations should balance the recombination rate
adjusted for clumpiness of the medium. We can convert this into a limit on ṅγ. It is most
convenient to do this in comoving units as that is what observers use. In that case we have

ṅγ = 〈nH〉(z = 0)Cαr〈ne(z)〉, (32)

where we have cancelled (1 + z)3 on both sides, hence the z = 0 for the mean density.
Using that n/ne = (5X+3)/(2X+2) and nH = Xµn we can introduce the baryon density
of the Universe and find

ṅγ ≈ 3.95× 1050 s−1 Mpc−3

(
Ωbh

2

0.023

)2(
C

6

)(
1 + z

6

)3

T−0.7
4 (33)

This is then the minimum rate of ionizing photons per volume to keep the Universe reion-
ized.

To make a closer link to observational data it is convenient to convert this into a
star formation rate. From stellar population synthesis models we can calculate the rate
of photons per second per solar mass per year of new stars formed. If we write this as
rQ = fQ1053 photons/s/M�/yr, we find that at low metallicity fQ ≈ 2, so we can rewrite
equation (33) to give us an expression for the minimum star formation rate to keep the
Universe ionized

ρ̇∗(t) = ṅγ

(
fQ
2

)−1

(2× 1053)−1f−1
esc (34)

≈ 0.002M�/yr/Mpc3

(
C

6

)
f−1

esc

(
Ωbh

2

0.023

)2(
fQ
2

)−1(
1 + z

6

)
T−0.7

4 (35)

7



This is easily achieved at z ∼ 3 and at lower redshifts, but at high redshift it is not
entirely clear whether the observed star formation rate is consistent with this limit. This
is therefore an area of very active research both on the theoretical and the observational
side.
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