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1 Recap

Last week we looked at how cooling proceeds in a gas cloud with a particular density and
pressure profile. We found that as time progresses, the radius where the cooling time is
the same as the age of the system typically increases with time. In other words there is a
cooling front that propagates outwards in the gas cloud.

We also discussed that as gas falls onto a virialised halo, it is likely to be shocked and
indeed numerical simulations find that a shock will develop typically close to the virial
radius. The gas that passes through this shock is heated to a temperature near the virial
temperature of the halo.

We then asked when this cooling radius equals the virial radius and found that this
implied a critical cooling level, or given a cooling level, a critical mass. This critical mass
divides halos into those that have a cooling radius outside the virial radius (the lower mass
ones) and those that have the cooling radius inside the virial radius. In the first case
the gas might be shock heated, but it will cool again almost immediately and in fact in
simulations it is found that only a very weak shock develops. Thus the gas will accrete
onto the halo “cold”. The second case is one where the gas first is shock heated to near
the virial temperature and this gas will typically settle in a near hydro-static equilibrium
“atmosphere” and cool out of this only slowly.

This assumes spherical symmetry and I then moved to explain that in reality we expect
that a lot of the accretion is non-spherical and this led to the concept of cold streams of
gas accreting onto galaxy clusters and into central galaxies.

2 Stellar and AGN feedback

The scalings we have derived give us an idea of the physical properties of dark matter
halos. In particular it helps us understand the dynamics of gas within the halos.

When we derived the Press-Schechter mass function we noted that it predicted an
excess of low- and high-mass halos relative to the galaxy luminosity functions. One possible
resolution of this mismatch is to propose a mechanism that suppresses star formation by
blowing the initial gas clouds apart.
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That there are some such mechanisms comes from the simple observation that a) the
most massive stars explode as supernovae which release large amounts of energy and b)
many galaxies have active galactic nuclei (AGN) in their centers, again these put out very
large amounts of energy and so are likely to influence their surroundings.

To get a feel for whether these energies are relevant for galaxies, it is useful to look at
the typical binding energy of a gas cloud with mass Mgas:

Eb = fS
GMMgas

rvir

. (1)

If we now assume that the gas to dark matter mass is equal to the overall baryon fraction
of the Universe, Ωb, we can write this as

Eb = fS
GM2

rvir

Ωb

Ωm

= fSV
2
c M

Ωb

Ωm

. (2)

If we use equation (??) to replace rvir we get

Eb = fS

(
G2H2

0

2

)1/3

∆1/3
c (1 + z)ΩbΩ

−2/3
m M5/3erg (3)

For our two scenarios this corresponds to a binding energy of ∼ 1058h−3erg for the 1012M�
halo at z = 0 and ∼ 1052h−3erg for the 108M� halo at z = 10. Since the typical energy
in a supernova (SN) explosition is ∼ 1051erg we see that even a single SN would input an
interesting amount of energy into small halos.

By equalling the preceding equation of the binding energy to the energy of one SN we
find that for a halo mass of ∼ 107M� the energies are comparable. However stars do not
form alone, what we really want to know is how much supernova energy you get if you
form a galaxy with stellar mass M∗.

To find this it is convenient to write the energy output in supernovae as:

ESN = εSNM∗c
2. (4)

M∗ is the mass of stars that have formed, c is the light speed and εSN quantifies the efficiency
of converting the rest-frame energy of a galaxy to supernova energy.

To estimate εSN we need to know the distribution of stellar masses when forming a
particular mass of stars. This is given by the Initial Mass Function (IMF). Adopting a
Kroupa IMF we find that if we adopt a minimum mass for a star exploding as a supernova
to be M = 8M� we produce 0.01 supernovae per solar mass of stars; for a Salpeter IMF
the corresponding number is 0.007 if we integrate down to 0.1M�. Thus we need to form
∼ 100M� of stars to create on supernova.

This corresponds to a εSN of

εSN ≈
1051erg

100M�c2
≈ 5.5× 10−6. (5)
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Thus star formation is not very efficient at turning rest mass into kinetic energy from
supernovae. If we compare this to the binding energy in equation (2) we get

ESN

Eb
=

5c2εSNM∗

3MgasV 2
c

, (6)

where we have assumed a uniform gas cloud (fS = 3/5) and used that Mgas = MΩb/Ωm.
Inserting values we find

ESN

Eb
≈ 10

(
M∗

Mgas

)(
Vc

300km/s

)−2

. (7)

Thus the energy produced by SN can be a significant fraction of the binding energy if a
significant fraction of the original gas mass is turned into stars.

However to blow gas out of the galaxy or halo, it is also necessary that the energy
couples closely to the baryons and whether it does this or not is less well understood.

Now we could also use this mechanism at high masses, but in that case we would have
to have a mechanism that efficient at low masses, then gets progressively less efficient and
then gets more efficient again. This is not easy to do and no natural model exist for
this. Instead we think that at high masses feedback associated with active galactic nucleic
activity is important.

We can carry out a similar analysis for the energy output from AGNs. In this case
we write the energy output from and AGN using the standard equation for energy output
from accretion onto a black hole:

EAGN = εAGNMBHc
2, (8)

where the efficiency of converting the rest-mass energy of infalling matter into radiation is
typically taken to be of the order of εAGN ≈ 0.1.

To make the link to the preceding we need to be able to link the black hole mass to the
properties of the galaxy. It is not obvious how to do this a priori, but it turns out from
observations that there is a close connection between the spheroidal part of galaxies (often
referred to as the bulge) and the mass of the black hole at their center. From Magorrian et
al (1998) we have MBH ≈ 0.002Mbulge where the pre-factor might be uncertain by a factor
of a few.

If we then calculate the equivalent of equation (7), we find that

EAGN

Eb
≈ 200

(
Mbulge

Mgas

)(
Vc

300km/s

)−2 (εAGN

0.1

)
. (9)

So if the energy output from AGN couples tightly to the baryonic content of a halo, it can
provide a very efficient way to eject matter out of galaxies. Whether this happens, and if
so how, is an area of considerable current research.
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2.1 Is feedback a universal fix?

This section is based on Peñarrubia et al (2012, ApJL, 759, 42), see that paper for further
information.

So does these ideas suffice? It is possible that they do, but it is not certain. There are
two observational results that make things a bit more tricky. The first is that dark matter
simulations predict a very large number of small halos orbiting a galaxy like the Milky
Way, but very few faint satellites to the Milky Way are seen. This is sometimes called the
missing satellites problem and a way out of this is to postulate that star formation is very
inefficient in small halos, in addition to being stopped by feedback.

However in contrast to this are the observations of dwarf galaxies around the Milky
Way that find that these galaxies have cored profiles (see Figure 1. In this case their
density distributions can be approximately written

ρobs(r) ≈
ρ0r

3
s

(rc + r)(rs + r)2
, (10)

where rc is the core radius and rs is a scale radius — the form of this is of course chosen
to be similar to the NFW form.

How can these cores be formed? A common argument is that they are caused by
baryonic processes, particularly those related to feedback. It is then useful to calculate
what the energy required is to cause this. One can do this by calculating the required
change in potential energy. To do this you first calculate the potential energy of the profile
in equation 10

W = −4πG

∫ rvir

0

ρ(r)M(r)r dr, (11)

where rvir is the virial radius. You calculate this first for an NFW profile and then for
the cored profile and take the difference in potential energy. This require an expression
for rs and for an NFW profile rvir/rs is called the concentration and is denoted c. It is
known that c depends on virial mass of a structure and for instance Bullock et al (2001,
MNRAS, 321, 559) found that c ∝ (1 + z)−1 which can be combined with Macció et al
(2007, MNRAS, 378, 55)’s finding that at z = 0 c is related to the virial mass through

log c ≈ 1.02− 0.109 log

(
Mvir

1012h−1M�

)
(12)

to give the behaviour of c(Mvir, z).
Armed with this it is now possible to calculate

∆W = WNFW −Wcored = g(Mvir, rc, z,Ωm), (13)

something that was calculated by Peñarrubia et al and the conclusion is that if the necessary
energy ingestion comes from star formation you need a quite a lot of star formation in
low mass systems. Whether this can be reconciled within a cold dark matter paradigm or
whether it is easier to explain the cores by postulating a slightly warm dark matter particle
is not yet possible to say with current observations but there is some tension between CDM
predictions and observations at the very lowest masses.
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Figure 1: Large symbols: The density profiles of nearby dwarf galaxies from the THINGS
sample. The small red symbols show various NFW profiles and the grey lines are from
SPH simulations of Oh et al (2011, ApJ 142, 24). Note how the observed baryon densities
show a core that is not seen in the simulations. Figure taken from Oh et al (2011) see that
paper for more details..

3 The formation of disky structures

The formation of disk galaxies is a very natural question to pursue. If you start out with
a slightly non-spherical perturbation, gravitational collapse will tend to accentuate the
non-spherical nature and lead to the formation of a flattened disk-like structure, or a cigar
like structure.

Now assume you have a rotating cloud, slightly flattened cloud of gas. If the temper-
ature in the gas is T > 104K, cooling would be usually be efficient and the gas will start
collapsing on the gravitational collapse time-scale. The radiation emitted by the cooling
will be isotropic so if we ignore the presence of dark matter, the angular momentum, J ,
will be preserved during the collapse. In reality there will of course be a dark halo present
but we will return to what its presence implies shortly.

3.1 Angular momentum and the spin parameter

See Peacock 17.2, Mo, van den Bosch & White 7.5.4

The angular momentum J ∼ MRVrot is generally different from what you would mea-
sure if all particles were rotating and the circular velocity, Vc. However we are often in-
terested in knowing how dominated by rotation a system is. We therefore like to compare
the angular momentum of a system to that if it is all rotating with the circular velocity,
Jcirc ∼MRVc. Since the circular velocity is

V 2
c =

GM

R
, (14)
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we have that Jcirc is given by
Jcirc ∼M3/2R1/2G1/2, (15)

and we can compare this to the observed angular momentum J , defining λ, the spin-
parameter :

λ =
J

Jcirc

=
J

M3/2R1/2G1/2
, (16)

which we normally rephrase by introducing the binding energy |E| ∼ GM2/R which gives
the standard expression for λ viz:

λ =
J |E|1/2

GM5/2
. (17)

Observationally, spiral galaxies have λ ∼ 0.3–0.6, while the spin parameter for dark
matter halos (in numerical simulations!) is well described by a log-normal distribution:

P (λ) dλ =
1

σlnλ

√
2π

exp

[
−
(
lnλ− ln λ̄

)2

2σlnλ

]
d lnλ, (18)

with λ̄ ≈ 0.035 and σlnλ ≈ 0.5. This distribution is shown in Figure 3.1 and it is clear
from that figure that values of the spin parameter of λ > 0.3 are extremely unlikely
(P (λ > 0.3) ≈ 8.4 × 10−6). Thus if baryons originally have the same spin as dark matter
halos, they need to spin up significantly to reproduce the observations of spiral galaxies in
the Universe.

4 Spiral galaxy formation

4.1 Collapse without dark matter

As I remarked above, it is necessary to spin up the forming spiral galaxy. It is instructive
to first look at this process assuming no dark matter is present. In that case we observe
that since the mass is conserved during collapse, the binding energy is

|E| ∼ GM2

R
∝ R−1 (19)

⇓
λ ∝ R−1/2. (20)

This in turn means that if we start out with a structure of radius Rinitial, we can predict
that its final radius is given through

Rinitial

Rfinal

=

(
λinitial

λfinal

)−2

=

(
0.035

0.5

)−2

≈ 200, (21)

for an illustrative change in spin parameter. Thus we would need to shrink the size of the
proto-spiral by two orders of magnitude. How long would this process take?
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Figure 2: The black line shows the likelihood distribution of the spin parameter, λ, normalised
to a peak of 1, for dark matter halos in the standard ΛCDM cosmology. The black line shows
the cumulative likelihood for λ.

To fix our attention, let us focus on a galaxy like our own, with a size of R ≈ 10kpc.
From the argument above, the starting size would have to be Rinitial ≈ 2Mpc.

How long would it take to contract to the size of 10 kpc? If we assume that cooling is
efficient, and that the mass is M = 1011M�, then the time-scale of collapse is set by the
gravitational collapse time:

tff =
π

2

(
R3

2GM

)1/2

≈ 1.5× 1011 yrs. (22)

This is considerably longer than the age of the Universe — thus this scenario for forming
our disk is simply unfeasible. As we will see, we need to include dark matter in our
considerations to make this work.

4.2 Collapse with dark matter

The initial spin parameter of the halo is

λinitial =
J |E|1/2

GM5/2
, (23)

where now E and M include both the dark matter and the gas. The final state now is one
consisting of baryons only and we have

λd =
Jd|Ed|1/2

GM
5/2
d

, (24)
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where subscript d indicates that the quantity is for the disk only. We are here assuming
that the dark matter is not affected by the collapse of the baryons. In this case we can
write down the ratio of these two spin parameters

λd
λinitial

=

(
Jd
J

)(
Ed
E

)1/2(
Md

M

)−5/2

. (25)

If we first focus on the ratio of energies, Ed/E, we know that we can write the gravitational
binding energy of a structure as E ≈ kGM2/R, where k is a constant of the order of 1
which depends on the density profiles of the mass distribution. Using this we can write

Ed
E
≈
(
kd
k

)(
Md

M

)2(
Rd

Rinitial

)−1

. (26)

It is less clear how to relate the initial and final angular momentum. At an early stage
the baryons and the dark matter should have approximately the same angular momentum
per mass because they are exposed to the same tidal forces. During collapse there could
in theory be transfer of angular momentum between the gas and the dark matter, but if
we assume that this transfer is negligible, then the angular momentum per mass of the
particles should be conserved, or in other words:

Jd
Md

=
J

M
. (27)

If we adopt equation (27) and use the expression in equation (26) for the ratio of
energies, we can rewrite equation (25) as

λd
λinitial

≈
(
kd
k

)(
Rinitial

Rd

)1/2(
M

Md

)1/2

, (28)

which gives us an expression for the change in size

Rinitial

Rd

=

(
k

kd

)(
Md

M

)(
λd

λinitial

)2

. (29)

If you compare this to equation (21), you see that we have gained an additional factor
of Md/M which, if the mass ratio is equal to the baryon to dark matter mass ratio,
Ωb/Ωm ∼ 0.1, we find that

Rinitial

Rd

∼ 20. (30)

which for our 10 kpc galaxy means that the initial size was ∼ 200kpc. This size is of the
order of the virial radius for a Milky Way galaxy and which gives us a collapse time of
tff ≈ 5× 109 years which is more consistent with observations.

But note that at z = 4 the age of the Universe is only ≈ 1.5 × 109 years, so it would
not be possible to form a large spiral galaxy at high redshift. This is indeed also what we
find.
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4.3 Disks in numerical simulations

A discussion is in Mo, van den Bosch & White 11.2.6.

While this works ok, numerical simulations of this process have repeatedly had problems
forming spiral disks. The problem has generally been that the disks are too small. A key
reason for this is that J/M is not conserved during collapse.

Because collapse tend to be clumpy in the simulations, the baryonic clumps experience
dynamical friction and so the baryonic structure loses angular momentum to the halo.
With less angular momentum, the disks have to contract further and hence become too
small.

How can this be avoided? Firstly there are numerical issues that cause loss of energy,
these problems have gradually been reduced as simulations have becom larger. Another
problem is that heating processes, such as feedback from star formation of active galactic
nuclei, need to be included. If sufficient energy is injected, the clumpy structures are
disrupted or at least made more diffuse and this reduces the amount of angular momentum
lost.

Up-to-date simulations now can form realistic spirals, although it appears hard still to
form bulge-less disks.

9


	Recap
	Stellar and AGN feedback
	Is feedback a universal fix?

	The formation of disky structures
	Angular momentum and the spin parameter

	Spiral galaxy formation
	Collapse without dark matter
	Collapse with dark matter
	Disks in numerical simulations


