ORIGINS AND EVOLUTION OF THE UNIVERSE - SAMPLE EXAM

Read all questions carefully. Write your name and student number on the first page and number all pages.

The Friedmann Robertson-Walker metric is given by

$$ds^2 = -c^2 dt^2 + a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 (d\theta^2 + (\sin\theta)^2 d\phi^2) \right].$$

The particle number density for a non-relativistic gas in thermal equilibrium at a temperature T is given by:

$$n(T) = g \left(\frac{mk_B T}{2\pi\hbar^2}\right)^{3/2} e^{-mc^2/k_B T},$$

where k_B is Boltzmann's constant and g the statistical weight of the particle. For a relativistic gas in thermal equilibrium the number density is given by:

$$n(T) = 0.122 \times g \times F \left(\frac{k_B T}{\hbar c}\right)^3,$$

where F=1 for bosons and F=3/4 for fermions. The corresponding energy density of such a relativistic gas is given by:

$$\rho(T)c^2 = F' \times g \times \frac{\sigma_r T^4}{2},$$

where $\sigma_r = 7.565 \times 10^{-15} \text{erg/cm}^3/\text{K}^4$ is the radiation density constant and F' = 1 for bosons and F' = 7/8 for fermions. Other useful numbers are $1 \text{ eV} = 1.16 \times 10^4 \text{K}$ and the hydrogen ionisation potential is 13.6 eV.

1~[40~points] Answer the following questions in a few sentences only, or with a diagram - no derivations

- (a) (5 points) State the cosmological principle and explain the terms used.
- (b) (5 points) What is Silk damping?
- (c) (5 points) How does the scale factor evolve with time in a radiation-dominated universe?
- (d) (5 points) Why does the power spectrum of the temperature fluctuations in the CMB radiation show peaks?
- (e) (5 points) What is the Kibble mechanism?
- (f) (5 points) Since when is the temperature of the neutrino background different from the CMB radiation?
- (g) (5 points) Reconcile the following statements:
 - the Friedmann equations tell us that an empty universe has negative curvature.
 - from General Relativity we know that curvature is cased by mass-energy.
- (h) (5 points) Relate the present-day baryon-to-photon ratio to fundamental particle physics.

- 2 [15 points] Consider an isotropic and homogenous universe.
 - (a) (5 points) Show that the luminosity distance to a source at coordinate distance r whose light was emitted at time t_e and observed at time t_0 is $ra(t_0)^2/a(t_e)$.
 - (b) (5 points) Derive an integral that relates the luminosity distance only to redshift, for a curved isotropic and homogeneous universe with scale factor a(t).
 - (c) (5 points) For a flat isotropic and homogeneous universe, calculate the luminosity distance to redshift z = 1 for matter domination and for dark energy domination. How can this be used as a cosmological test?
- 3 [15 points] Observations of the temperature fluctuations from the surface of last scattering provide important constraints on cosmological parameters.
 - (a) (5 points) What is the important physical change that the matter in the universe underwent at the time when the cosmic microwave background radiation last scattered?
 - (b) (5 points) Describe the dependence of this process on temperature by deriving the Saha equation.
 - (c) (5 points) If the baryon-to-photon ratio were 1, roughly at what temperature would last scattering occur? Why is the baryon-to-photon ratio important?
- 4 [20 points] Consider a spherical volume within a homogeneous expanding universe, containing only pressureless matter of density ρ . At the present time the density is ρ_0 and the scale factor a=1.
 - (a) (5 points) Derive the acceleration equation for the expansion factor a(t) from Newtonian physics.
 - (b) (5 points) Integrate the acceleration equation to yield the Friedmann equation:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{C}{a^2}.$$

- (c) (5 points) Define the critical density and rewrite the Friedmann equation in terms of the density parameter Ω_m .
- (d) (5 points) Consider a universe that consists of only matter with a present density that is 5 times the critical density. How much larger can such a universe grow?
- 5 [20 points] The energy E in an expanding comoving volume V(t) obeys dE = -pdV for adiabatic changes, where p is the pressure.
 - (a) (5 points) Show that the energy density ρc^2 and the pressure obey the fluid equation:

$$\dot{\rho} + 3\left(\frac{\dot{a}}{a}\right)^2 (\rho + p/c^2) = 0.$$

Consider a homogeneous scalar field ϕ with a potential $V(\phi)$. Then its energy density is $\dot{\phi}^2/2 + V(\phi)$ and its pressure is $\dot{\phi}^2/2 - V(\phi)$.

(b) (5 points) When ϕ is small, what equation of state does the scalar field have? What is the effect of such an equation of state on the expansion of the universe?

ORIGINS AND EVOLUTION OF THE UNIVERSE - SAMPLE EXAM

(c) (5 points) Use the fluid equation to derive the equation for the evolution of the scalar field:

 $\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} + V'(\phi) = 0.$

(d) (5 points) Explain how a scalar field with a potential of the form $V(\phi)=(A^2-\phi^2)^2$ can cause a finite period of inflation.