Huygens relativity

Galileo still spoke of objects as if they have a "proper place" in Nature (il suo luogo). He also identified circular motion as the only 'natural' motion (moto naturale).
Huygens was the first to realize that mechanics may be built on a principle of relativity.
Because it appears to be impossible to read off the position \vec{x} or the time t on any particle, one should consider (\vec{x}, t) to be relative, and only changes thereof are observable.
Thus, the equation of motion of a particle is not an algebraic equation but (as Newton formulated it) a differential equation, in which

$$
\begin{equation*}
\vec{v} \equiv \frac{d \vec{x}}{d t} \tag{1}
\end{equation*}
$$

But Huygens also noted that it appears to be impossible to read off the velocity \vec{v} on any particle.
Thus, one should consider \vec{v} to be relative, and only changes thereof are observable. Accordingly, one should consider the acceleration

$$
\begin{equation*}
\vec{a} \equiv \frac{d \vec{v}}{d t}=\frac{d^{2} \vec{x}}{d t^{2}} \tag{2}
\end{equation*}
$$

But wait a minute- why then not continue, and go on with

$$
\begin{equation*}
\vec{b} \equiv \frac{d \vec{a}}{d t}=\frac{d^{3} \vec{x}}{d t^{3}} \tag{3}
\end{equation*}
$$

and so forth?
Because it turns out to be possible to read off the acceleration \vec{a} on a particle!
Accelerations are absolute, not relative. As is now known, this is due to the existence of an absolute velocity, the speed of light c.
The roots of classical mechanics, as enumerated above, show up everywhere in hydrodynamics, and even in the design of numerical hydro methods. Basically,

$$
\begin{equation*}
(t, \vec{x}, \vec{v}) \tag{4}
\end{equation*}
$$

are the coordinates of any system of particles, and \vec{a} is prescribed externally by the usual

$$
\begin{equation*}
\vec{F}=m \vec{a} \tag{5}
\end{equation*}
$$

By the way, the fact that acceleration is absolute solves the age-old poser about the difference between two equal cars moving at $50 \mathrm{~km} / \mathrm{s}$ hitting each other frontally, and a single car hitting a wall at $50+50=100$ km / s. Velocities are relative, but accelerations are not. Thus, what matters is the change of velocity; therefore, the frontal collision produces the same effects as a car hitting a wall at $50 \mathrm{~km} / \mathrm{s}$, not 100 .

Particle averages

If we do not have a single particle, but consider the average of the motion of a large number of particles which are closely coupled by thermal collisions, we can no longer use the derivative $d / d t$. Because we have taken an average, we must specify a place and a time where our average is taken. Accordingly, we must expand the difference $d Q$ of any quantity Q in the space spanned by Eq.(4):

$$
\begin{equation*}
d Q=\frac{\partial Q}{\partial t} d t+\frac{\partial Q}{\partial x_{j}} d x_{j}+\frac{\partial Q}{\partial v_{j}} d v_{j} \tag{6}
\end{equation*}
$$

where we have used the Einstein convention for summation over repeated indices. Accordingly, any function f of the variables enumerated in Eq.(4) obeys the equation

$$
\begin{equation*}
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x_{j}} \frac{d x_{j}}{d t}+\frac{\partial f}{\partial v_{j}} \frac{d v_{j}}{d t} \tag{7}
\end{equation*}
$$

or, using Eqs.(1,2),

$$
\begin{equation*}
\frac{d f}{d t}=\frac{\partial f}{\partial t}+v_{j} \frac{\partial f}{\partial x_{j}}+a_{j} \frac{\partial f}{\partial v_{j}} \tag{8}
\end{equation*}
$$

This "three-difference" form will occur again and again, not only in the derivation of the equations of motion of hydrodynamics, but also in the equations of stellar dynamics.

First sketch of averaging

If we have no imposed external acceleration, $\vec{a}=0$, and

$$
\begin{align*}
\frac{d}{d t} & =\frac{\partial}{\partial t}+\frac{d x}{d t} \frac{\partial}{\partial x}+\frac{d y}{d t} \frac{\partial}{\partial y}+\frac{d y}{d t} \frac{\partial}{\partial z} \\
& =\frac{\partial}{\partial t}+v_{j} \frac{\partial}{\partial x_{j}} \tag{9}
\end{align*}
$$

so that we expect the velocity to evolve according to

$$
\begin{equation*}
\frac{\partial v_{i}}{\partial t}+v_{j} \frac{\partial v_{i}}{\partial x_{j}}=0 \tag{10}
\end{equation*}
$$

Note that this equation is much more difficult to deal with than the classical Eq.(5), because it is

- a partial differential equation
- a spacetime equation
- nonlinear due to the factor v_{j}
- strongly three-dimensional due to $\partial v_{i} / \partial x_{j}$

We will find that these unpleasant properties hold for all the equations of hydrodynamics and stellar dynamics:

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho v_{i}}{\partial x_{i}}=\frac{\partial \rho}{\partial t}+\operatorname{div} \rho \vec{v}=0 \tag{11}\\
\frac{\partial v_{i}}{\partial t}+v_{j} \frac{\partial v_{i}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial P}{\partial x_{i}}+\vec{a} \tag{12}
\end{gather*}
$$

(and likewise for the energy equation, which we will see later).
The main technical complication is due to the vector character of the position x_{i} and the velocity v_{i}. When integrating the Boltzmann Equation over velocity space in order to find expressions for the expectation value of variables, this vector behaviour produces

- various cross correlations such as $v_{i} v_{j}$
- infinite sequence of higher-order correlations

One must then use physical or plausibility arguments for stopping the sequence or hierarchy at a certain point. This is called 'closure'. For example, if the velocity correlations are set to zero, one obtains the Euler Equation for ideal flow; if the first correlation term is kept, one derives the Navier-Stokes Equations for viscous flow.
In the case of stellar dynamics, this becomes even more complicated if the collision term is introduced. This means that fluid mechanics and stellar dynamics are different at least because of the difference of the 'subgrid model'. In the case of hydro, particle collisions smooth out the subgrid behaviour, but stars do not collide under ordinary galactic circumstances.
If we split the velocity into a systematic part \vec{w}, the 'wind speed', and a random (thermal) part \vec{u},

$$
\begin{equation*}
\vec{v} \equiv \vec{w}+\vec{u} \tag{13}
\end{equation*}
$$

then we find the averages

$$
\begin{align*}
<\vec{v}> & =\vec{w} \\
<v^{2}> & =w^{2}+\alpha T=w^{2}+\beta \frac{P}{\rho} \tag{14}
\end{align*}
$$

where T is the gas temperature, P is the pressure, and ρ is the mass density. The second equation can be written even more clearly as

$$
\begin{align*}
\frac{1}{2}<v^{2}> & =\frac{1}{2} w^{2}+\frac{\gamma}{\gamma-1} \frac{P}{\rho} \tag{15}\\
& =\frac{1}{2} w^{2}+\frac{s^{2}}{\gamma-1}
\end{align*}
$$

in which s is the speed of sound:

$$
\begin{equation*}
\mathcal{R} T=\gamma \frac{P}{\rho}=s^{2} \tag{16}
\end{equation*}
$$

Distribution function f

$$
\begin{equation*}
\frac{d f}{d t}=\text { local effects of collisions } \tag{17}
\end{equation*}
$$

and if we average over a box that is much larger than the collision mean free path,

$$
\begin{gather*}
\frac{d f}{d t}=0 \tag{18}\\
d f=d t \frac{\partial f}{\partial t}+d x_{j} \frac{\partial f}{\partial x_{j}}+d v_{j} \frac{\partial f}{\partial v_{j}} \tag{19}
\end{gather*}
$$

Here we see the "three-difference" form in action; it will occur again and again,

$$
\begin{array}{cl}
d t & \text { absolute time does not exist } \\
d x & \text { neither does absolute space } \\
d v & \text { nor does absolute velocity }
\end{array}
$$

and therefore

$$
\begin{equation*}
\frac{d f}{d t}=\frac{\partial f}{\partial t}+v_{j} \frac{\partial f}{\partial x_{j}}+a_{j} \frac{\partial f}{\partial v_{j}} \tag{20}
\end{equation*}
$$

Probability density

$$
\begin{equation*}
<Q>\equiv \int Q f(t, \vec{x}, \vec{v}) d^{3} v \tag{21}
\end{equation*}
$$

Remember that, because f vanishes at the boundaries, expectation values of v-derivatives are zero, so that

$$
\begin{align*}
\int v_{i} \frac{\partial f}{\partial v_{j}} d^{3} v & =\int \frac{\partial f v_{i}}{\partial v_{j}} d^{3} v-\int f \frac{\partial v_{i}}{\partial v_{j}} d^{3} v \tag{22}\\
& =0-\int f \delta_{i j} d^{3} v
\end{align*}
$$

What is the equation for the expectation value of $Q=1$? We have

$$
\begin{align*}
& \frac{d f}{d t}= \\
& \quad \frac{\partial f}{\partial t}+v_{j} \frac{\partial f}{\partial x_{j}}+a_{j} \frac{\partial f}{\partial v_{j}}= \tag{23}\\
& \quad \frac{\partial f}{\partial t}+v_{j} \frac{\partial f}{\partial x_{j}}+\frac{F_{j}}{m} \frac{\partial f}{\partial v_{j}}=0
\end{align*}
$$

Integrating over v-space, the third term drops out because f vanishes at the boundaries, so that expectation values of v-derivatives are zero. The second term can be rewritten

$$
\begin{equation*}
v_{j} \frac{\partial f}{\partial x_{j}}=\frac{\partial f v_{j}}{\partial x_{j}}-f \frac{\partial v_{j}}{\partial x_{j}} \tag{24}
\end{equation*}
$$

Upon integration, the second term of this vanishes also, for the same reason. Thus, what remains is

$$
\begin{equation*}
\frac{\partial n}{\partial t}+\frac{\partial}{\partial x_{j}}\left(n w_{j}\right)=0 \tag{25}
\end{equation*}
$$

in which n is the particle density

$$
\begin{equation*}
n \equiv \int f d^{3} v \tag{26}
\end{equation*}
$$

and \vec{w} is the wind speed. If all the particles have the same mass,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho v_{j}}{\partial x_{j}}=0 \tag{27}
\end{equation*}
$$

which is the equation of mass conservation, or continuity equation.

Hydrodynamics Equations

Summarizing, the equations of hydrodynamics in Cartesian coordinates $\left\{x_{j}\right\}$ are

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x_{j}} \rho v_{j}=0 \tag{28}\\
& \frac{\partial}{\partial t} \rho v_{j}+\frac{\partial}{\partial x_{k}} \rho v_{j} v_{k}=-\frac{\partial P}{\partial x_{j}}+g_{j} \tag{29}\\
& \frac{\partial}{\partial t}\left(\rho e+\frac{1}{2} \rho v^{2}\right)+\frac{\partial}{\partial x_{j}}\left(\left(\rho e+\frac{1}{2} \rho v^{2}+P\right) v_{j}\right)=\rho v_{j} g_{j} \tag{30}
\end{align*}
$$

Jeans and Virial Equations

See Binney \& Tremaine Ch.4.8.

