
Huygens relativity

Galileo still spoke of objects as if they have a “proper
place” in Nature (il suo luogo). He also identified
circular motion as the only ‘natural’ motion (moto
naturale).
Huygens was the first to realize that mechanics may
be built on a principle of relativity.
Because it appears to be impossible to read off the
position �x or the time t on any particle, one should
consider (�x, t) to be relative, and only changes thereof
are observable.
Thus, the equation of motion of a particle is not an
algebraic equation but (as Newton formulated it) a
differential equation, in which

�v ≡ d�x

dt
(1)

But Huygens also noted that it appears to be impos-
sible to read off the velocity �v on any particle.
Thus, one should consider �v to be relative, and only
changes thereof are observable. Accordingly, one
should consider the acceleration

�a ≡ d�v

dt
=
d2�x

dt2
(2)



But wait a minute– why then not continue, and go
on with

�b ≡ d�a

dt
=
d3�x

dt3
(3)

and so forth?
Because it turns out to be possible to read off the
acceleration �a on a particle!
Accelerations are absolute, not relative. As is now
known, this is due to the existence of an absolute
velocity, the speed of light c.
The roots of classical mechanics, as enumerated above,
show up everywhere in hydrodynamics, and even in
the design of numerical hydro methods. Basically,

(t, �x,�v) (4)

are the coordinates of any system of particles, and �a
is prescribed externally by the usual

�F = m�a (5)



Particle averages
If we do not have a single particle, but consider the
average of the motion of a large number of particles
which are closely coupled by thermal collisions, we
can no longer use the derivative d/dt. Because we
have taken an average, we must specify a place and
a time where our average is taken. Accordingly, we
must expand the difference dQ of any quantity Q in
the space spanned by Eq.(4):

dQ =
∂Q

∂t
dt+

∂Q

∂xj
dxj +

∂Q

∂vj
dvj (6)

where we have used the Einstein convention for sum-
mation over repeated indices. Accordingly, any func-
tion f of the variables enumerated in Eq.(4) obeys
the equation

df

dt
=
∂f

∂t
+

∂f

∂xj

dxj
dt

+
∂f

∂vj

dvj
dt

(7)

or, using Eqs.(1,2),

df

dt
=
∂f

∂t
+ vj

∂f

∂xj
+ aj

∂f

∂vj
(8)

This “three-difference” form will occur again and
again, not only in the derivation of the equations
of motion of hydrodynamics, but even in the basic
design of all numerical hydro methods.



First sketch of averaging
If we have no imposed external acceleration, �a = 0,
and

d

dt
=

∂

∂t
+
dx

dt

∂

∂x
+
dy

dt

∂

∂y
+
dy

dt

∂

∂z

=
∂

∂t
+ vj

∂

∂xj

(9)

so that we expect the velocity to evolve according to

∂vi
∂t

+ vj
∂vi
∂xj

= 0 (10)

Note that this equation is much more difficult to deal
with than the classical Eq.(5), because it is
◦ a partial differential equation
◦ a spacetime equation
◦ nonlinear due to the factor vj
◦ strongly three-dimensional due to ∂vi/∂xj We
will find that these unpleasant properties hold for
all the equations of hydrodynamics:

∂ρ

∂t
+
∂ρvi
∂xi

=
∂ρ

∂t
+ div ρ�v = 0 (11)

∂vi
∂t

+ vj
∂vi
∂xj

= −1
ρ

∂P

∂xi
+ �a (12)



(and likewise for the energy equation, which we will
see later).
If we split the velocity into a systematic part �w, the
‘wind speed’, and a random (thermal) part �u,

�v ≡ �w + �u (13)

then we find the averages

< �v > = �w

< v2 > = w2 + αT = w2 + β
P

ρ

(14)

where T is the gas temperature, P is the pressure,
and ρ is the mass density. The second equation can
be written even more clearly as

1
2
< v2 > =

1
2
w2 +

γ

γ − 1
P

ρ

=
1
2
w2 +

s2

γ − 1

(15)

in which s is the speed of sound:

RT = γ
P

ρ
= s2 (16)



Application to HH34

T

10, 000 K
≈

(
s

10 km/s

)2

(17)

sin α =
st

wt
=

s

w
=

1
M (18)

From now on, we will use �v
for the wind velocity

mass ρ

momentum ρ�v

energy
1
2
ρv2 + ρ

s2

γ − 1

(19)



Distribution function f

df

dt
= local effects of collisions (20)

and if we average over a box that is much larger than
the collision mean free path,

df

dt
= 0 (21)

df = dt
∂f

∂t
+ dxj

∂f

∂xj
+ dvj

∂f

∂vj
(22)

Here we see the “three-difference” form in action; it
will occur again and again,

dt absolute time does not exist
dx neither does absolute space
dv nor does absolute velocity

and therefore

df

dt
=
∂f

∂t
+ vj

∂f

∂xj
+ aj

∂f

∂vj
(23)



Probability function

< Q >≡
∫
Qf(t, �x,�v) d3v (24)

Remember that, because f vanishes at the bound-
aries, expectation values of v-derivatives are zero, so
that

∫
vi
∂f

∂vj
d3v =

∫
∂fvi
∂vj

d3v −
∫
f
∂vi
∂vj

d3v

= 0−
∫
f δij d

3v

(25)

What is the equation for the expectation value of
Q = 1? We have

df

dt
=

∂f

∂t
+ vj

∂f

∂xj
+ aj

∂f

∂vj
=

∂f

∂t
+ vj

∂f

∂xj
+
Fj
m

∂f

∂vj
= 0

(26)

Integrating over v-space, the third term drops out
because f vanishes at the boundaries, so that expec-
tation values of v-derivatives are zero. The second



term can be rewritten

vj
∂f

∂xj
=
∂fvj
∂xj

− f ∂vj
∂xj

(27)

Upon integration, the second term of this vanishes
also, for the same reason. Thus, what remains is

∂n

∂t
+

∂

∂xj
(nwj) = 0 (28)

in which n is the particle density

n ≡
∫
f d3v (29)

and �w is the wind speed. If all the particles have the
same mass,

∂ρ

∂t
+
∂ρvj
∂xj

= 0 (30)

which is the equation of mass conservation, or conti-
nuity equation.


