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1 Recap

Last lecture we finished off our look at the halo model with a brief discussion of how one can
incorporate galaxies in this formalism and stressed the difference between central galaxies
and satellites. We then compared the cooling time-scale with the expansion and collapse
time-scales to identify in what part of the temperature-density diagram gas structures
could collapse.

We also looked briefly at the physical origin of different cooling mechanisms. Of
the various radiative cooling processes, the main cooling source at high temperature is
Bremsstrahlung, or free-free emission. This dominates above temperatures of T ∼ 107K
and the cooling is then ∝ n2

eT
1/2. The low temperature cut-off in the cooling curve is set by

the ionization cut-off of H. By considering the detailed equilibrium between collisional ion-
ization and recombination it is possible, but cumbersome, at least analyctically, to find that
if the ionization energy is ∆E, the fractional ionization is about 50% for E & ∆E/10. For
hydrogen this is ∼ 104K and a similar value cuts off collisional excitation as the excitation
energy n = 1→ n = 2 in hydrogen is ≈ 10.6eV.

Finally we discussed that the peaks in the cooling function were caused by collisional
excitation, followed by radiative deexcitation.

Today we will complete our discussion of the main cooling mechanisms with a discussion
of Compton cooling and the effect of photoionization heating before moving on to the
structure of gas in halos.

2 Compton cooling

If you have radiation passing through a plasma with free electrons, the radiation and matter
will interact through Compton scattering. It turns out (e.g. B1.3.6 in Mo, van den Bosch
& White), that the change in the energy density of the radiation, uγ, can be written

duγ
dt

=
4kB
mec

σTneuγ(Te − Tγ), (1)
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where σT = (8π/3)(q2/mec
2)2 ≈ 6.65×10−25 cm−2 is the Thomson scattering cross section,

ne is the electron number density, Te is the electron temperature and Tγ is the temperature
of the radiation.

In our case the photons come from the cosmic microwave background (CMB) and we
have Tγ � Te. Thus we have a net gain of energy in the photons and hence a net loss
in the electrons. This scattering process is known as inverse Compton scattering and the
cooling as Compton cooling.

In that case we have that the cooling, Ė is

Ė ∝ neuγTe ∝ neT
4
γTe ∝ neTe(1 + z)4, (2)

since the energy density in radiation is uγ = aT 4
γ , and the temperature of the CMB declines

as 1 + z.
This cooling is therefore more efficient at high redshift, but from the discussion in the

previous lecture we know that it would not work at arbitrarily high redshifts because there
would be essentially no free electrons around to interact with.

It can work before the time of re-ionisation if you form a large enough dark matter halo
that the virial temperature is above ∼ 104K, in which case the shock heating of the gas is
sufficient to ionise that halo. However very few such halos are expected to exist at z > 10
(c.f. Table 1 in last weeks notes) so this is not a wide-spread phenomenon.

We can use the expressions above to calculate the cooling time due to Compton scat-
tering. The energy density in the plasma is E ∝ nekTe, thus

tcool =
E

Ė
∝ kTene
neTe(1 + z)4

∝ (1 + z)−4. (3)

It is therefore independent of T and of the electron density ne. It is independent of
temperature only insofar as there are a lot of electrons around — should the temperature
so that the matter is mostly neutral, the Compton cooling will be inefficient. Quantitatively
we have

tcool,Compton ≈ 2.3× 1012(1 + z)−4 years. (4)

However the independence of density and temperature means that Compton cooling can
act on reasonable time-scales in regions where the other cooling processes are inefficient.

Clearly the time-scale for Compton cooling given in equation (17) is too long to be
useful at z = 0. To get a feel for where it is of importance, we can set tH = tcool and
we have that Compton cooling is efficient for z > 6.2, at lower redshift the time-scale is
longer than the age of the Universe. However to be dynamically important tcool must also
be shorter than the dynamical time, tdyn. This translates into(

3πfgas

32Gµmpn

)1/2

= 2.3× 1012(1 + z)−4, (5)

which clearly becomes a function of density and gas fraction. This translates into

1 + z ≈ 13.6
( n

1 cm−3

)1/8

f−1/8
gas . (6)

2



which gives a typical redshift of z ∼ 10, depending on the assumptions made for n — an
n associated to an over density a factor of 10 above the mean will have efficient Compton
cooling (relative to tdyn) until z ≈ 7, while at a density contrast of 200 above mean,
Compton cooling is only efficient at z > 13.5. Thus Compton cooling is clearly important
in the early Universe, but only at the highest redshifts.

3 Heating

In a real situation there is not only cooling of course — there will also be an important
heating contribution. An important heating source in the cosmological context is pho-
toionization heating — it is not the only one of course but it is the one we will discuss
here. In Figure 1 the effect of adding a UV ionization field to the cooling calculations is
shown in the right-hand panel. Comparing this to the left-hand panel which shows the
cooling function for a collisional ionization equilibrium, we note that there is less cooling
at T ∼ 104K and the first peak due to hydrogen is mostly gone.

The reason for these changes can be summarised as follows

• The photoionization background leads to a higher ionization of the elements, thus
the neutral fraction of hydrogen drops significantly so that there are very few bound
electrons left for collisional excitation in hydrogen to be efficient. Thus the hydrogen
peak disappears.

• Because of the added photoionization, there will be more free electrons left even at
lower temperatures. Since the cooling processes we considered last time require free
electrons, there will now be a significantly increased cooling at temperatures a bit
below 104K. Although the photoionization will also dissociate H2 which will reduce
the cooling at lower temperature.

• The additional electrons will also increase the efficiency of Compton cooling, allowing
it to operate also in halos with low virial temperature.

More formally, the rate of photoionization is naturally related to the flux of ionization
photons. This is generally given by

Γpi =

∫ ∞
νpi

4πJ(ν)σpi

hν
dν, (7)

where the term in the integrand gives the number of photons per second per Hertz. νpi is
the frequency corresponding to the ionization energy νLyC = 13.6eV/h for hydrogen; σpi is
the photoionization cross section, and for hydrogen this is given by

σLyC ≈ 6.3× 10−18

(
ν

νLyC

)−3

cm2, (8)
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Wiersma, Schaye & Smith 2009, MNRAS, 393, 99

Figure 1: Cooling curves from Wiersma et al (2009) for solar abundance plasma. The
left hand panel shows the cooling function for CIE and the right for photo-ionization
equilibrium. The different colours show the cooling due to different elements.

where LyC denotes the Lyman continuum which corresponds to an energy of 13.6 eV, a
wavelength of λLyC = 912Å and a frequency of νLyC ≈ 3.29× 1015Hz.

It is useful to see how this integral behaves if the ionizing radiation is given by a
power-law (e.g. Haardt & Madau 1996, ApJ, 461, 20)

J(ν) =
(νLyC

ν

)β
J−21 erg cm−2 Hz−1 sr−1, (9)

which upon insertion in equation (7), and only considering hydrogen, gives us

Γpi,H ≈
1.2× 10−11J−21

α + 3
s−1 (10)

Given these generic scalings it is also common to quote Γpi,H to units of of 10−12 s−1.
We can also easily calculate the energy input from photoionisation by writing (again

specialising to hydrogen):

Λh,H = nHi

∫ ∞
νLyC

4πJ(ν)σLyC(ν)

hν
h(ν − νLyC)dν, (11)

where the integrand in equation (7) has been augmented by the energy per photon. We
also see that this expression is proportional to the density of hydrogen, and not to the
density squared as is true for (most) cooling processes. We can also evaluate this integrand
and find that

Λh,H ≈
3.3× 10−21J−21

α2 + 5α + 6
erg/s. (12)
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Now consider a region of the Universe with sufficiently low density that we can consider
Case A conditions (ie. that photons resulting from recombinations to the ground state es-
cape the region without ionising hydrogen further). If we have an ambient UV background
given by equation (9), we can see that the typical ionisation rate is quick and if we assume
that recombinations also are swift we will set up photo-ionisation equilibrium, in which
the number of ionisations should balance the number of recombinations, or in other words

nHiΓ = αrnenHii, (13)

where αr is the Case A recombination coefficient which can be approximated by (e.g.
Draine 2011)

αr ≈ 4× 10−13T−0.713
4 cm3s−1 (14)

Now, firstly we can use this to estimate a time-scale for recombinations to assess whether
an equilibrium is expected. This gives us

trec ≈ 1.4× 107 yr

(
T

104 K

)0.713(
ΩBh

2

0.022

)−1(
1 + z

11

)−3(
∆

10

)
, (15)

where ∆ is the overdensity relative to the mean density. Since the Hubble time at z = 10
is of the order a Gyr, we see that it is reasonable to expect a photo-ionisation equilibrium
here.

Secondly we can use this to study the ionisation state of the Universe, something we
will return to this in later lectures but for now we will do this to highlight a puzzle. If we
take equation 13 for photoionisation equilibrium we can calculate the fractional ionization,
x = ne/n, which is given by

1− x
x2
≈ 10−7 (3 + α)J−1

−21 ΩBh
2(1 + z)3. (16)

From this equation it is possible to conclude that the ionization must be very large, with
a neutral fraction 1− x ∼ 10−7. Thus how can we form stars?

The answer to this conundrum lies in the fact that sufficiently dense clumps are optically
thick to this ionizing radiation. With a column density of hydrogen atoms, NHi, we have
that the optical depth to ionizing radiation is

τ ≈ NHiσionization, (17)

for radiation with energy close to the Lyman limit. This τ is equal to unity for

τ ∼ 1 ⇒ NHi ∼ 1017 cm2, (18)

and for slightly larger values for higher energy photons because the cross-section declines
with increasing energy. So as long as a gas cloud has sufficient column density, it will be
shielded from ionising radiation and is free to cool further — at least under the approxi-
mations considered here.
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4 The distribution of gas in dark matter halos

In previous lectures we have discussed the formation of dark matter halos and last lecture
we looked at their general shape. Now we want to put gas into these halos and ask how
this will be distributed. In general we would expect this to be different from the dark
matter because baryons are subject to pressure forces/

We can work this out by considering that the system is in hydrostatic equilibrium. If
that is the case, and that might not always be obvious, we have that

∇P = −ρ∇φ ∇2φ = 4πGρ. (19)

In spherical symmetry and assuming that the gas is ideal this gives the radial pressure
gradient as

dP

dr
=

d

dr

(
kBTρ

µmp

)
=

kB
µmP

(
ρ
dT

dr
+ T

dρ

dr

)
, (20)

where I have also assumed that there is no ionisation gradient in the system (dµ/dr = 0).
This should be balanced by the radial gravity component

dφ

dr
=
GM

r2
(21)

which gives

M(< r) = −kBT (r)r

GµmP

(
d lnT

d ln r
+
d ln ρ

d ln r

)
. (22)

One point worth noting here is that it is useful to introduce logarithmic derivatives when-
ever you suspect the quantities might be reasonably represented by power-laws. This
expression is approximate as it ignores abundance gradients and other sources of pressure,
but it can be used to estimate masses of galaxy clusters although to get accurate masses a
more careful modelling must be carried out.

Now in itself this formalism does not predict the run of temperature with radius. This
has to be provided in another way — a particularly simple version is to consider the case
of an isothermal sphere. This is also often handy as an approximation for us. In this case
obviously the derivative of T is zero so we are left with

M(< r) = − kBTr

GµmP

d ln ρ

d ln r
. (23)

This can be solved by combining it with the Poisson equation in spherical coordinates

1

r2

d

dr
r2dφ

dr
= 4πGρ. (24)

The general solution is discussed in chapter 4.4 in Binney & Tremaine “Galactic Dynamics”
or 8.2 in MvdBW. For us it is sufficient to focus on the singular isothermal sphere — in
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this case we make the ansatz that the density distribution is ρ ∝ r−b. By insertion into
the preceding equations we find that b = 2, giving us:

ρ(r) =
2kBT

µmP

1

4πGr2
(25)

M(r) =
2kBT

µmP

r

G
, (26)

but it is also common, as we have seen before, to see these relations phrased in terms of
the circular velocity, Vc =

√
GM/r, which gives:

V 2
c =

2kBT

µmP

(27)

ρ(r) =
V 2
c

4πGr2
(28)

M(r) =
V 2
c r

G
. (29)

Another interesting case is the case of an adiabatic gas, so that P = AρΓ with Γ and
A constants. In that case the equation for hydrostatic equilibrium gives us

dP

dr
= −ρdφ

dr
(30)

A

ρ

dρΓ

dr
= −dφ

dr
(31)

A
Γ

Γ− 1

dρΓ−1

dr
= −dφ

dr
(32)

which can be integrated to give

kBT (r) = µmpφ(r), (33)

so in this case the temperature follows the potential.
In reality the effect of the dark matter halo on the baryon distribution and of baryons

on the dark matter is complex and we will return to this later, but this gives a good
starting point for systems like galaxy clusters where a significant amount of the baryons is
distributed in a hot phase throughout the halo.

5 Cooling flows

Peacock chap 17; Peterson & Fabian (2006, Physics Reports, 427, 1)

In our discussion of cooling until now, we have focused on uniform media. This is
of course an over-simplifcation and density variations in a system will lead to variation
in the cooling time. In particular, in a galaxy cluster, the central parts are likely to be
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significantly denser than the outer parts and hence they will have a shorter cooling time
(which goes ∼ 1/ρ). It is therefore possible that there will be a region in the central part
of the cluster where cooling is efficient and material that enter this region will cool and
lose pressure support and hence flow inwards in the cluster.

Before continuing onto a more careful assessment of the cooling in halos in general, it
is therefore useful to look at the change in energy in a cluster. The appropriate quantity
in this case is the enthalpy, H = U + pV , where U is the internal energy, p the pressure
and V the volume of the system. We are interested in the change in enthalpy:

dH = dU + pdV + V dp. (34)

The challenging entry here is V dp. We are interested in the time-evolution of this quantity,
and if there is no significant change in the external pressure, we can approximate this to be
zero. This is a decent approximation if the external pressure is set by the hot “atmosphere”
of gas in the halo because this changes rather slowly. So here we will set V dp = 0, what is
known as isobaric cooling, but note that this can break down in real galaxy clusters, see
the Peterson & Fabian (2006) review for an in-depth discussion.

The internal energy in a small volume, dV , is given by

dU =
3

2

ρ

µmp

kTdV, (35)

for a mon-atomic idealised gas. The pdV term is given by

pdV =
ρ

µmp

kTdV, (36)

so in all we find that the change in enthalpy is

dH =
5

2

ρ

µmp

kTdV. (37)

This energy loss will be radiated away, so the luminosity of the system will be equal to
the change in enthalpy, so making use of the fact that ρdV = dM we can write this as

dH

dt
= L(< r) =

5

2

kT (r)

µmp

Ṁ, (38)

where the mass accretion rate, Ṁ , determines the luminosity and if the accretion continued
all the way to very small scales, it would lead to very sharply peaked surface brightness
there which is inconsistent with observations.

In fact observations tend to show accretion rates of Ṁ ∼ 100 − 1000M�/yr which, if
they proceeded to the center of the cluster, would lead to star formation rates of a similar
order of magnitude. However, while the central galaxies in massive clusters certainly are
more active than similar galaxies in the field, they have star formation rates much lower
than this. Thus we need to stop this gas from cooling out.
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Said in another way, the centers of massive clusters have a short cooling time, yet when
they are observed with X-ray telescopes they show little sign of cooling. This puzzle is
sometimes called the cooling flow problem. To resolve it, one needs a distributed heating
source and several suggestions exist, such as AGN feedback, radio bubble heating, con-
duction, heating from the infall of clumpy material etc. An overview of some of these
mechanisms is given in Peterson & Fabian’s review cited at the beginning of the section.
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