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Universe is expanding and Density fluctuations evolve into 
structures we observe: galaxies, clusters, super-clusters.

Previous class: Structure formation and evolution

CMB

Inflation



Overdensities will not growth their radius infinitely, they growth linearly, but because as their mass is also growing, 
at some point (density threshold) this will re-collapse to form a dark matter halo (spherical collapse model). 

If the density contrast 𝜹 is greater than a certain threshold over 
a certain volume, then the overdensity will start to collapse (local 
gravity strongly dominate over the universe expansion)

δ > δc

Final result: A dark matter 
halo in equilibrium.

Dark matter halos are collapsed overdensities in the dark matter distribution with density 
~200 times the men density in the universe, inside of which all mass is gravitationally bound. 

Previous class: Structure formation and evolution



Galaxies form in the center of the larger dark matter halos.


To understand how galaxies form we need to understand galaxy formation models (not covered in this course).

Almost all the dark matter halos, contain a galaxy in their center (central galaxy).


Dark matter halos can also contain more than one galaxy (satellite galaxies).


The most massive dark matter halos can contain a lot of satellite galaxies (for example cluster of galaxies).

Previous class: Structure formation and evolution



Visually we can see and detect structure, but we need a mathematical formalism to 
quantify the density fluctuations and the level in which the matter is grouped.

Why is important to trace and quantify the LSS?

Details of LSS depends on:

Statistical characterization of the LSS are needed to test models of structure formation 
and evolution, and models are  needed to interpret LSS observations.

Cosmological parameters (matter density at each epoch, dark energy, etc).

Initial conditions (characteristics of the initial density field): CMB

Formation and evolution of structure.

Physical processes involved in the growth and evolution of individual galaxies.

Measurements of the large scale structure in 
combination of theoretical models allow us to constrain 
both cosmology and physics of galaxy evolution.

Previous class: Structure formation and evolution



Clustering basics

Clustering quantify how grouped the objects are: the more 
grouped objects are, the stronger the clustering is.

The mathematical formalism to describe the level of 
clustering is the two-point correlation function

Objects randomly distributed 
They are not clustered

Objects are clustered 
to each other at small 
scales

Objects are strongly 
clustered to each 
other at small scales
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Two-point correlation function

The two-point correlation function ξ(r) is defined as a measure of the excess 
probability dP, over a random occurrence of finding a galaxy in a volume 
element dV at a separation r from another galaxy. where n is the mean number density 

of the galaxy sample in question. 

In a strongly clustered population, 
if you find a galaxy it is highly 
probable that you find another 
galaxy close to it. 
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In a random distribution, the 
probability to find a galaxy in one 
place or another, is independent. 
Their positions are not correlated.

dP = ndV
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 The two-point correlation function 
traces the amplitude of clustering as 
a function of physical scale 
(clustering depends on scale!)

dP = n[1 + ξ(r)]dV

dP = n[1 + ξ(r)]dV



Observations indicate that ξ(r) is 
well described by a power-law: ξ(r) = ( r

r0 )
−γ

correlation length
slope (typically 1.8)

r0
γ

log ξ(r)

log r

r0 = x
r0 = 2x

γ = 2a

γ = a

Two-point correlation function

Strong clustering at small scales and 
weak clustering at large scales.

Effect of the correlation length: Effect of the slope:

Higher clustering implies a higher ξ(r) 
and therefore a higher r0

log r

log ξ(r)



One counts pairs of galaxies as a function of separation and divides by what is 
expected for an unclustered distribution (random distribution of points). The 
construction of a so-called “random catalog” is then required.

DD (data-data): number of 
pairs of galaxies in bins of 
separation.
 
RR (random-random): number 
of pairs of random points in 
bins of separation.
 
nd and nR are the number 
density of galaxies and 
random points in the catalogs.

How is ξ(r) measured?

Estimators:

ξ =
n2

R

n2
D

DD
RR

− 1

Natural estimator

Requirements for the random catalog:

Sources need to be randomly distributed over the sky.
Same selection function as the data (in 3D).
Large enough such that it don’t introduce poisson errors in the estimation 
(RR and DD scale with the square of number of pairs).



Estimators:
In the practice:

How is ξ(r) measured?

ξ =
n2

R

n2
D

DD
RR

− 1

Natural estimator
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RR DD 

1   10    20   ….      90  100 

63   60   55   ….  15   10 DD = 

r = { { {[Mpc/h]
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r

Number of galaxies at distance 
between 1 and 10 Mpc/h



Estimators:
In the practice:

How is ξ(r) measured?

ξ =
n2

R

n2
D

DD
RR

− 1

Natural estimator
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Estimators:
In the practice:

How is ξ(r) measured?

ξ =
n2

R

n2
D

DD
RR

− 1

Natural estimator
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One counts pairs of galaxies as a function of separation and divides by what is 
expected for an unclustered distribution (random distribution of points). The 
construction of a so-called “random catalog” is then required.

Estimators:
DD (data-data): number of pairs of galaxies in bins of separation. 
RR (random-random): number of pairs of random points in bins of separation. 
nd and nR are the number density of galaxies and random points in the catalogs.

How is ξ(r) measured?

ξ =
n2

R

n2
D

DD
RR

− 1

Natural estimator

clusters. The most commonly used quantitative measure of large scale structure
is the galaxy two-point correlation function, ξ(r), which traces the amplitude of
galaxy clustering as a function of scale. ξ(r) is defined as a measure of the ex-
cess probability dP , above what is expected for an unclustered random Poisson
distribution, of finding a galaxy in a volume element dV at a separation r from
another galaxy,

dP = n[1 + ξ(r)]dV, (1)

where n is the mean number density of the galaxy sample in question (Peebles,
1980). Measurements of ξ(r) are generally performed in comoving space, with
r having units of h−1 Mpc. The Fourier transform of the two-point correla-
tion function is the power spectrum, which is often used to describe density
fluctuations observed in the cosmic microwave background.

To measure ξ(r), one counts pairs of galaxies as a function of separation
and divides by what is expected for an unclustered distribution. To do this
one must construct a “random catalog” that has the identical three dimensional
coverage as the data – including the same sky coverage and smoothed redshift
distribution – but is populated with randomly-distribution points. The ratio of
pairs of galaxies observed in the data relative to pairs of points in the random
catalog is then used to estimate ξ(r). Several different estimators for ξ(r) have
been proposed and tested. An early estimator that was widely used is from
Davis & Peebles (1983):

ξ =
nR

nD

DD

DR
− 1, (2)

where DD and DR are counts of pairs of galaxies (in bins of separation) in the
data catalog and between the data and random catalogs, and nD and nR are the
mean number densities of galaxies in the data and random catalogs. Hamilton
(1993) later introduced an estimator with smaller statistical errors,

ξ =
DD RR

(DR)2
− 1, (3)

where RR is the count of pairs of galaxies as a function of separation in the
random catalog. The most commonly-used estimator is from Landy & Szalay
(1993),

ξ =
1

RR

[

DD

(

nR

nD

)2

− 2DR

(

nR

nD

)

+RR

]

. (4)

This estimator has been shown to perform as well as the Hamilton estimator
(Eqn. 3), and while it requires more computational time it is less sensitive to the
size of the random catalog and handles edge corrections well, which can affect
clustering measurements on large scales (Kerscher et al., 2000).

As can be seen from the form of the estimators given above, measuring ξ(r)
depends sensitively on having a random catalog which accurately reflects the
various spatial and redshift selection affects in the data. These can include
effects such as edges of slitmasks or fiber plates, overlapping slitmasks or plates,
gaps between chips on the CCD, and changes in spatial sensitivity within the

6

Davis & Peebles (1983) 

ξ =
DD RR
(DR)2

− 1

Hamilton (1993) 

clusters. The most commonly used quantitative measure of large scale structure
is the galaxy two-point correlation function, ξ(r), which traces the amplitude of
galaxy clustering as a function of scale. ξ(r) is defined as a measure of the ex-
cess probability dP , above what is expected for an unclustered random Poisson
distribution, of finding a galaxy in a volume element dV at a separation r from
another galaxy,

dP = n[1 + ξ(r)]dV, (1)

where n is the mean number density of the galaxy sample in question (Peebles,
1980). Measurements of ξ(r) are generally performed in comoving space, with
r having units of h−1 Mpc. The Fourier transform of the two-point correla-
tion function is the power spectrum, which is often used to describe density
fluctuations observed in the cosmic microwave background.

To measure ξ(r), one counts pairs of galaxies as a function of separation
and divides by what is expected for an unclustered distribution. To do this
one must construct a “random catalog” that has the identical three dimensional
coverage as the data – including the same sky coverage and smoothed redshift
distribution – but is populated with randomly-distribution points. The ratio of
pairs of galaxies observed in the data relative to pairs of points in the random
catalog is then used to estimate ξ(r). Several different estimators for ξ(r) have
been proposed and tested. An early estimator that was widely used is from
Davis & Peebles (1983):

ξ =
nR

nD

DD

DR
− 1, (2)

where DD and DR are counts of pairs of galaxies (in bins of separation) in the
data catalog and between the data and random catalogs, and nD and nR are the
mean number densities of galaxies in the data and random catalogs. Hamilton
(1993) later introduced an estimator with smaller statistical errors,

ξ =
DD RR

(DR)2
− 1, (3)

where RR is the count of pairs of galaxies as a function of separation in the
random catalog. The most commonly-used estimator is from Landy & Szalay
(1993),

ξ =
1

RR

[

DD

(

nR

nD

)2

− 2DR

(

nR

nD

)

+RR

]

. (4)

This estimator has been shown to perform as well as the Hamilton estimator
(Eqn. 3), and while it requires more computational time it is less sensitive to the
size of the random catalog and handles edge corrections well, which can affect
clustering measurements on large scales (Kerscher et al., 2000).

As can be seen from the form of the estimators given above, measuring ξ(r)
depends sensitively on having a random catalog which accurately reflects the
various spatial and redshift selection affects in the data. These can include
effects such as edges of slitmasks or fiber plates, overlapping slitmasks or plates,
gaps between chips on the CCD, and changes in spatial sensitivity within the
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Landy & Szalay (1993) 

This is normally the preferred choice



z

How can we do this in the practice?

The exact distance r between objects is never possible to measure 
accurately (even if we have z information).
Depending on the data that we have, we will be able to measure the: 

Projected correlation function: if 3D information is available.

Projected angular correlation function: if only 2D information is available.



zz

dP = n[1 + ω(θ)]dΩ

ω(θ) = Aθβ

Projected angular correlation function

We have RA and Dec for all the sources, but not z information.
We can only measure θ (angular distance), and then we only 
can measure the angular correlation function ω(θ):

The angular correlation function is normally well represented by 
a power law:

with A the clustering amplitude and β the slope

We see all the galaxies in the same 
plane, we see the information 

collapsed over the line-of-sight



A =
∫ ∞

0
rγ
0(z)g(z)( dn

dz )
2

dz

[ ∫ ∞
0 ( dn

dz )
2

dz]
2 g(z) = ( dz

dr ) r(1−γ)F(r)

Projected angular correlation function

The relation between ξ(r) and ω(θ) can be obtained integrating 
ξ(r) over the line-of-sight (Limber equation):

β = 1 − γ

with

This depends on the cosmological model

Redshift distribution of the sample (number of objects as a function of redshift)

zz

We see all the galaxies in the same 
plane, we see the information 

collapsed over the line-of-sight

If we know the redshift distribution of the sources, then we can 
infer ξ(r) from ω(θ).



Projected angular correlation function

Cookbook:

1   10    20   ….      90  100 

63   60   55   ….  15   10 DD = 

θ = { { {[arcsec]1)

2) Repeat for a random catalog and obtain RR.

3) Use an estimator to compute ω(θ).


4) Fit the measurement with a power law to obtain the parameters A and beta.


5) Assume a redshift distribution and use the Limber equation to obtain  r0, 𝜸.



Projected angular correlation function

Two important things about the angular correlation function:
1) A can be dominated by errors given the lack of knowledge of the 

redshift distribution of the sample.
2) We are collapsing the information over large volumes, then the 

clustering signal can be diluted (projection effects over the line of sight).

zz

We see all the galaxies in the same 
plane, we see the information 

collapsed over the line-of-sight
Projection effects: Even if a population is strongly clustered in 
3D, when we integrate over a long line-of-sight the signal may be 
washed out and the angular correlation function would be weak.



Projected angular correlation function

estimated from photographic surveys. In Scranton et al.
(2002) we have performed an extensive search for systematic
errors from not only photometric errors but also stellar con-
tamination, seeing, extinction, sky brightness, bright fore-
ground objects, and optical distortions in the camera itself.
In each case the systematic uncertainties were found to be
small and in some cases could be corrected for.

3. THE ANGULAR CORRELATION FUNCTION ON
SMALL AND LARGE SCALES

3.1. Angular Two-Point Function Estimators

The angular correlation function w(h) is calculated from
the estimator of Landy & Szalay (1993),

wð!Þ ¼ DD$ 2DRþ RR

RR
; ð1Þ

where DD, DR, and RR are pair counts in bins of !& "! of
the data-data, data-random, and random-random points,
respectively. In the limit of weak clustering this statistic is
the two-point realization of a more general representation
of edge-corrected n-point correlation functions (Szapudi &
Szalay 1998) and has been shown to be close to a minimum
variance estimator and to be robust to the number of ran-
dom points (Kerscher, Szapudi, & Szalay 2000).

The correlation function is calculated between 0=001 and
10' with a logarithmic binning of 6 bins per decade in angle.
No integral constraint correction is applied to these results
since the expected magnitude of this effect is less than 0.0001
on all scales and magnitude intervals that are analyzed in
this paper (Scranton et al. 2002). In the subsequent analysis

we impose a lower limit of 700 to reduce artificial correlations
due to the decomposition of large galaxies into multiple
sources. At a redshift of z ¼ 0:18 (the median redshift of our
brightest magnitude shell 18 < r( < 19), this corresponds
to approximately 18 h$1 kpc. Full details of the analysis of
the variance and covariance in the correlation function,
derived from mock catalogs generated using the PTHalos
code (Scoccimarro & Sheth 2002) and from jackknife
resampling, are given in Scranton et al. (2002). These two
approaches give comparable results, and for simplicity, we
present only the mock catalog errors in the figures.

3.2. The Angular Correlation Function

In Figure 1a we present the angular correlation function
as measured from the SDSS photometric data over the mag-
nitude interval 18 < r( < 22. The form of the correlation
function is consistent with that found from existing surveys
such as the APM (Maddox et al. 1990) and EDSGC (Collins
et al. 1992), with a power law on small scales and a break in
the correlation function at approximately 2'.

In Figure 1b we compare the w(h) measurement of the
SDSS with those from the APM and EDSGC galaxy sur-
veys. The solid and dashed lines represent the angular corre-
lation function within the magnitude interval 17 < Bj < 20
for the APM and EDSGC data, respectively, and the filled
circles represent the correlation function measured from the
SDSS over the magnitude range 18 < r( < 19. The SDSS
correlation function has been scaled to that of the APM
using Limber’s equation (Groth & Peebles 1977) and assum-
ing a cosmological model with ! ¼ 0:3, !" ¼ 0:7 and a
double power-law correlation function. The redshift

0.01 0.1 1 10
0.0001

0.001

0.01

0.1

1

Fig. 1a

0.1 1 10
0.001

0.01

0.1

SDSS
SDSS Photoz
APM
EDSGC

Fig. 1b

Fig. 1.—Angular two-point correlation function from the SDSS early galaxy data. (a) Correlation function measured within the magnitude interval
18 < r( < 22 (no integral constraint correction has been applied to these points). The errors on these points are calculated from jackknife resampling of the
data. (b) SDSS correlation function within the magnitude intervals 18 < r( < 19 ( filled circles) and 17:8 < r( < 18:8 (open circles; where the photometric red-
shift distribution matches that of the APM survey) compared with the correlation function from the APM (Maddox et al. 1990) measured over the magnitude
interval 17 < Bj < 20 (solid line) and the EDSGC galaxy survey (dashed line). The SDSS 18 < r( < 19 correlation function has been scaled to the depth of the
APMdata using Limber’s equation (see text for details).
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(Connolly et al. 2002) 

One example: Angular two-point 
correlation function of galaxies from 
the SDSS.

Note that we usually choose bin 
logarithmically spaced bins



z

How to do this in the practice?

The exact distance r between objects is never possible to measure 
accurately (even if we have z information).
Depending on the data that we have, we will be able to measure the: 

Projected correlation function: if 3D information is available.

Projected angular correlation function: if only 2D information is available.

How can we do this in the practice?



Projected correlation function

We have ra, dec, z for all the sources.
z is the redshift, and can be converted into a comoving 
distance in redshift space (Z [Mpc/h]) but:

  1) there is a dependence of the used cosmology (z       Z).
  2) it is affected by peculiar velocities.
Then we can never measure the distance r.

r2 = R2 + π2distance between objects expressed in two components: 
perpendicular (R) and parallel (𝛑) to the line-of-sight

Triangle in 3D space

R

RA
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Z1

Z2
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Table 3. Best-fitting parameters to the tt) grids with errors from the 
rms spread in mock catalogue results. 

Parameter SGP NGP Combined 

ro (h 1 Mpc) 
Yr 
a (km s-1) 

Power law £(r): (0 < s <20 h 1 Mpc) 
ß 0.53 ± 0.06 

5.63 ± 0.26 
1.66 ±0.06 
497 ± 24 

Power law Ç(r): (Ses <20 h1 Mpc) 
ß 0.45 ± 0.10 

6.03 ± 0.36 
1.74 ±0.08 
457 ± 49 

ro (h 1 Mpc) 
Yr 
a (km s-1) 
Hubble Volume £(r): 
ß 
a (km s-1) 
Hubble Volume £(r): 
ß 
a (km s_1) 

(8 < s <20 h 
0.47 ± 0.12 
446 ± 73 

(8 < s <30 h~ 
0.48 ±0.11 
450 ±81 

0.48 
5.52 
1.76 
543 

0.35 
6.06 
1.88 
451 

Mpc) 
0.50 
544 

Mpc) 
0.47 
545 

±0.08 
±0.29 
±0.07 
±26 

±0.12 
±0.41 
±0.10 
±51 

±0.14 
±67 

±0.13 
±85 

0.51 ±0.05 
5.58 ±0.19 
1.72 ±0.05 
522 ± 16 

0.49 ± 0.09 
5.80 ± 0.25 
1.78 ±0.06 
514 ±31 

0.49 ±0.10 
495 ± 46 

0.49 ± 0.09 
506 ± 52 

Figure 22. Contours of £((t , tt) for the 2dFGRS combined data (solid lines) 
and the best-fitting model (see Table 3) using the Hubble Volume £(r) fitted 
to scales 8 < s <30h~1 Mpc (dashed lines). Contour levels are at f = 4.0, 
2.0, 1.0, 0.5, 0.2, 0.1, 0.05 and 0.0 (thick line). 

even though they are ignored in the fitting process. The best-fitting 
parameters are listed in Table 3, and we adopt these results as our 
final best estimates finding ß = 0.49 ± 0.09. 

If we repeat our analysis on the mock catalogues we find a mean 
value of ß = 0.475 ± 0.090 (cf. the expected value of ß = 0.47, 
Section 2.2), showing that we can correctly determine ß using this 
type of fit. When fitting the mock catalogues it has become clear 
that ß and a are correlated in this fitting procedure, as we have 
seen already with other methods. We use the mock catalogues to 
measure the linear correlation coefficient, r (Press et al. 1992), which 
quantifies this correlation, and find that, between ß and a,r = 0.66. 
If we knew either parameter exactly, the error on the other would 
be smaller than quoted. 

We have also tried other analytical forms for the correlation func- 
tion and also different scale limits and we have found that some 
combinations shift the results by ~ 1er. 

7.2 Comparison of methods 
We have now estimated the real-space clustering parameters using 
three different methods. In Section 3.9, we saw that the projection 
and inversion methods gave essentially identical results for r0 and 
Yr whereas using 2D fits we obtain slightly higher values for r0. 

If f (r) was a perfect power law, the different methods would give 
unbiased results for the parameters, but we have seen evidence that 
this assumption is not true. The methods, therefore, give different 
answers as a result of the different scales and weighting schemes 
used, as well as the vastly different treatments of the redshift-space 
distortions. 

7.3 Previous 2dFGRS results 
It is worth contrasting our present results with those obtained in a 
previous 2dFGRS analysis (Peacock et al. 2001). This was based on 
the data available up to the end of 2000: a total of 141 402 redshifts. 
The chosen redshift limit was zmax = 0.25, yielding 127 081 galaxies 
for the analysis of f (a, tt). The present analysis uses 165 659 galax- 
ies, but to a maximum redshift of 0.2. Because galaxies are given 
a redshift-dependent weight, this difference in redshift limit has a 
substantial effect on the volume sampled. For a given area of sky, 
changing the redshift limit from zmax = 0.2 to zmax = 0-25 changes 
the total number of galaxies by a factor of only 1.08, whereas the 
total comoving volume within zmax increases by a factor of 2. Al- 
lowing for the redshift-dependent weight used in practice, the dif- 
ference in effective comoving volume for a given area of sky due 
to the variation in redshift limits becomes a factor of 1.6. Because 
the effective area covered by the present data is greater by a factor 
of 165 659/(127 081/1.08) = 1.4, the total effective comoving vol- 
ume probed in the current analysis is in fact 15 per cent smaller than 
in the 2001 analysis; this would suggest random errors on cluster- 
ing statistics about 7 per cent larger than previously. Of course, the 
lower redshift limit has several important advantages: uncertainties 
in the selection function in the tail of the luminosity function are 
not an issue (see Norberg et al. 2002a); also, the mean epoch of 
measurement is closer to z = 0. Given that the sky coverage is now 
more uniform, and that the survey mask and selection function have 
been studied in greater detail, the present results should be much 
more robust. 

The other main difference between the present work and that of 
Peacock et al. (2001) lies in the method of analysis. The earlier 
work quantified the flattening of the contours of £(cr, tt) via the 
quadrupole-to-monopole ratio, This is not to be con- 
fused with the quantity Q(s) from Section 5.2, which uses an inte- 
grated clustering measure instead of £o(s)- This is inevitably more 
noisy, as reflected in the error bar, 8ß = 0.17, resulting from that 
method. The disadvantage of using |±G)/£oG) directly, however, 
is that the ratio depends on the true shape of £(r). In Peacock et al. 
(2001), this was assumed to be known from the deprojection of an- 
gular clustering in the APM survey (Baugh & Efstathiou 1993); in 
the present paper, we have made a detailed internal estimate of § (r), 
and considered the effect of uncertainties in this quantity. Apart 
from this difference, the previous method of fitting to ^2(s)/^o(s) 
should, in principle, give results that are similar to our full fit to 
§(a, tt) in Section 7.1. The key issue in both cases is the treatment 
of the errors, which are estimated in a fully realistic fashion in the 

© 2003 RAS, MNRAS 346, 78-96 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 

Projected correlation function

R [Mpc/h]

𝛑 
[M

pc
/h

]

Redshift space distortions

ξ(r)
ξ(R, π)

We need to express the 3-dimensional two-
point correlation function        , as a 2-
dimensional two-point correlation function

2 0
 0 3

M
NR

AS
.34

 6.
 . 

.7
 8H

 

88 E. Hawkins et al 

4.2 Model assumptions 
In this model we make several assumptions. First, we assume a 
power law for the correlation function. The power-law approxima- 
tion is a good fit on scales <20 h~l Mpc but is not so good at 
larger scales. This limits the scales which we can probe using this 
method. In Section 7, we consider non-power-law models for f (r), 
and recalculate equations (12)-(14) using numerical integrals (see 
Appendix), allowing us to reliably use scales >20 h~1 Mpc. Sec- 
ondly, we assume that the linear theory model described above holds 
on scales <8 /ï_1 Mpc, which is almost certainly not true. We also 
consider this in Section 7. Finally, we assume an exponential dis- 
tribution of peculiar velocities with a constant velocity dispersion, 
a, (equation 16) and this is discussed and justified in Sections 6 
and 7.4. 

4.3 Model plots 
To illustrate the effect of redshift-space distortions on the £(¿7, tt) 
plot we show four model £(cr, jt) in Fig. 12. If there were no dis- 
tortions, then the contours shown would be circular, as in the top 
left-hand panel, due to the isotropy of the real-space correlation 
function. On small a scales, the random peculiar velocities cause 
an elongation of the contours in the tt direction (the bottom left-hand 
panel). On larger scales, there is the flattening of the contours (top 
right-hand panel) due to the coherent infall. The bottom right-hand 
panel is a model with both distortion effects included. Comparing 
the models of f (¿7, tt) to the 2dFGRS measurements in Fig. 4 it is 
clear that the data show the two distortion effects included in the 

-20 -10 0 10 20 -20 -10 0 10 20 
cr [h-1Mpc] 

Figure 12. Plot of model £((7, tt) calculated as described in Section 4. The 
lines represent contours of constant %(cr, tt) = 4.0, 2.0, 1.0, 0.5, 0.2 and 
0.1 for different models. The top left-hand panel represents an undistorted 
correlation function (a — 0, ß — 0), the top right-hand panel is a model with 
coherent infall added (a = 0, ß = 0.4), the bottom left-hand panel is a model 
with just random pairwise velocities added (a = 500 km s-1, ß = 0) and 
the bottom right-hand panel has both infall and random motions added (a = 
500 km s~l, ß = 0.4). These four models have rg = 5.0 h~l Mpc and yr = 
1.7. 

Figure 13. The ratio of £(s) to £(r) for the 2dFGRS combined data (solid 
points), and the Hubble Volume (solid line). The mean of the mock catalogue 
results is also shown (white line), with the rms errors shaded. The error bars 
on the 2dFGRS data are from the rms spread in mock catalogue results. 

models. In Section 7 we use the data to constrain the model directly, 
and to deduce the best-fitting model parameters. 

5 ESTIMATING ß 
Before using the model described above to measure the parameters 
simultaneously, we first use methods that have been used in previous 
studies. This allows a direct comparison between our results and 
previous work. 

5.1 Ratio of £ 
The ratio of the redshift-space correlation function, £(s), to the real- 
space correlation function, £(r), in the linear regime gives an esti- 
mate of the redshift distortion parameter, ß (see equation 12): 
ÍÍ2 2/î 4! 
f(r) 3 5 ' 

(17) 

Our results for the combined 2dFGRS data, using the inverted form 
of f (r), are shown in Fig. 13 by the solid points. The mean of the 
mock catalogue results is shown by the white line, with the rms 
errors shaded and the estimate from the Hubble Volume is shown 
by the solid line. The data are consistent with a constant value, and 
hence linear theory, on scales >4 h~l Mpc. 

The mock catalogues and Hubble Volume results asymptote to 
ß = 0.47, the true value of ß in the mocks. The 2dFGRS data in 
the range 8-30 h~l Mpc are best fit by a ratio of 1.34 ± 0.13, 
corresponding to ß = 0.45 d= 0.14. The maximum scale that we can 
use in this analysis is determined by the uncertainty on £(r) from 
the inversion method of S92 discussed in Section 3.8. 

5.2 The quadrupole moment of £ 
We now measure ß using the quadrupole moment of the correlation 
function (Hamilton 1992) 

(4/3)/* + (4/7)/i2 

Q(s) = 1 + (2/3)/i + (l/5)/i2 

?2(S) 

(3A3) [ ^(s
f)s'2ds'- 

Jo 

  (18) 
?<A) 
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Real 3-d correlation function

In practice we don’t integrate until infinity but until certain number 
(usually ~100 Mpc/h) for which the contribution is significant.
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Projected correlation function
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Only go until certain number for 
which the contribution is significant

2) Repeat for a random catalog and obtain RR.


4) Integrate the values of the grid over the 𝛑 direction to obtain ω(R).


5) Fit the measurement with a power law to obtain the parameters r0, 𝜸.



Projected correlation function

One example: Projected two-point 
correlation function for galaxies in SDSS 
of different luminosities.
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Figure 6. Projected correlation functions for volume-limited samples corresponding to different luminosity-bin samples (left) and luminosity-threshold samples (right),
as labeled. Error covariance matrices are computed from jackknife resampling as described in the text. The error bars shown are the square root of the diagonal
elements of these matrices. For visual clarity, only a subset of the threshold samples is plotted.
(A color version of this figure is available in the online journal.)

Figure 7. Bias factors for the luminosity-bin samples (left) and the luminosity-threshold samples (right). Filled circles show bias factors defined by the ratio of the
measured wp(rp) to the dark matter wp(rp) predicted for our fiducial cosmological model over the range 4 h−1 Mpc ! rp ! 30 h−1 Mpc. Open triangles show
the bias factors defined by this ratio for the single radial bin centered at rp = 2.67 h−1 Mpc, as done previously by Z05. In addition to the luminosity-bin samples
shown in Figure 6, the left panel includes bg(L) points for the half-magnitude bins −21.5 < Mr < −21.0 and −22.0 < Mr < −21.5. Open circles show the bias
factors inferred from HOD modeling as described in Section 3.3; the statistical errors on these estimates are smaller than the points, and we omit them for visual
clarity. In the left panel, the dotted curve is a fit to projected correlation functions in the 2dFGRS, bg/b∗ = 0.85 + 0.15L/L∗ (Norberg et al. 2001), where we take
b∗ ≡ bg(L∗) = 1.14 to be the bias factor inferred from the dark-matter-ratio estimate in the −21 < Mr < −20 luminosity bin (L ≈ L∗, defined to correspond to
Mr = −20.5 here), and the dashed curve is a modified fit to SDSS power spectrum measurements, bg/b∗ = 0.85 + 0.15L/L∗ − 0.04(M − M∗) (Tegmark et al.
2004). The solid curve is the fit in Equation (10). In the right panel, the solid curve is the fit to the HOD model bias factors, Equation (9). The points locations on the
magnitude axis correspond to the bin center (left) and threshold magnitude (right). Small horizontal offsets have been added to points for clarity.

Mr = −22, we have also divided the −22 < Mr < −21 bin into
two half-magnitude bins and computed bias factors separately
for each. The open circles, discussed further in Section 3.3,
show large-scale bias factors derived from HOD model fits to
the full projected correlation functions (“HOD bias factors”;
computed at the mean redshift of each sample).

In agreement with previous studies (Norberg et al. 2001;
Tegmark et al. 2004; Z05), bg(L) is nearly flat for luminosi-
ties L ! L∗, then rises sharply at brighter luminosities.16

16 For the Blanton et al. (2003c) luminosity function, the characteristic
luminosity L∗ of the Schechter (1976) luminosity function fit corresponds to
Mr = −20.44.

Dotted and dashed curves in the left panel show the empiri-
cal fits to bg(L)/bg(L∗) proposed by Norberg et al. (2001) and
Tegmark et al. (2004), respectively, where we take as bg(L∗) the
“DM-ratio” bias factor estimated for the −21 < Mr < −20 lu-
minosity bin using the large-scale wp(rp) ratio. The Norberg
et al. (2001) form appears to fit our measurements better,
but the differences between the curves only become large for
the −18.0 < Mr < −19.0 sample, where the single-rp and
DM-ratio bias factors differ noticeably, and where the tests dis-
cussed in Section 3.2 below suggest that cosmic variance fluc-
tuations are still significant. The HOD bias factors are in good
agreement with the “DM-ratio” ones.

10

(Zehavi et al. 2011)
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Auto-correlation vs Cross-correlation function

If we compute the correlation function between 
galaxies with themselves this is an auto-correlation 
function.
If we compute the correlation function between SMGs 
and galaxies, this is a cross-correlation function.
For the cross-correlation function everything is the 
same, but the DD term is now computed using one 
catalog of one population and the other catalog of the 
other population:

Cross-correlation function is when we compute the correlation function between different populations

ξ =
nR2

nD2

D1D2

D1R2
− 1ξ =

nR

nD

DD
DR

− 1

Auto-correlation Cross-correlation

2 Ryan C. Hickox et al.

1 INTRODUCTION

Submillimetre galaxies (SMGs) are a population of high-redshift
ultraluminous infrared galaxies (ULIRGs) selected through their
redshifted far-infrared emission in the submillimetre waveband
(e.g., Smail, Ivison & Blain 1997; Barger et al. 1998; Hughes et al.
1998; Blain et al. 2002). The redshift distribution of this popu-
lation appears to peak at z ∼ 2.5 (e.g., Chapman et al. 2003,
2005; Wardlow et al. 2011), so that SMGs are at their common-
est around the same epoch as the peak in powerful active galactic
nuclei (AGN) and specifically quasi-stellar objects (QSOs) (e.g.,
Richards et al. 2006; Assef et al. 2011). This correspondence may
indicate an evolutionary link between SMGs and QSOs, similar
to that suggested at low redshift between ULIRGs and QSOs by
Sanders et al. (1988). However there is little direct overlap (∼ a
few percent) between the high-redshift SMG and QSO popula-
tions (e.g., Page et al. 2004; Chapman et al. 2005; Stevens et al.
2005; Alexander et al. 2008; Wardlow et al. 2011). The immense
far-infrared luminosities of SMGs are widely believed to arise from
intense, but highly-obscured, gas-rich starbursts (e.g., Greve et al.
2005; Alexander et al. 2005; Pope et al. 2008; Tacconi et al. 2006,
2008; Ivison et al. 2011), suggesting that they may represent the
formation phase of the most massive local galaxies: giant ellipti-
cals (e.g., Eales et al. 1999; Swinbank et al. 2006).

SMGs and QSOs may thus represent phases in an evolu-
tionary sequence that eventually results in the population of lo-
cal massive elliptical galaxies. This is a compelling picture, but
testing the evolutionary links is challenging due to the lack of an
easily-measured and conserved observable to tie the various pop-
ulations together. For example, the stellar masses of both QSOs
and SMGs are difficult to measure reliably due to either the
brightness of the nuclear emission in the QSOs (e.g., Croom et al.
2004; Kotilainen et al. 2009) or strong dust obscuration and po-
tentially complex star-formation histories for the SMGs (e.g.,
Hainline et al. 2011; Wardlow et al. 2011; but see also Dunlop
2011; Michałowski et al. 2011), while the details of the high-
redshift star formation that produced local massive elliptical galax-
ies are likewise poorly constrained (e.g., Allanson et al. 2009). De-
riving dynamical masses for QSO hosts from rest-frame optical
spectroscopy is difficult due to the very broad emission lines from
the AGN, while dynamical mass measurements using CO emis-
sion in gas-rich QSOs are also challenging, due to the potential
non-isotropic orientation of the QSO hosts on the sky and the
lack of high-resolution velocity fields necessary to solve for this
(Coppin et al. 2008), as well as the general difficulties in model-
ing CO kinematics (e.g., Tacconi et al. 2006; Bothwell et al. 2010;
Engel et al. 2010).

Another possibility is to compare source populations via
the masses of their central black holes. For QSOs and the pop-
ulation of SMGs that contain broad-line AGN, the black hole
mass can be estimated using virial techniques based on the
broad emission lines (e.g., Vestergaard 2002; Peterson et al. 2004;
Vestergaard & Peterson 2006; Kollmeier et al. 2006; Shen et al.
2008). Such studies generally find that SMGs have small black
holes relative to the local black hole-galaxy mass relations (e.g.,
Alexander et al. 2008; Carrera et al. 2011), while the black holes in
z ∼ 2 QSOs tend to lie above the local relation, with masses sim-
ilar to those in local massive ellipticals (e.g., Decarli et al. 2010;
Bennert et al. 2010; Merloni et al. 2010). These results suggest that
SMGs represent an earlier evolutionary stage, prior to the QSO
phase in which the black hole reaches its final mass. However, high-
redshift virial black hole mass estimates are highly uncertain (e.g.,
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Figure 1. Two-dimensional distribution of the 50 LESS SMGs and
∼ 50,000 IRAC galaxies in the ECDFS that are used in our analysis. The
SMGs shown represent the subset of the 126 SMGs in the full LESS sam-
ple (Weiß et al. 2009) that are in the redshift range 1 < z < 3 and are
in regions of good photometry, and so are used in this analysis. The IRAC
galaxies are chosen to reside at 0.5 < z < 3.5. The SMGs are shown here
individually, while the density of galaxies is given by the grayscale. The
blank areas represent regions which are excluded from the analysis, includ-
ing areas of poor photometry (for example around bright stars) or additional
sources identified by eye in the vicinity of SMG, as discussed in §2. The
high density of IRAC galaxies in the field enables an accurate measurement
of the SMG-galaxy cross-correlation function.
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Figure 2. Redshift distributions for the IRAC galaxy sample in the redshift
range 0.5 < z < 3.5 (dotted line), and the SMG sample in the range
1 < z < 3 (solid line). The histogram for galaxies has been scaled so
that the distribution can be directly compared to that of the SMGs. Also
shown is the redshift distribution for 11,241 galaxies (dashed line) selected
to match the overlap in the redshift distributions of the SMGs and galaxies,
as used in the galaxy autocorrelation measurement (§3.2). For the SMGs,
44% have spectroscopic redshifts, while the remainder of the SMGs and all
the IRAC galaxies have redshift estimates from photometric redshift calcu-
lations (Wardlow et al. 2011).
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Figure 6. Projected correlation functions for volume-limited samples corresponding to different luminosity-bin samples (left) and luminosity-threshold samples (right),
as labeled. Error covariance matrices are computed from jackknife resampling as described in the text. The error bars shown are the square root of the diagonal
elements of these matrices. For visual clarity, only a subset of the threshold samples is plotted.
(A color version of this figure is available in the online journal.)

Figure 7. Bias factors for the luminosity-bin samples (left) and the luminosity-threshold samples (right). Filled circles show bias factors defined by the ratio of the
measured wp(rp) to the dark matter wp(rp) predicted for our fiducial cosmological model over the range 4 h−1 Mpc ! rp ! 30 h−1 Mpc. Open triangles show
the bias factors defined by this ratio for the single radial bin centered at rp = 2.67 h−1 Mpc, as done previously by Z05. In addition to the luminosity-bin samples
shown in Figure 6, the left panel includes bg(L) points for the half-magnitude bins −21.5 < Mr < −21.0 and −22.0 < Mr < −21.5. Open circles show the bias
factors inferred from HOD modeling as described in Section 3.3; the statistical errors on these estimates are smaller than the points, and we omit them for visual
clarity. In the left panel, the dotted curve is a fit to projected correlation functions in the 2dFGRS, bg/b∗ = 0.85 + 0.15L/L∗ (Norberg et al. 2001), where we take
b∗ ≡ bg(L∗) = 1.14 to be the bias factor inferred from the dark-matter-ratio estimate in the −21 < Mr < −20 luminosity bin (L ≈ L∗, defined to correspond to
Mr = −20.5 here), and the dashed curve is a modified fit to SDSS power spectrum measurements, bg/b∗ = 0.85 + 0.15L/L∗ − 0.04(M − M∗) (Tegmark et al.
2004). The solid curve is the fit in Equation (10). In the right panel, the solid curve is the fit to the HOD model bias factors, Equation (9). The points locations on the
magnitude axis correspond to the bin center (left) and threshold magnitude (right). Small horizontal offsets have been added to points for clarity.

Mr = −22, we have also divided the −22 < Mr < −21 bin into
two half-magnitude bins and computed bias factors separately
for each. The open circles, discussed further in Section 3.3,
show large-scale bias factors derived from HOD model fits to
the full projected correlation functions (“HOD bias factors”;
computed at the mean redshift of each sample).

In agreement with previous studies (Norberg et al. 2001;
Tegmark et al. 2004; Z05), bg(L) is nearly flat for luminosi-
ties L ! L∗, then rises sharply at brighter luminosities.16

16 For the Blanton et al. (2003c) luminosity function, the characteristic
luminosity L∗ of the Schechter (1976) luminosity function fit corresponds to
Mr = −20.44.

Dotted and dashed curves in the left panel show the empiri-
cal fits to bg(L)/bg(L∗) proposed by Norberg et al. (2001) and
Tegmark et al. (2004), respectively, where we take as bg(L∗) the
“DM-ratio” bias factor estimated for the −21 < Mr < −20 lu-
minosity bin using the large-scale wp(rp) ratio. The Norberg
et al. (2001) form appears to fit our measurements better,
but the differences between the curves only become large for
the −18.0 < Mr < −19.0 sample, where the single-rp and
DM-ratio bias factors differ noticeably, and where the tests dis-
cussed in Section 3.2 below suggest that cosmic variance fluc-
tuations are still significant. The HOD bias factors are in good
agreement with the “DM-ratio” ones.

10

The projected correlation functionwp is related to the real-space
correlation function !(r) through

wp(rp) ¼ 2

Z 1

rp

r!(r)

(r 2 " r 2p )
1=2

dr ð4Þ

(e.g., Davis & Peebles 1983). If !(r) follows the power-law form
!(r) ¼ (r/r0)
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We show our results for wp(rp) in Figure 5, where the errors
are estimated using the jackknife method. Tabulated values for

wp are listed in Table 3 for the all-fields case. We only use data
points where the mean number of quasar-quasar pairs in the
rp-bin is more than 10, and we therefore restrict our fits to scales
4 h"1 MpcP rpP 150 h"1 Mpc. The parameters of the best-fit
power-law for the all-fields case is r0 ¼ 16:1 ' 1:7 h"1 Mpc
and " ¼ 2:33 ' 0:32 when the negative data point at rp ¼
18:84 h"1 Mpc is excluded. When this negative data point is
included in the fit we get r0 ¼ 13:6 ' 1:8 h"1 Mpc and an un-
usually large " ¼ 3:52 ' 0:87, which is caused by the drag of the
negative point on the fit.16 Using good fields only yields r0 ¼
15:2 ' 2:7 h"1 Mpc and " ¼ 2:05 ' 0:28, shown in the right

Fig. 5.—Projected correlation function wp(rp) for the z ( 2:9 quasars. Errors are estimated using the jackknife method. Also plotted are the best-fit power-law
functions, with fitted parameters listed in Table 4. Left: All fields. Right: Good fields only. The two cases give similar results.

TABLE 3

Projected Correlation Function wp(rp)

rp
(h"1 Mpc) DDmean RRmean DRmean wp /rp wp /rp Error

1.189................................. 0.0 114.3 19.8 . . . . . .
1.679................................. 0.9 258.3 39.6 154 162

2.371................................. 4.5 478.5 91.8 236 195

3.350................................. 9.9 913.2 160.8 78.1 51.5

4.732................................. 20.7 1864.1 359.9 91.3 41.6

6.683................................. 32.4 3786.5 684.3 15.7 7.81

9.441................................. 62.9 7158.5 1314.0 10.6 4.45

13.34................................. 130.0 14551.2 2659.1 3.06 2.85

18.84................................. 227.3 28598.1 5162.4 "0.681 0.913

26.61................................. 488.5 56940.7 10123.8 0.516 0.810

37.58................................. 871.7 111284.0 19955.6 0.437 0.395

53.09................................. 1762.2 218346.8 38910.9 0.0675 0.259

74.99................................. 3394.4 422580.9 75630.1 0.0484 0.145

105.9................................. 6751.7 811406.0 145785.5 0.0674 0.0592

149.6................................. 12425.7 1535320.8 274851.9 0.0228 0.0292

211.3................................. 22655.1 2849970.6 509877.9 "0.0183 0.00992

Notes.—Results for all fields. DDmean, DRmean, and RRmean are the mean numbers of quasar-quasar, random-
random, and quasar-random pairs within each rp bin for the 10 jackknife samples; wp(rp)/rp is the mean value
calculated from the jackknife samples.

16 For the good-fields case the projected correlation function is positive over
the full range that we fit.
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Uncertainties in clustering measurements

(Zehavi et al. 2011) (Shen et al. 2007)

700,000 local galaxies in SDSS (over ~8000 deg2) ~4,400 High-z Quasars in SDSS (over ~4000 deg2) 

10,000 galaxies

70,000 galaxies

The clustering signal increases as the square of the number of galaxies in the sample 



Uncertainties in clustering measurements

Since clustering is based on a pairs counting process, Poisson errors 
typically dominate the measurement.
Larger samples provide much better signal of clustering measurement.

Larger surveys        More sources         More pairs         Less uncertainties

In general terms (this also depends on how strong is the intrinsic clustering of the population).

Poisson errors

ω(R) =
DD
RR

− 1

Δω(R) =
DD

RR



Uncertainties in clustering measurements

Cosmic variance

Beside Poisson errors, clustering measurements are associated with 
errors associated to cosmic variance effects, due to the fact that we are 
observing only one specific region of the universe.

These type of errors can be taken into account using statistical methods to 
compute error bars such a the jackknife method or the bootstrap method. Survey1

Survey2

The dominant error depends on the sample used to measure clustering. If the 
sample is small, Poisson errors will probably dominate the error budget.

The jackknife or the bootstrap methods include both Poisson uncertainties 
and cosmic variance effects, then they are normally the preferred.



Uncertainties in clustering measurements

Bootstrap: Resampling method to estimate statistics on a population by 
sampling a dataset with replacement.

(Adapted from Paola Galdi+2018)

N Galaxies on the sky Randomly select N galaxies from the sample

Compute w(R) or w(theta)

Compute w(R) or w(theta)

Compute w(R) or w(theta)

Compute w(R) or w(theta)

…..

bootstrap sample 10,000 Compute w(R) or w(theta)

…..

Distribution of 10,000 
w(R) or w(theta) values

w(R)

N
σ

Uncertainty in w(R) is 𝛔 



Uncertainties in clustering measurements

Alternative techniques to reduce the uncertainties when the sample is small: 
Cross-correlations with a large population.

We want to measure the clustering of SMGs, but we 
only have ~50 SMGs here, so Poisson errors will be 
huge.
Fortunately, we also have a catalog of 10,000 normal 
galaxies over the same area of the sky.
We measure the cross-correlation between SMGs and 
normal galaxies. Poisson errors will be small.
I can also measure the auto-correlation of normal 
galaxies. Poisson errors will be small.
Using the cross-correlation between SMG and normal 
galaxies and the auto-correlation of normal galaxies, I 
can infer what is the autocorrelation of SMGs. 
All the measurements have small Poisson errors. 

2 Ryan C. Hickox et al.

1 INTRODUCTION

Submillimetre galaxies (SMGs) are a population of high-redshift
ultraluminous infrared galaxies (ULIRGs) selected through their
redshifted far-infrared emission in the submillimetre waveband
(e.g., Smail, Ivison & Blain 1997; Barger et al. 1998; Hughes et al.
1998; Blain et al. 2002). The redshift distribution of this popu-
lation appears to peak at z ∼ 2.5 (e.g., Chapman et al. 2003,
2005; Wardlow et al. 2011), so that SMGs are at their common-
est around the same epoch as the peak in powerful active galactic
nuclei (AGN) and specifically quasi-stellar objects (QSOs) (e.g.,
Richards et al. 2006; Assef et al. 2011). This correspondence may
indicate an evolutionary link between SMGs and QSOs, similar
to that suggested at low redshift between ULIRGs and QSOs by
Sanders et al. (1988). However there is little direct overlap (∼ a
few percent) between the high-redshift SMG and QSO popula-
tions (e.g., Page et al. 2004; Chapman et al. 2005; Stevens et al.
2005; Alexander et al. 2008; Wardlow et al. 2011). The immense
far-infrared luminosities of SMGs are widely believed to arise from
intense, but highly-obscured, gas-rich starbursts (e.g., Greve et al.
2005; Alexander et al. 2005; Pope et al. 2008; Tacconi et al. 2006,
2008; Ivison et al. 2011), suggesting that they may represent the
formation phase of the most massive local galaxies: giant ellipti-
cals (e.g., Eales et al. 1999; Swinbank et al. 2006).

SMGs and QSOs may thus represent phases in an evolu-
tionary sequence that eventually results in the population of lo-
cal massive elliptical galaxies. This is a compelling picture, but
testing the evolutionary links is challenging due to the lack of an
easily-measured and conserved observable to tie the various pop-
ulations together. For example, the stellar masses of both QSOs
and SMGs are difficult to measure reliably due to either the
brightness of the nuclear emission in the QSOs (e.g., Croom et al.
2004; Kotilainen et al. 2009) or strong dust obscuration and po-
tentially complex star-formation histories for the SMGs (e.g.,
Hainline et al. 2011; Wardlow et al. 2011; but see also Dunlop
2011; Michałowski et al. 2011), while the details of the high-
redshift star formation that produced local massive elliptical galax-
ies are likewise poorly constrained (e.g., Allanson et al. 2009). De-
riving dynamical masses for QSO hosts from rest-frame optical
spectroscopy is difficult due to the very broad emission lines from
the AGN, while dynamical mass measurements using CO emis-
sion in gas-rich QSOs are also challenging, due to the potential
non-isotropic orientation of the QSO hosts on the sky and the
lack of high-resolution velocity fields necessary to solve for this
(Coppin et al. 2008), as well as the general difficulties in model-
ing CO kinematics (e.g., Tacconi et al. 2006; Bothwell et al. 2010;
Engel et al. 2010).

Another possibility is to compare source populations via
the masses of their central black holes. For QSOs and the pop-
ulation of SMGs that contain broad-line AGN, the black hole
mass can be estimated using virial techniques based on the
broad emission lines (e.g., Vestergaard 2002; Peterson et al. 2004;
Vestergaard & Peterson 2006; Kollmeier et al. 2006; Shen et al.
2008). Such studies generally find that SMGs have small black
holes relative to the local black hole-galaxy mass relations (e.g.,
Alexander et al. 2008; Carrera et al. 2011), while the black holes in
z ∼ 2 QSOs tend to lie above the local relation, with masses sim-
ilar to those in local massive ellipticals (e.g., Decarli et al. 2010;
Bennert et al. 2010; Merloni et al. 2010). These results suggest that
SMGs represent an earlier evolutionary stage, prior to the QSO
phase in which the black hole reaches its final mass. However, high-
redshift virial black hole mass estimates are highly uncertain (e.g.,
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Figure 1. Two-dimensional distribution of the 50 LESS SMGs and
∼ 50,000 IRAC galaxies in the ECDFS that are used in our analysis. The
SMGs shown represent the subset of the 126 SMGs in the full LESS sam-
ple (Weiß et al. 2009) that are in the redshift range 1 < z < 3 and are
in regions of good photometry, and so are used in this analysis. The IRAC
galaxies are chosen to reside at 0.5 < z < 3.5. The SMGs are shown here
individually, while the density of galaxies is given by the grayscale. The
blank areas represent regions which are excluded from the analysis, includ-
ing areas of poor photometry (for example around bright stars) or additional
sources identified by eye in the vicinity of SMG, as discussed in §2. The
high density of IRAC galaxies in the field enables an accurate measurement
of the SMG-galaxy cross-correlation function.
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Figure 2. Redshift distributions for the IRAC galaxy sample in the redshift
range 0.5 < z < 3.5 (dotted line), and the SMG sample in the range
1 < z < 3 (solid line). The histogram for galaxies has been scaled so
that the distribution can be directly compared to that of the SMGs. Also
shown is the redshift distribution for 11,241 galaxies (dashed line) selected
to match the overlap in the redshift distributions of the SMGs and galaxies,
as used in the galaxy autocorrelation measurement (§3.2). For the SMGs,
44% have spectroscopic redshifts, while the remainder of the SMGs and all
the IRAC galaxies have redshift estimates from photometric redshift calcu-
lations (Wardlow et al. 2011).

c© 2011 RAS, MNRAS 000, 1–13



r0, γ Mhalo

If we want to compare clustering between different populations (at the same epoch), 
comparing their r0 and 𝜸 should be informative enough. This is useful to understand 
differences in the physical processes affecting each different population. 

Additionally, r0 and 𝜸 allow us to estimate the halo mass in which galaxies inhabit. In 
general terms, a higher clustered population reside in more massive halos. This 
provide insights to understand how galaxies populate the cosmic web, how different 
populations can be related (evolutionary link), and to constraint cosmological models.

Why is so important to compute the r0 and 𝜸?

(Lecture 4)

(Lecture 3 and 4)



Take home message

The mathematical formalism to describe the level of clustering is the 
two-point correlation function

To measure it we counts pairs of galaxies as a function of separation 
and divides by what is expected for an unclustered distribution.

If we have 3D information (RA, Dec, z) we can measure the Projected 
correlation function. If we have 2D information (RA, Dec) we can 
measure the Projected angular correlation function.

Larger samples provide much better signal of clustering measurement.

dP = n[1 + ξ(r)]dVξ(r)


