We present kinematic and photometric evidence for an accretion event in the halo of the cD galaxy M87 in the last Gyr. Using velocities for ~300 planetary nebulas (PNs) in the M87 halo, we identify a chevron-like substructure in the PN phase-space. We implement a probabilistic Gaussian mixture model to identify the PNs that belong to the chevron. From analysis of deep V-band images of M87, we find that the region with the highest density of PNs associated to the chevron, is a crown-shaped substructure in the optical light. We assign a total of N_(PN,sub)=54 to the substructure, which extends over ~50 kpc along the major axis where we also observe radial variations of the ellipticity profile and a colour gradient. The substructure has highest surface brightness in a 20kpc x 60kpc region around 70 kpc in radius. In this region, it causes an increase in surface brightness by >60%. The accretion event is consistent with a progenitor galaxy with a V-band luminosity of L=2.8\pm1.0 x 10^9 L_(sun,V), a colour of (B-V)=0.76\pm0.05, and a stellar mass of M=6.4\pm2.3 x 10^9 M_sun. The accretion of this progenitor galaxy has caused an important modification of the outer halo of M87 in the last Gyr. By itself it is strong evidence that the galaxy's cD halo is growing through the accretion of smaller galaxies as predicted by hierarchical galaxy evolution models.
The density variance - Mach number relation of the turbulent interstellar medium is relevant for theoretical models of the star formation rate, efficiency, and the initial mass function of stars. Here we use high-resolution hydrodynamical simulations with grid resolutions of up to 1024^3 cells to model compressible turbulence in a regime similar to the observed interstellar medium. We use Fyris Alpha, a shock-capturing code employing a high-order Godunov scheme to track large density variations induced by shocks. We investigate the robustness of the standard relation between the logarithmic density variance (sigma_s^2) and the sonic Mach number (M) of isothermal interstellar turbulence, in the non-isothermal regime. Specifically, we test ideal gases with diatomic molecular (gamma = 7/5) and monatomic (gamma = 5/3) adiabatic indices. A periodic cube of gas is stirred with purely solenoidal forcing at low wavenumbers, leading to a fully-developed turbulent medium. We find that as the gas heats in adiabatic compressions, it evolves along the relationship in the density variance - Mach number plane, but deviates significantly from the standard expression for isothermal gases. Our main result is a new density variance - Mach number relation that takes the adiabatic index into account: sigma_s^2 = ln {1+b^2*M^[(5*gamma+1)/3]} and provides good fits for b*M <= 1. A theoretical model based on the Rankine-Hugoniot shock jump conditions is derived, sigma_s^2 = ln {1+(gamma+1)*b^2*M^2/[(gamma-1)*b^2*M^2+2]}, and provides good fits also for b*M > 1. We conclude that this new relation for adiabatic turbulence may introduce important corrections to the standard relation, if the gas is not isothermal.
Motivated by the recent discovery of several dwarf galaxies near the Large Magellanic Cloud (LMC), we study the accretion of massive satellites onto Milky Way (MW)/M31-like halos using the ELVIS suite of N-body simulations. We identify 25 surviving subhalos near the expected mass of the LMC, and investigate the lower-mass satellites that were associated with these subhalos before they fell into the MW/M31 halos. Typically, 7% of the overall z=0 satellite population of MW/M31 halos were in a surviving LMC-group prior to falling into the MW/M31 halo. This fraction, however, can vary between 1% and 25%, being higher for groups with higher-mass and/or more recent infall times. Groups of satellites disperse rapidly in phase space after infall, and their distances and velocities relative to the group center become statistically similar to the overall satellite population after 4-8 Gyr. We quantify the likelihood that satellites were associated with an LMC-mass group as a function of both distance and velocity relative to the LMC at z=0. The close proximity in distance of the nine Dark Energy Survey candidate dwarf galaxies to the LMC suggest that ~2-4 are likely associated with the LMC. Furthermore, if several of these dwarfs nearby to the LMC are genuine members, then the LMC-group probably fell into the MW very recently, <2 Gyr ago. If the connection with the LMC is established with the help of the follow-up velocity measurements, these "satellites of satellites" represent prime candidates to study the affects of group pre-processing on lower mass dwarfs.
We calculate the colours and luminosities of redshift z = 0.1 galaxies from the EAGLE simulation suite using the GALAXEV population synthesis models. We take into account obscuration by dust in birth clouds and diffuse ISM using a two-component screen model, following the prescription of Charlot and Fall. We compare models in which the dust optical depth is constant to models where it depends on gas metallicity, gas fraction and orientation. The colours of EAGLE galaxies for the more sophisticated models are in broad agreement with those of observed galaxies. In particular, EAGLE produces a red sequence of passive galaxies and a blue cloud of star forming galaxies, with approximately the correct fraction of galaxies in each population and with g-r colours within 0.1 magnitudes of those observed. Luminosity functions from UV to NIR wavelengths differ from observations at a level comparable to systematic shifts resulting from a choice between Petrosian and Kron photometric apertures. Despite the generally good agreement there are clear discrepancies with observations. The blue cloud of EAGLE galaxies extends to somewhat higher luminosities than in the data, consistent with the modest underestimate of the passive fraction in massive EAGLE galaxies. There is also a moderate excess of bright blue galaxies compared to observations. The overall level of agreement with the observed colour distribution suggests that EAGLE galaxies at z = 0.1 have ages, metallicities and levels of obscuration that are comparable to those of observed galaxies.
[abridged] The ALESS survey has followed-up a sample of 122 sub-millimeter sources in the Extended Chandra Deep Field South at 870um with ALMA, allowing to pinpoint the positions of sub-millimeter galaxies (SMGs) to 0.3'' and to find their precise counterparts at different wavelengths. This enabled the first compilation of the multi-wavelength spectral energy distributions (SEDs) of a statistically reliable survey of SMGs. In this paper, we present a new calibration of the MAGPHYS modelling code that is optimized to fit these UV-to-radio SEDs of z>1 star-forming galaxies using an energy balance technique to connect the emission from stellar populations, dust attenuation and dust emission in a physically consistent way. We derive statistically and physically robust estimates of the photometric redshifts and physical parameters for the ALESS SMGs. We find that they have a median stellar mass $M_\ast=(8.9\pm0.1)\times10^{10} M_\odot$, SFR$=280\pm70 M_\odot$/yr, overall V-band dust attenuation $A_V=1.9\pm0.2$ mag, dust mass $M_\rm{dust}=(5.6\pm1.0)\times10^8 M_\odot$, and average dust temperature Tdust~40 K. The average intrinsic SED of the ALESS SMGs resembles that of local ULIRGs in the IR range, but the stellar emission of our average SMG is brighter and bluer, indicating lower dust attenuation, possibly because they are more extended. We explore how the average SEDs vary with different parameters, and we provide a new set of SMG templates. To put the ALESS SMGs into context, we compare their stellar masses and SFRs with those of less actively star-forming galaxies at the same redshifts. At z~2, about half of the SMGs lie above the star-forming main sequence, while half are at the high-mass end of the sequence. At higher redshifts (z~3.5), the SMGs tend to have higher SFR and Mstar, but the fraction of SMGs that lie significantly above the main sequence decreases to less than a third.
Cosmological simulations still lack numerical resolution or physical processes to simulate dwarf galaxies in sufficient details. Accurate numerical simulations of individual dwarf galaxies are thus still in demand. We aim at (i) studying in detail the coupling between stars and gas in a galaxy, exploiting the so-called stellar hydrodynamical approach, and (ii) studying the chemo-dynamical evolution of individual galaxies starting from self-consistently calculated initial gas distributions. We present a novel chemo-dynamical code in which the dynamics of gas is computed using the usual hydrodynamics equations, while the dynamics of stars is described by the stellar hydrodynamics approach, which solves for the first three moments of the collisionless Boltzmann equation. The feedback from stellar winds and dying stars is followed in detail. In particular, a novel and detailed approach has been developed to trace the aging of various stellar populations, which enables an accurate calculation of the stellar feedback depending on the stellar age. We build initial equilibrium models of dwarf galaxies that take gas self-gravity into account and present different levels of rotational support. Models with high rotational support develop prominent bipolar outflows; a newly-born stellar population in these models is preferentially concentrated to the galactic midplane. Models with little rotational support blow away a large fraction of the gas and the resulting stellar distribution is extended and diffuse. The stellar dynamics turns out to be a crucial aspect of galaxy evolution. If we artificially suppress stellar dynamics, supernova explosions occur in a medium heated and diluted by the previous activity of stellar winds, thus artificially enhancing the stellar feedback (abridged).
We describe and execute a novel approach to observationally estimate the lifetimes of giant molecular clouds (GMCs). We focus on the cloud population between the two main spiral arms in M51 (the inter-arm region) where cloud destruction via shear and star formation feedback dominates over formation processes. By monitoring the change in GMC number densities and properties from one side of the inter-arm to the other, we estimate the lifetime as a fraction of the inter-arm travel time. We find that GMC lifetimes in M51's inter-arm are finite and short, 20 to 30 Myr. Such short lifetimes suggest that cloud evolution is influenced by environment, in which processes can disrupt GMCs after a few free-fall times. Over most of the region under investigation shear appears to regulate the lifetime. As the shear timescale increases with galactocentric radius, we expect cloud destruction to switch primarily to star formation feedback at larger radii. We identify a transition from shear- to feedback-dominated disruption through a change in the behavior of the GMC number density. The signature suggests that shear is more efficient at completely dispersing clouds, whereas feedback transforms the population, e.g. by fragmenting high mass clouds into lower mass pieces. Compared to the characteristic timescale for molecular hydrogen in M51, our short lifetimes suggest that gas can remain molecular while clouds disperse and reassemble. We propose that galaxy dynamics regulates the cycling of molecular material from diffuse to bound (and ultimately star-forming) objects, contributing to long observed molecular depletion times in normal disk galaxies. We also speculate that, in more extreme environments such as elliptical galaxies and concentrated galaxy centers, star formation can be suppressed when the shear timescale becomes so short that some clouds can not survive to collapse and form stars.
We describe the search for Lyman-break galaxies (LBGs) near the sub-millimeter bright starburst galaxy HFLS3 at $z$$=$6.34 and a study on the environment of this massive galaxy during the end of reionization. We performed two independent selections of LBGs on images obtained with the Gran Telescopio Canarias (GTC) and the Hubble Space Telescope (HST) by combining non-detections in bands blueward of the Lyman-break and color selection. A total of 10 objects fulfilling the LBG selection criteria at $z$$>$5.5 were selected over the 4.54 and 55.5 arcmin$^2$ covered by our HST and GTC images, respectively. The photometric redshift, UV luminosity, and the star-formation rate of these sources were estimated with models of their spectral energy distribution. These $z$$\sim$6 candidates have physical properties and number densities in agreement with previous results. The UV luminosity function of this field at $z$$\sim$6 shows no strong evidence for an overdensity of relatively bright objects (m$_{F105W}$$<$25.9) associated with HFLS3. A Voronoi tessellation analysis also did not allow a detection of an overdensity around HFLS3. However we identified three faint objects at less than three arcseconds from HFLS3 with color consistent with those expected for $z$$\sim$6 galaxies. Deeper data are needed to confirm their redshifts and to study their association with HFLS3 and the galaxy merger that may be responsible for the massive starburst.
Binary mergers (NSMs) of double neutron star (and black hole-neutron star) systems are suggested to be major sites of r-process elements in the Galaxy by recent hydrodynamical and nucleosynthesis studies. It has been pointed out, however, that the estimated long lifetimes of neutron star binaries are in conflict with the presence of r-process-enhanced halo stars at metallicities as low as [Fe/H] ~ -3. To resolve this problem, we examine the role of NSMs in the early Galactic chemical evolution on the assumption that the Galactic halo was formed from merging sub-halos. We present simple models for the chemical evolution of sub-halos with total final stellar masses between 10^4 M_solar and 2 x 10^8 M_solar. Typical lifetimes of compact binaries are assumed to be 100 Myr (for 95% of their population) and 1 Myr (for 5%), according to recent binary population synthesis studies. The resulting metallcities of sub-halos and their ensemble are consistent with the observed mass-metallicity relation of dwarf galaxies in the Local Group, and the metallicity distribution of the Galactic halo, respectively. We find that the r-process abundance ratios [r/Fe] start increasing at [Fe/H] <= -3 if the star formation efficiencies are smaller for less massive sub-halos. In addition, the sub-solar [r/Fe] values (observed as [Ba/Fe] ~ -1.5 for [Fe/H] < -3) are explained by the contribution from the short-lived (~1 Myr) binaries. Our results indicate that NSMs may have a substantial contribution to the r-process element abundances throughout the Galactic history.
We show that the extended main sequence turnoffs seen in intermediate age Large Magellanic Cloud (LMC) clusters, often attributed to age spreads of several hundred Myr, may be easily accounted for by variable stellar rotation in a coeval population. We compute synthetic photometry for grids of rotating stellar evolution models and interpolate them to produce isochrones at a variety of rotation rates and orientations. An extended main sequence turnoff naturally appears in color-magnitude diagrams at ages just under 1 Gyr, peaks in extent between ~1 and 1.5 Gyr, and gradually disappears at around 2 Gyr in age. We then fit our interpolated isochrones by eye to four LMC clusters with very extended main sequence turnoffs: NGC 1783, 1806, 1846, and 1987. In each case, stellar populations with a single age and metallicity can comfortably account for the observed extent of the turnoff region.
Coherent alignments of galaxy shapes, often called "intrinsic alignments" (IA), are the most significant source of astrophysical uncertainty in weak lensing measurements. We develop the tidal alignment model of IA and demonstrate its success in describing observational data. We also describe a technique to separate IA from galaxy-galaxy lensing measurements. Applying this technique to luminous red galaxy lenses in the Sloan Digital Sky Survey, we constrain potential IA contamination from associated sources to be below a few percent.
Links to: arXiv, form interface, find, astro-ph, recent, 1504, contact, help (Access key information)
We investigate the properties of halo gas using three cosmological `zoom-in' simulations of realistic Milky Way-galaxy analogs with varying sub-grid physics. In all three cases, the mass of hot ($T > 10^6$ K) halo gas is $\sim 1\%$ of the host's virial mass. Hot halos extend to 140 kpc from the galactic center and are surrounded by a bubble of warm-hot ($T = 10^5 - 10^6$K) gas that extends to the virial radius. Simulated halos agree well outside 20-30 kpc with the $\beta$-model of Miller $\&$ Bregman (2014) based on OVII absorption and OVIII emission measurements. Warm-hot and hot gas contribute up to $80\%$ of the total gas reservoir, and contain nearly the same amount of baryons as the stellar component. The mass of warm-hot and hot components falls into the range estimated for $L^*$ galaxies. With key observational constraints on the density of the Milky Way corona being satisfied, we show that concealing of the ubiquitous warm-hot baryons, along with the ejection of just $20-30 \%$ of the diffuse gas out of the potential wells by supernova-driven outflows, can solve the "missing baryon problem". The recovered baryon fraction within 3 virial radii is $90\%$ of the universal value. With a characteristic density of $\sim 10^{-4}$ cm$^{-3}$ at $50-80$ kpc, diffuse coronae meet the requirement for fast and complete ram-pressure stripping of the gas reservoirs in dwarf galaxy satellites, which signals the importance of satellite accretion in the assembly of halos and explains naturally how dSphs lost their gas soon after infall.
Several hundred young stars lie in the innermost parsec of our Galaxy. The super-massive black hole (SMBH) might capture planets orbiting these stars, and bring them onto nearly radial orbits. The same fate might occur to planetary embryos (PEs), i.e. protoplanets born from gravitational instabilities in protoplanetary disks. In this paper, we investigate the emission properties of rogue planets and PEs in the Galactic center. In particular, we study the effects of photoevaporation, caused by the ultraviolet background. Rogue planets can hardly be detected by current or forthcoming facilities, unless they are tidally disrupted and accrete onto the SMBH. In contrast, photoevaporation of PEs (especially if the PE is being tidally stripped) might lead to a recombination rate as high as ~10^45 s^-1, corresponding to a Brackett-gamma luminosity ~10^31 erg s^-1, very similar to the observed luminosity of the dusty object G2. We critically discuss the possibility that G2 is a rogue PE, and the major uncertainties of this model.
The use of Reduced Proper Motion in identifying isolated white dwarfs has long been used as a proxy for the absolute magnitude in a population with known kinematics. This, however, introduces a proper motion detection limit on top of the existing photometric limit. How the survey volume is hampered by this extra parameter is discussed in Hambly et al. 2012. In this work, we discuss some robust outlier rejection methods in order to minimise the proper motion limit and hence maximise the survey volume. The generalised volume, corrected for the distance of the Sun from the Galactic Plane, is integrated explicitly.
The traditional Schmidt density estimator has been proven to be unbiased and effective in a magnitude limited sample. Previously, efforts have been made to generalise it for populations with non-uniform density and proper motion limited cases. This work shows that the then good assumptions for a proper motion limited sample are no longer sufficient to cope with modern data. Populations with larger differences in the kinematics as compared to the Local Standard of Rest are most severely affected. We show that this systematic bias can be removed by treating the discovery fraction inseparable from the generalised maximum volume integrand. The treatment can be applied to any proper motion limited sample with good knowledge of the kinematics. This work demonstrates the method through application to a mock catalogue of a white dwarf-only solar neighbourhood for various scenarios and compared against the traditional treatment using a survey with Pan-STARRS-like characteristics.
High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC~5063}. Although one of the most radio-loud Seyfert galaxy, IC~5063 is a relatively weak radio source (P_1.4GHz = 3 x 10^23 W Hz^-1). The data reveal that the kinematics of the gas is very complex. A fast outflow of molecular gas extends along the entire radio jet (~ 1 kpc), with the highest outflow velocities about 0.5 kpc from the nucleus, at the location of the brighter hot-spot in the W lobe. All the observed characteristics can be described by a scenario of a radio plasma jet expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the interstellar medium. This suggests that most of the observed cold molecular outflow is due to fast cooling of the gas after the passage of a shock and that it is the end product of the cooling process.
Relations between star formation rates along the spiral arms and the velocities of gas inflow into the arms in grand-design galaxy NGC 628 were studied. We found that the radial distribution of average star formation rate in individual star formation regions in regular spiral arms correlates with the velocity of gas inflow into the spiral arms. Both distributions have maxima at a galactocentric distance of 4.5-5 kpc. There are no correlations between the radial distributions of average star formation rate in star formation regions in spiral arms and outside spiral arms in the main disc. We also did not find a correlation between the radial distribution of average star formation rate in star formation regions in spiral arms and HI column density.
Spiral arms that emerge from the ends of a galactic bar are important in interpreting observations of our and external galaxies. It is therefore important to understand the physical mechanism that causes them. We find that these spiral arms can be understood as kinematic density waves generated by librations around underlying ballistic closed orbits. This is even true in the case of a strong bar, provided the librations are around the appropriate closed orbits and not around the circular orbits that form the basis of the epicycle approximation. An important consequence is that it is a potential's orbital structure that determines whether a bar should be classified as weak or strong, and not crude estimates of the potential's deviation from axisymmetry.
The equation describing the secular diffusion of a self-gravitating collisionless system induced by an exterior perturbation is derived while assuming that the timescale corresponding to secular evolution is much larger than that corresponding to the natural frequencies of the system. Its two dimensional formulation for a tepid galactic disc is also derived using the epicyclic approximation. Its WKB limit is found while assuming that only tightly wound transient spirals are sustained by the disc. It yields a simple quadrature for the diffusion coefficients which provides a straightforward understanding of the loci of maximal diffusion within the disc.
The main orbital signatures of the secular evolution of an isolated self-gravitating stellar Mestel disc are recovered using a dressed Fokker-Planck formalism in angle-action variables. The shot-noise-driven formation of narrow ridges of resonant orbits is recovered in the WKB limit of tightly wound transient spirals, for a tepid Toomre-stable tapered disc. The relative effect of the bulge, the halo, the disc temperature and the spectral properties of the shot noise are investigated in turn. For such galactic discs all elements seem to impact the locus and direction of the ridge. For instance, when the halo mass is decreased, we observe a transition between a regime of heating in the inner regions of the disc through the inner Lindblad resonance to a regime of radial migration of quasi-circular orbits via the corotation resonance in the outer part of the disc. The dressed secular formalism captures both the nature of collisionless systems (via their natural frequencies and susceptibility), and their nurture via the structure of the external perturbing power spectrum. Hence it provides the ideal framework in which to study their long term evolution.
Fluctuations in a stellar system's gravitational field cause the orbits of stars to evolve. The resulting evolution of the system can be computed with the orbit-averaged Fokker-Planck equation once the diffusion tensor is known. We present the formalism that enables one to compute the diffusion tensor from a given source of noise in the gravitational field when the system's dynamical response to that noise is included. In the case of a cool stellar disc we are able to reduce the computation of the diffusion tensor to a one-dimensional integral. We implement this formula for a tapered Mestel disc that is exposed to shot noise and find that we are able to explain analytically the principal features of a numerical simulation of such a disc. In particular the formation of narrow ridges of enhanced density in action space is recovered. As the disc's value of Toomre's $Q$ is reduced and the disc becomes more responsive, there is a transition from a regime of heating in the inner regions of the disc through the inner Lindblad resonance to one of radial migration of near-circular orbits via the corotation resonance in the intermediate regions of the disc. The formalism developed here provides the ideal framework in which to study the long-term evolution of all kinds of stellar discs.
We examine the heating of the intra-cluster medium (ICM) of cooling flow clusters of galaxies by jet-inflated bubbles and conclude that mixing of hot bubble gas with the ICM is the dominate heating process. We use the PLUTO hydrodynamical code in full 3D to properly account for the inflation of the bubbles and to the multiple vortices induced by the jets and bubbles. The vortices mix some hot shocked jet gas with the ICM. For the parameters used the mixing process accounts for approximately 80% of the energy transferred from the jets to the ICM. Only about 20% of the transferred energy is channelled to the kinetic energy of the ICM. Part of this develops as ICM turbulence. We conclude that turbulent heating plays a smaller role than mixing. Heating by shocks is less efficient even.
We present the first fully calibrated H$_2$, 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-Field Infrared Imager on the CTIO 4-meter Blanco Telescope. Together with a NEWFIRM Br$\gamma$ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H$_2$-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are photodissociation regions viewed edge-on. Based on the morphologies of H$_2$, Br$\gamma$, $^{12}$CO, and 8$\mu$m emission, the H$_2$ to Br$\gamma$ line ratio and Cloudy models, we find that the H$_2$ emission is formed inside the photodissociation regions of 30 Doradus, 2 - 3 pc to the ionization front of the HII region, in a relatively low-density environment $<$ 10$^4$ cm$^{-3}$. Comparisons with Br$\gamma$, 8$\mu$m, and CO emission indicate that H$_2$ emission is due to fluorescence, and provide no evidence for shock excited emission of this line.
We report the identification of elongated (triaxial or prolate) galaxies in cosmological simulations at $z\simeq2$. These are preferentially low-mass galaxies ($M_s \le 10^{9.5} \ M_\odot$), residing in dark-matter (DM) haloes with strongly elongated inner parts, a common feature of high-redshift DM haloes in the $\Lambda$CDM cosmology. Feedback slows formation of stars at the centres of these halos, so that a dominant and prolate DM distribution gives rise to galaxies elongated along the DM major axis. As galaxies grow in stellar mass, stars dominate the total mass within the galaxy half-mass radius, making stars and DM rounder and more oblate. A large population of elongated galaxies produces a very asymmetric distribution of projected axis ratios, as observed in high-z galaxy surveys. This indicates that the majority of the galaxies at high redshifts are not discs or spheroids but rather galaxies with elongated morphologies.
The secular evolution of an infinitely thin tepid isolated galactic disc made
of a finite number of particles is described using the inhomogeneous
Balescu-Lenard equation. Assuming that only tightly wound transient spirals are
present in the disc, a WKB approximation provides a simple and tractable
quadrature for the corresponding drift and diffusion coefficients. It provides
insight into the physical processes at work during the secular diffusion of a
self-gravitating discrete disc and makes quantitative predictions on the
initial variations of the distribution function in action space.
When applied to the secular evolution of an isolated stationary
self-gravitating Mestel disc, this formalism predicts initially the importance
of the corotation resonance in the inner regions of the disc leading to a
regime involving radial migration and heating. It predicts in particular the
formation of a "ridge like" feature in action space, in agreement with
simulations, but over-estimates the timescale involved in its appearance. Swing
amplification is likely to resolve this discrepancy.
In astrophysics, the inhomogeneous Balescu-Lenard equation and its WKB limit
may also describe the secular diffusion of giant molecular clouds in galactic
discs, the secular migration and segregation of planetesimals in
proto-planetary discs, or even the long-term evolution of population of stars
within the Galactic center.
We present optical integral field spectroscopy of the circum-nuclear gas of the Seyfert 2 galaxy NGC 1386. The data cover the central 7$^{\prime\prime} \times 9^{\prime\prime}$ (530 $\times$ 680 pc) at a spatial resolution of 0.9" (68 pc), and the spectral range 5700-7000 \AA\ at a resolution of 66 km s$^{-1}$. The line emission is dominated by a bright central component, with two lobes extending $\approx$ 3$^{\prime\prime}$ north and south of the nucleus. We identify three main kinematic components. The first has low velocity dispersion ($\bar \sigma \approx $ 90 km s$^{-1}$), extends over the whole field-of-view, and has a velocity field consistent with gas rotating in the galaxy disk. We interpret the lobes as resulting from photoionization of disk gas in regions where the AGN radiation cones intercept the disk. The second has higher velocity dispersion ($\bar \sigma \approx$ 200 km s$^{-1}$) and is observed in the inner 150 pc around the continuum peak. This component is double peaked, with redshifted and blueshifted components separated by $\approx$ 500 km s$^{-1}$. Together with previous HST imaging, these features suggest the presence of a bipolar outflow for which we estimate a mass outflow rate of $\mathrm{\dot M} \gtrsim $ 0.1 M$_{\odot}$ yr$^{-1}$. The third component is revealed by velocity residuals associated with enhanced velocity dispersion and suggests that outflow and/or rotation is occurring approximately in the equatorial plane of the torus. A second system of velocity residuals may indicate the presence of streaming motions along dusty spirals in the disk.
Near infrared images from the COBE satellite presented the first clear evidence that our Milky Way galaxy contains a boxy shaped bulge. Recent years have witnessed a gradual paradigm shift in the formation and evolution of the Galactic bulge. Bulges were commonly believed to form in the dynamical violence of galaxy mergers. However, it has become increasingly clear that the main body of the Milky Way bulge is not a classical bulge made by previous major mergers, instead it appears to be a bar seen somewhat end-on. The Milky Way bar can form naturally from a precursor disk and thicken vertically by the internal firehose/buckling instability, giving rise to the boxy appearance. This picture is supported by many lines of evidence, including the asymmetric parallelogram shape, the strong cylindrical rotation (i.e., nearly constant rotation regardless of the height above the disk plane), the existence of an intriguing X-shaped structure in the bulge, and perhaps the metallicity gradients. We review the major theoretical models and techniques to understand the Milky Way bulge. Despite the progresses in recent theoretical attempts, a complete bulge formation model that explains the full kinematics and metallicity distribution is still not fully understood. Upcoming large surveys are expected to shed new light on the formation history of the Galactic bulge.
The apsidal precession frequency in a fixed gravitational potential increases with the radial range of the orbit (eccentricity). Although the frequency increase is modest it can have important implications for wave dynamics in galaxy discs, which have not been previously explored in detail. One of the most interesting consequences is that for a given pattern frequency, each Lindblad resonance does not exist in isolation, but rather is the parent of a continuous sequence of resonant radii, a Lindblad Zone, with each radius in this zone characterized by a specific eccentricity. In the epicyclic approximation the precession or epicyclic frequency does not depend on epicycle size, and this phenomenon is not captured. A better approximation for eccentric orbits is provided by p-ellipse curves (Struck 2006), which do exhibit this effect. Here the p-ellipse approximation and precession-eccentricity relation are used as tools for finding the resonant radii generated from various Lindblad parent resonances. Simple, idealized examples, in flat rotation curve and near solid-body discs, are used to show that ensembles of eccentric resonant orbits excited in Lindblad Zones can provide a backbone for generating a variety of (kinematic) bars and spiral waves. In cases balancing radius-dependent circular frequencies and eccentricity-dependent precession, a range of resonant orbits can maintain their form in the pattern frame, and do not wind up. Eccentric resonance orbits require a strong perturbation to excite them, and may be produced mostly in galaxy interactions or by strong internal disturbances.
Excess emission over expected diffuse astrophysical backgrounds in the direction of the Galactic center region has been claimed at various wavelengths, from radio to gamma rays. Among particle models advocated to explain such observations, several invoke interactions between dark matter particles and ordinary matter, such as cosmic rays, interstellar gas or free electrons. Depending on the specific interstellar matter particles' species and energy, such models predict distinct morphological features. In this study we make detailed predictions for the morphology of models where the relevant electromagnetic emission is proportional to the product of the dark matter density profile and the density of interstellar matter or cosmic rays. We compare the predicted latitudinal and longitudinal distributions with observations, and provide the associated set of relevant spatial templates.
We present a new method to constrain the grain size in protoplanetary disks with polarization observations at millimeter wavelengths. If dust grains are grown to the size comparable to the wavelengths, the dust grains are expected to have a large scattering opacity and thus the continuum emission is expected to be polarized due to self-scattering. We perform 3D radiative transfer calculations to estimate the polarization degree for the protoplanetary disks having radial Gaussian-like dust surface density distributions, which have been recently discovered. The maximum grain size is set to be $100 {\rm~\mu m}$ and the observing wavelength to be 870 ${\rm \mu m}$. We find that the polarization degree is as high as 2.5% with a subarcsec spatial resolution, which is likely to be detected with near-future ALMA observations. The emission is polarized due to scattering of anisotropic continuum emission. The map of the polarization degree shows a double peaked distribution and the polarization vectors are in the radial direction in the inner ring and in the azimuthal direction in the outer ring. We also find the wavelength dependence of the polarization degree: the polarized emission is strongest if dust grains have a maximum size of $a_{\rm max}\sim\lambda/2\pi$, where $\lambda$ is the observing wavelength. Hence, multi-wave and spatially resolved polarization observations toward protoplanetary disks enable us to put a constraint on the grain size. The constraint on the grain size from polarization observations is independent of or may be even stronger than that from the opacity index.
Links to: arXiv, form interface, find, astro-ph, recent, 1504, contact, help (Access key information)
We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus) by Sadavoy; here we test if a similar correlation is observed in a high-mass star-forming region. We use Herschel data to derive a column density map of Orion A. We use the Herschel Orion Protostar Survey catalog for accurate identification and classification of the Orion A young stellar object (YSO) content, including the short-lived Class 0 protostars (with a $\sim$ 0.14 Myr lifetime). We divide Orion A into eight independent 13.5 pc$^2$ regions; in each region we fit the N-PDF distribution with a power-law, and we measure the fraction of Class 0 protostars. We use a maximum likelihood method to measure the N-PDF power-law index without binning. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We test the effects of incompleteness, YSO misclassification, resolution, and pixel-scale. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an "evolutionary state" of the gas. If universal, such a relation permits an evaluation of the evolutionary state from the N-PDF power-law index at much greater distances than those accesible with protostar counts. (abridged)
We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M_r < -19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 +/- 0.003) is higher than that in all relaxed clusters (0.097 +/- 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.
Recently it has been shown that a large fraction of the dwarf satellite galaxies orbiting the Andromeda galaxy are surprisingly aligned in a thin, extended and kinematically coherent planar structure. The presence of such a structure seems to challenge the current Cold Dark Matter paradigm of structure formation, which predicts a more uniform distribution of satellites around central objects. We show that it is possible to obtain a thin, extended, rotating plane of satellites resembling the one in Andromeda in cosmological collisionless simulations based on the Cold Dark Matter model. Our new high resolution simulations show a correlation between the formation time of the dark matter halo and the thickness of the plane of satellites. Our simulations have a high incidence of satellite planes as thin, extended, and as rich as the one in Andromeda and with a very coherent kinematic structure when we select high concentration/early forming halos. By tracking the formation of the satellites in the plane we show that they have been mainly accreted onto the main object along thin dark matter filaments at high redshift. Our results show that the presence of a thin, extended, rotating plane of satellites is not a challenge for the Cold Dark Matter paradigm, but actually supports one of the predictions of this paradigm related to the presence of filaments of dark matter around galaxies at high redshift.
We present a model describing the evolution of Fanaroff-Riley type I and II radio AGN, and the transition between these classes. We quantify galaxy environments using a semi-analytic galaxy formation model, and apply our model to a volume-limited low redshift ($0.03 \leqslant z \leqslant 0.1$) sample of observed AGN to determine the distribution of jet powers and active lifetimes at the present epoch. Radio sources in massive galaxies are found to remain active for longer, spend less time in the quiescent phase, and inject more energy into their hosts than their less massive counterparts. The jet power is independent of the host stellar mass within uncertainties, consistent with maintenance-mode AGN feedback paradigm. The environments of these AGN are in or close to long-term heating-cooling balance. We also examine the properties of high- and low-excitation radio galaxy sub-populations. The HERGs are younger than LERGs by an order of magnitude, whilst their jet powers are greater by a factor of four. The Eddington-scaled accretion rates and jet production efficiencies of these populations are consistent with LERGs being powered by radiatively inefficient advection dominated accretion flows (ADAFs), while HERGs are fed by a radiatively efficient accretion mechanism.
We use hydrodynamic simulations to study the interaction of realistic active galactic nucleus (AGN) feedback mechanisms (accretion-disk winds & Compton heating) with a multi-phase interstellar medium (ISM). Our ISM model includes radiative cooling and explicit stellar feedback from multiple processes. We simulate radii ~0.1-100 pc around an isolated (non-merging) black hole. These are the scales where the accretion rate onto the black hole is determined and where AGN-powered winds and radiation couple to the ISM. Our primary results include: (1) The black hole accretion rate on these scales is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates of ~0.03-1 Msun/yr, sufficient to power a luminous AGN. (2) The gas disk in the galactic nucleus undergoes an initial burst of star formation followed by several Myrs where stellar feedback suppresses the star formation rate per dynamical time. (3) AGN winds injected at small radii with momentum fluxes ~L/c couple efficiently to the ISM and have a dramatic effect on the ISM properties in the central ~100 pc. AGN winds suppress the nuclear star formation rate by a factor of ~10-30 and the black hole accretion rate by a factor of ~3-30. They increase the total outflow rate from the galactic nucleus by a factor of ~10. The latter is broadly consistent with observational evidence for galaxy-scale atomic and molecular outflows driven by AGN rather than star formation. (4) In simulations that include AGN feedback, the predicted column density distribution towards the black hole is reasonably consistent with observations, whereas absent AGN feedback, the black hole is isotropically obscured and there are not enough optically-thin sight lines to explain observed Type I AGN. A 'torus-like' geometry arises self-consistently because AGN feedback evacuates the gas in the polar regions.
The [CII] 158$\mu$m fine-structure line is known to trace regions of active star formation and is the main coolant of the cold, neutral atomic medium. In this \textit{Letter}, we report a strong detection of the [CII] line in the host galaxy of the brightest quasar known at $z>6.5$, the Pan-STARRS1 selected quasar PSO J036.5078+03.0498 (hereafter P036+03), using the IRAM NOEMA millimeter interferometer. Its [CII] and total far-infrared luminosities are $(5.8 \pm 0.7) \times 10^9 \,L_\odot$ and $(7.6\pm1.5) \times 10^{12}\,L_\odot$, respectively. This results in a $L_{[CII]} /L_{TIR}$ ratio of $\sim 0.8\times 10^{-3}$, which is at the high end for those found for active galaxies, though it is lower than the average found in typical main sequence galaxies at $z\sim 0$. We also report a tentative additional line which we identify as a blended emission from the $3_{22} - 3_{13}$ and $5_{23} - 4_{32}$ H$_2$O transitions. If confirmed, this would be the most distant detection of water emission to date. P036+03 rivals the current prototypical luminous J1148+5251 quasar at $z=6.42$, in both rest-frame UV and [CII] luminosities. Given its brightness and because it is visible from both hemispheres (unlike J1148+5251), P036+03 has the potential of becoming an important laboratory for the study of star formation and of the interstellar medium only $\sim 800\,$Myr after the Big Bang.
We present the rest-frame optical spectral energy distribution and stellar masses of six Herschel- selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5um. Due to the spatial resolution of the IRAC observations at the level of 2 arcseconds, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5um, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical spectral energy distribution of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star-formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 x 10^10 to 4 x 10^11 Msun and star-formation rates of around 100 Msun yr-1. This puts these lensed sub-millimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.
The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the poor spatial resolution of Herschel. We present 870um 0.45" imaging obtained in Cycle 0 with the Atacama Large Millimeter/submillimeter Array (ALMA) of a sample of 29 HerMES DSFGs. The ALMA imaging reveals that these DSFGs comprise a total of 62 sources (down to the 5-sigma limit in our ALMA sample; sigma~0.2 mJy). Optical imaging indicates that 36 of the ALMA sources experience a significant flux boost from gravitational lensing (mu>1.1), but only 6 are strongly lensed and show multiple images. We introduce and make use of uvmcmcfit, a general purpose and publicly available Markov chain Monte Carlo visibility plane analysis tool to analyze the source properties. Combined with our previous work on brighter Herschel sources, the lens models presented here tentatively favor intrinsic number counts for DSFGs with a break near 8 mJy at 880um and a steep fall off at higher flux densities. Nearly 70% of the Herschel sources break down into multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sources discovered in single-dish sub-mm or FIR surveys. The ALMA counterparts to our Herschel targets are located significantly closer to each other than ALMA counterparts to sources found in the LABOCA ECDFS Submillimeter Survey. Theoretical models underpredict the excess number of sources with small separations seen in our ALMA sample. The high multiplicity rate and low projected separations between sources seen in our sample argue in favor of interactions and mergers plausibly driving both the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880 = 8 mJy.
Grand rotation curves (GRC) within ~400 kpc of M31 and the Milky Way were constructed by combining disk rotation velocities and radial velocities of satellite galaxies and globular clusters. The GRC for the Milky Way was revised using the most recent Solar rotation velocity. The derived GRCs were deconvolved into a de Vaucouleurs bulge, exponential disk, and a dark halo with the Navarro-Frenk-White (NFW) density profile by the least chi-squares fitting. Comparison of the best-fit parameters revealed similarity of the disks and bulges of the two galaxies, whereas the dark halo mass of M31 was found to be twice the Galaxy's. We show that the NFW model may be a realistic approximation to the observed dark halos in these two giant spirals.
The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.
Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the astrophysics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of intrinsic alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments took on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes intrinsic alignments an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments.
Cappellari (2008) presented a flexible and efficient method to model the stellar kinematics of anisotropic axisymmetric and spherical stellar systems. The spherical formalism could be used to model the line-of-sight velocity second moments allowing for essentially arbitrary radial variation in the anisotropy and general luminous and total density profiles. Here we generalize the spherical formalism by providing the expressions for all three components of the projected second moments, including the two proper motion components. A reference implementation is now included in the public JAM package available at this http URL
The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in large-scale structure tend to align the shapes and angular momenta of nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both $N$-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.
While observations of large-scale structure and the cosmic microwave background (CMB) provide strong constraints on the amplitude of the primordial power spectrum (PPS) on scales larger than 10 Mpc, the amplitude of the power spectrum on sub-galactic length scales is much more poorly constrained. We study early structure formation in a cosmological model with a blue-tilted PPS. We assume that the standard scale-invariant PPS is modified at small length scales as $P(k) \sim k^{m_{\rm s}}$ with $m_{\rm s} > 1$. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with $m_{\rm s} > 1$, star-forming gas clouds are formed at $z > 100$, when formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while keeping a high temperature. The protostars formed in such "hot" clouds grow very rapidly by accretion to become extremely massive stars that may leave massive black holes with a few hundred solar-masses at $z > 100$. The shape of the PPS critically affects the properties and the formation epoch of the first generation of stars. Future experiments of the CMB polarization and the spectrum distortion may provide important information on the nature of the first stars and their formation epoch, and hence on the shape of the small-scale power spectrum.
Links to: arXiv, form interface, find, astro-ph, recent, 1504, contact, help (Access key information)
Connecting galaxies with their descendants (or progenitors) at different redshifts can yield strong constraints on galaxy evolution. Observational studies have historically selected samples of galaxies using a physical quantity, such as stellar mass, either above a constant limit or at a constant cumulative number density. Investigation into the efficacy of these selection methods has not been fully explored. Using a set of four semi-analytical models based on the output of the Millennium Simulation, we find that selecting galaxies at a constant number density (in the range $-4.3 < \log\ n\ [\mathrm{Mpc}^{-3}\ h^{3}] < -3.0$) is superior to a constant stellar mass selected sample, although it still has significant limitations. Recovery of the average stellar mass, stellar mass density and average star-formation rate is highly dependent on the choice of number density but can all be recovered to within $<50\%$ at the commonly employed choice of $\log\ n\ [\mathrm{Mpc}^{-3}\ h^{3}] = -4.0$, corresponding to $\log M_\odot / h \sim 11.2$ at $z=0$, but this increases at lower mass limits. We show that there is a large scatter between the location of a given galaxy in a rank ordering based on stellar mass between different redshifts. We find that the inferred velocity dispersion may be a better tracer of galaxy properties, although further investigation is warranted into simulating this property. Finally, we find that over large redshift ranges selection at a constant number density is more effective in tracing the progenitors of modern galaxies than vice-versa.
We study the stellar content in the tidal tails of three nearby merging galaxies, NGC 520, NGC 2623, and NGC 3256, using BVI imaging taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. The tidal tails in all three systems contain compact and fairly massive young star clusters, embedded in a sea of diffuse, unresolved stellar light. We compare the measured colors and luminosities with predictions from population synthesis models to estimate cluster ages and find that clusters began forming in tidal tails during or shortly after the formation of the tails themselves. We find a lack of very young clusters ($\le 10$ Myr old), implying that eventually star formation shuts off in the tails as the gas is used up or dispersed. There are a few clusters in each tail with estimated ages that are older than the modeled tails themselves, suggesting that these may have been stripped out from the original galaxy disks. The luminosity function of the tail clusters can be described by a single power-law, $dN/dL \propto L^\alpha$, with $-2.6 < \alpha < -2.0$. We find a stellar age gradient across some of the tidal tails, which we interpret as a superposition of 1) newly formed stars and clusters along the dense center of the tail and 2) a sea of broadly distributed, older stellar material ejected from the progenitor galaxies.
We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $z\sim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$\lambda$3727 emitters at $z\approx$ 1.47 and 1.62 from narrow-band imaging. We detect H$\alpha$ emission line in 115 galaxies, [OIII]$\lambda$5007 emission line in 45 galaxies, and H$\beta$, [NII]$\lambda$6584, and [SII]$\lambda\lambda$6716,6731 in 13, 16, and 6 galaxies, respectively. Including the [OII] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at $z\sim$1.5. We find a tight correlation between H$\alpha$ and [OII], which suggests that [OII] can be a good star formation rate (SFR) indicator for galaxies at $z\sim1.5$. The line ratios of H$\alpha$/[OII] are consistent with those of local galaxies. We also find that [OII] emitters have strong [OIII] emission lines. The [OIII]/[OII] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [OIII]/[OII] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.
We present basic properties of $\sim$3,300 emission line galaxies detected by the FastSound survey, which are mostly H$\alpha$ emitters at $z \sim$ 1.2-1.5 in the total area of about 20 deg$^2$, with the H$\alpha$ flux sensitivity limit of $\sim 1.6 \times 10^{-16} \rm erg \ cm^{-2} s^{-1}$ at 4.5 sigma. This paper presents the catalogs of the FastSound emission lines and galaxies, which will be open to the public in the near future. We also present basic properties of typical FastSound H$\alpha$ emitters, which have H$\alpha$ luminosities of $10^{41.8}$-$10^{43.3}$ erg/s, SFRs of 20--500 $M_\odot$/yr, and stellar masses of $10^{10.0}$--$10^{11.3}$ $M_\odot$. The 3D distribution maps for the four fields of CFHTLS W1--4 are presented, clearly showing large scale clustering of galaxies at the scale of $\sim$ 100--600 comoving Mpc. Based on 1,105 galaxies with detections of multiple emission lines, we estimate that contamination of non-H$\alpha$ lines is about 4% in the single-line emission galaxies, which are mostly [OIII]$\lambda$5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which H$\alpha$, [NII]$\lambda \lambda$6548,6583, [SII]$\lambda \lambda$6717, 6731, and [OI]$\lambda \lambda$6300,6364 are seen.
We assess the fraction of the Milky Way's circumgalactic medium (CGM) eluding detection due to its velocity being similar to gas in the disk. This is achieved using synthetic observations of the CGM in a simulated MW-mass galaxy that shows similar CGM kinematics to the MW and external L$\sim$L$_*$ galaxies. As viewed by a mock observer at a location similar to the Sun, only 50$\%$ (by mass) of the gas moves at high velocity ($|v_{\rm LSR}|\geq$100 km s$^{-1}$ or $|v_{\rm DEV}|\geq$50 km s$^{-1}$) in the simulated CGM and would be observable. The low velocity gas is thermodynamically similar to the high velocity gas, indicating the 50$\%$ observable fraction is applicable to spectral lines from the radio to the ultraviolet. We apply the observable mass fraction (50$\%$) to current estimates of the MW's CGM, and find a corrected total mass of 2.8$\times$10$^{8} M_{\odot}$ for gas below 10$^6$K within $\sim15$ kpc (this excludes the Magellanic System). This is less than the total mass of the CGM extending out to $\sim$150 kpc in other L$\sim$L$_*$ galaxies. However, we find similar OVI column densities when the discrepancy in path length between the MW and external galaxies is considered. The coherent spatial and kinematic distribution of low velocity gas in the simulated CGM suggests that current HI observations of the MW's CGM may miss large low velocity HI complexes. In addition, current mass estimates of the MW's CGM based on high-velocity line observations with distance constraints may miss a non-negligible fraction of gas in the outer halo which can be obscured if it moves at a velocity similar to the gas in the lower halo.
We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15<z<0.30, combining wide-field Spitzer 24um and GALEX NUV imaging with highly-complete spectroscopy of cluster members. The fraction (f_SF) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r200, but remains well below field values even at 3r200. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r200 of the cluster, but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f_SF-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ~15x from the core to 2r200. This requires star-formation to survive within recently accreted spirals for 2--3Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44-sigma_v at 0.3r500, and is 10--35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r500. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ~0.5--2Gyr beyond passing within r200. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which SFRs decline exponentially on quenching time-scales of 1.73\pm0.25 Gyr upon accretion into the cluster.
We have conducted radioastronomical observations of 9 dark clouds with the IRAM 30m telescope. We present the first identification in space of the ketenyl radical (HCCO) toward the starless core Lupus-1A and the molecular cloud L483, and the detection of the related molecules ketene (H2CCO) and acetaldehyde (CH3CHO) in these two sources and 3 additional dark clouds. We also report the detection of the formyl radical (HCO) in the 9 targeted sources and of propylene (CH2CHCH3) in 4 of the observed sources, which extends significantly the number of dark clouds where these molecules are known to be present. We derive a beam-averaged column density of HCCO of 5e11 cm-2 in both Lupus-1A and L483, which means that the ketenyl radical is just 10 times less abundant than ketene in these sources. The non-negligible abundance of HCCO found implies that there must be a powerful formation mechanism able to counterbalance the efficient destruction of this radical through reactions with neutral atoms. The column densities derived for HCO, (0.5-2.7)e12 cm-2, and CH2CHCH3, (1.9-4-2)e13 cm-2, are remarkably uniform across the sources where these species are detected, confirming their ubiquity in dark clouds. Gas phase chemical models of cold dark clouds can reproduce the observed abundances of HCO, but cannot explain the presence of HCCO in Lupus-1A and L483 and the high abundances derived for propylene. The chemistry of cold dark clouds needs to be revised in the light of these new observational results.
A new sample of stars, representative of the solar neighbourhood luminosity function, is constructed from the Hipparcos catalogue and the Fifth Catalogue of Nearby Stars. We have cross-matched to sources in the 2MASS catalogue so that for all stars individually determined Near Infrared photometry (NIR) is available on a homogeneous system (typically K_s). The spatial completeness of the sample has been carefully determined by statistical methods, and the NIR luminosity function of the stars has been derived by direct star counts. We find a local volume luminosity of 0.121 +/- 0.004 L_K_sun/(pc**3), corresponding to a volumetric mass-to-light ratio of M/L_K = 0.31 +/- 0.02 M_sun/L_K_sun, where giants contribute 80 per cent to the light but less than 2 per cent to the stellar mass. We derive the surface brightness of the solar cylinder with the help of a vertical disc model. We find a surface brightness of 99 L_K_sun/(pc**2) with an uncertainty of approximately 10 %. This corresponds to a mass-to-light ratio for the solar cylinder of M/L_K = 0.34 M_sun/L_K_sun. The mass-to-light ratio for the solar cylinder is only 10% larger than the local value despite the fact that the local population has a much larger contribution of young stars. It turns out that the effective scale heights of the lower main sequence carrying most of the mass is similar to that of the giants, which are dominating the NIR light. The corresponding colour for the solar cylinder is V-K=2.89 mag compared to the local value of V-K = 2.46 mag. An extrapolation of the local surface brightness to the whole Milky Way yields a total luminosity of M_K = -24.2 mag. The Milky Way falls in the range of K band Tully-Fisher (TF) relations from the literature.
We present Atacama Large Millimeter Array (ALMA) detections of atomic carbon line and dust continuum emission in two UV-luminous galaxies at redshift 6. The far-infrared (FIR) luminosities of these galaxies are substantially lower than similar starbursts at later cosmic epochs, indicating an evolution in the dust properties with redshift, in agreement with the evolution seen in ultraviolet (UV) attenuation by dust. The [CII] to FIR ratios are found to be higher than at low redshift showing that [CII] should be readily detectable by ALMA within the reionization epoch. One of the two galaxies shows a complex merger nature with the less massive component dominating the UV emission and the more massive component dominating the FIR line and continuum. Using the interstellar atomic carbon line to derive the systemic redshifts we investigate the velocity of Lyman alpha emission emerging from high-z galaxies. In contrast to previous work, we find no evidence for decreasing Lyman alpha velocity shifts at high-redshift. We observe an increase in velocity shifts from z~ 2 to z~6, consistent with the effects of increased IGM absorption.
Nuclear star clusters are among the densest stellar systems known and are common in both early- and late-type galaxies. They exhibit scaling relations with their host galaxy which may be related to those of supermassive black holes. These may therefore help us to unravel the complex physical processes occurring at the centres of galaxies. The properties of nuclear stellar systems suggest that their formation requires both dissipational and dissipationless processes. They have stellar populations of different ages, from stars as old as their host galaxy to young stars formed in the last 100 Myr. Therefore star formation must be happening either directly in the nuclear star cluster or in its vicinity. The secular processes that fuel the formation of pseudobulges very likely also contributes to nuclear star cluster growth.
We examine the combined effects of winds and photoionizing radiation from O--type stars on embedded stellar clusters formed in model turbulent molecular clouds covering a range of masses and radii. We find that feedback is able to increase the quantities of dense gas present, but decreases the rate and efficiency of the conversion of gas to stars relative to control simulations in which feedback is absent. Star formation in these calculations often proceeds at a rate substantially slower than the freefall rate in the dense gas. This decoupling is due to the weakening of, and expulsion of gas from, the deepest parts of the clouds' potential wells where most of the star formation occurs in the control simulations. This results in large fractions of the stellar populations in the feedback simulation becoming dissociated from dense gas. However, where star formation \emph{does} occur in both control and feedback simulations, it does so in dense gas, so the correlation between star formation activity and dense gas is preserved. The overall dynamical effects of feedback on the \emph{clusters} are minimal, with only small fraction of stars becoming unbound, despite large quantities of gas being expelled from some clouds. This owes to the settling of the stars into virialised and stellar--dominated configurations before the onset of feedback. By contrast, the effects of feedback on the observable properties of the clusters -- their U--, B-- and V--band magnitudes -- are strong and sudden. The timescales on which the clusters become visible and unobscured are short compared with the timescales which the clouds are actually destroyed.
We present correlations between 9 CO transition ($J=4-3$ to $12-11$) lines and beam-matched far-infrared (FIR) luminosities ($L_{\mathrm{FIR},\,b}$) among 167 local galaxies, using Herschel SPIRE/FTS spectroscopic data and PACS photometry data. We adopt entire-galaxy FIR luminosities ($L_{\mathrm{FIR},\,e}$) from the {\it{IRAS}} Revised Bright Galaxy Sample and correct to $L_{\mathrm{FIR},\,b}$ using PACS images to match the varying FTS beams. All 9 correlations between $L'_{\mathrm{CO}}$ and $L_{\mathrm{FIR},\,b}$ are essentially linear, even for the highest transition $J=12-11$. This supports the notion that dense molecular gas ($n_{\mathrm{H}_2}\gtrsim10^{4-6}\,cm^{-3}$) linearly correlates with the star formation rate (SFR). We divide the entire sample into three subsamples and find that smaller sample size can induce large difference in the correlation slopes. We also derive an average CO spectral line energy distribution (SLED) for the entire sample and discuss the implied average molecular gas properties for these local galaxies. We further extend our sample to high-z galaxies with literature CO($J=5-4$) data as an example, including submillimeter galaxies (SMGs) and "normal" star-forming BzKs. BzKs have similar FIR/CO(5-4) ratios as that of local galaxies, well following the local correlation, whereas SMGs roughly distribute around or slightly above local correlation with large uncertainties. Finally, by using Galactic CO($J=10-9$) data as well as very limited high-z CO($J=10-9$) data, we verify that the CO($J=10-9$) -- FIR correlation successfully extends to Galactic YSOs, suggesting that linear correlations are most likely valid over nearly 15 orders of magnitude.
We study the vertical gradient in azimuthal velocity of spiral galaxy NGC 4244 in a thin disk model. With surface density accounting for the rotation curve, we model the gradient properties in the approximation of quasi-circular orbits and find the predictions to be consistent with the gradient properties inferred from measurements. This consistency may suggest that the mass distribution in this galaxy is flattened.
In this article we investigate the outer and inner mass distributions of the irregular galaxies UGC 4284 and UGC 11861, taking advantage of published HI and H{\alpha} high resolution rotation curves and constraining the stellar disk of both galaxies throughout stellar population synthesis studies. In addition we take into account the gas content of both galaxies deriving the HI+He rotation curve. The deduced baryonic rotation curves (star+gas) are inadequate to account for the total mass of UGC 4284 and UGC 11861, for that reason we examine the possibility of dark matter to explain the incongruity between the observed HI and H{\alpha} rotation curves of UGC 4284 and UGC 11861 and the derived baryonic rotation curves. We consider NFW, Burkert, DiCintio, Einasto, and the Stadel dark matter halos, to analyse the dark matter content of UGC 4284 and UGC 11861. The principal results of this work are that cored dark matter models better reproduce the dark matter H{\alpha} and HI rotation curves of UGC 11861 and the dark matter HI rotation curve of UGC 4284, while, the H{\alpha} rotation curve of UGC 4284 is better reproduced by a cuspy DiCintio DM model. In general, cored exponential two-parameters models Einasto and Stadel, give better fits than Burkert. This trend, as well as to confirm past results, presents for the first time a comparison between two different exponential dark matter models, Einasto and Stadel, in an attempt to better constrain the range of possible exponential dark matter models applied to real galaxies.
We have found two molecular clouds having velocities of 2 km s$^{-1}$ and 14 km s$^{-1}$ toward the super star cluster RCW38 by observations of CO ($J=$1--0 and 3--2) transitions. The two clouds are likely physically associated with the cluster as verified by the high intensity ratio of the $J$=3--2 emission to the $J$=1--0 emission, the bridging feature connecting the two clouds in velocity and the morphological correspondence with the infrared dust emission. Since the total mass of the clouds and the cluster is too small to gravitationally bind the velocity, we suggest that a collision happened by chance between the two clouds. We present a scenario that the collision triggered formation of the $\sim$20 candidate O stars which are localized, within $\sim$0.5 pc of the cluster center in the 2 km s$^{-1}$ cloud, just toward the northern tip of the 14 km s$^{-1}$ cloud. The other member low-mass stars are likely pre-existent prior to the collision since they are distributed outside the 14 km s$^{-1}$ cloud. The formation timescale of the O stars is estimated to be $\sim3\times10^4$ yrs ($=\sim$0.5 pc/16 km s$^{-1}$), implying a mass accretion rate $\sim10^{-3}$ $M_\odot$ yr$^{-1}$ for a 20 $M_\odot$ star. This is the third super star cluster alongside of Westerlund 2 and NGC3603 where cloud-cloud collision triggered the cluster formation among the few youngest super star clusters that are associated with dusty nebulae.
Correlations between the star formation rates (SFRs) of nearby galaxies (so-called galactic conformity) have been observed for projected separations up to 4 Mpc, an effect not predicted by current semi-analytic models. We investigate correlations between the mass accretion rates (dMvir/dt) of nearby halos as a potential physical origin for this effect. We find that pairs of host halos "know about" each others' assembly histories even when their present-day separation is greater than thirty times the virial radius of either halo. These distances are far too large for direct interaction between the halos to explain the correlation in their dMvir/dt. Instead, halo pairs at these distances reside in the same large-scale tidal environment, which regulates dMvir/dt for both halos. Larger halos are less affected by external forces, which naturally gives rise to a mass dependence of the halo conformity signal. SDSS measurements of galactic conformity exhibit a qualitatively similar dependence on stellar mass, including how the signal varies with distance. Based on the expectation that halo accretion and galaxy SFR are correlated, we predict the scale-, mass- and redshift-dependence of large-scale galactic conformity, finding that the signal should drop to undetectable levels by z > 1. These predictions are testable with current surveys to z ~ 1; confirmation would establish a strong correlation between dark matter halo accretion rate and central galaxy SFR.
We report the discovery of 28 promising and a total of 58 new lens candidates from the CFHT Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first Space Warps lens search. The goal of the blind lens search was to identify lenses missed by lens finding robots (the RingFinder on galaxy scales and ArcFinder on group/cluster scales), which have been previously used to mine the CFHTLS for lenses. We compare some properties of lens samples detected by these algorithms to the SpaceWarps sample and found that they are broadly similar. The image separation distribution calculated from the SpaceWarps discovered sample shows that our previous constraints on the average density profile of the lens population are robust. Space Warps recovers about 60% of the known sample and the new candidates show a richer variety compared to the lenses found by the two robots. We find that analyzing only those classifications which are performed by the high power volunteers, Space Warps can achieve a detection rate of up to 75% for the known lens sample. Training and calibration of the performance of citizen scientists is crucial for the success of Space Warps. We also present the SIMCT pipeline, used for generating a sample of realistic simulated lensed images in the CFHTLS, and a sample of duds and false positives used in the training. Such a training sample has a legacy value for testing future lens finding algorithms. We make our training sample publicly available.
We report spatial fluctuation analysis of the sky brightness in near-infrared from observations toward the north ecliptic pole (NEP) by the AKARI at 2.4 and 3.2 micron. As a follow up study of our previous work on the Monitor field of AKARI, we used NEP deep survey data, which covered a circular area of about 0.4 square degrees, in order to extend fluctuation analysis at angular scales up to 1000". We found residual fluctuation over the estimated shot noise at larger angles than the angular scale of the Monitor field. The excess fluctuation of the NEP deep field smoothly connects with that of the Monitor field at angular scales with a few hundreds arcseconds and extends without any significant variation to larger angular scales up to 1000". By comparing excess fluctuations at two wavelengths, we confirm a blue spectrum feature similar to the result of the Monitor field. We find that the result of this study is consistent with Spitzer Space Telescope observations at 3.6 micron. The origin of the excess fluctuation in the near-infrared background remains to be answered, but we could exclude zodiacal light, diffuse Galactic light, and unresolved faint galaxies at low-redshift based on the comparison with mid- and far-infrared brightness, ground based near-infrared images.
Links to: arXiv, form interface, find, astro-ph, recent, 1504, contact, help (Access key information)
We study the dynamical evolution of a stellar disk orbiting a massive black hole. We explore the role of two-body relaxation, mass segregation, stellar evolution and binary heating in affecting the disk evolution, and consider the impact of the nuclear cluster structure and the stellar-disk mass-function. We use analytic arguments and numerical calculations, and apply them to study the evolution of a stellar disk (similar to that observed in the Galactic center; GC), both on the short (few Myr) and longer (100 Myr) evolutionary timescales. We find the dominant processes affecting the disk evolution are two-body relaxation and mass segregation where as binary heating have only a little contribution. Massive stars play a dominant role in kinematically heating low mass stars, and driving them to high eccentricities/inclinations. Multi-mass models with realistic mass-functions for the disk stars show the disk structure to be mass stratified, with the most massive stars residing in thinner structures. Stellar evolution plays an important role in decreasing the number of massive stars with time, thereby leading to slower relaxation, where the remnant compact objects of these stars are excited to higher eccentricities/inclinations. At these later evolutionary stages dynamical heating by the nuclear cluster plays a progressively more important role. We conclude that the high eccentricities of the disk-stars in the Galactic Center suggest that the disk formed with initially high eccentricities, or that collective or secular processes dominate the disk evolution. Finally, we find that the disk structure is expected to keep a thin structure even after 100 Myrs. It therefore suggests earlier disks now containing only older, lower mass stars might still be observed in the Galactic center, unless destroyed/smeared by other non-two-body relaxation processes.
We use public data for 105783 quasars from The Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) that include spectral monochromatic luminosities at 5100\AA, 3000\AA, and 1350\AA, and the corresponding observed broad-band ugriz, VRI (converted), JHK and WISE magnitudes, and derive broad-band-to-monochromatic luminosity ratios independent of a cosmological model. The ratios span the redshift range of z=0.1-4.9 and may serve as a proxy for measuring the bolometric luminosity, broad line region (BLR) radii and/or black hole masses, whenever flux-calibrated spectra are unavailable or the existing spectra have low signal-to-noise ratios. They are provided both in tabular and parametrized form.
In the course of the TOPoS (Turn Off Primordial Stars) survey, aimed at discovering the lowest metallicity stars, we have found several carbon-enhanced metal-poor (CEMP) stars. We here present our analysis of six CEMP stars. Calcium and carbon are the only elements that can be measured in all six stars. The range is -5.0<=[Ca/H]< -2.1 and 7.12<=A(C)<=8.65. For star SDSS J1742+2531 we were able to detect three FeI lines from which we deduced [Fe/H]=-4.80, from four CaII lines we derived [Ca/H]=-4.56, and from synthesis of the G-band we derived A(C)=7.26. For SDSS J1035+0641 we were not able to detect any iron lines, yet we could place a robust (3sigma) upper limit of [Fe/H]< -5.0 and measure the Ca abundance, with [Ca/H]=-5.0, and carbon, A(C)=6.90. No lithium is detected in the spectrum of SDSS J1742+2531 or SDSS J1035+0641, which implies a robust upper limit of A(Li)<1.8 for both stars. Our measured carbon abundances confirm the bimodal distribution of carbon in CEMP stars, identifying a high-carbon band and a low-carbon band. We propose an interpretation of this bimodality according to which the stars on the high-carbon band are the result of mass transfer from an AGB companion, while the stars on the low-carbon band are genuine fossil records of a gas cloud that has also been enriched by a faint supernova (SN) providing carbon and the lighter elements. (Abridged)
Using the "Updated Nearby Galaxy Catalog", we consider different properties of companion galaxies around luminous hosts in the Local Volume. The data on stellar masses, linear diameters,surface brightnesses, HI-richness, specific star formation rate (sSFR), and morphological types are discussed for members of the nearest groups, including the Milky Way and M 31 groups, as a function of their separation from the hosts. Companion galaxies in groups tend to have lower stellar masses, smaller linear diameters and fainter mean surface brightnesses as the distance to their host decreases. The hydrogen-to-stellar mass ratio of the companions increases with their linear projected separation from the dominant luminous galaxy. This tendency is more expressed around the bulge-dominated hosts. While linear separation of the companions decreases, their mean sSFR becomes lower, accompanied with the increasing sSFR scatter. Typical linear projected separation of dSphs around the bulge-dominated hosts, 350 kpc, is substantially larger than that around the disk-dominated ones, 130 kpc. This difference probably indicates the presence of larger hot/warm gas haloes around the early-type host galaxies. The mean fraction of dSph (quenched) companions in 11 the nearest groups as a function of their projected separation R_p can be expressed as f(E) = 0.55 - 0.69 x R_p. The fraction of dSphs around the Milky Way and M 31 looks much higher than in other nearby groups because the quenching efficiency dramatically increases towards the ultra-low mass companions. We emphasize that the observed properties of the Local Group are not typical for other groups in the Local Volume due to the role of selection effects caused by our location inside the Local Group.
Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H2O:CO:CO2:N2:NH3 ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during core collapse period is responsible for high abundance of interstellar H2O2 and O2H, and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H2CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH3 could be reproduced with a 1kyr, 20K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1-10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.
CONTEXT: The Virgo direction has been observed at many wavelengths in the recent years, in particular in the ultraviolet with GALEX. The far ultraviolet (FUV) diffuse light detected by GALEX bears interesting information on the large scale distribution of Galactic dust, owing to the GALEX FUV band sensitivity and resolution. AIMS: We aim to characterise the ultraviolet large scale distribution of diffuse emission in the Virgo direction. A map of this emission may become useful for various studies by identifying regions where dust affects observations by either scattering light or absorbing radiation. METHODS: We construct mosaics of the FUV and near ultraviolet diffuse emission over a large sky region (RA 12 to 13 hours, DEC 0 to 20 degrees) surrounding the Virgo cluster, using all the GALEX available data in the area. We test for the first time the utilisation of the FUV diffuse light as a Galactic extinction E(B-V) tracer. RESULTS: The FUV diffuse light scattered on cirrus reveals details in their geometry. Despite a large dispersion, the FUV diffuse light correlates roughly with other Galactic dust tracers (coming from IRAS, Herschel, Planck), offering an opportunity to use the FUV emission to locate them in future studies with a better resolution (about 5 arcsec native resolution, 20 arcsec pixels maps presented in this paper) than several usual tracers. Estimating the Galactic dust extinction on the basis of this emission allows us to find a smaller dispersion in the NUV-i colour of background galaxies at a given E(B-V)than with other tracers. The diffuse light mosaics obtained in this work are made publicly available.
The high-frequency-peaked BL Lac (HBL) 1ES 0806+524 (z = 0.138) was discovered in VHE $\gamma$ rays in 2008. Until now, the broad-band spectrum of 1ES 0806+524 has been only poorly characterized, in particular at high energies. We analysed multiwavelength observations from $\gamma$ rays to radio performed from 2011 January to March, which were triggered by the high activity detected at optical frequencies. These observations constitute the most precise determination of the broad-band emission of 1ES 0806+524 to date. The stereoscopic MAGIC observations yielded a $\gamma$-ray signal above 250 GeV of $(3.7 \pm 0.7)$ per cent of the Crab Nebula flux with a statistical significance of 9.9 $\sigma$. The multiwavelength observations showed significant variability in essentially all energy bands, including a VHE $\gamma$-ray flare that lasted less than one night, which provided unprecedented evidence for short-term variability in 1ES 0806+524. The spectrum of this flare is well described by a power law with a photon index of $2.97 \pm 0.29$ between $\sim$150 GeV and 1 TeV and an integral flux of $(9.3 \pm 1.9)$ per cent of the Crab Nebula flux above 250 GeV. The spectrum during the non-flaring VHE activity is compatible with the only available VHE observation performed in 2008 with VERITAS when the source was in a low optical state. The broad-band spectral energy distribution can be described with a one-zone Synchrotron Self Compton model with parameters typical for HBLs, indicating that 1ES 0806+524 is not substantially different from the HBLs previously detected.
We present precision radial velocities and stellar population parameters for 77 star clusters in the Local Group galaxy M33. Our GTC and WHT observations sample both young, massive clusters and known/candidate globular clusters, spanning ages ~ 10^6 - 10^10 yr, and metallicities, [M/H] ~-1.7 to solar. The cluster system exhibits an age-metallicity relation; the youngest clusters are the most metal-rich. When compared to HI data, clusters with [M/H] ~ -1.0 and younger than ~ 4 Gyr are clearly identified as a disc population. The clusters show evidence for strong time evolution in the disc radial metallicity gradient (d[M/H]dt / dR = 0.03 dex/kpc/Gyr). The oldest clusters have stronger, more negative gradients than the youngest clusters in M33. The clusters also show a clear age-velocity dispersion relation. The line of sight velocity dispersions of the clusters increases with age similar to Milky Way open clusters and stars. The general shape of the relation is reproduced by disc heating simulations, and the similarity between the relations in M33 and the Milky Way suggests that heating by substructure, and cooling of the ISM both play a role in shaping this relation. We identify 12 "classical" GCs, six of which are newly identified GC candidates. The GCs are more metal-rich than Milky Way halo clusters, and show weak rotation. The inner (R < 4.5 kpc) GCs exhibit a steep radial metallicity gradient (d[M/H]/dR = -0.29+-0.11 dex/kpc) and an exponential-like surface density profile. We argue that these inner GCs are thick disc rather than halo objects.
For the past few years, we have observed the central half parsec of our Galaxy in the mid-infrared from 2.8 to 5.1 micron. Our aim is to improve our understanding of the direct environment of SgrA*, the supermassive blackhole at the centre of the Milky Way. This work is described in the present paper and by Moultaka et al. 2015 (submitted). Here, we focus on the study of the spatial distribution of the 12CO ice and gas-phase absorptions. We observed the central half parsec with ISAAC spectrograph located at the UT3/VLT ESO telescope in Chile. The slit was placed along 22 positions arranged parallel to each other to map the region. We built the first data cube in this wavelength range covering the central half parsec. The wavelength interval of the used M-band filter ranges from 4.6 to 5.1 micron. It hosts the P- and R- branches of the ro-vibrational transitions of the gaseous 12CO and 13CO, as well as the absorption band attributed to the 12CO ice at 4.675 micron. Using two calibrators, we could disentangle the local from the line-of-sight absorptions and provide a first-order estimate of the foreground extinction. We find residual ices and gase-phase CO that can be attributed to local absorptions due to material from the interstellar and/or the circumstellar medium of the central parsec. Our finding implies temperatures of the order of 10 to 60K which is in agreement with the presence of water ices in the region highlighted by Moultaka et al. (2004, 2005).
The high velocity dispersion compact cloud CO-0.30-0.07 is a peculiar molecular clump discovered in the central moleculr zone of the Milky Way, which is characterized by its extremely broad velocity emissions ($\sim 145\ \rm{km s^{-1}}$) despite the absence of internal energy sources. We present new interferometric maps of the cloud in multiple molecular lines in frequency ranges of 265--269 GHz and 276--280 GHz obtained using the Sumbmillimeter Array, along with the single-dish images previously obtained with the ASTE 10-m telescope. The data show that the characteristic broad velocity emissions are predominantly confined in two parallel ridges running through the cloud center. The central ridges are tightly anti-correlated with each other in both space and velocity, thereby sharply dividing the entire cloud into two distinct velocity components (+15 km s$^{-1}$ and +55 km s$^{-1}$). This morphology is consistent with a model in which the two velocity components collide with a relative velocity of 40 $\mathrm{km s^{-1}}$ at the interface defined by the central ridges, although an alternative explanation with a highly inclined expanding-ring model is yet to be fully invalidated. We have also unexpectedly detected several compact clumps ($\lesssim 0.1\ $pc in radius) likely formed by shock compression. The clumps have several features in common with typical star-forming clouds: high densities ($10^{6.5-7.5}\ \mathrm{cm^{-3}}$), rich abundances of hot-core-type molecular species, and relatively narrow velocity widths apparently decoupled from the furious turbulence dominating the cloud. The cloud CO-0.30-0.07 is possibly at an early phase of star formation activity triggered by the shock impact.
We propose a new multiscale method to calculate the amplitude of the gradient of the linear polarisation vector using a wavelet-based formalism. We demonstrate this method using a field of the Canadian Galactic Plane Survey (CGPS) and show that the filamentary structure typically seen in gradients of linear polarisation maps depends strongly on the instrumental resolution. Our analysis reveals that different networks of filaments are present on different angular scales. The wavelet formalism allows us to calculate the power spectrum of the fluctuations seen in gradients of linear polarisation maps and to determine the scaling behaviour of this quantity. The power spectrum is found to follow a power law with gamma ~ 2.1. We identify a small drop in power between scales of 80 < l < 300 arcmin, which corresponds well to the overlap in the u-v plane between the Effelsberg 100-m telescope and the DRAO 26-m telescope data. We suggest that this drop is due to undersampling present in the 26-m telescope data. In addition, the wavelet coefficient distributions show higher skewness on smaller scales than at larger scales. The spatial distribution of the outliers in the tails of these distributions creates a coherent subset of filaments correlated across multiple scales, which trace the sharpest changes in the polarisation vector P within the field. We suggest that these structures may be associated with highly compressive shocks in the medium. The power spectrum of the field excluding these outliers shows a steeper power law with gamma ~ 2.5.
Establishing the relative role of internally and externally driven mechanisms responsible for disc and bulge growth is essential to understand the evolution of disc galaxies. In this context, we have studied the physical properties of disc galaxies without classical bulges in comparison to those with classical bulges since z~0.9. Using images from the Hubble Space Telescope and Sloan Digital Sky Survey, we have computed both parametric and non-parametric measures, and examined the evolution in size, concentration, stellar mass, effective stellar mass density and asymmetry. We find that both disc galaxies with and without classical bulges have gained more than 50% of their present stellar mass over the last ~8 Gyrs. Also, the increase in disc size is found to be peripheral. While the average total (Petrosian) radius almost doubles from z~0.9 to z~0, the average effective radius undergoes a marginal increase in comparison. Additionally, increase in the density of the inner region is evident through the evolution of both concentration and effective stellar mass density. We find that the asymmetry index falls from higher to lower redshifts, but this is more pronounced for the bulgeless disc sample. Also, asymmetry correlates with the global effective radius, and concentration correlates with the global Sersic index, but better so for higher redshifts only. The substantial increase in mass and size indicates that accretion of external material has been a dominant mode of galaxy growth, where the circumgalactic environment plays a significant role.
We use numerical simulations to investigate effect of turbulent velocity on the power spectrum of \HI intensity from external galaxies when (a) all emission is considered, (b) emission with velocity range smaller than the turbulent velocity dispersion is considered. We found that for case (a) the intensity fluctuation depends directly only on the power spectrum of the column density, whereas for case (b) it depends only on the turbulent velocity fluctuation. We discuss the implications of this result in real observations of \HI fluctuations.
We investigate whether the fuelling of low excitation radio galaxies (LERGs) is linked to major galaxy interactions. Our study utilizes a sample of 10,800 spectroscopic galaxy pairs and 97 post-mergers selected from the Sloan Digital Sky Survey with matches to multi-wavelength datasets. The LERG fraction amongst interacting galaxies is a factor of 3.5 higher than that of a control sample matched in local galaxy density, redshift and stellar mass. However, the LERG excess in pairs does not depend on projected separation and remains elevated out to at least 500 kpc, suggesting that major mergers are not their main fuelling channel. In order to identify the primary fuelling mechanism of LERGs, we compile samples of control galaxies that are matched in various host galaxy and environmental properties. The LERG excess is reduced, but not completely removed, when halo mass or D4000 are included in the matching parameters. However, when BOTH M_halo and D4000 are matched, there is no LERG excess and the 1.4 GHz luminosities (which trace jet mechanical power) are consistent between the pairs and control. In contrast, the excess of optical and mid-IR selected AGN in galaxy pairs is unchanged when the additional matching parameters are implemented. Our results suggest that whilst major interactions may trigger optically and mid-IR selected AGN, the gas which fuels the LERGs has two secular origins: one associated with the large scale environment, such as accretion from the surrounding medium or minor mergers, plus an internal stellar mechanism, such as winds from evolved stars.
We introduce a new set of simulations of a Milky Way like galaxy using the AMR code ART + hydrodynamics in a $\Lambda$CDM cosmogony. The simulation series is named GARROTXA and follow the formation of a late type galaxy from z=60 with a final virial mass of \sim$7.4$\times$10$^{11}$M$_{\odot}$. This system has no major mergers since z=3 and at z=0 becomes a disk late-type spiral galaxy. Several of its large scale properties fall inside recent observational limits of our Galaxy, like the rotation curve shape, the presence of a stellar bar and flare, and a gaseous disk warp, as well as the stellar and baryonic mass. Here, as a first scientific exploitation of the model we study the total amount and spatial distribution of hot X-ray luminous gas. We do not observe in our models a significant presence of a hot gas thick disk as has been recently discussed in observational studies. The analysis of hot gas mock observations (column density and emission measure) revealed that commonly used hypothesis assumed to derive the total hot gas mass in the MW halo from observations lead to biases of about one order of magnitude. Our results suggest that such hot gas distribution is highly anisotropic and that its total mass can account for a non-negligible portion of the missing cosmic baryons leaving still open the contribution of circumgalactic gas. Finally, we have found a clear correlation between the total hot gas mass and the dark matter halo mass of galactic systems. If confirmed, this correlation can become a new method to constrain the total mass of galaxies, in particular the one of the Milky Way.
We aim at determining the spatial distribution of the gas and dust in star-forming regions and address their relative abundances in quantitative terms. We also examine the dust opacity exponent beta for spatial and/or temporal variations. Using mapping observations of the very dense rho Oph A core, we examined standard 1D and non-standard 3D methods to analyse data of far-infrared and submillimeter (submm) continuum radiation. The resulting dust surface density distribution can be compared to that of the gas. The latter was derived from the analysis of accompanying molecular line emission, observed with Herschel from space and with APEX from the ground. As a gas tracer we used N2H+, which is believed to be much less sensitive to freeze-out than CO and its isotopologues. Radiative transfer modelling of the N2H+(J=3-2) and (J=6-5) lines with their hyperfine structure explicitly taken into account provides solutions for the spatial distribution of the column density N(H2), hence the surface density distribution of the gas. The gas-to-dust mass ratio is varying across the map, with very low values in the central regions around the core SM 1. The global average, =88, is not far from the canonical value of 100, however. In rho Oph A, the exponent beta of the power-law description for the dust opacity exhibits a clear dependence on time, with high values of 2 for the envelope-dominated emission in starless Class -1 sources to low values close to 0 for the disk-dominated emission in Class III objects. beta assumes intermediate values for evolutionary classes in between. Since beta is primarily controlled by grain size, grain growth mostly occurs in circumstellar disks. The spatial segregation of gas and dust, seen in projection toward the core centre, probably implies that, like C18O, also N2H+ is frozen onto the grains.
We present a kinematical study of 29 spiral galaxies included in the Spitzer Survey of Stellar Structure in Galaxies, using Halpha Fabry-Perot data obtained with the Galaxy Halpha Fabry-Perot System instrument at the William Herschel Telescope in La Palma, complemented with images in the R-band and in Halpha. The primary goal is to study the evolution and properties of the main structural components of galaxies through the kinematical analysis of the FP data, complemented with studies of morphology, star formation and mass distribution. In this paper we describe how the FP data have been obtained, processed and analysed. We present the resulting moment maps, rotation curves, velocity model maps and residual maps. Images are available in FITS format through the NASA/IPAC Extragalactic Database and the Centre de Donn\'ees Stellaires. With these data products we study the non-circular motions, in particular those found along the bars and spiral arms. The data indicate that the amplitude of the non-circular motions created by the bar does not correlate with the bar strength indicators. The amplitude of those non-circular motions in the spiral arms does not correlate with either arm class or star formation rate along the spiral arms. This implies that the presence and the magnitude of the streaming motions in the arms is a local phenomenon.
We measure the clustering of X-ray, radio, and mid-IR-selected active galactic nuclei (AGN) at 0.2 < z < 1.2 using multi-wavelength imaging and spectroscopic redshifts from the PRIMUS and DEEP2 redshift surveys, covering 7 separate fields spanning ~10 square degrees. Using the cross-correlation of AGN with dense galaxy samples, we measure the clustering scale length and slope, as well as the bias, of AGN selected at different wavelengths. Similar to previous studies, we find that X-ray and radio AGN are more clustered than mid-IR-selected AGN. We further compare the clustering of each AGN sample with matched galaxy samples designed to have the same stellar mass, star formation rate, and redshift distributions as the AGN host galaxies and find no significant differences between their clustering properties. The observed differences in the clustering of AGN selected at different wavelengths can therefore be explained by the clustering differences of their host populations, which have different distributions in both stellar mass and star formation rate. Selection biases inherent in AGN selection, therefore, determine the clustering of observed AGN samples. We further find no significant difference between the clustering of obscured and unobscured AGN, using IRAC or WISE colors or X-ray hardness ratio.
Numerical simulations show the formation of self-gravitating primordial disks during the assembly of the first structures in the Universe, in particular during the formation of Pop. III and supermassive stars. Their subsequent evolution is expected to be crucial to determine the mass scale of the first cosmological objects, which depends on the temperature of the gas and the dominant cooling mechanism. Here, we derive a one-zone framework to explore the chemical evolution of such disks and show that viscous heating leads to the collisional dissociation of an initially molecular gas. The effect is relevant on scales of 10 AU (1000 AU) for a central mass of 10 M_solar (10^4 M_solar) at an accretion rate of 0.1 M_solar/yr, and provides a substantial heat input to stabilize the disk. If the gas is initially atomic, it remains atomic during the further evolution, and the effect of viscous heating is less significant. The additional thermal support is particularly relevant for the formation of very massive objects, such as the progenitors of the first supermassive black holes. The stabilizing impact of viscous heating thus alleviates the need for a strong radiation background as a means of keeping the gas atomic.
We present newly processed archival Herschel images of molecular cloud MCLD 123.5+24.9 in the Polaris Flare. This cloud contains five starless cores. Using the spectral synthesis code Cloudy, we explore uncertainties in the derivation of column densities, hence, masses of molecular cores from Herschel data. We first consider several detailed grain models that predict far-IR grain opacities. Opacities predicted by the models differ by more than a factor of two, leading to uncertainties in derived column densities by the same factor. Then we consider uncertainties associated with the modified blackbody fitting process used by observers to estimate column densities. For high column density clouds (N(H) $\gg$ 10$^{22}$ cm$^{-2}$), this fitting technique can underestimate column densities by about a factor of three. Finally, we consider the virial stability of the five starless cores in MCLD 123.5+24.9. All of these cores appear to have strongly sub-virial masses, assuming, as we argue, that $^{13}$CO line data provide reliable estimates of velocity dispersions. Evidently, they are not self-gravitating, so it is no surprise that they are starless.
We describe Space Warps, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowd-sourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a classi- fication interface which records their estimates of the positions of candidate lensed features. Simulated lenses, and expert-classified images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the vol- unteers feedback on their performance, as well as to calibrate it in order to allow dynamical updates to the probability of any image they classify to contain a lens. Low probability systems are retired from the site periodically, concentrating the sample towards a set of candidates. Having divided 160 square degrees of Canada-France- Hawaii Telescope Legacy Survey (CFHTLS) imaging into some 430,000 overlapping 84 by 84 arcsecond tiles and displaying them on the site, we were joined by around 37,000 volunteers who contributed 11 million image classifications over the course of 8 months. The sample was reduced to 3368 Stage I candidates; these were then refined to yield a sample that we expect to be over 90% complete and 30% pure. We comment on the scalability of the Space Warps system to the wide field survey era, based on our finding that searches of 10$^5$ images can be performed by a crowd of 10$^5$ volunteers in 6 days.
We present a detailed analysis of the local evolution of 206 Lagrangian
Volumes (LVs) selected at high redshift around galaxy seeds, identified in a
large-volume $\Lambda$CDM hydrodynamical simulation. The LVs have a mass range
of $1 - 1500 \times 10^{10} M_\odot$. We follow the dynamical evolution of the
density field inside these initially spherical LVs from $z=10$ up to $z_{\rm
low}= 0.05$, witnessing highly non-linear, anisotropic mass rearrangements
within them, leading to the emergence of the local cosmic web (CW). These mass
arrangements have been analysed in terms of the reduced inertia tensor
$I_{ij}^r$, focusing on the evolution of the principal axes of inertia and
their corresponding eigen directions, and paying particular attention to the
times when the evolution of these two structural elements declines. In
addition, mass and component effects along this process have also been
investigated.
We have found that deformations are led by DM dynamics and they transform
most of the initially spherical LVs into prolate shapes, i.e. filamentary
structures. An analysis of the individual freezing-out time distributions for
shapes and eigen directions shows that first most of the LVs fix their three
axes of symmetry (like a skeleton), while accretion flows towards them still
continue. Very remarkably, we have found that more massive LVs fix their
skeleton earlier on than less massive ones. We briefly discuss the
astrophysical implications our findings could have, including the galaxy
mass-morphology relation and the effects on the galaxy-galaxy merger parameter
space, among others.
Links to: arXiv, form interface, find, astro-ph, recent, 1504, contact, help (Access key information)