We study the properties and direct detection prospects of an as of yet neglected population of dark matter (DM) particles moving in orbits gravitationally bound to the Earth. This DM population is expected to form via scattering by nuclei in the Earth's interior. We compute fluxes and nuclear recoil energy spectra expected at direct detection experiments for the new DM population considering detectors with and without directional sensitivity, and different types of target materials and DM-nucleon interactions. DM particles bound to the Earth manifest as a prominent rise in the low-energy part of the observed nuclear recoil energy spectrum. Ultra-low threshold energies of about 1 eV are needed to resolve this effect. Its shape is independent of the DM-nucleus scattering cross-section normalisation.
Context: The galaxy cluster Abell S1101 (S1101 hereafter) deviates significantly from the X-ray luminosity versus velocity dispersion relation (L-sigma) of galaxy clusters in our previous study. Given reliable X-ray luminosity measurement combining XMM-Newton and ROSAT, this could most likely be caused by the bias in the velocity dispersion due to interlopers and low member statistic in the previous sample of member galaxies, which was solely based on 20 galaxy redshifts drawn from the literature. Aims: We intend to increase the galaxy member statistic to perform a precision measurement of the velocity dispersion and dynamical mass of S1101. We aim for a detailed substructure and dynamical state characterization of this cluster, and a comparison of mass estimates derived from (i) the velocity dispersion (M_vir), (ii) the caustic mass computation (M_caustic), and (iii) mass proxies from X-ray observations and the Sunyaev-Zeldovich (SZ) effect. Methods: We carried out new optical spectroscopic observations of the galaxies in this cluster field with VIMOS, obtaining a sample of ~60 member galaxies for S1101. We revised the cluster redshift and velocity dispersion measurements based on this sample and also applied the Dressler-Shectman substructure test. Results: The completeness of cluster members within r200 was significantly improved for this cluster. Tests for dynamical substructure did not show evidence for major disturbances or merging activities in S1101. We find good agreement between the dynamical cluster mass measurements and X-ray mass estimates which confirms the relaxed state of the cluster displayed in the 2D substructure test. The SZ mass proxy is slightly higher than the other estimates. The updated measurement of the velocity dispersion erased the deviation of S1101 in the L-sigma relation.
Tensor Minkowski Functionals (TMFs) are tensorial generalizations of the usual Minkowski Functionals which are scalar quantities. We introduce them here for use in cosmological analysis, in particular to analyze CMB maps. They encapsulate information about the shapes and the orientation of structures. We focus on one of the TMFs, namely $W_2^{1,1}$, which is the generalization of the genus. The ratio of the eigenvalues of the average of $W_2^{1,1}$ over all structures, $\alpha$, encodes the net orientation; and the average of the ratios of the eigenvalues of $W_2^{1,1}$ for each structure, $\beta$, encodes the net anisotropy. We have developed a code that computes $W_2^{1,1}$, and from it $\alpha$ and $\beta$, for a set of structures on the plane. We compute $\alpha$ and $\beta$ as functions of threshold levels for simulated Gaussian and isotropic CMB fields. We obtain $\alpha$ to be one for both temperature and $E$ mode, which means that we recover the input statistical isotropy of density fluctuations in the simulations. The level of net anisotropy of hotspots and coldspots in the CMB fields is quantified by $\beta\sim 0.62$. Then we compute $\alpha$ and $\beta$ for data from PLANCK. We find that the temperature field agrees with the standard LCDM prediction of no net orientation within $3-\sigma$. However, we find that $E$ mode data shows a net orientation that deviates from the theoretical expectation at $14-\sigma$. The possible origin of this deviation may be instrumental effects or other sources and needs to be investigated further. For the net anisotropy we obtain values of $\beta$ for both temperature and $E$ mode that are consistent with the expectations from the standard LCDM simulations. Accurate measurements of $\alpha$ and $\beta$ can be used to test the standard model of cosmology and to search for deviations from it.
Suppose that advanced civilizations, separated by a cosmological distance and time, wish to maximize their access to cosmic resources by rapidly expanding into the universe. What sort of boundary forms between their expanding domains, and how does the presence of one limit the ambitions of another? We describe a general case for any expansion speed, separation distance, and time. We then specialize to the main question of interest. How are the future prospects for a young and ambitious civilization altered if they can observe the presence of another at a cosmological distance? We treat cases involving the observation of one or two expanding domains. In the single-observation case, we find that almost any plausible detection will be limiting to some extent. Also, practical technological limits to expansion speed (well below the speed of light) play an interesting role. If a domain is visible at the time one embarks on expansion, there exists an optimum value for the "practical speed limit," and if the speed limit is much higher than optimal, one's future will be severely limited. In the case of two visible domains, it is possible to be "trapped" by them if the practical speed limit is high enough and their angular separation in the sky is large enough, i.e. one's expansion in any direction will terminate at a boundary with the two visible civilizations.
In 6D general relativity with a scalar field as a source of gravity, a new type of static wormhole solutions is presented: such wormholes connect our universe with a small 2D extra subspace with a universe where this extra subspace is large, and the whole space-time is effectively 6-dimensional. We consider manifolds with the structure M0 x M1 x M2 , where M0 is 2D Lorentzian space-time while each of M1 an M2 can be a 2-sphere or a 2-torus. After selecting possible asymptotic behaviors of the metric functions compatible with the field equations, we give two explicit examples of wormhole solutions with spherical symmetry in our space-time and toroidal extra dimensions. In one example, with a massless scalar field (it is a special case of a well-known more general solution), the extra dimensions have a large constant size at the "far end"; the other example contains a nonzero potential $V(\phi)$ which provides a 6D anti-de Sitter asymptotic, where all spatial dimensions are infinite.
The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. We analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 months of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. We find that the derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Moreover, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, respectively, below and above 2 GeV. Finally, using data from state-of-the-art numerical simulations to model the dark matter distribution, we constrain the contribution from dark matter annihilation and decay in Galactic and extragalactic structures to the measured anisotropy. These constraints are competitive with those that can be derived from the average intensity of the isotropic gamma-ray background.
Links to: arXiv, form interface, find, astro-ph, recent, 1608, contact, help (Access key information)
We present measurements of the spatial mapping between (hot) baryons and the total matter in the Universe, via the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) map from Planck and the weak gravitational lensing maps from the Red Sequence Cluster Survey (RCSLenS). The cross-correlations are performed on the map level where all the sources (including diffuse intergalactic gas) contribute to the signal. We consider two configuration-space correlation function estimators, $\xi^{ y-\kappa}$ and $\xi^ {y-\gamma_{t}}$, and a Fourier space estimator, $C_{\ell}^{y-\kappa}$, in our analysis. We detect a significant correlation out to three degrees of angular separation on the sky. Based on statistical noise only, we can report 13$\sigma$ and 17$\sigma$ detections of the cross-correlation using the configuration-space $y-\kappa$ and $y-\gamma_{t}$ estimators, respectively. Including a heuristic estimate of the sampling variance yields a detection significance of 6$\sigma$ and 8$\sigma$, respectively. A similar level of detection is obtained from the Fourier-space estimator, $C_{\ell}^{y-\kappa}$. As each estimator probes different dynamical ranges, their combination improves the significance of the detection. We compare our measurements with predictions from the cosmo-OWLS suite of cosmological hydrodynamical simulations, where different galactic feedback models are implemented. We find that a model with considerable AGN feedback that removes large quantities of hot gas from galaxy groups and WMAP-7yr best-fit cosmological parameters provides the best match to the measurements. All baryonic models in the context of a Planck cosmology over-predict the observed signal. Similar cosmological conclusions are drawn when we employ a halo model with the observed `universal' pressure profile.
We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35e4 kg-day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly four-fold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV/c^2, WIMP-nucleon spin-independent cross sections above 2.2e-46 cm^2 are excluded at the 90% confidence level.
A precise determination of the mass function is an important tool to verify cosmological predictions of the $\Lambda$CDM model and to infer more precisely the better model describing the evolution of the Universe. Galaxy clusters have been currently used to infer cosmological parameters, in particular the matter density parameter $\Omega_{\rm m}$, the matter power spectrum normalization $\sigma_8$ and the equation of state parameter $w_{\rm de}$ of the dark energy fluid. In this work, using data on massive galaxy clusters ($M>8\times 10^{14}~h^{-1}~M_{\odot}$) in the redshift range $0.05\lesssim z\lesssim 0.83$ we put constraints on the parameter $\alpha$ introduced within the formalism of the extended spherical collapse model to quantify deviations from sphericity due to shear and rotation. Since at the moment there is no physical model describing its functional shape, we assume it to be a logarithmic function of the cluster mass. By holding $\sigma_8$ fixed and restricting our analysis to a $\Lambda$CDM model, we find, at $1-\sigma$ confidence level, $\Omega_{\rm m}=0.284\pm0.0064$, $h=0.678\pm0.017$ and $\beta=0.0019^{+0.0008}_{-0.0015}$, where $\beta$ represents the slope of the parameter $\alpha$. This results translates into a $9\%$ decrement of the number of massive clusters with respect to a standard $\Lambda$CDM mass function, but better data are required to better constrain this quantity, since at the $2-\sigma$ and $3-\sigma$ confidence level we are only able to infer upper limits.
We investigate the gravitational wave (GW) as the standard siren to estimate the constraint ability of cosmological parameters using the third-generation gravitational wave detector: Einstein Telescope. The binary merger of a neutron with either a neutron or black hole is hypothesized to be the progenitor of a short and intense burst of $\gamma$-rays, some fraction of those binary mergers could be detected both through electromagnetic radiation and gravitational wave. Thus we can determine both the luminosity distance and redshift of the source separately. We simulate the luminosity distance and redshift measurements from 100 to 1000 GW events. We adopt Markov chain Monte Carlo method to constrain the Hubble constant and dark matter density parameter, we find that with about 500-600 GW events we can constrain the Hubble constant with an accuracy comparable to \textit{Planck} temperature data and \textit{Planck} lensing combined results, while for the dark matter density, it needs about 1000 GW events. Then we constrain the equation of state of dark energy using a new nonparametric method: Gaussian Process. In the low redshift region, we find that about 700 GW events can give the constraints of $w(z)$ comparable to the constraints of the constant $w$ by \textit{Planck} data with Type Ia supernovae. Those results show that the GWs as the standard sirens to probe the cosmological parameters can provide an independent and complementary alternative to current experiments.
We present for the first time the outcomes of a cosmological N-body simulation that simultaneously implements a Warm Dark Matter (WDM) particle candidate and a modified gravitational interaction in the form of $f(R)$ gravity, and compare its results with the individual effects of these two independent extensions of the standard $\Lambda $CDM scenario, and with the reference cosmology itself. We consider a rather extreme value of the WDM particle mass ($m_{\rm WDM}=0.4$ keV) and a single realisation of $f(R)$ gravity with $|\bar{f}_{R0}|=10^{-5}$, and we investigate the impact of these models and of their combination on a wide range of cosmological observables with the aim to identify possible observational degeneracies. In particular, we focus on the large-scale matter distribution, as well as on the statistical and structural properties of collapsed halos and cosmic voids. Differently from the case of combining $f(R)$ gravity with massive neutrinos -- previously investigated in Baldi et al. (2014) -- we find that most of the considered observables do not show any significant degeneracy due to the fact that WDM and $f(R)$ gravity are characterised by individual observational footprints with a very different functional dependence on cosmic scales and halo masses. In particular, this is the case for the nonlinear matter power spectrum in real space, for the halo and sub-halo mass functions, for the halo density profiles and for the concentration-mass relation. However, other observables -- like e.g. the halo bias -- do show some level of degeneracy between the two models, while a very strong degeneracy is observed for the nonlinear matter power spectrum in redshift space, for the density profiles of small cosmic voids -- with radius below $\approx 5$ Mpc$/h$ -- and for the voids abundance as a function of the void core density.
Perhaps the most intriguing result of Planck's dust-polarization measurements is the observation that the power in the E-mode polarization is twice that in the B mode, as opposed to pre-Planck expectations of roughly equal dust powers in E and B modes. Here we show how the E- and B-mode powers depend on the detailed properties of the fluctuations in the magnetized interstellar medium. These fluctuations are classified into the slow, fast, and Alfv\'en magnetohydrodynamic (MHD) waves, which are determined once the ratio of gas to magnetic-field pressures is specified. We also parametrize models in terms of the power amplitudes and power anisotropies for the three types of waves. We find that the observed EE/BB ratio (and its scale invariance) and positive TE correlation cannot be easily explained in terms of favored models for MHD turbulence. The observed power-law index for temperature/polarization fluctuations also disfavors MHD turbulence. We thus speculate that the 0.1--30 pc length scales probed by these dust-polarization measurements are not described by MHD turbulence but, rather, probe the large-scale physics that drives ISM turbulence. We develop a simple phenomenological model, based on random displacements of the magnetized fluid, that produces EE/BB $\simeq2$ and a positive TE cross-correlation. According to this model, the EE/BB and TE signals are due to longitudinal, rather than transverse, modes in the random-displacement field, providing, perhaps, some clue to the mechanism that stirs the ISM. Future investigations involving the spatial dependence of the EE/BB ratio, TE correlation, and local departures from statistical isotropy in dust-polarization maps, as well as further tests of some of the assumptions in this analysis, are outlined. This work may also aid in the improvement of foreground-separation techniques for studies of CMB polarization.
The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of $400\ \mathrm{arcmin}^2$ in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising $>70,000$ galaxies, selected from ultradeep $K_s$-band detection images ($25.5-26.5$ AB mag, $5\sigma$, total), and $>80\%$ complete to $K_s<25.3-25.9$ AB. We use 5 near-IR medium-bandwidth filters ($J_1,J_2,J_3,H_s,H_l$) as well as broad-band $K_s$ at $1.05\ - 2.16\ \mu m$ to $25-26$ AB at a seeing of $\sim0.5$". Each field has ancillary imaging in $26-40$ filters at $0.3-8\ \mu m$. We derive photometric redshifts and stellar population properties. Comparing with spectroscopic redshifts indicates a photometric redshift uncertainty $\sigma_z={0.010,0.009}$, and 0.011 in CDFS, COSMOS, and UDS. As spectroscopic samples are often biased towards bright and blue sources, we also inspect the photometric redshift differences between close pairs of galaxies, finding $\sigma_{z,pairs}= 0.01-0.02$ at $1<z<2.5$. We quantify how $\sigma_{z,pairs}$ depends on redshift, magnitude, SED type, and the inclusion of FourStar medium bands. $\sigma_{z,pairs}$ is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst $\sigma_{z,pairs}$. Including FourStar medium bands reduces $\sigma_{z,pairs}$ by 50\% at $1.5<z<2.5$. We calculate SFRs based on ultraviolet and ultradeep far-IR $Spitzer$/MIPS and Herschel/PACS data. We derive rest-frame $U-V$ and $V-J$ colors, and illustrate how these correlate with specific SFR and dust emission to $z=3.5$. We confirm the existence of quiescent galaxies at $z\sim3$, demonstrating their SFRs are suppressed by $>\times15$.
A conservative constraint on the rest mass of the photon can be estimated under the assumption that the frequency dependence of dispersion from astronomical sources is mainly contributed by the nonzero photon mass effect. Photon mass limits have been earlier set through the optical emissions of the Crab Nebula pulsar, but we prove that these limits can be significantly improved with the dispersion measure (DM) measurements of radio pulsars in the Large and Small Magellanic Clouds. The combination of DM measurements of pulsars and distances of the Magellanic Clouds provide a strict upper limit on the photon mass as low as $m_{\gamma} \leq2.0\times10^{-45}~\rm{g}$, which is at least four orders of magnitude smaller than the constraint from the Crab Nebula pulsar. Although our limit is not as tight as the current best result ($\sim10^{-47}~\rm{g}$) from a fast radio burst (FRB 150418) at a cosmological distance, the cosmological origin of FRB 150418 remains under debate; and our limit can reach the same high precision of FRB 150418 when it has an extragalactic origin ($\sim10^{-45}~\rm{g}$).
We show that the Pauli exclusion principle in a system of $M0$-branes can give rise to the expansion and contraction of the universe which is located on an $M3$-brane. We start with a system of $M0$-branes with high symmetry, which join mutually and form pairs of $M1$-anti-$M1$-branes. The resulting symmetry breaking creates gauge fields that live on the $M1$-branes and play the role of graviton tensor modes, which induce an attractive force between the $M1$ and anti-$M1$ branes. Consequently, the gauge fields that live on the $M1$-branes, and the scalar fields which are attached symmetrically to all parts of these branes, decay to fermions that attach anti-symmetrically to the upper and lower parts of the branes, and hence the Pauli exclusion principle emerges. By closing $M1$-branes mutually, the curvatures produced by parallel spins will be different from the curvatures produced by anti-parallel spins, and this leads to an inequality between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in the bulk region. This behavior is inherited in the $M3$-brane on which the universe is located, and hence this leads to the emergence of the universe expansion and contraction. In this sense, the Pauli exclusion principle rules the cosmic dynamics.
The spatially closed Friedmann-Lemaitre-Robertson-Walker model in loop quantum cosmology admits two inequivalent consistent quantizations: one based on expressing field strength in terms of holonomies over closed loops, and, another using a connection operator and open holonomies. Using effective dynamics, we investigate the phenomenological differences between the two quantizations for single fluid and two fluid scenarios with various equations of state, including phantom matter. We show that a striking difference between the two quantizations is the existence of two distinct quantum turnarounds, either bounces or recollapses, in the connection quantization, in contrast to a single distinct quantum bounce or recollapse in the holonomy quantization. These results generalize an earlier result on two distinct quantum bounces for stiff matter by Corichi and Karami. However, we find that in certain situations two distinct quantum turnarounds can become virtually indistinguishable. And depending on initial conditions, a pure quantum cyclic universe can also exist undergoing quantum bounce and a quantum recollapse. We show that for various equations of states, connection based quantization leads to super-Planckian values of the energy density and the expansion scalar at quantum turnarounds. Interestingly, we find that very extreme energy densities can also occur for holonomy quantization, breaching the maximum allowed density in spatially flat loop quantized model. However, the expansion scalar in all these cases is bounded by a universal value.
In this paper, we demonstrate that a unified description of early and late-time acceleration is possible in the context of mimetic $F(R)$ gravity. We study the inflationary era in detail and demonstrate that it can be realized even in mimetic $F(R)$ gravity where traditional $F(R)$ gravity fails to describe the inflation. By using standard methods we calculated the spectral index of primordial curvature perturbations and the scalar-to-tensor ratio. We use two $F(R)$ gravity models and as it turns out, for both the models under study the observational indices are compatible with both the latest Planck and the BICEP2/Keck array data. Finally, the graceful exit from inflation is guaranteed by the existence of growing curvature perturbations when the slow-roll era ends.
We numerically determine the cosmological branch of the free function in a nonlocal metric-based modification of gravity which provides a relativistic generalization of Milgrom's Modified Newtonian Dynamics. Although we are not able to get exact agreement with $\Lambda$CDM cosmology for the range $0 \leq z < 0.0880$ the deviation is interesting in that it makes the current value of the Hubble parameter about 4.5% larger than in the $\Lambda$CDM model. This may resolve the tension between inferences of $H_0$ which are based on data from large redshift and inferences based on Hubble plots.
We study the decoherence of massive fields during inflation based on the Zurek's density matrix approach. With the cubic interaction between inflaton and massive fields, the reduced density matrix for the massive fields can be calculated in the Schr\"odinger picture which is related to the variance of the non-Gaussian exponent in the wave functional. The decoherence rate is computed in the one-loop form from functional integration. For heavy fields with $m\gtrsim \mathcal{O}(H)$, quantum fluctuations will easily stay in the quantum state and decoherence is unlikely. While for light fields with mass smaller than $\mathcal{O}(H)$, quantum fluctuations are easily decohered within $5\sim10$ e-folds after Hubble crossing. Thus heavy fields can play a key role in studying problems involving inflationary quantum information.
Photometric redshifts play an important role as a measure of distance for various cosmological topics. Spectroscopic redshifts are only available for a very limited number of objects but can be used for creating statistical models. A broad variety of photometric catalogues provide uncertain low resolution spectral information for galaxies and quasars that can be used to infer a redshift. Many different techniques have been developed to produce those redshift estimates with increasing precision. Instead of providing a point estimate only, astronomers start to generate probabilistic density functions (PDFs) which should provide a characterisation of the uncertainties of the estimation. In this work we present two simple approaches on how to generate those PDFs. We use the example of generating the photometric redshift PDFs of quasars from SDSS(DR7) to validate our approaches and to compare them with point estimates. We do not aim for presenting a new best performing method, but we choose an intuitive approach that is based on well known machine learning algorithms. Furthermore we introduce proper tools for evaluating the performance of PDFs in the context of astronomy. The continuous ranked probability score (CRPS) and the probability integral transform (PIT) are well accepted in the weather forecasting community. Both tools reflect how well the PDFs reproduce the real values of the analysed objects. As we show, nearly all currently used measures in astronomy show severe weaknesses when used to evaluate PDFs.
The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for
High-ENergy Astrophysics (Athena) will provide spatially resolved
high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5 arc second pixels
over a field of view of 5 arc minute equivalent diameter and a spectral
resolution of 2.5 eV up to 7 keV. In this paper, we first review the core
scientific objectives of Athena, driving the main performance parameters of the
X-IFU, namely the spectral resolution, the field of view, the effective area,
the count rate capabilities, the instrumental background. We also illustrate
the breakthrough potential of the X-IFU for some observatory science goals.
Then we briefly describe the X-IFU design as defined at the time of the mission
consolidation review concluded in May 2016, and report on its predicted
performance. Finally, we discuss some options to improve the instrument
performance while not increasing its complexity and resource demands (e.g.
count rate capability, spectral resolution).
The X-IFU will be provided by an international consortium led by France, The
Netherlands and Italy, with further ESA member state contributions from
Belgium, Finland, Germany, Poland, Spain, Switzerland and two international
partners from the United States and Japan.
We present all scalar-tensor Lagrangians that are cubic in second derivatives of a scalar field, and that are degenerate, hence avoiding Ostrogradsky instabilities. Thanks to the existence of constraints, they propagate no more than three degrees of freedom, despite having higher order equations of motion. We also determine the viable combinations of previously identified quadratic degenerate Lagrangians and the newly established cubic ones. Finally, we study whether the new theories are connected to known scalar-tensor theories such as Horndeski and beyond Horndeski, through conformal or disformal transformations.
The excessive dispersion measures (DMs) and high Galactic latitudes of fast radio bursts (FRBs) hint toward a cosmological origin of these mysterious transients. Methods of using measured DM and redshift $z$ to study cosmology have been proposed, but one needs to assume a certain amount of DM contribution from the host galaxy (DM$_{\rm HG}$) in order to apply those methods. We introduce a slope parameter $\beta(z) \equiv d \ln \left< {\rm DM}_{\rm E} \right> / d \ln z$ (where DM$_{\rm E}$ is the observed DM subtracting the Galactic contribution), which can be directly measured when a sample of FRBs have $z$ measured. We show that $\left< {\rm DM_{HG}}\right>$ can be roughly inferred from $\beta$ and the mean values, $\overline{\rm \left<DM_{\rm E}\right>}$ and $\bar z$, of the sample. Through Monte Carlo simulations, we show that the mean value of local host galaxy DM, $\left<\rm{DM_{HG,loc}}\right>$, along with other cosmological parameters (mass density $\Omega_m$ in the $\Lambda$CDM model, and the IGM portion of the baryon energy density $\Omega_b f_{\rm IGM}$) can be independently measured through MCMC fitting to the data.
Links to: arXiv, form interface, find, astro-ph, recent, 1608, contact, help (Access key information)
Massive neutrinos leave a unique signature in the large scale clustering of matter. We investigate the wavenumber dependence of the growth factor arising from neutrino masses and use a Fisher analysis to determine the aspects of a galaxy survey needed to measure this scale dependence.
We define Baryon Acoustic Oscillation (BAO) observables $\hat{d}_\alpha(z, z_c)$, $\hat{d}_z(z, z_c)$, and $\hat{d}_/(z, z_c)$ that do not depend on any cosmological parameter. From each of these observables we recover the BAO correlation length $d_\textrm{BAO}$ with its respective dependence on cosmological parameters. These BAO observables are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From the BAO measurements alone, or together with the correlation angle $\theta_\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the curvature parameter $\Omega_k$ and the dark energy density $\Omega_\textrm{DE}(a)$ as a function of the expansion parameter $a$ in several scenarios. These observables are further constrained with external measurements of $h$ and $\Omega_\textrm{b} h^2$. We find some tension between the data and a cosmology with flat space and constant dark energy density $\Omega_\textrm{DE}(a)$.
Infrared luminosities vLv(7.8 um) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 < z < 5 using detections at 22 um by the Wide-Field Infrared Survey Explorer. Infrared luminosity does not show a maximum at any redshift z < 5, reaching a plateau for z >~ 3 with maximum luminosity vLv(7.8 um) >~ 10^{47} erg per s; luminosity functions show one quasar per cubic Gpc having vLv(7.8 um) > 10^{46.6} erg per s for all 2 < z < 5. We conclude that the epoch when quasars first reached their maximum luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame vLv(0.25 um), have the largest values of the ratio vLv(0.25 um)/vLv(7.8 um) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define "obscured" quasars as those having > 5 magnitudes of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ~ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ~ 2.1 with a possible excess of obscured quasars at fainter luminosities.
We discuss a scale-free model of bigravity, in which the mass parameter of the standard bigravity potential is promoted to a dynamical scalar field. This modification retains the ghost-free bigravity structure, in particular it remains free of the Boulware-Deser ghost. We investigate the theory's interaction structure, focusing on its consistent scaling limits and strong coupling scales. Furthermore we explore the model's quadratic action, both around generic background configurations and paying special attention to cosmological backgrounds and to the associated background evolution. Finally we consider the possibility of realizing a phase of late-time acceleration as well as a quasi-de Sitter inflationary stage at early times, when the promoted "mass scalar" becomes the inflaton.
We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaitre-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.
The atmospheres filling massive galaxies, groups, and clusters display remarkable similarities with rainfalls. Such plasma halos are shaped by AGN heating and subsonic turbulence (~150 km/s), as probed by Hitomi. The new 3D high-resolution simulations show the soft X-ray (< 1 keV) plasma cools rapidly via radiative emission at the high-density interface of the turbulent eddies, stimulating a top-down condensation cascade of warm, $10^4$ K filaments. The ionized (optical/UV) filaments extend up to several kpc and form a skin enveloping the neutral filaments (optical/IR/21-cm). The peaks of the warm filaments further condense into cold molecular clouds (<50 K; radio) with total mass up to several $10^7$ M$_\odot$, i.e., 5/50$\times$ the neutral/ionized masses. The multiphase structures inherit the chaotic kinematics and are dynamically supported. In the inner 500 pc, the clouds collide in inelastic way, mixing angular momentum and leading to chaotic cold accretion (CCA). The BHAR can be modeled via quasi-spherical viscous accretion with collisional mean free path ~100 pc. Beyond the inner kpc region pressure torques drive the angular momentum transport. In CCA, the BHAR is recurrently boosted up to 2 dex compared with the disc evolution, which arises as turbulence is subdominant. The CCA BHAR distribution is lognormal with pink noise power spectrum characteristic of fractal phenomena. The rapid self-similar CCA variability can explain the light curve variability of AGN and HMXBs. An improved criterium to trace thermal instability is proposed. The 3-phase CCA reproduces crucial observations of cospatial multiphase gas in massive galaxies, as Chandra X-ray images, SOAR H$\alpha$ warm filaments and kinematics, Herschel [C$^+$] emission, and ALMA giant molecular associations. CCA plays key role in AGN feedback, AGN unification/obscuration, the evolution of BHs, galaxies, and clusters.
Using four different suites of cosmological simulations, we generate synthetic spectra for galaxies with different Lyman continuum escape fractions (fesc) at redshifts z=7-9, in the rest-frame wavelength range relevant for the James Webb Space Telescope (JWST) NIRSpec instrument. By investigating the effects of realistic star formation histories and metallicity distributions on the EW(Hb)-beta diagram (previously proposed as a tool for identifying galaxies with very high fesc), we find that the neither of these effects are likely to jeopardize the identification of galaxies with extreme Lyman continuum leakage. Based on our models, we expect essentially all z=7-9 galaxies that exhibit rest-frame EW(Hb)< 30 {\AA} to have fesc>0.5. Incorrect assumptions concerning the ionizing fluxes of stellar populations or the dust properties of z>6 galaxies can in principle bias the selection, but substantial model deficiencies of this type will at the same time reveal themselves as an offset between the observed and simulated distribution of z>6 galaxies in the EW(Hb)-beta diagram. Such offsets would thereby allow JWST/NIRSpec measurements of these observables to serve as input for further model refinement.
We use the hydrodynamical EAGLE simulation to study the magnitude and origin of the scatter in the stellar mass - halo mass relation for central galaxies. We separate cause and effect by correlating stellar masses in the baryonic simulation with halo properties in a matched dark matter only (DMO) simulation. The scatter in stellar mass increases with redshift and decreases with halo mass. At $z = 0.1$ it declines from 0.25 dex at $M_{200, \rm DMO} \approx 10^{11}$ M$_{\odot}$ to 0.12 dex at $M_{200, \rm DMO} \approx 10^{13}$ M$_{\odot}$, but the trend is weak above $10^{12}$ M$_{\odot}$. For $M_{200, \rm DMO} < 10^{12.5}$ M$_{\odot}$ up to 0.04 dex of the scatter is due to scatter in the halo concentration. At fixed halo mass, a larger stellar mass corresponds to a more concentrated halo. This is likely because higher concentrations imply earlier formation times and hence more time for accretion and star formation, and/or because feedback is less efficient in haloes with higher binding energies. The maximum circular velocity, $V_{\rm max, DMO}$, and binding energy are therefore more fundamental properties than halo mass, meaning that they are more accurate predictors of stellar mass, and we provide fitting formulae for their relations with stellar mass. However, concentration alone cannot explain the total scatter in the $M_{\rm star} - M_{200, \rm DMO}$ relation, and it does not explain the scatter in $M_{\rm star} -V_{\rm max, DMO}$. Halo spin, sphericity, triaxiality, substructure and environment are also not responsible for the remaining scatter, which thus could be due to more complex halo properties or non-linear/stochastic baryonic effects.
A promising proposal for resolving the cusp-core anomaly in the density profile of dwarf galaxies is to allow dark matter to interact with itself through a light mediator of mass much less than a GeV. The theoretical challenge is to have a complete renormalizable theory where this happens naturally even though dark matter itself may be of the electroweak scale, i.e. 100 GeV to 1 TeV. I propose here such a model, with just two neutral complex scalar singlets under a softly broken dark global U(1) symmetry.
In Gleyzes-Langlois-Piazza-Vernizzi (GLPV) scalar-tensor theories, which are outside the domain of second-order Horndeski theories, it is known that there exists a conical singularity in the case where the parameter $\alpha_{\rm H}$ characterizing the deviation from Horndeski theories approaches a non-vanishing constant at the center of a spherically symmetric body. Meanwhile, it was recently shown that second-order generalized Proca theories with a massive vector field $A^{\mu}$ can be consistently extended to beyond-generalized Proca theories, which recover the shift-symmetric GLPV theories in the scalar limit $A^{\mu} \to \nabla^{\mu} \chi$. In beyond-generalized Proca theories up to quartic-order Lagrangians, we show that the conical singularity is generally absent due to the existence of the temporal vector component. We also derive the vector-field profiles around a compact object and show that the success of the Vainshtein mechanism operated by vector Galileons is not prevented by the new interaction in beyond generalized Proca theories.
We investigate the optical polarization properties of high-energy BL Lac objects using data from the RoboPol blazar monitoring program and the Nordic Optical Telescope. We wish to understand if there are differences in the BL Lac objects that are detected with the current-generation TeV instruments compared to those that have not yet been detected. The mean polarization fraction of the TeV-detected BL Lacs is 5% while the non-TeV sources show a higher mean polarization fraction of 7%. This difference in polarization fraction disappears when the dilution by the unpolarized light of the host galaxy is accounted for. The TeV sources show somewhat lower fractional polarization variability amplitudes than the non-TeV sources. Also the fraction of sources with a smaller spread in the Q/I - U/I -plane and a clumped distribution of points away from the origin, possibly indicating a preferred polarization angle, is larger in the TeV than in the non-TeV sources. These differences between TeV and non-TeV samples seems to arise from differences between intermediate and high spectral peaking sources instead of the TeV detection. When the EVPA variations are studied, the rate of EVPA change is similar in both samples. We detect significant EVPA rotations in both TeV and non-TeV sources, showing that rotations can occur in high spectral peaking BL Lac objects when the monitoring cadence is dense enough. Our simulations show that we cannot exclude a random walk origin for these rotations. These results indicate that there are no intrinsic differences in the polarization properties of the TeV-detected and non-TeV-detected high-energy BL Lac objects. This suggests that the polarization properties are not directly related to the TeV-detection, but instead the TeV loudness is connected to the general flaring activity, redshift, and the synchrotron peak location. (Abridged)
In the first part of the thesis we focus on local symmetries. We review a self-consistent framework that we employed in order to discuss the dynamics of the theories of interest. Its merit lies in that we can make the symmetry group act internally and thus be effectively separated from coordinate transformations. We investigate under which conditions it is not needed to introduce extra compensating fields to make relativistic as well as nonrelativistic theories invariant under local symmetries and more precisely under scale transformations. We clarify the role that torsion plays in this context. We highlight the difference between Weyl and conformal invariance and we demonstrate that not all conformal theories can be coupled to gravity in a Weyl invariant way. Once this minimalistic treatment for gauging symmetries is left aside, new possibilities appear. Namely, if we consider the Poincar\'e group, the presence of the extra modes leads to nontrivial particle dynamics. We derive constraints such that the theory is free from pathologies. In the second part we make clear that even when not gauged, the presence of scale invariance is appealing. First, it makes possible for the dimensionful parameters that appear in a theory to be generated dynamically and be sourced by the vacuum expectation value of the dilaton. If the Standard Model is embedded into a scale-invariant framework, a number of interesting implications for cosmology arise. The inflationary stage of our Universe and its present-day acceleration become linked, a connection that might give us insight into the dark energy dynamics. We show that in the context of gravitational theories which are invariant under restricted coordinate transformations, the dilaton instead of being introduced ad hoc, can emerge from the gravitational part of a theory. We discuss the consequences of the nontrivial way this field emerges in the action.
The problem of classification of the Einstein--Friedman cosmological Hamiltonians $H$ with a single scalar inflaton field $\varphi$ that possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint $H=0$ is considered. Necessary and sufficient conditions for the existence of first, second, and third degree integrals are derived. These conditions have the form of ODEs for the cosmological potential $V(\varphi)$. In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in a parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described and sporadic superintegrable cases are discussed.
We study metal depletion due to dust in the interstellar medium (ISM) to infer the properties of dust grains and characterize the metal and dust content of galaxies, down to low metallicity and intermediate redshift z. We provide metal column densities and abundances of a sample of 70 damped Lyman-{\alpha} absorbers (DLAs) towards quasars, observed at high spectral resolution with the Very Large Telescope (VLT) Ultraviolet and Visual Echelle Spectrograph (UVES). This is the largest sample of phosphorus abundances measured in DLAs so far. We use literature measurements for Galactic clouds to cover the high-metallicity end. We discover tight (scatter <= 0.2 dex) correlations between [Zn/Fe] and the observed relative abundances, which are due to dust depletion. This implies that grain-growth in the ISM is an important process of dust production. These sequences are continuous in [Zn/Fe] from dust-free to dusty DLAs, and to Galactic clouds, suggesting that the availability of refractory metals in the ISM is crucial for dust production, regardless of the star-formation history. We observe [S/Zn] up to ~ 0.25 dex in DLAs, broadly consistent with Galactic stellar abundances. Furthermore, we find a good agreement between the nucleosynthetic pattern of Galactic halo stars and our observations of the least dusty DLAs. This supports recent star formation in low-metallicity DLAs. The derived depletions of Zn, O, P, S, Si, Mg, Mn, Cr, and Fe correlate with [Zn/Fe], with steeper slopes for more refractory elements. P is mostly not affected by dust depletion. We present canonical depletion patterns, to be used as reference in future studies of relative abundances and depletion. We derive the total (dust-corrected) metallicity, typically -2 <= [M/H]tot <= 0 for DLAs, and scattered around solar metallicity for the Galactic ISM. The dust-to-metals ratio increases with metallicity... [abridged]
Links to: arXiv, form interface, find, astro-ph, recent, 1608, contact, help (Access key information)
Testing predictions of semi-analytic models of galaxy evolution against observations help to understand the complex processes that shape galaxies. We compare predictions from the Garching and Durham models implemented on the Millennium Run with observations of galaxy-galaxy lensing (GGL) and galaxy-galaxy-galaxy lensing (G3L) for various galaxy samples with stellar masses in the range 0.5 < (M_* / 10^10 M_Sun) < 32 and photometric redshift range 0.2 < z < 0.6 in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We find that the predicted GGL and G3L signals are in qualitative agreement with CFHTLenS data. Quantitatively, the models succeed in reproducing the observed signals in the highest stellar mass bin 16 < ( M_* / 10^10 M_Sun) < 32 but show different degrees of tension for the other stellar mass samples. The Durham model is strongly excluded on a 95% confidence level by the observations as it largely over-predicts the amplitudes of GGL and G3L signals, probably owing to a larger number of satellite galaxies in massive halos.
Merging galaxy clusters have been touted as one of the best probes for constraining self-interacting dark matter, but few simulations exist to back up this claim. We simulate equal mass mergers of 10$^{15}$ M$_\odot$ halos, like the El Gordo and Sausage clusters, with cosmologically-motivated halo and merger parameters, and with velocity-independent dark-matter self-interactions. Although the standard lore for merging clusters is that self-interactions lead to large separations between the galaxy and dark-matter distributions, we find that maximal galaxy-dark matter offsets of $\lesssim~20$~kpc form for a self-interaction cross section of $\sigma_\text{SI}/m_\chi$ = 1 cm$^2$/g. This is an order of magnitude smaller than those measured in observed equal mass and near equal mass mergers, and is likely to be even smaller for lower-mass systems. While competitive cross-section constraints are thus unlikely to emerge from offsets, we find other signatures of self-interactions which are more promising. Intriguingly, we find that after dark matter halos coalesce, the collisionless galaxies (and especially the Brightest Cluster Galaxy [BGC]) oscillate around the center of the merger remnant on stable orbits of 100 kpc for $\sigma_\text{SI}/m_\chi = 1$~cm$^2$/g for at least several Gyr, well after the clusters have relaxed. If BCG miscentering in relaxed clusters remains a robust prediction of SIDM under the addition of gas physics, substructure, merger mass ratios (e.g., 10:1 like the Bullet Cluster), and complex cosmological merger histories, the observed BCG offsets may constrain $\sigma_\text{SI}/m_\chi \lesssim$ 0.1 cm$^2$/g---the tightest constraint yet.
We present a new method for detection of the integrated Sachs-Wolfe (ISW) imprints of cosmic superstructures on the cosmic microwave background, based on a matched filtering approach. The expected signal-to-noise ratio for this method is comparable to that obtained from the full cross-correlation, and unlike other stacked filtering techniques it is not subject to an a posteriori bias. We apply this method to Planck CMB data using voids and superclusters identified in the CMASS galaxy data from the Sloan Digital Sky Survey Data Release 12, and measure the ISW amplitude to be $A_\mathrm{ISW}=1.64\pm0.53$ relative to the $\Lambda$CDM expectation, corresponding to a $3.1\sigma$ detection. In contrast to some previous measurements of the ISW effect of superstructures, our result is in agreement with the $\Lambda$CDM model.
Until now, systematic errors in strong gravitational lens modeling have been acknowledged but never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with $>15$ image systems, the image plane rms does not decrease significantly when more systems are added; however the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to $<2\%$ for models using $>10$ image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For $>15$ systems, the systematic error on magnification is $\sim2\%$. We report no trend in magnification error with fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to $\sim0.5$ will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial, as models without any spectroscopic redshifts are inaccurate across all of our diagnostics.
Most, if not all, scalar-tensor theories are equivalent to General Relativity with a disformally coupled matter sector. In extra-dimensional theories such a coupling can be understood as a result of induction of the metric on a brane that matter is confined to. This article presents a first look at the non-Gaussianities in disformally coupled inflation, a simple two-field model that features a novel kinetic interaction. Cases with both canonical and Dirac-Born-Infeld (DBI) kinetic terms are taken into account, the latter motivated by the possible extra-dimensional origin of the disformality. The computations are carried out for the equilateral configuration in the slow-roll regime, wherein it is found that the non-Gaussianity is typically rather small and negative. This is despite the fact that the new kinetic interaction causes the perturbation modes to propagate with different sounds speeds, which may both significantly deviate from unity during inflation.
The Lyman-$\alpha$ forest is a highly non-linear field with a lot of information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this paper we argue that measuring coefficients of the Legendre polyonomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, $n$-th coefficient can be expressed as a linear combination of the first $n$ moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisation over mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities.
During the process of structure formation in the universe matter is converted into radiation through a variety of processes such as light from stars, infrared radiation from cosmic dust and gravitational waves from binary black holes/neutron stars and supernova explosions. The production of this astrophysical radiation background (ARB) could affect the expansion rate of the universe and the growth of perturbations. Here, we aim at understanding to which level one can constraint the ARB using future cosmological observations. We model the energy transfer from matter to radiation through an effective interaction between matter and astrophysical radiation. Using future supernova data from LSST and growth-rate data from Euclid we find that the ARB density parameter is constrained, at the 95% confidence level, to be $\Omega_{ar_0}<0.008$. Estimates of the energy density produced by well-known astrophysical processes give roughly $\Omega_{ar_0}\sim 10^{-6}$. Therefore, we conclude that cosmological observations will only be able to constrain exotic or not-well understood sources of radiation.
Current and planned observations of the Cosmic Microwave Background (CMB) polarization anisotropies, with their ever increasing number of detectors, have reached a potential accuracy that requires a very demanding control of systematic effects. While some of these systematics can be reduced in the design of the instruments, others will be have to be modeled and hopefully accounted for or corrected a posteriori. We propose QuickPol, a quick and accurate calculation of the full effective beam transfer function and of temperature to polarization leakage at the power spectra level, as induced by beam imperfections and mismatches between detector optical and electronic responses. All the observation details such as exact scanning strategy, imperfect polarization measurements and flagged samples are accounted for. Our results are validated on Planck-HFI simulations. We show how the pipeline can be used to propagate instrumental uncertainties up to the final science products, and could be applied to experiments with rotating half wave plates.
Cosmological models can be constrained by determining primordial abundances. Accurate predictions of the He I spectrum are needed to determine the primordial helium abundance to a precision of $< 1$% in order to constrain Big Bang Nucleosynthesis models. Theoretical line emissivities at least this accurate are needed if this precision is to be achieved. In the first paper of this series, which focused on H I, we showed that differences in $l$-changing collisional rate coefficients predicted by three different theories can translate into 10% changes in predictions for H I spectra. Here we consider the more complicated case of He atoms, where low-$l$ subshells are not energy degenerate. A criterion for deciding when the energy separation between $l$ subshells is small enough to apply energy-degenerate collisional theories is given. Moreover, for certain conditions, the Bethe approximation originally proposed by Pengelly & Seaton (1964) is not sufficiently accurate. We introduce a simple modification of this theory which leads to rate coefficients which agree well with those obtained from pure quantal calculations using the approach of Vrinceanu et al. (2012). We show that the $l$-changing rate coefficients from the different theoretical approaches lead to differences of $\sim 10$% in He I emissivities in simulations of H II regions using spectral code Cloudy.
SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a program dedicated to the homogeneous and complete spectroscopic follow-up of X-ray AGN and galaxy clusters over a large area ($\sim$7500 deg$^2$) of the extragalactic sky. SPIDERS is part of the SDSS-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) and the Time-Domain Spectroscopic Survey (TDSS). This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray selected, massive ($\sim 10^{14}$ to $10^{15}~M_{\odot}$) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise ($\Delta_z \sim 0.001$) redshifts for 4,000-5,000 of these systems out to $z \sim 0.6$. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters ($0.031 < z < 0.658$), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion ($L_X-\sigma$) relation and the building of stacked phase-space diagrams.
The thermal spectrum of relic gravitational waves causes the new amplitude that called `modified amplitude'. Our analysis shows that, there exist some chances for detection of the thermal spectrum in addition to the usual spectrum by Adv.LIGO and Dml detectors. The behaviour of the inflation and reheating stages are often known as power law expansion like $S(\eta)\propto \eta^{1+\beta}$, $S(\eta)\propto \eta^{1+\beta_s}$ respectively. The $\beta$ and $\beta_s$ have an unique effect on the shape of the spectrum. We find some upper bounds on the $\beta$ and $\beta_s$ by comparison the usual and thermal spectrum with the Adv.LIGO and Dml. As this result gives us more information about the nature of the evolution of inflation and reheating stages.
Inflation occurring at energy densities less than (10$^{14}$ GeV)$^4$ produces tensor perturbations too small to be measured by cosmological surveys. However, we show that it is possible to probe low scale inflation by measuring the mass of the inflaton at low energy experiments. Detection prospects and cosmological constraints are determined for low scale quartic hilltop models of inflation paired with a curvaton field, which imprints the spectrum of scalar perturbations observed in large scale structure and on the cosmic microwave background. With cosmological constraints applied, low scale quartic inflation at energies GeV--PeV, can be mapped to an MeV--TeV mass inflaton resonance, discoverable through a Higgs portal coupling at upcoming collider and meson decay experiments. It is demonstrated that low scale inflatons can have detectably large couplings to Standard Model particles through a Higgs portal, permitting prompt reheating after inflation, without spoiling, through radiative corrections to the inflaton's self-coupling, the necessary flatness of a low scale inflationary potential. A characteristic particle spectrum for a quartic inflaton-curvaton pair is identified: to within an order of magnitude, the mass of the curvaton can be predicted from the mass of the inflaton, and vice-versa. Low scale inflation Higgs portal sensitivity targets are found for experiments like the LHC, SHiP, BEPC, and KEKB.
This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years.
We derive an equation for the current of particles in energy space; particles are subject to a mean field effective potential that may represent quantum effects. From the assumption that non-interacting particles imply a free diffusion coefficient in energy space we derive Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Other new statistics are associated to a free diffusion coefficient; their thermodynamic properties are analyzed using the grand partition function. A negative relation between pressure and energy density for low temperatures can be derived, suggesting a possible connection with cosmological dark energy models.
The recent detection of gravitational waves by the LIGO/VIRGO team is an
incredibly impressive achievement of experimental physics. It is also a
tremendous success of the theory of General Relativity. It confirms the
existence of black holes; shows that binary black holes exist; that they may
collide and that during the merging process gravitational waves are produced.
These are all predictions of General Relativity theory in its fully nonlinear
regime.
The existence of gravitational waves was predicted by Albert Einstein in 1916
within the framework of linearized Einstein theory. Contrary to common belief,
even the very \emph{definition} of a gravitational wave in the fully nonlinear
Einstein theory was provided only after Einstein's death. Actually, Einstein
had arguments against the existence of nonlinear gravitational waves (they were
erroneous but he did not accept this), which virtually stopped development of
the subject until the mid 1950s. This is what we refer to as the \emph{Red
Light} for gravitational waves research.
In the following years, the theme was picked up again and studied vigorously
by various experts, mainly Herman Bondi, Felix Pirani, Ivor Robinson and
Andrzej Trautman, where the theoretical obstacles concerning gravitational wave
existence were successfully overcome, thus giving the `Green Light' for
experimentalists to start designing detectors, culminating in the recent
LIGO/VIRGO discovery.
In this note we tell the story of this theoretical breakthrough. Particular
attention is given to the fundamental 1958 papers of Trautman, which seem to be
lesser known outside the circle of General Relativity experts. A more detailed
technical description of these 2 papers is given in the Appendix.
Theoretical achievements, as well as much controversy surround multiverse theory. Various types of multiverses, with an increasing amount of complexity, were suggested and thoroughly discussed by now. While these types are very different, they all share the same basic idea - our physical reality consists of more than just one universe. Each universe within a possibly huge multiverse might be slightly or even very different from the others. The quilted multiverse is one of these types, whose uniqueness arises from the postulate that every possible event will occur infinitely many times in infinitely many universes. In this paper we show that the quilted multiverse is not self-consistent due to the instability of entropy decrease under small perturbations. We therefore propose a modified version of the quilted multiverse which might overcome this shortcoming. It includes only those universes where the minimal entropy occurs at the same instant of (cosmological) time.
The Higgs-inflaton coupling plays an important role in the Higgs field dynamics in the early Universe. Even a tiny coupling generated at loop level can have a dramatic effect on the fate of the electroweak vacuum. Such Higgs-inflaton interaction is present both at the trilinear and quartic levels in realistic reheating models. In this work, we examine the Higgs dynamics during the preheating epoch, focusing on the effects of the parametric and tachyonic resonances. We use lattice simulations and other numerical tools in our studies. We find that the resonances can induce large fluctuations of the Higgs field which destabilize the electroweak vacuum. Our considerations thus provide an upper bound on quartic and trilinear interactions between the Higgs and the inflaton. We conclude that there exists a favourable range of the couplings within which the Higgs field is stabilized during both inflation and preheating epochs.
We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of 90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope.
Links to: arXiv, form interface, find, astro-ph, recent, 1608, contact, help (Access key information)
We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometer Array (SKA) instrument, makes it undetectable at redshifts $z\gtrsim1$. We however demonstrate that the BAO peak can still be detected in the radial 21cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21cm power spectrum. We systematically investigate the signal-to-noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected noise levels of SKA would degrade the final BAO errors by $\sim5\%$ with respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to $\sim65\%$ at $z\sim2-3$. Furthermore, we find that the radial BAO signature is robust against foreground systematics, and that the main effect is an increase of $\sim20\%$ in the final uncertainty on the standard ruler caused by the contribution of foreground residuals as well as the reduction in sky area needed to avoid high-foreground regions. We also find that it should be possible to detect the radial BAO signature with high significance in the full redshift range. We conclude that a 21cm experiment carried out by the SKA should be able to make direct measurements of the expansion rate $H(z)$ with competitive per-cent level precision on redshifts $z\lesssim2.5$.
Cosmic voids are promising tools for cosmological tests due to their sensitivity to dark energy, modified gravity and alternative cosmological scenarios. Most previous studies in the literature of void properties use cosmological N-body simulations of dark matter (DM) particles that ignore the potential effect of baryonic physics. We analyse voids in the mass and subhalo density field in the EAGLE simulations, which follow the evolution of galaxies in a Lambda cold dark matter Universe with state-of-the-art subgrid models for baryonic processes. We study the effect of baryons on void statistics by comparing results with simulations that only follow the evolution of DM, but use the same initial conditions as EAGLE. When using the mass in the simulation, we find that a DM-only simulation produces 24 per cent more voids than a hydrodynamical one, but this difference comes mainly from voids with radii smaller than 5 Mpc. We do not find significant differences in the density profiles between voids in EAGLE and its DM-only counterpart. However, voids traced by galaxies selected by a stellar mass cut have different properties than voids traced by a sample of subhaloes with the same number density in a DM-only simulation. We conclude that the effects of modified gravity theories on void properties are well captured in DM-only simulations, with baryons having minimal effects. However, it is important to account for how galaxies populate DM haloes to estimate the observational effect of different modified gravity theories on the statistics of voids.
We have searched for the signature of cosmic voids in the CMB, in both the Planck temperature and lensing-convergence maps; voids should give decrements in both. We use zobov voids from the DR12 SDSS CMASS galaxy sample. We base our analysis on N-body simulations, to avoid a posteriori bias. For the first time, we detect the signature of voids in CMB lensing: the significance is $4.0\sigma$, close to $\Lambda$CDM in both amplitude and projected density-profile shape. A temperature dip is also seen, at modest significance ($1.6\sigma$), with amplitude about 6 times the prediction. This temperature signal is induced mostly by voids with radius between 100 and 150 Mpc/h, while the lensing signal is mostly contributed by smaller voids -- as expected; lensing relates directly to density, while ISW depends on gravitational potential. The void abundance in observations and simulations agree, as well. We also repeated the analysis excluding lower-significance voids: no lensing signal is detected, with an upper limit of about twice the $\Lambda$CDM prediction. But the mean temperature decrement now becomes non-zero at the $3.4\sigma$ level (similar to that found by Granett et al.), with amplitude about 20 times the prediction. However, the observed dependence of temperature on void size is in poor agreement with simulations, whereas the lensing results are consistent with $\Lambda$CDM theory. Thus, the overall tension between theory and observations does not favour non-standard theories of gravity, despite the hints of an enhanced amplitude for the ISW effect from voids.
Tram et al. 2016 recently pointed out that power-law inflation in presence of a dark radiation component may relieve the 3.3 sigma tension which exists within standard LCDM between the determination of the local value of the Hubble constant by Riess et al. (2016) and the value derived from CMB anisotropy data by the Planck collaboration. In this comment, we simply point out that this interesting proposal does not help in solving the $\sigma_8$ tension between the Planck data and, e.g., the weak lensing measurements. Moreover, when the latest constraints on the reionization optical depth obtained from Planck HFI data are included in the analysis, the $H_0$ tension reappears and this scenario looses appeal.
Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Trying to simplify this, we show how all 2-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to one-dimensional, radial integrals. Each of those can be evaluated with a one-dimensional Fast Fourier Transform. This provides a way to evaluate the 2-loop power spectrum using only one-dimensional Fast Fourier Transforms, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed otherwise. The general idea of this FFT-PT method is to change between Fourier and position space to avoid convolutions, integrate over orientations, and evaluate the remaining radial integrals using one-dimensional Fast Fourier Transforms. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.
Despite the enormous significance of the Higgs potential in the context of the Standard Model of electroweak interactions and in Grand Unified Theories, its ultimate origin is fundamentally unknown and must be introduced by hand in accordance with the underlying gauge symmetry and the requirement of renormalizability. Here we propose a more physical motivation for the structure of the Higgs potential, which we link to gravity, and more specifically to an extended Brans-Dicke (BD) theory containing two interacting scalar fields. One of these fields is coupled to curvature as in the BD formulation, whereas the other is coupled to gravity both derivatively and non-derivatively through the curvature scalar and the Ricci tensor. By requiring that the cosmological solutions of the model are consistent with observations, we show that the effective scalar field potential adopts the Higgs potential form with a mildly time-evolving vacuum expectation value. Such residual vacuum dynamics could be responsible for the possible time variation of the fundamental constants. The approach is in part reminiscent of Bjorken's ideas on the cosmological constant problem.
Links to: arXiv, form interface, find, astro-ph, recent, 1609, contact, help (Access key information)