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1 Introduction

Last week we looked at the growth of perturbations in linear theory focusing on the New-
tonian regime. We also looked at the important concept of horizon crossing. Here we
will continue this and see how this introduces a characteristic scale on the distribution of
galaxies in the sky. But first we will complete the discussion of what slows down/affects
perturbations. Last week we examined the effect of pressure — this introduced the Jeans
mass and showed that perturbations below a particular size, the Jeans length, have an
oscillatory solution.

2 Slowing down growth of perturbations by expansion

The growth of perturbations is slowed down because of the Hubble expansion which acts as
a drag force against the collapse. Intuitively, when the expansion is faster than the collapse
you will not have collapse. Since the expansion time is texpansion ∼ H(t)−1 ∼ ρ

−1/2
dominant and

the collapse time for matter is tdynamic ∼ ρ
−1/2
matter you see that if the density of the dominant

ingredient is much higher than that of the matter you get no growth. This is in general
true in the radiation dominated epoch.

To do a more careful analysis, we will assume that the relativistic background is smooth.
And we introduce a variable, y = ρNR/ρR, which is the ratio of the matter density that of
the radiation and can also be written y = a/aeq. Introducing this into the perturbation
equation ?? and using the Friedman equation (ignoring the cosmological constant and
curvature terms), one gets (after some straightforward but tedious manipulations):

2y(1 + y)
d2δ

dy2
+ (2 + 3y)

dδ

dy
= 3δ. (1)

This equation is solved by δ ∝ 1 + 3y/2 = 1 + 3
2
a
aeq

. From this we can immediately see

that growth during the radiation dominated regime is very slow at maximum a factor of
5/2.

In a more accurate analysis (see e.g. MvdBW section 4.2) appropriate for the make-up
of a Universe like ours, perturbations in the radiation when sub-horizon scale oscillate, and
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baryons couple to these as we will discuss below. Perturbations in the cold dark matter
do however grow, albeit only logarithmically. For our purposes it is sufficiently accurate to
say that sub-horizon perturbations in the matter do not grow, or grow very little, during
the radiation dominated epoch.

3 Free streaming

Consider a scenario where the Universe has a significant contribution from a particle that
interacts very weakly with photons. You can think of this as neutrinos if you wish to be
concrete as that is the most commonly suggested candidate for such a particle.

In general, if particles in a perturbation can stream out of the perturbation faster than it
can collapse, the perturbation will be washed out. This is clearly a scale-dependent question
for a given velocity. We can easily estimate the scale below which this is important: If we
take a region with proper size, l, and particles with velocity, v, the criterion of interest is
when the crossing time, l/v is shorter than the dynamical time, tdyn:

l

v
< tdyn ∼

1√
Gρ
⇒ λFS ∼

v√
Gρ
∼ v

H(t)
∼ vtH , (2)

where λFS is called the free-streaming length and H(t) is the Hubble parameter as usual.
The second-to-last equality follows from the Friedmann equation which says H(t)2 =
8πGρ/3. When particles go non-relativistic we have that v ∝ a−1, because of the ex-
pansion of the Universe, which means that the importance of this process quickly declines.
Thus we care mostly about the period while the particles are relativistic.

We can make this quantitative as follows (and you will do this more carefully in the
problem class). First we consider a short period of time, dt, in which a particle crosses
a physical distance of a dr. Integrating this from t = 0 to t we get that the co-moving
free-streaming length is:

rFS =

∫ t

0

dr =

∫ t

0

v(τ)

a(τ)
dτ. (3)

To carry out this integral it is convenient to split it into the period while the particle is
relativistic, up until t = tNR and one period while it is traveling non-relativistically at
which point the velocity declines by Universe expansion v ∝ a−1. If we further assume
that the particle becomes non-relativistic during the radiation dominated epoch, we can
write

rFS =

∫ tNR

0

c dτ

a(τ)
+

∫ teq

tNR

caNR

a(τ)2
dτ, (4)

where we have used v ∝ a−1 to write the velocity after the particle has gone non-relativistic
as v = (aNR/a)c and we focused on the radiation dominated period here. Since we are only
concerned with the radiation dominated epoch here we can take a ∝ t1/2. If we insert this
into the integral above, we can carry out the integration and get:

rFS =
2ctNR

aNR

[
1 + ln

aeq

aNR

]
, (5)
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where we can ignore the logarithmic factor for light dark matter particles that stay rela-
tivistic during most of the radiation dominated epoch. In the problem set you will extend
this calculation somewhat.

You can show (see problem set 2), that for a massive neutrino with mass, mν , the
typical co-moving free-streaming length is:

rFS ≈ 30.5
( mν

30 eV

)−1

Mpc, (6)

and this corresponds to a free streaming mass in neutrinos of

MFS =
π

6
ρr3

FS ≈ 1.3× 1015
( mν

30eV

)−2

M�. (7)

While we have made some approximations here, the result captures the essential aspects.
It is important to note that a heavier particle goes non-relativistic earlier and thus the free-
streaming mass decreases.

4 Silk damping

Literature: MvdBW section 4.1.6 and 4.2.5, C&L 11.6, Longair 12.5
Before decoupling, photons do not free stream because they couple tightly to baryons

through Thompson scattering off free electrons. However they do carry out a random walk
due to the collisions. Early on the mean free path is minuscule, but as the time approaches
the time of decoupling the mean free path of the photons becomes noticeably non-zero:
they will slowly diffuse out of perturbations, dragging baryons with them and wiping out
all baryonic perturbations below some size, known as the Silk damping scale.

The mean free path, lmfp, for Thompson scattering is given as

lmfp =
1

neσT
, (8)

where ne is the number density of electrons and σT = 6.65 × 10−25cm2 is the Thompson
cross-section.

If we count the motion of a photon in steps between individual scattering events, In
a time dt, a photon will take N = cdt/lmfp steps. From kinetic theory1 we have that the
distance travelled is

λ2
Diffusion =

N

3
l2mfp. (9)

From our expression for N above we can then integrate this over time and move to
co-moving coordinates. This gives an expression for the comoving Silk damping scale:

r2
S =

∫ tdec

0

c lmfp

3a2
dt. (10)

1If you want to see the details of this you can do worse than consult Chandrasekhar’s exposition in
Rev. Mod. Phys. 1943, Vol 15(1).
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To get a rough estimate of this we first note that since ne is a density we have that
lmfp ∝ 1/ne ∝ a3 as long as there is no destruction of particles. We can then write:

lmfp(t) = lmfp(tdec)
a(t)3

a3
dec

, (11)

which we can insert into the integral and convert it to an integral over a:

r2
S =

c lmfp(tdec)

3adec

∫ tdec

0

adt. (12)

To carry out the integral we need to know the variation of a(t) in the relevant period.
It turns out that the main contribution to the Silk damping takes place fairly close to
decoupling, and in that case we have that a(t)/a(tdec) = (t/tdec)

2/3 because the Universe
is matter dominated. We can therefore carry out the integral and we get

r2
S ≈

1

5
c lmfp(tdec)tdec

1

a2
dec3

. (13)

To evaluate this quantity, we write the ionization fraction as Xe = ne/nH . If we write the
hydrogen density as

nH,dec =
XΩbρcrit,0(1 + zdec)

3

mH

, (14)

where a subscript dec refers to the value at the time of matter-radiation equality and X
is the hydrogen mass fraction. To get a rough estimate of the time of decoupling we can
make the approximation of a matter-dominated Universe and write

tdec ≈
2

3H(tdec)
≈ 2

3H0Ω
1/2
m (1 + zdec)3/2

, (15)

and we get

lmfp(tdec) ≈
mH

XeσT

1

XΩbρcrit,0(1 + zdec)3
(16)

Putting this all together we find

r2
S =

2

15

cmH

σT
(X Xe ρ

−1
crit,0)−1(1 + zdec)

−5/2(h3 Ωb Ω1/2
m ) (17)

and putting in numbers we have
rS ∼ 28 Mpc, (18)

which corresponds to a Silk mass

MS ∼ 3× 1014M�, (19)

for h = 0.704, Xe = 0.1, X = 0.75, zdec = 1088.2, Ωb = 0.0456, and Ωm = 0.227. Thus
baryonic perturbations on scales smaller than this will have been erased by the time of
decoupling. This placed a very strong constraint on models for galaxy formation in a
purely baryonic Universe but since we now know dark matter is important we need to
consider weakly interactive non-relativistic matter.
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5 Baryon Acoustic Oscillations

Before turning to this, however, let us look at a problem of great importance in astron-
omy/cosmology today which has a link to the physics just discussed, namely Baryon Acous-
tic Oscillations (BAOs). These are structures in the overall galaxy distribution that we
can measure and which provide good constraints on cosmological parameters.

~150 Mpc

t = tenter t = tdec

~λSilk

cs

Figure 1: An illustration of the creation of circular patterns in the sky from photon+baryon
pressure wave travel up until the time of de-coupling.

The story begins with a perturbation just entering the horizon, which is at that time
filled with photons, baryons and dark matter. It then evolves as follows (see Figure 1):

• Since the pressure is high within the perturbation the photon+baryon fluid will
expand away from the center of the perturbation, while the dark matter (which is
pressure-less) will remain.

• The photons+baryons travel as a pressure wave with a sound speed of cs ∼ c/
√

3
until they decouple.

• At de-coupling the photons travel freely while the baryons will have been dragged
out into a spherical shell around the original perturbation with diameter close to the
sound-speed horizon at decoupling.

• The shell will of course travel somewhat further due to momentum and the radius of
the shell is found to be ∼ 150Mpc.

• Because of the non-perfect coupling between photons and baryons as decoupling
approaches, the mean free path of the photons increases and this blurs the shell of
baryonic matter on a scale equal to the Silk scale (∼ 10Mpc).

This process is now actively used observationally because it leads to a pattern in the
galaxy distribution with a characteristic scale in the correlation function of ∼ 150Mpc.
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This pattern in the correlation function leads to a set of wiggles, sinusoidal waves, in the
power spectrum which has now been seen in several surveys. These structures effectively
provide a standard measuring rod that can be used to probe cosmological parameters quite
effectively.

A more in-depth discussion of this with nice illustrations is provided on Martin White’s
BAO page: http://astro.berkeley.edu/~mwhite/bao/.

6 Coupled perturbations

So free streaming of relativistic weakly interacting particles, neutrinos, removes structure

at scales M < MFS ≈ 1.3 × 1015
(
mν

30eV

)−2
M�. Silk damping removes baryonic structure

on scales M < MSilk ∼ 1015M�. Finally the rapid expansion of the Universe during
the radiation dominated epoch nearly stops structure growth during this period. And
observations of the microwave background tell us that large-scale perturbations were very
small at the time of last scattering.

One might worry how we can have any structures at all today given this starting
situation. Here cold (ie. not relativistic), non-interactive matter comes to the rescue. Since
dark matter does not suffer from Silk damping because it does not interact (significantly)
with radiation, the perturbations in the dark matter is free to grow slowly during the
radiation dominated epoch and is ready to collapse more rapidly at teq.

To understand this, it is now useful to introduce the perturbation equation for multiple
fluid components. If we define

L =
∂2

∂t2
+ 2

ȧ

a

∂

∂t
, (20)

then we can write the perturbation equation for component X in Fourier space as

LδXk = 4πGρ̄δtot
k −

c2
sk

2

a2
δXk . (21)

There are as many of these expressions as there are relevant components. In this expres-
sion, the first term on the right hand side couple these different components because they
all contribute to the overall density. The second term on the right is only present for
components that feel pressure forces.

You can then write this out fully (and in the problem set you will do). If we consider
the Universe after decoupling, we can focus on dark matter and baryons only. In that case
we get:

LδBk = 4πGρ̄
(
ΩBδ

B
k + ΩDMδ

DM
k

)
− k2c2

s

a2
δBk (22)

LδDM
k = 4πGρ̄

(
ΩBδ

B
k + ΩDMδ

DM
k

)
, (23)

where we have assumed the dark matter to be pressure-free and where B stands for baryons.
If we assume that ΩDM � ΩB, we can ignore the contribution of the baryons to the
gravitational potential.
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In the latter case we can make use of the (co-moving) Jeans wave number which is

kJ =

(
4πGρ

cs

)1/2

a (24)

and write the equation for the baryons as

δ̈Bk + 2
ȧ

a
δ̇Bk = 4πGρ̄

(
δDM
k − k2

k2
J

δBk

)
. (25)

After baryons decouple from photons, they will feel the gravitational pull of the dark
matter perturbations and will soon follow these. Thus it is reasonable to try a solution
that has the form δBk = wkδ

DM
k . If you do that, you will find that this requires a solution

where

wk =
1

1 + k2/k2
J

, (26)

or that

δBk (t) =
δDM
k (t)

1 + k2/k2
J

, (27)

where we can alternatively write (why?):

k2
J =

3a2H(t)2

2c2
s

. (28)

On large scales we see that δB → δDM which implies that the baryonic matter falls into
the perturbations created by the dark matter. At small scales the pressure in the baryons
cannot be neglected. The overall form of the solution in the general case show similar
behaviour.

7 Summarising the growth of perturbations of differ-

ent scale

Figure 2 summarises the growth of perturbations visually. In addition, if free-streaming is
important it will also impose a scale below which we have no perturbations. If we start
with a perturbation at an early time, ti, that is δ(ti), we can summarise its subsequent
growth as:

δr(t) =



0 r < rFS

δ(ti)
(
aeq
ai

)2 (
a
aeq

)(
r
req

)2

rFS < r < req

δ(ti)
(
aeq
ai

)2 (
a
aeq

)
r > req

(29)
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log δ

log a log a

log δ

aenter aeq aenteraeq

δ ∝
 a δ ∝

 a

δ 
∝

 a
2

δ 
∝

 a
2

δ ∼ const 

λ < λeq λ > λeq

Figure 2: Summarising the growth of perturbations that enter the horizon in the radiation
dominated epoch (left) and in the matter dominated epoch (right).

Where I have ignored the growth of sub-horizon scale perturbations in the radiation dom-
inated epoch and I have observed that since aentr ∼ ctent and a ∝ t1/2 in the radiation
dominated epoch, we can write aent/aeq = r/req.

This scale-dependence in the growth, means that the horizon at the time of matter-
radiation equality is imprinted into the large-scale structure of the Universe and we will
see later how this impacts galaxy formation.

8 Statistical properties

The overdensity δ(~x, t) contains a wealth of information — to much indeed to be easy to
handle. To make progress it is often necessary to summarise this information into statistical
properties. In general δ(~x) will be a random field given by some probability distribution
function, f . To characterise δ we then calculate moments of this distribution. The first
moment is

〈δ〉 =

∫
δ(~x)f(~x)d3~x = 0 (30)

which follows from the definition of δ(~x). The second moment is generally given by

〈δ(~x1)δ(~x2)〉 =

∫
δ(~x1)δ(~x2)f(~x1)f(~x2)d3~x1d

3~x2. (31)

For general PDFs this is not a trivial integral to do. It is simplified somewhat by the
realisation that in an isotropic Universe it can only depend on |~x1 − ~x2| = r.

Standard inflation models predict that initial density perturbations are distributed as
a Gaussian model. In this case, we know that the first two moments are sufficient to
characterise the entire distribution. The assumption of primordial Gaussianity is just that,
an assumption, but it does also seem to match the observations quite well. Finding signs
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of primordial non-Gaussianity is a very active field of research. In the case of a Gaussian
distribution we then have

P (δ)dδ =
1√

2πσ2
e−

δ2

2σ2 dδ, (32)

where σ characterises the width of the distribution (which we will return to shortly), and
P is the probability distribution of δ — not to be confused with the power spectrum
introduced later. Note that this distribution has the same general functional form both in
real space and Fourier space because the Fourier transform of a Gaussian is a Gaussian.

But note that even if the density field is expected to be Gaussian at an early time, it
will not remain so forever. This is because by definition, δ > −1 which means that as soon
as δ grows appreciably it will no longer give rise to a symmetric distribution and hence
gravitational collapse leads to non-Gaussian structures. The width of the distribution will
of course also change because, as we will see, or as you can infer from the second moment
expression above and some knowledge of Gaussian distributions, σ2

k ∼ δ2. Thus, when
δ ∼ 1 the density distribution will have significant change of δ < −1 if it were Gaussian
so the conclusion is that the distribution is now non-Gaussian. But this is distinct from
primordial non-Gaussianity which would be visible in the linear regime.

Ignoring primordial non-Gaussianity, in the linear regime where δ � 1, we can focus
on Gaussian distributions. It is then useful to consider what this means for the individual
Fourier modes. These can in general be written

δk = δR + iδI , (33)

where both δR and δI are Gaussian distributed variables with a mean of zero and the
same variance, 〈|δ̂(k)|2〉/2 (because of symmetry and independence). Since δR and δI are
statistically independent, we can write their joint probability distribution as

P (δR, δI) =
1√

2π 1
2
〈|δ̂(k)|2〉

e
− δ2R

2〈|δ̂(k)|2〉/2 ×

1√
2π 1

2
〈|δ̂(k)|2〉

e
− δ2I

2〈|δ̂(k)|2〉/2dδRdδI

=
1

πP (k)
e−(δ2R+δ2I )/P (k)dδIdδR (34)

which we can recast in a common form by moving to polar coordinates. If we write
δR = A cosφ and δI = A sinφ we have a Jacobian = A and the probability distribution
transfers as

P (δR, δI)→ P (A, φ) =
1

πP (k)
e−A

2/P (k)AdAdφ. (35)

which shows that the amplitudes of the perturbations are Rayleigh distributed and the
phases are uniformly random. This can be used to draw initial perturbations that satisfies
Gaussianity.
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9 The correlation function

It is useful to connect the concepts we discuss here a bit more closely to observations. In
other words, how do you calculate the power spectrum for instance? To fix our discussion,
let us say that the number density of galaxies is n(~x), which is connected to the underlying
density distribution by n(~x) = bρ(~x) where b is a parameter that encapsulates the degree
to which galaxies trace the true underlying density distribution. In reality this parameter
depends on various properties of the galaxies.

What do we mean when we say something is distributed randomly? In general we then
mean that their distribution follows a Poisson process/a Poisson distribution. The chance
in this case of find one object in a small volume, dV1 and another one in a volume dV2 is
then given as

P (~x1, ~x2) ≡ P1,2 = n̄dV1n̄dV2, (36)

where n̄ is the average number of galaxies.
In general we would have

P1,2 = b2dV1dV2〈ρ(~x1)ρ(~x2)〉, (37)

which we can change by inserting ρ = ρb(1 + δ) and recalling that 〈δ〉 = 0. We then get

P1,2 = b2dV1dV2〈(ρb(1 + δ1)ρb(1 + δ2)〉 (38)

= n̄2dV1dV2(1 + 〈δ1δ2〉) (39)

= n̄2dV1dV2(1 + ξ(r)), (40)

where the last line defines the correlation function, ξ(r), and where we have defined r =
|~x1 − ~x2| which follows from isotropy as mentioned above.

ξ(r) measures the excess or deficit in probability of finding a galaxy at a distance r
from another galaxies with respect to a Poisson process. This is immediately obvious by
comparing equation 36 and equation 40.

We can write this in Fourier space through

ξ(|~x1 − ~x2|) = 〈δ(~x1)δ(~x2)〉 (41)

=

∫
d3~k1 d

3~k2

(2π)6

〈
δ̂(~k1)δ̂(−~k2)

〉
e−(i~k1·~x1−i~k2·~x2), (42)

which is just the Fourier transform as usual and where we made a change of variable
~k2 → −~k2. The product inside the integral,

δ̂(~k1)δ̂(−~k2) = δ̂(~k1)δ̂∗(~k2), (43)

because δ(~x) is a real valued function. We then define the power spectrum, P (k), through

〈δ̂(~k1)δ̂∗(~k2)〉 = (2π)3P (~k1)δDirac(~k1 − ~k2), (44)
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where the Dirac delta function is obvious in the linear regime because there modes on
different scales develop independently (as can be seen from the perturbation equation
directly).

Integrating once we are then left with

ξ(|~x1 − ~x2|) = ξ(r) =

∫
d3~k

(2π)3
P (k)e−i

~k·~r, (45)

which shows that ξ is the Fourier transform of the power spectrum and vice-versa.
Since ξ is a real function we have that

e−i
~k·~r → cos(kr cos θ), (46)

and so if we change to spherical coordinates in equation 45 we get

ξ(r) =
1

2π2

∫
k2P (k)

sin kr

kr
dk =

1

2π2

∫
k3P (k)

sin kr

kr
d ln k, (47)

where the latter equality emphasises the importance of k3P (k) for determining what scales
are important. It is common to encapsulate this by defining

∆2(k) =
1

2π2
k3P (k), (48)

which by insertion gives

ξ(r) =

∫
∆2(k)

sin kr

kr
d ln k. (49)

We can also note that ξ(0) = 〈δ(~x)2〉 = σ2, which is the variance of the field is given by:

ξ(0) = σ2 =

∫
∆2(k)d ln k, (50)

which is a useful equation for later and which also provides the σ for the Gaussian distri-
bution above!

Finally, it is worth pointing out that we introduced δ(~x) as a random field earlier. This
means that 〈·〉 denotes an ensemble average. I have however converted these quietly to
spatial averages above. This makes an assumption of ergodicity. The ergodic hypothesis
can be formulated as: Ensemble averages equal spatial averages taken over one realisation
of the random field. This appears to be a reasonable assumption for the Universe but it is
of little use when your sampling box is comparable to the size of the Universe (on really
large scales) because then you have essentially no spatial averages you can make. This
introduces a fundamental limitation in the accuracy of results on really large scales and is
known as cosmic variance.
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