We present a detailed analysis of a red quasar at z=2.32 with an intervening damped Lyman-alpha absorber (DLA) at z=2.13. Using high quality data from the X-shooter spectrograph at ESO Very Large Telescope we find that the absorber has a metallicity consistent with Solar. We observe strong C I and H$_2$ absorption indicating a cold, dense absorbing medium. Partial coverage effects are observed in the C I lines, from which we infer a covering fraction of $27 \pm 6$ % and a physical diameter of the cloud of 0.1 pc. From the covering fraction and size, we estimate the size of the background quasar's broad line region. We search for emission from the DLA counterpart in optical and near-infrared imaging. No emission is observed in the optical data. However, we see tentative evidence for a counterpart in the H and K' band images. The DLA shows high depletion (as probed by [Fe/Zn]=-1.22) indicating that significant amounts of dust must be present in the DLA. By fitting the spectrum with various dust reddened quasar templates we find a best-fitting amount of dust in the DLA of $A(V)_{\rm DLA}=0.28 \pm 0.01|_{\rm stat} \pm 0.07|_{\rm sys}$. We conclude that dust in the DLA is causing the colours of this intrinsically very luminous background quasar to appear much redder than average quasars, thereby not fulfilling the criteria for quasar identification in the Sloan Digital Sky Survey. Such chemically enriched and dusty absorbers are thus underrepresented in current samples of DLAs.
The detection of optical surface brightness structures in the sky with magnitudes fainter than 30 mag/arcsec^2 (3sigma in 10x10 arcsec boxes; r-band) has remained elusive in current photometric deep surveys. Here we show how present-day 10 meter class telescopes can provide broadband imaging 1.5-2 mag deeper than most previous results within a reasonable amount of time (i.e. <10h on source integration). In particular, we illustrate the ability of the 10.4 m Gran Telescopio de Canarias (GTC) telescope to produce imaging with a limiting surface brightness of 31.5 mag/arcsec^2 (3sigma in 10x10 arcsec boxes; r-band) using 8.1 hours on source. We apply this power to explore the stellar halo of the galaxy UGC00180, a galaxy analogous to M31 located at ~150 Mpc, by obtaining a surface brightness radial profile down to mu_r~33 mag/arcsec^2. This depth is similar to that obtained using star counts techniques of Local Group galaxies, but is achieved at a distance where this technique is unfeasible. We find that the mass of the stellar halo of this galaxy is ~4x10^9 Msun, i.e. 3+-1% of the total stellar mass of the whole system. This amount of mass in the stellar halo is in agreement with current theoretical expectations for galaxies of this kind.
We examine the evolution of the relation between stellar mass surface density, velocity dispersion and half-light radius-the stellar mass fundamental plane-for quiescent galaxies at z<0.7. We measure the local relation from galaxies in the Sloan Digital Sky Survey and the intermediate redshift relation from ~500 quiescent galaxies with stellar masses 10 < log(M_stellar/M_solar) < 11.5. Nearly half of the quiescent galaxies in our intermediate redshift sample are compact. After accounting for important selection and systematic effects, the size and velocity dispersion distributions of galaxies at intermediate redshifts are similar to galaxies in the local universe. The orientation and zero-point of the stellar mass fundamental plane is independent of redshift for massive quiescent galaxies at z<0.7. Compact quiescent galaxies fall on the same relation as the extended objects. We confirm that compact quiescent galaxies are the tail of the size and mass distribution of the normal quiescent galaxy population.
We apply the Jeans Axisymmetric Multi-Gaussian Expansion method to the stellar kinematic maps of 40 Sa-Sd EDGE-CALIFA galaxies and derive their circular velocity curves (CVCs). The CVCs are classified using the Dynamical Classification method developed in Kalinova et al. (2015) . We also calculate the observational baryon efficiency, OBE, where $M_*/M_b=M_*/(M_*+M_{HI}+M_{H_2})$ of the galaxies using their stellar mass, total neutral hydrogen mass and total molecular gas from CO luminosities. Slow-rising, Flat and Round-peaked CVC types correspond to specific OBEs, stellar and dark matter (DM) halo mass values, while the Sharp-peaked CVCs span in the whole DM halo mass range of $10^{11}-10^{14} M_{\odot}$.
The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence(250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence that is only mildly compressive, with the turbulent ratio of compressive to solenoidal modes ~0.3 on average, lower than the equilibrium value of 0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor is the mean cloud expansion or contraction velocity (MCs do not collapse as a whole even if their own prestellar cores collapse to form stars). Furthermore, the clouds follow the same relation between the rms density and the rms velocity as in isothermal turbulence and their average gas density PDF is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.
We present predictions of the Si iv ions in turbulent mixing layers (TMLs) between hot and cool gas and in cool high-velocity clouds (HVCs) that travel through a hot halo, complementing the C iv, N v, and O vi predictions in Kwak & Shelton, Kwak et al., and Henley et al. We find that the Si iv ions are most abundant in regions where the hot and cool gases first begin to mix or where the mixed gas has cooled significantly. The predicted column densities of high velocity Si iv and the predicted ratios of Si iv to C iv and O vi found on individual sightlines in our HVC simulations are in good agreement with observations of high velocity gas. Low velocity Si iv is also seen in the simulations, as a result of decelerated gas in the case of the HVC simulations and when looking along directions that pass perpendicular to the direction of motion in the TML simulations. The ratios of low velocity Si iv to C iv and O vi in the TML simulations are in good agreement with those recorded for Milky Way halo gas, while the ratio of Si iv to O vi from the decelerated gas in the HVC simulations is lower than that observed at normal velocity in the Milky Way halo. We attribute the shortfall of normal velocity Si iv to not having modeled the effects of photoionization and, following Henley et al., consider a composite model that includes decelerated HVC gas, supernova remnants, galactic fountain gas, and the effect of photoionization.
Since NGC300 is a bulge-less, isolated low-mass galaxy and has not experienced radial migration during its evolution history, it can be treated as an ideal laboratory to test simple galactic chemical evolution models. By assuming its disk forms gradually from continuous accretion of primordial gas and including the gas-outflow process, we construct a simple chemical evolution model for NGC300 to build a bridge between its SFH and its observed data, especially the present-day radial profiles and global observed properties (e.g., cold gas mass, star-formation rate and metallicity). By means of comparing the model predictions with the corresponding observations, we adopt the classical $\chi^{2}$ methodology to find out the best combination of free parameters $a$, $b$ and $b_{\rm out}$. Our results show that, by assuming an inside-out formation scenario and an appropriate outflow rate, our model reproduces well most of the present-day observational values, not only the radial profiles but also the global observational data for the NGC300 disk. Our results suggest that NGC300 may experience a rapid growth of its disk. Through comparing the best-fitting model predicted SFH of NGC300 with that of M33, we find that the mean stellar age of NGC300 is older than that of M33 and there is a lack of primordial gas infall onto the disk of NGC300 recently. Our results also imply that the local environment may paly a key role in the secular evolution of NGC300.
We report the discovery of an extremely dense group of massive galaxies at the centre of the protocluster at $z=3.09$ in the SSA22 field from near-infrared spectroscopy conducted with the Multi-Object InfraRed Camera and Spectrograph (MOIRCS) equipped on the Subaru Telecope. The newly discovered group comprises seven galaxies confirmed at $z_{\rm spec}\approx3.09$ within 180 kpc including five massive objects with the stellar masses larger than $10^{10.5}~M_{\odot}$ and is associated with a bright sub-mm source SSA22-AzTEC14. The dynamical mass of the group estimated from the line-of-sight velocity dispersion of the members is $M_{\rm dyn}\sim1.6\pm0.3\times10^{13}~M_{\odot}$. Such a dense group is expected to be very rare at high redshift as we found only a few comparable systems in large-volume cosmological simulations. Such rare groups in the simulations are hosted in collapsed halos with $M_{\rm vir}=10^{13.4}-10^{14.0}~M_{\odot}$ and evolve into the brightest cluster galaxies (BCGs) of the most massive clusters at present. The observed AzTEC14 group at $z=3.09$ is therefore very likely to be a proto-BCG in the multiple merger phase. The observed total stellar mass of the group is $5.8^{+5.1}_{-2.0}\times10^{11}~M_{\odot}$. It suggests that over half the stellar mass of its descendant had been formed by $z=3$. Moreover, we identified over two members for each of the four Ly$\alpha$ blobs (LABs) using our new spectroscopic data. This verifies our previous argument that many of the LABs in the SSA22 protocluster associated with multiple developed stellar components.
We report the discovery of a population of deeply embedded protostellar candidates in the 20 km s$^{-1}$ cloud, one of the massive molecular clouds in the Central Molecular Zone (CMZ) of the Milky Way, using interferometric submillimeter continuum and H$_2$O maser observations. The submillimeter continuum emission shows five 1-pc scale clumps, each of which further fragments into several 0.1-pc scale cores. We identify 17 dense cores, among which 12 are gravitationally bound. Among the 18 H$_2$O masers detected, 13 coincide with the cores and probably trace outflows emanating from the protostars. There are also 5 gravitationally bound dense cores without H$_2$O maser detection. In total the 13 masers and 5 cores may represent 18 protostars with spectral types later than B1 or potential growing more massive stars at earlier evolutionary stage, given the non-detection in the centimeter radio continuum. In combination with previous studies of CH$_3$OH masers, we conclude that the star formation in this cloud is at an early evolutionary phase, before the presence of any significant ionizing or heating sources. Our findings indicate that star formation in this cloud may be triggered by a tidal compression as it approaches pericenter, similar to the case of G0.253+0.016 but with a higher star formation rate, and demonstrate that high angular resolution, high sensitivity maser and submillimeter observations are a promising technique to unveil deeply embedded star formation in the CMZ.
We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic dataset of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C IV, Si IV and N V. Furthermore, we show that the equivalent widths of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption line equivalent width, when the well established intrinsic Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanying with dimming of the continuum while the disappearance of an absorption line component with brightening of the continuum. This suggests that the emergence or disappearance of a C IV absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability amplitude is larger. These results support the idea that absorption line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption line variations.
We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micron CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (~4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilises intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3 micron band are discussed.
A number of simulators have argued that major mergers can sometimes preserve discs (e.g. Springel & Hernquist 2005), but the possibility that they could explain the emergence of lenticular galaxies (S0s) has been generally neglected. In fact, observations of S0s reveal a strong structural coupling between their bulges and discs, which seems difficult to reconcile with the idea that they come from major mergers. However, in Querejeta et al. (2015a) we have used N-body simulations of binary mergers to show that, under favourable conditions, discs are first destroyed but soon regrow out of the leftover debris, matching observational photometric scaling relations (e.g. Laurikainen et al. 2010). Additionally, in Querejeta et al. (2015b) we have shown how the merger scenario agrees with the recent discovery that S0s and most spirals are not compatible in an angular momentum--concentration plane. This important result from CALIFA constitutes a serious objection to the idea that spirals transform into S0s mainly by fading (e.g. via ram-pressure stripping, as that would not explain the observed simultaneous change in $\lambda_\mathrm{Re}$ and concentration), but our simulations of major mergers do explain that mismatch. From such a 3D comparison we conclude that mergers must be a relevant process in the build-up of the current population of S0s.
In the last decade or so there has been debate over the possibility that the fuzzy quantum nature of spacetime might decohere wavefronts emanating from very distant sources. Consequences of that could be "blurred" or "faded" images of compact structures in galaxies, primarily at z>1 for their emitted X-rays and gamma-rays, but perhaps even in ultraviolet through optical light at higher redshift. So far there are only inconclusive hints of this from z~4 active-galactic nucleii and gamma-ray bursts viewed with Fermi and Hubble Space Telescope. If correct though, that would impose a significant, fundamental resolution limit for galaxies out to z~8 in the era of the James Webb Space Telescope and the next generation of ground-based telescopes using adaptive optics.
At present, all physical models of diffuse Galactic gamma-ray emission assume that the distribution of cosmic-ray sources traces the observed populations of either OB stars, pulsars, or supernova remnants. However, since H2-rich regions host significant star formation and numerous supernova remnants, the morphology of observed H2 gas should also provide a physically motivated, high-resolution tracer for cosmic-ray injection. We assess the impact of utilizing H2 as a tracer for cosmic-ray injection on models of diffuse Galactic gamma-ray emission. We employ state-of-the-art 3D particle diffusion and gas density models, along with a physical model for the star-formation rate based on global Schmidt laws. Allowing a fraction, f_H2, of cosmic-ray sources to trace the observed H2 density, we find that a theoretically well-motivated value f_H2 ~ 0.20 -- 0.25 (i) provides a significantly better global fit to the diffuse Galactic gamma-ray sky and (ii) highly suppresses the intensity of the residual gamma-ray emission from the Galactic center region. Specifically, in models utilizing our best global fit values of f_H2 ~ 0.20 -- 0.25, the spectrum of the galactic center gamma-ray excess is drastically affected, and the morphology of the excess becomes inconsistent with predictions for dark matter annihilation.
Using our cosmological radiative transfer code, we study the implications of the updated QSO emissivity and star formation history for the escape fraction (f_esc) of hydrogen ionizing photons from galaxies. We estimate the f_esc that is required to reionize the Universe and to maintain the ionization state of the intergalactic medium in the post-reionization era. At z>5.5, we show that a constant f_esc of 0.14 to 0.22 is sufficient to reionize the Universe. At z<3.5, consistent with various observations, we find that f_esc can have values from 0 to 0.05. However, a steep rise in f_esc, of at least a factor of ~3, is required between z=3.5 to 5.5. It results from a rapidly decreasing QSO emissivity at z>3 together with a nearly constant measured H I photoionization rates at 3<z<5. We show that, this requirement of a steep rise in f_esc over a very short time can be relaxed if we consider the contribution from a recently found large number density of faint QSOs at z>4. In addition, a simple extrapolation of the contribution of such QSOs to high-z suggests that QSOs alone can reionize the Universe. This implies, at z>3.5, that either the properties of galaxies should evolve rapidly to increase the f_esc or most of the low mass galaxies should host massive blackholes and sustain accretion over a prolonged period. These results motivate a careful investigation of theoretical predictions of these alternate scenarios that can be distinguished using future observations. Moreover, it is also very important to revisit the measurements of H I photoionization rates that are crucial to the analysis presented here.
Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics and mini-halos for a sample of galaxy clusters from literature, and calculate their radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio power of relics, halos and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, with the correlations concerning giant radio halos being, in general, the strongest ones. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in intracluster medium responsible for reaccelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics are correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
We report on Atacama Large Millimeter/submillimeter Array (ALMA) detections of molecular absorption lines in Bands 3, 6 and 7 toward four radio-loud quasars, which were observed as the bandpass and complex gain calibrators. The absorption systems, three of which are newly detected, are found to be Galactic origin. Moreover, HCO absorption lines toward two objects are detected, which almost doubles the number of HCO absorption samples in the Galactic diffuse medium. In addition, high HCO to H13CO+ column density ratios are found, suggesting that the interstellar media (ISM) observed toward the two calibrators are in photodissociation regions, which observationally illustrates the chemistry of diffuse ISM driven by ultraviolet (UV) radiation. These results demonstrate that calibrators in the ALMA Archive are potential sources for the quest for new absorption systems and for detailed investigation of the nature of the ISM.
We study the physical properties of a spectroscopic sample of 28 star-forming galaxies in a large filamentary structure in the COSMOS field at $z\sim$0.53, with spectroscopic data taken with the Keck/DEIMOS spectrograph, and compare them with a control sample of 30 field galaxies. We spectroscopically confirm the presence of a large galaxy filament ($\sim$ 8 Mpc), along which five confirmed X-ray groups exist. We show that within the uncertainties, the ionization parameter, equivalent width (EW), EW versus specific star-formation rate (sSFR) relation, EW versus stellar mass relation, line-of-sight velocity dispersion, dynamical mass, and stellar-to-dynamical mass ratio are similar for filament and field star-forming galaxies. However, we show that on average, filament star-forming galaxies are more metal-enriched ($\sim$ 0.1$-$0.15 dex), possibly due to the inflow of the already enriched intrafilamentary gas into filament galaxies. Moreover, we show that electron densities are significantly lower (a factor of $\sim$17) in filament star-forming systems compared to those in the field, possibly because of a longer star-formation timescale for filament star-forming galaxies. Our results highlight the potential pre-processing role of galaxy filaments and intermediate-density environments on the evolution of galaxies, which has been highly underestimated.
We present a novel approach to constrain the formation channels of
Ultra-Compact Dwarf Galaxies (UCDs). This inhomogeneous class of objects of
remnants of tidally stripped dwarf elliptical galaxies and high mass globular
clusters. We use three methods to unravel their nature: 1) we analysed their
surface brightness profiles, 2) we carried out a direct search for tidal
features around UCDs and 3) we compared the spatial distribution of GCs and
UCDs in the halo of their host galaxy.
Based on FORS2 observations, we have studied the detailed structural
composition of a large sample of 97 UCDs in the halo of NGC1399, the central
galaxy of the Fornax cluster, by analysing theirsurface brightness profiles. We
derived the structural parameters of 13 extended UCDs modelling them with a
single Sersic function and decomposing them into composite King and Sersic
profiles. We find evidence for faint stellar envelopes at mu=~26 mag\arcsec^-2
surrounding the UCDs up to an extension of 90pc in radius.
We also show new evidence for faint asymmetric structures and tidal tail-like
features surrounding several of these UCDs, a possible tracer of their origin
and assembly history within their host galaxy halos. In particular, we present
evidence for the first discovery of a significant tidal tail with an extension
of ~350pc around UCD-FORS2.
We searched for local overdensities in the spatial distribution of globular
clusters within the halo of NGC1399, to see if they are related to the
positions of the UCDs. We found a local overabundance of globular clusters on a
scale of <1kpc around UCDs, when we compare it to the distribution of globulars
from the host galaxy. This effect is strongest for the metal-poor blue GCs. We
discuss how likely it is that these clustered globulars were originally
associated with the UCD.
We present predictions for the surface density of ultracool dwarfs (with spectral types M8-T8) for a host of deep fields that are likely to be observed with the James Webb Space Telescope. Based on simple thin and thick/thin disk (exponential) models, we show the typical distance modulus is mu~9.8 mag, which at high Galactic latitude is 5log(2 z_scl)-5. Since this is a property of the density distribution of an exponential disk, it is independent of spectral type or stellar sample. Using the published estimates of the ultracool dwarf luminosity function, we show that their number counts typically peak around J~24 mag with a total surface density of Sigma ~ 0.3 arcmin^-2, but with a strong dependence on galactic coordinate and spectral type. Owing to the exponential shape of the disk, the ultracool dwarfs are very rare at faint magnitudes (J>~27 mag), with typical densities of Sigma~0.005 arcmin^-2 (or ~20% of the total contribution within the field). Therefore in the very narrow and deep fields, we predict there are only a few ultracool dwarfs, and hence these stars are likely not a severe contaminant in searches for high-redshift galaxies. Furthermore the ultracool dwarfs are expected to be considerably brighter than the high-redshift galaxies, so samples near the faint-end of the high-redshift galaxy population will be the purest. We present the star-count formalism in a simplified way so that observers may easily predict the number of stars for their conditions (field, depth, wavelength, etc.).
{\bf R}-matrix calculations combined with the adiabatic nuclei approximation are used to compute electron-impact rotiational excitation rates for three closed-shell diatomic cations, HeH$^+$, CH$^+$, ArH$^+$. Comparisons with previous studies show that an improved treatment of threshold effects leads to significant changes in the low temperature rates, furthermore the new calculations suggest that excitation of CH$^+$ is dominated by $\Delta J =1$ transitions as is expected for cations with a large dipole moment. A model for ArH$^+$ excitation in the Crab Nebula is presented which gives results consistent with the observations for electron densities in the range $2-3\times 10^3$~cm$^{-3}$.
We investigate the water deuteration ratio and ortho-to-para nuclear spin ratio of H2 (OPR(H2)) during the formation and early evolution of a molecular cloud, following the scenario that accretion flows sweep and accumulate HI gas to form molecular clouds. We follow the physical evolution of post-shock materials using a one-dimensional shock model, with post-processing gas-ice chemistry simulations. This approach allows us to study the evolution of the OPR(H2) and water deuteration ratio without an arbitrary assumption concerning the initial molecular abundances, including the initial OPR(H2). When the conversion of hydrogen into H2 is almost complete, the OPR(H2) is already much smaller than the statistical value of three due to the spin conversion in the gas phase. As the gas accumulates, the OPR(H2) decreases in a non-equilibrium manner. We find that water ice can be deuterium-poor at the end of its main formation stage in the cloud, compared to water vapor observed in the vicinity of low-mass protostars where water ice is likely sublimated. If this is the case, the enrichment of deuterium in water should mostly occur at somewhat later evolutionary stages of star formation, i.e., cold prestellar/protostellar cores. The main mechanism to suppress water ice deuteration in the cloud is the cycle of photodissociation and reformation of water ice, which efficiently removes deuterium from water ice chemistry. The removal efficiency depends on the main formation pathway of water ice. The OPR(H2) plays a minor role in water ice deuteration at the main formation stage of water ice.
I review some steps in the conversion of molecular cloud gas into stars and planets, with an emphasis in this presentation on the early stage molecular cloud fragmentation that leads to elongated filaments/ribbons. Magnetic fields can play a crucial role in all stages and need to be invoked particularly for early stage fragmentation as well as in late core collapse where it may control disk formation. I also review some elements of hydrodynamic modeling of disk evolution.
The DiskMass survey recently provided measurements of the vertical velocity dispersions of disk stars in a sample of nearly face-on galaxies. By setting the disk scale-heights to be equal to those of edge-on galaxies with similar scale-lengths, it was found that these disks must be sub-maximal, with surprisingly low K-band mass-to-light ratios of the order of $M_\star/L_K \simeq 0.3 M_\odot/L_\odot$. This study made use of a simple relation between the disk surface density and the measured velocity dispersion and scale height of the disk, neglecting the shape of the rotation curve and the dark matter contribution to the vertical force, which can be especially important in the case of sub-maximal disks. Here, we point out that these simplifying assumptions led to an overestimation of the stellar mass-to-light ratios. Relaxing these assumptions, we compute even lower values than previously reported for the mass-to-light ratios, with a median $M_\star/L_K \simeq 0.18 M_\odot/L_\odot$, where 14 galaxies have $M_\star/L_K < 0.11$. Invoking prolate dark matter halos made only a small difference to the derived $M_\star/L_K$, although extreme prolate halos ($q>1.5$ for the axis ratios of the potential) might help. The cross-terms in the Jeans equation are also generally negligible. These deduced K-band stellar mass-to-light ratios are even more difficult to reconcile with stellar population synthesis models than the previously reported ones.
Several thousand solar masses of molecular, atomic and ionized gas lie in the innermost ~10 pc of our Galaxy. The most relevant structure of molecular gas is the circumnuclear ring (CNR), a dense and clumpy ring surrounding the supermassive black hole (SMBH), with a radius of ~2 pc. We propose that the CNR formed through the tidal disruption of a molecular cloud, and we investigate this scenario by means of N-body smoothed-particle hydrodynamics simulations. We ran a grid of simulations with different cloud mass (4X10^4, 1.3X10^5 solar masses), different initial orbital velocity (v_in=0.2-0.5 v_esc, where v_esc is the escape velocity from the SMBH), and different impact parameter (b=8, 26 pc). The disruption of the molecular cloud leads to the formation of very dense and clumpy gas rings, containing most of the initial cloud mass. If the initial orbital velocity of the cloud is sufficiently low (v_in<0.4 v_esc, for b=26 pc) or the impact parameter is sufficiently small (b<10 pc, for v_in>0.5 v_esc), at least two rings form around the SMBH: an inner ring (with radius ~0.4 pc) and an outer ring (with radius ~2-4 pc). The inner ring forms from low-angular momentum material that engulfs the SMBH during the first periapsis passage, while the outer ring forms later, during the subsequent periapsis passages of the disrupted cloud. The inner and outer rings are misaligned by ~24 degrees, because they form from different gas streamers, which are affected by the SMBH gravitational focusing in different ways. The outer ring matches several properties (mass, rotation velocity, temperature, clumpiness) of the CNR in our Galactic centre. We speculate that the inner ring might account for the neutral gas observed in the central cavity.
We use dynamical models that include bulk rotation, velocity dispersion anisotropy and both stars and dark matter to explore the conditions that give rise to the early-type galaxy scaling relations referred to as the Fundamental Plane (FP) and Manifold (FM). The modelled scaling relations generally match the observed relations and are remarkably robust to all changes allowed within these models. The empirical relationships can fail beyond the parameter ranges where they were calibrated and we discuss the nature of those failures. Because the location of individual models relative to the FP and FM is sensitive to the adopted physical scaling of the models, unconstrained rescaling produces a much larger scatter about the scaling relations than that observed. We conclude that only certain combinations of scaling values, which define the physical radial and kinematic scale of the model, produce low scatter versions of the FP and FM. These combinations further result in reproducing a condition observed previously for galaxies, $r_c \rho_0 = $ constant, where $r_c$ is the scaling radius and $\rho_0$ is the central density. As such, we conclude that this empirical finding and global galaxy scaling relations are not independent and that finding the physical cause of one should lead to the solution to the other. Although our models are strictly for pressure supported galaxies, these results may well hold generally because the central density constraint was first identified in dwarf spheroidals but later extended to rotating giant galaxies and the FM applies to galaxies of any morphological type and luminosity class.
We report Keck/ESI and VLT/UVES observations of three super-damped Lyman-alpha quasar absorbers with H I column densities log N(HI) >= 21.7 at redshifts z=2-2.5. All three absorbers show similar metallicities (-1.3 to -1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other DLAs to examine trends between N(HI), metallicity, dust depletion. A larger fraction of the super-DLAs lie close to or above the line [X/H]=20.59-log N(HI) in the metallicity vs. N(HI) plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230-0334 and Q0743+1421 do not cover H2 absorption lines. For Q1418+0718, some H2 lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log N(HI) < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230-0334 and Q1418+0718 show potential detections of weak Ly-alpha emission, implying star formation rates of about 1.6 and 0.7 solar masses per year, respectively (ignoring dust extinction). Upper limits on the electron densities from C II*/C II or Si II*/Si II are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log N(HI) > 21.7 may have somewhat narrower velocity dispersions delta v_90 than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas.
Observations show that spiral galaxies in galaxy clusters tend to have on average less neutral hydrogen (HI) than galaxies of the same type and size in the field. There is accumulating evidence that such HI-deficient galaxies are also relatively frequent in galaxy groups. An important question is, which mechanisms are responsible for the gas deficiency in galaxy groups. To gain a better understanding of how environment affects the gas content of galaxies, we identified a sample of six HI-deficient galaxies from the HI Parkes All Sky Survey (HIPASS) using HI-optical scaling relations. One of the galaxies is located in the outskirts of the Fornax cluster, four are in loose galaxy groups and one is in a galaxy triplet. We present new high resolution HI observations with the Australia Telescope Compact Array (ATCA) of these galaxies. We discuss the possible cause of HI-deficiency in these galaxies based on HI observations and various multi-wavelength data. We find that the galaxies have truncated HI disks, lopsided gas distribution and some show asymmetries in their stellar disks. We conclude that both ram pressure stripping and tidal interactions are important gas removal mechanisms in low density environments.
Filamentary structures are ubiquitous in the interstellar medium, yet their formation, internal structure, and longevity have not been studied in detail. We report the results from a comprehensive numerical study that investigates the characteristics, formation, and evolution of filaments arising from magnetohydrodynamic interactions between supersonic winds and dense clouds. Here we improve on previous simulations by utilising sharper density contrasts and higher numerical resolutions. By following multiple density tracers, we find that material in the envelopes of the clouds is removed and deposited downstream to form filamentary tails, while the cores of the clouds serve as footpoints and late-stage outer layers of these tails. Aspect ratios >12, subsonic velocity dispersions ~0.1-0.3 of the wind sound speed, and magnetic field amplifications ~100 are found to be characteristic of these filaments. We also report the effects of different magnetic field strengths and orientations. The magnetic field strength regulates vorticity production: sinuous filamentary towers arise in non-magnetic environments, while strong magnetic fields inhibit small-scale perturbations at boundary layers making tails less turbulent. Magnetic field components aligned with the direction of the flow favour the formation of pressure-confined flux ropes inside the tails, whilst transverse components tend to form current sheets. Softening the equation of state to nearly isothermal leads to suppression of dynamical instabilities and further collimation of the tail. Towards the final stages of the evolution, we find that small cloudlets and distorted filaments survive the break-up of the clouds and become entrained in the winds, reaching velocities ~0.1 of the wind speed.
We utilize cosmological simulations of 16 galaxy clusters at redshifts $z=0$ and $z=0.6$ to study the effect of inflowing streams on the properties of the inner Intra-Cluster Medium (ICM). We find that the mass accretion occurs predominantly along streams that originate from the cosmic web and consist of heated gas. Clusters that are unrelaxed in terms of their X-ray morphology are characterized by higher mass inflow rates and deeper penetration of the streams, typically into the inner third of the virial radius. The penetrating streams generate elevated random motions, bulk flows, cold fronts and metal mixing, thus producing Non-Cool-Core clusters. The degree of penetration of the streams may change over time such that clusters can switch from being unrelaxed to relaxed over a time-scale of several Gyrs. The stream properties thus help us understand the distinction between cool-core and non-cool-core clusters.
We use photometry in the F220W, F250W, F330W, F435W filters from the High Resolution Channel of the Advanced Camera for Surveys and photometry in the F555W, F675W, and F814W filters from the Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope to derive individual stellar reddenings and extinctions for stars in the HD 97950 cluster in the giant HII region NGC 3603. The mean line-of-sight reddening for about a hundred main-sequence member stars inside the cluster is $E(F435W-F555W)=1.33\pm0.12$ mag. After correcting for foreground reddening, the total to selective extinction ratio is $R_{F555W}=3.75\pm0.87$ in the cluster. Within the standard deviation associated with $E(\rm \lambda-F555W)/E(F435W-F555W)$ in each filter, the cluster extinction curve at ultraviolet wavelengths tends to be greyer than the average Galactic extinction laws from Cardelli et al. (1989) and Fitzpatrick et al. (1999). It is closer to the extinction law derived by Calzetti et al. (2000) for starburst galaxies, where the 0.2175 $\rm \mu m$ bump is absent. This indicates an anomalous extinction in the HD 97950 cluster, which may due to the clumpy dust distribution within the cluster, and the size of dust grains being larger than the average Galactic ISM.
(Abridged) The chemical behaviour of an ample sample of PNe in NGC6822 is analyzed. Spectrophotometric data of 11 PNe and two H II regions were obtained with the OSIRIS spectrograph attached to the Gran Telescopio Canarias. Data for other 13 PNe and three H II regions were retrieved from the literature. Physical conditions and chemical abundances of O, N, Ne, Ar and S were derived for 19 PNe and 4 H II regions. Abundances in the PNe sample are widely distributed showing 12+log(O/H) from 7.4 to 8.2 and 12+log(Ar/H) from 4.97 to 5.80. Two groups of PNe can be differentiated: one old, with low metallicity (12+log(O/H)<8.0 and 12+log(Ar/H)<5.7) and another younger with metallicities similar to the values of H II regions. The old objects are distributed in a larger volume than the young ones. An important fraction of PNe (>30%) was found to be highly N-rich (Type I PNe). Such PNe occur at any metallicity. In addition, about 60% of the sample presents high ionization (He++/He >= 0.1), possessing a central star with effective temperature larger than 10^6 K. Possible bias in the sample are discussed. From comparison with stellar evolution models by A. Karakas's group of the observed N/O abundance ratios, our PNe should have had initial masses lower than 4 M_sun, although if the comparison is made with Ne vs. O abundances, the initial masses should have been lower than 2 M_sun. It appears that these models of stars of 2-3 M_sun are producing too much 22Ne in the stellar surface at the end of the AGB. On the other hand, the comparison with another set of stellar evolution models by P. Ventura's group with a different treatment of convection and on the assumptions concerning the overshoot of the convective core during the core H-burning phase, provided a reasonable agreement between N/O and Ne/H observed and predicted ratios if initial masses of more massive stars are of about 4 M_sun.
Low mass dwarf spheroidal galaxies are key objects for our understanding of
the chemical evolution of the pristine Universe and the Local Group of
galaxies. Abundance ratios in stars of these objects can be used to better
understand their star formation and chemical evolution. We report on the
analysis of a sample of 11 stars belonging to 5 different ultra faint dwarf
spheroidal galaxies (UfDSph) based on X-Shooter spectra obtained at the VLT.
Medium resolution spectra have been used to determine the detailed chemical
composition of their atmosphere. We performed a standard 1D LTE analysis to
compute the abundances.
Considering all the stars as representative of the same population of low
mass galaxies, we found that the [alpha/Fe] ratios vs [Fe/H] decreases as the
metallicity of the star increases in a way similar to what is found for the
population of stars belonging to dwarf spheroidal galaxies. The main difference
is that the solar [alpha/Fe] is reached at a much lower metallicity for the
UfDSph than the dwarf spheroidal galaxies.
We report for the first time the abundance of strontium in CVnI. The star we
analyzed in this galaxy has a very high [Sr/Fe] and a very low upper limit of
barium which makes it a star with an exceptionally high [Sr/Ba] ratio.
Our results seem to indicate that the galaxies which have produced the bulk
of their stars before the reionization (fossil galaxies) have lower [X/Fe]
ratios at a given metallicity than the galaxies that have experienced a
discontinuity in their star formation rate (quenching).
We present 3D hydrodynamic simulations of the adiabatic interaction of a
shock with a dense, spherical cloud. We compare how the nature of the
interaction changes with the Mach number of the shock, M, and the density
contrast of the cloud, chi. We also examine the differences with 2D
axisymmetric calculations, perform detailed resolution tests, and compare
``inviscid'' results to those obtained with the inclusion of a k-epsilon
subgrid turbulence model.
We find that resolutions of 32-64 cells per cloud radius are the minimum
necessary to capture the dominant dynamical processes in 3D simulations. In
contrast to our earlier 2D work, we find that 3D inviscid and k-epsilon
simulations typically show very good agreement. As such, there does not appear
to be any compelling reason for using the k-epsilon subgrid model in 3D
calculations, though it remains very useful for 2D calculations. Clouds
accelerate and mix up to 5 times faster when they are poorly resolved. This has
implications for numerical simulations of multi-phase flows where a fast, low
density medium interacts with slower, higher density clouds (e.g., galactic
winds).
The interaction proceeds very similarly in 2D and 3D - although non-azimuthal
modes lead to different behaviour, there is very little effect on key global
quantities such as the lifetime of the cloud and its acceleration. We do not
find significant differences in the hollowing or ``voiding'' of the cloud
between 2D and 3D simulations with M=10 and chi=10, in contradiction to
expectations. This may be due to the softer edges used for our clouds.
The biggest differences between our 2D and 3D calculations are found when
M=1.5 and chi=10 - the cloud is destroyed more rapidly in 2D simulations,
perhaps because secondary vortices form earlier and are more prevelant in the
higher resolution 2D simulations.
Quasi--stellar objects (quasars) located behind nearby galaxies provide an excellent absolute reference system for astrometric studies, but they are difficult to identify because of fore- and background contamination. Deep wide--field, high angular resolution surveys spanning the entire area of nearby galaxies are needed to obtain a complete census of such quasars. We embarked on a program to expand the quasar reference system behind the Large and the Small Magellanic Clouds, the Magellanic Bridge, and the Magellanic Stream, connecting the Clouds with the Milky Way. Hundreds of quasar candidates were selected based on their near--infrared colors and variability properties from the ongoing public ESO VISTA Magellanic Clouds survey. A subset of 49 objects was followed up with optical spectroscopy. We confirmed the quasar nature of 37 objects (34 new identifications), four are low redshift objects, three are probably stars, and the remaining three lack prominent spectral features for a secure classification; bona fide quasars, judging from their broad absorption lines are located, as follows: 10 behind the LMC, 13 behind the SMC, and 14 behind the Bridge. The quasars span a redshift range from z~0.5 to z~4.1. Upon completion the VMC survey is expected to yield a total of ~1500 quasars with Y<19.32 mag, J<19.09 mag, and Ks<18.04 mag.
An evolution of luminosity of galaxies in emission lines or wavelength ranges
in which they are sensitive to the star formation process is caused by burning
out of the most massive O-class stars during a few million years after a
starburst. We study the impact of this effect on the luminosity function (LF)
of a sample of star-forming galaxies.
We introduce several types of LFs: an initial LF after a starburst, current,
time-averaged and sample ones. We find the relations between them in general
and specify them in the case of the luminosity evolution law proposed for the
luminous compact galaxies. We obtain the sample LF for the cases the initial
one is described by the pure Schechter function or the log-normal distribution
and analyze the properties of these LFs. As a result we get two new types of
LFs to fit the LF of a sample of star-forming galaxies.
By solving analytically the various types of Lane-Emden equations with rotation, we have discovered two new coupled fundamental properties of rotating, self-gravitating, gaseous disks in equilibrium: Isothermal disks must, on average, exhibit strict power-law density profiles in radius $x$ on their equatorial planes of the form $A x^{k-1}$, where $A$ and $k-1$ are the integration constants; and ``flat'' rotation curves precisely such as those observed in spiral galaxy disks. Polytropic disks must, on average, exhibit strict density profiles of the form $\left[\ln(A x^k)\right]^n$, where $n$ is the polytropic index; and ``flat'' rotation curves described by square roots of upper incomplete gamma functions. By ``on average,'' we mean that, irrespective of the chosen boundary conditions, the actual profiles must oscillate around and remain close to the strict mean profiles of the analytic singular equilibrium solutions. We call such singular solutions the ``intrinsic'' solutions of the differential equations because they are demanded by the second-order equations themselves with no regard to the Cauchy problem. The results are directly applicable to gaseous galaxy disks that have long been known to be isothermal and to protoplanetary disks during the extended isothermal and adiabatic phases of their evolution. In galactic gas dynamics, they have the potential to resolve the dark matter--modified gravity controversy in a sweeping manner, as they render both of these hypotheses unnecessary. In protoplanetary disk research, they provide observers with powerful new probing tool, as they predict a clear and simple connection between the radial density profiles and the rotation curves of self-gravitating disks in their very early (pre-Class 0 and perhaps the youngest Class Young Stellar Objects) phases of evolution.
We report the discovery of one RR Lyrae star in the ultra--faint satellite galaxy Hydra II based on time series photometry in the g, r and i bands obtained with the Dark Energy Camera at Cerro Tololo Interamerican Observatory, Chile. The RR Lyrae star has a mean magnitude of $i = 21.30\pm 0.04$ which translates to a heliocentric distance of $151\pm 8$ kpc for Hydra II; this value is $\sim 13\%$ larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of $76^{+12}_{-10}$ pc and a brighter absolute magnitude of $M_V = -5.1 \pm 0.3$, which keeps this object within the realm of the dwarf galaxies. The pulsational properties of the RR Lyrae star ($P=0.645$ d, $\Delta g = 0.68$ mag) suggest Hydra II may be a member of the intermediate Oosterhoff or Oosterhoff II group. A comparison with other RR Lyrae stars in ultra--faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid). However, given their magnitudes and large angular separation from Hydra II, they must be field stars not related to Hydra II.
We investigate the Hierarchical Gravitational Fragmentation scenario through numerical simulations of the prestellar stages of the collapse of a marginally gravitationally unstable isothermal sphere immersed in a strongly gravitationally unstable, uniform background medium. The core developes a Bonnor-Ebert (BE)-like density profile, while at the time of singularity (the protostar) formation the envelope approaches a singular-isothermal-sphere (SIS)-like $r^-2$ density profile. However, these structures are never hydrostatic. In this case, the central flat region is characterized by an infall speed, while the envelope is characterized by a uniform speed. This implies that the hydrostatic SIS initial condition leading to Shu's classical inside-out solution is not expected to occur, and therefore neither should the inside-out solution. Instead, the solution collapses from the outside-in, naturally explaining the observation of extended infall velocities. The core, defined by the radius at which it merges with the background, has a time-variable mass, and evolves along the locus of the ensemble of observed prestellar cores in a plot of $M/M_{BE}$ vs. $M$, where $M$ is the core's mass and $M_{BE}$ is the critical Bonnor-Ebert mass, spanning the range from the "stable" to the "unstable" regimes, even though it is collapsing at all times. We conclude that the presence of an unstable background allows a core to evolve dynamically from the time when it first appears, even when it resembles a pressure-confined, stable BE-sphere. The core can be thought of as a ram-pressure confined BE-sphere, with an increasing mass due to the accretion from the unstable background.
A popular theory of star formation is gravito-turbulent fragmentation, in which self-gravitating structures are created by turbulence-driven density fluctuations. Simple theories of isothermal fragmentation successfully reproduce the core mass function (CMF) which has a very similar shape to the initial mass function (IMF) of stars. However, numerical simulations of isothermal turbulent fragmentation thus far have not succeeded in identifying a fragment mass scale that is independent of the simulation resolution. Moreover, the fluid equations for magnetized, self-gravitating, isothermal turbulence are scale-free, and do not predict any characteristic mass. In this paper we show that, although an isothermal self-gravitating flow does produce a CMF with a mass scale imposed by the initial conditions, this scale changes as the parent cloud evolves. In addition, the cores that form undergo further fragmentation and after sufficient time forget about their initial conditions, yielding a scale-free pure power-law distribution $\mathrm{d} N/\mathrm{d} M\propto M^{-2}$ for the stellar IMF. We show that this problem can be alleviated by introducing a simple model for stellar radiation feedback. Radiative heating, powered by accretion onto forming stars, arrests the fragmentation cascade and imposes a characteristic mass scale that is nearly independent of the time-evolution or initial conditions in the star-forming cloud, and that agrees well with the peak of the observed IMF. In contrast, models that introduce a stiff equation of state for denser clouds but that do not explicitly include the effects of feedback do not yield an invariant IMF.
We analyse color-magnitude diagrams of eight Globular Clusters (GCs) in the outer Galactic Halo. Images were taken with the Wide Field Channel of the Advanced Camera for Survey and the Ultraviolet and Visual Channel of the Wide Field Camera 3 on board of the Hubble Space Telescope. We have determined the fraction of binary stars along the main sequence and combined results with those of a recent paper where some of us have performed a similar analysis on 59 Galactic GCs. In total, binaries have been now studied homogeneously in 67 GCs. We studied the radial and luminosity distributions of the binary systems, the distribution of their mass-ratios and investigated univariate relations with several parameters of the host GCs. We confirm the anti-correlation between the binary fraction and the luminosity of the host cluster, and find that low-luminosity clusters can host a large population in excess of ~40% in the cluster core. However, our results do not support a significant correlation with the cluster age as suggested in the literature. In most GCs, binaries are more centrally concentrated than single stars. If the fraction of binaries is normalised to the core binary fraction the radial density profiles follow a common trend. It has a maximum in the center and declines by a factor of two at a distance of about two core radii from the cluster center. After dropping to its minimum at a radial distance of $\sim$5 core radii it stays approximately constant at larger radii. We also find that the mass-ratio and the distribution of binaries as a function of the mass of the primary star is almost flat.
The \textit{Spitzer} SAGE survey has allowed the identification and analysis of significant samples of Young Stellar Object (YSO) candidates in the Large Magellanic Cloud (LMC). However the angular resolution of \textit{Spitzer} is relatively poor meaning that at the distance of the LMC, it is likely that many of the \textit{Spitzer} YSO candidates in fact contain multiple components. We present high resolution \textit{K}-band integral field spectroscopic observations of the three most prominent massive YSO candidates in the N113 H\,{\sc ii} region using VLT/SINFONI. We have identified six \textit{K}-band continuum sources within the three \textit{Spitzer} sources and we have mapped the morphology and velocity fields of extended line emission around these sources. Br$\gamma$, He\,{\sc i} and H$_2$ emission is found at the position of all six \textit{K}-band sources; we discuss whether the emission is associated with the continuum sources or whether it is ambient emission. H$_2$ emission appears to be mostly ambient emission and no evidence of CO emission arising in the discs of YSOs has been found. We have mapped the centroid velocities of extended Br$\gamma$ emission and He {\sc i} emission and found evidence of two expanding compact H\,{\sc ii} regions. One source shows compact and strong H$_2$ emission suggestive of a molecular outflow. The diversity of spectroscopic properties observed is interpreted in the context of a range of evolutionary stages associated with massive star formation.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
We present Submillimeter Array (SMA) molecular line observations in two 2
GHz-wide bands centered at 217.5 and 227.5 GHz, toward the massive star forming
region W51 North. We identified 84 molecular line transitions from 17 species
and their isotopologues. The molecular gas distribution of these lines mainly
peaks in the continuum position of W51 North, and has a small tail extending to
the west, probably associated with W51 d2. In addition to the commonly detected
nitrogen and oxygen-bearing species, we detected a large amount of transitions
of the Acetone (CH$_3$COCH$_3$) and Methyl Formate (CH$_3$OCHO), which may
suggest that these molecules are present in an early evolutionary stage of the
massive stars. We also found that W51 North is an ethanol-rich source. There is
no obvious difference in the molecular gas distributions between the
oxygen-bearing and nitrogen-bearing molecules. Under the assumption of Local
Thermodynamic Equilibrium (LTE), with the XCLASS tool, the molecular column
densities, and rotation temperatures are estimated.
We found that the oxygen-bearing molecules have considerable higher column
densities and fractional abundances than the nitrogen-bearing molecules. The
rotation temperatures range from 100 to 200 K, suggesting that the molecular
emission could be originated from a warm environment.
Finally, based on the gas distributions, fractional abundances and the
rotation temperatures, we conclude that CH$_3$OH, C$_2$H$_5$OH, CH$_3$COCH$_3$
and CH$_3$CH$_2$CN might be synthesized on the grain surface, while gas phase
chemistry is responsible for the production of CH$_3$OCH$_3$, CH$_3$OCHO and
CH$_2$CHCN.
We have determined the detailed star formation history and total mass of the globular clusters in the Fornax dwarf spheroidal using archival HST WFPC2 data. Colour magnitude diagrams are constructed in the F555W and F814W bands and corrected for the effect of Fornax field star contamination, after which we use the routine Talos to derive the quantitative star formation history as a function of age and metallicity. The star formation history of the Fornax globular clusters shows that Fornax 1, 2, 3 and 5 are all dominated by ancient~(>10 Gyr) populations. Cluster Fornax 1 and 3 display metallicities as low as [Fe/H]=-2.5 while Fornax 2 and 5 are slightly more metal-rich at [Fe/H]=-2.0, consistent with resolved and unresolved metallicity tracers. Conversely, Fornax 4 displays a more extended star formation history dominated by metal-rich~([Fe/H]=-1.4 dex) stars, with an age of ~10 Gyr, inconsistent with the other clusters. Its central location and complex population mix favours the proposed model that it might be the nucleus of the Fornax dwarf spheroidal. The combined stellar mass in globular clusters as derived from the SFH is (9.73$\pm$0.79)$\times$10$^{5}$ M$_{\odot}$ which corresponds to 2.5$\pm$0.2 percent of the total stellar mass in Fornax. This mass can be further subdivided into metal-poor stars to yield a mass fraction of 9.4$\pm$1.3 percent of the metal-poor Fornax field, or 19.1$\pm$2.8 percent when considering just the full mass of the four most metal-poor clusters. Therefore, the SFH results provide separate supporting evidence for the unusually high mass fraction of the GCs compared to the Fornax field population.
We study the connection of star formation to atomic (HI) and molecular hydrogen (H$_2$) in isolated, low metallicity dwarf galaxies with high-resolution ($m_{\rm gas}$ = 4 M$_\odot$, $N_{\rm ngb}$ = 100) SPH simulations. The model includes self-gravity, non-equilibrium cooling, shielding from an interstellar radiation field, the chemistry of H$_2$ formation, H$_2$-independent star formation, supernova feedback and metal enrichment. We find that the H$_2$ mass fraction is sensitive to the adopted dust-to-gas ratio and the strength of the interstellar radiation field, while the star formation rate is not. Star formation is regulated by stellar feedback, keeping the gas out of thermal equilibrium for densities $n <$ 1 cm$^{-3}$. Because of the long chemical timescales, the H$_2$ mass remains out of chemical equilibrium throughout the simulation. Star formation is well-correlated with cold ( T $\leqslant$ 100 K ) gas, but this dense and cold gas - the reservoir for star formation - is dominated by HI, not H$_2$. In addition, a significant fraction of H$_2$ resides in a diffuse, warm phase, which is not star-forming. The ISM is dominated by warm gas (100 K $<$ T $\leqslant 3\times 10^4$ K) both in mass and in volume. The scale height of the gaseous disc increases with radius while the cold gas is always confined to a thin layer in the mid-plane. The cold gas fraction is regulated by feedback at small radii and by the assumed radiation field at large radii. The decreasing cold gas fractions result in a rapid increase in depletion time (up to 100 Gyrs) for total gas surface densities $\Sigma_{\rm HI+H_2} \lesssim$ 10 M$_\odot$pc$^{-2}$, in agreement with observations of dwarf galaxies in the Kennicutt-Schmidt plane.
We present the evolution of galaxy sizes, from redshift 2 to 0, for actively star forming and passive galaxies in the cosmological hydrodynamical 1003 cMpc3 simulation of the EAGLE project. We find that the sizes increase with stellar mass , but that the relation weakens with increasing redshift. Separating galaxies by their star formation activity, we find that passive galaxies are typically smaller than active galaxies at fixed stellar mass. These trends are consistent with those found in observations and the level of agreement between the predicted and observed size - mass relation is of order 0.1 dex for z < 1 and 0.2-0.3 dex from redshift 1 to 2. We use the simulation to compare the evolution of individual galaxies to that of the population as a whole. While the evolution of the size-stellar mass relation for active galaxies provides a good proxy for the evolution of individual galaxies, the evolution of individual passive galaxies is not well represented by the observed size - mass relation due to the evolving number density of passive galaxies. Observations of z \approx 2 galaxies have revealed an abundance of massive red compact galaxies, that depletes below z \approx 1. We find that a similar population forms naturally in the simulation. Comparing these galaxies to their z = 0 descendants, we find that all compact galaxies grow in size due to the high-redshift stars migrating outwards. Approximately 60% of the compact galaxies increase in size further due to renewed star formation and/or mergers.
We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multi-wavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in nine filters ($BVRI$ and $ugriz$). Combined with UV data from the $Hubble$ $Space$ $Telescope$ and $Swift$, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from $1158\,{\rm \AA}$ to the $z$-band ($\sim\! 9160\,{\rm \AA}$). We find that the lags at wavelengths longer than the $V$ band are equal to or greater than the lags of high ionization-state emission lines (such as HeII$\lambda 1640$ and $\lambda 4686$), suggesting that the continuum emitting source is of a physical size comparable to the inner broad line region. The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with $\tau \propto \lambda^{4/3}$. However, the lags also imply a disk radius that is 3 times larger than the prediction from standard thin-disk theory, assuming that the bolometric luminosity is 10\% of the Eddington luminosity ($L = 0.1L_{\rm Edd}$). Using optical spectra from the Large Binocular Telescope, we estimate the bias of the inter-band continuum lags due to broad line region emission observed in the filters. We find that the bias for filters with high levels of BLR contamination ($\sim\! 20\%$) can be important for the shortest continuum lags, and likely has a significant impact on the $u$ and $U$ bands due to Balmer continuum emission.
We present an analytic model for how momentum deposition from stellar feedback simultaneously regulates star formation and drives outflows in a turbulent interstellar medium (ISM). Because the ISM is turbulent, a given patch of ISM exhibits sub-patches with a range of surface densities. The high-density patches are 'pushed' by feedback, thereby driving turbulence and self-regulating local star formation. Sufficiently low-density patches, however, are accelerated to above the escape velocity before the region can self-adjust and are thus vented as outflows. In the turbulent-pressure-supported regime, when the gas fraction is $\gtrsim 0.3$, the ratio of the turbulent velocity dispersion to the circular velocity is sufficiently high that at any given time, of order half of the ISM has surface density less than the critical value and thus can be blown out on a dynamical time. The resulting outflows have a mass-loading factor ($\eta \equiv M_{\rm out}/M_{\star}$) that is inversely proportional to the gas fraction times the circular velocity. At low gas fractions, the star formation rate needed for local self-regulation, and corresponding turbulent Mach number, decline rapidly; the ISM is 'smoother', and it is actually more difficult to drive winds with large mass-loading factors. Crucially, our model predicts that stellar-feedback-driven outflows should be suppressed at $z \lesssim 1$ in $M_{\star} \gtrsim 10^{10} M_{\odot}$ galaxies. This mechanism allows massive galaxies to exhibit violent outflows at high redshifts and then 'shut down' those outflows at late times, thereby enabling the formation of a smooth, extended thin stellar disk. We provide simple fitting functions for $\eta$ that should be useful for sub-resolution and semi-analytic models. [abridged]
Using a radio-quiet subsample of the Sloan Digital Sky Survey spectroscopic quasar catalog, spanning redshifts 0.5-3.5, we derive the mean millimetre and far-infrared quasar spectral energy densities via a stacking analysis of Atacama Cosmology Telescope and Herschel-SPIRE data. We constrain the form and evolution of the far-infrared emission finding 3-4$\sigma$ evidence for the presence of the thermal Sunyaev-Zel'dovich (SZ) effect in the millimetre bands. We find this signal to be characteristic of a hot ionized gas component with thermal energy $(6.2 \pm 1.7) \times 10^{60}$erg. This amount of thermal energy is an order of magnitude greater than would be expected assuming only hot gas in virial equilibrium with the dark matter haloes of $(1-5)\times 10^{12}h^{-1}$M$_\odot$ that these systems are expected to occupy, though the highest quasar mass estimates found in the literature could explain a large fraction of this energy. We find that our measurements are consistent with a scenario in which quasars deposit up to $(14.5 \pm 3.3)~\tau_8^{-1}$ per cent of their radiative energy into their circumgalactic environment if their typical period of quasar activity is $\tau_8\times 10^8$ years. If quasar host masses are high ($\sim10^{13}h^{-1}$M$_\odot$), then this percentage will be reduced significantly. Furthermore, the uncertainty quoted for this percentage is only statistical and additional systematic uncertainties (e.g., on quasar bolometric luminosity) enter at the 40 per cent level. Finally, emission from thermal dust is significant in these systems, with infrared luminosities of $\log_{10}(L_{\rm ir}/{\rm L}_\odot)=11.4-12.2$, increasing to higher redshift. We consider various models for dust emission. While sufficiently complex dust models can obviate the SZ effect, the SZ interpretation remains favoured at the 3-4$\sigma$ level for most models.
Studying star formation beyond the optical radius of galaxies allows us to test empirical relations in extreme conditions with low average gas density and low molecular fraction. Previous studies discovered galaxies with extended ultraviolet (XUV) disks, which often contain star forming regions with lower Halpha-to-far-UV (FUV) flux ratios compared to inner disk star forming regions. However, most previous studies lack measurements of molecular gas, which is presumably the component of the interstellar medium out of which stars form. We analyzed published CO measurements and upper limits for fifteen star forming regions in the XUV or outer disk of three nearby spiral galaxies and a new CO upper limit from the IRAM 30 m telescope in one star forming region at r = 3.4 r_25 in the XUV disk of NGC 4625. We found that the star forming regions are in general consistent with the same molecular-hydrogen Kennicutt-Schmidt law that applies within the optical radius, independent of whether we used Halpha or FUV as the star formation rate (SFR) tracer. However, a number of the CO detections are significantly offset towards higher SFR surface density for their molecular hydrogen surface density. Deeper CO data may enable us to use the presence or absence of molecular gas as an evolutionary probe to break the degeneracy between age and stochastic sampling of the initial mass function as the explanation for the low Halpha-to-FUV flux ratios in XUV disks.
The analysis of galaxy properties and the relations among them and the environment, can be used to investigate the physical processes driving galaxy evolution. We study the cluster A209 by using the CLASH-VLT spectroscopic data combined with Subaru photometry, yielding to 1916 cluster members down to a stellar mass of 10^{8.6} Msun. We determine: i) the stellar mass function of star-forming and passive galaxies; ii) the intra-cluster light and its properties; iii) the orbits of low- and high-mass passive galaxies; and iv) the mass-size relation of ETGs. The stellar mass function of the star-forming galaxies does not depend on the environment, while the slope found for passive galaxies becomes flatter in the densest region. The color distribution of the intra-cluster light is consistent with the color of passive members. The analysis of the dynamical orbits shows that low-mass passive galaxies have tangential orbits, avoiding small pericenters around the BCG. The mass-size relation of low-mass passive ETGs is flatter than that of high mass galaxies, and its slope is consistent with that of field star-forming galaxies. Low-mass galaxies are also more compact within the scale radius of 0.65 Mpc. The ratio between stellar and number density profiles shows a mass segregation in the center. The comparative analysis of the stellar and total density profiles indicates that this effect is due to dynamical friction. Our results are consistent with a scenario in which the "environmental quenching" of low-mass galaxies is due to mechanisms such as harassment out to R200, starvation and ram-pressure stripping at smaller radii, as supported by the analysis of the mass function, of the dynamical orbits and of the mass-size relation of passive early-types in different regions. Our analyses support the idea that the intra-cluster light is formed through the tidal disruption of subgiant galaxies.
The dust-content of damped Lyman-alpha systems (DLAs) is an important observable for understanding their origin and the neutral gas reservoirs of galaxies. While the average colour-excess of DLAs, E(B-V), is known to be <15 milli-magnitudes (mmag), both detections and non-detections with ~2 mmag precision have been reported. Here we find 3.2-sigma statistical evidence for DLA dust-reddening of 774 Sloan Digital Sky Survey (SDSS) quasars by comparing their fitted spectral slopes to those of ~7000 control quasars. The corresponding E(B-V) is 3.0 +/- 1.0 mmag, assuming a Small Magellanic Cloud (SMC) dust extinction law, and it correlates strongly (3.5-sigma) with the metal content, characterised by the SiII1526 absorption-line equivalent width, providing additional confidence that the detection is due to dust in the DLAs. Evolution of E(B-V) over the redshift range 2.1 < z < 4.0 is limited to <2.5 mmag per unit redshift (1-sigma), consistent with the known, mild DLA metallicity evolution. There is also no apparent relationship with neutral hydrogen column density, N(HI), though the data are consistent with a mean E(B-V)/N(HI) = (3.5 +/- 1.0) x 10^{-24} mag cm^2, approximately the ratio expected from the SMC scaled to the lower metallicities typical of DLAs. We implement the SDSS selection algorithm in a portable code to assess the potential for systematic, redshift-dependent biases stemming from its magnitude and colour-selection criteria. The effect on the mean E(B-V) is negligible (<5 per cent) over the entire redshift range of interest. Given the broad potential usefulness of this implementation, we make it publicly available.
The formation of the Milky Way stellar halo is thought to be the result of merging and accretion of building blocks such as dwarf galaxies and massive globular clusters. Recently, Deason et al. (2015) suggested that the Milky Way outer halo formed mostly from big building blocks, such as dwarf spheroidal galaxies, based on the similar number ratio of blue straggler (BS) stars to blue horizontal-branch (BHB) stars. Here we demonstrate, however, that this result is seriously biased by not taking into detailed consideration on the formation mechanism of BHB stars from helium enhanced second-generation population. In particular, the high BS-to-BHB ratio observed in the outer halo fields is most likely due to a small number of BHB stars provided by GCs rather than to a large number of BS stars. This is supported by our dynamical evolution model of GCs which shows preferential removal of first generation stars in GCs. Moreover, there are a sufficient number of outer halo GCs which show very high BS-to-BHB ratio. Therefore, the BS-to-BHB number ratio is not a good indicator to use in arguing that more massive dwarf galaxies are the main building blocks of the Milky Way outer halo. Several lines of evidence still suggest that GCs can contribute a significant fraction of the outer halo stars.
We investigate the formation of metal-poor globular clusters (GCs) at the center of two dark matter halos with $M_{halo}\sim4\times10^7\,M_\odot$ at $z>10$ using cosmological radiation-hydrodynamics simulations. We find that very compact ($\lesssim$ 1 pc) and massive ($\sim6\times10^5\,M_\odot$) clusters form rapidly when pristine gas collapses isothermally with the aid of efficient Ly$\alpha$ emission during the transition from molecular-cooling halos to atomic-cooling halos. Because the local free-fall time of dense star-forming gas is very short ($\ll 1\,{\rm Myr}$), a large fraction of the collapsed gas is turned into stars before stellar feedback processes blow out the gas and shut down star formation. Although the early stage of star formation is limited to a small region of the central star-forming disk, we find that the disk quickly fragments due to metal enrichment from supernovae. Sub-clusters formed in the fragmented clouds eventually merge with the main cluster at the center. We estimate using a simple analytic calculation that, if 20 percent of these halos form a GC, they can account for the number of metal-poor GCs observed in the local Universe, making this scenario appealing. However, despite the similarities in mass, star formation histories, and size to the local GCs, we find that there is a substantial spread in metallicities within each simulated GC candidate, as metals are enriched inhomogeneously in star-forming clouds. We discuss a possible solution, involving Pop III stars, to the metal enrichment problem.
We use the CARMA millimeter interferometer to map the Antennae Galaxies (NGC4038/39), tracing the bulk of the molecular gas via the 12CO(1-0) line and denser molecular gas via the high density transitions HCN(1-0), HCO+(1-0), CS(2-1), and HNC(1-0). We detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified "supergiant molecular clouds". We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formation efficiency (SFR/H2~IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of 6 within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in mm-wave line emission, while the overlap region is the brightest part of the system in the IR. We combine the CARMA and Herschel data with ALMA CO data to report line ratio patterns for each bright point. CO shows a declining spectral line energy distribution, consistent with previous studies. HCO+(1-0) emission is stronger than HCN(1-0) emission, perhaps indicating either more gas at moderate densities or higher optical depth than is commonly seen in more advanced mergers.
Nuclear star clusters (NCs) are found to exist in the centres of many galaxies and appear to follow scaling relations similar to those of super-massive black holes. Previous analytical work has suggested that such relations are a consequence of feedback regulated growth. We explore this idea using high resolution hydrodynamical simulations, focusing on the validity of the simplifying assumptions made in analytical models. In particular, we investigate feedback emanating from multiple stellar sources rather than from a single source, as is usually assumed, and show that collisions betweens shells of gas swept up by feedback leads to momentum cancellation and the formation of high density clumps and filaments. This high density material is resistant both to expulsion from the galaxy potential and to disruption by feedback; if it falls back onto the NC, we expect the gas to be available for further star formation or for feeding a central black hole. We also note our results may have implications for the evolution of globular clusters and stellar clusters in high redshift dark matter halos.
We present the first large scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([NII]) at 122 $\mu$m and 205 $\mu$m. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines-of-sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10$^{-8}$ - 10$^{-7}$ $W$m$^{-2}$sr$^{-1}$ level over the range -60$^{o}$ $\leq$ $l$ $\leq$ 60$^{o}$. The $rms$ of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [NII] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding $n(e)$ largely in the range 10 to 50 cm$^{-3}$ with an average value of 29 cm$^{-3}$ and N$^+$ column densities 10$^{16}$ to 10$^{17}$ cm$^{-2}$. [NII] emission is highly correlated with that of [CII], and we calculate that between 1/3 and 1/2 of the [CII] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [NII] emission is not the Warm Ionized Medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [NII] include the ionized surfaces of dense atomic and molecular clouds, the extended low density envelopes of HII regions, and low-filling factor high-density fluctuations of the WIM.
We present new near-infrared (NIR) observations of M63 from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The extremely deep 3.6 $\mu$m mosaic reaches 29 AB mag arcsec$^{-2}$ at the outer reaches of the azimuthally-averaged surface brightness profile. At this depth the consequences of galactic accretion are found within a nearby tidal stream and an up-bending break in the slope of the surface brightness profile. This break occurs at a semi-major axis length of $\sim$8', and is evidence of either an enhanced outer disc or an inner stellar halo. Simulations of galaxy evolution, along with our observations, support an inner halo as the explanation for the up-bending break. The mass of this halo component is the largest found in an individual galaxy thus far. Additionally, our observations detect a nearby tidal stream. The mass of the stream suggests that a handful of such accretion events are necessary to populate the inner stellar halo. We also find that the accretion rate of the galaxy from the stream alone underestimates the accretion rate required to build M63's inner stellar halo.
The statistical description of Giant Molecular Cloud (GMC) properties relies heavily on the performance of automatic identification algorithms, which are often seriously affected by the survey design. The algorithm we designed, SCIMES (Spectral Clustering for Interstellar Molecular Emission Segmentation), is able to overcome some of these limitations by considering the cloud segmentation problem in the broad framework of the graph theory. The application of the code on the CO(3-2) High Resolution Survey (COHRS) data allowed for a robust decomposition of more than 12,000 objects in the Galactic Plane. Together with the wealth of Galactic Plane surveys of the recent years, this approach will help to open the door to a future, systematic cataloging of all discrete molecular features of our own Galaxy.
Rotation curves of more than one hundred spiral galaxies were compiled from the literature, and deconvolved into bulge, disk, and dark halo using $\chi^2$ fitting in order to determine their scale radii and masses. Correlation analyses were obtained of the fitting parameters for galaxies that satisfied selection and accuracy criteria. Size-mass relations indicate that the sizes and masses are positively correlated among different components in such a way that the larger or more massive is the dark halo, the larger or more massive are the disk and bulge. Empirical size-mass relations were obtained for bulge, disk and dark halo by the least-squares fitting. The disk-to-halo mass ratio was found to be systematically greater by a factor of three than that predicted by cosmological simulations combined with photometry. A preliminary mass function for dark halo was obtained, which is represented by the Schechter function followed by a power law.
We have estimated a metallicity map of the Large Magellanic Cloud (LMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind map of metallicity up to a radius of 4 - 5 degrees, derived using photometric data and calibrated using spectroscopic data of Red Giant Branch (RGB) stars. We identify the RGB in the V, (V$-$I) colour magnitude diagrams of small subregions of varying sizes in both data sets. We use the slope of the RGB as an indicator of the average metallicity of a subregion, and calibrate the RGB slope to metallicity using spectroscopic data for field and cluster red giants in selected subregions. The average metallicity of the LMC is found to be [Fe/H] = $-$0.37 dex ($\sigma$[Fe/H] = 0.12) from MCPS data, and [Fe/H] = $-$0.39 dex ($\sigma$[Fe/H] = 0.10) from OGLE III data. The bar is found be the most metal-rich region of the LMC. Both the data sets suggest a shallow radial metallicity gradient up to a radius of 4 kpc ($-$0.049$\pm$0.002 dex kpc$^{-1}$ to $-$0.066$\pm$0.006 dex kpc$^{-1}$). Subregions in which the mean metallicity differs from the surrounding areas do not appear to correlate with previously known features; spectroscopic studies are required in order to assess their physical significance.
The finding of a double red clump in the luminosity function of the Milky Way bulge has been interpreted as evidence for an X-shaped structure. Recently, an alternative explanation has been suggested, where the double red clump is an effect of multiple stellar populations in a classical spheroid. In this letter we provide an observational assessment of this scenario and show that it is not consistent with the behaviour of the red clump across different lines of sight, particularly at high distances from the Galactic plane. Instead, we confirm that the shape of the red clump magnitude distribution closely follows the distance distribution expected for an X-shaped bulge at critical Galactic latitudes. We also emphasize some key observational properties of the bulge red clump that should not be neglected in the search for alternative scenarios.
We present the study of the structure and dynamical status of the galaxy system A523. Our analysis is based on new spectroscopic data for 132 galaxies (TNG), new photometric data (INT), X-ray data (Chandra archive), and radio data (VLA archive). We present the first measures of velocity dispersion of the galaxy population, 949 km/s, and global X-ray temperature of the hot ICM, 5.3 keV. We infer that A523 is a massive system, M200 about 7-9 10E14 Msun. Our analysis of optical data confirms the presence of two subclusters, 0.75 Mpc apart, tracing the SSW-NNE direction, finds that they are (little) separated in velocity, and identifies the two dominant galaxies (BCG1 and BCG2). We show that the X-ray surface brightness is strongly elongated towards the NNE direction, and its peak is clearly offsetted from both the BCGs, and quantify the presence of substructure. We confirm the presence of a 1.3 Mpc large central radio source, its main ESE-WNW elongation perpendicular to the optical/X-ray elongation, and the previous halo classification. We determine a large radio/X-ray peaks offset and detect evidence of polarization, being this detected in only very few radio halos. The radio/X-ray offset and polarization might be the result of having most magnetic field energy on large spatial scales, as shown by our ad hoc simulations. Most properties are consistent with scaling relations followed by other clusters hosting radio halos, but A523 is shown to be peculiar in the Pradio-Lx plane, having a higher radio power or a lower X-ray luminosity than expected. According to main optical and X-ray features, A523 can be described as a binary head--on merger after the primary collision in the SSW-NNE direction. However, both optical and radio data show some evidence in favor of a more complex cluster structure with A523 forming at the cross of two filaments, along SSW-NNE and ESE-WNW directions.
We examine metallicities, ages and orbital properties of halo stars in a Milky-Way like disk galaxy formed in the cosmological hydrodynamical MaGICC simulations. Halo stars were either accreted from satellites or they formed in situ in the disk or bulge of the galaxy and were then kicked up into the halo ("in situ/ kicked-up" stars). Regardless of where they formed both types show surprisingly similar orbital properties: the majority of stars of both types are on short-axis tubes with the same sense of rotation as the disk -- implying that a large fraction of satellites are accreted onto the halo with the same sense of angular momentum as the disk.
We characterize the physical properties of the cool T ~ 10^4 K circumgalactic medium surrounding z ~ 2-3 quasar host galaxies, which are predicted to evolve into present day massive ellipticals. Using a statistical sample of 14 quasar pairs with projected separation < 300 kpc and high dispersion, high S/N spectra, we find extreme kinematics with low metal ion lines typically spanning 500 km s^-1, exceeding any previously studied galactic population. The CGM is significantly enriched, even beyond the virial radius, with a median metallicity [M/H] = -0.6. The alpha/Fe abundance ratio is enhanced, suggesting that halo gas is primarily enriched by Type II supernovae. The total mass of the cool CGM is estimated to be 1.9*10^11 M_sun (R_\perp/160 kpc)^2, accounting for 1/3 of the galaxy halo baryonic budget. The ionization state of CGM gas increases with projected distance from the foreground quasars, contrary to expectation if the quasar dominates the ionizing radiation flux. However, we also found peculiarities not exhibited in the CGM of other galaxy populations. In one absorption system, we may be detecting unresolved fluorescent Ly-alpha emission, and another system shows strong NV lines. Taken together these anomalies suggest that transverse sightlines are at least in some cases possibly illuminated. We also discovered a peculiar case where detection of the CII fine structure line implies an electron density > 100 cm^-3 and subparsec scale gas clumps.
The visibility of LyA emitting galaxies during the Epoch of Reionization is controlled by both diffuse HI patches in large-scale bubble morphology and small-scale absorbers. To investigate the impact on LyA photons, we apply a novel combination of analytic and numerical calculations to three scenarios: (i) the `bubble' model, where only diffuse HI outside ionized bubbles is present; (ii) the `web' model, where HI exists only in overdense self-shielded gas; and (iii) the more realistic 'web-bubble' model, which contains both. Our analysis confirms that there is a degeneracy between the ionization structure of the intergalactic medium (IGM) and the HI fraction inferred from LyA surveys, as the three models suppress LyA flux equally with very different HI fractions. We argue that a joint analysis of the LyA luminosity function and the rest-frame equivalent width distribution/LyA fraction can break this degeneracy and provide constraints on the reionization history and its topology. We further show that constraints can improve if we consider the full shape of the M_UV-dependent redshift evolution of the LyA fraction of Lyman break galaxies. Contrary to conventional wisdom, we find that (i) a drop of LyA fraction larger for UV-faint than for UV-bright galaxies can be reproduced with web and web-bubble models and therefore does not provide exclusive evidence of patchy reionization, and (ii) the IGM-transmission PDF is unimodal for bubble models and bimodal in web models. We further highlight the importance of galaxy-absorber cross-correlation. Comparing our models to observations, the neutral fraction at z~7 is likely to be of order of tens of per cent when interpreted with bubble or web-bubble models. Alternatively, we obtain a conservative lower limit ~1% in the web models, if we allow for a drop in the photoionization rate by a factor of ~100 from the post-reionized universe. [abridged]
Empirical methods for connecting galaxies to their dark matter halos have become essential in interpreting measurements of the spatial statistics of galaxies. Among the most successful of these methods is the technique of subhalo abundance matching, which has to date been used to associate galaxy properties with a small set of halo properties. We generalize this set of halo properties to allow variable dependence on halo concentration, and parameterize the degree of concentration dependence with a single parameter. This parameter provides a smooth interpolation between abundance matching to peak halo mass and to peak halo circular velocity. We characterize the influence of this parameter on two-point clustering, the satellite fraction, and the degree of galaxy assembly bias. We also evaluate the degeneracies between the concentration dependence and the scatter in the abundance matching relation. We show that low redshift clustering measurements from SDSS prefer a moderate amount of concentration dependence --- more than would be indicated by matching galaxy luminosity to the peak halo mass, and less than would be indicated by matching to the peak halo circular velocity. We also show that these results are robust to moderate changes in cosmological parameters, and that the best-fit model from two-point clustering agrees with previous measurements of the satellite fraction. We note that statistical constraints on these models have been (and still are, in most regimes) limited primarily by sample variance in the limited-size simulations, and not in the data. We discuss physical interpretations of these results and their implications for the galaxy-halo connection.
Filaments are ubiquitous in the universe. They are seen in cosmological structures, in the Milky Way centre and in dense interstellar gas. Recent observations have revealed that stars and star clusters form preferentially at the intersection of dense filaments. Understanding the formation and properties of filaments is therefore a crucial step in understanding star formation. Here we perform three-dimensional high-resolution magnetohydrodynamical simulations that follow the evolution of molecular clouds and the formation of filaments and stars within them. We apply a filament detection algorithm and compare simulations with different combinations of physical ingredients: gravity, turbulence, magnetic fields and jet/outflow feedback. We find that gravity-only simulations produce significantly narrower filament profiles than observed, while simulations that at least include turbulence produce realistic filament properties. For these turbulence simulations, we find a remarkably universal filament width of (0.10+/-0.02) pc, which is independent of the evolutionary stage or the star formation history of the clouds. We derive a theoretical model that provides a physical explanation for this characteristic filament width, based on the sonic scale (lambda_sonic) of molecular cloud turbulence. Our derivation provides lambda_sonic as a function of the cloud diameter L, the velocity dispersion sigma_v, the gas sound speed c_s and the strength of the magnetic field parameterised by plasma beta. For typical cloud conditions in the Milky Way spiral arms, we find theoretically that lambda_sonic = 0.04-0.16 pc, in excellent agreement with the filament width of 0.05-0.15 pc found in observations.
Galaxy mergers produce binaries of supermassive black holes, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.
The Interferometric Monitoring of Gamma-ray Bright Active galactic nuclei (iMOGABA) program provides not only simultaneous multifrequency observations of bright gamma-ray detected active galactic nuclei (AGN), but also covers the highest Very Large Baseline Interferometry (VLBI) frequencies ever being systematically monitored, up to 129 GHz. However, observation and imaging of weak sources at the highest observed frequencies is very challenging. In the second paper in this series, we evaluate the viability of the frequency phase transfer technique to iMOGABA in order to obtain larger coherence time at the higher frequencies of this program (86 and 129 GHz) and image additional sources that were not detected using standard techniques. We find that this method is applicable to the iMOGABA program even under non-optimal weather conditions.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
A large fraction of the dwarf satellite galaxies orbiting the Andromeda galaxy are surprisingly aligned in a thin, extended and seemingly kinematically coherent planar structure. Such a structure is not easily found in simulations based on the Cold Dark Matter model. Using 21 high resolution cosmological simulations based on this model we analyze in detail the kinematical structure of planes of satellites resembling the one observed around Andromeda when co-rotation is characterized by the line-of-sight velocity. At the same time, when co-rotation is inferred by the angular momenta of the satellites, the planes are in excellent agreement with the plane around the Milky Way. Furthermore, we find such planes to be common in our simulations. Investigation of the kinematics of the satellites in the plane reveals that the number of co-rotating satellites varies by 2 to 5 out of ~12 depending on the viewing angle. These variations are consistent with that obtained from a sample with random velocities. Using instead the clustering of angular momentum vectors of the satellites in the plane results in a better measure of kinematic coherence. Thus we conclude that the line-of-sight velocity as a proxy for the kinematical coherence of the plane is not a robust measure. Detailed analysis of the kinematics of our planes shows that the planes consist of ~30% chance aligned satellites. Tracking the satellites in the plane back in time reveals that the plane is a transient feature and not kinematically coherent as would appear at first sight.
How starburst clusters form out of molecular clouds is still an open question. In this article, I highlight some of the key constraints in this regard, that one can get from the dynamical evolutionary properties of dense stellar systems. I particularly focus on secular expansion of massive star clusters and hierarchical merging of sub-clusters, and discuss their implications vis-a-vis the observed properties of young massive clusters. The analysis suggests that residual gas expulsion is necessary for shaping these clusters as we see them today, irrespective of their monolithic or hierarchical mode of formation.
We investigate optical, infrared, and radio active galactic nucleus (AGN) signs in the merger remnant Arp 187, which hosts luminous jets launched in the order of $10^5$ yr ago but whose present-day AGN activity is still unknown. We find AGN signs from the optical BPT diagram and infrared [OIV]25.89 $\mu$m line, originating from the narrow line regions of AGN. On the other hand, Spitzer/IRS show the host galaxy dominated spectra, suggesting that the thermal emission from the AGN torus is considerably small or already diminished. Combining the black hole mass, the upper limit of radio luminosity of the core, and the fundamental plane of the black hole enable us to estimate X-ray luminosity, which gives $<10^{40}$ erg s$^{-1}$. Those results suggest that the AGN activity of Arp 187 has already been quenched, but the narrow line region is still alive owing to the time delay of emission from the past AGN activity.
In the low redshift Universe (z<0.3), our view of galaxy evolution is primarily based on fibre optic spectroscopy surveys. Elaborate methods have been developed to address aperture effects when fixed aperture sizes only probe the inner regions for galaxies of ever decreasing redshift or increasing physical size. These aperture corrections rely on assumptions about the physical properties of galaxies. The adequacy of these aperture corrections can be tested with integral-field spectroscopic data. We use integral-field spectra drawn from 1212 galaxies observed as part of the SAMI Galaxy Survey to investigate the validity of two aperture correction methods that attempt to estimate a galaxy's total instantaneous star formation rate. We show that biases arise when assuming that instantaneous star formation is traced by broadband imaging, and when the aperture correction is built only from spectra of the nuclear region of galaxies. These biases may be significant depending on the selection criteria of a survey sample. Understanding the sensitivities of these aperture corrections is essential for correct handling of systematic errors in galaxy evolution studies.
In our recent investigation (Lim et al. 2015), we have shown that narrow-band photometry can be combined with low-resolution spectroscopy to effectively search for globular clusters (GCs) with supernovae (SNe) enrichments. Here we apply this technique to the metal-poor bulge GC NGC 6273, and find that the red giant branch stars in this GC are clearly divided into two distinct subpopulations having different calcium abun- dances. The Ca rich subpopulation in this GC is also enhanced in CN and CH, showing a positive correlation between them. This trend is identical to the result we found in M22, suggesting that this might be a ubiquitous nature of GCs more strongly affected by SNe in their chemical evolution. Our results suggest that NGC 6273 was massive enough to retain SNe ejecta which would place this cluster in the growing group of GCs with Galactic building block characteristics, such as {\omega} Centauri and Terzan 5.
We have obtained spectropolarimetric observations of the four images of the gravitationally lensed broad absorption line quasar H1413+117. The polarization of the microlensed image D is significantly different both in the continuum and in the broad lines from the polarization of image A which is essentially unaffected by microlensing. The observations suggest that the continuum is scattered off two regions spatially separated and producing roughly perpendicular polarizations. These results are compatible with a model in which the microlensed polarized continuum comes from a compact region located in the equatorial plane close to the accretion disk and the non-microlensed continuum from an extended region located along the polar axis.
3C318, a radio-loud quasar at z=1.574, is a subgalactic-sized radio source, and a good test-bed for the interplay between black hole and galaxy growth in the high-z Universe. Based on its IRAS, ISO, and SCUBA detections, it has long been considered as one of the most intrinsically luminous (L$_{\mathrm{IR}}$ > 10$^{13}$ L$_{\odot}$) infrared sources in the Universe. Recent far-infrared data from the Herschel Space Observatory reveal that most of the flux associated with 3C318 measured with earlier instruments in fact comes from a bright nearby source. Optical imaging and spectroscopy show that this infrared-bright source is a strongly star-forming pair of interacting galaxies at z=0.35. Adding existing Spitzer and SDSS photometry, we perform a spectral energy distribution analysis of the pair, and find that it has a combined infrared luminosity of L$_{\mathrm{IR}}$ = 1.5 $\times$ 10$^{12}$ L$_{\odot}$, comparable to other intermediate-redshift ultra-luminous infrared galaxies studied with Herschel. Isolating the emission from 3C318's host, we robustly constrain the level of star formation to a value a factor of three lower than that published earlier, which is more in line with the star formation activity found in other Herschel-detected 3CR objects at similar redshift.
We explore star-formation histories (SFHs) of galaxies based on the evolution of the star-formation rate stellar mass relation (SFR-M*). Using data from the FourStar Galaxy Evolution Survey (ZFOURGE) in combination with far-IR imaging from the Spitzer and Herschel observatories we measure the SFR-M* relation at 0.5 < z < 4. Similar to recent works we find that the average infrared SEDs of galaxies are roughly consistent with a single infrared template across a broad range of redshifts and stellar masses, with evidence for only weak deviations. We find that the SFR-M* relation is not consistent with a single power-law of the form SFR ~ M*^a at any redshift; it has a power-law slope of a~1 at low masses, and becomes shallower above a turnover mass (M_0) that ranges from 10^9.5 - 10^10.8 Msol, with evidence that M_0 increases with redshift. We compare our measurements to results from state-of-the-art cosmological simulations, and find general agreement in the slope of the SFR-M* relation albeit with systematic offsets. We use the evolving SFR-M* sequence to generate SFHs, finding that typical SFRs of individual galaxies rise at early times and decline after reaching a peak. This peak occurs earlier for more massive galaxies. We integrate these SFHs to generate mass-growth histories and compare to the implied mass-growth from the evolution of the stellar mass function. We find that these two estimates are in broad qualitative agreement, but that there is room for improvement at a more detailed level. At early times the SFHs suggest mass-growth rates that are as much as 10x higher than inferred from the stellar mass function. However, at later times the SFHs under-predict the inferred evolution, as is expected in the case of additional growth due to mergers.
We estimate the age for the individual stars located at the lower part of the red giant branch from the LAMOST DR2 K giant sample. Taking into account the selection effects and the volume completeness, the age--metallicity map for the stars located between 0.3 and 1.5 kpc from the Sun is obtained. A significant substructure (denoted as the \it{narrow stripe}) located from (age, [Fe/H])$\sim$(5, 0.4) to (10 Gyr, -0.4 dex) in the age--metallicity map is clearly identified. Moreover, the \it{narrow stripe} stars are found the dominate contributors to several velocity substructures, including the well-known Hercules stream. The substantially large difference between the observed guiding-center radii and the birth radii inferred from the age--metallicity relation is evident that the \it{narrow stripe} stars have been radially migrated from about R$\sim4$ kpc to the solar neighborhood. This implies that the Hercules stream may not be owe to the resonance associated with the bar, but may be the kinematic imprint of the inner disk and later moved out due to radial migration. We estimate that the traveling speed of the radial migration are roughly 1.1$\pm0.1$ kpc Gyr$^{-1}$, equivalent with about $1.1\pm0.1$ km s$^{-1}$. This is in agreement with the median $v_R$ of $2.6^{+1.8}_{-1.9}$ km s$^{-1}$ of the \it{narrow stripe}. We also obtain that about one third stars in the solar neighborhood are radially migrated from around 4 kpc. Finally, we find that the radial migration does not lead to additional disk thickening according to the distribution of $z_{max}$.
We report on observations of the hydroxyl radical (OH) within The H{\sc I}, OH Recombination line survey (THOR) pilot region. The region is bounded approximately between Galactic coordinates l=29.2 to 31.5$^\circ$ and b=-1.0 to +1.0$^\circ$ and includes the high-mass star forming region W43. We identify 103 maser sites, including 72 with 1612\,MHz masers, 42 showing masers in either of the main line transitions at 1665 and 1667\,MHz and four showing 1720\,MHz masers. Most maser sites with either main-line or 1720\,MHz emission are associated with star formation, whereas most of the 1612\,MHz masers are associated with evolved stars. We find that nearly all of the main-line maser sites are co-spatial with an infrared source, detected by GLIMPSE. We also find diffuse OH emission, as well as OH in absorption towards selected unresolved or partially resolved sites. Extended OH absorption is found towards the well known star forming complex W43 Main.
We present the results of models that were designed to study all possible water maser transitions in the frequency range 0-1.91THz, with particular emphasis on maser transitions that may be generated in evolved-star envelopes and observed with the ALMA and SOFIA telescopes. We used tens of thousands of radiative transfer models of both spin species of H2O, spanning a considerable parameter space in number density, kinetic temperature and dust temperature. Results, in the form of maser optical depths, have been summarized in a master table, Table 6. Maser transitions identified in these models were grouped according to loci of inverted regions in the density/kinetic temperature plane, a property clearly related to the dominant mode of pumping. A more detailed study of the effect of dust temperature on maser optical depth enabled us to divide the maser transitions into three groups: those with both collisional and radiative pumping schemes (22,96,209,321,325,395,941 and 1486\,GHz), a much larger set that are predominantly radiatively pumped, and another large group with a predominantly collisional pump. The effect of accelerative and decelerative velocity shifts of up to 5km/s was found to be generally modest, with the primary effect of reducing computed maser optical depths. More subtle asymmetric effects, dependent on line overlap, include maximum gains offset from zero shift by >1km/s, but these effects were predominantly found under conditions of weak amplification. These models will allow astronomers to use multi-transition water maser observations to constrain physical conditions down to the size of individual masing clouds (size of a few astronomical units).
The formation and evolution of galaxies require large reservoirs of cold, neutral gas. The damped Lya systems (DLAs), seen in absorption towards distant quasars and gamma-ray bursts, are predicted to be the dominant reservoirs for this gas. Detailed properties of DLAs have been studied extensively for decades with great success. However, their size, fundamental in understanding their nature, has remained elusive, as quasar and gamma-ray-burst sightlines only probe comparatively tiny areas of the foreground DLAs. Here, we introduce a new approach to measure the full extent of DLAs in the sightlines toward extended background sources. We present the discovery of a high-column-density (log N(HI) = 21.1 +/-0.4 cm^-2) DLA at z ~ 2.4 covering 90-100% of the luminous extent of a line-of-sight background galaxy. Estimates of the size of the background galaxy range from a minimum of a few kpc^2, to ~100 kpc^2, and demonstrate that high-column density neutral gas can span continuous areas 10^8 - 10^10 times larger than previously explored in quasar or gamma-ray burst sightlines. The DLA presented here is the first from a sample of DLAs in our pilot survey that searches Lyman break and Lyman continuum galaxies at high redshift. The low luminosities, large sizes, and mass contents (>~10^6 - 10^9 M_solar) implied by this DLA and the early data suggest that DLAs contain the necessary fuel for galaxies, with many systems consistent with relatively massive, low-luminosity primeval galaxies.
We examine the evolution of the Parker instability in galactic disks using 3D numerical simulations. We consider a local Cartesian box section of a galactic disk, where gas, magnetic fields and cosmic rays are all initially in a magnetohydrostatic equilibrium. This is done for different choices of initial cosmic ray density and magnetic field. The growth rates and characteristic scales obtained from the models, as well as their dependences on the density of cosmic rays and magnetic fields, are in broad agreement with previous (linearized, ideal) analytical work. However, this non-ideal instability develops a multi-modal 3D structure, which cannot be quantitatively predicted from the earlier linearized studies. This 3D signature of the instability will be of importance in interpreting observations. As a preliminary step towards such interpretations, we calculate synthetic polarized intensity and Faraday rotation measure maps, and the associated structure functions of the latter, from our simulations; these suggest that the correlation scales inferred from rotation measure maps are a possible probe for the cosmic ray content of a given galaxy. Our calculations highlight the importance of cosmic rays in these measures, making them an essential ingredient of realistic models of the interstellar medium.
The Einstein Equivalence Principle is a fundamental principle of the theory of General Relativity. While this principle has been thoroughly tested with standard matter, the question of its validity in the Dark sector remains open. In this paper, we consider a general tensor-scalar theory that allows to test the equivalence principle in the Dark sector by introducing two different couplings to standard matter and to Dark matter. We constrain these couplings by considering galactic observations of strong lensing and of velocity dispersion. Our analysis shows that, in case of a violation of the Einstein Equivalence Principle, data favour violations through couplings to ordinary and Dark matters of opposite signs. At the same time, General Relativity remains perfectly compatible with observations at a 2-$\sigma$ confidence level.
The XXIXth IAU General Assembly in Honolulu adopted IAU 2015 Resolution B2 on recommended zero points for the absolute and apparent bolometric magnitude scales. The resolution was proposed by the IAU Inter-Division A-G Working Group on Nominal Units for Stellar and Planetary Astronomy after consulting with a broad spectrum of researchers from the astronomical community. Resolution B2 resolves the long-standing absence of an internationally-adopted zero point for the absolute and apparent bolometric magnitude scales. Resolution B2 defines the zero point of the absolute bolometric magnitude scale such that a radiation source with $M_{\rm Bol}$ = 0 has luminosity L$_{\circ}$ = 3.0128e28 W. The zero point of the apparent bolometric magnitude scale ($m_{\rm Bol}$ = 0) corresponds to irradiance $f_{\circ}$ = 2.518021002e-8 W/m$^2$. The zero points were chosen so that the nominal solar luminosity (3.828e26 W) adopted by IAU 2015 Resolution B3 corresponds approximately to $M_{\rm Bol}$(Sun) = 4.74, the value most commonly adopted in recent literature. The nominal total solar irradiance (1361 W/m$^2$) adopted in IAU 2015 Resolution B3 corresponds approximately to apparent bolometric magnitude $m_{\rm bol}$(Sun) = -26.832. Implicit in the IAU 2015 Resolution B2 definition of the apparent bolometric magnitude scale is an exact definition for the parsec (648000/$\pi$ au) based on the IAU 2012 Resolution B2 definition of the astronomical unit.
Galactic bulge microlensing surveys provide a probe of Galactic structure. We present the first field-by-field comparison between microlensing observations and the Besan\c{c}on population synthesis Galactic model. Using an updated version of the model we provide maps of optical depth, average event duration and event rate for resolved source populations and for difference imaging (DIA) events. We also compare the predicted event timescale distribution to that observed. The simulation follows the selection criteria of the MOA-II survey (Sumi et al. 2013). We modify the Besan\c{c}on model to include M dwarfs and brown dwarfs. Our best fit model requires a brown dwarf mass function slope of $-0.4$. The model provides good agreement with the observed average duration, and respectable consistency with the shape of the timescale distribution (reduced $\chi^2 \simeq 2.2$). The DIA and resolved source limiting yields bracket the observed number of events by MOA-II ($2.17\times$ and $0.83\times$ the number observed, respectively). We perform a 2-dimensional fit to the event spatial distribution to predict the optical depth and event rate across the Galactic bulge. The most serious difficulty for the model is that it provides only $\sim 50\%$ of the measured optical depth and event rate per star at low Galactic latitude around the inner bulge ($|b|<3{^\circ}$). This discrepancy most likely is associated with known under-estimated extinction and star counts in the innermost regions and therefore provides additional support for a missing inner stellar population.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
We conduct precise strong lensing mass modeling of four ${\it Hubble}$ Frontier Fields (HFF) clusters, Abell$~$2744, MACS$~$J0416.1$-$2403, MACS$~$J0717.5$+$3745, and MACS$~$J1149.6$+$2223, for which HFF imaging observations are completed. We construct a refined sample of more than 100 multiple images for each cluster by taking advantage of the full depth HFF images, and conduct mass modeling using the ${\small \rm GLAFIC}$ software, which assumes simply parametrized mass distributions. Our mass modeling also exploits a magnification constraint from the lensed Type Ia supernova HFF14Tom for Abell$~$2744 and positional constraints from multiple images of the lensed supernova SN Refsdal for MACS$~$J1149.6$+$2223. We find that our best-fitting mass models reproduce the observed image positions with RMS errors of $\sim 0.4$ arcsec, which are smaller than RMS errors in previous mass modeling that adopted similar numbers of multiple images. We then construct catalogs of $z\sim 6-9$ dropout galaxies behind the four clusters and estimate magnification factors for these dropout galaxies with our best-fitting mass models. The dropout sample from the four cluster fields contains $\sim 120$ galaxies at $z\gtrsim 6$, about 20 of which are predicted to be magnified by a factor of more than 10. Some of the high-redshift galaxies detected in the HFF have lensing-corrected magnitudes of $M_{\rm UV}\sim -15$ to $-14$. Our analysis demonstrates that the HFF data indeed offer an ideal opportunity to study faint high-redshift galaxies. All lensing maps produced from our mass modeling will be made available on the STScI website.
We have discovered a new H$_2$CO (formaldehyde) $1_{1,0}-1_{1,1}$ 4.82966 GHz maser in Galactic Center Cloud C, G0.38+0.04. At the time of submission, this is the eighth region containing an H$_2$CO maser detected in the Galaxy. Cloud C is one of only two sites of confirmed high-mass star formation along the Galactic Center Ridge, affirming that H$_2$CO masers are exclusively associated with high-mass star formation. This discovery led us to search for other masers, among which we found new SiO vibrationally excited masers, making this the fourth star-forming region in the Galaxy to exhibit SiO maser emission. Cloud C is also a known source of CH$_3$OH Class-II and OH maser emission. There are now two known SiO and H$_2$CO maser containing regions in the CMZ, compared to two and six respectively in the Galactic disk, while there is a relative dearth of H$_2$O and CH$_3$OH Class-II masers in the CMZ. SiO and H$_2$CO masers may be preferentially excited in the CMZ, perhaps due to higher gas-phase abundances from grain destruction and heating, or alternatively H$_2$O and CH$_3$OH maser formation may be suppressed in the CMZ. In any case, Cloud C is a new testing ground for understanding maser excitation conditions.
We present a new exploratory framework to model galaxy formation and evolution in a hierarchical universe by using machine learning (ML). Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively analyzing the extent of the influence of dark matter halo properties on galaxies in the backdrop of semi-analytical models (SAMs). We use the influential Millennium Simulation and the corresponding Munich SAM to train and test various sophisticated machine learning algorithms (k-Nearest Neighbors, decision trees, random forests and extremely randomized trees). By using only essential dark matter halo physical properties for haloes of $M>10^{12} M_{\odot}$ and a partial merger tree, our model predicts the hot gas mass, cold gas mass, bulge mass, total stellar mass, black hole mass and cooling radius at z = 0 for each central galaxy in a dark matter halo for the Millennium run. Our results provide a unique and powerful phenomenological framework to explore the galaxy-halo connection that is built upon SAMs and demonstrably place ML as a promising and a computationally efficient tool to study small-scale structure formation.
There is growing observational evidence of high-redshift quasars launching energetic, fast outflows, but the effects that these have on their host galaxies is poorly understood. We employ the moving-mesh code AREPO to study the feedback from a quasar that has grown to $\sim 10^9 M_\odot$ by $z \sim 5$ and the impact that this has on its host galaxy. Our simulations use a super-Lagrangian refinement technique to increase the accuracy with which the interface of the quasar-driven wind and the surrounding gas is resolved. We find that the feedback injected in these simulations is less efficient at removing gas from the galaxy than in previous work using the same feedback strength, and that this leads to the growth of a massive, rotationally supported, star-forming disc, co-existing with a powerful quasar-driven outflow. The properties of our host galaxy, including the kinematical structure of the gaseous disc and of the outflow, are in good agreement with current observations. Upcoming ALMA and JWST observations will be an excellent test of our model and will provide further clues as to the variance in properties of high-redshift quasar hosts.
We use cosmological simulations from the Feedback In Realistic Environments (FIRE) project, which implement a comprehensive set of stellar feedback processes, to study ultra-violet (UV) metal line emission from the circum-galactic medium of high-redshift (z = 2-4) galaxies. Our simulations cover the halo mass range Mh~2x10^11 - 8.5x10^12 Msun at z = 2, representative of Lyman break galaxies. Of the transitions we analyze, the low-ionization C III (977 A) and Si III (1207 A) emission lines are the most luminous, with C IV (1548 A) and Si IV (1394 A) also showing interesting spatially-extended structures that should be detectable by current and upcoming integral field spectrographs such as the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope and Keck Cosmic Web Imager (KCWI). The more massive halos are on average more UV-luminous. The UV metal line emission from galactic halos in our simulations arises primarily from collisionally ionized gas and is strongly time variable, with peak-to-trough variations of up to ~2 dex. The peaks of UV metal line luminosity correspond closely to massive and energetic mass outflow events, which follow bursts of star formation and inject sufficient energy into galactic halos to power the metal line emission. The strong time variability implies that even some relatively low-mass halos may be detectable in deep observations with current generation instruments. Conversely, flux-limited samples will be biased toward halos whose central galaxy has recently experienced a strong burst of star formation.
The Next-Generation Very Large Array (ngVLA) will be critical for understanding how galaxies are built and evolve at the earliest epochs. The sensitivity and frequency coverage will allow for the detection of cold gas and dust in `normal' distant galaxies, including the low-J transitions of molecular gas tracers such as CO, HNC, and HCO+; synchrotron and free-free continuum emission; and even the exciting possibility of thermal dust emission at the highest (z~7) redshifts. In particular, by enabling the total molecular gas reservoirs to be traced to unprecedented sensitivities across a huge range of epochs simultaneously -- something no other radio or submillimeter facility will be capable of -- the detection of the crucial low-J transitions of CO in a diverse body of galaxies will be the cornerstone of ngVLA's contribution to high-redshift galaxy evolution science. The ultra-wide bandwidths will allow a complete sampling of radio SEDs, as well as the detection of emission lines necessary for spectroscopic confirmation of elusive dusty starbursts. The ngVLA will also deliver unique contributions to our understanding of cosmic magnetism and to science accessible through microwave polarimetry. Finally, the superb angular resolution will move the field beyond detection experiments and allow detailed studies of the morphology and dynamics of these systems, including dynamical modeling of disks/mergers, determining the properties of outflows, measuring black hole masses from gas disks, and resolving multiple AGN nuclei. We explore the contribution of a ngVLA to these areas and more, as well as synergies with current and upcoming facilities including ALMA, SKA, large single-dish submillimeter observatories, GMT/TMT, and JWST.
This white paper discusses how a "next-generation" Very Large Array (ngVLA) operating in the frequency range 1-116 GHz could be a groundbreaking tool to study the detailed astrophysics of the "matter cycle" in the Milky Way and other galaxies. If optimized for high brightness sensitivity, the ngVLA would bring detailed microwave spectroscopy and modeling of the full radio spectral energy distribution into regular use as survey tools at resolutions of 0.1- 1 arcseconds. This wavelength range includes powerful diagnostics of density, excitation, and chemistry in the cold ISM, as well as multiple tracers of the rate of recent star formation, the magnetic field, shocks, and properties of the ionized ISM. We highlight design considerations that would make this facility revolutionary in this area, the foremost of which is a large amount of collecting area on ~km-length baselines. We also emphasize the strong case for harnessing the large proposed collecting area of the ngVLA for very long baseline applications as part of the core design. This would allow measurements of the three dimensional space motions of galaxies to beyond the Local Group and mapping of the Milky Way out to the far side of the disk. Finally, we discuss the gains from the proposed combination of very high resolution and sensitivity to thermal emission, which include observing the feeding of black holes and resolving forming protoclusters.
Fast outflows of gas, driven by the interaction between the radio-jets and ISM of the host galaxy, are being observed in an increasing number of galaxies. One such example is the nearby radio galaxy 3C293. In this paper we present Integral Field Unit (IFU) observations taken with OASIS on the William Herschel Telescope (WHT), enabling us to map the spatial extent of the ionised gas outflows across the central regions of the galaxy. The jet-driven outflow in 3C293 is detected along the inner radio lobes with a mass outflow rate ranging from $\sim 0.05-0.17$ solar masses/yr (in ionised gas) and corresponding kinetic power of $\sim 0.5-3.5\times 10^{40}$ erg/s. Investigating the kinematics of the gas surrounding the radio jets (i.e. not directly associated with the outflow), we find line-widths broader than $300$ km/s up to 5 kpc in the radial direction from the nucleus (corresponding to 3.5 kpc in the direction perpendicular to the radio axis at maximum extent). Along the axis of the radio jet line-widths $>400$ km/s are detected out to 7 kpc from the nucleus and line-widths of $>500$ km/s at a distance of 12 kpc from the nucleus, indicating that the disturbed kinematics clearly extend well beyond the high surface brightness radio structures of the jets. This is suggestive of the cocoon structure seen in simulations of jet-ISM interaction and implies that the radio jets are capable of disturbing the gas throughout the central regions of the host galaxy in all directions.
We present simulations of star forming filaments incorporating - to our knowledge - the largest chemical network used to date on-the-fly in a 3D-MHD simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this we use the newly developed package KROME (Grassi et al. 2014). We combine the KROME package with an algorithm which allows us to calculate the column density and attenuation of the interstellar radiation field necessary to properly model heating and ionisation rates. Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionisation rate. We find that towards the centre of the filaments there is gradual conversion of hydrogen from H^+ over H to H_2 as well as of C^+ over C to CO. Moreover, we find a decrease of the dust temperature towards the centre of the filaments in agreement with recent HERSCHEL observations.
The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order $10^{-12}$erg cm$^{-2}$ s$^{-1}$ deg$^{-2}$. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alone is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.
A gas-grain time dependent chemical code, UCL\_CHEM, has been used to investigate the possibility of using chemical tracers to differentiate between the possible formation mechanisms of brown dwarfs. In this work, we model the formation of a pre-brown dwarf core through turbulent fragmentation by following the depth-dependent chemistry in a molecular cloud through the step change in density associated with an isothermal shock and the subsequent freefall collapse once a bound core is produced. Trends in the fractional abundance of molecules commonly observed in star forming cores are then explored to find a diagnostic for identifying brown dwarf mass cores formed through turbulence. We find that the cores produced by our models would be bright in CO and NH$_3$ but not in HCO$^+$. This differentiates them from models using purely freefall collapse as such models produce cores that would have detectable transitions from all three molecules.
To date O2 has definitely been detected in only two sources, namely rho Oph A and Orion, reflecting the extremely low abundance of O2 in the interstellar medium. One of the sources in the HOP program is the +50 km/s Cloud in the Sgr A Complex in the centre of the Milky Way. The Herschel HIFI is used to search for the 487 and 774 GHz emission lines of O2. No O2 emission is detected towards the Sgr A +50 km/s Cloud, but a number of strong emission lines of methanol (CH3OH) and absorption lines of chloronium (H2Cl+) are observed. A 3 sigma upper limit for the fractional abundance ratio of (O2)/(H2) in the Sgr A +50 km/s Cloud is found to be X(O2) less than 5 x 10(-8). However, since we can find no other realistic molecular candidate than O2 itself, we very tentatively suggest that two weak absorption lines at 487.261 and 487.302 GHz may be caused by the 487 GHz line of O2 in two foreground spiral arm clouds. By considering that the absorption may only be apparent, the estimated upper limit to the O2 abundance of less than (10-20) x 10(-6) in these foreground clouds is very high. This abundance limit was determined also using Odin non-detection limits. If the absorption is due to a differential Herschel OFF-ON emission, the O2 fractional abundance may be of the order of (5-10) x 10(-6). With the assumption of pure absorption by foreground clouds, the unreasonably high abundance of (1.4-2.8) x 10(-4) was obtained. The rotation temperatures for CH3OH-A and CH3OH-E lines in the +50 km/s Cloud are found to be 64 and 79 K, respectively, and the fractional abundance of CH3OH is approximately 5 x 10(-7).
Most successful galaxy formation scenarios now postulate that the intense
star formation in massive, high-redshift galaxies during their major growth
period was truncated when powerful AGNs launched galaxy-wide outflows of gas
that removed large parts of the interstellar medium. The most powerful radio
galaxies at z~2 show clear signatures of such winds, but are too rare to be
good representatives of a generic phase in the evolution of all massive
galaxies at high redshift. Here we present SINFONI imaging spectroscopy of 12
radio galaxies at z~2 that are intermediate between the most powerful radio and
vigorous starburst galaxies in radio power, and common enough to represent a
generic phase in the early evolution of massive galaxies.
The kinematic properties are diverse, with regular velocity gradients with
amplitudes of Delta v=200-400 km s^-1 as in rotating disks as well as irregular
kinematics with multiple velocity jumps of a few 100 km s^-1. Line widths are
generally high, typically around FWHM=800 km s^-1, consistent with wind
velocities in hydrodynamic models. A broad H-alpha line in one target implies a
black hole mass of a few 10^9 M$_sun. The ratio of line widths, sigma, to bulk
velocity, v, is so large that even the gas in galaxies with regular velocity
fields is unlikely to be gravitationally bound. It is unclear, however, whether
the large line widths are due to turbulence or unresolved, local outflows as
are sometimes observed at low redshifts. Comparison of the kinetic energy with
the energy supply from the AGN through jet and radiation pressure suggests that
the radio source still plays a dominant role for feedback, consistent with
low-redshift radio-loud quasars.
We use particle data from the Illustris simulation, combined with individual kinematic constraints on the mass of the Milky Way (MW) at specific distances from the Galactic center, to infer the radial distribution of the MW's dark matter halo mass. Our method allows us to convert any constraint on the mass of the MW within a fixed distance to a full circular velocity profile to the MW's virial radius. As primary examples, we take two recent measurements of the total mass within 50 kpc of the Galaxy -- $4.2\times 10^{11}\,M_{\odot}$ (Deason et al. 2012) and $2.9\times 10^{11}\,M_{\odot}$ (Gibbons et al. 2014) -- and find they imply very different mass profiles and stellar masses for the Galaxy. The dark-matter-only version of the Illustris simulation enables us to compute the effects of galaxy formation on such constraints on a halo-by-halo basis; on small scales, galaxy formation enhances the density relative to dark-matter-only runs, while the total mass density is approximately 20% lower at large Galactocentric distances. We are also able to quantify how current and future constraints on the mass of the MW at specific radii will be reflected in uncertainties on its virial mass: even a measurement of M(<50 kpc) with essentially perfect precision still results in a 20% uncertainty on the virial mass of the Galaxy, while a future measurement of M(<100 kpc) with 10% errors would result in the same level of uncertainty. We expect that our technique will become even more useful as (1) better kinematic constraints become available at larger distances and (2) cosmological simulations provide even more faithful representations of the observable Universe.
We present radial velocities, stellar parameters, and detailed abundances of 39 elements derived from high-resolution spectroscopic observations of red giant stars in the luminous, metal-poor globular cluster NGC 5824. We observe 26 stars in NGC 5824 using the Michigan/Magellan Fiber System (M2FS) and two stars using the Magellan Inamori Kyocera Echelle (MIKE) spectrograph. We derive a mean metallicity of [Fe/H]=-1.94+/-0.02 (statistical) +/-0.10 (systematic). The metallicity dispersion of this sample of stars, 0.08 dex, is in agreement with previous work and does not exceed the expected observational errors. Previous work suggested an internal metallicity spread only when fainter samples of stars were considered, so we cannot exclude the possibility of an intrinsic metallicity dispersion in NGC 5824. The M2FS spectra reveal a large internal dispersion in [Mg/Fe], 0.28 dex, which is found in a few other luminous, metal-poor clusters. [Mg/Fe] is correlated with [O/Fe] and anti-correlated with [Na/Fe] and [Al/Fe]. There is no evidence for internal dispersion among the other alpha- or Fe-group abundance ratios. Twenty-five of the 26 stars exhibit a n-capture enrichment pattern dominated by r-process nucleosynthesis ([Eu/Fe]=+0.11+/-0.12; [Ba/Eu]=-0.66+/-0.05). Only one star shows evidence of substantial s-process enhancement ([Ba/Fe]=+0.56+/-0.12; [Ba/Eu]=+0.38+/-0.14), but this star does not exhibit other characteristics associated with s-process enhancement via mass-transfer from a binary companion. The Pb and other heavy elements produced by the s-process suggest a timescale of no more than a few hundred Myr for star formation and chemical enrichment, like the complex globular clusters M2, M22, and NGC 5286.
This paper discusses compelling science cases for a future long-baseline interferometer operating at millimeter and centimeter wavelengths, like the proposed Next Generation Vary Large Array (ngVLA). We report on the activities of the Cradle of Life science working group, which focused on the formation of low- and high-mass stars, the formation of planets and evolution of protoplanetary disks, the physical and compositional study of Solar System bodies, and the possible detection of radio signals from extraterrestrial civilizations. We propose 19 scientific projects based on the current specification of the ngVLA. Five of them are highlighted as possible Key Science Projects: (1) Resolving the density structure and dynamics of the youngest HII regions and high-mass protostellar jets, (2) Unveiling binary/multiple protostars at higher resolution, (3) Mapping planet formation regions in nearby disks on scales down to 1 AU, (4) Studying the formation of complex molecules, and (5) Deep atmospheric mapping of giant planets in the Solar System. For each of these projects, we discuss the scientific importance and feasibility. The results presented here should be considered as the beginning of a more in-depth analysis of the science enabled by such a facility, and are by no means complete or exhaustive.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)