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1 Monochromatic Point-Source
HIGH-SENS: Let IA = | ~EA|2 be the intensity from telescope A, IB = | ~EB |2 that
from telescope B. Both go into the beam-combiner/splitter, IA1, IA2, IB1, and IB2

come out. IA1 interferes with IB1 and IA2 with IB2.
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One important aspect of the beamsplitter is that it adds a phase shift of π/2 between
transmitted and reflected wave (see W. Traub in “Principles of Long Baseline Stellar
Interferometry”, p. 48). Thus the combined field has to be written as

~E1 = ~EA1 + ~EB1 · eiπ/2

~E2 = ~EA2 · eiπ/2 + ~EB2

The electromagnetic fields can be written as ~EA1 = EA1e
iφA , ~EA2 = EA2e

iφA etc.
(Note that the phase is the same).
Now let’s see what we get on the detector:

I1 = | ~E1|2

= ( ~EA1 + ~EB1e
iπ/2)× ( ~E∗

A1 + ~E∗
B1e

−iπ/2)

= | ~EA1|2 + ~EA1
~E∗

B1e
−iπ/2 + ~E∗

A1
~EB1e

iπ/2 + | ~EB1|2

= IA1 + EA1EB1e
i(φA−φB−π/2) + EA1EB1e

−i(φA−φB−π/2) + IB1

= IA1 + EA1EB1 · 2 cos(φA − φB − π/2) + IB1

= IA1 + 2EA1EB1 sin(∆φ) + IB1
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I2 = IA2 − 2EA2EB2 sin(∆φ) + IB2

I1 − I2 = IA2 − IA1 + 2 (EA1EB1 + EA2EB2) · sin(∆φ) + IB2 − IB1

To first order, the intensity-terms on the right hand side are constant, therefore filtering
with a high-pass filter will remove them:

I1 − I2 = 2 (EA1EB1 + EA2EB2) · sin(∆φ)

= 2 (
√

IA1IB1 +
√

IA2IB2) · sin(∆φ)

If IA1 = IA2 = IA/2 and IB1 = IB2 = IB/2, the equation can be simplified further,
but this case is too unrealistic to be considered here. Instead, we introduce the fractions
of light seen through telescope A/B and channel 1/2: fA1 = IA1/I , fA2 = IA2/I , etc.
Then

I1 − I2 = 2 (
√

fA1fB1 +
√

fA2fB2)I · sin(∆φ)
= 2fI · sin(∆φ)

with the photometric correction factor f =
√

fA1fB1 +
√

fA2fB2.
Interference occurs at each pixel of the detector, therefore all the I’s and ~E’s and

f ’s are functions of x and y. Furthermore, the wavelength λ is a function of x.

2 Monochromatic Extended Source
From the last section, we know that the fringe signal of a point source is

(I1 − I2)Point = 2fI · sin(∆φ)

Where ∆φ = 2πDλ +2πθBλ is the phase difference introduced by baseline and delay
lines. Dλ = D/λ is the optical path difference introduced by the delay lines, and
Bλ = B/λ is the Baseline projected onto the sky, both in units of λ.
For an extended source, we have to integrate this over an angle on the sky:

(I1 − I2)ext =
∫

dθ (I1 − I2)Point(θ)

=
∫

dθ 2fI(θ) · sin(2πDλ + 2πθBλ)

=
∫

dθ fI(θ) · 1
i (exp(2πiDλ + 2πiθBλ)− exp(−2πiDλ − 2πiθBλ))

= 1
i f exp(2πiDλ)

∫
dθ I(θ) exp(2πiθBλ)

− 1
i f exp(−2πiDλ)

∫
dθ I(θ) exp(−2πiθBλ)
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The integrals can be seen as Fourier transformations:∫
dθ I(θ) · exp(2πiθBλ) = Ĩ(Bλ) = |Ĩ(Bλ)| · eiφ(Bλ)∫

dθ I(θ) · exp(−2πiθBλ) = Ĩ(−Bλ) = |Ĩ(Bλ)| · e−iφ(Bλ)

(I1 − I2)ext = 1
i fe2πiDλ · |Ĩ(Bλ)| · eiφ(Bλ) − 1

i fe−2πiDλ · |Ĩ(Bλ)| · e−iφ(Bλ)

= f |Ĩ(Bλ)| · 1
i (exp(2πiDλ + iφ(Bλ))− exp(−2πiDλ − iφ(Bλ)))

= 2 f |Ĩ(Bλ)| · sin(2πDλ + φ(Bλ))

3 Finite Bandwidth
In reality, we cannot record a monochromatic signal, even if we consider the measure-
ment of a single pixel. We have to integrate over the area of the pixel, which corre-
sponds to an integral over wavelength. We write it as an integral over wavenumber
k = 2π/λ since this is easier to calculate:∫ k0+∆k/2

k0−∆k/2

dk (I1 − I2) = 2f |Ĩ(Bλ)|
∫

dk sin(kD + φ(Bλ))

Here we assumed that f Ĩ(Bλ) ≈ const.
The integral is∫

dk sin(kD + φ(Bλ))

=
[
−cos(kD + φ(Bλ))

D

]k0+∆k/2

k0−∆k/2

=
1
D

(
cos

(
(k0 − ∆k

2 )D + φ(Bλ)
)
− cos

(
(k0 + ∆k

2 )D + φ(Bλ)
))

= − 2
D
· sin (k0D + φ) · sin (−∆k D/2)

= sin (k0D + φ) ·∆k · sin (∆k D/2)
∆k D/2

Here we used the formula

cos(a)− cos(b) = −2 sin(a+b
2 ) sin(a−b

2 )

sin(x)/x is the sinc-function, which is 1 for x = 0, i.e. D = 0 in our case. Therefore,
the amplitude of the fringe signal measured by MIDI at zero OPD is

2f |Ĩ(Bλ)|∆k sin(φ)

However, this does not help us very much, since we do not know at which position of
the delay lines D = 0 actually is.
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4 Power Spectrum Analysis
The signal measured by MIDI is

(I1 − I2) = 2f |Ĩ(Bλ)| sin (k0D + φ) ·∆k · sinc (∆k D/2)

4.1 Narrow Wavelenght Band
If the length of an OPD-scan is small compared to the coherence length, i.e. the period
of the sinc 2π/∆k, then we can neglect the sinc-term. This is the case for all reasonable
wavelength-bin sizes and all scan lengths commonly used. The Fourier transform of
the fringe signal consists then of two δ-peaks at frequencies ±k0:

FT (I1 − I2)) = 2f |Ĩ(Bλ)| ·∆k · 1
2i

(
δ(k + k0)eiφ − δ(k − k0)e−iφ

)
The Power spectrum is the square of the Fourier transform:

Power = (f |Ĩ(Bλ)|∆k)2 · (δ(k + k0) + δ(k − k0))

We call the amplitude δ-peaks the (square of the) correlated flux Icorr:

Icorr = ∆k · f |Ĩ(Bλ)|

(Note that this is the amplitude of the fringe signal if the sinc-term is unity.)
It is useful to define the photometric flux Iphot = ∆k fI , where I is the total flux

of the target, i.e. Ĩ(0). MIDI does not measure the pure photometric flux, but four
different approximations of it (namely fA1Iphot, fA2Iphot, fB1Iphot, and fB2Iphot).
When we wish to compute the visibility, we should combine these four measurements
in the same way as the instrument does it, i.e. use fIphot. The ∆k takes into account
that we bin the photometric measurement, i.e. add the flux in a number of pixels.
The visibility V is the normalized Fourier-transform of the object’s light distribution
I(θ):

V :=
Ĩ(u)
Ĩ(0)

=
Icorr

Iphot

4.2 Wide Wavelength Band
For completeness, we analyze also the case of wide wavelength bands. This applies,
for example, if the full N-band is used with spectral dispersion. To calculate the Fourier
transform, we make use of the convolution theorem, i.e. we Fourier transform the fac-
tors separately and convolve them afterwards. The term f |Ĩ(Bλ)| is easy, since we as-
sumed it to be constant in the last section (repeating the calculation with a non-constant
Ĩ is left as an exercise for the reader).
The sin-term yields again two delta-peaks at frequencies ±k0:

FT (sin(k0D + φ)) =
1
2i

(
δ(k + k0)eiφ − δ(k − k0)e−iφ

)
4



Finally, the Fourier transform of the sinc-term is a simple top-hat function:

FT(∆k · sinc (∆k D/2)) =
{

1, if −∆k
2 < k < ∆k

2
0, otherwise.

The convolution of the two delta-peaks with the top-hat leads to two top-hat-functions
around ±k0:

FT(I1 − I2) =


2f |Ĩ(Bλ)|

2i · eiφ if −k0 − ∆k
2 < k < −k0 + ∆k

2

− 2f |Ĩ(Bλ)|
2i · e−iφ if k0 − ∆k

2 < k < k0 + ∆k
2

0 otherwise

The Power-spectrum consist of two peaks, too:

Power(I1 − I2) =

 (f |Ĩ(Bλ)|)2 if −k0 − ∆k
2 < k < −k0 + ∆k

2

(f |Ĩ(Bλ)|)2 if k0 − ∆k
2 < k < k0 + ∆k

2
0 otherwise

In MIA, we add up the power in one of the peaks, so we obtain∫ k0+
∆k
2

k0−∆k
2

Power =
∫ k0+

∆k
2

k0−∆k
2

(f |Ĩ(Bλ)|)2 = ∆k · (f |Ĩ(Bλ)|)2

If we define this to be the square of the correlated flux Icorr, like in the narrow-band
case, then we have

Icorr =
√

∆k · f |Ĩ(Bλ)|

Here Icorr is not proportional to ∆k, but
√

∆k. This has to be taken into account if one
wishes to compute a visibility for wide wavelength bands.
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5 Coherent Analysis
Now lets have a look what happens within the coherent analysis. Of course, the signal
measured by MIDI is still the same. However, we can savely drop the sinc-term since
EWS works on single-pixel columns, i.e. very narrow bandwidth and large coherence
length:

(I1 − I2) = 2f |Ĩ(Bλ)|∆k · sin (kD + φ)

(We dropped the index 0 and simply write k for the central frequency of a pixel). The
processing steps are:
oir1dCompressData integrates the detector signal in the direction perpendicular to
the spectral dispersion. This improves only the signal-to-noise ratio, since the signal is
constant in this direction.
oirFormFringes subtracts the two channels and applies a high-pass filter. The result is
(I1−I2) given by the formula above. The high-pass filter should remove only residuals
of the background and leave the fringe signal unchanged.
oirRotataInsOpd multiples each data point by exp(−ikDi), where Di is the known
instrumental OPD. After that, the signal can be written as

(I1 − I2)rot = 2f |Ĩ(Bλ)|∆k · 1
2i

(
ei(kD+φ) − e−i(kD+φ)

)
· e−ikDi

= f |Ĩ(Bλ)|∆k · 1
i

(
ei(kDa+φ) − e−i(k(Da+2Di)+φ)

)
Here D = Da + Di with the atmospheric delay Da.
oirGroupDelay Fourier-transforms each spectrum. However, this is a different Fourier-
transform than in the power-spectrum analysis, here each individual spectrum is trans-
formed from the frequency domain to the delay domain, i.e. the signal as a function
of k is transformed to a function of, say, x. In the power-spectrum analysis, a scan
(several spectra) is transformed from the delay to the frequency domain, that is, from
D to k. The Fourier-transform here is written as∫

dk(I1 − I2)rot · e−ikx

= f |Ĩ(Bλ)|∆k
i

∫
dk

(
ei(kDa+φ) − e−i(k(Da+2Di)+φ)

)
e−ikx

= f |Ĩ(Bλ)|∆k
i

∫
dk

(
eik(Da−x)eiφ − e−ik(Da+2DI+x)e−iφ

)
= f |Ĩ(Bλ)|∆k

i

(
δ(Da − x) eiφ − δ(Da + 2DI + x) e−iφ

)
The first δ-function gives a peak at the atmospheric delay Da, while the second has its
peak at −(Da + 2Di). Since Di is modulated by MIDI’s piezos, the second peak is
suppressed if we average a few consecutive frames, and we’re left with a (hopefully)
strong peak at Da.
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oirRotateGroupDelay takes the output of oirFormFringes (before the multiplication
with exp(−ikDi)) and multiplies it with D = Da + Di (Da is the result from oir-
GroupDelay):

(I1 − I2)rot = 2f |Ĩ(Bλ)|∆k · 1
2i

(
ei(kD+φ) − e−i(kD+φ)

)
· e−ikD

= f |Ĩ(Bλ)|∆k
i ·

(
eiφ − e−i(k2D+φ)

)

Again, the second e-term is varying rapidly due to the OPD-modulation, so if we aver-
age several frames (preferably all good frames), we have

(I1 − I2)avg = f |Ĩ(Bλ)|∆k
i · eiφ

The modulus of this is the same correlated flux as in the power-spectrum analysis:

|(I1 − I2)avg| = f |Ĩ(Bλ)|∆k = Icorr

Additionally, we can obtain the phase φ, although I’m not sure yet how this works. . .
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