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8. Cosmology III: The Cosmological Parameters

Fig. 8.3. The sketch represents a particular model of biasing.
Let the one-dimensional density profile of matter be speci-
fied by the solid curve, which results from a superposition of
a large-scale (represented by the dashed curve) and a small-
scale fluctuation. Assuming that galaxies can form only at
locations where the density field exceeds a certain threshold –

plotted as a straight line – the galaxies in this density profile
will be localized at the positions indicated by the arrows. Ob-
viously, the locations of the galaxies are highly correlated;
they only form near the peaks of the large-scale fluctuation. In
this picture, the correlation of galaxies on small scales is much
stronger than the correlation of the underlying density field

Shape of the Power Spectrum. If one assumes that
b does not depend on the length-scale considered, the
shape of the dark matter power spectrum can be deter-
mined from the power spectrum Pg(k) of the galaxies,
whereas its amplitude depends on b. As we have seen in
Sect. 7.4.2, the shape of P(k) is described by the shape
parameter Γ = h Ωm in the framework of CDM models.

The comparison of the shape of the power spectrum
of galaxies with that of CDM models yields Γ ∼ 0.25
(see Fig. 8.4). Since Γ = hΩm, this result indicates
a Universe of low density (unless h is unreasonably
low).

In the 2dFGRS, the power spectrum of galaxies
was measured with a much higher accuracy than had
previously been possible. Since a constant b can be
expected, at best, in the linear domain, i.e., on scales
above ∼ 10h−1 Mpc, only such linear scales are used
in the comparison with the power spectra from CDM
models. As the density parameter Ωm seems to be rela-
tively small, the baryonic density plays a noticeable role
in the transfer function (see Eq. 7.25) which depends
on Ωb as well as on Γ . The measurement accuracy of
the galaxy distribution in the 2dFGRS is high enough
to be sensitive to this dependence. In Fig. 8.5, the mea-
sured power spectrum of galaxies from the 2dFGRS
is shown, together with predictions from CDM mod-
els for different shape parameters Γ . Two families of
model curves are drawn: one where the baryon density

is set to zero, and the other for the value of Ωb which
results from the analysis of primordial nucleosynthesis
(see Sect. 4.4.4).

Considering models in which Ωb is a free parameter,
there are two domains in parameter space for which
good fits of the power spectrum of the galaxy distribu-
tion are obtained (see Fig. 8.5). One of the two domains
is characterized by a very high baryon fraction of the
matter density, and by a very large value for Ωmh. These
parameter values are incompatible with virtually every
other determination of cosmological parameters. On the
other hand, a good fit to the shape of the power spectrum
is obtained by

Γ = Ωmh = 0.18±0.02 , Ωb/Ωm = 0.17±0.06 .

(8.5)

As is seen in Fig. 8.5, and as we will show further be-
low, these values for the parameters are in very good
agreement with those obtained from other cosmological
observations.

Comparing the power spectra of two different types
of galaxies, we should observe that they are propor-
tional to each other and to the power spectrum of dark
matter. Their amplitudes, however, may differ if their
bias factors are different. The comparison of red and
blue galaxies in the 2dFGRS shows that these indeed
have a very similar shape, supporting the assumption of
a linear biasing on large scales. However, the bias factor
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Previous lecture: Dark matter halos and 
galaxies are biased tracers of the dark matter

The combination of small- and large- scale fluctuation of dark matter together with the condition 
required for a halo to be formed, make dark matter halos (and therefore galaxies) to be biased tracers of 

the dark matter distribution, with more massive halos being more biased tracers.

Threshold at which a 
massive DM halo can 

be formed



Previous lecture: Relation between correlation 
length, bias and dark matter halo mass
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At a fixed redshift:



Why is it useful to learn about the dark matter halos in which galaxies live?

It provides us a powerful tool for tracing the same population of galaxies 
through cosmic time.

Halo Mass

Cosmic Time

Theory gives us 
the average growth 

rate of halos

same galaxy, but 
later in cosmic 

time

same galaxy, but 
earlier in cosmic time

Previous lecture:  Why is it useful to learn about the 
dark matter halos in which galaxies live?

It provides us a powerful tool for tracing the same population of galaxies through cosmic time.

(Taken from R. Bouwens’ Lectures)



Previous lecture:  Why is it useful to learn about the 
dark matter halos in which galaxies live?

It provides us a powerful insights about physical processes involved in the formation or evolution of galaxies.

For example, if high-z quasars inhabit massive halos, that means that they live in more massive environments 
with more galaxies in their neighborhood. In these environments merger are more common, and then we could 
believe that quasar may be originated, or triggered by mergers.

More massive halos

More galaxies


Higher merger rate

Less massive halos

Less galaxies


Less merger rates

Why at high redshift quasars are only found 
in extremely massive dark matter halos? One 

(possible) answer: because quasars are 
originated from mergers



How can correlation function measurements provide insights about physical 
processes involved in the formation and evolution of galaxies?.

Using clustering to identify and characterize the most prominent peaks of the 
dark matter density field in the early universe (tracers of matter overdensities).

Final summary.

This class



How can correlation function measurements provide insights about 
physical processes involved in the formation and evolution of galaxies?

This implies that the exact shape of the galaxy correlation function depends on two things:

1) How dark matter halos are distributed in space.
2) How galaxies populate dark matter halos.

Remember from Lecture 1: Galaxies form in dark matter halos.

Almost all the dark matter halos, contain a galaxy in their center (central galaxy), and 
dark matter halos can also contain more than one galaxy (satellite galaxies).



All the halos contain 1 
galaxy in their center?

All the halos contain 
several galaxies randomly 
distributed within the halo?

All the halos contain 
few galaxies but only 
in the outskirts?

All the halos are 
populated differently?

or or or

How galaxies populate a dark matter halo?

If we consider different models about how galaxies populate dark matter halos (the so-
called halo occupation distribution models):

We would measure a different galaxy correlation function for each different model. 

Therefore, we can use the observed galaxy clustering to put constraints on halo occupation distribution 
models, and then understand which physical processes are involved in galaxy formation and evolution. 



The power law-shape for the 
correlation function of galaxies

Clustering on smaller scales is a result of galaxy 
pairs within the same halo. The number pairs is 
dominated by the radial profile of galaxies within an 
halo: one-halo term.

The clustering of galaxies on scales larger than a 
typical halo, results from pairs of galaxies in 
separate halos. The number of pairs is more 
dominated by the distribution of halos on space:  
two-halo term.

The observed clustering of galaxies is the result of 
a combination of the large and small scales number 
counts, and it is observed to have a power-law 
shape.

Why a power-law shape?
~ 1 - 2 Mpc/h



The power law-shape for the 
correlation function of galaxies

1 halo term

2 halo term

The 2-halo term: come from the number of pairs at 
large scales, dominated by the distribution of halos 
on space. 

This is relatively well understood and can be 
determined from simulations, since it depends mostly 
on properties of dark matter, on expansion history of 
the universe, on the formation of halos in the density 
field.

The 1-halo term: come from the number of pairs at 
small scales, dominated by the radial profile of 
galaxies within an halo. This depend on how galaxies 
populate dark matter halos. 

This is more difficult to understand, because it 
depends on complex baryonic physics (for example: 
star formation, feedback, cooling, mergers, etc). We 
need models to describe it. 

The projected correlation function of 
galaxies from SDSS

Zehavi et al. 2004



Halo occupation distribution (HOD) modeling

Several works have proposed different models to describe how galaxies populate dark matter 
halos (e.g. Peacock & Smith 2000, Benson et al. 2000, Berlind & Weinberg 2002, Kravtsov et al. 
2004, etc).

Most of the models include at least two parameters:

• The number of galaxies (brighter than some limit) in a halo of a given mass (the halo 
occupation number).

• The distribution of galaxies within an halo (density profile).

And models also includes different physical processes involved in the formation and evolution of 
galaxies as well as interaction between galaxies. 



Halo occupation distribution (HOD) modeling

For the radial distribution of galaxies within an halo, it is typically assumed that the distribution of 
galaxies follow the distribution of dark matter within the halo.

The distribution of dark matter within an halo is well known to roughly follow a Navarro-Frenk-White 
(NFW) profile:

Navarro-Frenk-White Density Profiles

13-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c04-1

4. Structure of Dark Matter halos

Obviously, we cannot observe the dark matter halos
directly - but we can measure the total density profiles
of clusters, and we can check in our simulations what
we expect for dark matter halos.

4.1 Theory of halo collapse

We define a halo as a region in which the density is
larger than 200 times the critical density ρcr. This def-
inition serves well to describe the collapsed part of the
halo.
Hence the mass M is given by

M =
4π

3
r3

200200ρcr

Since the critical density is given by

ρcr(z) =
3H2(z)

8πG

we find

M =
100r3

200H
2(z)

G

Hence the halo mass and the size are uniquely related -
and the relation changes as a function of redshift.
The virial velocity of the halo is the circular velocity at
the virial radius

V 2

200 =
GM

r200

13-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c04-2

Hence the halo mass, virial radius, and virial velocity
are related by

M =
V 3

200

10GH(z)

r200 =
V200

10H(z)

The Hubble constant H(z) increases with lookback
time. Hence at higher redshift, the size of a halo of a
given mass is smaller than the size of a halo with the
same mass at low redshift. Halos are more compact
and denser at high redshift, which is exactly what we
expect, as the density of the universe is higher at high
redshift (by (1 + z)3).
Simulations show that the density profiles of halos are
well approximated by a Navarro Frenk White profile
(1997):

ρ(r) =
ρs

(r/rs)(1 + r/rs)2

where ρs and rs are scaling parameters. Hence at very
small radii (r < rs), ρ ∝ r−1, and at large radii (r >
rs) ρ ∝ r−3. At rs, the slope of the density profile
bends over.
We define a concentration parameter c by c = r200/rs.
It is easy to show that

ρs =
200

3
ρcr(z)

c3

ln(1 + c) − c/(1 + c)

Hence the profile of the halo is completely determined
by the mass M (or equivalently, the radius r200), and
the concentration paramater c.

Simulations show that collapsed halos approximately have 
the following density profile:

where rs and ρs are some scaling parameters.

At small radii (r < rs), the density profile ρ scales approximately as r−1

and at large radii (r > rs), the density profile ρ scales approximately as r−3

At r ~ rs, the density profile ρ changes slope

Since ρs  is completely determined by the total mass and concentration parameter c = r200 / 
rs, all of the properties of dark matter halos can be expressed in terms of two variables (1) 

the mass of the dark matter halo and (2) the concentration parameter.

One of the most important steps in galaxy formation is the collapse of 
overdensities early in the universe.   The density profile of the collapsed objects 

can have important impact on the formation of galaxies.

This assumption determine the shape of the 1-halo term of the 
correlation function of galaxies. 

where rs is a characteristic radius and ρs represent the 
amplitude of the density profile



The power law-shape for the 
correlation function of galaxies

The combination of the 1-halo and 2-halo 
terms result in a power law-shape for the 
galaxy correlation function.

The observed correlation function can be 
fitted to find the best model parameters.

We can find constraints for the halo 
occupation number, the density profile 
and dominant physical processes. 

1 halo term

2 halo term

Inflection due to the transition 
between the 1-halo and 2-halo terms

Zehavi et al. 2004

Best fitted model



But remember: clustering depends on properties of galaxies.

We have different correlation function for different populations, which implies that 
different models will be best fitted for different populations. This can constrain 
which physical processes are dominant for the different populations. 

How can correlation function measurements provide insights about 
physical processes involved in the formation and evolution of galaxies?

Example: HOD modeling provide a clear explanation for the 
increased clustering observed for faint red galaxies. 



How can correlation function measurements provide insights about 
physical processes involved in the formation and evolution of galaxies?

Example: HOD modeling provide a clear explanation 
for the increased clustering observed for faint red 
galaxies. 

HOD fitting for this correlation function, suggest that red 
faint galaxies are satellite galaxies in massive halos. 
The fraction of galaxies that are satellite is much higher 
for red galaxies (60%) than for blue galaxies (25%). 

This also make the slope of red galaxies steeper in the 
correlation function (resulting from the increased 
fraction of satellite galaxies) 

(Zehavi et al. 2011)

The Astrophysical Journal, 736:59 (30pp), 2011 July 20 Zehavi et al.

Figure 16. Projected correlation functions for different luminosity-bin samples, shown separately for red galaxies (left) and blue galaxies (right). For clarity, the
brightest and faintest blue samples have been omitted from the plot, as their correlation functions are noisy.
(A color version of this figure is available in the online journal.)

Figure 17. Luminosity and color dependence of the galaxy correlation function. The plots show the correlation lengths (left) and slopes (right) corresponding to the
real-space correlation function obtained from power-law fits to projected correlation functions using the diagonal errors. These are shown for the blue, red, and full
populations of the luminosity-bin samples. Points are plotted at the luminosity of the bin center, divided by L∗, which is taken to be Mr = −20.5.
(A color version of this figure is available in the online journal.)

relative paucity of blue galaxies compared to red ones within
large halos (see also van den Bosch et al. 2008b; Hansen et al.
2009). In future work, we will model the cross-correlation
results with HOD in detail, and study the implication of these
measurements for the distribution of red and blue galaxies within
dark matter halos.

4.3. Joint Dependence on Color and Luminosity

We now turn to the luminosity dependence of clustering
within the red and blue galaxy populations individually, us-
ing the luminosity-dependent color division of Equation (13).
Figure 16 shows projected correlation functions for the volume-
limited luminosity-bin samples, separately for the red (left
panel) and blue (right panel) galaxies. Figure 17 shows the
correlation length r0 and slope γ of power-law fits to these
samples. Because some of the samples are quite small, mak-
ing jackknife estimates of the covariance matrix noisy, we fit
using the diagonal error bars only, which is enough to capture
the trends visible in the wp(rp) plots. Figure 17 also shows r0
and γ from diagonal fits to the full luminosity-bin samples. The

differences between the different color samples are particularly
distinct for the fainter samples, and they decrease with increas-
ing luminosity.

These plots display the same general trends seen in previous
sections: the large-scale clustering amplitude increases with lu-
minosity for both red and blue populations, and red galaxies
generically have higher clustering amplitude and a steeper cor-
relation function. Within the individual populations, however,
the luminosity trends are remarkably different. The projected
correlation functions of the blue galaxies are all roughly parallel,
with slopes 1.6 ! γ ! 1.8, and the amplitude (or correlation
length) increases steadily with luminosity. For the red galax-
ies, on the other hand, the shape of wp(rp) is radically dif-
ferent for the two faintest samples, −18 < Mr < −17 and
−19 < Mr < −18, with a strong inflection at rp ≈ 3 h−1 Mpc
indicating a high-amplitude one-halo term. These two samples
have the strongest small-scale clustering, matched only by the
ultraluminous, −23 < Mr < −22 galaxies. The large-scale
clustering (at rp ≈ 5–10 h−1 Mpc) shows no clear luminosity
dependence until the sharp jump at the −23 < Mr < −22

18

The best fitting power-law model for the correlation 
function of red and blue galaxies.

Bright Faint Bright
Faint

Other Example: Determining the number of galaxies in a halo of a given mass allow us to estimate 
merger rates in a halo, which could be one trigger mechanism for high star formation rate in galaxies. 

HOD model facilites the interpretation of the observed CF and provides 
constraints on models of gal formation and evolution within halos.



Using clustering to identify and characterize 
the most prominent peaks of the dark matter 
density field in the early universe



As clusters of galaxies are the most prominent overdensities at z=0, they must 
have formed in the highest peaks in the early Universe. These regions can be 
identified as protoclusters of galaxies in the early universe.

Clusters of galaxiesProtoclusters

How can we identify the most prominent peaks of the 
dark matter density field in the early universe?



Identification of protoclusters in surveys is hard, because the contrast density is still small at high-z, and we 
need large and deep surveys to detect concentrations of galaxies over sky. Additionally we would need redshift 
information to check if galaxies are in the same gravitationally bound structure. 

An alternative: We can use tracers of matter overdensities: Objects executed to be located on massive halos in 
the early universe. 

From clustering measurements, we know that the most massive galaxies at high-z should be located in the 
most massive dark matter halos, then we can use massive galaxies as tracers of protoclusters in the early 
universe. 

Why we want to do that? To test the standard picture of structure formation. Specifically, to figure out if massive 
galaxies are situated in massive dark matter halos in the early Universe as the theoretical predictions suggest. 
Also because we can use protoclsuters as laboratories for the study of galaxy properties in the early universe.

How can we identify protoclusters?



Mhalo > (4 - 6) x 1012 M⊙/h

24.3 ± 2.4 
Shen et al. 2007

Extremely strong quasar clustering at z > 3.5

Quasars should trace massive dark 
matter halos in the early Universe

Based on clustering measurements

If this is true, we expect a large concentration of galaxies around quasars



Why do we use quasars and not other massive galaxies?
Outline

1. The Zoo of AGNs: Multiwavelength 
AGN selection

2. The big picture: Halo masses and 
evolution of different classes of AGN

3. A mystery: Clustering of obscured 
and unobscured quasars

Other candidates: SMGs, although their clustering is still not precisely 
constrained over cosmic time, and then we don’t really know if they are really 
that massive.

Other candidates: Radio galaxies at z~2 (They are strongly clustered and 
have been actually successfully used as tracers of overdensities).

If we want to explore highest redshift, quasars are ideal because this is the 
most clustered population in the universe at z~4 (that is already an evidence 
that they trace massive structures).

Conveniently they are also very luminous then “easy” to find.



2. By directly detecting overdensities of galaxies around quasars. 

1. By measuring their clustering

Already done for quasars

2.3. Distribution of Quasars in Angle and on the Sky

The footprint of our quasar clustering subsample is quite com-
plicated. The definition of the sample’s exact boundaries, needed
for the correlation function analysis which follows, is described
in detail in Appendix B. Figure 1 shows the area of sky from
which the samplewas selected in green, and the sample of quasars
is indicated as dots, with red dots indicating objects in bad im-
aging fields. The total area subtended by the sample is 4041 deg2;
when bad fields are excluded, the solid angle drops to 3506 deg2.

The target selection algorithm for quasars is not perfect and
the selection function depends on redshift. Our sample is limited
to z ! 2:9; at slightly lower redshift, the broadband colors of
quasars are essentially identical to those of F stars (Fan 1999),
giving a dramatic drop in the quasar selection function. More-
over, as discussed in Richards et al. (2006), quasars with redshift
z " 3:5 have similar colors to G/K stars in the griz diagram and
hence targeting becomes less efficient around this redshift (as
mentioned above, this problem was even worse for the version
of target selection used in the EDR and DR1). This is reflected in
the redshift distribution of our sample (Fig. 2), which shows a dip
at z " 3:5. We will use these distributions in computing the cor-
relation function below.

3. CORRELATION FUNCTION

Now that we understand the angular and radial selection func-
tion of our sample, we are ready to compute the two-point cor-
relation function. Doing so requires producing a random catalog
of points (i.e., without any clustering signal) with the same
spatial selection function. We will first compute the correlation
function in ‘‘redshift space’’ in x 3.1, then derive the real-space
correlation function in x 3.2 by projecting over redshift-space
distortions. Our calculations will be done both including and ex-
cluding the bad fields (x 2.2); we will find that our results are
robust to this detail.

3.1. ‘‘Redshift Space’’ Correlation Function

We draw random quasar catalogs according to the detailed
angular and radial selection functions discussed in the last sec-
tion. We start by computing the correlation function in ‘‘redshift
space,’’ where each object is placed at the comoving distance

implied by its measured redshift and our assumed cosmology,
with no correction for peculiar velocities or redshift errors.14 The
correlation function is measured using the estimator of Landy &
Szalay (1993):15

!s(s)¼
hDDi$ 2hDRiþ hRRi

hRRi ; ð1Þ

where hDDi, hDRi, and hRRi are the normalized numbers of data-
data, data-random, and random-random pairs in each separation
bin, respectively. The results are shown in Figure 3, where we bin

Fig. 1.—Aitoff projection in equatorial coordinates of the angular coverage of our clustering subsample (with all fields). The center of the plot is the direction R.A. =
120( and decl. = 0(. The dots indicate quasars in our clustering subsample, with red dots indicating those in bad imaging fields. The angular coverage is patchy due to the
various selection criteria described in x 2.2 and Appendix B. For example, much of the southern equatorial stripe (" ¼ 0, 300( < # < 60() was targeted using the old
version of the quasar targeting algorithm.

Fig. 2.—Observed redshift distribution of our quasar clustering subsamples,
normalized by the peak value. This distribution is the product of the evolution of
the quasar density distribution and the quasar selection function; the latter is
responsible for the dip at z " 3:5, where quasars have very similar colors to those
of G and K stars. We show the redshift distributions for the subsamples both
including and excluding bad fields; the results are essentially identical. The
redshift binning is !z ¼ 0:05.

14 All calculations in this paper are done in comoving coordinates, which is
appropriate for comparing clustering results at different epochs on linear scales.
On very small, virialized scales, Hennawi et al. (2006a) argue that proper co-
ordinates are more appropriate for clustering analyses.

15 We found that the Hamilton (1993) estimator gives similar results.

QUASAR CORRELATION FUNCTION AT z ! 2.9 2225No. 5, 2007

The projected correlation functionwp is related to the real-space
correlation function !(r) through

wp(rp) ¼ 2

Z 1

rp

r!(r)

(r 2 " r 2p )
1=2

dr ð4Þ

(e.g., Davis & Peebles 1983). If !(r) follows the power-law form
!(r) ¼ (r/r0)

"" , then

wp(rp)

rp
¼ !(1=2)!½(" " 1)=2&

!("=2)

r0
rp

! ""
: ð5Þ

We show our results for wp(rp) in Figure 5, where the errors
are estimated using the jackknife method. Tabulated values for

wp are listed in Table 3 for the all-fields case. We only use data
points where the mean number of quasar-quasar pairs in the
rp-bin is more than 10, and we therefore restrict our fits to scales
4 h"1 MpcP rpP 150 h"1 Mpc. The parameters of the best-fit
power-law for the all-fields case is r0 ¼ 16:1 ' 1:7 h"1 Mpc
and " ¼ 2:33 ' 0:32 when the negative data point at rp ¼
18:84 h"1 Mpc is excluded. When this negative data point is
included in the fit we get r0 ¼ 13:6 ' 1:8 h"1 Mpc and an un-
usually large " ¼ 3:52 ' 0:87, which is caused by the drag of the
negative point on the fit.16 Using good fields only yields r0 ¼
15:2 ' 2:7 h"1 Mpc and " ¼ 2:05 ' 0:28, shown in the right

Fig. 5.—Projected correlation function wp(rp) for the z ( 2:9 quasars. Errors are estimated using the jackknife method. Also plotted are the best-fit power-law
functions, with fitted parameters listed in Table 4. Left: All fields. Right: Good fields only. The two cases give similar results.

TABLE 3

Projected Correlation Function wp(rp)

rp
(h"1 Mpc) DDmean RRmean DRmean wp /rp wp /rp Error

1.189................................. 0.0 114.3 19.8 . . . . . .
1.679................................. 0.9 258.3 39.6 154 162

2.371................................. 4.5 478.5 91.8 236 195

3.350................................. 9.9 913.2 160.8 78.1 51.5

4.732................................. 20.7 1864.1 359.9 91.3 41.6

6.683................................. 32.4 3786.5 684.3 15.7 7.81

9.441................................. 62.9 7158.5 1314.0 10.6 4.45

13.34................................. 130.0 14551.2 2659.1 3.06 2.85

18.84................................. 227.3 28598.1 5162.4 "0.681 0.913

26.61................................. 488.5 56940.7 10123.8 0.516 0.810

37.58................................. 871.7 111284.0 19955.6 0.437 0.395

53.09................................. 1762.2 218346.8 38910.9 0.0675 0.259

74.99................................. 3394.4 422580.9 75630.1 0.0484 0.145

105.9................................. 6751.7 811406.0 145785.5 0.0674 0.0592

149.6................................. 12425.7 1535320.8 274851.9 0.0228 0.0292

211.3................................. 22655.1 2849970.6 509877.9 "0.0183 0.00992

Notes.—Results for all fields. DDmean, DRmean, and RRmean are the mean numbers of quasar-quasar, random-
random, and quasar-random pairs within each rp bin for the 10 jackknife samples; wp(rp)/rp is the mean value
calculated from the jackknife samples.

16 For the good-fields case the projected correlation function is positive over
the full range that we fit.

SHEN ET AL.2228 Vol. 133

Quasar field Blank field

Massive galaxy survey

𝛿 = 𝜌qso/𝜌blank

How to test if quasars trace protoclusters?

We expect a large concentration of 
galaxies around quasars at z~4



Detection of galaxy overdensities around 
z ≳ 4 quasars: contradictory results

No overdensities
52 %

Overdensities
48 %

~30 quasar fields studied so far:

Why are these results inconclusive?

• Only individual quasar fields studied, 
then large cosmic variance effects and 
small statistics for each one.

Adams+05, Stiavelli+05, Zheng+06, 
Kashikawa+07, , Kim+09, Utsumi+10, 
Capak+11, Swinbank+12, Morselli+14, 
Balmaverde+17, Ota+18

Willott+05, Kim+09, 
Bañados+13, Husband+13, 
Simpson+14, Mazzucchelli+17, 
Kikuta+17, Goto+17, Ota+18.



Quasar

How can clustering solve this problem: the 
quasar-galaxy cross-correlation function

Expectation: Galaxies should be 
accumulated around quasar implying a large 
quasar-galaxy cross-correlation function.

Example of one quasar field imaged with VLT/FORS2



Garcia-Vergara et al. 2019

A positive Quasar-galaxy cross-correlation 
function, consistent with a power-law 
shape indicative of a concentration of LAEs 
centered on quasars.

r0 = 3.08 ± 1.2 Mpc/h 
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hQGi = nG

Z Zmax

Zmin

Z Rmax

Rmin

C(Z)[1+⇠QG(R,Z)]2⇡RdRdZ

(8)
where we do not write explicitly the nG dependency to

simplify the notation and we assumed that nG(z,< mlim)
is constant in the considered redshift range. We define
an e↵ective volume as,

Ve↵ =

Z Zmax

Zmin

Z Rmax

Rmin

C(Z)2⇡RdRdZ

=⇡(R2
max �R

2
min)

Z Zmax

Zmin

C(Z)dZ (9)

Using this notation, the equation (8) can be written as

hQGi =

nGVe↵

 
1 +

R Zmax

Zmin

R Rmax

Rmin
C(Z)⇠QG(R,Z)2⇡RdRdZ

Ve↵

!

(10)

For the Ve↵ calculation, we have truncated our com-
pleteness function at values in which the completeness is
insignificant in order to avoid and increment the noise in
our estimation. We choose zmin = 3.58 and zmax = 3.96
corresponding to a velocity range of �v ⇠ 23, 800 km s�1

and �Z ⇠ 211 cMpc. Choosing di↵erent Rmin and
Rmax values allows to compute the cross-correlation in
di↵erent radial bins, and the maximum Rmax value will
be limited by the images size.

The computation of the expected number of LBG
in QSO environments, hQGi, require the knowledge
of the mean number density of LBGs nG(z,< mlim)
which can be calculated from the luminosity function.
We use the Schechter parameters from ? who studied
the photometric properties based on a large sample
of ⇠ 2200 LBGs at z ⇠ 4. The values used are
�
⇤ = 2.8 ⇥ 10�3 h370 Mpc�3, M⇤

1700 = �20.6 mag and
↵ = �1.6. We integrate the luminosity function in the
limits given by our LBG selection, corresponding to an
apparent magnitude range of 23.82 < mrGUNN < 25.70
and we obtain nG = 2.73⇥ 10�3 h3 cMpc�3.

Finally, we assume that the LBG-QSO cross-
correlation function obeys a power law form,

⇠QG(R,Z) =

 p
R2 + Z2

r
QG
0

!��

(11)

The cross-correlation length r
QG
0 can be estimated

using the individual auto-correlation lengths of both
QSO and LBGs (e.g. ?). If we assume that both
LBGs and QSOs trace the same underlying dark
matter, and a linear bias such that �G = bG�DM and
�Q = bQ�DM we can write the cross-correlation function

as ⇠QG(r) =
p

⇠G(r)⇠Q(r) and therefore r
QG
0 =

q
r
G
0 r

Q
0 .

This supposition breaks down at large scales, but works

properly at the scales involved in this study. We use
the auto-correlation lengths values r

G
0 = 4.1 h�1 cMpc

for LBGs at z ⇠ 4 (?) and r
Q
0 = 22.3 h�1 cMpc for

QSOs at z ⇠ 4. This last value was calculated using
the correlation measurements from (?) for QSO in the
redshift range z > 3.5 with a fix � = 1.8. The resulting
expected r

QG
0 value is then r

QG
0 = 9.6 h�1 cMpc for a

fixed � = 1.8 value.

In the particular case in which LBG are randomly dis-
tributed around QSOs, ⇠QG(r) = 0, and the QSO-LBG
number pairs at R distance from a QSO, in a volume Ve↵
is given by,

hQRi = nGVe↵ (12)

We calculate the expected number of LBGs randomly
distributed on a field of v 60 ⇥ 60 (the approximated size
of our reduced images) to have a first order of magnitude
for our cross-correlation measurement, and we obtain
hQRi = 15.6 which is much lower than the number of
LBGs per field showed in figure 3.

In order to estimate the theoretical expectation of the
QSO-LBG angular cross-correlation function we com-
pute hQGi and hQRi in logarithmic spaced radial bins
and we use the estimator:

�i =
hQGii
hQRii

� 1 (13)

� =
hQGi
hQRi � 1 (14)

where hQGii and hQRii are the number of QSO-LBG
and QSO-random pairs in the ith radial bin, given by
equations (10) and (13) respectively. Note that if we
replace equation (10) and (13) in (14), we can write � as

� =

R Zmax

Zmin

R Rmax

Rmin
C(Z)⇠QG(R,Z)2⇡RdRdZ

Ve↵
(15)

Thereby here we are computing a dimensionless esti-
mator � which correspond to a volume averaged correla-
tion function, integrated in both redshift and radial bin
space. The integral over the radial bin is suitable since
the cross-correlation value may variate over the bin size.
The theoretical expectation of � for our six stacked fields
is shown as a dashed line in Fig. 9 together with the ob-
servational results, as is explained in the next section.

4.2. QSO-LBG Angular Cross-Correlation Function at

z ⇠ 4

We calculate the observational � value using equation
14, where hQGii is the QSO-LBG pairs in the ith radial
bin which is directly measured on our images. The esti-
mation of hQRi require the creation of a catalog with ran-
domly distributed LBGs with the same numerical den-
sity of sources for each field, and using exactly the same
geometry and selection function of our images. To deter-
mine how many random sources we should create, we cal-
culate the number of LBG expected over our image area
using equation (13). We choose an arbitrary re-scaling

Galaxies are strongly clustered 
around quasars at z~4

Projected galaxy-quasar cross-
correlation function based imaging 
of 17 quasar fields at z~4



Comparison with the expectation 
from a linear bias model 

Detections of slightly less galaxies than the expected

2.1 less galaxies
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A possible reason to explain this 
discrepancy:

• Presence of excess dust in the 
quasar environment. 



Observations of 17 QSO fields at z~4 
using ALMA to detect dusty galaxies

Image of one QSO field: CO(4-3) emission

QSO

CO emitter

Clustering also provide insights about physical 
processes associated with different populations
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Projected galaxy-quasar cross-
correlation function based imaging of 17 
quasar fields at z~4, for dusty galaxies



Clustering also provide insights about physical 
processes associated with different populations

QSOs trace massive structures in the early universe (based on the QSO auto-correlation function 
and on the galaxy-quasar cross-correlation function: two independent methods).

Clustering techniques overcome complications that lead to small statistics results. 

Overdensities of dusty galaxies around them are significantly higher than what we find for optical 
galaxies. This may indicate:

• Since dusty galaxies are more strongly concentrated around quasars, they may be more 
massive than optically detected galaxies. 

• Presence of excess dust in galaxies near QSOs.



Some interesting questions

What is large-scale structure?

How the matter is distributed in the universe?

Have some regions in the universe more matter than other regions?

Does the matter distribution evolve over time?

How can we “measure” and quantify the distribution of matter over a volume?

Why is it important to quantify? 

What information can we get from studying the matter distribution?

Can we really learn about galaxy evolution with this?

From Lecture 1



Universe is expanding and Density fluctuations evolve into 
structures we observe: galaxies, clusters, super-clusters.

Large-scale structure in the universe

CMB

Inflation
Dark matter 
distribution



δ > δc

Dark matter distribution

Large-scale structure in the universe



Measuring the large-scale structure

The two-point correlation function ξ(r) is defined as a measure of the excess 
probability dP, over a random occurrence of finding a galaxy in a volume 
element dV at a separation r from another galaxy. where n is the mean number density 

of the galaxy sample in question. 

dP = n[1 + ξ(r)]dV

Observations indicate that ξ(r) is 
well described by a power-law: ξ(r) = ( r

r0 )
−γ

correlation length
slope (typically 1.8)

r0
γ

log ξ(r)

log r

r0 = x
r0 = 2x

γ = 2a

γ = a

Strong clustering at small scales and 
weak clustering at large scales.

Effect of the correlation length: Effect of the slope:

log r

log ξ(r)



z

zz

If you have 
2D positions   

Angular correlation 
function ω(θ)

Assumptions about 
the z distribution

Fit the measurement 
to get A and β

Get r0, γ

(Integrated over all the redshift space)

If you have 
3D positions   

Projected correlation 
function ω(R)

Fit the measurement to 
get 

(Integrated over a narrow redshift space)

r0, γ

z

Measuring the large-scale structure



(Adapted from Hickox et al. 2012)

Clustering dependence on 
galaxy properties

8 Ryan C. Hickox et al.

faint sources corresponding to far fainter far-IR luminosities, char-
acteristic of typical z ∼ 2 star-forming galaxies rather than the
powerful, luminous starbursts that are conventionally referred to as
SMGs in the literature.

4.3 Progenitors and descendants of SMGs

Our improved clustering measurement allows us to place SMGs
in the context of the cosmological history of star formation and
growth of DM structures. Because the clustering amplitude of dark
matter haloes and their evolution with redshift are directly predicted
by simulations and analytic theory, we can use the observed clus-
tering to connect the SMG populations to their descendants and
progenitors, estimate lifetimes, and constrain starburst triggering
mechanisms.

We first compare the clustering amplitude of SMGs with other
galaxy populations over a range of redshifts1. Figure 6b shows the
approximate ranges of measurements of r0 for a variety of galaxy
and AGN populations. We also show the evolution of r0 with red-
shift for DM haloes of different masses, determined by fitting a
power law with γ = 1.8 to the DM correlation function output by
HALOFIT. Finally, we show the observed r0 for the current SMG
sample, along with the expected evolution in r0 for haloes that
have the observed Mhalo for SMGs at z = 2, calculated using
the median growth rate of haloes as a function of Mhalo and z
(Fakhouri, Ma & Boylan-Kolchin 2010)2.

Figure 6b shows that while the DM halo mass for the SMGs
will increase with time from z ∼ 2 to z = 0, the observed r0
stays essentially constant, meaning that the progenitors and descen-
dants of SMGs will be populations with similar clustering ampli-
tudes. Our measurement of r0 shows that the clustering of SMGs
is consistent with optically-selected QSOs (e.g., Croom et al.
2005; Myers et al. 2006; da Ângela et al. 2008; Ross et al. 2009).
SMGs are more strongly clustered than the typical star-forming
galaxy populations at all redshifts (e.g. Adelberger et al. 2005;
Gilli et al. 2007; Hickox et al. 2009; Zehavi et al. 2011), and are
clustered similarly or weaker than massive, passive systems (e.g.,
Quadri et al. 2007, 2008; Wake et al. 2008b; Blanc et al. 2008;
Kim et al. 2011; Zehavi et al. 2011). The clustering results indicate
that SMGs will likely evolve into the most massive, luminous early
type galaxies at low redshift. We note that the descendants of typi-
cal SMGs are not likely to reside in massive clusters at z = 0, but
into moderate- to high-mass groups of ∼ a few ×1013 h−1 M#.
Although some SMGs could evolve into massive cluster galaxies,
the observed clustering suggests that most will end up in less mas-
sive systems.

A schematic picture of the evolution of SMGs is
shown in Figure 7, which shows evolution in the mass of
haloes with redshift as traced by their median growth rate
(Fakhouri, Ma & Boylan-Kolchin 2010). The typical progenitors
of SMGs would have Mhalo ∼ 1012 h−1 M# at z ∼ 5, which cor-
responds to the host haloes of bright LBGs at those redshifts (e.g.,
Hamana et al. 2004; Lee et al. 2006). At low redshift, the SMG
descendants will have Mhalo = (0.6–5) × 1013 h−1 M#. Halo
occupation distribution fits to galaxy clustering suggest that these
haloes host galaxies with luminosities L ∼ 2–3L∗ (Zehavi et al.

1 Myers et al. (2006) and Ross et al. (2009) determine r0 from QSOs as-
suming a power law correlation function with γ = 2. To estimate r0 for
γ = 1.8, we multiply the quoted values by 0.8, appropriate for fits over the
range 1 ! R ! 100 h−1 Mpc.
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red galaxies

blue galaxies

~2-3 L*
ellipticals

QSOs
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clusters

Figure 6. (a) Our new measurement of the autocorrelation length r0 for
SMGs, compared to previous results using samples with similar ∼850 µm
flux limits. The two sets of error bars on the Webb et al. (2003) measure-
ment indicate statistical (±3 h−1 Mpc) and systematic (±3 h−1 Mpc) un-
certainties separately. On the Blain et al. (2004) measurement, the smaller
errors represent the uncertainties quoted by the authors, while the larger
errors account for angular clustering and redshift spikes as estimated by
Adelberger (2005). Our results are consistent with previous measurements
and represent a significant improvement in precision. (b) Our measure-
ment of the autocorrelation length r0 of SMGs, compared to the approxi-
mate r0 (with associated measurement uncertainties) for a variety of galaxy
and AGN populations: optically-selected SDSS QSOs at 0 < z < 3
(Myers et al. 2006; Ross et al. 2009), Lyman-break galaxies (LBGs) at
1.5 ! z ! 3.5 (Adelberger et al. 2005), MIPS 24 µm-selected star-forming
galaxies at 0 < z < 1.4 (Gilli et al. 2007), typical red and blue galax-
ies at 0.25 ! z ! 1 from the AGES (Hickox et al. 2009) and DEEP2
(Coil et al. 2008) spectroscopic surveys, luminous red galaxies (LRGs) at
0 < z < 0.7 (Wake et al. 2008b), and optically-selected galaxy clusters at
0.1 < z < 0.3 (Estrada, Sefusatti & Frieman 2009). In addition, we show
the full range of r0 for low-redshift galaxies with r-band luminosities in the
range 1.5 to 3.5 L∗, derived from the luminosity dependence of clustering
presented by Zehavi et al. (2011); these luminous galaxies are primarily el-
lipticals, as discussed in § 4.3. Dotted lines show r0 versus redshift for DM
haloes of different masses. The thick solid line shows the expected evolu-
tion in r0, accounting for the increase in mass of the halo, for a halo with
mass corresponding to the best-fit estimate for SMGs at z = 2. The results
indicate that SMGs are clustered similarly to QSOs at z ∼ 2 and can be
expected to evolve into luminous elliptical galaxies in the local Universe.

c© 2011 RAS, MNRAS 000, 1–13
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8. Cosmology III: The Cosmological Parameters

Fig. 8.3. The sketch represents a particular model of biasing.
Let the one-dimensional density profile of matter be speci-
fied by the solid curve, which results from a superposition of
a large-scale (represented by the dashed curve) and a small-
scale fluctuation. Assuming that galaxies can form only at
locations where the density field exceeds a certain threshold –

plotted as a straight line – the galaxies in this density profile
will be localized at the positions indicated by the arrows. Ob-
viously, the locations of the galaxies are highly correlated;
they only form near the peaks of the large-scale fluctuation. In
this picture, the correlation of galaxies on small scales is much
stronger than the correlation of the underlying density field

Shape of the Power Spectrum. If one assumes that
b does not depend on the length-scale considered, the
shape of the dark matter power spectrum can be deter-
mined from the power spectrum Pg(k) of the galaxies,
whereas its amplitude depends on b. As we have seen in
Sect. 7.4.2, the shape of P(k) is described by the shape
parameter Γ = h Ωm in the framework of CDM models.

The comparison of the shape of the power spectrum
of galaxies with that of CDM models yields Γ ∼ 0.25
(see Fig. 8.4). Since Γ = hΩm, this result indicates
a Universe of low density (unless h is unreasonably
low).

In the 2dFGRS, the power spectrum of galaxies
was measured with a much higher accuracy than had
previously been possible. Since a constant b can be
expected, at best, in the linear domain, i.e., on scales
above ∼ 10h−1 Mpc, only such linear scales are used
in the comparison with the power spectra from CDM
models. As the density parameter Ωm seems to be rela-
tively small, the baryonic density plays a noticeable role
in the transfer function (see Eq. 7.25) which depends
on Ωb as well as on Γ . The measurement accuracy of
the galaxy distribution in the 2dFGRS is high enough
to be sensitive to this dependence. In Fig. 8.5, the mea-
sured power spectrum of galaxies from the 2dFGRS
is shown, together with predictions from CDM mod-
els for different shape parameters Γ . Two families of
model curves are drawn: one where the baryon density

is set to zero, and the other for the value of Ωb which
results from the analysis of primordial nucleosynthesis
(see Sect. 4.4.4).

Considering models in which Ωb is a free parameter,
there are two domains in parameter space for which
good fits of the power spectrum of the galaxy distribu-
tion are obtained (see Fig. 8.5). One of the two domains
is characterized by a very high baryon fraction of the
matter density, and by a very large value for Ωmh. These
parameter values are incompatible with virtually every
other determination of cosmological parameters. On the
other hand, a good fit to the shape of the power spectrum
is obtained by

Γ = Ωmh = 0.18±0.02 , Ωb/Ωm = 0.17±0.06 .

(8.5)

As is seen in Fig. 8.5, and as we will show further be-
low, these values for the parameters are in very good
agreement with those obtained from other cosmological
observations.

Comparing the power spectra of two different types
of galaxies, we should observe that they are propor-
tional to each other and to the power spectrum of dark
matter. Their amplitudes, however, may differ if their
bias factors are different. The comparison of red and
blue galaxies in the 2dFGRS shows that these indeed
have a very similar shape, supporting the assumption of
a linear biasing on large scales. However, the bias factor
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Dark matter halo and galaxies are biased tracers of dark matter

The most massive dark matter halos are expected to trace worst the dark matter density distribution 
(because they only form where large scale fluctuations are high) and be the most biased. Less 
massive halos will trace better the dark matter distribution, and they are less biased.

Threshold at which a 
massive DM halo can 

be formed

Threshold at which a 
less massive DM halo 

can be formed



Relation between correlation length, bias 
and dark matter halo mass

At a fixed time (redshift)

bi
as

Halo mass
Low High

Low

High

r 0

Halo mass
Low High

Low

High

ξ(r) = ( r
r0 )

−γ

bg = ξg/ξDM

r 0

biasLow High

Low

High



Why is it useful to learn about the dark matter halos in which galaxies live?

It provides us a powerful tool for tracing the same population of galaxies 
through cosmic time.

Halo Mass

Cosmic Time

Theory gives us 
the average growth 

rate of halos

same galaxy, but 
later in cosmic 

time

same galaxy, but 
earlier in cosmic time

We really can learn about galaxy evolution using 
clustering measurements

It provides us a powerful tool for tracing the same population of galaxies through cosmic time.

(Taken from R. Bouwens’ Lectures)



1 halo 

2 halo Best fitted model

We really can learn about physical processes 
in galaxies using clustering measurements

HOD model facilites the interpretation of the observed CF and provides 
constraints on models of gal formation and evolution within halos.

~ 1 - 2 Mpc/h

The combination of the 1-halo and 2-
halo terms result in a power law-shape 
for the galaxy correlation function.



We really can learn about properties of galaxies in 
different environments using clustering measurements
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• Presence of excess dust in galaxies 
in QSOs environments?


