Giant clumps are a characteristic feature of observed high-redshift disk galaxies. We propose that these kpc-sized clumps have a complex substructure and are the result of many smaller clumps self-organizing themselves into clump clusters (CC). This is in contrast to the common understanding that these giant clumps are single homogeneous objects. Using a high resolution hydrodynamical simulation of an isolated, fragmented massive gas disk and mimicking the observations from Genzel et al. (2011) at $z \sim 2$, we find remarkable agreement in many details. The CCs appear as single entities of sizes $R_{HWHM} \simeq 0.9-1.4$ kpc and masses $\sim 1.5-3 \times 10^9 \ M_{\odot}$ representative of high-z observations. They are organized in a ring around the center of the galaxy. The origin of the observed clump's high intrinsic velocity dispersion $\sigma_{intrinsic} \simeq 50 - 100 \ km \ s^{-1}$ is fully explained by the internal irregular motions of their substructure in our simulation. No additional energy input, e.g. via stellar feedback, is necessary. Furthermore, in agreement with observations, we find a small velocity gradient $V_{grad} \simeq 8 - 27 \ km \ s^{-1} \ kpc^{-1}$ along the CCs in the beam smeared velocity residual maps which corresponds to net prograde and retrograde rotation with respect to the rotation of the galactic disk. The CC scenario could have strong implications for the internal evolution, lifetimes and the migration timescales of the observed giant clumps, bulge growth and AGN activity, stellar feedback and the chemical enrichment history of galactic disks.
We examine radiation-regulated accretion onto intermediate-mass and massive black holes (BHs) embedded in a bulge component. Using spherically symmetric one-dimensional radiation-hydrodynamics simulations, we track the growth of BHs accreting from a cold, neutral gas reservoir with temperature T=10^4 K. We find that the accretion rate of BHs embedded in bulges is proportional to r_{B,eff}/r_B, where r_{B,eff} is the increased effective Bondi radius that includes the gravitational potential of the bulge, and r_B is the Bondi radius of the BH. The radiative feedback from the BH suppresses the cold accretion rate to ~1 percent of the Bondi rate when a bulge is not considered. However, we find that the BH fueling rate increases rapidly when the bulge mass M_bulge is greater than the critical value of 10^6 M_sun and is proportional to M_bulge. Since the critical bulge mass is independent of the central BH mass M_{BH}, the growth rate of BHs with masses of 10^2, 10^4, and 10^6 M_sun exhibits distinct dependencies on the bulge-to-BH mass ratio. Our results imply that light seed BHs (<= 10^2 M_sun) which might be the remnants of the Pop III stars, cannot grow through accretion coevally with the early assembly of the bulge of the host galaxies until the bulge reaches the critical mass. However, massive BH seeds (>= 10^5 M_sun) that may form via direct collapse, are more likely to be embedded in a supercritical bulge and thus can grow efficiently coupling to the host galaxies and driving the early evolution of the M_{BH}-$\sigma$ relationship.
Compiling data from literature and the ALMA archive, we show enhanced HCN(4-3)/HCO$^+$(4-3) and/or HCN(4-3)/CS(7-6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN-enhancement). The number of sample galaxies is significantly increased from our previous work. We expect this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect were conducted to investigate the cause of the high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN-to-HCO$^+$ and HCN-to-CS in AGNs as compared to SB galaxies by a factor of a few to even $>$ 10 is a plausible explanation for the submillimeter HCN-enhancement. However, a counter argument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we could not fully discriminate these two scenarios at this moment due to insufficient amount of multi-transition, multi-species data, the former scenario equivalently claims for abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest it is difficult with conventional gas phase X-ray dominated region (XDR) ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral-neutral reactions that are efficiently activated at high temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs.
Galaxies' interstellar media (ISM) are observed to be supersonically-turbulent, but the ultimate power source that drives turbulent motion remains uncertain. The two dominant models are that the turbulence is driven by star formation feedback and/or that it is produced by gravitational instability in the gas. Here we show that, while both models predict that the galaxies' ISM velocity dispersions will be positively correlated with their star formation rates, the forms of the correlation predicted by these two models are subtly but measurably different. A feedback-driven origin for the turbulence predicts a velocity dispersion that rises more sharply with star formation rate, and that does not depend on the gas fraction (i.e. $\dot{M}_* \propto \sigma^2$), while a gravity-driven model yields a shallower rise and a strong dependence on gas fraction(i.e. $\dot{M}_* \propto f_g^2 \sigma$). We compare the models to a collection of data on local and high-redshift galaxies culled from the literature, and show that the correlation expected for gravity-driven turbulence is a better match to the observations than a feedback-driven model. This suggests that gravity is the ultimate source of ISM turbulence, at least in the rapidly-star-forming, high velocity dispersion galaxies for which our test is most effective. We conclude by discussing the limitations of the present data set, and the prospects for future measurements to enable a more definitive test of the two models.
We examine a large random sample of orbits in self-consistent simulations of N-body bars. Orbits in the bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However only a small fraction of bar orbits ~4% have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame making them equivalent to box orbits in rotating triaxial potentials. A small fraction of bar orbits (~7%) are long axis tubes that behave exactly like those in triaxial ellipsoids:they are tipped about the intermediate-axis due to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (~2%) of short axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits (PKOs) which belong the same major families (short axis tubes, long axis tubes and boxes) occupying the bar at larger radii. During the growth of a SMBH the inflow of mass and outward transport of angular momentum transforms some x1 and long axis tube orbits into prograde short axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies.
We present a new algorithm to reconstruct the Galactic free electron density from pulsar dispersion measures. The algorithm performs a nonparametric tomography for a density field with an arbitrary amount of degrees of freedom. It is based on approximating the Galactic free electron density as the product of a profile function with a statistically isotropic and homogeneous log-normal field. Under this approximation the algorithm generates a map of the free electron density as well as an uncertainty estimate without the need of information about the power spectrum. The uncertainties of the pulsar distances are treated consistently by an iterative procedure. We test the algorithm using the NE2001 model with modified fluctuations as a Galaxy model, pulsar populations generated from the Lorimer population model, and mock observations emulating the upcoming Square Kilometer Array. We show the quality of the reconstruction for mock data sets containing between 1000 and 10000 pulsars with distance uncertainties up to 25%. Our results show, that with the SKA nonparametric tomography of the Galactic free electron density becomes feasible, but the quality of the reconstruction is very sensitive to the distance uncertainties.
We use published OGLE LMC/SMC data to present comprehensive Period-Color (PC) and Amplitude-Color (AC) relations for both fundamental and overtone stars. For fundamental mode stars, we confirm earlier work that the minimum light extinction corrected PC relation in V-I has a shallow slope but with considerable scatter (LMC: $[0.093 \pm 0.019]$ with a standard deviation about this line of 0.116, SMC: $[0.055\pm0.058]$ with a standard deviation about this line of 0.099). We note the high scatter about this line for both the LMC and SMC: either there is some source of uncertainty in extinction or some other physical parameter is responsible for this dispersion. We compare with previous results and discuss some possible causes for this scatter. In contrast, RRc overtone stars do not obey a flat PC relation at minimum light (LMC: $[0.604 \pm 0.041]$ with a standard deviation about this line of 0.109, SMC: $[0.472 \pm 0.265]$ with a standard deviation about this line of 0.091). The fact that fundamental mode RR Lyrae stars obey a flat relation at minimum light and overtone RR Lyrae stars do not is consistent with the interaction of the stellar photosphere and hydrogen ionization front. We compare these results with PC relations for fundamental and first overtone Cepheids. The fact that the PC relations change significantly as a function of phase indicates strongly that Cepheid and RR Lyrae relations can only be understood at mean light when their properties as a function of phase are determined.
We present observations of a remarkable compact group of galaxies at $z = 2.48$. Four galaxies, all within 40 kpc of each other, surround a powerful high redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of $3.6\times10^{11} M_{\odot}$ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the AGN producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At $\gtrsim 50$ kpc from the system, we found a fainter extended-emission region that may be a part of a radio jet-driven outflow.
We report the discovery of an ultra-faint star cluster in the constellation of Centaurus. This new stellar system, Kim 3, features a half light radius of $r_{h}=2.29^{+1.28}_{-0.52}$ pc and a total luminosity of $M_{V}=+0.7\pm0.3$. Approximately 26 stars are identified as candidate member stars down to four magnitudes below the main-sequence turn-off, which makes Kim 3 the least luminous star cluster known to date. The compact physical size and extreme low luminosity place it close to faint star clusters in the size-luminosity plane. The stellar population of Kim 3 appears to be relatively young ($9.5^{+3.0}_{-1.7}$ Gyr) and metal-poor ([Fe/H]$=-1.6^{+0.45}_{-0.30}$) at a heliocentric distance of $15.14^{+1.00}_{-0.28}$ kpc. The cluster lacks a well-defined center and a small but prominent group of stars consistent with the Kim 3 isochrone is present approximately 9.7 pc in projection south of the cluster center. Both are signs of the cluster being in the final stage of tidal disruption.
By means of N-body+Hydrodynamics zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses mh=2-3x10^10 Msun at z=0, both in a WDM and CDM cosmology. The half-mode mass in the WDM power spectrum of our simulations is Mv= 2x 10^10 Msun. In the dark matter only simulations halo density profiles are well described by the NFW parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors 1.5--2.0 than their CDM counterparts. In the hydrodynamical simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase-space density profiles of the WDM halos but not of the CDM ones. The density slope measured at ~ 0.02xRv, alpha, becomes shallow in periods of 2 to 5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global SF, Ms/Mv ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends but when alpha is shallower than -0.5, Ms/Mv is always between 0.25 and 1%. We conclude that the main reason of the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which ensemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form indeed shallow cores. The dynamical heating and expansion processes, behind the DM core flattening, apply also to the stars in a such a way that the stellar age and metallicity gradients of the dwarfs are softened, their stellar half-mass radii strongly grow with time, and their central surface densities decrease.
We have undertaken a dedicated program of automatic source classification in the WISE database merged with SuperCOSMOS scans, comprehensively identifying galaxies, quasars and stars on most of the unconfused sky. We use the Support Vector Machines classifier for that purpose, trained on SDSS spectroscopic data. The classification has been applied to a photometric dataset based on all-sky WISE 3.4 and 4.6 $\mu$m information cross-matched with SuperCOSMOS B and R bands, which provides a reliable sample of $\sim170$ million sources, including galaxies at $z_{\rm med}\sim0.2$, as well as quasars and stars. The results of our classification method show very high purity and completeness (more than 96\%) of the separated sources, and the resultant catalogs can be used for sophisticated analyses, such as generating all-sky photometric redshifts.
We present the first results of our dedicated programme of automatised classification of galaxies, stars and quasars in the mid-infrared all-sky data from the WISE survey. We employ the Support Vector Machines (SVM) algorithm, which defines a hyperplane separating different classes of sources in a multidimensional space of arbitrarily chosen parameters. This approach consists of four general steps: 1) selection of the training sample, 2) selection of the optimal parameter space, 3) training of the classifier, 4) application to target data. Here, as the training set, we use sources from a cross-correlation of the WISE catalogue with the SDSS spectroscopic sample. The performance of the SVM classifier was tested as a function of size of the training set, dimension of the parameter space, WISE apparent magnitude and Galactic extinction. We find that our classifier provides promising results already for three classification parameters: magnitude, colour and differential aperture magnitude. Completeness and purity levels as high as 95% are obtained for quasars, while for galaxies and stars they vary between 80-95% depending on the magnitude, deteriorating for fainter sources.
We report on a systematic investigation of the cold and mildly ionized gaseous baryonic metal components of our Galaxy, through the analysis of high resolution Chandra and XMM-Newton spectra of two samples of Galactic and extragalactic sources. The comparison between lines of sight towards sources located in the disk of our Galaxy and extragalactic sources, allows us for the first time to clearly distinguish between gaseous metal components in the disk and halo of our Galaxy. We find that a Warm Ionized Metal Medium (WIMM) permeates a large volume above and below the Galaxy's disk, perhaps up to the Circum-Galactic space (CGM). This halo-WIMM imprints virtually the totality of the OI and OII absorption seen in the spectra of our extragalactic targets, has a temperature of T(Halo-WIMM)=2900 +/- 900 K, a density <n_H>(Halo-WIMM) = 0.023 +/- 0.009 cm-3 and a metallicity Z(Halo-WIMM) = (0.4 +/- 0.1) Z_Solar. Consistently with previous works, we also confirm that the disk of the Galaxy contains at least two distinct gaseous metal components, one cold and neutral (the CNMM: Cold Neutral Metal Medium) and one warm and mildly ionized, with the same temperature of the Halo-WIMM, but higher density (<n_H>(Disk-WIMM) = 0.09 +/- 0.03 cm-3) and metallicity (Z(Disk-WIMM) = 0.8 +/- 0.1$ Z_Solar). By adopting a simple disk+sphere geometry for the Galaxy, we estimates masses of the CNMM and the total (disk + halo) WIMM of M(CNMM) <~ 8e8 Solar masses and M(WIMM) ~ 8.2e9 Solar masses.
A review of the Gaia mission and its science performance after one year of operations will be presented, and the contribution to reconstructing the history of the Milky Way will be outlined.
The nearby cloud L1642 is one of only two known very high latitude (|b| > 30 deg) clouds actively forming stars. It is a rare example of star formation in isolated conditions, and can reveal important details of star formation in general, e.g., of the effect of magnetic fields. We compare Herschel dust emission structures and magnetic field orientation revealed by Planck polarization maps in L1642. The high-resolution (~18-40") Herschel data reveal a complex structure including a dense, compressed central blob with elongated extensions, low density striations, "fishbone" like structures with a spine and perpendicular striations, and a spiraling "tail". The Planck polarization data (at 10' resolution) reveal an ordered magnetic field pervading the cloud and aligned with the surrounding striations. There is a complex interplay between the cloud structure and large scale magnetic field. This suggests that magnetic field is closely linked to the formation and evolution of the cloud. CO rotational emission confirms that the striations are connected with the main clumps and likely to contain material either infalling to or flowing out of the clumps. There is a clear transition from aligned to perpendicular structures approximately at a column density of NH = 1.6 x 10^21 cm^-2. Comparing the high-resolution Herschel maps with the Planck polarization maps shows the close connection between the magnetic field and cloud structure. This connection is seen even at the finest details of the cloud, most notably in the striations.
We offer an analytical study on the dynamics of a two-body problem perturbed by small post-Newtonian relativistic term. We prove that, while the angular momentum is not conserved, the motion is planar. We also show that the energy is subject to small changes due to the relativistic effect. We also offer a periodic solution to this problem, obtained by a method based of separation of timescales. We demonstrate that our solution is more general than the method developed in the book by Brumberg (1991). The practical applicability of this model may be studies of the long-term evolution of relativistic binaries (neutron stars or black holes).
The total-to-selective extinction RV in the direction of a cluster is found to be 3.12 +/- 0.2 (close to its normal value). We derive the luminosity and mass functions for the cluster main sequence stars. The mass function slope is found to be -2.29 +/- 0.20 which is close to Salpeter value. We find evidence of mass segregation process in the cluster which is not yet dynamically relaxed. We have performed time series photometric observations to detect variable stars within star cluster NGC 1960. The DAOPHOT-II package is utilized to estimate the apparent stellar magnitudes of stars. The secondary standardization method is applied to the transformation of these apparent magnitudes into standard values. The magnitude-time diagrams (light curves) of stars are constructed to identify possible variability nature within them. The stars, having sufficient magnitude variation with time, are considered to be variable stars and their period values have computed through PERIOD04 package. These periodic values of variables are used to construct their corresponding phase diagrams. Here, we are reporting short periodic variables through the photometric analysis of science frames of whole night observations. Their type and variability nature, have been prescribed on the basis of information about amplitude, period and shape of phase diagrams. The location of variables on colour-magnitude-diagram is effective to constrain the history of stellar evolution. Our present analysis indicates that the variability fraction of massive stars is found to be high in the comparison of lighter members.
Links to: arXiv, form interface, find, astro-ph, recent, 1512, contact, help (Access key information)
We report the discovery of NGC 253-dw2, a dwarf spheroidal (dSph) galaxy candidate undergoing tidal disruption around a nearby spiral galaxy, NGC 253 in the Sculptor group: the first such event identified beyond the Local Group. The dwarf was found using small-aperture amateur telescopes, and followed up with Suprime-Cam on the 8 m Subaru Telescope in order to resolve its brightest stars. Using g- and R_c-band photometry, we detect a red giant branch consistent with an old, metal-poor stellar population at a distance of ~ 3.5 Mpc. From the distribution of likely member stars, we infer a highly elongated shape with a semi-major axis half-light radius of (2 +/- 0.4) kpc. Star counts also yield a luminosity estimate of ~ 2x10^6 L_Sun,V (M_V ~ -10.7). The morphological properties of NGC 253-dw2 mark it as distinct from normal dSphs and imply ongoing disruption at a projected distance of ~ 50 kpc from the main galaxy. Our observations support the hierarchical paradigm wherein massive galaxies continously accrete less massive ones, and provide a new case study for dSph infall and dissolution dynamics. We also note the continued efficacy of small telescopes for making big discoveries.
We report the discovery of Scl-MM-Dw2, a new dwarf galaxy at a projected separation of $\sim$50 kpc from NGC 253, as part of the PISCeS (Panoramic Imaging Survey of Centaurus and Sculptor) project. We measure a tip of the red giant branch distance of $3.12\pm0.30$ Mpc, suggesting that Scl-MM-Dw2 is likely a satellite of NGC 253. We qualitatively compare the distribution of red giant branch (RGB) stars in the color-magnitude diagram with theoretical isochrones and find that it is consistent with an old, $\sim$12 Gyr, and metal poor, $-2.3<$[Fe/H]$<-1.1$, stellar population. We also detect a small number of asymptotic giant branch stars consistent with a metal poor $2-3$ Gyr population in the center of the dwarf. Our non-detection of HI in a deep Green Bank Telescope spectrum implies a gas fraction $M_{HI}/L_V<0.02$ Msun/Lsun. The stellar and gaseous properties of Scl-MM-Dw2 suggest that it is a dwarf spheroidal galaxy. Scl-MM-Dw2 has a luminosity of $M_V=-12.1\pm0.5$ mag and a half-light radius of $r_h=2.94\pm0.46$ kpc which makes it moderately larger than dwarf galaxies in the Local Group of the same luminosity. However, Scl-MM-Dw2 is very elongated ($\epsilon=0.66\pm0.06$) and it has an extremely low surface brightness ($\mu_{0,V}=26.5\pm0.7$ mag arcsec$^{-2}$). Its elongation and diffuseness make it an outlier in the ellipticity-luminosity and surface brightness-luminosity scaling relations. These properties suggest that this dwarf is being tidally disrupted by NGC 253.
We analyze Hubble Space Telescope observations of scattering regions in 20 luminous obscured quasars at $0.24<z<0.65$ (11 new observations and 9 archival ones) observed at rest-frame $\sim 3000$\AA. We find spectacular $5-10$ kpc-scale scattering regions in almost all cases. The median scattering efficiency at this wavelength (the ratio of observed to estimated intrinsic flux) is 2.3\%, and 73\% of the observed flux at this wavelength is due to scattered light, which if unaccounted for may strongly bias estimates of quasar hosts' star formation rates. Modeling these regions as illuminated dusty cones, we estimate the radial density distributions of the interstellar medium as well as the geometric properties of circumnuclear quasar obscuration -- inclinations and covering factors. Small derived opening angles (median half-angle and standard deviation 27\dg$\pm$9\dg) are inconsistent with a 1:1 type 1 / type 2 ratio. We suggest that quasar obscuration is patchy and that the observer has a $\sim 40\%$ chance of seeing a type 1 source even through the obscuration. We estimate median density profile of the scattering medium to be $n_{\rm H}=0.04-0.5$ $(1{\rm kpc}/r)^2$ cm$^{-3}$, depending on the method. Quasars in our sample likely exhibit galaxy-wide winds, but if these consist of optically thick clouds then only a small fraction of the wind mass ($\la 10\%$) contributes to scattering.
General relativity has been widely tested in weak gravitational fields but still stands largely untested in the strong-field regime. According to the no-hair theorem, black holes in general relativity depend only on their masses and spins and are described by the Kerr metric. Mass and spin are the first two multipole moments of the Kerr spacetime and completely determine all higher-order moments. The no-hair theorem and, hence, general relativity can be tested by measuring potential deviations from the Kerr metric affecting such higher-order moments. Sagittarius A* (Sgr A*) is a prime target for precision tests of general relativity with several experiments across the electromagnetic spectrum. First, near-infrared (NIR) monitoring of stars orbiting around Sgr A* with current and new instruments is expected to resolve their orbital precessions. Second, timing observations of radio pulsars near the Galactic center may detect characteristic residuals induced by the spin and quadrupole moment of Sgr A*. Third, the Event Horizon Telescope, a global network of mm and sub-mm telescopes, aims to study Sgr A* on horizon scales and to image its shadow cast against the surrounding accretion flow using very-long baseline interferometric (VLBI) techniques. Both NIR and VLBI observations may also detect quasiperiodic variability of the emission from the accretion flow of Sgr A*. In this review, I discuss our current understanding of the spacetime of Sgr A* and the prospects of NIR, timing, and VLBI observations to test its Kerr nature in the near future. [abridged]
We provide detailed comparison between the AMR code Enzo-2.4 and the SPH code GADGET-3 in the context of direct baryonic collapse within DM halos to form supermassive black hole (SMBH) seeds, in isolated and cosmological frameworks, at z ~ 10-20. We find that both codes show an overall agreement in the general features of the collapse, however, many subtle differences exist. For isolated models, we find that the codes increase their spatial and mass resolutions at different pace, leading to substantially earlier collapse times in SPH due to higher gravitational resolution in GADGET-3. In fully cosmological runs, starting from z = 200, the AMR develops a slightly higher baryonic resolution than SPH during DM halo growth via cold accretion permeated by mergers. Still, both numerical schemes agree in the buildup of DM and baryonic structures. However, with the onset of direct collapse, this difference in mass and spatial resolution is amplified, so the evolution of SPH models begins to lag behind the AMR by ~10-20 Myr, especially in the central regions of halos. Such a delay can, in principle, have an effect on formation/destruction rate of molecular hydrogen in the presence of UV background, and on basic properties of host DM halos. Finally, the isolated models in spinning DM halos, with cosmological spin parameter lambda ~ 0.01 - 0.07, show delayed collapse times for greater lambda, but the pace of this increase is faster for the AMR. This conclusion does not stand for cosmological models. Within our simulation setup, GADGET-3 requires significantly larger computational resources than Enzo-2.4 during the collapse stage, cosmological or isolated, and needs similar resources, within factor ~2, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher force and hydrodynamic resolution, except near the end of the collapse.
Large dust grains can fluctuate dramatically in their local density, relative to gas, in neutral, turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains under these conditions. This can have important consequences for star formation and stellar abundances in extremely metal-poor stars. Low-mass stars could form in dust-enhanced regions almost immediately after some dust forms, even if the galaxy-average metallicity is too low for fragmentation to occur. The abundances of these 'promoted' stars may contain interesting signatures, as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced or fluctuate independently. Remarkably, otherwise puzzling abundance patterns of some metal-poor stars can be well-fit by standard core-collapse SNe yields, if we allow for fluctuating dust-to-gas ratios. We also show that the observed log-normal-like distribution of enhancements in these species agrees with our simulations. Moreover, we confirm Mg and Si are correlated in these stars, with abundance ratios similar to those in local silicate grains. Meanwhile [Mg/Ca], predicted to be nearly invariant from pure SNe yields, shows large enhancements as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. This suggests that (1) dust exists in second-generation star formation, (2) dust-to-gas ratio fluctuations occur and can be important for star formation, and (3) light element abundances of these stars may be affected by the chemistry of dust where they formed, rather than directly tracing nucleosynthesis.
(Abridged) Recent spectroscopic surveys have begun to explore the Galactic disk system outside the solar neighborhood on the basis of large data samples. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. We used a Gaussian mixture model algorithm, as a rigurous mathematical approach, to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample from the Gaia-ESO survey internal data release 2. We find that the sample is separated into five groups associated with major Galactic components; the metal-rich end of the halo, the thick disk, and three subgroups for the thin disk sequence. This is confirmed with a sample of red clump stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The two metal-intermediate and metal-rich groups of the thin disk decomposition ([Fe/H]>-0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H]<-0.25 dex) is shifted to larger distances than those of the more metal-rich parts. Moreover, the metal-poor part of the thin disk presents indications of a scale height intermediate between those of the thick and the rest of the thin disk, and it displays higher azimuthal velocities than the latter. These stars might have formed and evolved in parallel and/or dissociated from the inside-out formation taking place in the internal thin disk. Their enhancement levels might be due to their origin from gas pre-enriched by outflows from the thick disk or the inner halo. The smooth trends of their properties (their spatial distribution with respect to the plane, in particular) with [Fe/H] and [Mg/Fe] suggested by the data indicates a quiet dynamical evolution, with no relevant merger events.
We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galaxy (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation-hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds $L>0.01\,L_{\rm Edd}$, where $L_{\rm Edd}$ is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate $10^{-4}-10^{-1}\,M_\odot\,{\rm yr}^{-1}$ through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As $L/L_{\rm edd}$ increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping of the obscuring torus.
We present the K-band luminosity-halo mass relation, $L_{K,500}-M_{500,WL}$, for a subsample of 20 of the 100 brightest clusters in the XXL Survey observed with WIRCam at the Canada-France-Hawaii Telescope (CFHT). For the first time, we have measured this relation via weak-lensing analysis down to $M_{500,WL} =3.5 \times 10^{13}\,M_\odot$. This allows us to investigate whether the slope of the $L_K-M$ relation is different for groups and clusters, as seen in other works. The clusters in our sample span a wide range in mass, $M_{500,WL} =0.35-12.10 \times 10^{14}\,M_\odot$, at $0<z<0.6$. The K-band luminosity scales as $\log_{10}(L_{K,500}/10^{12}L_\odot) \propto \beta log_{10}(M_{500,WL}/10^{14}M_\odot)$ with $\beta = 0.85^{+0.35}_{-0.27}$ and an intrinsic scatter of $\sigma_{lnL_K|M} =0.37^{+0.19}_{-0.17}$. Combining our sample with some clusters in the Local Cluster Substructure Survey (LoCuSS) present in the literature, we obtain a slope of $1.05^{+0.16}_{-0.14}$ and an intrinsic scatter of $0.14^{+0.09}_{-0.07}$. The flattening in the $L_K-M$ seen in previous works is not seen here and might be a result of a bias in the mass measurement due to assumptions on the dynamical state of the systems. We also study the richness-mass relation and find that group-sized halos have more galaxies per unit halo mass than massive clusters. However, the brightest cluster galaxy (BCG) in low-mass systems contributes a greater fraction to the total cluster light than BCGs do in massive clusters; the luminosity gap between the two brightest galaxies is more prominent for group-sized halos. This result is a natural outcome of the hierarchical growth of structures, where massive galaxies form and gain mass within low-mass groups and are ultimately accreted into more massive clusters to become either part of the BCG or one of the brighter galaxies. [Abridged]
We explore from a statistical point of view the far-infrared (far-IR) and sub-millimeter (sub-mm) properties of a large sample of LBGs (22,000) at z~3 in the COSMOS field. The large number of galaxies allows us to split it in several bins as a function of UV luminosity, UV slope, and stellar mass to better sample their variety. We perform stacking analysis in PACS (100 and 160 um), SPIRE (250, 350 and 500 um) and AzTEC (1.1 mm) images. Our stacking procedure corrects the biases induced by galaxy clustering and incompleteness of our input catalogue in dense regions. We obtain the full IR spectral energy distributions (SED) of subsamples of LBGs and derive the mean IR luminosity as a function of UV luminosity, UV slope, and stellar mass. The average IRX is roughly constant over the UV luminosity range, with a mean of 7.9 (1.8 mag). However, it is correlated with UV slope, and stellar mass. We investigate using a statistically-controlled stacking analysis as a function of (stellar mass, UV slope) the dispersion of the IRX-UVslope and IRX-M* plane. Our results enable us to study the average relation between star-formation rate (SFR) and stellar mass, and we show that our LBG sample lies on the main sequence of star formation at z~3.
We present the results of CO(J=3-2) on-the-fly mappings of two nearby non-barred spiral galaxies NGC 628 and NGC 7793 with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25". We successfully obtained global distributions of CO(J=3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially-resolved (sub-kpc) relationship between CO(J=3-2) luminosities (L'CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of JCMT Nearby Galaxy Legacy Survey sample. We found a striking linear L'CO(3-2)-LIR correlation over the 4 orders of magnitude, and the correlation is consistent even with that for ultraluminous infrared galaxies and submillimeter selected galaxies. In addition, we examined the spatially-resolved relationship between CO(J=3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for GMCs in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with 1 dex scatter. We conclude that the CO(J=3-2) star formation law (i.e., linear L'CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies, from spatially-resolved nearby galaxy disks to distant IR-luminous galaxies, within 1 dex scatter.
Gas expulsion is a central concept in some of the models for multiple populations and the light-element anticorrelations in globular clusters. If the star formation efficiency was around 30 per cent and the gas expulsion happened on the crossing timescale, this process could expel preferentially stars born with the chemical composition of the proto-cluster gas, while stars with special composition born in the centre would remain bound. Recently, a sample of extragalactic, gas-free, young massive clusters has been identified that has the potential to test the conditions for gas expulsion. We compute a large number of thin shell models, and calculate if the Rayleigh-Taylor instability is able to disrupt the shell before it reaches the escape speed. We show that the success of gas expulsion depends on the compactness index of a star cluster C5, proportionate to stellar mass over half-mass radius. For given C5, a certain critical, local star formation efficiency is required to remove the rest of the gas. Common stellar feedback processes may not lead to gas expulsion with significant loss of stars above C5 = 1. Considering pulsar winds and hypernovae, the limit increases to C5 = 30. If successful, gas expulsion generally takes place on the crossing timescale. Some observed young massive clusters have 1 < C5 < 10 and are gas-free at 10 Myr. This suggests that gas expulsion does not affect their stellar mass significantly, unless powerful pulsar winds and hypernovae are common in such objects. By comparison to observations, we show that C5 is a better predictor for the expression of multiple populations than stellar mass. The best separation between star clusters with and without multiple populations is achieved by a stellar winds-based gas expulsion model, where gas expulsion would occur exclusively in star clusters without multiple populations.
Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient, and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced due to the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations tracing the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.
We present 2.1 GHz imaging with the Australia Telescope Compact Array (ATCA) of a 6.5 deg^2 region within the XXM-Newton XXL South field using a band of 1.1-3.1 GHz. We achieve an angular resolution of 4.7" x 4.2" in the final radio continuum map with a median rms noise level of 50 uJy/beam. We identify 1389 radio sources in the field with peak S/N >=5 and present the catalogue of observed parameters. We find that 305 sources are resolved, of which 77 consist of multiple radio components. These number counts are in agreement with those found for the COSMOS-VLA 1.4 GHz survey. We derive spectral indices by a comparison with the Sydney University Molongolo Sky Survey (SUMSS) 843MHz data. We find an average spectral index of -0.78 and a scatter of 0.28, in line with expectations. This pilot survey was conducted in preparation for a larger ATCA program to observe the full 25 deg^2 southern XXL field. When complete, the survey will provide a unique resource of sensitive, wide-field radio continuum imaging with complementary X-ray data in the field. This will facilitate studies of the physical mechanisms of radio-loud and radio-quiet AGNs and galaxy clusters, and the role they play in galaxy evolution. The source catalogue is publicly available online via the XXL Master Catalogue browser and the Centre de Donn\'ees astronomiques de Strasbourg (CDS).
This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 sq.deg. fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2m William Herschel Telescope. The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and then presents a study of active galactic nuclei (AGN) within three superclusters. We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z~0.43, and we confirmed the redshift of supercluster XLSSC-d at z~0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters also at z~0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f. This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN in the area of the three superclusters significantly exceeds the field expectations. The difference in the AGN frequency between the three superclusters cannot be explained by the present study because of small number statistics. Further analysis of a larger number of superclusters within the 50 sq. deg. of the XXL is needed before any conclusions on the effect of the supercluster environment on AGN can be reached.
The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5 {\sigma} using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO B0218+357 (z = 0.944), PKS 1441+25 is the most distant very high energy (VHE) blazar detected to date. The observations were triggered by an outburst in 2015 April seen at GeV energies with the Large Area Telescope on board Fermi. Multi-wavelength observations suggest a subdivision of the high state into two distinct flux states. In the band covered by MAGIC, the variability time scale is estimated to be 6.4 +/- 1.9 days. Modeling the broadband spectral energy distribution with an external Compton model, the location of the emitting region is understood as originating in the jet outside the broad line region (BLR) during the period of high activity, while being partially within the BLR during the period of low (typical) activity. The observed VHE spectrum during the highest activity is used to probe the extragalactic background light at an unprecedented distance scale for ground-based gamma-ray astronomy.
We study stability of a dust layer in a gaseous disc subject to the linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary discs. A second dust phase with a small mass, comparing to the first dust phase, would reduce the growth timescale even by a factor of two or more especially when its coupling to the gas is weak. It means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping are accelerated. Thus, presence of dust particles with various sizes must be considered in studies of dust clumping in protoplanetary discs where both large and small dust grains are present.
Traditionally, galaxy clusters have been expected to retain all the material accreted since their formation epoch. For this reason, their matter content should be representative of the Universe as a whole, and thus their baryon fraction should be close to the Universal baryon fraction. We make use of the sample of the 100 brightest galaxy clusters discovered in the XXL Survey to investigate the fraction of baryons in the form of hot gas and stars in the cluster population. We measure the gas masses of the detected halos and use a mass--temperature relation directly calibrated using weak-lensing measurements for a subset of XXL clusters to estimate the halo mass. We find that the weak-lensing calibrated gas fraction of XXL-100-GC clusters is substantially lower than was found in previous studies using hydrostatic masses. Our best-fit relation between gas fraction and mass reads $f_{\rm gas,500}=0.055_{-0.006}^{+0.007}\left(M_{\rm 500}/10^{14}M_\odot\right)^{0.21_{-0.10}^{+0.11}}$. The baryon budget of galaxy clusters therefore falls short of the Universal baryon fraction by about a factor of two at $r_{\rm 500}$. Our measurements require a hydrostatic bias $1-b=M_X/M_{\rm WL}=0.72_{-0.07}^{+0.08}$ to match the gas fraction obtained using lensing and hydrostatic equilibrium. Comparing our gas fraction measurements with the expectations from numerical simulations, our results favour an extreme feedback scheme in which a significant fraction of the baryons are expelled from the cores of halos. This model is, however, in contrast with the thermodynamical properties of observed halos, which might suggest that weak-lensing masses are overestimated. We note that a mass bias $1-b=0.58$ as required to reconcile Planck CMB and cluster counts should translate into an even lower baryon fraction, which poses a major challenge to our current understanding of galaxy clusters. [Abridged]
Context. The S235AB star forming region houses a massive young stellar object
which has recently been reported to exhibit possible evidence of jet rotation -
an illusive yet crucial component of disk aided star formation theories.
Aims. To confirm the presence of a molecular counterpart to the jet and to
further study the molecular environment in in S235AB. Methods. We search for
velocity wings in the line emission of thermal SiO (J=2-1, v=0), a tracer of
shocked gas, which would indicate the presence of jet activity. Utilising other
lines detected in our survey we use the relative intensities of intra species
transitions, isotopes and hyperfine transitions to derive opacities,
temperatures, column densities and abundances of various molecular species in
S235AB.
Results. The SiO (J=2-1, v=0) emission exhibits velocity wing of up to 75
km/s above and below the velocity of the star, indicating the presence of a
jet. The molecular environment describes an evolutionary stage resemblant of a
hot molecular core.
In our preceding paper, Liverpool Telescope data of M31 novae in eruption were used to facilitate a search for their progenitor systems within archival Hubble Space Telescope (HST) data, with the aim of detecting systems with red giant secondaries (RG-novae) or luminous accretion disks. From an input catalog of 38 spectroscopically confirmed novae with archival quiescent observations, likely progenitors were recovered for eleven systems. Here we present the results of the subsequent statistical analysis of the original survey, including possible biases associated with the survey and the M31 nova population in general. As part of this analysis we examine the distribution of optical decline times (t(2)) of M31 novae, how the likely bulge and disk nova distributions compare, and how the M31 t(2) distribution compares to that of the Milky Way. Using a detailed Monte Carlo simulation, we determine that 30 (+13/-10) percent of all M31 nova eruptions can be attributed to RG-nova systems, and at the 99 percent confidence level, >10 percent of all M31 novae are RG-novae. This is the first estimate of a RG-nova rate of an entire galaxy. Our results also imply that RG-novae in M31 are more likely to be associated with the M31 disk population than the bulge, indeed the results are consistent with all RG-novae residing in the disk. If this result is confirmed in other galaxies, it suggests any Type Ia supernovae that originate from RG-nova systems are more likely to be associated with younger populations, and may be rare in old stellar populations, such as early-type galaxies.
[Abridged] We have recently reported on the collapse and fragmentation properties of the northernmost part of this structure, located ~2.4pc north of Orion KL -- the Orion Molecular Cloud 3 (OMC 3, Takahashi et al. 2013). As part of our project to study the integral-shaped filament, we analyze the fragmentation properties of the northern OMC 1 filament. This filament is a dense structure previously identified by JCMT/SCUBA submillimeter continuum and VLA ammonia observations and shown to have fragmented into clumps. We observed OMC1 n with the Submillimeter Array (SMA) at 1.3mm and report on our analysis of the continuum data. We discovered 24 new compact sources, ranging in mass from 0.1 to 2.3, in size from 400 to 1300au, and in density from 2.6 x 10^7 to 2.8 x 10^6 cm^{-3}. The masses of these sources are similar to those of the SMA protostars in OMC3, but their typical sizes and densities are lower by a factor of ten. Only 8% of the new sources have infrared counterparts, yet there are five associated CO molecular outflows. These sources are thus likely in the Class 0 evolutionary phase yet it cannot be excluded that some of the sources might still be pre-stellar cores. The spatial analysis of the protostars shows that these are divided into small groups that coincide with previously identified JCMT/SCUBA 850 micron and VLA ammonia clumps, and that these are separated by a quasi-equidistant length of ~30arcmin (0.06pc). This separation is dominated by the Jeans length, and therefore indicates that the main physical process in the filament's evolution was thermal fragmentation. Within the protostellar groups, the typical separation is ~6arcsec (~2500\,au), which is a factor 2-3 smaller than the Jeans length of the parental clumps within which the protostars are embedded. These results point to a hierarchical (2-level) thermal fragmentation process of the OMC1n filament.
The Post Asymptotic Giant Branch (AGB) phase is arguably one of the least
understood phases of the evolution of low- and intermediate- mass stars. The
two grids of models presently available are based on outdated micro- and
macro-physics and do not agree with each other. We study the timescales of
post-AGB and CSPNe in the context of our present understanding of the micro-
and macro-physics of stars. We want to assess whether new post-AGB models,
based on the latter improvements in TP-AGB modeling, can help to understand the
discrepancies between observation and theory and within theory itself. We
compute a grid of post-AGB full evolutionary sequences that include all
previous evolutionary stages from the Zero Age Main Sequence to the White Dwarf
phase. Models are computed for initial masses between 0.8 and 4 $M_\odot$ and
for a wide range of initial metallicities ($Z_0=$0.02, 0.01, 0.001, 0.0001),
this allow us to provide post-AGB timescales and properties for H-burning
post-AGB objects with masses in the relevant range for the formation of
planetary nebulae ($\sim$ 0.5 - 0.8, $M_\odot$).
We find post-AGB timescales that are at least $\sim 3$ to $\sim 10$ times
shorter than those of old post-AGB stellar evolution models. This is true for
the whole mass and metallicity range. The new models are also $\sim$ 0.1 - 0.3
dex brighter than the previous models with similar remnant masses. Post-AGB
timescales show only a mild dependence on metallicity. The shorter post-AGB
timescales derived in the present work are in agreement with recent
semiempirical determinations of the post-AGB timescales from the CSPNe in the
Galactic Bulge. Due to the very different post-AGB crossing times,
initial-final mass relation and luminosities of the present models, they will
have a significant impact in the predictions for the formation of planetary
nebulae and the planetary nebulae luminosity function.
Intensity mapping of the neutral hydrogen (HI) is a new observational tool that can be used to efficiently map the large-scale structure of the Universe over wide redshift ranges. The power spectrum of the intensity maps contains cosmological information on the matter distribution and probes galaxy evolution by tracing the HI content of galaxies at different redshifts and the scale-dependence of HI clustering. The cross-correlation of intensity maps with galaxy surveys is a robust measure of the power spectrum which diminishes systematics caused by instrumental effects and foreground removal. We examine the cross-correlation signature at redshift z=0.9 using a variant of the semi-analytical galaxy formation model SAGE (Croton et al. 2016) applied to the Millennium simulation in order to model the HI gas of galaxies as well as their optical magnitudes based on their star-formation history. We determine the clustering of the cross-correlation power for different types of galaxies determined by their colours, acting as a proxy for their star-formation activity. We find that the cross-correlation coefficient for red quiescent galaxies falls off more quickly on smaller scales k>0.2h/Mpc than for blue star-forming galaxies. Additionally, we create a mock catalogue of highly star-forming galaxies using a selection function to mimic the WiggleZ survey, and use this to predict existing and future cross-correlation measurements of the GBT and Parkes telescope. We find that the cross-power of highly star-forming galaxies shows a higher clustering on small scales than any other galaxy type and that this significantly alters the power spectrum shape on scales k>0.2h/Mpc. We show that the cross-correlation coefficient is not negligible when interpreting the cosmological cross-power spectrum. On the other hand, it contains information about the HI content of the optically selected galaxies.
The XXL Survey is the largest homogeneous and contiguous survey carried out with XMM-Newton. Covering an area of 50 square degrees distributed over two fields, it primarily investigates the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. Given its depth and sky coverage, XXL is particularly suited to systematically unveiling the clustering of X-ray clusters and to identifying superstructures in a homogeneous X-ray sample down to the typical mass scale of a local massive cluster. A friends-of-friends algorithm in three-dimensional physical space was run to identify large-scale structures. In this paper we report the discovery of the highest redshift supercluster of galaxies found in the XXL Survey. We describe the X-ray properties of the clusters members of the structure and the optical follow-up. The newly discovered supercluster is composed of six clusters of galaxies at a median redshift z around 0.43 and distributed across approximately 30 by 15 arc minutes (10 by 5 Mpc on sky) on the sky. This structure is very compact with all the clusters residing in one XMM pointing; for this reason this is the first supercluster discovered with the XXL Survey. Spectroscopic follow-up with WHT (William Herschel Telescope) and NTT (New Technology Telescope) confirmed a median redshift of z = 0.43. An estimate of the X-ray mass and luminosity of this supercluster and of its total gas mass put XLSSC-e at the average mass range of superclusters; its appearance, with two members of equal size, is quite unusual with respect to other superclusters and provides a unique view of the formation process of a massive structure.
Links to: arXiv, form interface, find, astro-ph, recent, 1512, contact, help (Access key information)
The origin of massive stars is a fundamental open issue in modern astrophysics. Pre-ALMA interferometric studies reveal precursors to early B to late O type stars with collapsing envelopes of 15-20 M$_\odot$ on 1000-3000 AU size-scales. To search for more massive envelopes we selected the most massive nearby young clumps from the ATLASGAL survey to study their protostellar content with ALMA. Our first results using the intermediate scales revealed by the ALMA ACA array providing 3-5" angular resolution, corresponding to $\sim$0.05-0.1 pc size-scales, reveals a sample of compact objects. These massive dense cores are on average two-times more massive than previous studies of similar types of objects. We expect that once the full survey is completed, it will provide a comprehensive view on the origin of the most massive stars.
We report on high-resolution JVLA and Chandra observations of the HST Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0-6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample we find 7 lensed sources with amplification factors larger than $2$. None of these sources are identified as multiply-lensed. Based on the radio luminosities, the majority of these sources are likely star forming galaxies with star formation rates of 10-50 M$_\odot$ yr$^{-1}$ located at $1 \lesssim z \lesssim 2$. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely AGN, given their $2-10$ keV X-ray luminosities of $\sim 10^{43-44}$ erg s$^{-1}$. From the derived radio luminosity function, we find evidence for an increase in the number density of radio sources at $0.6<z<2.0$, compared to a $z < 0.3$ sample. Our observations indicate that deep radio imaging of lensing clusters can be used to study star forming galaxies, with star formation rates as low as $\sim10$ M$_{\odot}$ yr$^{-1}$, at the peak of cosmic star formation history.
One major problem of current theoretical models of galaxy formation is given by their inability to reproduce the apparently "anti-hierarchical" evolution of galaxy assembly: massive galaxies appear to be in place since $z\sim 3$, while a significant evolution is measured for lower mass galaxies, whose number densities increase significantly with decreasing redshift. In this work, we perform a systematic analysis of the influence of different stellar feedback schemes. Our analysis is carried out in the framework of GAEA, a new semi-analytic model that includes a self-consistent treatment for the timings of gas, metal and energy recycling, as well for the chemical yields. We show this to be crucial in order to use observational measurements of the metal content as independent and powerful constraints for the adopted feedback schemes. We find that the observed trends can be reproduced in the framework of either a strong ejective or preventive feedback model. In the former case, the gas ejection rate must decrease significantly with cosmic time, e.g. following parametrizations of the recent cosmological "FIRE" simulations. In the latter case, the re-incorporation time scale is also required to vary with halo mass, as found by previous work. Irrespective of the feedback scheme used, our successful models always imply that up to 60-70 per cent of the baryons reside in an "ejected" reservoir and are unavailable for cooling at high redshift. The same schemes predict physical properties of model galaxies (in terms of e.g. gas content, colour, age, and metallicity) that are in much better agreement with observational data than our previous fiducial model. Our investigation suggests that the overall fraction of passive galaxies is primarily determined by internal physical processes, with environment playing a secondary role, and being important only for the lowest mass galaxies.
The dynamics of stellar streams in rotating barred potentials is explained for the first time. Naturally, neighbouring stream stars reach pericentre at slightly different times. In the presence of a rotating bar, these neighbouring stream stars experience different bar orientations during pericentric passage and hence each star receives a different torque from the bar. These differing torques reshape the angular momentum and energy distribution of stars in the stream, which in turn changes the growth rate of the stream. For a progenitor orbiting in the same sense as the bar's rotation and satisfying a resonance condition, the resultant stream can be substantially shorter or longer than expected, depending on whether the pericentric passages of the progenitor occur along the bar's minor or major axis respectively. We present a full discussion of this phenomenon focusing mainly on streams confined to the Galactic plane. In stark contrast with the evolution in static potentials, which give rise to streams that grow steadily in time, rotating barred potentials can produce dynamically old, short streams. This challenges the traditional viewpoint that the inner halo consists of well phase-mixed material whilst the tidally-disrupted structures in the outer halo are more spatially coherent. We argue that this mechanism plays an important role in explaining the mysteriously short Ophiuchus stream that was recently discovered near the bulge region of the Milky Way.
In a LCDM cosmology, the baryonic Tully-Fisher relation (BTFR) is expected to show significant intrinsic scatter resulting from the mass-concentration relation of dark matter halos and the baryonic-to-halo mass ratio. We study the BTFR using a sample of 118 disc galaxies (spirals and irregulars) with data of the highest quality: extended HI rotation curves (tracing the outer velocity) and Spitzer photometry at 3.6 $\mu$m (tracing the stellar mass). Assuming that the stellar mass-to-light ratio (M*/L) is nearly constant at 3.6 $\mu$m, we find that the scatter, slope, and normalization of the BTFR systematically vary with the adopted M*/L. The observed scatter is minimized for M*/L > 0.5, corresponding to nearly maximal discs in high-surface-brightness galaxies and BTFR slopes close to ~4. For any reasonable value of M*/L, the intrinsic scatter is ~0.1 dex, below general LCDM expectations. The residuals show no correlations with galaxy structural parameters (radius or surface brightness), contrary to the predictions from some semi-analytic models of galaxy formation. These are fundamental issues for LCDM cosmology.
The star formation quenching depends on environment, but a full understanding of what mechanisms drive it is still missing. Exploiting a sample of galaxies with masses $M_\ast>10^{9.8}M_\odot$, drawn from the WIde-field Nearby Galaxy-cluster Survey (WINGS) and its recent extension OMEGAWINGS, we investigate the star formation rate (SFR) as a function of stellar mass (M$_*$) in galaxy clusters at $0.04<z<0.07$. We use non-member galaxies at 0.02$<$z$<$0.09 as field control sample. Overall, we find agreement between the SFR-M$_*$ relation in the two environments, but detect a population of cluster galaxies with reduced SFRs which is rare in the field. These {\it transition} galaxies are mainly found within the cluster virial radius ($R_{200}$) but they impact on the SFR-M$_*$ relation only within 0.6R$_{200}$. The ratio of transition to PSF galaxies strongly depends on environment, being larger than 0.6 within 0.3R$_{200}$ and rapidly decreasing with distance, while it is almost flat with $M_*$. As galaxies move downward from the SFR-M$_*$ main sequence, they become redder and present older luminosity and mass weighted ages. These trends, together with the analysis of the star formation histories, suggest that transition galaxies have had a reduced SFR for the past 2-5 Gyr. Our results are consistent with the hypothesis that the interaction of galaxies with the intracluster medium via strangulation causes a gradual shut down of star formation, giving birth to an evolved population of galaxies in transition from being star forming to becoming passive.
We present new Keck/MOSFIRE K-band spectroscopy for a sample of 14 faint, X-ray selected Active Galactic Nuclei (AGNs) in the COSMOS field. The data covers the spectral region surrounding the broad Balmer emission lines, which enables the estimation of black hole masses (M_BH) and accretion rates (in terms of L/L_Edd). We focus on ten AGN at z~3.3, where the we observe the Hbeta spectral region, while for the other four z~2.4 sources we use the Halpha broad emission line. Compared with previous detailed studies of unobscured AGNs at these high redshifts, our sources are fainter by an order of magnitude, corresponding to number densities of order ~10^-6--10^-5 Mpc^-3. The lower luminosities also allow for a robust identification of the host galaxies emission, necessary to obtain reliable intrinsic AGN luminosities, BH masses and accretion rates. We find the AGNs in our sample to be powered by SMBHs with a typical mass of M_BH~6*10^8 M_Sol - significantly lower than the higher-luminosity, rarer quasars reported in previous studies. The accretion rates are in the range of L/L_Edd~0.1-0.5, with an evident lack of lower-L/L_Edd (and higher M_BH) sources, as found in several studies of faint AGNs at intermediate redshifts. Based on the early growth expected for the SMBHs in our sample, we argue that a significant population of faint z~6 AGNs, with M_BH~10^6 M_Sol, should be detectable in the deepest X-ray surveys available, which is however not observed. We discuss several possible explanations for the apparent absence of such a population, concluding that the most probable scenario involves an evolution in source obscuration and/or radiative efficiencies.
Aims. Using a suite of cosmological chemodynamical disc galaxy simulations, we assess how (a) radial metallicity gradients evolve with scaleheight; (b) the vertical metallicity gradients change through the thick disc; and (c) the vertical gradient of the stellar rotation velocity varies through the disc. We compare with the Milky Way to search for analogous trends. Methods. We analyse five simulated spiral galaxies with masses comparable to the Milky Way. The simulations span a range of star formation and energy feedback strengths and prescriptions, particle- and grid-based hydrodynamical implementations, as well as initial conditions/assembly history. Results. Consistently, we find that the steeper, negative, radial metallicity gradients seen in the mid-plane flatten with increasing height away from the plane. In simulations with stronger (and/or more spatially-extended) feedback, the negative radial gradients invert, becoming positive for heights in excess of 1 kpc. Such behaviour is consistent with that inferred from recent observations. Our measurements of the vertical metallicity gradients show no clear correlation with galactocentric radius, and are in good agreement with those observed in the Milky Way's thick disc (locally). Conclusions. Simulations employing stronger/more extended feedback prescriptions possess radial and vertical metallicity and kinematic gradients more in line with recent observations. The inverted, positive, radial metallicity gradients seen in the simulated thick stellar discs originate from a population of younger, more metal-rich, stars formed in-situ, superimposed upon a background population of older migrators from the inner disc; the contrast provided by the former increases radially, due to the inside-out growth of the disc. A similar behaviour may be responsible for the same flattening seen in the radial gradients with scaleheight in the Milky Way.
We searched for quasi-periodicities on year-like timescales in the light curves of 6 blazars in the optical - near infrared bands and we made a comparison with the high energy emission. We obtained optical/NIR light curves from REM photometry plus archival SMARTS data and we accessed the Fermi light curves for the $\gamma$-ray data. The periodograms often show strong peaks in the optical and gamma-ray bands, which in some cases may be inter-related. The significance of the revealed peaks is then discussed, taking into account that the noise is frequency dependent. Quasi-periodicities on a year-like timescale appear to occur often in blazars. No straightforward model describing these possible periodicities is yet available, but some plausible interpretations for the physical mechanisms causing periodic variabilities of these sources are examined.
Theoretical models of galaxy formation based on the cold dark matter cosmogony typically require strong feedback from supernova (SN) explosions in order to reproduce the Milky Way satellite galaxy luminosity function and the faint end of the field galaxy luminosity function. However, too strong a SN feedback also leads to the universe reionizing too late, and the metallicities of Milky Way satellites being too low. The combination of these four observations therefore places tight constraints on SN feedback. We investigate these constraints using the semi-analytical galaxy formation model GALFORM. We find that these observations favour a SN feedback model in which the feedback strength evolves with redshift. We also investigate the sources of the photons responsible for reionization, and find that, for our best fit model, half of the ionizing photons are emitted by galaxies with rest-frame far-UV absolute magnitudes $M_{\rm AB}(1500{\rm \AA})<-17.5$, which implies that already observed galaxy populations contribute about half of the photons responsible for reionization. The $z=0$ descendants of these galaxies are mainly galaxies with stellar mass $M_*>10^{10}\,{\rm M}_{\odot}$ and preferentially inhabit halos with mass $M_{\rm halo}>10^{13}\,{\rm M}_{\odot}$.
Spectroscopic observations of the low luminosity Seyfert 1 nucleus in NGC 3516 obtained with the Hubble Space Telescope show that the visible spectrum is dominated by the Balmer emission lines of Hydrogen (H) and a continuum luminosity that rises into the UV. The anomalous H${\alpha}$/H${\beta}$ emission line ratio, the Balmer emission line luminosity and the distinctive shape observed for the H${\alpha}$ emission line profile serve as important constraints in any photoionization model aimed at explaining the visible emission line spectrum of NGC 3516. Photoionization modeling using Cloudy demonstrates that the central UV-X-ray source is able to completely ionize the H gas in between the Balmer and dust reverberation radii if the electron density is ${\le}$ 3 ${\times}$ 10${^7}$ cm${^{-3}}$ throughout. Thus, according to this model the region responsible for producing the visible H lines is a dust free shell of ionized H gas. Interestingly, the model predicts a rapid rise in the electron temperature as the central UV-X-ray source is approached, mirrored by an equally precipitous decrease in the Balmer line emissivity that coincides with the Balmer reverberation radius, providing a natural explanation for the finite width observed for the H Balmer lines. Collectively, the merit of the model is that it explains the relative intensities of the three brightest Balmer lines, and the shape of the H${\alpha}$ emission line profile. However, questions remain concerning the unusually weak forbidden lines that can not be addressed using Cloudy due to limitations with the code.
For high-redshift submillimetre or millimetre sources detected with single dish telescopes, interferometric follow-up has shown that many are multiple submm galaxies blended together. Confusion-limited Herschel observations of such targets are also available, and these sample the peak of their spectral energy distribution in the far-infrared. Many methods for analysing these data have been adopted, but most follow the traditional approach of extracting fluxes before model spectral energy distributions are fit, which has the potential to erase important information on degeneracies among fitting parameters and glosses over the intricacies of confusion noise. Here, we adapt the forward-modelling method that we originally developed to disentangle a high-redshift strongly-lensed galaxy group, in order to tackle this problem in a more statistically rigorous way, by combining source deblending and SED fitting into the same procedure. We call this method "SEDeblend." As an application, we derive constraints on far-infrared luminosities and dust temperatures for sources within the ALMA follow-up of the LABOCA Extended Chandra Deep Field South Submillimetre Survey. We find an average dust temperature for an 870 micron-selected sample of (33.9+-2.4) K for the full survey. When selection effects of the sample are considered, we find no evidence that the average dust temperature evolves with redshift.
Using galaxies as background light sources to map the Lya absorption lines is a novel approach to study Damped Lya Absorbers (DLAs). We report the discovery of an intervening z = 3.335 +- 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our VLT/VIMOS survey in the SSA22 field. The measured DLA neutral hydrogen (HI) column density is log (NHI/cm^{-2}) = 21.68 +- 0.17. The DLA covering fraction over the extended background LBG is > 70 % (2 sigma), yielding a conservative constraint on the DLA area as > 1 kpc^2. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate (SFR) larger than a few Msun yr^{-1}, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with Mstar > 5 x 10^{10} Msun or a heavily dust-obscured galaxy with E(B-V) > 2. The DLA may coincide in a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.
We mapped the high-velocity compact cloud CO-0.40-0.22 in 21 molecular lines in the 3 mm band using the Nobeyama Radio Observatory 45 m radio telescope. Eighteen lines were detected from CO-0.40-0.22. The map of each detected line shows that this cloud has a compact appearance (d=~3 pc) and extremely broad velocity width (DV=~100 km/s). The mass and kinetic energy of CO-0.40-0.22 are estimated to be 10^{3.6} M_sun and 10^{49.7} erg, respectively. The representative position-velocity map along the major axis shows that CO-0.40-0.22 consists of an intense region with a shallow velocity gradient and a less intense high-velocity wing. Here, we show that this kinematical structure can be attributed to a gravitational kick to the molecular cloud caused by an invisible compact object with a mass of ~10^5 M_sun. Its compactness and the absence of counterparts at other wavelengths suggest that this massive object is an intermediate-mass black hole.
We analyse distribution, kinematics and star-formation (SF) properties of satellite galaxies in three different samples of nearby groups. We find that studied groups are generally well approximated by low-concentration NFW model, show a variety of LOS velocity dispersion profiles and signs of SF quenching in outskirts of dwarf satellite galaxies.
Aims: Our goal is to study the chemical composition of the outflows of active
galactic nuclei and starburst galaxies.
Methods: We obtained high-resolution interferometric observations of HCN and
HCO$^+$ $J=1\rightarrow0$ and $J=2\rightarrow1$ of the ultraluminous infrared
galaxy Mrk~231 with the IRAM Plateau de Bure Interferometer. We also use
previously published observations of HCN and HCO$^+$ $J=1\rightarrow0$ and
$J=3\rightarrow2$, and HNC $J=1\rightarrow0$ in the same source.
Results: In the line wings of the HCN, HCO$^+$, and HNC emission, we find
that these three molecular species exhibit features at distinct velocities
which differ between the species. The features are not consistent with emission
lines of other molecular species. Through radiative transfer modelling of the
HCN and HCO$^+$ outflow emission we find an average abundance ratio
$X(\mathrm{HCN})/X(\mathrm{HCO}^+)\gtrsim1000$. Assuming a clumpy outflow,
modelling of the HCN and HCO$^+$ emission produces strongly inconsistent
outflow masses.
Conclusions: Both the anti-correlated outflow features of HCN and HCO$^+$ and
the different outflow masses calculated from the radiative transfer models of
the HCN and HCO$^+$ emission suggest that the outflow is chemically
differentiated. The separation between HCN and HCO$^+$ could be an indicator of
shock fronts present in the outflow, since the HCN/HCO$^+$ ratio is expected to
be elevated in shocked regions. Our result shows that studies of the chemistry
in large-scale galactic outflows can be used to better understand the physical
properties of these outflows and their effects on the interstellar medium (ISM)
in the galaxy.
The unprecedentedly bright optical afterglow of GRB 130606A located by Swift at a redshift close to the reionization era (z = 5.913) provides a new opportunity to probe the ionization status of intergalactic medium (IGM). Here we present an analysis of the red Ly alpha damping wing of the afterglow spectrum taken by Subaru/FOCAS during 10.4-13.2 hr after the burst. We find that the minimal model including only the baseline power-law and HI absorption in the host galaxy does not give a good fit, leaving residuals showing concave curvature in 8400-8900 A with an amplitude of about 0.6% of the flux. Such a curvature in the short wavelength range cannot be explained either by extinction at the host with standard extinction curves, intrinsic curvature of afterglow spectra, or by the known systematic uncertainties in the observed spectrum. The red damping wing by intervening HI gas outside the host can reduce the residual by about 3 sigma statistical significance. We find that a damped Ly alpha system is not favored as the origin of this intervening HI absorption, from the observed Ly beta and metal absorption features. Therefore absorption by diffuse IGM remains as a plausible explanation. A fit by a simple uniform IGM model requires HI neutral fraction of f_HI ~ 0.1-0.5 depending on the distance to the GRB host, implying high f_HI IGM associated with the observed dark Gunn-Peterson (GP) troughs. This gives a new evidence that the reionization is not yet complete at z ~ 6.
The unprecedentedly bright afterglow of Swift GRB 130606A at z = 5.91 gave us a unique opportunity to probe the reionization era by high precision analyses of the redward damping wing of Ly alpha absorption, but the reported constraints on the neutral hydrogen fraction (f_HI) in intergalactic medium (IGM) derived from spectra taken by different telescopes are in contradiction. Here we examine the origin of this discrepancy by analyzing the spectrum taken by VLT with our own analysis code previously used to fit the Subaru spectrum. Though the VLT team reported no evidence for IGM HI using the VLT spectrum, we confirmed our previous result of preferring non-zero IGM HI (the best-fit f_HI ~ 0.06, when IGM HI extends to the GRB redshift). The fit residuals of the VLT spectrum by the model without IGM HI show the same systematic trend as the Subaru spectrum. We consider that the likely origin of the discrepancy between the two teams is the difference of the wavelength ranges adopted in the fittings; our wavelength range is wider than that of the VLT team, and also we avoided the shortest wavelength range of deep Ly alpha absorption (lambda_obs < 8426 A), because this region is dominated by HI in the host galaxy and the systematic uncertainty about host HI velocity distribution is large. We also study the sensitivity of these results to the adopted Ly alpha cross section formulae, ranging from the classical Lorentzian function to the most recent one taking into account fully quantum mechanical scattering. It is found that the preference for non-zero IGM HI is robust against the choice of the cross section formulae, but it is quantitatively not negligible and hence one should be careful in future analyses.
Active galactic nuclei jets are thought to form in the immediate vicinity of the event horizons of supermassive black holes. Therefore, jets could be excellent probes of general relativity. However, in practice, using jets to infer near-black hole physics is not straightforward since the cause of their most basic morphological features is not understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and wiggly and FRII jets being longer and more stable. Here, we carry out 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic jets propagating through the ambient medium. Because in flat density cores of galaxies ($n \propto r^{-\alpha}$ with $\alpha < 2$) the mass per unit distance ahead of the jets increases with distance, the jets slow down and collimate into smaller opening angles. This makes the jets more vulnerable to the 3D magnetic kink ("corkscrew") instability, which develops faster in more tightly collimated jets. We show that the larger the galaxy core radius and the normalisation of the ambient medium density, the higher the critical power below which the jets succumb to the kink instability, stall within the galaxy core, and inflate cavities filled with a relativistically-hot plasma. Jets above the critical power escape the galaxy core and form powerful backflows. Thus, the kink instability controls the jet morphology and can naturally lead to the FR dichotomy.
The upcoming launch of the James Webb Space Telescope (JWST) in less than three years is certain to bring a revolution in our understanding of many area of astrophysics, with one of the key goals being galaxy evolution. As the first proposals will be due in a little over two years, the time is ripe to take a holistic look at the science goals which the community would wish to accomplish with this observatory. Contrary to our experiences with the Hubble Space Telescope, which has now operated successfully for over two decades due to several timely servicing missions, the lifetime of JWST is finite and relatively short, with a lifetime requirement of five years, and a ten-year goal. Following the discussion session at the "Exploring the Universe with JWST" conference at ESA-ESTEC in October 2015, we highlight in this document the (non-local) extragalactic science goals for JWST. We describe how a concerted community effort could best address these, ensuring that the desired survey can be completed during the JWST mission.
Hydrogen in the Universe was (re)ionised between redshifts $z \approx 10$ and $z \approx 6$. The nature of the sources of the ionising radiation is hotly debated, with faint galaxies currently below the detection limit regarded as prime candidates. Here we consider a scenario in which ionising photons escape through channels punctured in the interstellar medium by outflows powered by starbursts. We take account of the observation that strong outflows occur only when the star formation density is sufficiently high, and estimate the galaxy-averaged escape fraction as a function of redshift and luminosity from the resolved star formation surface densities in the EAGLE cosmological hydrodynamical simulation. We find that the fraction of ionising photons that escape from galaxies increases rapidly with redshift, reaching values of 5-20 percent at $z > 6$, with the brighter galaxies having higher escape fractions. Combining the dependence of escape fraction on luminosity and redshift with the observed luminosity function, we demonstrate that galaxies emit enough ionising photons to match the existing constraints on reionisation while also matching the observed UV-background post-reionisation. Our findings suggest that galaxies above the current Hubble Space Telescope detection limit emit half of the ionising radiation required to reionise the Universe.
Sterile neutrinos comprise an entire class of dark matter models that, depending on their production mechanism, can be hot, warm, or cold dark matter. We simulate the Local Group and representative volumes of the Universe in a variety of sterile neutrino models, all of which are consistent with the possible existence of a radiative decay line at ~3.5 keV. We compare models of production via resonances in the presence of a lepton asymmetry (suggested by Shi & Fuller 1999) to "thermal" models. We find that properties in the highly nonlinear regime - e.g., counts of satellites and internal properties of halos and subhalos - are insensitive to the precise fall-off in power with wavenumber, indicating that nonlinear evolution essentially washes away differences in the initial (linear) matter power spectrum. In the quasi-linear regime at higher redshifts, however, quantitative differences in the 3D matter power spectra remain, raising the possibility that such models can be tested with future observations of the Lyman-alpha forest. While many of the sterile neutrino models largely eliminate multiple small-scale issues within the Cold Dark Matter (CDM) paradigm, we show that these models may be ruled out in the near future via discoveries of additional dwarf satellites in the Local Group.
We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 ($z=0.348$) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range $1.0-6.1$, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of $0.3$ in a fixed flat $\Lambda$CDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at $68\%$ confidence level) $\Omega_m=0.25^{+0.13}_{-0.16}$ and $w=-1.07^{+0.16}_{-0.42}$ for a flat $\Lambda$CDM model, and $\Omega_m=0.31^{+0.12}_{-0.13}$ and $\Omega_\Lambda=0.38^{+0.38}_{-0.27}$ for a universe with $w=-1$ and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be $0.3\pm 0.1$.(ABRIDGED)
In Hubble Space Telescope (HST) imaging taken on 10 November 2014, four images of supernova (SN) 'Refsdal' (z = 1.49) appeared in an Einstein-cross--like configuration (images S1-S4) around an early-type galaxy in the cluster MACS J1149.5+2223 (z = 0.54). The gravitational potential of the cluster creates three full images of the star-forming host galaxy of the SN. Almost all lens models of the cluster have predicted that the SN should reappear within approximately one year in a second host-galaxy image, offset by ~8" from the previous images. In HST observations taken on 11 December 2015, we find a new source that we interpret as a new image of SN Refsdal. This marks the first time the appearance of a SN at a particular time and location in the sky was successfully predicted in advance! We use these data and the light curve from the first four observed images of SN Refsdal to place constraints on the relative time delay and magnification of the new image (SX), compared to images S1-S4. This enables us, for the first time, to test lens model predictions of both magnifications and time delays for a lensed SN. We find that the timing and brightness of the new image are consistent with the blind predictions of a fraction of the models. The reappearance illustrates the discriminatory power of this blind test and its utility to uncover sources of systematic uncertainty in the lens models. From planned HST photometry, we expect to reach a precision of 1-2% on the relative time delay between S1-S4 and SX.
We present a catalogue containing the redshifts of 3,660 X-ray selected targets in the XXL southern field. The redshifts were obtained with the AAOmega spectrograph and 2dF fibre positioner on the Anglo-Australian Telescope. The catalogue contains 1,515 broad line AGN, 528 stars, and redshifts for 41 out of the 49 brightest X-ray selected clusters in the XXL southern field.
Using JCMT Gould Belt Survey data from CO J=3-2 isotopologues, we present a meta-analysis of the outflows and energetics of star-forming regions in several Gould Belt clouds. The majority of the regions are strongly gravitationally bound. There is evidence that molecular outflows transport large quantities of momentum and energy. Outflow energies are at least 20 per cent of the total turbulent kinetic energies in all of the regions studied and greater than the turbulent energy in half of the regions. However, we find no evidence that outflows increase levels of turbulence, and there is no correlation between the outflow and turbulent energies. Even though outflows in some regions contribute significantly to maintaining turbulence levels against dissipation, this relies on outflows efficiently coupling to bulk motions. Other mechanisms (e.g. supernovae) must be the main drivers of turbulence in most if not all of these regions.
Links to: arXiv, form interface, find, astro-ph, recent, 1512, contact, help (Access key information)
Infrared dark clouds are kinematically complex molecular structures in the interstellar medium that can host sites of massive star formation. We present 4 square arcminute maps of the 12CO, 13CO, and C18O J = 3 to 2 lines from selected locations within the C and F (G028.37+00.07 and G034.43+00.24) infrared dark clouds (IRDCs), as well as single pointing observations of the 13CO and C18O J = 2 to 1 lines towards three cores within these clouds. We derive CO gas temperatures throughout the maps and find that CO is significantly frozen out within these IRDCs. We find that the CO depletion tends to be the highest near column density peaks, with maximum depletion factors between 5 and 9 in IRDC F and between 16 and 31 in IRDC C. We also detect multiple velocity components and complex kinematic structure in both IRDCs. Therefore, the kinematics of IRDCs seem to point to dynamically evolving structures yielding dense cores with considerable depletion factors.
We present the stellar kinematics across the Galactic bulge and into the disk at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the Milky Way. APOGEE includes extensive coverage of the stellar populations of the bulge along the mid-plane and near-plane regions. From these data, we have produced kinematic maps of 10,000 stars across longitudes 0 deg < l < 65 deg, and primarily across latitudes of |b| < 5 deg in the bulge region. The APOGEE data reveal that the bulge is cylindrically rotating across all latitudes and is kinematically hottest at the very centre of the bulge, with the smallest gradients in both kinematic and chemical space inside the inner-most region (l,|b|) < (5,5) deg. The results from APOGEE show good agreement with data from other surveys at higher latitudes and a remarkable similarity to the rotation and dispersion maps of barred galaxies viewed edge on. The thin bar that is reported to be present in the inner disk within a narrow latitude range of |b| < 2 deg appears to have a corresponding signature in [Fe/H] and [alpha/Fe]. Stars with [Fe/H] > -0.5 have dispersion and rotation profiles that are similar to that of N-body models of boxy/peanut bulges. There is a smooth kinematic transition from the thin bar and boxy bulge (l,|b|) < (15,12) deg out into the disk for stars with [Fe/H] > -1.0, and the chemodynamics across (l,b) suggests the stars in the inner Galaxy with [Fe/H] > -1.0 have an origin in the disk.
We have developed a search methodology to identify galaxy protoclusters at $z>2.74$, and implemented it on a sample of $\sim$14,000 galaxies with previously measured redshifts. The results of this search are recorded in the Candidate Cluster and Protocluster Catalog (CCPC). The catalog contains 12 clusters that are highly significant overdensities ($\delta_{gal}>7$), 6 of which are previously known. We also identify another 31 candidate protoclusters (including 4 previously identified structures) of lower overdensity. CCPC systems vary over a wide range of physical sizes and shapes, from small, compact groups to large, extended, and filamentary collections of galaxies. This variety persists over the range from $z=3.71$ to $z=2.74$. These structures exist as galaxy overdensities ($\delta_{gal}$) with a mean value of 2, similar to the values found for other protoclusters in the literature. The median number of galaxies for CCPC systems is 11. Virial mass estimates are large for these redshifts, with thirteen cases apparently having $M > 10^{15}\, M_{\odot}$. If these systems are virialized, such masses would pose a challenge to $\Lambda$CDM.
The Smith Cloud is a gaseous high-velocity cloud (HVC) in an advanced state of accretion, only 2.9 kpc below the Galactic plane and due to impact the disk in 27 Myr. It is unique among HVCs in having a known distance (12.4+/-1.3 kpc) and a well-constrained 3D velocity (296 km/s), but its origin has long remained a mystery. Here we present the first absorption-line measurements of its metallicity, using HST/COS UV spectra of three AGN lying behind the Cloud together with Green Bank Telescope 21 cm spectra of the same directions. Using Voigt-profile fitting of the S II 1250, 1253, 1259 triplet together with ionization corrections derived from photoionization modeling, we derive the sulfur abundance in each direction; a weighted average of the three measurements gives [S/H]=-0.28+/-0.14, or 0.53+0.21-0.15 solar metallicity. The finding that the Smith Cloud is metal-enriched lends support to scenarios where it represents recycled Galactic material rather than the remnant of a dwarf galaxy or accreting intergalactic gas. The metallicity and trajectory of the Cloud are both indicative of an origin in the outer disk. However, its large mass and prograde kinematics remain to be fully explained. If the cloud has accreted cooling gas from the corona during its fountain trajectory, as predicted in recent theoretical work, its current mass would be higher than its launch mass, alleviating the mass concern.
Using LAMOST spectroscopic data, we find a strong signal of a comoving group of stars in the constellation of Draco. The group, observed near the apocenter of its orbit, is 2.6 kpc from the Sun with a metallicity of -0.64 dex. The system is observed as a streaming population of unknown provenance with mass of about 2.1E4 solar masses and an absolute V band magnitude of about -3.6. Its high metallicity, diffuse physical structure, and eccentric orbit may indicate that the progenitor satellite was a globular cluster rather than a dwarf galaxy or an open cluster.
Our detailed analytic local disc model (JJ-model) quantifies the interrelation between kinematic properties (e.g. velocity dispersions and asymmetric drift), spatial parameters (scale-lengths and vertical density profiles), and properties of stellar sub-populations (age and abundance distributions). Any consistent radial extension of the disc evolution model should predict specific features in the different distribution functions and in their correlations. Large spectroscopic surveys (SEGUE, RAVE, APOGEE, Gaia-ESO) allow significant constraints on the long-term evolution of the thin disc. We discuss the qualitative difference of correlations (like the alpha-enhancement as function of metallicity) and distribution functions (e.g. in [Mg/H] or [Fe/H]) for the construction of a disc model. In the framework of the JJ-model we build a local chemical enrichment model and show that significant vertical gradients for main sequence and red clump stars are expected in the thin disc. A Jeans analysis of the asymmetric drift provides a link to the radial structure of the disc. The derived metallicity-dependent radial scale-lengths can be combined in the future with the abundance distributions at different Galactocentric distances to construct full disc models. We expect to be able to constrain possible scenarios of inside-out growth of the thin disc and to characterise those populations, which require significant radial migration.
We investigate the properties of the circumgalactic gas in the halo of quasar host galaxies from CIV absorption line systems. Optical spectroscopy of closely aligned pairs of quasars (projected distance \leq 200 kpc) obtained at the Gran Telescopio Canarias is used to investigate the distribution of the absorbing gas for a sample of 18 quasars at z \sim 2. We found that the detected absorption systems of EW \geq 0.3Ang associated with the foreground QSO are revealed up to 200 kpc from the center of the host galaxy. The structure of the absorbing gas is rather patchy with a covering fraction of the gas that quickly decreases beyond 100 kpc. These results are in qualitative agreement with those found for the lower ionisation metal Mg II 2800 Ang.
Context. Extinction and emission of dust models need for observational constraints to be validated. The coreshine phenomenon has already shown the importance of scattering in the 3 to 5 micron range and its ability to validate dust properties for dense cores. Aims. We want to investigate whether scattering can also play a role at longer wavelengths and to place even tighter constraints on the dust properties. Methods. We analyze the inversion of the Spitzer 8 micron map of the dense molecular cloud L183, to examine the importance of scattering as a potential contributor to the line-of-sight extinction. Results. The column density deduced from the inversion of the 8 micron map, when we neglect scattering, disagrees with all the other column density measurements of the same region. Modeling confirms that scattering at 8 microns is not negligible with an intensity of several hundred kJy per sr. This demonstrates the need of efficiently scattering dust grains at MIR wavelengths up to 8 microns. Coagulated aggregates are good candidates and might also explain the discrepancy at high extinction between E(J-K) et tau(9.7) toward dense molecular clouds. Further investigation requires considering efficiently scattering dust grains including ices as realistic dust models.
We present the results of Atacama Large Millimeter/Submillimeter Array (ALMA) 108, 233, 352, and 691 GHz continuum observations and Very Large Array (VLA) 4.81 and 8.36 GHz observations of the nearby luminous merger remnant NGC 1614. By analyzing the beam (1".0 * 1".0) and uv (> 45 k{\lambda}) matched ALMA and VLA maps, we find that the deconvolved source size of lower frequency emission (< 108 GHz) is more compact (420 pc * 380 pc) compared to the higher frequency emission (> 233 GHz) (560 pc * 390 pc), suggesting different physical origins for the continuum emission. Based on an SED model for a dusty starburst galaxy, it is found that the SED can be explained by three components, (1) non-thermal synchrotron emission (traced in the 4.81 and 8.36 GHz continuum), (2) thermal free-free emission (traced in the 108 GHz continuum), and (3) thermal dust emission (traced in the 352 and 691 GHz continuum). We also present the spatially-resolved (sub-kpc scale) Kennicutt-Schmidt relation of NGC 1614. The result suggests a systematically shorter molecular gas depletion time in NGC 1614 (average {\tau}_gas of 49 - 77 Myr and 70 - 226 Myr at the starburst ring and the outer region, respectively) than that of normal disk galaxies (~ 2 Gyr) and a mid-stage merger VV 114 (= 0.1 - 1 Gyr). This implies that the star formation activities in U/LIRGs are efficiently enhanced as the merger stage proceeds, which is consistent with the results from high-resolution numerical merger simulations.
We have studied the behaviour of stellar streams in the Aquarius fully cosmological N-body simulations of the formation of Milky Way halos. In particular, we have characterised the streams in angle and frequency spaces derived using an approximate but generally well-fitting spherical potential. We have also run several test-particle simulations to understand and guide our interpretation of the different features we see in the Aquarius streams. Our goal is both to establish which deviations of the expected action-angle behaviour of streams exist because of the approximations made on the potential, but also to derive to what degree we can use these coordinates to model streams reliably. We have found that many of the Aquarius streams wrap in angle space along relatively straight lines, and distribute themselves along linear structures also in frequency space. On the other hand, from our controlled simulations we have been able to establish that deviations from spherical symmetry, the use of incorrect potentials and the inclusion of self-gravity lead to streams in angle space to still be along relatively straight lines but also to depict wiggly behaviour whose amplitude increases as the approximation to the true potential becomes worse. In frequency space streams typically become thicker and somewhat distorted. In all cases, the energy gradient along the stream seems almost intact in frequency space, but this is not the case for angle space. Therefore, our analysis explains most of the features seen in the approximate angle and frequency spaces for the Aquarius streams (...) Since the measured angle-frequency misalignments of the Aquarius streams can largely be attributed to using the wrong (spherical) potential, the determination of the mass growth history of these halos will only be feasible once (and if) the true potential has been determined robustly.
Many of the scenarios proposed to explain the origin of chemically peculiar stars in globular clusters (GCs) require significant mass-loss ($\ge95\%$) to explain the observed fraction of such stars. In the GCs of the Fornax dwarf galaxy significant mass-loss could be a problem. Larsen et al. (2012) showed that there is a large ratio of GCs to metal-poor field stars in Fornax and about $20-25\%$ of all the stars with ${\rm [Fe/H]}<-2$ belong to the four metal-poor GCs. This imposes an upper limit of $\sim80\%$ mass-loss that could have happened in Fornax GCs. In this paper, we propose a solution to this problem by suggesting that stars can leave the Fornax galaxy. We use a series of $N$-body simulations, to determine the limit of mass-loss from Fornax as a function of the initial orbital radii of GCs and the speed with which stars leave Fornax GCs. We consider a set of cored and cuspy density profiles for Fornax. Our results show that with a cuspy model for Fornax, the fraction of stars which leave the galaxy, can be as high as $\sim90\%$, when the initial orbital radii of GCs are $R=2-3\,\rm{kpc}$ and the initial speed of stars is $v>20\,\rm{kms}$. We show that such large velocities can be achieved by gas expulsion induced mass-loss but not stellar evolution induced mass-loss. Our results imply that one cannot interpret the metallicity distribution of Fornax field stars as evidence against significant mass-loss in Fornax GCs, if mass-loss is due to gas expulsion.
Methyl cyanide is an important trace molecule in space, especially in
star-forming regions where it is one of the more common molecules used to
derive kinetic temperatures.
We want to obtain accurate spectroscopic parameters of minor isotopologs of
methyl cyanide in their lowest excited v8 = 1 vibrational states to support
astronomical observations, in particular, with interferometers such as ALMA.
The laboratory rotational spectrum of methyl cyanide in natural isotopic
composition has been recorded from the millimeter to the terahertz regions.
Transitions with good signal-to-noise ratios could be identified for the
three isotopic species CH3(13)CN, (13)CH3CN, and CH3C(15)N up to about 1.2 THz
(J" <= 66). Accurate spectroscopic parameters were obtained for all three
species.
The present data were already instrumental in identifying v8 = 1 lines of
methyl cyanide with one (13)C in IRAM 30 m and ALMA data toward Sagittarius
B2(N).
Over the past five decades, radio astronomy has shown that molecular
complexity is a natural outcome of interstellar chemistry, in particular in
star forming regions. However, the pathways that lead to the formation of
complex molecules are not completely understood and the depth of chemical
complexity has not been entirely revealed. In addition, the sulfur chemistry in
the dense interstellar medium is not well understood.
We want to know the relative abundances of alkanethiols and alkanols in the
Galactic Center source Sagittarius B2(N2), the northern hot molecular core in
Sgr B2(N), whose relatively small line widths are favorable for studying the
molecular complexity in space.
We investigated spectroscopic parameter sets that were able to reproduce
published laboratory rotational spectra of ethanethiol and studied effects that
modify intensities in the predicted rotational spectrum of ethanol. We used the
Atacama Large Millimeter Array (ALMA) in its Cycles~0 and 1 for a spectral line
survey of Sagittarius B2(N) between 84 and 114.4 GHz. These data were analyzed
by assuming local thermodynamic equilibrium (LTE) for each molecule. Our
observations are supplemented by astrochemical modeling; a new network is used
for the first time that includes reaction pathways for alkanethiols.
The column density ratios involving methanol, ethanol, and methanethiol in
Sgr B2(N2) are similar to values reported for Orion KL, but those involving
ethanethiol are significantly different and suggest that the detection of
ethanethiol reported toward Orion KL is uncertain. Our chemical model presently
does not permit the prediction of sufficiently accurate column densities of
alkanethiols or their ratios among alkanethiols and alkanols. Therefore,
additional observational results are required to establish the level of C2H5SH
in the dense and warm interstellar medium with certainty.
By comparing 3 constituents of Orion A (gas, protostars, and pre-main-sequence stars), both morhologically and kinematically, we derive the following. The gas surface density near the integral-shaped filament (ISF) is well represented by a power law, Sigma(b)=72 Msun/pc^2(b/pc)^{-5/8} for our entire range, 0.05<b/pc<8.5, of distance from the filament ridge. Essentially all protostars lie on the ISF or other filament ridges, while almost all pre-main-sequence stars do not. Combined with the fact that protostars move <1 kms relative to the filaments while stars move several times faster, this implies that protostellar accretion is terminated by a slingshot ejection from the filaments. The ISF is the 3rd in a series of star bursts that are progressively moving south, with separations of a few Myr in time and 3 pc in space. This, combined with the filament's observed undulations (spatial and velocity), suggests that repeated propagation of transverse waves thru the filament is progressively digesting the material that formerly connected Orion A and B into stars in discrete episodes. We construct an axially symmetric gas density profile rho(r)=16 Msun/pc^3(r/pc)^{-13/8}. The model implies that the observed magnetic fields are supercritical on scales of the observed undulations, suggesting that the filament's transverse waves are magnetically induced. Because the magnetic fields are subcritical on scales of the filament on larger scales, the system as a whole is relatively stable and long lived. Protostellar ejection occurs because the gas accelerates away from the protostars, not the other way around. The model also implies that the ISF is kinematically young, which is consistent with other lines of evidence. The southern filament has a broken power law, which matches the ISF profile for 2.5<b/pc<8.5, but is shallower closer in. It is also kinematically older than the ISF.
We consider the possibility that tidal disruption events (TDEs) caused by supermassive black holes (SMBHs) in nearby galaxies can account for the ultra-high-energy cosmic-ray (UHECR) hot spot reported recently by the Telescope Array (TA) and the warm spot by Pierre Auger Observatory (PAO). We describe the expected cosmic-ray signal from a TDE and derive the constraints set by the timescale for dispersion due to intergalactic magnetic fields and the accretion time of the SMBH. We demonstrate that TDEs in M82 can explain the hot spot detected by the TA. Based on data-driven assumptions regarding the SMBH mass function, the luminosity scaling of the TDEs and the mass dependence of their rate, we then analyze the full parameter space of the model to search for consistency with the full-sky isotropic signal. Doing so, we show that TDEs can account for both the TA hot spot and full-sky UHECR observations. Using our model we show that the warm spot in the PAO data in the direction of Centaurus A (Cen A) can also be explained by TDEs. Finally, we show that although both hydrogen and iron nuclei are viable candidates for UHECRs, iron nuclei require smaller intergalactic magnetic fields and are therefore more feasible if TDEs explain the TA and PAO results.
It has been proposed that a large population of unresolved millisecond pulsars (MSPs) could potentially account for the excess of GeV-scale gamma-rays observed from the region surrounding the Galactic Center. The viability of this scenario depends critically on the gamma-ray luminosity function of this source population, which determines how many MSPs Fermi should have already detected as resolved point sources. In this paper, we revisit the gamma-ray luminosity function of MSPs, without relying on uncertain distance measurements. Our determination, based on a comparison of models with the observed characteristics of the MSP population, suggests that Fermi should have already detected a significant number of sources associated with such a hypothesized Inner Galaxy population. We cannot rule out a scenario in which the MSPs residing near the Galactic Center are systematically less luminous than those present in the Galactic Plane or within globular clusters.
The Gaia benchmark stars are stars with very precise stellar parameters that cover a wide range in the HR diagram at various metallicities. They are meant to be good representative of typical FGK stars in the Milky Way. Currently, they are used by several spectroscopic surveys to validate and calibrate the methods that analyse the data. I review our recent activities done for these stars. Additionally, by applying our new method to find stellar twins on the Gaia-ESO Survey, I discuss how good representatives of Milky Way stars the benchmark stars are and how they distribute in space.
Links to: arXiv, form interface, find, astro-ph, recent, 1512, contact, help (Access key information)
The Effelsberg-Bonn HI Survey (EBHIS) is a new 21-cm survey performed with the 100-m telescope at Effelsberg. It covers the whole northern sky out to a redshift of z~0.07 and comprises HI line emission from the Milky Way and the Local Volume. We aim to substitute the northern-hemisphere part of the Leiden/Argentine/Bonn Milky Way HI survey (LAB) with this first EBHIS data release, which presents the HI gas in the Milky Way regime. The use of a seven-beam L-band array made it feasible to perform this all-sky survey with a 100-m class telescope in a reasonable amount of observing time. State-of-the-art fast-Fourier-transform spectrometers provide the necessary data read-out speed, dynamic range, and spectral resolution to apply software radio-frequency interference mitigation. EBHIS is corrected for stray radiation and employs frequency-dependent flux-density calibration and sophisticated baseline-removal techniques to ensure the highest possible data quality. Detailed analyses of the resulting data products show that EBHIS is not only outperforming LAB in terms of sensitivity and angular resolution, but also matches the intensity-scale of LAB extremely well, allowing EBHIS to be used as a drop-in replacement for LAB. Data products are made available to the public in a variety of forms. Most important, we provide a properly gridded Milky Way HI column density map in HEALPix representation. To maximize the usefulness of EBHIS data, we estimate uncertainties in the HI column density and brightness temperature distributions, accounting for systematic effects.
We present the first results and design from the redshift z~9-10 Brightest of the Reionizing Galaxies {\it Hubble Space Telescope} survey BoRG[z9-10], aimed at searching for intrinsically luminous unlensed galaxies during the first 700 Myr after the Big Bang. BoRG[z9-10] is the continuation of a multi-year pure-parallel near-IR and optical imaging campaign with the Wide Field Camera 3. The ongoing survey uses five filters, optimized for detecting the most distant objects and offering continuous wavelength coverage from {\lambda}=0.35{\mu}m to {\lambda}=1.7{\mu}m. We analyze the initial ~130 arcmin$^2$ of area over 28 independent lines of sight (~25% of the total planned) to search for z>7 galaxies using a combination of Lyman break and photometric redshift selections. From an effective comoving volume of (5-25) $times 10^5$ Mpc$^3$ for magnitudes brighter than $m_{AB}=26.5-24.0$ in the $H_{160}$-band respectively, we find five galaxy candidates at z~8.3-10 detected at high confidence (S/N>8), including a source at z~8.4 with mAB=24.5 (S/N~22), which, if confirmed, would be the brightest galaxy identified at such early times (z>8). In addition, BoRG[z9-10] data yield four galaxies with $7.3 \lesssim z \lesssim 8$. These new Lyman break galaxies with m$\lesssim26.5$ are ideal targets for follow-up observations from ground and space based observatories to help investigate the complex interplay between dark matter growth, galaxy assembly, and reionization.
We present the widest-field resolved stellar map to date of the closest ($D\sim3.8$ Mpc) massive elliptical galaxy NGC 5128 (Centaurus A; Cen A), extending out to a projected galactocentric radius of $\sim150$ kpc. The dataset is part of our ongoing Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) utilizing the Magellan/Megacam imager. We resolve a population of old red giant branch stars down to $\sim1.5$ mag below the tip of the red giant branch, reaching surface brightness limits as low as $\mu_{V,0}\sim32$ mag arcsec$^{-2}$. The resulting spatial stellar density map highlights a plethora of previously unknown streams, shells, and satellites, including the first tidally disrupting dwarf around Cen A, which underline its active accretion history. We report 13 previously unknown dwarf satellite candidates, of which 9 are confirmed to be at the distance of Cen A (the remaining 4 are not resolved into stars), with magnitudes in the range $M_V=-7.2$ to $-13.0$, central surface brightness values of $\mu_{V,0}=25.4-26.9$ mag arcsec$^{-2}$, and half-light radii of $r_h=0.22-2.92$ kpc. These values are in line with Local Group dwarfs but also lie at the faint/diffuse end of their distribution; most of the new dwarfs are fainter than the previously known Cen A satellites. The newly discovered dwarfs and halo substructures are discussed in light of their stellar populations, and they are compared to those discovered by the PAndAS survey of M31.
We present a new theoretical population synthesis model (the Galaxy Model) to examine and deal with huge amounts of data from surveys of the Milky Way and to decipher the present and past structure and history of our own Galaxy. We assume the Galaxy to be made up of the superposition of many composite stellar populations belonging to the thin and thick disks, the stellar halo and the bulge, and to be surrounded by a single dark matter halo component. A global model for the Milky Way's gravitational potential is built up to secure consistency with the density profiles from the Poisson equation. In turn, these density profiles are used to generate synthetic probability distribution functions (PDFs) for the distribution of stars in colour-magnitude diagrams (CMDs). Finally, the gravitational potential is used to constrain the stellar kinematics by means of the moment method on a (perturbed)-distribution function. The Galaxy Model contains also a star-count like description of non-axisymmetric features of the Galaxy such as the spiral arms, thus removing the axisymmetric crude assumptions commonly made in most of the analytical descriptions. Spiral arms perturb the disk distribution functions in the linear response framework of density-wave theory where we present an analytical formula of the so-called "reduction factor" in terms of Hypergeometric functions. Moreover, we consider a non-axisymmetric model of extinction to build CMDs in the presence of arbitrary non-axisymmetric features, an algorithm based on the concept of probability distribution function to handle colour magnitude diagrams with a large number of stars and a genetic algorithm to investigate the parameter space. This galaxy model represents the natural framework to investigate surveys such as Gaia-ESO, SEGUE, APOGEE as RAVE as well as the upcoming Gaia data releases.
Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the functional form of the dust-attenuation law in the distant Universe. In this work, we fit to the spectral energy distributions (SEDs) of galaxies under different assumptions about the wavelength-dependent dust-attenuation curve, and compare the inferred attenuation with the observed infrared (IR) luminosities. This is applied to a sample of IR-luminous galaxies at z~1.5-3 where the multi-wavelength CANDELS photometry cover rest-frame ultraviolet (UV, down to Lyman-alpha) to near-IR (NIR) wavelengths, with supporting 24 micron imaging from Spitzer. We fit the UV-to-NIR galaxy SEDs with multiple dust laws, and use Bayes factors to select galaxies with strong preference between laws. Importantly, we find that for individual galaxies with strong Bayes-factor evidence, their observed location on the plane of the infrared excess (IRX, LIR/LUV) and UV slope (beta) agrees with the predicted value for the favored dust law. Furthermore, a parameterization of the dust law reveals a relationship between its UV-to-optical slope (delta) and the color excess. Galaxies with high color excess have a shallower, starburst-like attenuation, and those with low color excess have a steeper, SMC-like attenuation. Surprisingly, the shape of the dust law does not depend on stellar mass, star-formation rate, or beta, at least for galaxies down to the stellar mass range of this work (log Mstar/Msun >9). The strong correlation between the tilt of the attenuation law, and color excess is consistent with expected effects from an attenuation driven by scattering, a mixed star-dust geometry, and/or trends with stellar population age, metallicity, and dust grain composition.
We provide a theoretical context for understanding the recent work of Kalfountzou et al (2014) showing that star formation is enhanced at lower optical luminosity in radio loud quasars. Our proposal for coupling the assumption of collimated FRII quasar jet-induced star formation with lower accretion optical luminosity, also explains the observed jet power peak in active galaxies at higher redshift compared to the peak in accretion power, doing so in a way that predicts the existence of a family of radio quiet AGN associated with rapidly spinning supermassive black holes at low redshift, as mounting observations suggest. The relevance of this work lies in its promise to explain the observed cosmological evolution of accretion power, jet power, and star formation, in a way that is both compatible with the Soltan argument and resolves the so-called `Meier Paradox'.
The origin of carbon-enhanced metal-poor (CEMP) stars and their possible connections with the chemical elements produced by the first stellar generations is still highly debated. We briefly review observations of CEMP stars in different environments (Galactic stellar halo, ultra-faint and classical dwarf galaxies) and interpret their properties using cosmological chemical-evolution models for the formation of the Local Group. We discuss the implications of current observations for the properties of the first stars, clarify why the fraction of carbon-enhanced to carbon-normal stars varies in dwarf galaxies with different luminosity, and discuss the origin of the first CEMP(-no) star found in the Sculptor dwarf galaxy.
H2 is the simplest and the most abundant molecule in the ISM, and its formation precedes the formation of other molecules. Understanding the dynamical influence of the environment and the interplay between the thermal processes related to the formation and destruction of H2 and the structure of the cloud is mandatory to understand correctly the observations of H2. We perform high resolution MHD colliding flow simulations with the AMR code RAMSES in which the physics of H2 has been included. We compare the simulation results with various observations including the column densities of excited rotational levels. Due to a combination of thermal pressure, ram pressure and gravity, the clouds produced at the converging point of HI streams are highly inhomogeneous. H2 molecules quickly form in relatively dense clumps and spread into the diffuse interclump gas. This in particular leads to the existence of significant abundances of H2 in the diffuse and warm gas that lies in between clumps. Simulations and observations show similar trends, specially for the HI-to-H2 transition. The abundances of excited rotational levels, calculated at equilibrium in the simulations are very similar to the observed abundances inferred from FUSE results. This is a direct consequence of the presence of the H2 enriched diffuse and warm gas. Our simulations show that H2 rapidly forms in the dense clumps and, due to the complex structure of molecular clouds, quickly spreads at lower densities. Consequently a significant fraction of warm H2 exists in the low density gas. This warm H2 leads to column densities of excited rotational levels close to the observed ones likely revealing the complex intermix between the warm and the cold gas in molecular clouds. This suggests that the 2-phase structure of molecular clouds is an essential ingredient to fully understand molecular hydrogen in these objects.
Fornax is the brightest Milky Way (MW) dwarf spheroidal galaxy and its star formation history (SFH) has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH using a simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe) as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass M_x of the gas to mix with the ejecta from each SN. The choice of M_x depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = t_sat . Our results indicate that due to the global gas outflow at t > t_sat , part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.
In a previous paper, we proposed a new method to select low-power BL Lacs (LPBLs) based on mid-infrared emission and flux contrast through the Ca II spectral break; that study led to the selection of a complete sample formed by 34 LPBLs with 0.05<z<=0.15 and radio luminosities spanning the range log(L_r) = 39.2-41.5 [erg/s]. We now assemble the broadband spectral energy distributions (SEDs) of these sources to investigate their nature and compare them with brighter BL Lacs. We find that the ratios between the X-ray and radio luminosities range from ~20 to ~30000 and that the synchrotron peak frequencies span a wide energy interval, from log(nu_peak)~13.5 to ~20 [Hz]. This indicates a broad variety of SED shapes and a mixture of BL Lac flavors. Indeed, although the majority of our LPBLs are high-energy peaked BL Lacs (HBLs), we find that a quarter of them are low-energy peaked BL Lacs (LBLs), despite the fact that the sample is biased against the selection of LBLs. The analysis of the median LPBL SED confirms disagreement with the blazar sequence at low radio luminosities. Furthermore, if we limit the sample to the LBLs subsample, we find that their median SED shape is essentially indistinguishable from that of the most luminous BL Lacs. We conclude that the observed radio power is not the main driving parameter of the multiwavelength properties of BL Lacs.
Enormous observational effort has been made to constrain the energetics of AGN feedback by mapping the kinematics of the ionized gas on kpc scale with integral-field spectroscopy. Here, we investigate how the observed kinematics and inferred energetics are affected by beam smearing of a bright unresolved NLR due to seeing effects. We analysed optical IFU spectroscopy of a sample of twelve luminous unobscured QSOs (0.4<z<0.7) initially presented by Liu et al. (2014). The PSF for the observations is directly obtained from the light distribution of the broad Hbeta line component. Therefore, we are able to compare the ionized gas kinematics and derived energetics of the total [OIII] and spatially extended [OIII] line component. We find that the width of the spatially resolved [OIII] line on kpc scales is significantly narrower than the one before PSF deblending. The extended NLRs (ENLRs) appear intrinsically offset from the QSO position or more elongated which can be interpreted in favour of a conical outflow model for these QSOs. As a result the estimated kinetic power is reduced by two orders of magnitude after PSF deblending and corresponds to only 0.01-0.1% of the bolometric AGN luminosity. This is smaller than required by some numerical simulations including AGN feedback. Furthermore, the injected momentum fluxes are below the simple radiation-pressure limit Lbol/c for the conical outflow model, when beam smearing is taken into account. IFU observations are a powerful tool to investigate the energetics of AGN outflows, but the impact of beam smearing has to be carefully taken into account in the high contrast regime of QSOs. For the majority of observations in the literatures, this has not been addressed so that the incidence and energetics of large-scale AGN-driven outflows still remain an unsolved issue, from an observational perspective.
We report the discovery of a multiply lensed Lyman-$\alpha$ blob (LAB) behind the galaxy cluster AS1063 using the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope. The background source is at $z=$ 3.117 and is intrinsically faint compared to almost all previously reported LABs. We used our highly precise strong lensing model to reconstruct the source properties finding a luminosity of $L_{\rm Ly\alpha}$=$1.9\times10^{42}$ erg s$^{-1}$, extending to 33 kpc. We find that the LAB is associated with a group of galaxies, and possibly a protocluster, in keeping with previous studies that find LABs in overdensities. In addition to Ly$\alpha$ emission, we find CIV, HeII, and OIII] UV emission lines arising from the centre of the nebula. We used the compactness of these lines in combination with the line ratios to conclude that the Ly$\alpha$ nebula is likely powered by embedded star formation. Resonant scattering of the Ly$\alpha$ photons then produces the extended shape of the emission. Thanks to the combined power of MUSE and strong gravitational lensing, we are now able to probe the circumgalatic medium of sub-$L_{*}$ galaxies at $z\approx 3$
We consider what can be learnt about the processes of gas accretion and depletion from the kinematic misalignment between the cold/warm gas and stars in local early-type galaxies. Using simple analytic arguments and a toy model of the processes involved, we show that the lack of objects with counter-rotating gas reservoirs strongly constrains the relaxation, depletion and accretion timescales of gas in early-type galaxies. Standard values of the accretion rate, star formation efficiency and relaxation rate are not simultaneously consistent with the observed distribution of kinematic misalignments. To reproduce that distribution, both fast gas depletion ($t_{\rm dep} <10^8$ yr; e.g. more efficient star formation) and fast gas destruction (e.g. by active galactic nucleus feedback) can be invoked, but both also require a high rate of gas-rich mergers ($>1$ Gyr$^{-1}$). Alternatively, the relaxation of misaligned material could happen over very long timescales ($\simeq100$ dynamical times or $\approx1$-$5$ Gyr). We explore the various physical processes that could lead to fast gas depletion and/or slow gas relaxation, and discuss the prospects of using kinematic misalignments to probe gas-rich accretion processes in the era of large integral-field spectroscopic surveys.
Theoretical models of grain growth predict dust properties to change as a function of protoplanetary disk radius, mass, age and other physical conditions. We lay down the methodology for a multi-wavelength analysis of (sub-)mm and cm continuum interferometric observations to constrain self-consistently the disk structure and the radial variation of the dust properties. The computational architecture is massively parallel and highly modular. The analysis is based on the simultaneous fit in the uv-plane of observations at several wavelengths with a model for the disk thermal emission and for the dust opacity. The observed flux density at the different wavelengths is fitted by posing constraints on the disk structure and on the radial variation of the grain size distribution. We apply the analysis to observations of three protoplanetary disks (AS 209, FT Tau, DR Tau) for which a combination of spatially resolved observations in the range ~0.88mm to ~10mm is available (from SMA, CARMA, and VLA), finding evidence of a decreasing maximum dust grain size (a_max) with radius. We derive large a_max values up to 1 cm in the inner disk between 15 and 30 AU and smaller grains with a_max~1 mm in the outer disk (R > 80AU). In this paper we develop a multi-wavelength analysis that will allow this missing quantity to be constrained for statistically relevant samples of disks and to investigate possible correlations with disk or stellar parameters.
AGN feedback is an important ingredient in galaxy evolution, however its treatment in numerical simulations is necessarily approximate, requiring subgrid prescriptions due to the dynamical range involved in the calculations. We present a suite of SPH simulations designed to showcase the importance of the choice of a particular subgrid prescription for AGN feedback. We concentrate on two approaches to treating wide-angle AGN outflows: thermal feedback, where thermal and kinetic energy is injected into the gas surrounding the SMBH particle, and virtual particle feedback, where energy is carried by tracer particles radially away from the AGN. We show that the latter model produces a far more complex structure around the SMBH, which we argue is a more physically correct outcome. We suggest a simple improvement to the thermal feedback model - injecting the energy into a cone, rather than spherically symmetrically - and show that this markedly improves the agreement between the two prescriptions, without requiring any noticeable increase in the computational cost of the simulation.
We report on the proper motions of Balmer-dominated filaments in Kepler's supernova remnant using high resolution images obtained with the Hubble Space Telescope at two epochs separated by about 10 years. We use the improved proper motion measurements and revised values of shock velocities to derive a distance to Kepler of 5.1 [+0.8, -0.7] kpc. The main shock around the northern rim of the remnant has a typical speed of 1690 km/s and is encountering material with densities of about 8 cm^-3. We find evidence for the variation of shock properties over small spatial scales, including differences in the driving pressures as the shock wraps around a curved cloud surface. We find that the Balmer filaments ahead of the ejecta knot on the northwest boundary of the remnant are becoming fainter and more diffuse. We also find that the Balmer filaments associated with circumstellar material in the interior regions of the remnant are due to shocks with significantly lower velocities and that the brightness variations among these filaments trace the density distribution of the material, which may have a disk-like geometry.
We present $N$-body simulations of globular clusters, exploring the effect of different galactic potentials on cluster sizes, $r_h$. For various galactocentric distances, $R_G$, we assess how cluster sizes change when we vary the virial mass and concentration of the host galaxy's dark-matter halo. We show that sizes of GCs are determined by the local galactic mass density rather than the virial mass of the host galaxy. We find that clusters evolving in the inner haloes of less concentrated galaxies are significantly more extended than those evolving in more concentrated ones, while the sizes of those orbiting in the outer halo are almost independent of concentration. Adding a baryonic component to our galaxy models does not change these results much, since its effect is only significant in the very inner halo. Our simulations suggest that there is a relation between $r_h$ and $R_G$, which systematically depends on the physical parameters of the halo. Hence, observing such relations in individual galaxies can put a new observational constraint on dark-matter halo characteristics. However, by varying the halo mass in a wide range of $10^{9}\leq M_{vir}/\msun \leq10^{13}$, we find that the $r_h-R_G$ relationship will be nearly independent of halo mass, if one assumes $M_{vir}$ and $c_{vir}$ as two correlated parameters, as is suggested by cosmological simulations.
We present a study of the molecular gas properties in a sample of 98 HI - flux selected spiral galaxies within $\sim25$ Mpc, using the CO $J=3-2$ line observed with the James Clerk Maxwell Telescope. We use the technique of survival analysis to incorporate galaxies with CO upper limits into our results. Comparing the group and Virgo samples, we find a larger mean H$_{2}$ mass in the Virgo galaxies, despite their lower mean HI mass. This leads to a significantly higher H$_{2}$ to HI ratio for Virgo galaxies. Combining our data with complementary H$\alpha$ star formation rate measurements, Virgo galaxies have longer molecular gas depletion times compared to group galaxies, due to their higher H$_{2}$ masses and lower star formation rates. We suggest that the longer depletion times may be a result of heating processes in the cluster environment or differences in the turbulent pressure. From the full sample, we find that the molecular gas depletion time has a positive correlation with the stellar mass, indicative of differences in the star formation process between low and high mass galaxies, and a negative correlation between the molecular gas depletion time and the specific star formation rate.
The particle nature of dark matter remains a mystery. In this paper, we consider two dark matter models---Late Forming Dark Matter (LFDM) and Ultra-Light Axion (ULA) models---where the matter power spectra show novel effects on small scales. The high redshift universe offers a powerful probe of their parameters. In particular, we study two cosmological observables: the neutral hydrogen (HI) redshifted 21-cm signal from the epoch of reionization, and the evolution of the collapsed fraction of HI in the redshift range $2 < z < 5$. We model the theoretical predictions of the models using CDM-like N-body simulations with modified initial conditions, and generate reionization fields using an excursion-set model. The N-body approximation is valid on the length and halo mass scales studied. We show that LFDM and ULA models predict an increase in the HI power spectrum from the epoch of reionization by a factor between 2--10 for a range of scales $0.1<k<4 \, \rm Mpc^{-1}$. Assuming a fiducial model where a neutral hydrogen fraction $\bar{x}_{HI}=0.5$ must be achieved by $z=8$, the reionization process allows us to put approximate bounds on the redshift of dark matter formation $z_f > 4 \times 10^5$ (for LFDM) and the axion mass $m_a > 2.6 \times 10^{-23} \, \rm eV$ (for ULA). The comparison of the collapsed mass fraction inferred from damped Lyman-$\alpha$ observations to the theoretical predictions of our models lead to the weaker bounds: $z_f > 2 \times 10^5$ and $m_a > 10^{-23} \, \rm eV$. These bounds are consistent with other constraints in the literature using different observables and, in the case of ULAs, are also consistent with a solution to the cusp-core problem of CDM.
We present the first simulations within an effective theory of structure formation (ETHOS), which includes the effect of interactions between dark matter and dark radiation on the linear initial power spectrum and dark matter self-interactions during non-linear structure formation. We simulate a Milky Way-like halo in four different dark matter models in addition to the cold dark matter case. Our highest resolution simulation has a particle mass of $2.8\times 10^4\,{\rm M}_\odot$ and a softening length of $72.4\,{\rm pc}$. We demonstrate that all alternative models have only a negligible impact on large scale structure formation and behave on those scales like cold dark matter. On galactic scales, however, the models significantly affect the structure and abundance of subhaloes due to the combined effects of small scale primordial damping in the power spectrum and the late time self-interaction rate in the center of subhaloes. We derive an analytic mapping from the primordial damping scale in the power spectrum to the cutoff scale in the halo mass function and the kinetic decoupling temperature. We demonstrate that it is possible to find models within this extended effective framework that can alleviate the too-big-to-fail and missing satellite problems simultaneously, and possibly the core-cusp problem. Furthermore, the primordial power spectrum cutoff of our models naturally creates a diversity in the circular velocity profiles of haloes, which is larger than that found for cold dark matter simulations. We also show that the parameter space of models can be constrained by contrasting model predictions to astrophysical observations. For example, some of our models may be challenged by the missing satellite problem if baryonic processes were to be included and even over-solve the too-big-to-fail problem; thus ruling them out.
The broad-band variability of many accreting systems displays characteristic structure; log-normal flux distributions, RMS-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically-thin ($h/r\approx0.1$) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially-coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear RMS-flux relations, and radial coherence that would produce inter-band lags. Hence, we successful relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.
Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, $\Lambda$CDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of $\Lambda$CDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.
We present the results of investigation of five stars, originally classified as dwarfs, belonging to Cyg OB2 association, their stellar and wind properties. Using both TLUSTY and CMFGEN codes we derived effective temperatures, surface gravities, chemical abundances, mass-loss rates and projected rotation velocities. Due to the fact that distance to the stars is well known, we were able to estimate their luminosities. Using evolutionary models we estimated the ages of these sample stars and find that lower mass ones - MT282 and MT343 - belong to older population of the association. Their ages are greater than 10 Myr. The ages of three other stars - MT317, MT299, MT259 - are between 4-6 Myr.
We construct a new global, fully analytic, approximate spacetime which accurately describes the dynamics of non-precessing, spinning black hole binaries during the inspiral phase of the relativistic merger process. This approximate solution of the vacuum Einstein's equations can be obtained by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds of binary orbits.
We perform a homogeneous analysis of the Fe/Ni abundance ratio in eight Galactic planetary nebulae (PNe) and three Galactic H II regions that include the Orion nebula, where we study four nebular zones and one shocked region. We use [Fe ii], [Fe iii], and [Ni iii] lines, and ionization correction factors (ICFs) that account for the unobserved ions. We derive an ICF for nickel from an extensive grid of photoionization models. We compare our results with those derived by other authors for 16 neutral clouds in the solar neighbourhood with available Fe/Ni ratios in the literature. We find an excellent agreement between the ionized nebulae and the diffuse clouds, with both types of regions showing a clear correlation between the Fe/Ni ratios and the iron and nickel depletion factors. The trend shows that the objects with a relatively low depletion have near solar Fe/Ni ratios whereas at higher depletions the Fe/Ni ratio increases with the depletion. Our results confirm that, compared to iron atoms, nickel ones are more efficiently stuck to the dust grains in ambients where dust formation or growth have been more efficient.
We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) 'Refsdal', a gravitationally lensed SN at z=1.488 +- 0.001 with multiple images behind the galaxy cluster MACS J1149.6+2223. The first four observed images of SN Refsdal (images S1-S4) exhibited a slow rise (over ~150 days) to reach a broad peak brightness around 20 April, 2015. Using a set of light curve templates constructed from the family of SN 1987A-like peculiar Type II SNe, we measure time delays for the four images relative to S1 of 4+-4 (for S2), 2+-5 (S3), and 24+-7 days (S4). The measured magnification ratios relative to S1 are 1.15+-0.05 (S2), 1.01+-0.04 (S3), and 0.34+-0.02 (S4). We find, however, that none of the template light curves fully captures the photometric behavior of SN Refsdal, so we also derive complementary measurements for these parameters using polynomials to represent the intrinsic light curve shape. These more flexible fits deliver fully consistent time delays of 7+-2 days (S2), 0.6+-3 days (S3), and 27+-8 days (S4). The lensing magnification ratios are similarly consistent, measured as 1.17+-0.02 (S2), 1.00+-0.01 (S3), and 0.38+-0.02 (S4).} We compare these measurements against published predictions from lens models, and find that the majority of model predictions are in very good agreement with our measurements. Finally, we discuss avenues for future improvement of time delay measurements -- both for SN Refsdal and for other strongly lensed SNe yet to come.
Links to: arXiv, form interface, find, astro-ph, recent, 1512, contact, help (Access key information)