
Lecture 2

Jarle Brinchmann

11/02/2014

1 Introduction

This lecture will focus on the growth of perturbations in general. This is important to
understand for galaxy formation because in this game we start with a set of initial pertur-
bations at some very early time. These perturbations then grow through time to provide
the initial conditions for galaxy formation at at time after matter radiation decoupling.
Note that I will attempt to denote co-moving sizes by r and proper sizes by λ or d in the
following.

2 Size regimes and horizon crossing

The Hubble parameter provides us with a characteristic scale for the Universe, the Hubble
radius, dH = c/H(t). We will call this loosely the ”horizon” here although it is not formally
identical to the proper horizon. The physical importance of the Hubble radius is that we
have:

λ � dH ⇒ Newtonian regime

λ � dH ⇒ Curvature of space important, so GR is necessary.

Thus the scale defined by dH is relevant to us. Furthermore in standard FRW cosmology
all scales will at some point in the Universe have been larger than the horizon. This follows
from the fact that the proper size of a region with size λ0 today (co-moving or proper), has

λ(z) =
λ0

1 + z
,

whereas the Hubble scale can be approximated as

dH(z) ∝ (1 + z)−3/2 Matter dominated

dH(z) ∝ (1 + z)−2 Radiation dominated,
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and in either case dH(ze) < λ(ze) for z > ze. This redshift, ze, corresponds to the time a
scale entered the horizon and we refer to it as the redshift of entering. At matter-radiation
equality we have that the co-moving size of the horizon is given by:

req ∼ 90 Mpc [14 (ΩNRh
2)−1 Mpc]. (1)

This is for three species of neutrinos and uses dH(t) as the horizon size. A more careful cal-
culation (done in your problem set), gives that the comoving horizon is≈ 16 (ΩNRh

2)−1 Mpc.
In general it is more convenient to refer to masses than to scales. Because the proper

size scales as λ ∝ a and the density as ρ ∝ a−3, we find that the mass,

M ∝ ρλ3 = constant.

Thus the mass enclosed within a proper size is a constant and provides a useful label to
work with (we often evaluate this at z = 0 where proper size is equal to co-moving size
and hence we often give densities relative to the critical density today). It is useful to look
at some numerical values (the sizes here are diameters), setting ρ = ρcrit:

M(within Mpc) ∼ 1.45× 1011h2M�

M(within Mpc) ∼ 1.45× 1014h2M�.

The former mass is of the order of a galaxy mass, while the latter is of the order of a cluster
mass. Since both of these sizes are smaller than req, we conclude that all mass scales of
astrophysical interest entered the horizon in the radiation dominated epoch.

When the scales are outside the horizon we really need a proper general relativistic treat-
ment to get their evolution, but the smallness of perturbations on the Cosmic Microwave
Background can be taken as evidence that the perturbations must have been small so GR
in the linear regime is sufficient. Nevertheless, it is a somewhat tedious procedure to go
through (see for instance section 4.2 in Mo, van den Bosch & White) and it is not essential
for us. Instead we can use a simplified treatment to get the right scalings.

3 Superhorizon fluctuations — approximate treatment

Consider a spherical region embedded in a flat FRW Universe and take the surrounding
Universe to have density ρb(t) and scale factor a1(t). The spherical region is taken to have
a slightly higher density, ρb(t) + ∆ρ(t) and scale-factor a2(t). From spherical symmetry
the evolution inside the spherical region is unaffected by the external field.

In that case each of the two regions will evolve like a separate FRW Universe and we
can write

H1(t)2 =
8πG

3
ρb(t) (2)

H2(t)2 =
8πG

3
(ρb(t) + ∆ρ(t))− kc2

a2
2

, (3)
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where H1 = ȧ1/a1 and likewise for H2. We then take the difference of these two equations:

H2(t)2 −H1(t)2 =
8πG

3
∆ρ− kc2

a2
2

. (4)

If we write a2 = a1 + ∆a, which will be valid at an early time and expand in Taylor series
in ∆a/a, we find that

∆ρ

ρb
= δ =

3kc2

8πGa2
1ρb

, (5)

and this leads to two distinct scalings:

Radiation domination: δ ∝ 1

a2

1

a−4
∝ a2 ∝ t

Matter domination: δ ∝ 1

a2

1

a−3
∝ a ∝ t2/3

which gives us the evolution behaviour of super-horizon scale perturbations. These scalings
are also what is found using a full GR treatment.

The derivation above is actually even sloppier than just ignoring GR. I have ignored
any discussion about what t means for instance. A slightly more careful derivation is the
one given in the lecture where I used equation ?? and now made explicit that we need to
compare these at the same time after the Big Bang. In that case you write out the time
in the background

t1(a1) =

∫ a1

0

da′

a′H1 (a′)
, (6)

and the perturbed region

t2(a2) =

∫ a2

0

da′

a′H2 (a′)
(7)

Setting these t1 = t2 and expanding in a Taylor series using a2 = a1 + ∆a where ∆a� a1

gives ∫ a1

0

da′

a′H1(a′)
=≈

∫ a1+∆a

0

da′

a′H1(a′)

(
1 +

1

2

∆K

a′ 2H2
1 (a′)

)
, (8)

which can be split out (and assuming that H1(a) is constant over ∆a) we get

∆a

a1

= −1

2
∆KH1(a1)

∫ a1

0

da′

(a′H1(a′))3 , (9)

which we can integrate up by using that H2(a) ∝ a−3(1+w) where w = 1/3 when radiation
is the dominant component and w = 0 for matter domination. This gives exactly the same
scalings as given above.
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4 Subhorizon fluctuations

We will now focus on sub-horizon fluctuations. One can trace the fluctuations in various
ways:

1. You can follow particle trajectories in detail. This is essentially the approach taken
by numerical simulations with some simplifications.

2. The next best thing is to take a slightly coarser view and instead of individual parti-
cles evolve a distribution function, f(~x, ~p, t). This amounts to follow the Boltzmann
equation in expanding coordinates and is an essential approach to do accurate cal-
culations of the mixed photon and matter fluid before decoupling. In practice these
calculations are done using large purpose-written software packages such as CMB-
FAST1 by U. Seljak and M. Zaldarriaga and CAMB2 by A. Lewis & A. Challinor.

3. Finally one has the possibility of going to the fluid limit where physical variables are
treated as smooth functions of space and time. In this case we have a well defined
velocity at each point so an essential difference from the preceding approach is that
in the fluid limit we have no dispersion in velocities at a given point.

We will assume that there is a smooth background Universe with density ρb and tem-
perature Tb and we will consider perturbations of this field. As long as these perturbations
are small, they do not influence the overall evolution of the Universe and we can use the
scale factor of the background Universe. It is also handy to write the density, ρ(~x, t) as

ρ(~x, t) = ρb(t)[1 + δ(~x, t)] ⇔ δ(~x, t) =
ρ(~x, t)− ρb(t)

ρb(t)
, (10)

which also defines the overdensity, δ, which is the quantity we will focus our attention on.
In the fluid limit it is possible to write the fluid equations in an expanding Universe

using co-moving coordinates as:

∂δ

∂t
+

1

a
∇~x · (1 + δ)~v = 0 (11)

∂~v

∂t
+

(
ȧ

a

)
~v +

1

a
(~v · ∇~x)~v = −∇~xΦ

a
− ∇~xP
aρb(1 + δ)

(12)

∇2
~xΦ = 4πGρba

2δ (13)

Φ = φ+
1

2
aäx2, (14)

where ~v is the peculiar velocity, P is the pressure, φ is the gravitational potential in non-
comoving coordinates, and the gradients are taken along the co-moving coordinate ~x. The
notation for Φ is just a convenience of notation — it comes naturally from the change of

1http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
2http://lambda.gsfc.nasa.gov/toolbox/tb_camb_ov.cfm
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variables in the Euler equation if you move all velocity independent terms to the right hand
side.

We need to close this with an equation of state for the pressure. Generally we will take
this to be barotropic equation of state, ie. P = P (ρ). For the moment, we will however
keep this more general and write P = P (ρ, S), where S is the entropy of the gas. In this
case we find

∇~xP
ρb

= c2
s∇~xδ +

2

3
(1 + δ)Tb∇~xS, (15)

where the sound speed is

c2
s =

(
∂P

∂ρ

)
S

. (16)

The gradient in entropy gives rise to iso-curvature perturbations which can arise even
in a Universe without curvature perturbations. The contribution of iso-curvature pertur-
bations to the Universe is constrained to be small from observations of the CMB so in the
following I will ignore it.

We can then linearise equations 11 to 13 and get:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρbδ +

c2
s

a2
∇2
~xδ. (17)

This is the equation that governs the evolution of density perturbations. It is however
more tractable in Fourier space, so recalling that ∇~x → i~k and ∇2

~x → −k2, we get:

∂2δk
∂t2

+ 2
ȧ

a

∂δk
∂t

= 4πGρbδk −
c2
s

a2
k2δk, (18)

where k = 2π/λ.

4.1 Jeans length and mass

If we ignore the expansion of the Universe in equation 18, we see that it turns into an
equation of the form

δ̈k = ω2δk (19)

with

ω2 = 4πGρb −
k2c2

s

a2
(20)

This gives as solution:
δk(t) = Aeωt +Be−ωt (21)

Thus, if ω2 < 0 the solution has oscillatory behaviour, whereas if ω2 > 0 the general
solution is a superposition of a growing and a decreasing mode. In this case we would get
exponential collapse.

This defines a typical length which is where ω = 0, the co-moving Jeans length:

rJ =
cs
a

√
π

Gρb
, (22)
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which is here written as the co-moving length. For an ideal gas the speed of sound is given
by

cs =

√
5kBTb
3mp

, (23)

with mp being the proton mass and 5/3 corresponding to the ratio of specific heats for a
monatomic gas.

We can use this length to define a mass as before and we get the Jeans mass, MJ :

MJ =
4π

3

(rJ
2

)3

ρc,0ΩB,0h
2, (24)

with the cosmological parameters being evaluated at the time today. Note that the density
here is the baryon density because only the baryons feel the pressure forces (to first order
at least). Quantitatively this gives

Before recombination: MJ ≈ 1.2× 1016
(
ΩB,0h

2
)1/2

M�

After recombination: MJ ≈ 1.5× 105
(
ΩB,0h

2
)1/2

M�

Why the large drop in Jeans mass? The reason is the huge change in sound speed —
from near the speed of light to just a few thousands m/s after recombination. Related to
this, there is also a big change in the pressure because the relevant number of particles
(recall P = nkT as the ideal gas law) drops from the number of photons, nγ, to the number
of baryons, nB, after photons and baryons decouple. This corresponds to a drop in pressure
(assuming no temperature change) of a factor of 108.

5 Solving the perturbation equation

Solving equation 18 in general requires numerical techniques, but a simple solution for the
pressure-less case can be found. By noting that in that case the equation for δ is exactly
the same as the equation satisfied by the Hubble parameter, H(t). The simplest way to
see this is perhaps by writing the time-time component of the Friedmann equation which
is (e.g. MvdBW section 3.2.1)

ä

a
= −4πG

3

(
ρ+ 3

P

c2

)
+

Λc2

3
(25)

If you take the time derivative of this and note that Λ is constant you find an equation for
H(t) that is mathematically identical to equation 18. Thus one solution of equation 18 is
δ− ∝ H(t). Since H(t) decreases with time, this will be a decaying solution.

To get the physically interesting growing mode, we can make use of the fact that the
Wronskian of the differential equation can be written as:

δ− ˙δ+ − δ+
˙δ− = ka−2,
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Figure 1: The growth of perturbations in flat Universes with varying matter content. They
have all been normalised to the same value at z=10. The spacings between models is 0.1
in Ωm, except that Ωm = 0 has been replaced by Ωm = 0.01.

and this is a first order linear equation which can be solved using an integrating factor,
u(t) = H(t)−1. We then obtain the full solution as

δ+(t) ∝ H(t)

∫ t

0

dτ

a(τ)2H(τ)2
dt (26)

Numerical solutions to this equation for a flat Universe are shown in Figure 1. Several
different density parameters are shown and as can be seen, lowering the matter content
slows the growth of the perturbations because the Universe expands more rapidly.

6 What slows down perturbations?

6.1 The Hubble expansion

The growth of perturbations is slowed down because of the Hubble expansion which acts as
a drag force against the collapse. Intuitively, when the expansion is faster than the collapse
you will not have collapse. Since the expansion time is texpansion ∼ H(t)−1 ∼ ρ

−1/2
dominant and

the collapse time for matter is tdynamic ∼ ρ
−1/2
matter you see that if the density of the dominant

ingredient is much higher than that of the matter you get no growth. This is in general
true in the radiation dominated epoch.

To do a more careful analysis, the standard approach is to introduce a variable, y =
ρNR/ρR, that is the ratio of the matter density that of the radiation. This is a convenient
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variable, and y = a/aeq is another way to write it. Introducing this into the perturbation
equation 17 and using the Friedman equation (ignoring the cosmological constant and
curvature terms), one gets (after some straightforward but tedious manipulations):

2y(1 + y)
d2δ

dy2
+ (2 + 3y)

dδ

dy
= 3δ. (27)

This equation is solved by δ ∝ 1 + 3y/2 = 1 + 3
2
a
aeq

. From this we can immediately see

that growth during the radiation dominated regime is very slow at maximum a factor of
5/2.

Putting this all together gives us a picture of the growth of perturbations that can be
summarised in the following table:

radiation dominated matter dominated
a < aenter δ ∝ a2 δ ∝ a
a > aenter δ ∼ near constant δ ∝ a

Next time we will explore the consequences of this and discuss a number of other
processes that affect the overall growth of the perturbations.
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