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1 Recap

Last week we looked at the halo model for large scale structure. The essential ingredients
we discuss there were:

• In the model it is assumed that all dark matter is in virialised dark matter halos and
that their density profiles are universal and only depend on the mass of the halo.

• Given this assumption, when we calculated the correlation function we found that it
could be written as a sum of two terms:

ξ(r) = ξ1h(r) + ξ2h(r), (1)

which we called the 1-halo and 2-halo term. The one halo term contains correlations
between matter within the halo and the 2-halo term captures large scale structure.

• On sufficiently large scales, so that the density distribution of the halo is irrelevant, we
saw that the two-halo correlation function approaches the linear correlation function.

The final part of the lecture was a discussion of how you would include galaxies in this
model which we will complete today. This follows the same structure as the halo model
but you need to have an estimate of the expected number of galaxies per halo of mass
M . One way to do this was to use the conditional luminosity function, but we closed by
mentioning that to use this correctly you need to distinguish between the central galaxy
of a halo and its satellites.

We also briefly discussed the virial relations for collapsing structures. We saw that
the ρ > ∆cρ̄ criterion for collapse of a structure, which we derived from the model for
a collapsing spherical perturbation, gave us an expression for the radius of the virialised
object which was:

rvir =

(
2G

H2
0∆c

)1/3

M1/3(1 + z)−1Ω−1/3m . (2)
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Combining this with the virial theorem we found an expression for the virial temperature
of a mon-atomic ideal gas

Tvir =
1

5

GMµmP

rvirkB
=

1

5

µmP

kB
V 2
c , (3)

where the pre-factor 1/5 is appropriate for a uniform sphere. The second equality expresses
this in terms of the circular velocity of the virialized halo. This is

Vc =

(
GM

rvir

)1/2

(4)

=

(
G2H2

0

2

)1/6

∆1/6
c Ω1/6

m M1/3(1 + z)1/2. (5)

These are useful relations to have in mind throughout.

2 Putting the tools together

On the basis of this we can now go back and start calculating the properties of perturbations
of various significance. To this we start with the density perturbation, δ, field. This is
distributed as a Gaussian with a variance given by σ(M)2, where

σ2(M) =
1

2π2

∫ ∞
0

k2P (k)Ŵ (k;R)2dk. (6)

If you are given a power spectrum and a window function this is a straight-forward integral
to do, although it typically needs to be done numerically.

If we now want to find peaks of various significance, we need to compare δ to σ(M).
Here in particular we are interested in collapsed peaks. This means that we know the δ
threshold — for a collapsed object at time t we have δ = δc(t), so for a Nσ peak we need
to solve

ν =
δc(t)

σ(M)
= N (7)

for M . This then give the mass of a collapsed halo with that significance. We then use
this mass to estimate the virial temperature and circular velocity. The result of these
calculations can be seen in Table 1.

3 Time-scales and collapse

After virialisation we are left with a dark matter halo that cannot collapse much further
because dark matter is non-interactive and non-dissipative. In contrast, the gaseous (bary-
onic) component within this halo can collapse further. However the the virial temperatures
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z = 5 z = 10

1σ 2σ 3σ 1σ 2σ 3σ

Mb(M�) 1.6× 107 1.2× 1010 2× 1011 3.7× 103 4.8× 107 2.5× 109

Tvir (K) 3.9× 103 3× 105 2× 106 26 1.5× 104 2× 105

Vc (km/s) 10 93 238 0.86 20 75

Table 1: Characteristic scales at two different redshifts calculated as described in the text. Mb

is the total baryonic matter in the halo calculated using the baryon density of the Universe.

shown in Table 1 are all quite high and because for an ideal gas the pressure is propor-
tional to the temperature, this means that there will be significant pressure forces that can
balance the gravitational collapse.

To collapse the gas component further we therefore need to radiate away part of the
energy that keeps the gas supported against gravity. The ingredient here is how fast the
energy can be radiated away. This is quantified using the cooling time-scale

tcool =
E

Ė
(8)

and by comparing this to other time-scales of interest. For our situation there are two key
time-scales: The time-scale for the expansion of the Universe. This is roughly given by the
inverse of the Hubble parameter,

tH ∼ H(z)−1, (9)

and the time-scale of free-fall collapse. This is also often called the dynamical time-scale

tdyn ∼ (Gρ)−1/2. (10)

This is the time-scale that collapse would proceed on if there were no pressure forces
operating. For a spherical mass with initial density ρ, the time it takes it to collapse to a
point would be

tdyn =

(
3π

32Gρ

)1/2

, (11)

and other definitions for tdyn only differ by factors of unity. We then have three main
scenarios:

1. tcool > tH. In this case the Universe expands faster than the gas can cool and no
significant collapse can take place.

2. tdyn < tcool < tH. In this case the system evolves quasi-statically but while some
contraction takes place it is not sufficient for galaxy formation.

3. tcool < tdyn. In this case energy can be removed sufficiently quickly to allow rapid
gravitational collapse to take place.
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Before discussing point 2 and 3 in more detail it is worth commenting on the fact that
I have implicitly assumed that tdyn < tH . Is this always true? As we will see below it is
not always true but in general it is a good approximation.

If we write ρ = ∆cρ̄, which is the criterion for a collapsed structure, we can write
ρ̄ = Ωmρcrit and hence

ρ ≈ ∆cΩm
3H(z)2

8πG
, (12)

so tdyn ∼ (∆c)
( − 1/2)H(z)−1 ∼ 1

10
tH , since

√
∆c ∼ 10. So at collapse, tdyn is typically

shorter than tH , but this might not hold in general (as we will see an example of below).

tdyn < tcool < tH In this case, collapse proceeds quasi-statically. It is useful in this case
to introduce the Jeans length, λJ , and Jeans mass, MJ . The Jeans length is the length
scale that a pressure wave travelling at the speed of sound, cS, can traverse in one free-fall
time, thus it is the maximum scale that pressure support can withstand gravity on.

λJ ≈
(
kT

µmP

)1/2

(Gρ)−1/2, (13)

for an ideal gas. The scaling of the Jeans mass is then given by

MJ ∝ T 3/2ρ−1/2. (14)

Thus at constant Jeans mass, a drop in temperature (from cooling) implies an increase
in density according to this formula. But because the time-scale of cooling is long, it is
reasonable to approximate the evolution as polytropic interspersed with small drops in
temperature.

During polytropic evolution P ∝ ργ and T ∝ ργ−1. For a monatomic ideal gas γ = 5/3
and ρ ∝ T 3/2. For a constant Jeans mass we can see from equation (14) that ρ ∝ T 3.

Thus if you have a system with M = MJ , then drop the temperature slightly it will
move to a lower temperature and then adiabatic collapse will take place (because the
cooling time is long) and this will move the system back to the constant Jeans mass again.
This is a quasi-static contraction and in effect the system evolves along tracks of constant
Jeans mass.

tcool < tdyn This is the interesting case. Here the loss of pressure support due to cooling
is rapid and as a result the Jeans mass drops quickly without giving the system a chance
to re-adjust its density. This drop in Jeans mass can lead to smaller structures being able
to collapse gravitationally and hence to fragmentation. The drop in pressure support also
leads to rapid collapse.

To quantify this criterion, we need to quantify the cooling time. The total energy of
a mon-atomic gas is E = 3nkT/2, where n is the total number density. As for Ė, it is
common to write equation (8) as

Ė = n2
HΛ(T ), (15)
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Figure 1: Left: The cooling curve for primordial gas. Right: The cooling curves for
primordial gas compared to gas with varying degrees of heavier elements. The values for
Λ is taken from the data provided by Wiersma et al (2010, MNRAS, 409, 132).

where Λ is the cooling function, and while I have indicated the dependence on temperature
here, it also depends on metallicity.

Does it depend on the density? The main cooling processes are, as we will see later,
collisional in nature, so their rates depend on the density squared. This is why the density
is taken out of the equation. Note that there are different definitions in the literature and
the pre-factor can be n2

H as here or nenH or even n2
e. For a fully ionized gas it is easy

to convert between these using the expressions in the lecture notes for lecture 6 and the
associated problem class, but it is of course important to be aware of this issue.

As we will see later Λ has a typical scale of 10−23 erg cm3 s−1, so inserting typical values
into the expression (8) we have

tcool =
E

n2
HΛ

=
3
2
nkT(

4
9

)2
n2Λ

(16)

≈ 3.3× 109

(
T

106 K

)( n

10−3 cm−3

)−1( Λ

10−23 erg cm3 s−1

)−1
years (17)

≡ 3.3× 109 T6 n
−1
−3 Λ−1−23 years. (18)

Note that the last equivalence, which defines T6, n−3 and Λ−23, suppresses all unit infor-
mation and while this is a convenient notation it is prone to silly mistakes at times. It
does however save space so I will make use of it at times, as long as the constituents have
been defined.

Armed with this expression we can now compare tcool to tdyn, where the latter is defined
in equation (11). If we also define fgas = ρgas/ρ to be the gas fraction of the halo with total
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density ρ, and note that ρgas = nµmP , we get

tcool = tdyn

n−3 = 245 T 2
6 f
−1
gas Λ−2−23, (19)

which defines a locus in n–T space above which collapse can happen rapidly, and below
which collapse is slowed down.

To properly quantify this we need to know what Λ looks like in detail. In the next
lecture we will look at the physical processes that go into the calculation of Λ, but the
result for a gas of primordial composition, X = 0.75, Y = 0.25, is shown in the left plot
in Figure 1. The rise in cooling towards very high temperatures is due to Bremsstrahlung.
The peak closest to T = 104 is due to collisional excitation of H followed by the emission
of a Ly-α photon. The second, lower, peak is due to the same process in singly ionized He.

In any gas with some heavier elements, the cooling is significantly altered as can be
seen in the right plot in Figure 1. Here we compare three different metallicities. The curves
are all collisional ionization equilibrium calculations from Wiersma et al (2010, MNRAS,
409, 132). We will look at the details next time, but here we should note that cooling,
especially in T ∼ 105K halos is significantly increased when you add metals.

If we now move to the density–temperature diagram, we can use equation (25) to
delinate the different regions of parameter space. This is shown in Figure 2. The left panel
shows the trend for primordial abundances and the right panel that for solar metallicity.
The black line shows the locus for tcool = tdyn and the red line tcool = tH , drawn for z = 3.
Any object lying above both lines will be able to cool efficiently and hence collapse. The
right-side y-axis shows the redshift of collapse for a given density. I have estimated this
from

ngas ≈ 1.9× 10−5 Ωmh
2fgas(1 + zcoll)

3(1 + δ) cm−3, (20)

which you will prove in a problem set.
The dotted sloping lines show lines of constant gas mass,

Mgas = f 3/2
gas

(
5k

GµmP

)3/2

(µmP )−1/2n−1/2T 3/2

(
6

8π

)1/2

, (21)

which you also will derive in a problem set.
Some key points to note from Figure 1 and 2 is that cooling is very efficient at T = 104–

105K. Thus systems with virial temperatures in this region are expected to cool very
efficienctly (in the absence of heating).

We can also see that cooling is more efficient at high redshift and is relatively smaller
halos. Since CDM has a lot of small-scale structure and we saw earlier that the small scale
structure collapses first, we must conclude that a very large fraction of gas could cool and
potentially form stars at high redshift. If this were to happen the mass density in stars
would approach that of baryons in total, but in reality Ω∗ ≈ Ωb/10. To resolve this minor
conundrum we have either to postulate a source of feedback that will blow gas out of their
halos, or introduce heating sources. The latter will of coruse always be present when stars
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Figure 2: The density-temperature diagram. On the left we show the diagram for primor-
dial gas and on the right for solar metallicity. In both cases the black line shows the locus
for tcool = tdyn and the red line tcool = tH , drawn for z = 3. Where relevant I have set
Ωm = 0.3 and fgas = 0.15. Objects that lie above both the red and black lines are able to
cool efficiently. The right y-axis shows the redhshift at which the density of a collapsed
object is the value of n given on the main y-axis. The dashed lines show lines of constant
Mgas.

and/or AGNs are present and they are crucial ingredients for understanding the behaviour
of gas at high redshift.

The final thing to note from Figure 2 is that massive clusters today, with gas masses of
perhaps 1013M�, can cool only inefficiently. This is one reason why galaxy clusters today
contain a lot of hot gas.
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4 Radiative Processes

We will now turn to a more in-depth

Time

zeq ~ 3232

zrec ~ 1360

zdec ~ 1100

zTdec ~ 150

Re-ionization

z re
io

n ~
 7

-1
5

Tm = T
γ

matter follows
radiation.

fully ionized
plasma

Very few electrons in this periode

First objects

Heavier elements
(metals) formed

discussion of the radiative processes that
cool gas. To set the context it is useful to
quickly remind ourselves of the radiative
evolution of the Universe. The key fact for
us, which we will return to later below, is
that all cooling processes require some free
electrons. Thus we would like to have a feel
for when there are free electrons around.

The figure on the left illustrates the evo-
lution schematically. The Universe is al-
most fully ionized until the time of recom-
bination. At that point the ionization frac-
tion of the Universe dropped rapidly and
some time later it became too low to sus-
tain the close link between photons and
baryons. Thus after the redshift of decou-
pling, zdec, photons and baryons were no
longer strongly coupled.

However, there was a minor amount of
ionization left. This tiny amount of ioniza-
tion was sufficient to ensure that the pho-
ton and baryon temperature was essentially
the same until zTdec ∼ 150. After that the

matter temperature declined ∝ (1 + z)2 and the photon temperature as ∝ (1 + z).
From the time of recombination, the number of free electrons was in general very low in

the Universe. It would have been possible to create some free electrons from virial heating
in very rare peaks at high redshift, but the epoch of re-ionization was when the Universe
became mostly ionized again. This is the state until now — while many regions of neutral
matter exists today, the low density intergalactic medium is generally ionized and there
are plenty of free electrons around.

5 Radiative (cooling) processes

The main radiative processes that lead to cooling of ionized plasmas are listed in Table 2.
These are all two-body processes, so the likelihood of the process occuring is ∝ n1n2 ∼ ρ2.
This is the root cause why we separate out a n2

H in our expression for the cooling function,
Λ, writing Ė = n2

HΛ. Note also that all the reactions require the presence of electrons. The
need for electrons means that these processes are inefficient until the Universe re-ionizes.

The density dependence on the energy loos, means that we can write

Ė ∝ ρ2 ⇒ tcool ∼
ρ

Ė
∼ ρ−1. (22)
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Type Reaction Name
Free-Free e– + X+ −→ γ + e– + X+ Bremsstrahlung
Free-Bound e– + X+ −→ X + γ Recombination
Bound-Free e– + X −→ 2 e– + X+ Collisional ionization
Bound-Bound e– + X −→ e– + X· Collisional excitation

Table 2: Various radiative transitions of importance in forming galaxies

Thus we see that cooling is more efficient in more dense gas.
But note that here, and in most of the following, I am assuming that the radiation

produced in these reactions actually can escape the cooling cloud. This is not necessarily
the case, but for now we make this assumption of optically thin gas.

I am also ignoring any sort of photoionization, so collisions will dominate. This setup
is referred to as collisional ionization equilibrium (CIE).

6 The features of the cooling curve

Figure 3 shows the cooling curve of a gas with primordial abundances, assuming CIE. This
has three characteristic features: A sharp cut-off around T = 104K, two peaks, and a slow
rise towards high temperatures. The goal of this section is to understand the nature of
these three features.

6.1 Bremsstrahlung

Let us start with the turn-up at high temperatures. This is caused by free-free emission,
or Bremsstrahlung. Thus it is useful to briefly review the nature of this process. We will
do this in a very approximate way.

Bremsstrahlung takes place because when electrons interact with ions, their trajectory
is slightly bent and this leads to an acceleration/deceleration of the electron and as is well
known, an accelerated charge radiates.

To get an order of magnitude estimate of the effect it is sufficient to consider that
essentially all the interaction takes place at the closest approach between the electron and
the ion. In that case we have a setup like shown just below. Newton’s second law then
gives

v

b
e-mea =

q2

r2
, (23)

in CGS units. At closest approach the electron is a distance of b away.
This separation is essentially the mean separation of the ions, b ≈ n

−1/3
ion .

Thus we can write the acceleration of the electron as

a =
q2

meb2
. (24)
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Figure 3: The cooling curve of primordial gas from Wiersma et al (2009).

Armed with Larmor’s formula for the radiation of an accelerated particle with charge q we
have:

dE
dt

=
2q2

3c3
|~a|2 =

2

3

q6

c3m2
eb

4
. (25)

To get an estimate of the energy radiated per interaction, we need to know how long it
lasts. This ∆t is given approximately by ∆t ∼ b/v. A more careful treatment would
integrate over the path traced by the electron. Put together this gives that

∆E = ∆t
dE
dt

=
2

3

q6nion

m2
ec

3v
, (26)

where I also inserted b = n
−1/3
ion . This is the energy per electron, so the total energy radiated

from a volume is
∆E = ne∆E . (27)

In thermal equilibrium we have that

kBT ≈
1

2
v2 ⇒ v =

√
kBT

me

. (28)

What about the frequency dependence? This is set by the time of interaction. Since
the interaction has a duration ∼ b/v, there will be little radiation emitted at frequencies
longer than ω ∼ v/b, where ω is the circular frequency, while below this frequency you
have essentially constant emission1. Thus the emission per volume and per time and per
frequency is given by by

jω =
dE

dωdtdV
≈ ∆E ≈ q6

m2
ec

3

(
me

kBT

)1/2

nenion. (29)

1This is because you have a finite period of emission of radiation ∆t. And when you Fourier transform
this you get a sinc function with width 1/∆t ∼ v/b.
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We then need to integrate this up to a maximum frequency. This can be determined by
noting that an electron with energy kBT cannot emit radiation with energy above this, so
we can take hν = kBT as the upper frequency cut-off.

This then gives an expression for the total energy radiated that is

j =

∫ kBT/h

0

q6

m2
ec

3

(
me

kBT

)1/2

nenion =
q6

m2
ec

3

(
mekBT

h

)1/2

nenion, (30)

where the essential ingredient for us is that the energy radiated is ∝ nenionT
1/2 ∼ n2T 1/2.

This is exactly the form of the up-turn seen at high temperatures in the cooling function
in Figure 3.

At high temperatures, Bremsstrahlung is the dominant cooling mechanism and to get
an accurate expression for this cooling one needs a more careful analysis, but this would
follow mostly the steps sketched out above. The final result for a fully ionized gas with
primordial abundance can be written as

j = CB ≈ 1.6× 10−23
(

T

108 K

)1/2

n2
eerg/scm3 (31)

6.2 The low temperature cut-off

Why is there a sharp drop in the cooling curve at low temperature? This is due to the
fact that there are no free electrons around in the gas. In a primordial gas, which is what
we focus on at the moment, the main source of electrons at low temperature is hydrogen,
with an ionization energy of 13.6 eV2.

To find the temperature for ionization of hydrogen, we need to be able to estimate the
temperature at which hydrogen can be collisionally ionized. To do this for CIE you need
to equate the rate of collisional ionization to that of recombination. I do not go through
the derivation here, but a good rule of thumb is that the temperature is given by

Tionization,H ≈
1

10

13.6 eV

kB
≈ 1.6× 104 K, (32)

or in other words about 1/10 of the temperature implied by the ionization energy. Thus
below T ∼ 104K there will be very few free electrons and the cooling reactions will be
inefficient.

One might think that perhaps some cooling could take place from excited levels of
hydrogen where lower temperatures are sufficient for the excitation. However the life
times of the hydrogen levels is 10−4 to 10−8 seconds, with the slowest transition being the
2S → 1S transition which has a life time of 0.12s. Thus for most practical purposes we
can consider tha any excited level in hydrogen will cascade instantly to the ground level.
Thus any excitation in hydrogen will have to overcome the energy difference between the

2The ionization energy of helium is 24.6 eV for the first electron and 54.4 eV for the second.
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n = 1 and n = 2 level, which is 10.2 eV. Using the same factor of 1/10, this translates to
a temperature requirement of

Texcitation,H ≈ 1.2× 104 K. (33)

Thus below 104K neither excitation nor ionization of hydrogen is efficient and the cooling
function drops quickly. If there are metals around things are easier and although there is
a drop it is not as complete as for a primordial gas. To cool a primordial gas below 104K,
a requisite for galaxy formation!, we need molecular cooling but that is for a later lecture.

6.3 The cooling peaks

It is perhaps not obvious why the cooling function should have clear peaks. The majority of
the processes listed in Table 2 have smooth behaviour with temperature. We saw this with
Bremsstrahlung above, but this is also true for recombination where the emitted photon
radiates away the energy from the electron in excess of 13.6eV (or lower if recombination
was to a higher level in hydrogen). This is a smooth function of temperature; and this is
also true for collisional ionization.

However for collisional excitation we have a limited range of energies. In collisional
excitation a collision between an electron and an atom/ion will excite this, in the case of
the first peak this is Hydrogen. The hydrogen will then deexcite and radiate the energy
away. However this process can only operate while there are hydrogen atoms around —
when the temperature gets to be too high, the hydrogen is all ionized and there are no
bound transitions left.

This then is the reason for the peaks in the cooling curve. It turns out that when one
solves the equilibrium equations, that the process of collisional excitation is the dominant
cooling process at low energies and it operates efficiently, as explained above, only in
particular ranges of temperature.

If we add metals, this argument is still true. Figure 4 shows the cooling function for
solar metallicity. The left panel is what concerns us here and it shows the cooling function
for CIE. The solid black line shows the overall cooling curve and the coloured curves show
the contributions from individual elements as indicated.

Again it is clear that for most elements there is a broad peak and its existence is
again for the same reasons as above. If we take oxygen as an example, it will at low
temperatures radiate through excitation of neutral O. Then, as the temperature increases,
O will be mostly ionized and cooling occurs through exictation of O+. As the temperature
increases, this pattern continues and you get a broad-ish peak in the cooling function.

In the case of oxygen it is also clear that it has two peaks. This is because there is a big
jump between the ionization energy of O+

5 , which is is ≈ 140eV, and that of the excitation
energy for the lowest level of O+

6 , which is ≈ 560eV3. Thus in the temperature range
few×105K to few×106K oxygen is mostly in the form of O+

6 but there is not enough energy
to excite this ion significantly, thus its contribution to the cooling drops significantly.

3If you need such numbers, the NIST data base at http://www.nist.gov/pml/data/asd.cfm is a
useful resource.
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Wiersma, Schaye & Smith 2009, MNRAS, 393, 99

Figure 4: Cooling curves from Wiersma et al (2009) for solar abundance plasma. The
left hand panel shows the cooling function for CIE and the right for photo-ionization
equilibrium. The different colours show the cooling due to different elements.
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