


Previous class: Structure formation and evolution

Inflation

100 thousand

The Big Bang

Yo
™

7/

ats 3

!

S

' |

Fully ionised

1
J

Uoneudigu

0.1 billion

|

CMB

Years after the Big Bang

1 billion

- L

> Fully ionised

.

10
Redshift + 1

A v

e W
N

4 billion

8 billion

13.8 billion

Aep juasaid

e — - LA

Universe is expanding and Density fluctuations evolve into

structures we observe: galaxies, clusters, super-clusters.



Overdensities will not growth their radius infinitely, they growth linearly, but because as their mass is also growing,
at some point (density threshold) this will re-collapse to form a dark matter halo (spherical collapse model).

-

Final result: A dark matter

. . _ halo in equilibrium.
If the density contrast 6 is greater than a certain threshold over

a certain volume, then the overdensity will start to collapse (local
gravity strongly dominate over the universe expansion)

Dark matter halos are collapsed overdensities in the dark matter distribution with density

~200 times the men density in the universe, inside of which all mass is gravitationally bound.




2 Galaxies form in the center of the larger dark matter halos.

2 To understand how galaxies form we need to understand galaxy formation models (not covered in this course).

- -

2 Almost all the dark matter halos, contain a galaxy in their center (central galaxy).
2 Dark matter halos can also contain more than one galaxy (satellite galaxies).

2 The most massive dark matter halos can contain a lot of satellite galaxies (for example cluster of galaxies).



Previous class: Structure formation and evolution

Why is important to trace and quantify the LSS?

Visually we can see and detect structure, but we need a mathematical formalism to
quantify the density fluctuations and the level in which the matter is grouped.

Details of LSS depends on:

2 Initial conditions (characteristics of the initial density field): CMB
> (Cosmological parameters (matter density at each epoch, dark energy, etc).

> Formation and evolution of structure.

2 Physical processes involved in the growth and evolution of individual galaxies.

Measurements of the large scale structure in
combination of theoretical models allow us to constrain
both cosmology and physics of galaxy evolution.

Statistical characterization of the LSS are needed to test models of structure formation
and evolution, and models are needed to interpret LSS observations.
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Clustering basics

Clustering quantify how grouped the objects are: the more

grouped objects are, the stronger the clustering is.
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The mathematical formalism to describe the level of
clustering is the two-point correlation function



Two-point correlation function

The two-point correlation function £(r) is defined as a measure of the excess dP = n[l + &(r)]dV
probability dP, over a random occurrence of finding a galaxy in a volume

element dV at a separation r from another galaxy.
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orobability to find a galaxy in one
nlace or another, is independent.
Thelir positions are not correlated.
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In a strongly clustered population,
if you find a galaxy it is highly
probable that you find another
galaxy close to it.

dP = n|l + &(r)]dV

where n is the mean number density
of the galaxy sample in question.

2 The two-point correlation function
traces the amplitude of clustering as
a function of physical scale
clustering depends on scale!



Two-point correlation function

well described by a power-law: 7o

Observations indicate that &(r) is o) = (L)W

Effect of the correlation length:

log &(r)

logr

Higher clustering implies a higher &(r)
and therefore a higher ro

log &(r)

Fo correlation length
Y slope (typically 1.8)

Effect of the slope:
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How is &(r) measured?

Estimators:
One counts pairs of galaxies as a function of separation and divides by what is
- ng DD | expected for an unclustered distribution (random distribution of points). The
1} RR R construction of a so-called “random catalog” is then required.

Natural estimator

DD (data-data): number of

. SR Requirements for the random catalog:
pairs of galaxies in bins of

separation. 2 Sources need to be randomly distributed over the sky.

2 Same selection function as the data (in 3D).
RR (random-random): number > Large enough such that it don’t introduce poisson errors in the estimation
of pairs of random points in (RR and DD scale with the square of number of pairs).

bins of separation.

Ng and ngr are the number
density of galaxies and
random points in the catalogs.



How is &(r) measured?

Estimators:

In the practice:
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How is &(r) measured?

Estimators:

_n,%DD i
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How is &(r) measured?

Estimators:

_n,%DD i
~ n} RR

Natural estimator
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How is &(r) measured?

Estimators:
f = n,% DD i
~ n} RR
Natural estimator
f _ nNgr DD B 1’
np DR

Davis & Peebles (1983)

_ DDRR

~ (DRy?
Hamilton (1993)
£ = —

2
_ pD (2E) _opr (22
RR np np

Landy & Szalay (1993)

1

)+ RR

One counts pairs of galaxies as a function of separation and divides by what is
expected for an unclustered distribution (random distribution of points). The
construction of a so-called “random catalog” is then required.

DD (data-data): number of pairs of galaxies in bins of separation.
RR (random-random): number of pairs of random points in bins of separation.
N4 and nr are the number density of galaxies and random points in the catalogs.

—» This is normally the preferred choice



2 The exact distance r between objects is never possible to measure
accurately (even if we have z information).

2 Depending on the data that we have, we will be able to measure the:

Projected correlation function: if 3D information is available.

Projected angular correlation function: if only 2D information is available.




2 We have RA and Dec for all the sources, but not z information.

2 We can only measure 0 (angular distance), and then we only
can measure the angular correlation function w(6):

dP = n[l + w(6)]dC2

2 The angular correlation function is normally well represented by

a power law:
w(0) = AGP

with A the clustering amplitude and 3 the slope

We see all the galaxies in the same
plane, we see the information
collapsed over the line-of-sight

l



2 If we know the redshift distribution of the sources, then we can
infer &(r) from w(0).

2 The relation between &(r) and w(0) can be obtained integrating
&(r) over the line-of-sight (Limber equation):

o0 dn 2
I @@ () dz | N
— > with 8@ = (d_> r'd=1FE(r)

r

A

2
oo  dn
— | d
_IO ( dz ) Z_ This depends on the cosmological model

l

Redshift distribution of the sample (hnumber of objects as a function of redshift)

p=1-y

We see all the galaxies in the same
plane, we see the information
collapsed over the line-of-sight

l



Cookbook:

©=1 10 20 .... 90 100
1) [ArCSEC] Ny Ny —

DD=|63|60 55 ....‘15‘10

2) Repeat for a random catalog and obtain RR.

3) Use an estimator to compute w(0).

4) Fit the measurement with a power law to obtain the parameters A and beta.

5) Assume a redshift distribution and use the Limber equation to obtain ro, y.



Projected angular correlation function

2 Two important things about the angular correlation function:

1) A can be dominated by errors given the lack of knowledge of the
redshift distribution of the sample.

2) We are collapsing the information over large volumes, then the

clustering signal can be diluted (projection effects over the line of sight).

Projection effects: Even if a population is strongly clustered in
3D, when we integrate over a long line-of-sight the signal may be
washed out and the angular correlation function would be weak.

We see all the galaxies in the same
plane, we see the information
collapsed over the line-of-sight

l



One example: Angular two-point
correlation function of galaxies from
the SDSS.
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Note that we usually choose bin
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(Connolly et al. 2002)



2 The exact distance r between objects is never possible to measure
accurately (even if we have z information).

2 Depending on the data that we have, we will be able to measure the:

Projected correlation function: if 3D information is available.

Projected angular correlation function: if only 2D information is available.
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2 We have ra, dec, z for all the sources.

2 z Is the redshift, and can be converted into a comoving
distance in redshift space (Z [Mpc/h]) but:

1) there is a dependence of the used cosmology (z — Z).
2) 1t is affected by peculiar velocities.

Then we can never measure the distance .
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distance between objects expressed in two components:

2 _p2 2
perpendicular (R) and parallel (x) to the line-of-sight rr=RT+w



Redshift space distortions

Observed contours of (R, 7) from the 2dF data
Modeled contours of &(R, z) (with same rO,

gamma) with different added distortions.
undistorted correlation function coherent infall added
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We need to express the 3-dimensional two-
I I point correlation function &(r), as a 2-
random pairwise velocities added combination dimensional two-pomt correlation function 5(R9 77)
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Real 3-d correlation function

/

Projected correlation function: @(R) = J ER, m)dr

7 2 2
R +nr
If we assume a power-law: &(r) = (FL) — (R, ) = \/
0 I"O
T (1) r (g> 3
F 2 2 R We,
Projected correlation function: @(R) =R (EO) . —_— a); ) n, " —> Y
r(5)
2

2 In practice we don’t integrate until infinity but until certain number
(usually ~100 Mpc/h) for which the contribution is significant.



Cookbook:
R=1 10 20 90 100 1y
[Mpc/h] Nyt N — [71-\542 !
DD=63/60|55|.... 15|10 { 1
10
1) 58| 53| 49| .... 12| 7 |1 o5
90
100

2) Repeat for a random catalog and obtain RR.

3) Use an estimator to compute &(R, ) .

S

Only go until certain number for
which the contribution is significant

4) Integrate the values of the grid over the = direction to obtain w(R).

5) Fit the measurement with a power law to obtain the parameters ro, y.
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If you have
2D positions

l

Angular correlation
function @ (6)

(Integrated over all the redshift space)

l

Fit the measurement
to get Aand 3

l

Assumptions about
the z distribution

If you have
3D positions

l

Projected correlation
function w(R)

(Integrated over a narrow redshift space)

l

Fit the measurement to
get 7‘0, }/




Cross-correlation function is when we compute the correlation function between different populations

275 :'""""I"""'"I'"'""'I"'"""I'""'"'I""""'I""""':
: : 2 If we compute the correlation function between
7 6F 3 galaxies with themselves this is an auto-correlation
: : function.
: : 2 If we compute the correlation function between SMGs
217 ] E and galaxies, this is a cross-correlation function.
. : g 2 For the cross-correlation function everything is the
3 278F ES2%: - same, but the DD term is now computed using one
3 : : catalog of one population and the other catalog of the
= : : other population:
-27.9 3 -
- n, DD Npy DD
: A £ = R 1 £ = R2 2172
-28.0F ' np DR npy D1k
: ; Auto-correlation Cross-correlation
-28.1 - O SMGs B galaxies B
-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII-

535 534 533 532 53,1 530 529 528

RA (deg)
Hickox et al. 2012



The clustering signal increases as the square of the number of galaxies in the sample

700,000 local galaxies in SDSS (over ~8000 deg?)
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Poisson errors

Since clustering is based on a pairs counting process, Poisson errors
typically dominate the measurement.

Larger samples provide much better signal of clustering measurement.

Larger surveys —» More sources —» More pairs —> Less uncertainties

In general terms (this also depends on how strong is the intrinsic clustering of the population).




Cosmic variance IPgn® e S SR

Beside Poisson errors, clustering measurements are associated with M AR e
errors associated to cosmic variance effects, due to the fact that we are L) S e G R

observing only one specific region of the universe.
L

These type of errors can be taken into account using statistical methods to ) ,
compute error bars such a the jackknife method or the bootstrap method. 1 Surveyi |

| -, v 5
J |
g il
. .‘t ~

2 The dominant error depends on the sample used to measure clustering. If the
sample is small, Poisson errors will probably dominate the error budget.

2 The jackknife or the bootstrap methods include both Poisson uncertainties
and cosmic variance effects, then they are normally the preferred.

Survey2 .

Eﬂf{j . .
. ._..




Bootstrap: Resampling method to estimate statistics on a population by
sampling a dataset with replacement.

N Galaxies on the sky Randomly select N galaxies from the sample

Distribution of 10,000
‘ w(R) or w(theta) values

oh o | 000000000 mnum: o

‘ Q ‘ ' ‘ ’ @ @ ‘ ‘ @ bootstrap sample 2 —— Compute w(R) or w(theta)
N
’ . ‘ . ‘ ‘ @ @ ‘ ‘ ‘ ‘ bootstrap sample 3 —Compute w(R) or w(theta)

original sample

l bootstrap sample 10,000 — Compute w(R) or w(theta) w(R)

Compute w(R) or w(theta)
Uncertainty in w(R) is O

(Adapted from Paola Galdi+2018)



Dec (deg)

Alternative techniques to reduce the uncertainties when the sample is small:

2 Cross-correlations with a large population.
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2 We want to measure the clustering of SMGs, but we
only have ~50 SMGs here, so Poisson errors will be
huge.

2 Fortunately, we also have a catalog of 10,000 normal
galaxies over the same area of the sky.

2 We measure the cross-correlation between SMGs and
normal galaxies. Poisson errors will be small.

2 | can also measure the auto-correlation of normal
galaxies. Poisson errors will be small.

2 Using the cross-correlation between SMG and normal
galaxies and the auto-correlation of normal galaxies, |
can infer what is the autocorrelation of SMGs.

2 All the measurements have small Poisson errors.



2 If we want to compare clustering between different populations (at the same epoch),
comparing their ro and y should be informative enough. This is useful to understand

differences in the physical processes affecting each different population.

(Lecture 3 and 4)

2 Additionally, ro and y allow us to estimate the halo mass in which galaxies inhabit. In

general terms, a higher clustered population reside in more massive halos. This
provide insights to understand how galaxies populate the cosmic web, how different (Lecture 4)
populations can be related (evolutionary link), and to constraint cosmological models.

"o ¥ ' Mhalo



Take home message

> The mathematical formalism to describe the level of clustering is the —
two-point correlation function &(r) dP = nll + 5(7’ )|dV

> To measure it we counts pairs of galaxies as a function of separation
and divides by what is expected for an unclustered distribution.

2 If we have 3D information (RA, Dec, z) we can measure the Projected
correlation function. If we have 2D information (RA, Dec) we can
measure the Projected angular correlation function.

> Larger samples provide much better signal of clustering measurement.



