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1 Equilibrium models of galaxy evolution

This has been discussed in a number of papers recently, see for instance, Schaye et al
(2010, MNRAS 402, 1536) , Davé et al (2012), Lilly et al (2013, ApJ 772:2, 119)). The
discussion below follows Davé et al in some detail.

In the previous lectures we have built up a set of tools that can be used to investigate
the evolution of galaxies. It is now natural to take one step further and try to use these
tools to explain some observed scaling relations for galaxies.

Figure 1: The relationship between the stellar mass of a galaxy (on the x-axis) and the star
formation rate of the galaxy (y-axis) at four different times in the Universe. The figure is
taken from Noeske et al (2007, ApJL, 660:1, L43) and the blue points are the relevant ones
— these show the locations of galaxies that are actively star forming. This is often called
the ”blue sequence”. Note that there is a positive correlation between mass and SFR and
also that the relationship moves up as you go back in time.

One key observation is that the star formation rate (SFR) of actively star-forming
galaxies is well correlated with their stellar mass. In other words, SFR/M∗ ∝ Mα

∗ , where
α appears to be slightly negative, Lilly et al (2013, ApJ 772:2, 119) argues that it should
be α ∼ −0.1 at least in relatively massive galaxies, and we will adopt that here too. The
time evolution is slightly less well characterised — Lilly et al argues for ∝ (1 + z)3 at z < 2
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and ∝ (1 + z)1.7 at higher redshift and for reference we will use that too but be aware that
this might change with new data in the near future.

From what we covered in previous lectures it is clear that matter flows into halos, some
might flow out again, some will be hot and take a long time to cool down, yet other will flow
into the galaxy forming in the central region of the halo. Here the gas, when sufficiently
cooled, will form stars. From the galaxy’s point of view we then have inflow, outflow and
star formation as crucial ingredients. Since these all involve gas as a crucial ingredient it
is natural to expect that an equilibrium will be set up: as more gas comes in, the star
formation rate goes up, as the star formation increases more supernovae will take place
and hence more outflows will be set up. It is then reasonable to expect that this will reduce
the inflow of gas (and this appears to be the case in simulations) which again will reduce
the star formation rate, Thus we have a self-regulating system which ought to reach an
equilibrium solution.

Figure 2: An illustration of the simple system considered here. Matter flows into dark
matter halos, as indicated by the large arrows with one labelled according to the relation-
ship we discussed in lecture 10. Some of that infalling mass will reach the galaxy in the
centre with a rate Ṁin, and this will to some extent be turned into stars with a rate Ṁ∗.
Some of this mass will in turn be released to the ISM through stellar winds and supernova
explosions, leading to Ṁout which may or may not escape the galaxy. In the latter case
you would expect it to return on a relatively short time-scale.

Armed with this, and our previous discussions we can create a simple illustration of
the galaxy in a dark matter halo. Figure 2 shows a simple version of this, indicating the
balance between the different flows of gas. I have here used a different notation for the gas
flowing into galaxies, Ṁin, and that flowing into dark matter halos, Ṁgrav. The latter is
well-predicted by the extended Press-Schechter formalism we discussed in Lecture 10 and
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confirmed by simulations, but the former is much harder to predict accurately and we will
see below that this matter.

The figure and the discussion above can be encapsulated in a simple equation

Ṁin = Ṁout + Ṁ∗, (1)

or in words that the amount of infalling matter is balanced by the sum of the outflowing
matter and the rate of star formation. This neglects the role of a gas reservoir, so we could
generalise this by including the gas reservoir

Ṁgas = Ṁin − Ṁout − Ṁ∗ +RṀ∗, (2)

where R is the fraction of mass turned into stars that is eventually returned to the gas
reservoir. This depends on stellar evolution and the IMF assumed and will take a value of
0.3–0.5 for different IMFs.

For simplicity I will however ignore the gas reservoir here (see the Lilly et al reference
for a more complete discussion). In that case we can define a mass-loading parameter,
η = Ṁout/Ṁ∗, ie. how much of the mass in stars is blown out of the galaxy (the return
fraction can obviously be encapsulated into this so we will ignore R below). The value of
η is difficult to estimate a priori and must be calibrated with simulations. Given this we
find that

Ṁ∗ = SFR =
Ṁin

1 + η
. (3)

So we see that if we can relate Ṁin to the mass of the galaxy, we might be able to infer a
relation between stellar mass and SFR.

So let us turn to Ṁin. In Lecture 10 we looked at the rate that mass is accreted onto
dark matter halos and if we multiply this by a baryon fraction, fb, we can derive a rate of
mass growth in baryons in the halo

Ṁgrav

Ṁhalo

≈ 0.47fb

(
Mhalo

1012 M�

)0.15(
1 + z

3

)2

.25 Gyr−1. (4)

If we take Ṁin = Ṁgrav we then infer that

SFR ≈ 2.1
M�
yr

(
fp

0.16

)(
Mhalo

1012 M�

)1.15

(1 + z)2.25. (5)

The mass dependence is not quite the same as seen in the observations, while the
redshift evolution is intermediate between the high and low redshift trends reported above.
However, the assumption that Ṁin = Ṁgrav is a questionable one. Gas falling into massive
halos is expected to be heated up and some of the gas might be stopped from accreting
onto the galaxy by other physical processes, such as galactic winds and photoionisation.
It is possible to capture this into a prevention factor ζ so that

Ṁin = ζṀgrav. (6)
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It turns out that in intermediate mass halos a key process reducing mass inflow is heat-
ing through virial shocks and a simple approximation for this was presented by Faucher-
Giguere et al. (2011) who advocated a function

ζshocks ≈ 0.47

(
1 + z

4

)0.38(
Mhalo

1012 M�

)−0.25
, (7)

which eventually gives us
SFR ∝M−0.1

halo (1 + z)2.63, (8)

which is encouragingly similar to the observational results summarised above. However
this gives the star formation rate of the galaxy in terms of the halo mass and it is not
obvious that the mass of a galaxy is a constant fraction of the halo mass, indeed we know
that this is incorrect when we consider a wide range of halo masses. However over a narrow
range in halo mass this is more likely to be an acceptable assumption and this might be
related to the observational results. But the discussion is more important for the light it
throws on which factors might be important in determining the scaling relation than for
the detailed predictions it might make.

2 The intergalactic medium

Mo, van den Bosch & White chapter 16; Padmanabhan chapter 9; a good review of the
physics of the IGM is provided by Meiskin (2009, Rev. Mod. Phys., 81, 1405). The discus-
sion of the Ly-α-forest is based on Schaye (2001, ApJ, 559, 507).

The majority of baryons in the Universe reside in the intergalactic medium (IGM).
Simply for that reason it is a crucial ingredient of the Universe to understand. It is the
reservoir of gas that is accreted into halos and it contains the gas that is ejected from
galaxies.

Despite this crucial importance, it is hard to observe as it is generally diffuse and hot.
But the simple fact that the IGM today is ionized has important implications — for the
Universe was mostly neutral after the epoch of re-combination, at z ≈ 1100. Thus at some
point the Universe must have become re-ionized. This process, how it occurred, when it
occurred and what the sources were that caused it, is a very active topic of research, both
from the theoretical and the observational perspective.

Here, we will first see how absorption by the netural medium can be used a probe of
the diffuse IGM, and thereafter we will explore the thermal balance of the IGM and see
how this changes with redshift and will lead us into the epoch of re-ionization.

Re-ionization is truly one of the key processes in the Universe, and one which is not
very well understood. Our focus on studying the IGM will therefore be tilted towards
methods that are useful to constrain the process of re-ionization in particular. But we will
start with Ly-α-absorbers.
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3 The Ly-α forest

In the spectra of distant quasars there are numerous weak absorption lines — more frequent
the higher redshift you go to (Figure 3). These are predominantly Ly-α absorption lines
from the intervening IGM. Their ubiquitousness makes it natural to ask what the absorbing
objects are, what masses, what sizes etc. Here we will build a simple model of this — the
goal is to get a handle on the masses, densities and sizes of these systems and how this
depends on redshift and other parameters. The full equations are left for the problem
class, I will focus on scaling relations predominantly. The focus here are on systems that
are optically thin and have column densities NHi < 1017 cm−2 with some comments on the
more optically thick systems further below.

3.1 The Jeans length

The structures are coherent and obviously the gas within them is affected by gravity, but
since they gaseous structures, pressure forces will also be important. Thus there are two
important time-scales. Firstly the dynamical time

tdyn =
1√
Gρ
≈ 3.2× 107 yrs

( nH

1 cm−3

)−1/2 (1− Y
0.76

)1/2 (
fg

0.16

)1/2

, (9)

where Y is the mass fraction of helium which is set to 0.24 unless explicitly given, and fg is
the fraction of mass in gas, excluding stars and molecules. For the Ly-α-forest a reasonable
assumption is that this is fg ≈ Ωb/Ωm because as we will see, this is a low-density system
where the gas is mostly ionised. The value of this ratio is a bit uncertain now, WMAP7
told us it was 0.20 while Planck prefers a value of 0.154, thus I have settled on using 0.16
whenever not explicitly given.

Secondly, the sound crossing time of a structure of size L which is

tsc =
L

cs
≈ 6.3× 107 yrs

(
L

1kpc

)
T
−1/2
4

( µ

0.59

)1/2
, (10)

where cs is the sound speed, T4 = T/104 K is the temperature in units of 104 Kelvin and
µ is the mean molecular weight which in the following I will keep at the value appropriate
for a fully-ionised primordial plasma (µ ≈ 0.59). I have assumed that the ratio of specific
heats, γ = 5/3. These time-scales will both be important for the evolution of the system.
We will for the moment assume that neither cooling nor Hubble expansion are important.
The density and sound-speed are both taken to be ”characteristic” quantities — below we
will argue that these are the quantities appropriate for the denser parts of the clouds.

Setting tdyn = tsc defines a characteristic length-scale, this is the Jeans length

LJ =
cs√
Gρ
≈ 0.52 kpc n

−1/2
H T

1/2
4

(
fg

0.16

)1/2

. (11)

Gas that satisfies this criterion is expected to be in hydrostatic equilibrium with gravity
and pressure forces balance each other as can be seen from the equation for hydrostatic
equilibrium for instance.
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Figure 3: An illustration of the effect of the Ly-α-forest. The top panel shows a low redshift
QSO with Ly-α in emission and redwards of this a number of narrow emission lines that are
due to neutral hydrogen between us and the QSO. The lower panel shows the same for a z =
3.62 QSO and here can be seen the veritable forest of Ly-α absorption lines. The nature of
the absorbers responsible for this is the topic of this lecture. The figure is adapted from Ned
Wright’s web page http://www.astro.ucla.edu/~wright/Lyman-alpha-forest.html.

3.2 Column density

Observationally what we are sensitive to is the column density — ie. the amount of matter
that a light-ray traverses on its way towards us. The simplest is to define the column
density of hydrogen, this is simply

NH = nHLJ ≈ 1.6× 1021 cm−2 n
1/2
H T

1/2
4

(
fg

0.16

)1/2

, (12)

and can be thought of as the Jeans column density. Note that by convention column
densities are given in cm−2. However observationally the material that we see in the Ly-
α-forest is neutral hydrogen so to connect to observations we are really mostly interested
in the column density of neutral hydrogen. This is given by

NHi =
nHi

nH

NH, (13)

where nHi/nH is the neutral fraction of the gas.

3.3 Ionisation balance

To calculate the neutral fraction we need to understand the ionisation balance of our gas.
It is reasonable to assume that at least at late times, photoionisation and recombination
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equal each other. In that case we can write

nHiΓ︸︷︷︸
Photoionisation

= αrnenHii︸ ︷︷ ︸
Recombinations

, (14)

where Γ is the photoionisation rate, we will typically write this as Γ = Γ−12 10−12 s−1,
and αr is the recombination rate for hydrogen. Since the absorbers are optically thin, the
appropriate recombination coefficient is that for Case A, which can be written

αr ≈ 4× 10−13 T−0.764 cm3 s−1. (15)

Note that for more accurate work better fitting formulae exist.
The absorbers are also expected to be highly ionised because the temperature of the

gas is found to be typically ∼ 104K. In that case we can write

nHi

nH

≈ nHi

nHii

= αrneΓ
−1. (16)

For a fully ionised gas, we can write

ne = nH
1− Y/2
1− Y

. (17)

If this looks unfamiliar, write down the derivation for yourself. Inserting this into the
previous equation we get the following expression for the neutral fraction

nHi

nH

≈ nH
1− Y/2
1− Y

αr
Γ

(18)

≈ 0.47nH T
−0.76
4 Γ−1−12. (19)

Inserting equation 18 into equation 20 we get

NHi ≈ 2.3× 1013 cm−2
( nH

10−5 cm−3

)3/2
T−0.264 Γ−1−12

(
fg

0.16

)1/2

. (20)

3.4 Non-uniform gas

In general we expect that a forming structure would have some variation in density. If
we, for simplicity, assume that the absorber is approximately spherically symmetric with
a density profile ρ ∝ r−n, we can calculate more explicitly what the column density is as
it is going to an integral along a line through the cloud (see Figure 4), so

NHi ∝
∫ ∞
−∞

ρ
(√

l2 + b2
) nHi

nH

dl (21)
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Figure 4: An illustration of the geometry for column density calculation.

and since nH ∝ ρ we can use the scaling in equation 18 to write

NHi ∝
∫ ∞
−∞

ρ
(√

l2 + b2
)2

dl ∝
∫ ∞
−∞

(
b2 + l2

)−n
l d ln l. (22)

For n > 1
2

the main contribution to this integral is for l ≤ b, thus we can approximate the
integral by NHi ∝ ρ(b)2b, indeed the integral gives b1−2n

√
πΓ(n− 1/2)/Γ(n) where Γ(n) is

the gamma function. Given the equation for the neutral fraction, and that ρ ∝ nH we can
then conclude that the integral scales as NHi ∝ nHi(b)b. This means that for reasonable
density profiles there is a typical density where most of the absorption takes place and this
is close to the maximum density of the system.

3.5 Densities

As we have done before, we can relate the hydrogen density to the mean and write

nH = (1 + δ)Ωbρcrit(1− Y )(1 + z)3. (23)

Inserting this into equation 20 we get

NHi ≈ 2.7× 1013 cm−2 (1 + δ)3/2T−0.264 Γ−1−12

(
1 + z

4

)9/2(
Ωbh2

0.02

)3/2(
fg

0.16

)1/2

. (24)

We can now take a step back and consider this. If we consider systems that are just
about virialising they have overdensities of the order of ∼ 200. They will then correspond
to NHi > 1017 cm−2 systems at z ∼ 3, which is just at the maximum column density for
Ly-α-forest systems. Thus the majority of systems responsible for the formation of the
Ly-α-forest have not yet virialised.
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We have also given the numbers for z ∼ 3 and there is a strong evolution with redshift
explicit in the equation. However Γ also evolves fairly strongly with redshift and in fact the
two effects mostly cancel out. Thus the conclusions for z ∼ 3 absorbers will be applicable
more or less to z ∼ 0 absorbers. The latter are much less well-studied because to study the
Ly-α-forest we need rest-frame UV observations and those are much easier to carry out at
high redshift.

3.6 Sizes and masses

We can now evaluate the characteristic sizes and masses of the absorbers by inserting the
expression for NHi back into the size estimates in equation 11 and we find that

L ∼ 100 kpc

(
NHi

1014 cm−2

)−1/3
T 0.41
4 Γ

−1/3
−12

(
fg

0.16

)2/3

. (25)

Thus the Ly-α-absorbers are large systems of the order of 100 kpc, and even the densest
systems are still of order ∼ 10 kpc.

To get the mass we write it M ∼ ρL3
J and this gives a total gas mass of

Mg ≈ 8.8× 108M�

(
NHi

1014 cm−2

)−1/3
T 1.41
4 Γ

−1/3
−12

(
fg

0.16

)5/3

. (26)

Thus the systems are fairly low mass at all relevant densities.

3.7 When does this break down?

What happens when tsc � tdyn? In that case there is no collapse and indeed the system
might easily evaporate under influence of e.g. the Hubble expansion. In the opposite
situation, when tsc � tdyn, we know that v ∼ L/tdyn � cs and when velocities are much
larger than the sound speed we will have shocks or fragmentation of the system. The
system is out of hydrostatic equilibrium but the shocks and/or fragmentation will bring
the system to an (new) equilibrium on a time-scale set by tdyn. Thus at any given time we
expect that locally in an absorber tdyn ∼ tsc which means that it is locally in hydrostatic
equilibrium.

When does this picture break down? It certainly will break down when cs fluctuates
strongly because of large variations in density — shocks during virialisation will certainly
lead to this effect. There could also be thermal instabilities which could also strongly affect
the density and pressure balance. It turns out that these effects are most important for
denser absorbers which are fewer but probably more closely correspond to the central parts
of galaxies.

The other situation where these approximations break down in situations where the
time-scales are comparable to the Hubble time. If a perturbation is larger than the sound
horizon, pressure forces will be irrelevant and the analysis given above is unreliable. In
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terms of density this corresponds to densities around the mean or lower. Thus for under-
dense absorbers this formalism is questionable.

Next we will look at how this evolves with lookback time and how the forest eventually
blends together to give a more dramatic effect.
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