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1 Recap

Last week we looked briefly at equilibrium models of galaxy evolution. In particular we
saw that if we postulate an equilibrium between gas infall, star formation and gas outflow,
then the cosmological infall of baryons into halos predict a simple scaling relation between
the star formation rate and the mass of the halo a galaxy resides in. We did note that this
gave the wrong trend for the specific star formation rate with stellar mass as compared to
observations, but when we included a function to account for the heating of gas by virial
shocks the resulting trend was in much better agreement with that seen in observations.

We then moved on to the intergalactic medium and started with a discussion of the
physical properties of Lyman-α absorbers, in particular the Lyman-α forest. We argued
that the characteristic size of such structures was related to the Jeans length of the medium
and through this argument we could estimate the sizes and masses of these structures. We
found that the structures associated with faint Ly-α absorbers, NHi ∼ 1014 cm−2 were
large, over 100 kpc in characteristic size with the size scaling as N

−1/3
Hi .

Today we will explore briefly what happens when these absorbers become so numerous
that they effectively absorb all light blueward of Ly-α, an effect known as the Gunn-
Peterson effect. This will give us useful insight on the properties of the IGM at high
redshift and provide us with a path to understanding the process of re-ionisation.

2 The Gunn-Peterson effect

The name of this effect comes from a paper by Gunn & Peterson (1965, ApJ, 142, 1633).
At the time, it had become clear that some QSOs lie at very high redshift and that the
Ly-α line of hydrogen would be redshifted to optical wavelengths, thus possible to observe.
They showed what we will derive here, namely that even very modest amounts of neutral
hydrogen is sufficient to absorb a lot of light and it can therefore be used as a probe of the
intergalactic medium between us and the high-redshift object.

When light traverses a region with neutral hydrogen gas, it will suffer significant ex-
tinction through Ly-α-absorption. If a total flux, F , traverses a length ∆l in a region with
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hydrogen gas density nH , it will lose an amount,

∆F = −FnHσ∆l, (1)

where σ is the cross-section for absorption. Going to infinitesimal quantities we find that
the final flux is

F out = F0e
−

∫
nHσdl = F0e

−τ , (2)

where F0 is the unattenuated flux, and where we have defined

τ
def
=

∫
nHσdl. (3)

The cross-section for absorption at a resonance line where the absorption cross-section
is sharply peaked, can be written generally as

σ(ν) =
πe2

mec
fφ(ν), (4)

where I have used Gaussian units as is common in astronomy1. Here φ(ν) is the line profile
function which is normalised to an integral of unity, f is the oscillator strength of the line,
which is 0.416 for Ly-α, and the other symbols have their usual meaning.

For hydrogen it is convenient to rewrite this in the form

σ(ν) = σ0ν0φ(ν − ν0), (5)

where ν0 is the wavelength of the line. For relatively weak absorption we can approximate
φ(ν) with a delta function, δD so get

σ(ν) ≈ σ0ν0δD(ν − ν0). (6)

The dominant line for us is the 1s–2p transition in hydrogen, normally referred to as the
Ly-α line. The wavelength of the transition is λ0 = 1215.7Å, and its associated energy is
10.2 eV. The cross section is σ0 ≈ 4.5× 10−18 cm2.

The integral in equation (3) is along the line of sight towards us and we have

τ(νobs) =

∫ l

0

nHiσ(ν)dl, (7)

which we can rewrite by using ν = νobs(1 + z) and hence dν/νobs = dz, to get

τ(νobs) =

∫ νobs(1+z)

νobs

nHi(z)σ(ν)

∣∣∣∣ dldz
∣∣∣∣ dννobs

. (8)

1For quantification it is useful to recall that the electron charge is 4.8032042510−10 statColoumbs in
these units and that a statColoumb is equation to erg1/2 cm1/2.
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If there is no very strong absorption, so that the details of the line profile are unimportant
we can use the simplication of equation (6) which gives

τ(νobs) =
σ0ν0

νobs

nHi(z)

∣∣∣∣ dldz
∣∣∣∣ , (9)

where z is the given by ν0 = νobs(1 + z). What is immediately clear is that this absorption
can be used to trace density along the line of sight.

The transformation above assumed that there is a straight match between frequency
and redshift. This is not correct if peculiar velocities are taken into account. However the
derivation for the Gunn-Peterson effect normally assumes a uniform medium and ignores
the effect of peculiar velocities. In that case we can continue by writing

dl = cdt = c
dt

da

da

dz
dz = − c

H(z)

dz

1 + z
, (10)

where H(z) = ȧ/a. Inserting this into equation (9) we get

τ(νobs) = σ0

(
c

H0

)(
H0

H(z)

)
nHi(z) (11)

We now need an expression for nHi. The natural procedure is to relate it to the average
density along the line of sight, which gives

nHi =
nHi

nH

nH =
nHi

nH

nH

n̄H

n̄H. (12)

In this expression nHi/nH quantifies the neutral fraction, while nH/n̄H is a measure of the
overdensity, which for the conditions we are considering here is ≈ 1. n̄H denotes the mean
hydrogen density in the Universe. This can be related to the baryon density through

n̄H =
ρ̄BX

mP

=
X

mP

Ωbρcrit(1 + z)3, (13)

where X is the hydrogen mass fraction and Ωb is the mass density in baryons relative to
the critical density, ρcrit. Putting in numbers we find

n̄H ≈ 1.2× 10−5 cm−3

(
X

0.75

)(
Ωbh

2

0.023

)(
1 + z

4

)3

, (14)

which by insertion in equation (11), gives:

τ(νobs) ≈ 5.2× 105h−1nHi

nH

nH

n̄H

(
H0

H(z)

)(
X

0.75

)(
Ωbh

2

0.023

)(
1 + z

4

)3

. (15)

If we focus on the high redshift Universe, we can then use the approximation

H(z)2 ≈ H2
0 Ωm(1 + z)3, (16)
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Fan et al (2006, ApJ, 132, 117) Fan et al (2006, ApJ, 132, 117)

Figure 1: Left: The effective Gunn-Peterson optical depth derived for a set of high redshift
quasars by Fan et al (2006, ApJ, 132, 117). The different coloured circles and arrows without
error bars refer to different Lyman lines and the red circles with error bars to the medians in bins
in redshift. Right: The average neutral fraction as a function of redshift inferred from the sample
on the left.

and thus get

τ(νobs) ≈ 1.7× 105nHi

nH

nH

n̄H

(
Ωmh

2

0.147

)−1/2(
Ωbh

2

0.023

)(
1 + z

4

)3/2(
X

0.75

)
. (17)

Now imagine you have high signal-to-noise (S/N) spectrum, say you can achieve S/N =
100. You can then say that a signal is consistent with zero of F/F0 < 0.01. This would be
a 1σ limit — a more robust limit would be set by the 3σ limit, F/F0 < 0.03, but in either
case the optical depth will be moderate τ & 4.6 for the 1σ limit and τ & 3.5 for the 3σ
case.

Inserting this into equation (17), we find that this limit corresponds to nHi/nH & 2–
3× 10−5. If we wanted to put constraints on the neutral fraction, nHi/nH of, say, 10%, we
would need to measure τ > 104 which means flux attenuations of e−104 which obviously is
impossible.

The “problem” here is that Ly-α is very efficient at absorbing photons. It is there-
fore sufficient with only a very small amount of neutral material to absorb light at and
shortwards of Ly-α very efficiently.

It is possible to make some progress using higher order Lyman lines, and also using
more complex techniques for measuring the attenuation (see Fan et al 2006, ARA&A, 44,
415 and references therein), but you gain only a factor of ∼ 20 by going to Ly-γ, and higher
order lines are exceedingly hard to measure accurately because they become blended with
lower redshift Ly-α absorption.
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By measuring the Gunn-Peterson effect in distant quasars we can nevertheless get some
insight into the properties of the IGM at those redshift. From the QSO spectra it is possible
to estimate the decrement in flux due to absorption and use equation (17) (or usually some
modification of it) to infer the neutral fraction of the Universe. In Figure 1 we shown this
process based on a paper by Fan et al (2006, ApJ, 132, 117). The left hand plot shows the
effective optical depth measured for a sample of quasars, while the right hand panel shows
the inferred neutral fraction. What is obvious from these plots is that the neutral fraction
increases rapidly at high redshift and this has been taken by some to mean that we are
approaching the epoch of re-ionisation. ionise That is not a robust inference however, as
we are still talking about neutral fractions of only ∼ 10−3, but what can be said is that
this is evidence that reionisation at least must have mostly been finished by z ∼ 6 because
the Universe is then mostly ionised.

To improve on the Lyman line absorption, it would in theory also be possible to use
metal lines instead of hydrogen lines, as these would saturate at higher densities. However
as you go back in time, the abundance of metals is also expected to decrease and separating
those two effects, the change strength of lines due to a higher column of absorbing material,
and due to a decrease in metal abundance, is not easy to do.

2.1 Polarization of the Cosmic Microwave Background

The Cosmic Microwave Background (CMB) offers a source of photons that cover the whole
sky, and this can be used to probe the intervening IGM out to the epoch of reionisation.
It is a rather different method

The CMB photons will interact with free electrons in the IGM they pass through (as
we will see later, they will also interact with other matter of course). They will scatter due
to Thompson scattering and we can calculate the optical depth to Thompson scattering
in a very similar way to what we did for the Gunn-Peterson effect above. We replace the
absorption cross-section, σ(ν), with the Thompson cross section, σT , and we replace the
neutral hydrogen density, nHi, with the electron density, ne. This gives us

τ(z) ≈ 0.063hΩb

∫ z

0

H0

H(z)
(1 + z)2

(
ρ

ρ̄

)
fe(z)dz, (18)

where ρ is the background density and ρ̄ is the mean background density, thus their ratio
is the overdensity, and fe(z) is the electron fraction.

This Thompson scattering leads firstly to an overall damping of the CMB power spec-
trum, but arguably more importantly, it causes an overall polarisation of the CMB. To
get a quantitative estimate of this it is necessary to have a model for the process of re-
ionisation. If we for simplicity assume that the reionisation happened instantaneously at
z = zri, so that fe(z) = 0 at z > zri and 1 later, we get

τ(zri) ≈ 0.08

(
1 + zri

1 + 10

)3/2

. (19)
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We can then interpret this as follows (see Zaldarriaga 1997, Phys. Rev. D 55, 1822):
If the optical depth is τ = 0, then all photons reaching us today comes from the surface
of last scattering, ie. the period of recombination. Correspondingly, if τ ≈ 1, then most
photons that reach us would have been scattered during the period of re-ionisation. It
turns out that the fraction of photons that were scattered at the epoch of re-ionisation is
1− e−τ(zri). Thus with the numbers in equation (19) we find that about 8% of the photons
were scattered during re-ionisation, if it happened at z = 10. This leads to a polarisation
signal of the order of ∼ 10%.

Although in reality the details are a bit more complex than what we covered here, this
optical depth to Thompson scattering is eminently measurable by todays CMB experiments
and the results from the 7-year WMAP results is τ ≈ 0.088± 0.015, which if you insert it
into equation (19) above results in a redshift of reionisation of 9.345 < zri < 12 (Komatsu
et al 2011, ApJS, 192, 1)2.

2.2 Hydrogen 21 cm absorption and emission

A comprehensive (120 pages) review of the 21 cm transition can be found in Furlanetto,
Oh & Briggs (2006, Phys. Rep. 433, 181. A shorter overview can be found in the Fan et
al (2006, ARA&A, 44, 415) article

Photons originating at high redshift that lie in the radio domain, in particular those
of the CMB, will also interact with foreground neutral matter. In particular with the 21
cm transition of hydrogen. This is fast becoming one of the main probes of the period of
reionisation and high redshift IGM although it is still observationally very challenging.

The 21 cm radiation comes from a transition where the electron in hydrogen flips its
spin relative to the nucleus. This transition has a very low energy threshold of ∆E ≈
5.9×10−6eV and is widely used in radio astronomy. For our purposes a very crucial aspect
of this line is that it does not saturate, thus it can be used, at least in principle, to probe
high neutral fractions.

Again the same derivation can be carried out estimate the optical depth to the 21
cm line, although in this case we have to also include the contribution from stimulated
emission. In this case one finds that

τ ≈ 0.3 T−1
S

nHi

nH

(
ρ

ρ̄

)(
1 + z

1 + 9

)3/2

(20)

where TS is the spin temperature. Like the derivation for the Gunn-Peterson effect for
Ly-α-absorption, this equation assumes no peculiar velocities.

The spin temperature is defined by the Boltzmann equation, so that the number of
hydrogen atoms in the upper level, n1, to the lower level, n0 is given by

n1

n0

=
g1

g0

e−∆E/kTS , (21)

2Note that the numbers in Komatsu et al for zri differs somewhat because they are not obtained using
the simplified expression equation (19).
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where g1 = 3 and g0 = 1. The spin temperature is particularly important in that it
determines whether the 21 cm line will appear in emission or in absorption on the CMB.
If the spin temperature is lower than the temperature of the CMB, the 21 cm line will
appear in absorption against the CMB. If it is higher than the CMB temperature at that
redshift, it will appear in emission.

The spin temperature is expected to be close to the kinetic temperature of matter, TK
in general. At high redshift this is expected to be lower than that of the CMB because
the matter temperature declines as TK ∝ (1 + z)2 after z ∼ 100. When energetic sources
start to inject energy into the IGM during re-ionisation, the matter temperature will go
up and will normally be considerably above the CMB temperature — leading to 21 cm in
emission. Thus we expect that the 21 cm line will primarily be observed in emission when
exploring the epoch of re-ionisation.

One important case where absorption would be important, is in the case of very high
redshift radio galaxies. If there were luminous radio sources at z > 6, say, they would
provide sensitive probes of the state of the IGM at high redshift.

Whatever the actual state, it is clear that probing the IGM at high redshift using the
21 cm line is of major interest, and a number of facilities will aim to detect the 21 cm line
from the epoch of re-ionisation.

3 The thermal balance of the IGM

The thermal balance of the IGM is of major importance, in part because it allows us to
gain some insight into the heating sources that inject energy into the IGM.

3.1 Photo-ionisation equilibrium

If we start out with considering a pure H gas, then in photoionisation equilibrium we have
that

nHi

tion

=
nHii

trec

, (22)

where tion is the time-scale for ionisation and trec is the time-scale for recombinations. Thus
the equation states that the number of ionisations should equal the number of recombina-
tions. Adding He to this relationship is straightforward but considering H alone is simpler
and sufficient for what we want here.

If the gas is highly ionised, as will be the case for the IGM in general, we have that
nHii ≈ nH and hence

nHi

nH

≈ tion

trec

. (23)

The ionisation time-scale depends on the presence of sources and the intensity of their
radiation, while the recombination time-scale is set by atomic physics. Specifically the
recombination time-scale is given by

trec =
1

neαr
, (24)
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where αr ≈ 4× 10−13T−0.7
4 cm3/s, with the temperature written as T = T4 × 104K.

If the gas is fully ionised, then we have shown previously that we can write

ne =
ρb
mP

(
X +

2(1−X)

4

)
= n

(
1 +X

2

)
, (25)

where X is the hydrogen mass fraction. This then gives a recombination time-scale of

trec ≈ 5.5× 109 yr

(
nH

n̄H

)−1(
1 + z

4

)−3

T 0.7
4

(
1 +X

1.75

)−1(
Ωbh

2

0.023

)−1

, (26)

where I have used that n/n̄ = nH/n̄H.
This is the relevant time-scale only as long as it is comparable to or shorter than the

Hubble time at redshift z. This is given by

tH ≈ 1.5× 109h−1 yr

(
Ωm

0.3

)−1/2(
1 + z

4

)−3/2

, (27)

so we find that the ratio of the two can be written

trec

tH
≈ 3.6hT 0.7

4

(
nH

n̄H

)−1(
Ωm

0.3

)1/2(
1 + z

4

)−3/2(
Ωb

0.023

)−1(
1 +X

1.75

)−1

. (28)

Since this is > 1 it is in fact questionable to make the assumption of steady state, and
indeed it is not to be expected that the Universe as a whole will be in photoionisation
equilibrium. However in small enough patches it will be acceptable and it is good enough
for getting the approximate scalings right.

Observationally it is found that the Gunn-Peterson optical depth at z ∼ 3 is τGP ≈ 0.3
(e.g. Songaila 2004, ApJ, 127, 2598). Putting this into equation (17), we get that the
typical neutral fraction at this redshift is nHi/nH ≈ 2.3× 10−6. If we also assume that the
temperature is T4 ∼ 2, we get that

trec ∼ 9.3× 109 yr, (29)

and hence that tion can be estimated as

tion =
nHi

nH

trec ≈ 2× 104 yr, (30)

and it is common to define the ionisation rate, Γ
def
= t−1

ion, and we find that Γ ≈ 10−12 s−1,
which leads us to define Γ−12 = 1012Γ.

Using this definition we can now write the neutral fraction as

nHi

nH

=
tion

trec

= 5.8× 10−6 nH

n̄H

(
1 +X

1.75

)(
Ωbh

2

0.023

)(
1 + z

4

)3

T−0.7
4 Γ−1

−12, (31)
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which we can use to write that the Gunn-Peterson optical depth is

τGP ≈ 1

(
nH

n̄H

)2(
Ωbh

2

0.023

)2(
Ωmh

2

0.147

)−1/2(
1 + z

4

)9/2(
X

0.75

)(
1 +X

1.75

)
Γ−1
−12T

−0.7
4 . (32)

What is important to note here, is that while Ly-α absorption is less suited to very high
neutral fractions, it is a very sensitive probe of mild overdensities and it can therefore be
used to build up a map of the gas distribution. This is particularly powerful around z = 3,
becuase we see from equation (32) that as z � 3, the absorption will increase significantly,
while at z � 3 there is little absorption and the probe is less efficient.

4 The energy balance of the IGM

The temperature of the IGM is a crucial variable, for instance for predicting the properties
of Ly-α-absorbers. In the last lecture I argued that the temperature in the gas responsible
for the Ly-α-forest ought to be around 104K, but it is unlikely that at gas at different
densities have the same temperature so we really would like to know what the T -ρ relation
looks like.

One way to do this is to carry out a numerical simulation and Figure 2 shows the result
of one recent run. However it is essential to understand where different features in this
diagram comes from, in part to understand what aspects are more robust than others.
That is the topic of this part of the lecture.

The equations for the energy balance of the IGM can be derived from the first law of
thermodynamics

dE = dQ− pdV. (33)

If we write E = uV , where u = ρkBT/(γ − 1)µmP is the internal energy of the gas, we
have

d(uV ) =
1

γ − 1

k

mP

[
d(ρV )

T

µ
+
ρV

µ
dT − ρV T dµ

µ2

]
. (34)

The first term in the parenthesis, d(ρV ) is zero as long as mass is conserved so we ignore
this in the following. The right hand side of equation (33) will balance the energy input
and we can generally write the full equation as

1

γ − 1

k

mP

[
ρV

µ
dT − ρV T dµ

µ2

]
= (Λh − Λc)V dt−

ρkBT

µmP

dV, (35)

where Λh is the radiative heating per volume and Λc is the radiative cooling term per
volume. Dividing this equation by uV dt, we get

1

T

dT

dt
=

1

µ

dµ

dt
+

Λh − Λc

u
− (γ − 1)

1

V

dV

dt
. (36)

The last term in on the right hand side represents adiabatic cooling due to the expansion
of the Universe. The middle term provides the balance between radiative heating and
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Figure 2: A density-temperature diagram from a recent simulation by Peeples et al (2010,
MNRAS, 404, 1281). The various coloured lines show analytical relations used in the paper,
what is relevant for us is the distribution of points in the diagram which shows the location of
1% of the particles in the simulation at z = 3.
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cooling. The first term on the right hand side encapsulate the energy change associated
with a change in particle number.

As long as mass is conserved we have

dV

V
= −dρ

ρ
, (37)

and since ρ = ρ̄(1 + δ), we have

dρ

ρ
=
dρ̄

ρ̄
+

dδ

1 + δ
= −3

da

a
+

δ

1 + δ

da

a
, (38)

where the the second equality follows because ρ̄ ∝ a−3 and δ ∝ a (which is a good
approximation at high redshift as long as δ � 1). The δ/(1 + δ) term is going to be
very small as long as δ � 1 or we consider a fixed δ. In that case we find that

− 1

V

dV

dt
≈ −3H(t), (39)

and insertion into equation (36) gives us

1

T

dT

dt
=

1

µ

dµ

dt
+

Λh − Λc

u
− 3(γ − 1)H(t). (40)

In Mo, van den Bosch & White, this equation is given as a derivative in ln(1 + z) which
can be easily achieved by using d/dt = −H(t)d/d ln(1 + z).

We can now use equation (40) to look at how the temperature changes with time. If
we first consider a virialized halo where u/Λc = tcool < tH ∼ 1/H(t) and where the matter
is fully ionized so that dµ/dt ≈ 0, we have

d lnT

dt
= −Λc − Λh

u
= − 1

tcool

, (41)

where we have extended our definition of the cooling time to also account for the heating
term. This then can be formally integrated to yield

T = Tie
−(t−ti)/tcool , (42)

where subscript i corresponds to the initial values.
After reionisation we expect the temperature of the gas to a few times 104K and again

we expect the neutral fraction to be very low, so again we can ignore the derivative of µ.
However the density in this case is going to be low so the cooling will primarily be inverse
Compton cooling as discussed in earlier lectures. So Λc ≈ Λic. This allows us to write

1

T

dT

dt
=

Λh − Λic

u
− 3(γ − 1)H(t) (43)

At sufficiently high redshift inverse Compton cooling is efficient in the sense that the
cooling time is shorter than the Hubble time. In this case we get an evolution similar to

11



equation (42). If we are at lower redshift where inverse Compton cooling is inefficient the
main cooling source will be adiabatic expansion and much slower.

Turning now to the sources of heating. The main heating source we will consider here
is photoionization heating. It is then convenient to relate the rate of photoionization to
the ionization flux. This is generally given by

Γpi =

∫ ∞
νpi

4πJ(ν)σpi

hν
dν, (44)

where the term in the integrand gives the number of photons per second per Hertz. νpi is
the frequency corresponding to the ionization energy νLyC = 13.6eV/h for hydrogen; σpi is
the photoionization cross section, and for hydrogen this is given by

σLyC ≈ 6.3× 10−18

(
ν

νLyC

)−3

cm2, (45)

where LyC denotes the Lyman continuum which corresponds to an energy of 13.6 eV, a
wavelength of λLyC = 912Å and a frequency of νLyC ≈ 3.29× 1015Hz.

It is useful to see how this integral behaves if the ionizing radiation is given by a
power-law

J(ν) =
(νLyC

ν

)β
J−21 erg cm−2 Hz−1 sr−1, (46)

which upon insertion in equation (44) gives us

Γ−12 =
12

β + 3
J−21. (47)

In particular we note that the ionization rate is proportional to the strength of the ionizing
radiation.

We can then easily calculate the energy input from photoionization by writing (now
specializing to hydrogen):

Λh,H = nHi

∫ ∞
νLyC

4πJ(ν)σLyC(ν)

hν
h(ν − νLyC)dν, (48)

where the integrand in equation (44) has been augmented by the energy per photon. We
also see that this expression is proportional to the density of hydrogen, and not to the
density squared as is true for most cooling processes.

Again, if we have photoionization equilibrium, we have that the number of ionizations
should balance the number of recombinations, or in other words

nHiΓ = αrnenHii. (49)

If our gas is nearly fully ionized, then ne and nHii are both ∝ ρ. Thus we have that

nHi ∝ ρ2T−0.7Γ−1, (50)
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and since J(ν) ∝ Γ, we have
Λh,H ∝ ρ2T−0.7. (51)

With this background we can now in principle solve equation (40). The simplest case
is to ask what one would expect in thermodynamical equilibrium. In this case, dT/dt =
0, regardless of the density. If we assume fully ionized gas, then we can observe from
equation (40) that H(t) is independent of ρ and Λic/u ∝ ne/n is also independent of
density for a fully ionized gas, this leaves the heating term.

To be able to ensure that dT/dt = 0 at one density implies that it holds at all densities,
as is required for thermodynamical equilibrium, we need that

Λh,H

u
∝ ρ2T−0.7

ρT
∝ ρT−1.7 (52)

is independent of density. This is satisfied if T ∝ ρ0.59. We therefore expect that in
thermodynamic equilibrium that there is a relationship between temperature and density
like that.

4.1 Summarising the thermal state of the IGM

If we now return to the theoretical calculation shown in Figure 2 we can try to make some
sense of it all. As we will see below, at re-ionization the input of energy will lead to approx-
imately the same energy per baryon and hence an approximately constant temperature at
various densities with T ∼ 104K. Subsequently the gas will slowly cool due to adiabatic
expansion and a thermodynamic equilibrium is set up so that T ∝ ρ0.59.

Winds blowing into the IGM and other processes of shock formation will heat the gas
around forming galaxies, when the density is sufficiently high this gas will cool down again
but at low density the temperature will remain high which you can se around 1 < δ < 2.

At slightly higher densities, the gas will start forming galaxies and start collapsing and
the temperature will decrease because the higher densities lead to a stronger cooling. Then
at very high densities where virialised halos have formed, the gas will start getting hotter
as the density increases because the gas will be heated to the virial temperature.
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