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1 Introduction

This lecture provided a whirlwind tour of the content of the course and these notes are likewise
very brief. We will come back to most of this at later stages of the course. I have included
a bit more than I covered in the lecture but this is stuff that we will return to later or that
you already should know from previous courses.

Throughout this and later notes I will make a number of references to literature for further
reading. I will use these abbreviations for these book, some of these I brought to the lecture
but not all.

MvdBW “Galaxy formation and Evolution”, Hojun Mo, Frank van den Bosch & Simon
White (ISBN 978–0–521–85793–2).

Pdm3 “Theoretical astrophysics, Vol 3: Galaxies and cosmology”, T. Padmanabhan (ISBN:
0521566304).

Longair “Galaxy Formation”, Malcolm S. Longair (ISBN 978–3–540–73477–2).

Peacock “Cosmological physics”, John Peacock (ISBN 0–521–42270–1).

K&T “The early Universe”, Edward W. Kolb & Michael S. Turner (ISBN: 0201626748).

R&L “Radiative processes in Astrophysics”, George B. Rybicki & Alan P. Lightman (ISBN:
978–0–471–82759–7).

A&T “Dark Energy — Theory and Observations”, Luca Amendola and Shinji Tsujikawa
(ISBN 978–0–521–51600–6).

C&L “Cosmology — The Origin and Evolution of Cosmic Structure”, Peter Coles & Francesco
Lucchin (ISBN 978–0–471–48909–2).

2 A homogeneous Universe

Literature for this and the following five sections: Longair Part II; A&T Chapter 2; C&L
Part I; Pdm3 Chapter 1; MvdBW Chapter 2& 3

If we make the reasonably-looking assumption that the Universe on large enough scales is
isotropic and homogeneous, the velocities of particles can scale with the distance away from
us, but cannot have a preferred direction, and they can only scale uniformly with time, which
gives us a relation like:

~v = f(t)~r. (1)
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Furthermore, if the Universe is expanding we also need that the positions scale uniformly
with expansion (with possibly a different scaling function, a(t)) and we can then write

~r = a(t)~x, (2)

where ~x are constant (co-moving) coordinates for the particle (we are assuming test-particles
here with no proper motion). If we combine these two equations with ~v = ~̇r, we get

~v =

(
ȧ

a

)
~r, (3)

where I have suppressed the time dependence of a. It is also useful to introduce the redshift,
z, through:

a = 1/(1 + z), (4)

where I have also made use of the convention that sets the value of a today, a(t0), to 1. This
corresponds to z = 0.

Observationally it is found that at t = t0, z = 0, we have(
ȧ

a

)
(t0) = H0 = 0.3× 10−17 h s−1 (5)

= 100h km/s/Mpc, (6)

where h ≈ 0.71 (See for example the WMAP collaboration’s recommended set of cosmological
parameters1). This then defines a natural time-scale:

tH = H−1
0 ∼ 1010h−1yr, (7)

called the Hubble time, and a distance given by the distance light can travel in this time:

dH = cH−1
0 ∼ 3h−1Gpc, (8)

called the Hubble size/Hubble radius. Note that although in many scenarios this is similar
to the horizon size

h = χ =

∫ t

0

c

a(t)
dt, (9)

it is not the same. The Hubble radius is a local quantity, whereas the horizon is an integral
over the history of the Universe and the two can differ vastly depending on the expansion
history of the Universe.

3 Energy densities

The key driver of the dynamics of the Universe is the various energy densities of matter and
radiation. It is therefore useful to review these. To get the densities, we need the volume
evolution which comes naturally from the expansion

V (t) = V0(t)a3, (10)

1http://lambda.gsfc.nasa.gov/product/map/current/best_params.cfm
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and if we assume that the kinetic energy of matter is negligible in comparison to its internal
energy we have that the energy density of N particles of matter is:

ρmatter ≈
Nmc2

V0
a−3 ∝ a−3, (11)

while for Nγ photons we need to recall that not only the volume, but also the wavelength of
the photons will be stretched, thus the energy density is:

ργ =
Nγhν

V0
a−3 =

Nγhν0

V0
a−1a−3 ∝ a−4. (12)

In general if your matter has an equation of state

w =
P

ρ
, (13)

we have (for constant w):
ρ ∝ a−3(1+w), (14)

which agrees with the above since for pressure-less matter we have w = 0, for photons w = 1/3.
For the cosmological constant we have w = −1 and this leads to a constant energy density
with time.

For photons we also know that ργ ∝ T 4 from Stefan-Boltzmann’s law, this then tells us
that

T ∝ a−1. (15)

4 Ionization balance

Literature: See e.g. MvdBW section 3.5
Since T increased back in time, it is clear that at some point sufficiently early the Universe

will have been ionized. This event, looking the other way, is known (rather unfortunately) as
recombination. Let us estimate quickly when that took place.

If we assume a simple system with binding energy ∆E, then it is a simple application of
Saha’s equation to find that 50% ionization occurs when

kBT50% ∼
∆E

50
. (16)

For Hydrogen ∆E ≈ 13.6eV which gives

T50% ∼
13.6 eV

50

1

8.6× 10−5 eV/K
≈ 1

4
104 = 2.5× 103. (17)

From measurements we know the temperature of the microwave background today to be
T0 ≈ 2.7K so we get

T0(1 + zreq) = T50% (18)

zreq ≈ 103 (19)

Note that the exact location of this “event” depends on what ionization fraction you adopt.
As a consequence this has a somewhat arbitrary nature and compilations of cosmological
parameters often do not include this.
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5 Matter-radiation equality

Literature: See e.g. MvdBW section 3.5
I will from now on tend to refer to matter as ’non-relativistic matter’ and use a subscript

NR, and for relativistic species I will use R as subscript. From ρNR ∝ a−3 and ρR ∝ a−4 we
see that as long as ρNR > ρR today, there would be a time in the past when they had equal
contribution to the energy density of the Universe. This is generally called matter-radiation
equality and we can easily estimate the redshift.

Today
ρNR ∼ 10−30g/cm3 (20)

from observations and we also know from observations that the background radiation has
T ≈ 2.7K with a black body shape. We can then get the energy density from the Stefan-
Boltzmann law:

εR =
4σ

c
T 4 ≈ (kBT )4

(~c)3
(21)

≈ 3× 10−13 erg/cm3 (22)

⇓
ρR =

εR
c2
≈ 3× 10−34 g/cm3 (23)

Setting this equal to the NR energy density gives:

ργ(t) = ρNR(t) (24)

1 + zeq ≈ 10−30

3× 10−34
≈ 3000 (25)

which means that the redshift of equality was roughly at zeq ∼ 3000.

6 The dominance of the cosmological constant

We can also ask when the energy density due to the cosmological constant will dominate over
the energy in matter. From observations we know that ΩΛ,0 ≈ 0.7 and ΩNR ≈ 0.3, so we have

(1 + z)3 =
ΩΛ,0

ΩNR
⇒ z ≈ 0.33, (26)

thus we are now in a period where the dynamical evolution of the Universe is very significantly
affected by a cosmological constant.

It is of course not well-known what this cosmological constant is, or indeed whether it is
a dynamically changing quantity, more commonly referred to as dark energy (see A&T if you
want to know much more about this topic).

7 Evolution of the scale-factor

To make further progress we need to have an estimate of the scale factor of the Universe. We
can do this by solving the Friedmann equations. A simplified derivation of this can be done
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using Newtonian arguments and was given in the lecture. The result is(
ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ, (27)

where a is the scale factor, ρ is the total density, k is a constant which from the general
relativistic derivation is seen to express the curvature of space. In the Newtonian derivation
k is related to the total energy of the system. There is also a second equation which does
not follow from a Newtonian derivation. However if one is willing to accept a relativistic
formulation of internal energy, it is easy enough to derive from the first law of thermodynamics

dU + PdV = 0, (28)

with U the internal energy, U = ρc2V , V (t) ∝ a−3 and P the pressure of the matter under
consideration. Using that dV/dt = 3V ȧ/a, we can write equation 28 in the form

d

dt

(
ρc2V

)
+ 3p

ȧ

a
= 0, (29)

which by expansion and division of V gives:

ρ̇ = −3
ȧ

a

(
ρ+

P

c2

)
. (30)

If we evaluate equation 27 today, we have:

kc2 = H2
0

[
8πG

3H2
0

ρ0 − 1

]
, (31)

where subscript 0 refers to today, H0 is the value of ȧ/a at the present time. This makes it
clear that there is a characteristic density, ρcrit,

ρcrit =
3H2

0

8πG
, (32)

for which k = 0. Since the Universe has this characteristic density, we often normalise densities
relative to this. Quantitatively it is

ρcrit ≈ 3× 1011 h−1M�
(h−1 Mpc)3

(33)

≈ 1.879× 10−29h2 g/cm3. (34)

It is also useful to rewrite the Friedmann equation

H(z) = H0E(z), (35)

where we have used a = (1 + z)−1 and E(z) is given by

E(z)2 =
[
ΩΛ + (1− Ωtot)(1 + z)2 + ΩNR(1 + z)3 + ΩR(1 + z)4

]
, (36)

where Ω = ρ/ρcrit for each constituent of the Universe. Λ corresponds to a cosmological
constant and Ωtot is the sum of the other Ω’s.
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We can solve the Friedmann equations analytically in several situations. By setting Λ = 0,
k = 0, ΩR = 0, we get a particularly simple equation.(

ȧ

a

)2

=
8πGρcrit

3
a−3 (37)

⇓
ȧ = H0a

−1/2 (38)

a(t) =

(
3

2
H0t

)2/3

. (39)

If instead we focus on the radiation dominated regime, we have find a(t) ∝ t1/2, and in
the regime dominated by the cosmological constant you will find a(t) ∝ eH0t. It is a good
idea to do this yourself!

8 Growth of structure — simple introduction

Literature: C&L Part 3; A&T Chapter 4; Longair Part III; MvdBW Chapter 4

The Friedmann equations describe a uniform Universe — this is not the real Universe
but it is found to be a good description of the average properties. What we want now is the
evolution of perturbations around this smooth background.

We will adopt the same Universe as above, ie. a flat Universe with matter dominating the
dynamics. This means that

ρ ∝ a−3 ⇒ dρ = −3a−4da, (40)

and the density contrast δ is then given by

δ =
ρ− ρ0

ρ0
= −3

∆a

a
(41)

If we perturb the Universe slightly we can write

a(t)→ a(t) + ∆a(t) and ρ(t)→ ρ(t) + ∆ρ(t). (42)

We then insert this into the time-derivative of the Friedmann equation

d

dt
ȧ2 =

d

dt

8πG

3
ρ0a

−1 (43)

ä = −4πGρ0

3

1

a2
. (44)

Inserting equation 42 into this equation and expanding the right-hand side to first order in
∆a/a we get

d2a

dt2
+
d2∆a

dt2
= −4πGρ0

3

1

a2
+

8πGρ0

3

∆a

a3
. (45)

The first term on each side cancel each other because they satisfy equation 44. We are then
left with

d2∆a

dt2
=

1

2
H2

0

∆a

a3
=

4

9

∆a

t2
, (46)

where we inserted a(t) from equation 39.
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This can be solved by a power-law in t, tn and inserting this gives a quadratic equation
in n and we find that the growing solution is n = 4/3 which corresponds to

∆a ∝ t4/3 ⇒ δ ∝ ∆a

a
∝ t2/3 ∝ a(t). (47)

9 Cooling

MvdBW Chapter 8 and Appendix B; R&L Chapter 5 (for Bremsstrahlung); the derivation of
typical mass follows Burrows & Ostriker (2014, astro-ph:1401.1814).

Note that this will be covered in much more detail later in the course and this is a set of
rough and approximate results:

For further collapse to take place we need cooling. At high temperature (T > 106K) we
expect Bremsstrahlung to dominate. This causes an energy loss

dE

dt dV
=
α3~2

me

(
kBT

me

)1/2

n2, (48)

where α is the fine-structure constant, me the electron mass and n the particle density.
Writing n as

n ∼
(
M

mp

)
3

4πR3
, (49)

where mp is the proton mass and we are considering a gravitating source of mass M and
radius R. And taking T from that for a virialized halo

kBT ∼
GMmp

R
, (50)

we get a cooling time (E/Ė) of

tcool = 1.24× 10−16

(
R

1m

)5/2( M

1kg

)−1/2

seconds (51)

= 467

(
R

1pc

)5/2( M

1M�

)−1/2

years (52)

= 1.48

(
R

100kpc

)5/2( M

1012M�

)−1/2

Gyrs (53)

At lower temperature the main cooling mechanism is typically due to collisional excita-
tion and recombination, while at high redshift he main cooling is due to inverse Compton
scattering. The former two do not have closed forms as does Bremsstrahlung but it turns out
(see e.g. Burrows & Ostriker 2014) that you can write the cooling due to recombination in a
hydrogen plasma as

Λbf ∼ Abf
ρ2

T 1/2
, (54)

and if we write the cooling due to Bremsstrahlung in a similar form

Λff ∼ Affρ
2T 1/2, (55)
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the two are related through

Abf ∼ α2mec
2

kB
Aff , (56)

with α being the fine-structure constant, α = e2/~c. Putting in numbers, it turns out that
the Bremsstrahlung cooling dominates at temperatures above ∼ 3× 105 K.

Now it turns out that typical dark matter halos of interest to us have virial temper-
atures below this, so to get typical masses of galaxies the appropriate cooling would be
something like the recombination cooling above, while to get a maximum mass one could use
the Bremsstrahlung equation. Either way one can derive an equation for a mass in terms of
fundamental constants.

10 Gravitational collapse time

This is given by

tgrav ∼
(
GM

R3

)−1/2

, (57)

and leads to time-scales of

tgrav = 1.22× 105

(
R

1m

)3/2( M

1kg

)−1/2

seconds (58)

= 1.5× 107

(
R

1pc

)3/2( M

1M�

)−1/2

years (59)

= 0.47

(
R

100kpc

)3/2( M

1012M�

)−1/2

Gyrs (60)

11 The criterion for forming galaxies

Armed with the preceding discussion we can then outline three main regimes:

1. tcool > tH. In this case the Universe expands faster than the gas can cool and no
significant collapse can take place.

2. tdyn < tcool < tH. In this case the system evolves adiabatically at essentially constant
mass. Since the dynamical time is shorter than the cooling time, the system can react
to reduced pressure by contracting. The system contracts on a time-scale given by tcool.

3. tcool < tdyn. In this case energy can be removed sufficiently quickly to allow rapid
gravitational collapse to take place. This is to be expected to be the main regime for
galaxy formation.

Moving from the preceding discussion it is possible to write the cooling time more gener-
ically as

tcool =
E

n2Λ(T )
, (61)
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Collisional ionization equilibrium Zmet=0
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Figure 1: The density-temperature diagram for primordial gas. The black line shows the
locus for tcool = tdyn and the red line tcool = tH , drawn for z = 3. Where relevant I have set
Ωm = 0.3 and fgas = 0.15. Objects that lie above both the red and black lines are able to cool
efficiently. The right y-axis shows the redhshift at which the density of a collapsed object is
the value of n given on the main y-axis. The dashed lines show lines of constant Mgas.
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where we have isolated the cooling in the cooling function Λ(T ). This has typical values of
10−23erg cm3 s−1. Thus gives a characteristic cooling time of

tcool ≈ 3.3× 109

(
T

106 K

)( n

10−3 cm−3

)−1
(

Λ(T )

10−23 erg cm3 s−1

)−1

years, (62)

and if we equate this to the gravitational collapse time tdyn, we get

( n

10−3 cm−3

)
≈ 245

(
T

106 K

)2( Λ(T )

10−23 erg cm3 s−1

)−1

. (63)

This then provides a locus in the n − −T plane — illustrated in Figure 1. The details of
this figure and how you calculated all the ingredients in it is the subject of later lectures so
although I did mention it briefly in the lecture I will not include it further here.

What you can see in the figure is that the constant mass lines (the inclined dashed lines)
do asymptote to the tcool = tdyn curve around a mass of 1012M� which therefore is an
approximate upper limit for monolithic collapse of gas clouds and hence in such a scenario
provides an upper limit to the mass of a galaxy.
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