
Huygens relativity

Galileo still spoke of objects as if they have a “proper place” in Nature (il suo luogo). He also identified
circular motion as the only ‘natural’ motion (moto naturale).

Huygens was the first to realize that mechanics may be built on a principle of relativity.

Because it appears to be impossible to read off the position ~x or the time t on any particle, one should
consider (~x, t) to be relative, and only changes thereof are observable.

Thus, the equation of motion of a particle is not an algebraic equation but (as Newton formulated it) a
differential equation, in which

~v ≡
d~x

dt
(1)

But Huygens also noted that it appears to be impossible to read off the velocity ~v on any particle.

Thus, one should consider ~v to be relative, and only changes thereof are observable. Accordingly, one
should consider the acceleration

~a ≡
d~v

dt
=

d2~x

dt2
(2)

But wait a minute– why then not continue, and go on with

~b ≡
d~a

dt
=

d3~x

dt3
(3)

and so forth?

Because it turns out to be possible to read off the acceleration ~a on a particle!

Accelerations are absolute, not relative. As is now known, this is due to the existence of an absolute

velocity, the speed of light c.

The roots of classical mechanics, as enumerated above, show up everywhere in hydrodynamics, and even
in the design of numerical hydro methods. Basically,

(t, ~x,~v) (4)

are the coordinates of any system of particles, and ~a is prescribed externally by the usual

~F = m~a (5)

By the way, the fact that acceleration is absolute solves the age-old poser about the difference between two
equal cars moving at 50 km/s hitting each other frontally, and a single car hitting a wall at 50+50=100
km/s. Velocities are relative, but accelerations are not. Thus, what matters is the change of velocity;
therefore, the frontal collision produces the same effects as a car hitting a wall at 50 km/s, not 100.
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Particle averages

If we do not have a single particle, but consider the average of the motion of a large number of particles
which are closely coupled by thermal collisions, we can no longer use the derivative d/dt. Because we
have taken an average, we must specify a place and a time where our average is taken. Accordingly, we
must expand the difference dQ of any quantity Q in the space spanned by Eq.(4):

dQ =
∂Q

∂t
dt +

∂Q

∂xj

dxj +
∂Q

∂vj

dvj (6)

where we have used the Einstein convention for summation over repeated indices. Accordingly, any
function f of the variables enumerated in Eq.(4) obeys the equation

df

dt
=

∂f

∂t
+

∂f

∂xj

dxj

dt
+

∂f

∂vj

dvj

dt
(7)

or, using Eqs.(1,2),
df

dt
=

∂f

∂t
+ vj

∂f

∂xj

+ aj

∂f

∂vj

(8)

This “three-difference” form will occur again and again, not only in the derivation of the equations of
motion of hydrodynamics, but also in the equations of stellar dynamics.
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First sketch of averaging

If we have no imposed external acceleration, ~a = 0, and

d

dt
=

∂

∂t
+

dx

dt

∂

∂x
+

dy

dt

∂

∂y
+

dy

dt

∂

∂z

=
∂

∂t
+ vj

∂

∂xj

(9)

so that we expect the velocity to evolve according to

∂vi

∂t
+ vj

∂vi

∂xj

= 0 (10)

Note that this equation is much more difficult to deal with than the classical Eq.(5), because it is

◦ a partial differential equation

◦ a spacetime equation

◦ nonlinear due to the factor vj

◦ strongly three-dimensional due to ∂vi/∂xj

We will find that these unpleasant properties hold for all the equations of hydrodynamics and stellar
dynamics:

∂ρ

∂t
+

∂ρvi

∂xi

=
∂ρ

∂t
+ div ρ~v = 0 (11)

∂vi

∂t
+ vj

∂vi

∂xj

= −
1

ρ

∂P

∂xi

+ ~a (12)

(and likewise for the energy equation, which we will see later).

The main technical complication is due to the vector character of the position xi and the velocity vi. When
integrating the Boltzmann Equation over velocity space in order to find expressions for the expectation
value of variables, this vector behaviour produces

◦ various cross correlations such as vivj

◦ infinite sequence of higher-order correlations

One must then use physical or plausibility arguments for stopping the sequence or hierarchy at a certain
point. This is called ‘closure’. For example, if the velocity correlations are set to zero, one obtains the
Euler Equation for ideal flow; if the first correlation term is kept, one derives the Navier-Stokes Equations
for viscous flow.

In the case of stellar dynamics, this becomes even more complicated if the collision term is introduced.
This means that fluid mechanics and stellar dynamics are different at least because of the difference of
the ‘subgrid model’. In the case of hydro, particle collisions smooth out the subgrid behaviour, but stars
do not collide under ordinary galactic circumstances.

If we split the velocity into a systematic part ~w, the ‘wind speed’, and a random (thermal) part ~u,

~v ≡ ~w + ~u (13)

then we find the averages
< ~v > = ~w

< v2 > = w2 + αT = w2 + β
P

ρ

(14)

where T is the gas temperature, P is the pressure, and ρ is the mass density. The second equation can
be written even more clearly as

1

2
< v2 > =

1

2
w2 +

γ

γ − 1

P

ρ

=
1

2
w2 +

s2

γ − 1

(15)

in which s is the speed of sound:

RT = γ
P

ρ
= s2 (16)
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Distribution function f

df

dt
= local effects of collisions (17)

and if we average over a box that is much larger than the collision mean free path,

df

dt
= 0 (18)

df = dt
∂f

∂t
+ dxj

∂f

∂xj

+ dvj

∂f

∂vj

(19)

Here we see the “three-difference” form in action; it will occur again and again,

dt absolute time does not exist

dx neither does absolute space

dv nor does absolute velocity

and therefore
df

dt
=

∂f

∂t
+ vj

∂f

∂xj

+ aj

∂f

∂vj

(20)
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Probability density

< Q >≡

∫
Qf(t, ~x,~v) d3v (21)

Remember that, because f vanishes at the boundaries, expectation values of v-derivatives are zero, so
that

∫
vi

∂f

∂vj

d3v =

∫
∂fvi

∂vj

d3v −

∫
f

∂vi

∂vj

d3v

= 0 −

∫
f δij d3v

(22)

What is the equation for the expectation value of Q = 1? We have

df

dt
=

∂f

∂t
+ vj

∂f

∂xj

+ aj

∂f

∂vj

=

∂f

∂t
+ vj

∂f

∂xj

+
Fj

m

∂f

∂vj

= 0

(23)

Integrating over v-space, the third term drops out because f vanishes at the boundaries, so that expec-
tation values of v-derivatives are zero. The second term can be rewritten

vj

∂f

∂xj

=
∂fvj

∂xj

− f
∂vj

∂xj

(24)

Upon integration, the second term of this vanishes also, for the same reason. Thus, what remains is

∂n

∂t
+

∂

∂xj

(nwj) = 0 (25)

in which n is the particle density

n ≡

∫
f d3v (26)

and ~w is the wind speed. If all the particles have the same mass,

∂ρ

∂t
+

∂ρvj

∂xj

= 0 (27)

which is the equation of mass conservation, or continuity equation.
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Hydrodynamics Equations

Summarizing, the equations of hydrodynamics in Cartesian coordinates {xj} are

∂ρ

∂t
+

∂

∂xj

ρvj = 0 (28)

∂

∂t
ρvj +

∂

∂xk

ρvjvk = −
∂P

∂xj

+ gj (29)

∂

∂t
(ρe +

1

2
ρv2) +

∂

∂xj

((ρe +
1

2
ρv2 + P )vj) = ρvjgj (30)
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Jeans and Virial Equations

See Binney & Tremaine Ch.4.8.
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