We have run a new suite of simulations that solve hydrodynamics and radiative transfer simultaneously to study helium II reionization. Our suite of simulations employs various models for populating quasars inside of dark matter halos, which affect the He II reionization history. In particular, we are able to explore the impact that differences in the timing and duration of reionization have on observables. We examine the thermal signature that reionization leaves on the IGM, and measure the temperature-density relation. As previous studies have shown, we confirm that the photoheating feedback from helium II reionization raises the temperature of the IGM by several thousand kelvin. To compare against observations, we generate synthetic Lyman-$\alpha$ forest sightlines on-the-fly and match the observed effective optical depth $\tau_{\mathrm{eff}}(z)$ of hydrogen to recent observations. We show that when the simulations have been normalized to have the same values of $\tau_\mathrm{eff}$, the effect that helium II reionization has on observations of the hydrogen Lyman-$\alpha$ forest is minimal. Specifically, the flux PDF and the one-dimensional power spectrum are sensitive to the thermal state of the IGM, but do not show direct evidence for the ionization state of helium. We show that the peak temperature of the IGM typically corresponds to the time of 90-95% helium ionization by volume, and is a relatively robust indicator of the timing of reionization. Future observations of helium reionization from the hydrogen Lyman-$\alpha$ forest should thus focus on measuring the temperature of the IGM, especially at mean density. Detecting the peak in the IGM temperature would provide valuable information about the timing of the end of helium II reionization.
The interaction properties of cold dark matter (CDM) particle candidates, such as those of weakly interacting massive particles (WIMPs), generically lead to the structuring of dark matter on scales much smaller than typical galaxies, potentially down to $\sim 10^{-10}M_\odot$. This clustering translates into a very large population of subhalos in galaxies and affects the predictions for direct and indirect dark matter searches (gamma rays and antimatter cosmic rays). In this paper, we elaborate on previous analytic works to model the Galactic subhalo population, while consistently with current observational dynamical constraints on the Milky Way. In particular, we propose a self-consistent method to account for tidal effects induced by both dark matter and baryons. Our model does not strongly rely on cosmological simulations as they can hardly be fully matched to the real Milky Way, but for setting the initial subhalo mass fraction. Still, it allows to recover the main qualitative features of simulated systems. It can further be easily adapted to any change in the dynamical constraints, and be used to make predictions or derive constraints on dark matter candidates from indirect or direct searches. We compute the annihilation boost factor, including the subhalo-halo cross-product. We confirm that tidal effects induced by the baryonic components of the Galaxy play a very important role, resulting in a local average subhalo mass density $\lesssim 1\%$ of the total local dark matter mass density, while selecting in the most concentrated objects and leading to interesting features in the overall annihilation profile in the case of a sharp subhalo mass function. Values of global annihilation boost factors range from $\sim 2$ to $\sim 20$, while the local annihilation rate is about twice less boosted.
We revisit the effect of the (Dirac) CP-violating phase on neutrino lepton number asymmetries in both mass- and flavor-basis. We found that, even if there are sizable effects on muon- and tau-neutrino asymmetries, the effect on the asymmetry of electron-neutrinos is at most similar to the upper bound set by BBN for initial neutrino degeneracy parameters smaller than order unity. We also found that, for the asymmetries in mass-basis, the changes caused by CP-violation is of sub-\% level which is unlikely to be accesible neither in the current nor in the forthcoming experiments.
We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg$^2$ of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the LCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. Adding the new data to planck temperature data tightens the limits on damping tail parameters, for example reducing the joint uncertainty on the number of neutrino species and the primordial helium fraction by 20%.
The parameter space of the de Rham-Gabadadze-Tolley massive gravity ought to be constrained essentially to a line. The theory is shown to admit pp-wave backgrounds on which linear fluctuations otherwise undergo significant time advances, potentially leading to closed time-like curves. This classical phenomenon takes place well within the theory's validity regime.
We compare the low redshift (z ~ 0.1) Lyman-alpha forest from hydrodynamical simulations with data from the Cosmic Origin Spectrograph (COS). We find tension between the observed number of lines with b-parameters in the range 25-45 km/s and the predictions from simulations that incorporate either vigorous feedback from active galactic nuclei or that exclude feedback altogether. The gas in these simulations is, respectively, either too hot to contribute to the Lyman-alpha absorption or too cold to produce the required line widths. Matching the observed b-parameter distribution therefore requires feedback processes that thermally or turbulently broaden the absorption features without collisionally (over-)ionising hydrogen. This suggests the Lyman-alpha forest b-parameter distribution is a valulable diagnostic of galactic feedback in the low redshift Universe. We furthermore confirm the low redshift Lyman-alpha forest column density distribution is better reproduced by an ultraviolet background with an HI photo-ionisation rate a factor 1.5-3 higher than predicted by Haardt & Madau (2012).
We present the results of ALMA spectroscopic follow-up of a $z=6.765$ Lyman-$\alpha$ emitting galaxy behind the cluster RXJ1347-1145. We report the detection of {\ctf} line fully consistent with the Lyman-$\alpha$ redshift and with the peak of the optical emission. Given the magnification of $\mu=5.0 \pm 0.3$ the intrinsic (corrected for lensing) luminosity of the [CII] line is $L_{[CII]} =1.4^{+0.2}_{-0.3} \times 10^7L_{\odot}$, which is ${\sim}5$ times fainter than other detections of $z\sim 7$ galaxies. The result indicates that low $L_{[CII]}$ in $z\sim 7$ galaxies compared to the local counterparts are likely caused by their low metallicities and/or feedback. The small velocity off-set ($\Delta v = 20_{-40}^{+140}\mbox{km/s}$) between the Lyman-$\alpha$ and [CII] line is unusual, and may be indicative of ionizing photons escaping.
This work is devoted to the thermodynamics of gravitational clustering, a collective phenomenon with a great relevance in the $N$-body cosmological problem. We study a classical self-gravitating gas of identical non-relativistic particles defined on the sphere $\mathbb{S}^{3}\subset \mathbb{R}^{4}$ by considering gravitational interaction that corresponds to this geometric space. The analysis is performed within microcanonical description of an isolated Hamiltonian system by combining continuum approximation and steepest descend method. According to numerical solution of resulting equations, the gravitational clustering can be associated with two microcanonical phase transitions. A first phase transition with a continuous character is associated with breakdown of $SO(4)$ symmetry of this model. The second one is the gravitational collapse, whose continuous or discontinuous character crucially depends on the regularization of short-range divergence of gravitation potential. We also derive the thermodynamic limit of this model system, the astrophysical counterpart of Gibbs-Duhem relation, the order parameters that characterize its phase transitions and the equation of state. Other interesting behavior is the existence of states with negative heat capacities, which appear when the effects of gravitation turn dominant for energies sufficiently low. Finally, we comment the relevance of some of these results in the study of astrophysical and cosmological situations. Special interest deserves the gravitational modification of the equation of state due to the local inhomogeneities of matter distribution. Although this feature is systematically neglected in studies about Universe expansion, the same one is able to mimic an effect that is attributed to the dark energy: a negative pressure.
Links to: arXiv, form interface, find, astro-ph, recent, 1610, contact, help (Access key information)
We present a study of unprecedented statistical power regarding the halo-to-halo variance of dark matter substructure. Using a combination of N-body simulations and a semi-analytical model, we investigate the variance in subhalo mass fractions and subhalo occupation numbers, with an emphasis on how these statistics scale with halo formation time. We demonstrate that the subhalo mass fraction, f_sub, is mainly a function of halo formation time, with earlier forming haloes having less substructure. At fixed formation redshift, the average f_sub is virtually independent of halo mass, and the mass dependence of f_sub is therefore mainly a manifestation of more massive haloes assembling later. We compare observational constraints on f_sub from gravitational lensing to our model predictions and simulation results. Although the inferred f_sub are substantially higher than the median LCDM predictions, they fall within the 95th percentile due to halo-to-halo variance. We show that while the halo occupation distribution of subhaloes, P(N|M), is super-Poissonian for large <N>, a well established result, it becomes sub-Poissonian for <N> < 2. Ignoring the non-Poissonity results in systematic errors of the clustering of galaxies of a few percent, and with a complicated scale- and luminosity-dependence. Earlier-formed haloes have P(N|M) closer to a Poisson distribution, suggesting that the dynamical evolution of subhaloes drives the statistics towards Poissonian. Contrary to a recent claim, the non-Poissonity of subhalo occupation statistics does not vanish by selecting haloes with fixed mass and fixed formation redshift. Finally, we use subhalo occupation statistics to put loose constraints on the mass and formation redshift of the Milky Way halo. Using observational constraints on the V_max of the most massive satellites, we infer that 0.25<M_vir/10^12M_sun/h<1.4 and 0.1<z_f<1.4 at 90% confidence.
We report on the first results from a new search for dark matter axions using a microwave cavity detector at frequencies $\nu > 5~\mathrm{GHz}$. We achieve near-quantum-limited sensitivity by operating at a temperature $T < h\nu/2k_B$ and incorporating a Josephson parametric amplifier. We exclude axion models with two-photon coupling $g_{a\gamma\gamma} > 2\times10^{-14} GeV^{-1}$, a factor of 2.3 above the benchmark KSVZ model, over the mass range $23.55~\mu\mathrm{eV} < m_a < 24.0~\mu\mathrm{eV}$. These are the first limits within the axion model band in the mass decade above $10~\mu\mathrm{eV}$.
We reconsider the observed CMB dipolar asymmetry in the context of open inflation, where a supercurvature mode might survive the bubble nucleation. If such a supercurvature mode modulates the amplitude of the curvature power spectrum, it would easily produce an asymmetry in the power spectrum. We show that current observational data can be accommodated in a three-field model, with simple quadratic potentials and a non-trivial field-space metric. Despite the presence of three fields, we believe this model is so far the simplest that can match current observations. We are able to match the observed strong scale dependence of the dipolar asymmetry, without a fine tuning of initial conditions, breaking slow roll or adding a feature to the evolution of any field.
We study the impact of sky-based calibration errors from source mismodeling on 21 cm power spectrum measurements with an interferometer and propose a method for suppressing their effects. While emission from faint sources that are not accounted for in calibration catalogs is believed to be spectrally smooth, deviations of true visibilities from model visibilities are not, due to the inherent chromaticity of the interferometer's sky-response (the "wedge"). Thus, unmodeled foregrounds at the $\approx 1$ mJy level introduce frequency structure into gain solutions on the same line-of-sight scales on which we hope to observe the cosmological signal. We derive analytic expressions describing these errors using linearized approximations of the calibration equations and determine the impact of this bias on measurements of the 21 cm power spectrum during the Epoch of Reionization (EoR). Given our current precision in primary beam and foreground modeling, this noise will significantly impact the sensitivity of existing experiments that rely on sky-based calibration rather than redundant calibration. Sky-based calibration that down-weights long baselines can eliminate contamination in most of the region outside of the wedge with only a modest increase in instrumental noise.
This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales.
Cyclic models of the universe have the advantage of avoiding initial conditions problems related to postulating any sort of beginning in time. To date, the only known viable examples of cyclic models have been ekpyrotic. In this paper, we show that the recently proposed anamorphic scenario can also be made cyclic. The key to the cyclic completion is a classically stable, non-singular bounce. Remarkably, even though the bounce construction was originally developed to connect a period of contraction with a period of expansion both described by Einstein gravity, we show here that it can naturally be modified to connect an ordinary contracting phase described by Einstein gravity with a phase of anamorphic smoothing. The paper will present the basic principles and steps in constructing cyclic anamorphic models.
The high precision measurements of the cosmic microwave background by the Planck survey yielded tight constraints on cosmological parameters and the statistics of the density fluctuations at the time of recombination. This provides the means for a critical study of structure formation in the Universe by comparing the microwave background results with present epoch measurements of the cosmic large-scale structure. It can reveal subtle effects such as how different forms of Dark Matter may modify structure growth. Currently most interesting is the damping effect of structure growth by massive neutrinos. Different observations of low redshift matter density fluctuations provided evidence for a signature of massive neutrinos. Here we discuss the study of the cosmic large-scale structure with a complete sample of nearby, X-ray luminous clusters from our REFLEX cluster survey. From the observed X-ray luminosity function and its reproduction for different cosmological models, we obtain tight constraints on the cosmological parameters describing the matter density, Omega_m, and the density fluctuation amplitude, sigma_8. A comparison of these constraints with the Planck results shows a discrepancy in the framework of a pure LambdaCDM model, but the results can be reconciled, if we allow for a neutrino mass in the range of 0.17 to 0.7 eV. Also some others, but not all of the observations of the nearby large-scale structure provide evidence or trends for signatures of massive neutrinos. With further improvement in the systematics and future survey projects, these indications will develop into a definitive measurement of neutrino masses.
To search for a signature of an intracluster magnetic field, we compare measurements of Faraday rotation of polarised extragalactic radio sources in the line of sight of galaxy clusters with those outside. We correlated a catalogue of 1383 rotation measures (RM) of extragalactic polarised radio sources with X-ray luminous galaxy clusters from the CLASSIX survey (combining REFLEX II and NORAS II). We compared the RM in the line of sight of clusters within their projected radii of r_500 with those outside and found a significant excess of the dispersion of the RM in the cluster regions. Since the observed RM is the result of Faraday rotation in several presumably uncorrelated magnetised cells of the intracluster medium, the observations correspond to quantities averaged over several magnetic field directions and strengths. Therefore the interesting quantity is the standard deviation of the RM for an ensemble of clusters. We found a standard deviation of the RM inside r_500 of about 120 +- 21 rad m^-2. This compares to about 56 +- 8 rad m^-2 outside. We show that the most X-ray luminous and thus most massive clusters contribute most to the observed excess RM. Modelling the electron density distribution in the intracluster medium with a self-similar model, we found that the dispersion of the RM increases with the column density, and we deduce a magnetic field value of about 2 - 6 (l/10kpc)^-1/2 microG assuming a constant magnetic field strength, where l is the size of the coherently magnetised intracluster medium cells. This magnetic field energy density amounts to a few percent of the average thermal energy density in clusters. When we assumed the magnetic energy density to be a constant fraction of the thermal energy density, we deduced a slightly lower value for this fraction of 3 - 10 (l/10kpc)^-1/2 per mille.
Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the {\it Integrated Bispectrum} (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze \& Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Torman (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The {\em cumulant correlators} (CCs) generalise the ordinary {\em cumulants} and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.} \keywords {Cosmology, Large Scale Structure, Modified Theories of Gravity
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.
(Abridged) In the last decade several massive molecular gas reservoirs were found <100 kpc distance from active galactic nuclei (AGNs), residing in gas-rich companion galaxies. The study of AGN-gas-rich companion systems opens the opportunity to determine whether the stellar mass of massive local galaxies was formed in their host after a merger event or outside of their host galaxy in a close starbursting companion and later incorporated via mergers. We study the quasar-companion galaxy system of SMM J04135+10277 (z=2.84) and investigate the expected frequency of quasar-starburst galaxy pairs at high redshift using a cosmological galaxy formation model. We use archive data and new APEX ArTeMiS data to construct and model the spectral energy distribution of SMM J04135. We also carry out a comprehensive analysis of the cosmological galaxy formation model GALFORM with the aim of characterising how typical the system of SMM J04135 is and whether quasar-star-forming galaxy pairs may constitute an important stage in galaxy evolution. The companion galaxy of SMM J04135 is a heavily dust-obscured starburst galaxy with a median star formation rate (SFR) of $700\,\rm{M_{\odot}\,yr^{-1}}$, median dust mass of $5.1\times 10^9\,\rm{M_{\odot}}$ and median dust luminosity of $\textrm 9.3 \times 10^{12}\,\rm{L_{\odot}}$. Our simulations, performed at z=2.8, suggest that SMM J04135 is not unique. In fact, at a distance of <100 kpc, 22% of our simulated quasar sample have at least one companion galaxy of a stellar mass $>10^8\, \rm{M_{\odot}}$, and 0.3% have at least one highly star-forming companion ($\rm{SFR}>100\,\rm{M_{\odot}\,yr^{-1}}$). Our results suggest that quasar-gas-rich companion galaxy systems are common phenomena in the early Universe and the high incidence of companions makes the study of such systems crucial to understand the growth and hierarchical build-up of galaxies and black holes.
The graviton exchange effect on cosmological correlation functions is examined by employing the double soft limit technique. A new relation among correlation functions that contain the effects due to graviton exchange diagrams is derived by using the background field method and independently by the method of Ward identities associated with dilatation symmetry. The four point correlation function is shown to consist of three terms that come from scalar-exchange, scalar-contact-interaction and the graviton exchange. We compare these three terms, putting small values for the slow roll parameters and $(1-n_{s}) = 0.042$, where $n_{s}$ is the scalar spectral index. It is argued that the graviton exchange effects are more dominant than the other two and could be observed in the trispectrum in the double soft limit.
Loop Quantum Cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer remedy or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of Loop Quantum Cosmology. As we demonstrate, when Loop Quantum Cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of Loop Quantum Cosmology and we investigate under which circumstances the baryon-to-entropy ratio can be compatible with the observational constraints.
We propose a new scenario of the baryogenesis from primordial black holes (PBH). Assuming presence of a microscopic baryon (or lepton) number violation and a CP violating operator such as $\partial_\alpha F(\mathcal{R_{....}} ) J^\alpha$ where $F(\mathcal{R_{....}})$ is a scalar function of the Riemann tensor, time evolution of an evaporating black hole generates baryonic (leptonic) chemical potential at the horizon; consequently PBH enumerates asymmetric Hawking radiation between baryons (leptons) and anti-baryons (leptons). Though the operator is higher dimensional and largely suppressed by a high mass scale $M_*$, we show that sufficient amount of asymmetry can be generated for wide range of parameters of the PBH mass $M_{\rm PBH}$, its abundance $\Omega_{\rm PBH}$, and the scale $M_*$.
With the help of high-resolution long-slit and integral-field spectroscopy observations, the number of confirmed cases of galaxies with counterrotation is increasing rapidly. The evolution of such counterrotating galaxies remains far from being well understood. In this paper we study the dynamics of counterrotating collisionless stellar disks by means of $N$-body simulations. We show that, in the presence of counterrotation, an otherwise gravitationally stable disk can naturally generate bending waves accompanied by strong disk heating across the disk plane, that is in the vertical direction. Such conclusion is found to hold even for dynamically warm systems with typical values of the initial vertical-to-radial velocity dispersion ratio $\sigma_{\rm R}/\sigma_{\rm z} \approx 0.5$, for which the role of pressure anisotropy should be unimportant. We note that, during evolution, the $\sigma_{\rm R}/\sigma_{\rm z}$ ratio tends to rise up to values close to unity in the case of locally Jeans-stable disks, whereas in disks that are initially Jeans-unstable it may reach even higher values, especially in the innermost regions. This unusual behavior of the $\sigma_{\rm R}/\sigma_{\rm z}$ ratio in galaxies with counterrotation appears not to have been noticed earlier. Our investigations of systems made of two counterrotating components with different mass-ratios suggest that even apparently normal disk galaxies (i.e., with a minor counterrotating component so as to escape detection in current observations) might be subject to significant disk heating especially in the vertical direction.
In a homogeneous and isotropic universe with non-zero spatial curvature we consider the effects of gravitational particle production in the dynamics of the universe. We show that the dynamics of the universe in such a background are characterized by a single nonlinear differential equation which is significantly dependent on the rate of particle creation and whose solutions can be dominated by curvature effects at early times. For different particle creation rates we apply the singularity test in order to find the analytic solutions of the background dynamics. We describe the behavior of the cosmological solutions for both open and closed universes. We also show how the effects of curvature can be produced by the presence of a second perfect fluid with an appropriate equation of state.
Diversity, equity and inclusion are the science leadership issues of our time. As our nation and the field of astronomy grow more diverse, we find ourselves in a position of enormous potential and opportunity: a multitude of studies show how groups of diverse individuals with differing viewpoints outperform homogenous groups to find solutions that are more innovative, creative, and responsive to complex problems, and promote higher-order thinking amongst the group. Research specifically into publications also shows that diverse author groups publish in higher quality journals and receive higher citation rates. As we welcome more diverse individuals into astronomy, we therefore find ourselves in a position of potential never before seen in the history of science, with the best minds and most diverse perspectives our field has ever seen. Despite this enormous growing potential, and the proven power of diversity, the demographics of our field are not keeping pace with the changing demographics of the nation, and astronomers of colour, women, LGBT individuals, people with disabilities, and those with more than one of these identities still face "chilly" or "hostile" work environments in the sciences. If we are to fully support all astronomers and students in reaching their full scientific potential, we must recognize that most of us tend to overestimate our ability to support our minoritized students and colleagues, that our formal education system fails to prepare us for working in a multicultural environment, and that most of us need some kind of training to help us know what we don't know and fill those gaps in our education. To that end, diversity and inclusion training for AAS council and leadership, heads of astronomy departments, and faculty search committees should be a basic requirement throughout our field.
Links to: arXiv, form interface, find, astro-ph, recent, 1610, contact, help (Access key information)
The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model $\Lambda$CDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.
When a subdominant light scalar field ends slow roll during inflation, but well after the Hubble exit of the pivot scales, it may determine the cosmological perturbations. This thesis investigates how such a scalar field, the spectator, may leave its impact on the Cosmic Microwave Background (CMB) radiation and be consequently constrained. We first introduce the observables of the CMB, namely the power spectrum $P_\zeta$, spectral index $n_s$ and its running $dn_s/d\ln k$, the non-Gaussianities $f_{NL}$, $g_{NL}$ and $\tau_{NL}$, and the lack of isocurvature and polarization modes. Based on these studies, we derive the cosmological predictions for the spectator scenario, revealing its consistency with the CMB for inflection point potentials, hyperbolic tangent potentials, and those with a sudden phase transition. In the end, we utilize the spectator scenario to explain the CMB power asymmetry, with a brief tachyonic fast-roll phase.
In this paper we study a (nearly) scale-invariant helical magnetic field generated during inflation. We show that, if the helicity of such fields is measured, it can be used to determine the beginning of inflation. Upper bounds can be used to derive constraints on the minimal duration of inflation if one assumes that the magnetic fields generated during inflation are helical.
In order to draw scientific conclusions from observations of cosmic microwave background (CMB) polarization, it is necessary to separate the contributions of the E and B components of the data. For data with incomplete sky coverage, there are ambiguous modes, which can be sourced by either E or B signals. Techniques exist for producing "pure" E and B maps, which are guaranteed to be free of cross-contamination, although the standard method, which involves constructing an eigenbasis, has a high computational cost. We show that such pure maps can be thought of as resulting from the application of a Wiener filter to the data. This perspective leads to far more efficient methods of producing pure maps. Moreover, by expressing the idea of purification in the general framework of Wiener filtering (i.e., maximization of a posterior probability), it leads to a variety of generalizations of the notion of pure E and B maps, e.g., accounting for noise or other contaminants in the data as well as correlations with temperature anisotropy.
Next-generation galaxy surveys will increasingly rely on the galaxy bispectrum to improve cosmological constraints, especially on primordial non-Gaussianity. A key theoretical requirement that remains to be developed is the analysis of general relativistic effects on the bispectrum, which arise from observing galaxies on the past lightcone. Here we compute for the first time all the local relativistic corrections to the bispectrum, from Doppler, gravitational potential and higher-order effects. For the galaxy bispectrum, the problem is much more complex than for the power spectrum, since we need the lightcone corrections at second order. Mode-coupling contributions at second order mean that relativistic corrections can be non-negligible at smaller scales than in the case of the power spectrum. In a primordial Gaussian universe, we show that the relativistic bispectrum for a moderately squeezed shape can differ from the Newtonian prediction by $\sim 30\%$ when the short modes are at the equality scale. For the equilateral shape, the difference is $\sim 20\%$ at gigaparsec scales. The relativistic corrections, if ignored in the analysis of observations, could therefore easily be mistaken for primordial non-Gaussianity. We conclude that for upcoming surveys which probe equality scales and beyond, these new relativistic signatures must be included for an accurate measurement of primordial non-Gaussianity.
Despite the ability of the cosmological concordance model ($\Lambda$CDM) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO, can be well reproduced by both $\Lambda$CDM and power law expansion models with $n \sim 1.5$, while the constant expansion rate model ($n = 1$) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data is well known to provide the most stringent constraints on standard cosmological models, in particular through the position of the first peak of the temperature angular power spectrum, corresponding to the sound horizon at recombination, a scale physically related to the BAO scale. Models with $n \geq 1$ lead to a divergence of the sound horizon and do not naturally provide the relevant scales for the BAO and the CMB. We retain an empirical footing to overcome this issue: we let the data choose the preferred values for these scales, while we recompute the ionization history in power law models, to obtain the distance to the CMB. In doing so, we find that the scale coming from the BAO data is not consistent with the observed position of the first peak of the CMB temperature angular power spectrum for any power law cosmology. Therefore, we conclude that when the three standard probes (SNIa, BAO, CMB) are combined, the $\Lambda$CDM model is very strongly favored over any of these alternative models, which are then essentially ruled out.
In the simplified dark matter models commonly studied, the mass generation mechanism for the dark fields is not typically specified. We demonstrate that the dark matter interaction types, and hence the annihilation processes relevant for relic density and indirect detection, are strongly dictated by the mass generation mechanism chosen for the dark sector particles, and the requirement of gauge invariance. We focus on the class of models in which fermionic dark matter couples to a spin-1 vector or axial-vector mediator. However, in order to generate dark sector mass terms, it is necessary in most cases to introduce a dark Higgs field and thus a spin-0 scalar mediator will also be present. In the case that all the dark sector fields gain masses via coupling to a single dark sector Higgs field, it is mandatory that the axial-vector coupling of the spin-1 mediator to the dark matter is non-zero; the vector coupling may also be present depending on the charge assignments. For all other mass generation options, only pure vector couplings between the spin-1 mediator and the dark matter are allowed. If these coupling restrictions are not obeyed, unphysical results may be obtained such as a violation of unitarity at high energies. These two-mediator scenarios lead to important phenomenology that does not arise in single mediator models. We survey two-mediator dark matter models which contain both vector and scalar mediators, and explore their relic density and indirect detection phenomenology.
We examine the role of consistency with causality and quantum mechanics in determining the properties of gravitation. We begin by constructing two different classes of interacting theories of massless spin 2 particles -- gravitons. One involves coupling the graviton with the lowest number of derivatives to matter, the other involves coupling the graviton with higher derivatives to matter, making use of the linearized Riemann tensor. The first class requires an infinite tower of terms for consistency, which is known to lead uniquely to general relativity. The second class only requires a finite number of terms for consistency, which appears as a new class of theories of massless spin 2. We recap the causal consistency of general relativity and show how this fails in the second class for the special case of coupling to photons, exploiting related calculations in the literature. In an upcoming publication [1] this result is generalized to a much broader set of theories. Then, as a causal modification of general relativity, we add light scalar particles and recap the generic violation of universal free-fall they introduce and its quantum resolution. This leads to a discussion of a special type of scalar-tensor theory; the $F(\mathcal{R})$ models. We show that, unlike general relativity, these models do not possess the requisite counterterms to be consistent quantum effective field theories. Together this helps to remove some of the central assumptions made in deriving general relativity.
Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Intrinsic code differences such as between mesh-based and particle-based codes are small, and are generally dwarfed by variations in the numerical implementation of the common subgrid physics. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes. We also stress the importance of collaborative and reproducible research in the numerical galaxy formation community the AGORA Project strives to promote.
We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour composite images. Images in GZH were selected from various publicly-released Hubble Space Telescope Legacy programs conducted with the Advanced Camera for Surveys, with filters that probe the rest- frame optical emission from galaxies out to z ~ 1. The bulk of the sample is selected to have $m_{I814W} < 23.5$,but goes as faint as $m_{I814W} < 26.8$ for deep images combined over 5 epochs. The median redshift of the combined samples is $z = 0.9 \pm 0.6$, with a tail extending out to z ~ 4. The GZH morphological data include measurements of both bulge- and disk-dominated galaxies, details on spiral disk structure that relate to the Hubble type, bar identification, and numerous measurements of clump identification and geometry. This paper also describes a new method for calibrating morphologies for galaxies of different luminosities and at different redshifts by using artificially-redshifted galaxy images as a baseline. The GZH catalogue contains both raw and calibrated morphological vote fractions for 119,849 galaxies, providing the largest dataset to date suitable for large-scale studies of galaxy evolution out to z ~ 1.
We elaborate upon the model of baryogenesis from decaying magnetic helicity by focusing on the evolution of the baryon number and magnetic field through the Standard Model electroweak crossover. The baryon asymmetry is determined by a competition between the helical hypermagnetic field, which sources baryon number, and the electroweak sphaleron, which tends to wash out baryon number. At the electroweak crossover both of these processes become inactive: the hypermagnetic field is converted into an electromagnetic field, which does not source baryon number, and the weak gauge boson masses grow, suppressing the electroweak sphaleron reaction. An accurate prediction of the relic baryon asymmetry requires a careful treatment of the crossover. We extend our previous study [Kamada & Long (2016)] taking into account the gradual conversion of the hypermagnetic into the electromagnetic field. If the conversion is not completed by the time of sphaleron freeze out, as both analytic and numerical studies suggest, the relic baryon asymmetry is enhanced compared to previous calculations. The observed baryon asymmetry of the Universe can be obtained for a primordial magnetic field that has present day field strength and coherence length of $B_0 \sim 10^{-17} \, {\rm G}$ and $\lambda_0 \sim 10^{-3} \, {\rm pc}$ and a positive helicity. For larger $B_0$ the baryon asymmetry is over-produced, which may be in conflict with blazar observations that provide evidence for an intergalactic magnetic field of strength $B_0 \gtrsim 10^{-14} \, {\rm G}$.
In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory(EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.
Rapid accretion of gases onto massive black holes (BHs) is considered to have played an important role in the growth of the observed high-redshift (z > 6) supermassive BHs. Here, we present the results of our two-dimensional radiation hydrodynamics simulations of rapidly accreting BHs under anisotropic radiation. We model the radiation from the central circum-BH accretion disk considering the shadowing effect by the outer part of the disk. We find that the flow structure reaches a steady state, which consists of a polar ionized outflowing region, where the gas is pushed outward by the super-Eddington radiation pressure, and an equatorial neutral inflowing region, where the gas falls toward the central BH in a Bondi-like accretion fashion without affected by radiation feedback. The resulting accretion rate is much higher than that in the case of isotropic radiation, and far exceeds the Eddington-limited rate and even reaches around the Bondi value. We find that the solid angle of the equatorial inflowing region is determined by the luminosity and its directional dependence of the central BH, and the inflow is Bondi-like within that region. Photoevaporation from the surface of this region sets its critical opening angle about ten degrees below which the accretion to the BH is quenched. With the shadowing effect, even stellar-remnant BHs can grow rapidly enough to be seeds for the high-redshift supermassive BHs.
Links to: arXiv, form interface, find, astro-ph, recent, 1610, contact, help (Access key information)
We perform a comprehensive study of X-ray cavities using a large sample of X-ray targets selected from the Chandra archive. The sample is selected to cover a large dynamic range including galaxy clusters, groups, and individual galaxies. Using $\beta$-modeling and unsharp masking techniques, we investigate the presence of X-ray cavities for 133 targets that have sufficient X-ray photons for analysis. We detect 148 X-ray cavities from 69 targets and measure their properties, including cavity size, angle, and distance from the center of the diffuse X-ray gas. We confirm the strong correlation between cavity size and distance from the X-ray center similar to previous studies (i.e., Birzan et al. 2004; Diehl et al. 2008; Dong et al. 2010). We find that the detection rates of X-ray cavities are similar among galaxy clusters, groups and individual galaxies, suggesting that the formation mechanism of X-ray cavities is independent of environment.
The redshift-space bispectrum (three point statistics) of galaxies depends on the expansion rate, the growth rate, and geometry of the Universe, and hence can be used to measure key cosmological parameters. In a homogeneous Universe the bispectrum is a function of five variables and unlike its two point statistics counterpart -- the power spectrum, which is a function of only two variables -- is difficult to analyse unless the information is somehow reduced. The most commonly considered reduction schemes rely on computing angular integrals over possible orientations of the bispectrum triangle, thus reducing it to sets of function of only three variables describing the triangle shape. We use Fisher information formalism to study the information loss associated with this angular integration. Without any reduction, the bispectrum alone can deliver constraints on the growth rate parameter $f$ that are better by a factor of $2.5$ compared to the power spectrum, for a sample of luminous red galaxies expected from near future galaxy surveys at a redshift of $z\sim0.65$. At lower redshifts the improvement could be up to a factor of $3$. We find that most of the information is in the azimuthal averages of the first three even multipoles. This suggests that the bispectrum of every configuration can be reduced to just three numbers (instead of a 2D function) without significant loss of cosmologically relevant information.
We investigate the potential sources of theoretical systematics in the
anisotropic Baryon Acoustic Oscillation (BAO) distance scale measurements from
the clustering of galaxies in configuration space using the final Data Release
(DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS). We perform a
detailed study of the impact on BAO measurements from choices in the
methodology such as fiducial cosmology, clustering estimators, random
catalogues, fitting templates, and covariance matrices.
The theoretical systematic uncertainties in BAO parameters are found to be
0.002 in in the isotropic dilation $\alpha$ and 0.003 in in the quadrupolar
dilation $\epsilon$. We also present BAO-only distance scale constraints from
the anisotropic analysis of the correlation function. Our constraints on the
angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ including
both statistical and theoretical systematic uncertainties are 1.5% and 2.8% at
$z_{\rm eff}=0.38$, 1.4% and 2.4% at $z_{\rm eff}=0.51$, and 1.7% and 2.6% at
$z_{\rm eff}=0.61$. This paper is part of a set that analyses the final galaxy
clustering dataset from BOSS. The measurements and likelihoods presented here
are cross-checked with others BAO analysis in Alam et. al. 2016. The systematic
error budget concerning the methodology on post-reconstruction BAO analysis
presented here is used in Alam et. al. 2016 to produce the final cosmological
constraints from BOSS.
The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model predicts a significant difference between the actual Hubble constant, h=0.48+/-0.02, and its local determination, h_obs=0.73+/-0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Omega_m=0.87+/-0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck LambdaCDM cosmology. The new dark-matter-dominated model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the Planck LambdaCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly-alpha forest of high-redshift quasars. [Abridged]
We investigate the information content of various cosmic shear statistics on the theory of gravity. Focusing on the Hu-Sawicki type $f(R)$ model, we perform a set of ray-tracing simulations and measure the convergence bispectrum, peak counts and Minkowski functionals, paying a special attention to their complementarity to the standard power spectrum analysis. We first show that while the convergence power spectrum does have sensitivity to the current value of extra scalar degree of freedom $|f_{\rm R0}|$, it is largely compensated by a change in the present density amplitude parameter $\sigma_{8}$ and the matter density parameter $\Omega_{\rm m0}$. With accurate covariance matrices obtained from 1000 lensing simulations, we then examine the constraining power of the three additional statistics. We find that these probes are indeed helpful to break the parameter degeneracy, which can not be resolved from the power spectrum alone. We show that especially the peak counts and Minkowski functionals have the potential to rigorously (marginally) detect the signature of modified gravity with the parameter $|f_{\rm R0}|$ as small as $10^{-5}$ ($10^{-6}$) if we can properly model them on small ($\sim 1\, \mathrm{arcmin}$) scale in a future survey with a sky coverage of 1,500 squared degrees. We also consider a more conservative analysis with a larger smoothing scale to match the proved length scale to $\ell<2,000$ that is the maximum multipole moment used in the power and bispectrum analysis. We show that the signal level is similar among the additional three statistics and all of them provide complementary information to the power spectrum. These findings indicate the importance of combining multiple probes beyond the standard power spectrum analysis to detect possible modifications to General Relativity.
We present an analytic formula for the galaxy bispectrum in redshift space on the basis of the halo approach description with the halo occupation distribution of central galaxies and satellite galaxies. This work is an extension of a previous work on the galaxy power spectrum, which illuminated the significant contribution of satellite galaxies to the higher multipole spectrum through the non-linear redshift space distortions of their random motions. Behaviors of the multipoles of the bispectrum are compared with results of numerical simulations assuming a halo occupation distribution of the LOWZ sample of the SDSS-III BOSS survey. Also presented are analytic approximate formulas for the multipoles of the bispectrum, which is useful to understanding their characteristic properties. We demonstrate that the Fingers of God effect is quite important for the higher multipoles of the bispectrum in redshift space, depending on the halo occupation distribution parameters.
We study the prospects of detection at terrestrial and space interferometers of a stochastic gravitational wave background which can be produced in models of axion inflation. This potential signal, and the development of these interferometers, open a new window on inflation on scales much smaller than those currently probed with Cosmic Microwave Background and Large Scale Structure measurements. The sourced signal generated in axion inflation is an ideal candidate for such searches, since it naturally grows at small scales, and it has specific properties (chirality and non-gaussianity) that can distinguish it from an astrophysical background. We study under which conditions such a signal can be produced at an observable level, without the simultaneous overproduction of scalar perturbations in excess of what is allowed by the primordial black hole limits. We also explore the possibility that scalar perturbations generated in a modified version of this model may provide a distribution of primordial black holes compatible with the current bounds, that can act as a seeds of the present black holes in the universe.
We use the Halo Model to explore the implications of assuming that galaxy luminosities in groups are randomly drawn from an underlying luminosity function. We show that even the simplest of such order statistics models -- one in which this luminosity function $p(L)$ is universal -- naturally produces a number of features associated with previous analyses based on the `central plus Poisson satellites' hypothesis. These include the monotonic relation of mean central luminosity with halo mass, the Lognormal distribution around this mean, and the tight relation between the central and satellite mass scales. In stark contrast to observations of galaxy clustering, however, this model predicts $\textit{no}$ luminosity dependence of large scale clustering. We then show that an extended version of this model, based on the order statistics of a $\textit{halo mass dependent}$ luminosity function $p(L|m)$, is in much better agreement with the clustering data as well as satellite luminosities, but systematically under-predicts central luminosities. This brings into focus the idea that central galaxies constitute a distinct population that is affected by different physical processes than are the satellites. We model this physical difference as a statistical brightening of the central luminosities, over and above the order statistics prediction. The magnitude gap between the brightest and second brightest group galaxy is predicted as a by-product, and is also in good agreement with observations. We propose that this order statistics framework provides a useful language in which to compare the Halo Model for galaxies with more physically motivated galaxy formation models
Accurately weigh the masses of SMBH in AGN is currently possible for only a small group of local and bright broad-line AGN through reverberation mapping (RM). Statistical demographic studies can be carried out considering the empirical scaling relation between the size of the BLR and the AGN optical continuum luminosity. However, there are still biases against low-luminosity or reddened AGN, in which the rest-frame optical radiation can be severely absorbed/diluted by the host and the BLR emission lines could be hard to detect. Our purpose is to widen the applicability of virial-based SE relations to reliably measure the BH masses also for low-luminosity or intermediate/type 2 AGN that are missed by current methodology. We achieve this goal by calibrating virial relations based on unbiased quantities: the hard X-ray luminosities, in the 2-10 keV and 14-195 keV bands, that are less sensitive to galaxy contamination, and the FWHM of the most important rest-frame NIR and optical BLR emission lines. We built a sample of RM AGN having both X-ray luminosity and broad optical/NIR FWHM measurements available in order to calibrate new virial BH mass estimators. We found that the FWHM of the H$\alpha$, H$\beta$ and NIR lines (i.e. Pa$\alpha$, Pa$\beta$ and HeI$\lambda$10830) all correlate each other having negligible or small offsets. This result allowed us to derive virial BH mass estimators based on either the 2-10 keV or 14-195 keV luminosity. We took also into account the recent determination of the different virial coefficients $f$ for pseudo and classical bulges. By splitting the sample according to the bulge type and adopting separate $f$ factors we found that our virial relations predict BH masses of AGN hosted in pseudobulges $\sim$0.5 dex smaller than in classical bulges. Assuming the same average $f$ factor for both populations, a difference of $\sim$0.2 dex is still found.
Recent spatially resolved observations of galaxies at z=0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments (FIRE) project, which include physically motivated models of the multi-phase ISM, star formation, and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z=0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disk, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disk, drive strong outflows, and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.
The active galaxy MCG--6-30-15 has a 400 pc diameter stellar kinematically distinct core, counter-rotating with respect to the main body of the galaxy. Our previous high spatial resolution (0".1) H-band observations of this galaxy mapped the stellar kinematics and [Fe II] 1.64 {\mu}m gas dynamics though mainly restricted to the spatial region of the counter-rotating core. In this work we probe the stellar kinematics on a larger field-of-view and determine the ionised and molecular gas dynamics to study the formation of the counter-rotating core and the implications for AGN fuelling. We present integral field spectroscopy observations with SINFONI in the H and K-bands in the central 1.2 kpc and with VIMOS HR-blue in the central 4 kpc of the galaxy. Ionised gas outflows of v ~ 100 km/s are traced by the [Ca VIII] 2.32 {\mu}m coronal line and extend out to at least a radius of r ~ 140 pc. The molecular gas, traced by the H2 2.12 {\mu}m emission is also counter rotating with respect to the main body of the galaxy, indicating that the formation of the distinct core was associated with inflow of external gas into the centre of MCG--6-30-15. The molecular gas traces the available gas reservoir for AGN fuelling and is detected as close as r ~ 50 - 100 pc. External gas accretion is able to significantly replenish the fuelling reservoir suggesting that the event that formed the counter-rotating core was also the main mechanism providing gas for AGN fuelling.
Galaxy cluster peripheries provide important information on the nature of
ICM/IGM linkage. In this paper we consider potential future observations in the
gamma-ray domain at cluster edges involving the radio relic phenomenon.
We focus on the spectral signature of gamma radiation that should be evident
in the energy range of Fermi--LAT, i.e. $\gtrsim 10^{-1}$ GeV and the CTA
energy range $\sim$ $ 10^{2}$ GeV. The spectral signature results from a
comparable gamma-ray flux due to the IC and $ \pi ^{0} $ decay on the edge of
the cluster, and its spectral position is a function of the magnetic field and
relative efficiency of the acceleration of protons and electrons. We aim to
draw attention to the dependence of the gamma-ray structure on the magnetic
field value.
As an example, we carried out analyses of two types of non-thermal diffuse
radio emission: the radio relic of A 2256 and the radio halo of Coma cluster.
We suggest that in both cases the expected spatially correlated gamma-ray
spectrum should have a characteristic structure that depends on the strength of
the local magnetic field. In both of the clusters we calculated the combined
flux of gamma radiation from the actual observational values of the used
observables.
The revealed spectral dependence on the magnetic field would allow us to
relate the future spectral observations, in particular the position of the
gamma-ray signature, to the value of the magnetic field in the border area
between galaxy clusters and their connecting filaments, possibly constraining
the estimated relative efficiency of particle acceleration at the edge of the
cluster.
We present deep observations at 450 um and 850 um in the Extended Groth Strip field taken with the SCUBA-2 camera mounted on the James Clerk Maxwell Telescope as part of the deep SCUBA-2 Cosmology Legacy Survey (S2CLS), achieving a central instrumental depth of $\sigma_{450}=1.2$ mJy/beam and $\sigma_{850}=0.2$ mJy/beam. We detect 57 sources at 450 um and 90 at 850 um with S/N > 3.5 over ~70 sq. arcmin. From these detections we derive the number counts at flux densities $S_{450}>4.0$ mJy and $S_{850}>0.9$ mJy, which represent the deepest number counts at these wavelengths derived using directly extracted sources from only blank-field observations with a single-dish telescope. Our measurements smoothly connect the gap between previous shallower blank-field single-dish observations and deep interferometric ALMA results. We estimate the contribution of our SCUBA-2 detected galaxies to the cosmic infrared background (CIB), as well as the contribution of 24 um-selected galaxies through a stacking technique, which add a total of $0.26\pm0.03$ and $0.07\pm0.01$ MJy/sr, at 450 um and 850 um, respectively. These surface brightnesses correspond to $60\pm20$ and $50\pm20$ per cent of the total CIB measurements, where the errors are dominated by those of the total CIB. Using the photometric redshifts of the 24 um-selected sample and the redshift distributions of the submillimetre galaxies, we find that the redshift distribution of the recovered CIB is different at each wavelength, with a peak at $z\sim1$ for 450 um and at $z\sim2$ for 850um, consistent with previous observations and theoretical models.
The extended quasidilaton theory is one of the simplest Lorentz-invariant massive gravity theories which can accommodate a stable self-accelerating vacuum solution. In this paper we revisit this theory and study the effect of matter fields. For a matter sector that couples minimally to the physical metric, we find hints of a Jeans type instability in the IR. In the analogue k-essence field set-up, this instability manifests itself as an IR ghost for the scalar field perturbation, but this can be interpreted as a classical instability that becomes relevant below some momentum scale in terms of matter density perturbations. We also consider the effect of the background evolution influenced by matter on the stability of the gravity sector perturbations. In particular, we address the previous claims of ghost instability in the IR around the late time attractor. We show that, although the matter-induced modification of the evolution potentially brings tension to the stability conditions, one goes beyond the regime of validity of the effective theory well before the solutions become unstable. We also draw attention to the fact that the IR stability conditions are also enforced by the existence requirements of consistent background solutions.
We study the possibility to detect and distinguish signatures of enrichment from PopIII stars in observations of PopII GRBs (GRBIIs) at high redshift by using numerical N-body/hydrodynamical simulations including atomic and molecular cooling, star formation and metal spreading from stellar populations with different initial mass functions (IMFs), yields and lifetimes. PopIII and PopII star formation regimes are followed simultaneously and both a top-heavy and a Salpeter-like IMF for pristine PopIII star formation are adopted. We find that the fraction of GRBIIs hosted in a medium previously enriched by PopIII stars (PopIII-dominated) is model independent. Typical abundance ratios, such as [Si/O] vs [C/O] and [Fe/C] vs [Si/C], can help to disentangle enrichment from massive and intermediate PopIII stars, while low-mass first stars are degenerate with regular PopII generations. The properties of galaxies hosting PopIII-dominated GRBIIs are not very sensitive to the particular assumption on the mass of the first stars.
Modifications of gravity have been considered to model the primordial inflation and the late-time cosmic acceleration. Provided that modified gravity models do not suffer from theoretical instabilities, they must be confronted with observations, not only at the cosmological scales, but also with the local tests of gravity, in the lab and in the Solar System, as well as at the astrophysical scales. Considering in particular sub-classes of the Horndeski gravity, we study their observational predictions at different scales. In order to pass the local tests of gravity while allowing for long-range interactions in cosmology, Horndeski gravity exhibits screening mechanisms, among them the chameleon. The chameleon screening mechanism has been tested recently using atom interferometry in a vacuum chamber. Numerical simulations are provided in this thesis in order to refine the analytical predictions. At the astrophysical scale, Horndeski gravity predicts a variation of the gravitational coupling inside compact stars. Focusing on Higgs inflation, we discuss to what extent the Higgs vacuum expectation value varies inside stars and conclude whether the effect is detectable in gravitational and nuclear physics. Finally, the covariant Galileon model exhibits non-linearities in the scalar field kinetic term such that it might pass the local tests of gravity thanks to the Vainshtein screening mechanism. We discuss if a sub-class of the covariant Galileon theory dubbed the Fab Four model leads to a viable inflationary phase and provide combined analysis with neutron stars and Solar System observables.
The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term. The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.
The observed evolution of the gas fraction and its associated depletion time in main sequence (MS) galaxies provides insights on how star formation proceeds over cosmic time. We report ALMA detections of the rest-frame $\sim$300$\mu$m continuum observed at 240 GHz for 45 massive ($\rm \langle log(M_{\star}(M_{\odot}))\rangle=10.7$), normal star forming ($\rm \langle log(sSFR(yr^{-1}))\rangle=-8.6$), i.e. MS, galaxies at $\rm z\approx3.2$ in the COSMOS field. From an empirical calibration between cold neutral, i.e. molecular and atomic, gas mass $\rm M_{gas}$ and monochromatic (rest-frame) infrared luminosity, the gas mass for this sample is derived. Combined with stellar mass $\rm M_{\star}$ and star formation rate (SFR) estimates (from {\sc MagPhys} fits) we obtain a median gas fraction of $\rm \mu_{gas}=M_{gas}/M_{\star}=1.65_{-0.19}^{+0.18}$ and a median gas depletion time $\rm t_{depl.}(Gyr)=M_{gas}/SFR=0.68_{-0.08}^{+0.07}$; correction for the location on the MS will only slightly change the values. The reported uncertainties are the $\rm 1\sigma$ error on the median. Our results are fully consistent with the expected flattening of the redshift evolution from the 2-SFM (2 star formation mode) framework that empirically prescribes the evolution assuming a universal, log-linear relation between SFR and gas mass coupled to the redshift evolution of the specific star formation rate (sSFR) of main sequence galaxies. While $\rm t_{dep.}$ shows only a mild dependence on location within the MS, a clear trend of increasing $\rm \mu_{gas}$ across the MS is observed (as known from previous studies). Further we comment on trends within the MS and (in)consistencies with other studies.
We present V and R photometry of the gravitationally lensed quasars WFI2033-4723 and HE0047-1756. The data were taken by the MiNDSTEp collaboration with the 1.54 m Danish telescope at the ESO La Silla observatory from 2008 to 2012. Differential photometry has been carried out using the image subtraction method as implemented in the HOTPAnTS package, additionally using GALFIT for quasar photometry. The quasar WFI2033-4723 showed brightness variations of order 0.5 mag in V and R during the campaign. The two lensed components of quasar HE0047-1756 varied by 0.2-0.3 mag within five years. We provide, for the first time, an estimate of the time delay of component B with respect to A of $\Delta t= 7.6\pm1.8$ days for this object. We also find evidence for a secular evolution of the magnitude difference between components A and B in both filters, which we explain as due to a long-duration microlensing event. Finally we find that both quasars WFI2033-4723 and HE0047-1756 become bluer when brighter, which is consistent with previous studies.
We speculate that the early Universe was inside a primordial black hole. The interior of the the black hole is a dS background and the two spacetimes are separated on the surface of black hole's event horizon. We argue that this picture provides a natural realization of inflation without invoking the inflaton field. The black hole evaporation by Hawking radiation provides a natural mechanism for terminating inflation so reheating and the hot big bang cosmology starts from the evaporation of black hole to relativistic particles. The quantum gravitational fluctuations at the boundary of black hole generate the nearly scale invariant scalar and tensor perturbations with the ratio of tensor to scalar power spectra at the order of $10^{-3}$. As the black hole evaporates, the radius of its event horizon shrinks and the Hubble expansion rate during inflation increases slowly so the quantum Hawking radiation provides a novel mechanism for the violation of null energy condition in cosmology.
Links to: arXiv, form interface, find, astro-ph, recent, 1610, contact, help (Access key information)
We study the mass accretion histories (MAHs) and density profiles of dark matter halos using N-body simulations of self-similar gravitational clustering from scale-free power spectra, $P(k)\propto k^n$. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, $\alpha$, of an Einasto profile. In agreement with previous findings our results suggest that, despite vast differences in their MAHs, the density profiles of virialized halos are remarkably alike. Nonetheless, clear departures from self-similarity are evident: for a given spectral index, $\alpha$ increases slightly but systematically with "peak height", $\nu\equiv\delta_{sc}/\sigma(M,z)$, regardless of mass or redshift. More importantly, however, the "$\alpha-\nu$" relation depends on $n$: the steeper the initial power spectrum, the more gradual the curvature of both the mean MAHs and mean density profiles. These results are consistent with previous findings connecting the shapes of halo mass profiles and MAHs and imply that dark matter halos are not structurally self-similar but, through the merger history, retain a memory of the linear density field from which they form.
We present a new technique to create a bin-averaged Hubble Diagram (HD) from photometrically identified SN~Ia data. The resulting HD is corrected for selection biases and contamination from core collapse (CC) SNe, and can be used to infer cosmological parameters. This method, called "Bias Corrected Distances" (BCD), includes two fitting stages. The first BCD fitting stage combines a Bayesian likelihood with a Monte Carlo simulation to bias-correct the fitted SALT-II parameters, and also incorporates CC probabilities determined from a machine learning technique. The BCD fit determines 1) a bin-averaged HD (average distance vs. redshift), and 2) the nuisance parameters alpha and beta, which multiply the stretch and color (respectively) to standardize the SN brightness. In the second stage, the bin-averaged HD is fit to a cosmological model where priors can be imposed. We perform high precision tests of the BCD method by simulating large (150,000 event) data samples corresponding to the Dark Energy Survey Supernova Program (DESSN). Our tests include three models of intrinsic scatter, each with two different CC rates. In the BCD fit, the SALT-II nuisance parameters alpha and beta are recovered to within 1% of their true values. In the cosmology fit, we determine the dark energy equation of state parameter w using a fixed value of Omega_M as a prior: averaging over all six tests based on 6 x 150,000 = 950,000 SNe, there is a small w-bias of 0.006 +- 0.002. There is an additional w-uncertainty due to the assumed cosmology in the simulations, after iterating, this uncertainty is roughly equal to sigma_w/7 where sigma_w is the uncertainty of the data. Finally, the BCD fitting code is publicly available in the SNANA package.
In view of future high precision large scale structure surveys, it is important to quantify percent and sub-percent level effects in cosmological $N$-body simulations from which theoretical predictions are drawn. One such effect involves the choice of whether to set all modes above the one-dimensional Nyquist frequency, the so-called "corner" modes, to zero in the initial conditions. By comparing simulations with and without these modes, we find that at $z>6$, the difference in the matter power spectrum is large at wavenumbers just below $k_{\rm{Ny}}$, reducing to below 2% at all scales by $z\sim 3$. Including corner modes results in a better match between a low-resolution simulation and a high-resolution simulation at wavenumbers around the Nyquist frequency of the low-resolution simulation. The differences in mass functions are 3% for the smallest halos at $z=6$ for the simulation resolution studied here ($m_p \sim 10^{11}h^{-1}\,M_{\odot}$), but we find no significant difference in the stacked profiles of well-resolved halos at $z \leq 6$. Thus removing power at $k>k_{\rm{Ny}}$ in the initial conditions of cosmological simulations has a small effect on small scales and high redshifts, typically below a few percent, and may be important to take into account in simulations of the high redshift universe.
We propose a new class of metastable dark energy (DE) models in which the DE decay rate does not depend on external parameters such as the scale factor or the curvature of the Universe. Instead, the DE decay rate is a function only of the intrinsic properties of DE and, in this sense, resembles the radioactive decay of particles and nuclei. As a consequence, the DE energy density becomes a function of the proper time elapsed since its formation, presumably in the very early Universe. Such a natural type of DE decay can profoundly affect the expansion history of the Universe and its age. Metastable DE can decay in three distinct ways: (i) exponentially, (ii) into dark matter, (iii) into dark radiation. Testing metastable DE models with observational data we find that the decay half-life must be larger than the age of the Universe. Models in which dark energy decays into dark matter lead to lower values of the Hubble parameter at large redshifts relative to $\Lambda$CDM. Consequently these models provide a better fit to cosmological BAO data (especially data from from high redshift quasars) than concordance ($\Lambda$CDM) cosmology.
We report the results of a statistical analysis of the space distribution of galaxies within distances about 300 Mpc using the 2MRS catalog, which contains redshifts of 43533 galaxies of the 2MASS all-sky IR survey. Because of the unique features of the 2MRS survey, such as its 90 percent sky coverage, galaxy selection in the IR, the complete incorporation of the old stellar population of galaxies, weakness of the dust extinction effects, and the smallness of the k- and e-corrections allowed us to determine the statistical properties of the global distribution of galaxies in the Local Universe. We took into account the main methodological factors that distort the theoretically expected relations compared to those actually observed. We construct the radial galaxy number counts N(R), SL(R, r) statistics, and the complete correlation function (conditional density) for volume-limited (VL) galaxy samples. The observed conditional density in the redshift space is independent of the luminosity of galaxies and has the form of a power-law function with slope ~ 1.0 over a large range scale-length spanning from 0.1 to 100 Mpc. We compare the statistical properties of the space distribution of galaxies of the 2MRS catalog with the corresponding properties of simulated catalogs: stochastic fractal distributions and galaxies of the Millennium catalog.
We revisit constraints on dark matter that is charged under a $U(1)$ gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.
The 2-years MESE IceCube events show a slightly excess in the energy range 10-100 TeV with a maximum local statistical significance of 2.3$\sigma$, once a hard astrophysical power-law is assumed. A spectral index smaller than 2.2 is indeed suggested by multi-messenger studies related to $p$-$p$ sources and by the recent IceCube analysis regarding 6-years up-going muon neutrinos. In the present paper, we propose a two-components scenario where the extraterrestrial neutrinos are explained in terms of an astrophysical power-law and a Dark Matter signal. We consider both decaying and annihilating Dark Matter candidates with different final states (quarks and leptons) and different halo density profiles. We perform a likelihood-ratio analysis that provides a statistical significance up to 3.9$\sigma$ for a Dark Matter interpretation of the IceCube low energy excess.
Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and AGN feedback, are dependent upon local dynamical timescales. However, accurately mapping the mass distribution within individual clusters is challenging, particularly towards cluster centres where the total mass budget has substantial radially-dependent contributions from the stellar, gas, and dark matter components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both large and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular H-alpha emission in cool core clusters. Amongst this small sample we find no support for the existence of a central 'entropy floor', with the entropy profiles following a power-law profile down to our resolution limit.
We consider thermal production mechanisms of self-interacting dark matter in models with gauged $Z_3$ symmetry. A complex scalar dark matter is stabilized by the $Z_3$, that is the remnant of a local dark $U(1)_d$. Light dark matter with large self-interaction can be produced from thermal freeze-out in the presence of SM-annihilation, SIMP and/or forbidden channels. We show that dark photon and/or dark Higgs should be relatively light for unitarity and then assist the thermal freeze-out. We identify the constraints on the parameter space of dark matter self-interaction and mass in cases that one or some of the channels are important in determining the relic density.
Black holes (BHs) are believed to be a key ingredient of galaxy formation. However, the galaxy-BH interplay is challenging to study due to the large dynamical range and complex physics involved. As a consequence, hydrodynamical cosmological simulations normally adopt sub-grid models to track the unresolved physical processes, in particular BH accretion; usually the spatial scale where the BH dominates the hydrodynamical processes (the Bondi radius) is unresolved, and an approximate Bondi-Hoyle accretion rate is used to estimate the growth of the BH. By comparing hydrodynamical simulations at different resolutions (300, 30, 3 pc) using a Bondi-Hoyle approximation to sub-parsec runs with non-parameterized accretion, our aim is to probe how well an approximated Bondi accretion is able to capture the BH accretion physics and the subsequent feedback on the galaxy. We analyse an isolated galaxy simulation that includes cooling, star formation, Type Ia and Type II supernovae, BH accretion and AGN feedback (radiation pressure, Compton heating/cooling) where mass, momentum, and energy are deposited in the interstellar medium through conical winds. We find that on average the approximated Bondi formalism can lead to both over- and under-estimations of the BH growth, depending on resolution and on how the variables entering into the Bondi-Hoyle formalism are calculated.
We investigate scalar particle creation in a set of bouncing models where the bounce occurs due to quantum cosmological effects described by the Wheeler-DeWitt equation. The scalar field can be either conformally or minimally coupled to gravity, and it can be massive or massless, without self interaction. The analysis is made for models containing a single radiation fluid, and for the more realistic case of models containing the usual observed radiation and dust fluids, which can fit most of the observed features of our Universe, including an almost scale invariant power spectrum of scalar cosmological perturbations. In the conformal coupling case, the particle production is negligible. In the minimal coupling case, for massive particles, the results point to the same physical conclusion within observational constraints: particle production is most important at the bounce energy scale, and it is not sensitive neither to its mass nor whether there is dust in the background model. The only caveat is the case where the particle mass is larger than the bounce energy scale. On the other hand, the energy density of produced massive particles depend on their masses and the energy scale of the bounce. For very large masses and deep bounces, this energy density may overcome that of the background. In the case of massless particles, the energy density of produced particles can become comparable to the background energy density only for bounces occurring at energy scales comparable to the Planck scale or above, which lies beyond the scope of this paper: we expect that the simple Wheeler-DeWitt approach we are using should be valid only at scales some few orders of magnitude below the Planck energy. Nevertheless, in the case in which dust is present, there is an infrared divergence, which becomes important only for scales much larger than today's Hubble radius.
We review the Schr\"odinger picture of field theory in curved spacetime and using this formalism, the power spectrum of massive non-interacting, minimally coupled scalars in a fixed de Sitter background is obtained. To calculate the N-point function in Schr\"odinger field theory, the "in-in" formalism is extended in the Friedmann-Lema\^itre-Robertson-Walker (FLRW) universe. We compute the three-point function for primordial scalar field fluctuation in the single field inflation by this in-in formalism. The results are the same as the three-point function in the Heisenberg picture.
We present a minimal model for particle physics and cosmology. The Standard Model (SM) particle content is extended by three right-handed SM-singlet neutrinos N_i and a vector-like quark Q, all of them being charged under a global lepton number and Peccei-Quinn (PQ) U(1) symmetry which is spontaneously broken by the vacuum expectation value v_sigma around 10^{11} GeV of a SM-singlet complex scalar field sigma. Five fundamental problems -- neutrino oscillations, baryogenesis, dark matter, inflation, strong CP problem -- are solved at one stroke in this model, dubbed "SM*A*S*H" (Standard Model*Axion*Seesaw*Higgs portal inflation). It can be probed decisively by upcoming cosmic microwave background and axion dark matter experiments.
The applications of numerical relativity to cosmology are on the rise, contributing insight into such cosmological problems as structure formation, primordial phase transitions, gravitational-wave generation, and inflation. In this paper, I present the infrastructure for the computation of inhomogeneous dust cosmologies which was used recently to measure the effect of nonlinear inhomogeneity on the cosmic expansion rate. I illustrate the code's architecture, provide evidence for its correctness in a number of familiar cosmological settings, and evaluate its parallel performance for grids of up to several billion points. The code, which is available as free software, is based on the Einstein Toolkit infrastructure, and in particular leverages the automated-code-generation capabilities provided by its component Kranc.
The study of galaxy protoclusters is beginning to fill in unknown details of the important phase of the assembly of clusters and cluster galaxies. This review describes the current status of this field and highlights promising recent findings related to galaxy formation in the densest regions of the early universe. We discuss the main search techniques and the characteristic properties of protoclusters in observations and simulations, and show that protoclusters will have present-day masses similar to galaxy clusters when fully collapsed. We discuss the physical properties of galaxies in protoclusters, including (proto-)brightest cluster galaxies, and the forming red sequence. We highlight the fact that the most massive halos at high redshift are found in protoclusters, making these objects uniquely suited for testing important recent models of galaxy formation. We show that galaxies in protoclusters should be among the first galaxies at high redshift making the transition from a gas cooling regime dominated by cold streams to a regime dominated by hot intracluster gas, which could be tested observationally. We also discuss the possible connections between protoclusters and radio galaxies, quasars, and Ly-alpha blobs. Because of their early formation, large spatial sizes and high total star formation rates, protoclusters have also likely played a crucial role during the epoch of reionization, which can be tested with future experiments that will map the neutral and ionized cosmic web. Last, we review a number of promising observational projects that are expected to make significant impact in this growing, exciting field.
Links to: arXiv, form interface, find, astro-ph, recent, 1610, contact, help (Access key information)
Cosmological measurements of both the expansion history and growth history have matured, and the two together provide an important test of general relativity. We consider their joint evolutionary track, showing that this has advantages in distinguishing cosmologies relative to considering them individually or at isolated redshifts. In particular, the joint comparison relaxes the shape degeneracy that makes $f\sigma_8(z)$ curves difficult to separate from the overall growth amplitude. The conjoined method further helps visualization of which combinations of redshift ranges provide the clearest discrimination. We examine standard dark energy cosmologies, modified gravity, and "stuttering" growth, each showing distinct signatures.
If dark matter interacts, even weakly, via non-gravitational forces, simulations predict that it will be preferentially scattered towards the trailing edge of the halo during collisions between galaxy clusters. This will temporarily create a non-symmetric mass profile, with a trailing over-density along the direction of motion. To test this hypothesis, we fit (and subtract) symmetric halos to the weak gravitational data of 72 merging galaxy clusters observed with the Hubble Space Telescope. We convert the shear directly into excess {\kappa} and project in to a one dimensional profile. We generate numerical simulations and find that the one dimensional profile is well described with simple Gaussian approximations. We detect the weak lensing signal of trailing gas at a 4{\sigma} confidence, finding a mean gas fraction of Mgas/Mdm = 0.13 +/- 0.035. We find no evidence for scattered dark matter particles with a estimated scattering fraction of f = 0.03 +/- 0.05. Finally we find that if we can reduce the statistical error on the positional estimate of a single dark matter halo to <2.5", then we will be able to detect a scattering fraction of 10% at the 3{\sigma} level with current surveys. This poten- tially interesting new method can provide an important independent test for other complimentary studies of the self-interaction cross-section of dark matter.
We study the contribution of the first galaxies to the far-infrared/sub-millimeter (FIR/sub-mm) extragalactic background light (EBL) by implementing an analytical model for dust emission. We explore different dust models, assuming different grain size distributions and chemical compositions. According to our findings, observed re-radiated emission from dust in dwarf-size galaxies at $z \sim 10$ would peak at a wavelength of $\sim 500 \mu {\rm m}$ with observed fluxes of $\sim 10^{-3} - 10^{-2}$ nJy, which is below the capabilities of current observatories. In order to be detectable, model sources at these high redshifts should exhibit luminosities of $\gtrsim 10^{12} L_{\odot}$, comparable to that of local ultra-luminous systems. The FIR/sub-mm EBL generated by primeval galaxies peaks at $\sim 500 \mu {\rm m}$, with an intensity ranging from $\sim 10^{-4}$ to $10^{-3} {\rm nW \ m^{-2} \ sr^{-1}}$, depending on dust properties. These values are $\sim 3 - 4$ orders of magnitude below the absolute measured cosmic background level, suggesting that the first galaxies would not contribute significantly to the observed FIR/sub-mm EBL. Our model EBL exhibits a strong correlation with the dust-to-metal ratio, where we assume a fiducial value of $D = 0.005$, increasing almost proportionally to it. Thus, measurements of the FIR/sub-mm EBL could provide constraints on the amount of dust in the early Universe. Even if the absolute signal from primeval dust emission may be undetectable, it might still be possible to obtain information about it by exploring angular fluctuations at $\sim 500 \mu {\rm m}$, close to the peak of dust emission from the first galaxies.
In the early Universe, s.i. matter was a quark-gluon plasma. Both lattice computations and heavy ion collision experiments however tell us that, in the absence of chemical potentials, no plasma survives at $T <\sim 150\, $MeV. The cosmological QH transition, however, seems to have been a crossover; cosmological consequences envisaged when it was believed to be a phase transition no longer hold. In this paper we discuss whether even a crossover transition can leave an imprint that cosmological observations can seek or, viceversa, there are questions cosmology should still ask QCD specialists. In this context, we outline, first of all, that it is still unclear how baryons (not hadrons) could form at the cosmological transition. A critical role should be played by diquark states, whose abundance in the early plasma needs to be accurately evaluated. We estimate that, if the number of quarks belonging to a diquark state, at the eve of the cosmological transition, is $<\sim 1:10^6$, its dynamics could be modified by the process of B-transfer from plasma to hadrons. In turn, by assuming B-transfer to cause just mild perturbations and, in particular, no entropy input, we study the deviations from the tracking regime, in the frame of SCDEW models. We find that, in some cases, residual deviations could propagate down to primeval nucleosynthesis.
In the present work, we discuss the effects of the inclusion of sterile-active neutrino oscillations during the production of primordial light-nuclei. We assume that the sterile neutrino mass-eigenstate might oscillate with the two lightest active neutrino mass- eigenstates, with mixing angles ${\phi}_1$ and ${\phi}_2$. We also allow a constant renormalization (represented by a parameter (${\zeta}$)) of the sterile neutrino occupation factor. Taking ${\zeta}$ and the mixing angles as free parameters, we have computed distribution functions of active and sterile neutrinos and primordial abundances. Using observable data we set constrains in the free parameters of the model. It is found that the data on primordial abundances are consistent with small mixing angles and with a value of ${\zeta}$ smaller than 0.65 at 3${\sigma}$ level.
In the present work we derive an exact solution of an isotropic and homogeneous Universe governed by $f(T)$ gravity. We show how the torsion contribution to the FRW cosmology can provide a \textit{unique} origin for both early and late acceleration phases of the Universe. The three models ($k=0, \pm 1$) show a \textit{built-in} inflationary behavior at some early Universe time; they restore suitable conditions for the hot big bang nucleosynthesis to begin. Unlike the standard cosmology, we show that even if the Universe initially started with positive or negative sectional curvatures, the curvature density parameter enforces evolution to a flat Universe. The solution constrains the torsion scalar $T$ to be a constant function at all time $t$, for the three models. This eliminates the need for the dark energy (DE). Moreover, when the continuity equation is assumed for the torsion fluid, we show that the flat and closed Universe models \textit{violate} the conservation principle, while the open one does not. The evolution of the effective equation of state (EoS) of the torsion fluid implies a peculiar trace from a quintessence-like DE to a phantom-like one crossing a matter and radiation EoS in between; then it asymptotically approaches a de Sitter fate.
We study a single fluid component in a flat like universe (FLU) governed by $f(T)$ gravity theories, where $T$ is the teleparallel torsion scalar. The FLU model, regardless the value of the spatial curvature $k$, identifies a special class of $f(T)$ gravity theories. Remarkably, the FLU $f(T)$ gravity does not reduce to teleparallel gravity theory. In large Hubble spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. The equation of state (EoS) evolves similarly in all models $k=0, \pm 1$. We study the case when the torsion tensor is made of a scalar field, which enables to derive a quintessence potential from the obtained $f(T)$ gravity theory. The potential produces Starobinsky-like model naturally without using a conformal transformation, with higher orders continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions so that for a single value of the scalar tilt (spectral index) $n_{s}$ the theory can predict double tensor-to-scalar ratios $r$ of $E$-mode and $B$-mode polarizations.
We derive an exact $f(T)$ gravity in the absence of ordinary matter in Friedmann-Robertson-Walker (FRW) universe, where $T$ is the teleparallel torsion scalar. We show that vanishing of the energy-momentum tensor $\mathcal{T}^{\mu \nu}$ of matter does not imply vanishing of the teleparallel torsion scalar, in contrast to general relativity, where the Ricci scalar vanishes. The theory provides an exponential (inflationary) scale factor independent of the choice of the sectional curvature. In addition, the obtained $f(T)$ acts just like cosmological constant in the flat space model. Nevertheless, it is dynamical in non-flat models. In particular, the open universe provides a decaying pattern of the $f(T)$ contributing directly to solve the fine-tuning problem of the cosmological constant. The equation of state (EoS) of the torsion vacuum fluid has been studied in positive and negative Hubble regimes. We study the case when the torsion is made of a scalar field (tlaplon) which acts as torsion potential. This treatment enables to induce a tlaplon field sensitive to the symmetry of the spacetime in addition to the reconstruction of its effective potential from the $f(T)$ theory. The theory provides six different versions of inflationary models. The real solutions are mainly quadratic, the complex solutions, remarkably, provide Higgs-like potential.
In a recent work, a particular class of $f(T)$ gravity, where $T$ is the teleparallel torsion scalar, has been derived. This class has been identified by flat-like universe (FLU) assumptions \cite{HN15}. The model is consistent with the early cosmic inflation epoch. A quintessence potential has been constructed from the FLU $f(T)$-gravity. We show that the first order potential of the induced quintessence is a quasi inverse power law inflation with an additional constant providing an end of the inflation with no need to an extra mechanism. At $e$-folds $N_{*}= 55$ before the end of the inflation, this type of potential can perform both $E$ and $B$ modes of the cosmic microwave background (CMB) polarization pattern.
We present Magellan/IMACS spectroscopy of the recently discovered Milky Way satellite Tucana III (Tuc III). We identify 26 member stars in Tuc III, from which we measure a mean radial velocity of v_hel = -102.3 +/- 0.4 (stat.) +/- 2.0 (sys.) km/s, a velocity dispersion of 0.1^+0.7_-0.1 km/s, and a mean metallicity of [Fe/H] = -2.42^+0.07_-0.08. The upper limit on the velocity dispersion is sigma < 1.5 km/s at 95.5% confidence, and the corresponding upper limit on the mass within the half-light radius of Tuc III is 9.0 x 10^4 Msun. We cannot rule out mass-to-light ratios as large as 240 Msun/Lsun for Tuc III, but much lower mass-to-light ratios that would leave the system baryon-dominated are also allowed. We measure an upper limit on the metallicity spread of the stars in Tuc III of 0.19 dex at 95.5% confidence. Tuc III has a smaller metallicity dispersion and likely a smaller velocity dispersion than any known dwarf galaxy, but a larger size and lower surface brightness than any known globular cluster. Its metallicity is also much lower than those of the clusters with similar luminosity. We therefore tentatively suggest that Tuc III is the tidally-stripped remnant of a dark matter-dominated dwarf galaxy, but additional precise velocity and metallicity measurements will be necessary for a definitive classification. If Tuc III is indeed a dwarf galaxy, it is one of the closest external galaxies to the Sun. Because of its proximity, the most luminous stars in Tuc III are quite bright, including one star at V=15.7 that is the brightest known member star of an ultra-faint satellite.
Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magneto-hydrodynamical simulation of a galaxy cluster using the mesh refinement code \enzo. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic $\gamma$-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio emitting electrons found in relics have been typically shocked many times before $z=0$. On the other hand, the hadronic $\gamma$-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic-ray protons. This might reduce the tension with the low upper limits on $\gamma$-ray emission from clusters set by the \textit{Fermi}-satellite.
The focus of this Chapter is on describing the prospective sources of the gravitational wave universe accessible to present and future observations, from kHz, to mHz down to nano-Hz frequencies. The multi-frequency gravitational wave universe gives a deep view into the cosmos, inaccessible otherwise. It has as main actors core-collapsing massive stars, neutron stars, coalescing compact object binaries of different flavours and stellar origin, coalescing massive black hole binaries, extreme mass ratio inspirals, and possibly the very early universe itself. Here, we highlight the science aims and describe the gravitational wave signals expected from the sources and the information gathered in it. We show that the observation of gravitational wave sources will play a transformative role in our understanding of the processes ruling the formation and evolution of stars and black holes, galaxy clustering and evolution, the nature of the strong forces in neutron star interiors, and the most mysterious interaction of Nature: gravity. The discovery, by the LIGO Scientific Collaboration and Virgo Collaboration, of the first source of gravitational waves from the cosmos GW150914, and the superb technological achievement of the space mission LISA Pathfinder herald the beginning of the new phase of exploration of the universe.
Growing the supermassive black holes (~10^9 Msun) that power the detected luminous, highest redshift quasars (z > 6) from light seeds - the remnants of the first stars - within ~ 1 Gyr of the Big Bang poses a timing challenge for growth models. The formation of massive black hole seeds via direct collapse with initial masses ~ 10^4 - 10^5 Msun alleviates this problem. Physical conditions required to form these massive direct collapse black hole (DCBH) seeds are available in the early universe. These viable DCBH formation sites, satellite halos of star-forming galaxies, merge and acquire a stellar component. These produce a new, transient class of objects at high redshift, Obese Black hole Galaxies (OBGs), where the luminosity produced by accretion onto the black hole outshines the stellar component. Therefore, the OBG stage offers a unique way to discriminate between light and massive initial seeds. We predict the multi-wavelength energy output of OBGs and growing Pop III remnants at a fiducial redshift (z = 9), exploring both standard and slim disk accretion onto the growing central black hole for high and low metallicities of the associated stellar population. With our computed templates, we derive the selection criteria for OBGs, that comprise a pre-selection that eliminates blue sources; followed by color-color cuts ([F_{070W} - F_{220W}] > 0; -0.3 < [F_{200W} - F_{444W}] < 0.3) and when available, a high ratio of X-ray flux to rest-frame optical flux (F_X/F_{444W} >> 1) (Abridged).
We study the creation and evolution of cosmological perturbations in renormalizable quadratic gravity with a Weyl term. We adopt a prescription that implies the stability of the vacuum at the price of introducing a massive spin-two ghost state, leading to the loss of unitarity. The theory may still be predictive regardless the interpretation of non-unitary processes provided that their rate is negligible compared to the Universe expansion rate. This implies that the ghost is effectively stable. In such a setup, there are two scalar degrees of freedom excited during inflation. The first one is the usual curvature perturbation whose power spectrum appears to coincide with that of single-filed inflation. The second one is a scalar component of the ghost encoded in the shift vector of the metric in the uniform inflaton gauge. The amplitudes of primordial tensor and vector perturbations are strongly suppressed. After inflation the ghost field starts to oscillate and its energy density shortly becomes dominant in the Universe. For all ghost masses allowed by laboratory constraints ghosts should have "overclosed" the Universe at temperatures higher than that of primordial nucleosynthesis. Thus, the model with the light Weyl ghost is ruled out.
We present the discovery of nine quasars at $z\sim6$ identified in the Sloan Digital Sky Survey (SDSS) imaging data. This completes our survey of $z\sim6$ quasars in the SDSS footprint. Our final sample consists of 52 quasars at $5.7<z\le6.4$, including 29 quasars with $z_{\rm AB}\le20$ mag selected from 11,240 deg$^2$ of the SDSS single-epoch imaging survey (the main survey), 10 quasars with $20\le z_{\rm AB}\le20.5$ selected from 4223 deg$^2$ of the SDSS overlap regions (regions with two or more imaging scans), and 13 quasars down to $z_{\rm AB}\approx22$ mag from the 277 deg$^2$ in Stripe 82. They span a wide luminosity range of $-29.0\le M_{1450}\le-24.5$. This well-defined sample is used to derive the quasar luminosity function (QLF) at $z\sim6$. After combining our SDSS sample with two faint ($M_{1450}\ge-23$ mag) quasars from the literature, we obtain the parameters for a double power-law fit to the QLF. The bright-end slope $\beta$ of the QLF is well constrained to be $\beta=-2.8\pm0.2$. Due to the small number of low-luminosity quasars, the faint-end slope $\alpha$ and the characteristic magnitude $M_{1450}^{\ast}$ are less well constrained, with $\alpha=-1.90_{-0.44}^{+0.58}$ and $M^{\ast}=-25.2_{-3.8}^{+1.2}$ mag. The spatial density of luminous quasars, parametrized as $\rho(M_{1450}<-26,z)=\rho(z=6)\,10^{k(z-6)}$, drops rapidly from $z\sim5$ to 6, with $k=-0.72\pm0.11$. Based on our fitted QLF and assuming an IGM clumping factor of $C=3$, we find that the observed quasar population cannot provide enough photons to ionize the $z\sim6$ IGM at $\sim90$\% confidence. Quasars may still provide a significant fraction of the required photons, although much larger samples of faint quasars are needed for more stringent constraints on the quasar contribution to reionization.
It has been previously discovered a universal power-law behaviour of the late X-ray emission (LXRE) of a "golden sample" (GS) of six long energetic GRBs, when observed in the rest-frame of the source. This remarkable feature, independent on the different isotropic energy (E_iso) of each GRB, has been used to estimate the cosmological redshift of some long GRBs. This analysis is here extended to a new class of 161 long GRBs, all with E_iso > 10^52 erg. These GRBs are indicated as binary-driven hypernovae (BdHNe) in view of their progenitors: a tight binary systems composed of a carbon-oxigen core (CO_core) and a neutron star (NS) undergoing an induced gravitational collapse (IGC) to a black hole (BH) triggered by the CO_core explosion as a supernova (SN). We confirm the universal behaviour of the LXRE for the "enlarged sample" (ES) of 161 BdHNe observed up to the end of 2015, assuming a double-cone emitting region. We obtain a distribution of half-opening angles peaking at 17.62{\deg}, with mean value 30.05{\deg}, and a standard deviation 19.65{\deg}. This, in turn, leads to the possible establishment of a new cosmological candle. Within the IGC model, such universal LXRE behaviour is only indirectly related to the GRB and originates from the SN ejecta, of a standard constant mass, being shocked by the GRB emission. The fulfillment of the universal relation in the LXRE and its independence of the prompt emission, further confirmed in this article, establishes a crucial test for any viable GRB model.
The detection of electromagnetic counterparts to gravitational waves has great promise for the investigation of many scientific questions. It has long been hoped that in addition to providing extra, non-gravitational information about the sources of these signals, the detection of an electromagnetic signal in conjunction with a gravitational wave could aid in the analysis of the gravitational signal itself. That is, knowledge of the sky location, inclination, and redshift of a binary could break degeneracies between these extrinsic, coordinate-dependent parameters and the physical parameters, such as mass and spin, that are intrinsic to the binary. In this paper, we investigate this issue by assuming a perfect knowledge of extrinsic parameters, and assessing the maximal impact of this knowledge on our ability to extract intrinsic parameters. However, we find only modest improvements in a few parameters --- namely the primary component's spin --- and conclude that, even in the best case, the use of additional information from electromagnetic observations does not improve the measurement of the intrinsic parameters significantly.
We construct exact initial data for closed cosmological models filled with regularly arranged black holes in the presence of $\Lambda$. The intrinsic geometry of the 3-dimensional space described by this data is a sum of simple closed-form expressions, while the extrinsic curvature is just proportional to $\Lambda$. We determine the mass of each of the black holes in this space by performing a limiting procedure around the location of each of the black holes, and then compare the result to an appropriate slice through the Schwarzschild-de Sitter spacetime. The consequences of the inhomogeneity of this model for the large-scale expansion of space are then found by comparing the lengths of curves in the cosmological region to similar curves in a suitably chosen Friedmann-Lemaitre-Robertson-Walker (FLRW) solution. Finally, we locate the positions of the apparent horizons of the black holes, and determine the extremal values of their mass, for every possible regular arrangement of masses. We find that as the number of black holes is increased, the large-scale expansion of space approaches that of an FLRW model filled with dust and $\Lambda$, and that the extremal values of the black hole masses approaches that of the Schwarzschild-de Sitter solution.
We report radio imaging and monitoring observations in the frequency range 0.235 - 2.7 GHz during the flaring mode of PKS 2155-304, one of the brightest BL Lac objects. The high sensitivity GMRT observations not only reveal extended kpc-scale jet and FRI type lobe morphology in this erstwhile `extended-core' blazar but also delineate the morphological details, thanks to its arcsec scale resolution. The radio light curve during the end phase of the outburst measured in 2008 shows high variability (8.5%) in the jet emission in the GHz range, compared to the lower core variability (3.2%) seen at the lowest frequencies. The excess of flux density with a very steep spectral index in the MHz range supports the presence of extra diffuse emission at low frequencies. The analysis of multi wavelength (radio/ optical/ gamma-ray) light curves at different radio frequencies confirms the variability of the core region and agrees with the scenario of high energy emission in gamma-rays due to inverse Compton emission from a collimated relativistic plasma jet followed by synchrotron emission in radio. Clearly, these results give an interesting insight of the jet emission mechanisms in blazars and highlight the importance of studying such objects with low frequency radio interferometers like LOFAR and the SKA and its precursor instruments.
The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\it general} hypersurface condition. Our formulation includes the anisotropic stress.
In cosmological models where dark energy has a dynamical origin one would expect that a primordial inflationary epoch leaves no imprint on the behavior of dark energy near the present epoch. We show that a notable exception to this behavior is provided by a nonlocal infrared modification of General Relativity, the so-called RT model. It has been previously shown that this model fits the cosmological data with an accuracy comparable to $\Lambda$CDM, with the same number of free parameters. Here we show that in this model the dark energy equation of state (EOS) near the present epoch is significantly affected by the existence of an epoch of primordial inflation. A smoking-gun signature of the model is a well-defined prediction for the dark energy EOS, $w_{\rm DE}(z)$, evolving with redshift from a non-phantom to a phantom behavior, with deviations from $-1$ already very close to the limits excluded by the Planck 2015 data. Future missions such as Euclid should be able to clearly confirm or disprove this prediction.
The direct collapse black hole (DCBH) model attempts to explain the observed number density of supermassive black holes in the early Universe by positing that they grew from seed black holes with masses of $10^{4}$-$10^{5} \: {\rm M_{\odot}}$ that formed by the quasi-isothermal collapse of gas in metal-free protogalaxies cooled by atomic hydrogen emission. For this model to work, H$_{2}$ formation must be suppressed in at least some of these systems by a strong extragalactic radiation field. The predicted number density of DCBH seeds is highly sensitive to the minimum value of the ultraviolet (UV) flux required to suppress H$_{2}$ formation, $J_{\rm crit}$. In this paper, we examine how the value of $J_{\rm crit}$ varies as we vary the strength of a hypothetical high-redshift X-ray background. We confirm earlier findings that when the X-ray flux $J_{\rm X}$ is large, the critical UV flux scales as $J_{\rm crit} \propto J_{\rm X}^{1/2}$. We also carefully explore possible sources of uncertainty arising from how the X-rays are modelled. We use a reaction-based reduction technique to analyze the chemistry of H$_{2}$ in the X-ray illuminated gas and identify a critical subset of 35 chemical reactions that must be included in our chemical model in order to predict $J_{\rm crit}$ accurately. We further show that $J_{\rm crit}$ is insensitive to the details of how secondary ionization or He$^{+}$ recombination are modelled, but does depend strongly on the assumptions made regarding the column density of the collapsing gas.
We examine some of the roots of parity violation for gravitons and uncover a closely related new effect: correlations between right and left handed gravitons. Such correlators have spin 4 if they involve gravitons moving along the same direction, and spin zero for gravitons moving with opposite directions. In the first case, the most immediate implication would be a degree of linear polarization for the tensor vacuum fluctuations, which could be seen by gravity wave detectors sensitive enough to probe the primordial background, its degree of polarization and anisotropies. Looking at the anisotropy of the gravity waves linear polarization we identify the parity respecting and violating components of the effect. The imprint on the CMB temperature and polarization would be more elusive, since it averages to zero in the two-point functions, appearing only in their cosmic variance or in fourth order correlators. In contrast, spin zero correlations would have an effect on the two point function of the CMB temperature and polarization, enhancing the $BB$ component if they were anti-correlations. Such correlations represent an amplitude for the production of standing waves, as first envisaged by Grishchuk, and could also leave an interesting signature for gravity wave detectors.
We show that in a class of non-supersymmetric left-right extensions of the Standard Model (SM), the lightest right-handed neutrino (RHN) can play the role of thermal Dark Matter (DM) in the Universe for a wide mass range from TeV to PeV. Our model is based on the gauge group $SU(3)_c \times SU(2)_L\times SU(2)_R\times U(1)_{Y_L}\times U(1)_{Y_R}$ in which a heavy copy of the SM fermions are introduced and the stability of the RHN DM is guaranteed by an automatic $Z_2$ symmetry present in the leptonic sector. In such models the active neutrino masses are obtained via the type-II seesaw mechanism. We find a lower bound on the RHN DM mass of order TeV from relic density constraints, as well as an unitarity upper bound in the multi-TeV to PeV scale, depending on the entropy dilution factor. The RHN DM could be made long-lived by soft-breaking of the $Z_2$ symmetry and provides a concrete example of decaying DM interpretation of the PeV neutrinos observed at IceCube.
Links to: arXiv, form interface, find, astro-ph, recent, 1610, contact, help (Access key information)
Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present a new reconstruction method that consists in displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that our method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate our method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that our method is able to decrease the uncertainty in the BAO peak position by 30-50% over the typical angular resolution scales of 21 cm intensity mapping experiments.
Motivated by Planck confirmation of an anomalously low value of the CMB
temperature fluctuations up to multipole $\ell<40$, we in this paper try to
explain such feature by investigating case of punctuated inflation scenario.
This form of inflation potential is inspired by MSSM wherein suppression of
curvature perturbation power at large scales is produced by introducing period
of fast-roll phase of the inflation sandwiched between two stages of slow-roll
phase.
We apply Markov Chain Monte Carlo analysis to determine posterior
distribution and the best fit values of the model parameters using recent WMAP9
and Planck data. We show that WMAP9 and Planck results are consistent with each
other. We shown that the Planck data gives much tighter constraints for
punctuated inflation parameters. We find that punctuated inflation leads to
better fit in CMB data compared to simple power law model. For WMAP9 data the
improvement in fit is marginal ($\Delta \chi^2\sim 4$), however, for
WMAP9+Planck the improvement is significant ($\Delta \chi^2\sim 17$). We find
that $AIC$ does not discriminate between punctuated inflation and simple power
law model for WMAP9 data. However, for WMAP9+Planck data we find that
punctuated inflation is strongly favored over a simple power law spectrum.
Trace charge imbalances can explain puzzling cosmological observations such as the large `missing' fraction of electrons in cosmic rays and their contrast to the charge-neutral solar wind, the extreme energy sources that sustain quasars, galactic jets, and active galactic nuclei, the origin and nature of `dark matter' galaxy haloes, and the apparent acceleration of the expansion of the Universe, obviating $\Lambda$CDM. When there are $\sim \num{9e-19}$ amounts of excess $\ce{H3+}$ or $\ce{H-}$ within cold diffuse clouds of $\ce{H2}$, residual repulsive Coulomb forces are comparable to the gravitational attractions between hadrons. This trace-charged dark matter is inert with respect to static electrogravitional self-attractions, but still responds to electromagnetic fields and gravitational attractions with uncharged matter. Residual trace charge is also the ionic catalyst that keeps dark matter in the state of unseen clouds of cold molecular hydrogen plus trace $\ce{H3+}$. Once warm enough to partially ionize, bright matter preferentially expels its net charge to become nearly charge-neutral with respect to surrounding trace-charged dark matter. Planets surrounding stars become charge neutral as they bathe in a charge-neutral stellar wind. In contrast, at AGNs, newly ionized protons along with a significant fraction of entrained dark matter are Coulomb-expelled to relativistic velocities in polar jets that initiate near the event horizon of a trace-charged supermassive black hole. Extrasolar cosmic rays generated by these and from similar speed jets from accreting charged black holes would be strongly proton-dominated, as observed. The original trace charge imbalances could have originated during the Big Bang.
The Local Universe is the most detail studied part of the observable region of space with the radius R about 100 Mpc. There are two empirical fundamental cosmological laws directly established from observations in the Local Universe independently from cosmological theory: first, the Hubble-Humason-Sandage linear redshift-distance law and second, Carpenter- Karachentsev-deVaucouleurs density-radius power-law. Review of modern state of these empirical laws and their cosmological significance is given. Possible theoretical interpretations of the surprising coexistence of both laws at the spatial scales from 1 Mpc to 100 Mpc are discussed. Comparison of the standard space-expansion explanation of the cosmological redshift with possible global gravitational redshift model is given
Objects falling into an overdensity appear larger on its near side and smaller on its far side than other objects at the same redshift. This produces a dipolar pattern of magnification, primarily as a consequence of the Doppler effect. At low redshift this Doppler magnification completely dominates the usual integrated gravitational lensing contribution to the lensing magnification. We show that one can optimally observe this pattern by extracting the dipole in the cross-correlation of number counts and galaxy sizes. This dipole allows us to almost completely remove the contribution from gravitational lensing up to redshift 0.5, and even at high redshift z~1 the dipole picks up the Doppler magnification predominantly. Doppler magnification should be easily detectable in current and upcoming optical and radio surveys; by forecasting for telescopes such as the SKA, we show that this technique is competitive with using peculiar velocities via redshift-space distortions to constrain dark energy. It produces similar yet complementary constraints on the cosmological model to those found using measurements of the cosmic shear.
The gravitational lens SDSS J1148+1930, also known as the Cosmic Horseshoe, is one of the biggest and of the most detailed Einstein rings ever observed. We use the forward reconstruction method implemented in the lens fitting code Lensed to investigate with great detail the properties of the lens and of the background source. We model the lens with different mass distributions, focusing in particular on the determination of the slope of the dark matter component. The inherent degeneracy between the lens slope and the source size can be broken when we can isolate separate components of each lensed image, as in this case. For an elliptical power law model, $\kappa(r) \sim r^{-t}$, the results favour a flatter-than-isothermal slope with a maximum-likelihood value t = 0.08. Instead, when we consider the contribution of the baryonic matter separately, the maximum-likelihood value of the slope of the dark matter component is t = 0.31 or t = 0.44, depending on the assumed Initial Mass Function. We discuss the origin of this result by analysing in detail how the images and the sources change when the slope t changes. We also demonstrate that these slope values at the Einstein radius are not inconsistent with recent forecast from the theory of structure formation in the LambdaCDM model.
We study the impact of instrumental systematics on the variance, skewness, and kurtosis of redshifted 21 cm intensity fluctuation observations from the Epoch of Reionization. We simulate realistic 21 cm observations based on the Murchison Widefield Array (MWA) Phase I reionization experiment, using the array's point spread function (PSF) and antenna beam patterns, full-sky 21 cm models, and the FHD imaging pipeline. We measure the observed redshift evolution of pixel probability density functions (PDF) and one-point statistics from the simulated maps, comparing them to the measurements derived from simpler simulations that represent the instrument PSFs with Gaussian kernels. We find that both methods yield statistics with similar trends with greater than 80% correlation. We perform additional simulations based on the Hydrogen Epoch of Reionization Array (HERA), using Gaussian kernels as the instrument PSFs, and study the effect of frequency binning on the statistics. We find that PSF smoothing and sampling variance from measuring the statistics over limited field of view dilute intrinsic features and add fluctuations to the statistics but reveal new detectable features. Observed kurtosis will increase when a few extremely high or low temperature regions are present in the maps. Frequency binning reduces the thermal uncertainty but can also blur regions along the frequency dimension, resulting in kurtosis peaks that only appear in statistics derived from maps of certain frequency bins. We further find that the kurtosis peaks will reach their maxima when the angular resolution of the PSFs match the size scale of the extreme regions that produce the peaks. The HERA array should be capable of charting the evolution of the observed skewness and kurtosis of the 21 cm fluctuations with high sensitivity while the MWA Phase I will likely be capable of detecting the peak in variance.
Semi-analytic models of galaxy formation are powerful tools to study the evolution of galaxy population in a cosmological context. However, most models over-predict the number of low-mass galaxies at high redshifts and the color of model galaxies are not right in the sense that low-mass satellite galaxies are too red and centrals are too blue. The recent version of the L-Galaxies model by Henriques et al.(H15) is a step forward to solve these problems by reproducing the evolution of stellar mass function and the overall fraction of red galaxies. In this paper we compare the two model predictions of L-Galaxies (the other is Guo et al. , G13) to the SDSS data in detail. We find that in the H15 model the red fraction of central galaxies now agrees with the data due to their implementation of strong AGN feedback, but the stellar mass of centrals in massive haloes is now slightly lower than the data. For satellite galaxies, the red fraction of low-mass galaxies ($\log M_{*}/M_{\odot} < 10$) also agrees with the data, but the color of massive satellites ($10 < \log M_{*}/M_{\odot} < 11$) is slightly bluer. The correct color of centrals and bluer color of massive satellites indicate that the quenching in massive satellites are not strong enough. We also find that there are too much red spirals and less bulge-dominated galaxies in both H15 and G13 models. Our results suggest that additional mechanisms, such as more minor merger or disk instability, are needed to slightly increase the stellar mass of central galaxy in massive galaxies, mainly in the bulge component, and the bulge dominated galaxy will be quenched or then be quenched by any other mechanisms.
We propose a new class of spontaneous baryogenesis models that does not produce baryon isocurvature perturbations. The baryon chemical potential in these models is independent of the field value of the baryon-generating scalar, hence the scalar field fluctuations are blocked from propagating into the baryon isocurvature. We demonstrate this mechanism in simple examples where spontaneous baryogenesis is driven by a non-canonical scalar field. The suppression of the baryon isocurvature allows spontaneous baryogenesis to be compatible even with high-scale inflation.
We consider the prescription dependence of the Higgs effective potential under the presence of general non-minimal couplings. We evaluate the fermion loop correction to the effective action in a simplified Higgs-Yukawa model whose path integral measure takes simple form either in the Jordan or Einstein frame. The resultant effective action becomes identical in both cases when we properly take into account the quartically divergent term coming from the change of measure. Working in the counter-term formalism, we clarify that the difference between the prescriptions I and II comes from the counter term to cancel the logarithmic divergence. This difference can be absorbed into the choice of tree-level potential from the infinitely many possibilities, including all the higher-dimensional terms. We also present another mechanism to obtain a flat potential by freezing the running of the effective quartic coupling for large field values, using the non-minimal coupling in the gauge kinetic function.
We provide a novel, unifying physical interpretation on the origin, the average shape, the scatter, and the cosmic evolution for the main sequences of starforming galaxies and active galactic nuclei at high redshift z $\gtrsim$ 1. We achieve this goal in a model-independent way by exploiting: (i) the redshift-dependent SFR functions based on the latest UV/far-IR data from HST/Herschel, and re- lated statistics of strong gravitationally lensed sources; (ii) deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and AGN bolometric luminosity functions at different redshifts via the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data are consistently interpreted in terms of an in situ coevolution scenario for star formation and black hole accretion, envisaging these as local, time coordinated processes.
We present a quantitative measurement of the amount of clustering present in the inner $\sim30$ kpc of the stellar halo of the Andromeda galaxy (M31). For this we analyse the angular positions and radial velocities of the carefully selected Planetary Nebulae (PNe) in the M31 stellar halo. We study the cumulative distribution of pair-wise distances in angular position and line of sight velocity space, and find that the M31 stellar halo contains substantially more stars in the form of close pairs as compared to that of a featureless smooth halo. In comparison to a smoothed/scrambled distribution we estimate that the clustering excess in the M31 inner halo is roughly $40\%$ at maximum and on average $\sim 20\%$. Importantly, comparing against the 11 stellar halo models of \cite{2005ApJ...635..931B}, which were simulated within the context of the $\Lambda{\rm CDM}$ cosmological paradigm, we find that the amount of substructures in the M31 stellar halo closely resembles that of a typical $\Lambda{\rm CDM}$ halo.
Links to: arXiv, form interface, find, astro-ph, recent, 1610, contact, help (Access key information)
The large-scale structure of the universe can only be observed directly via luminous tracers of the underlying distribution of dark matter. However, the clustering statistics of tracers are biased and depend on various properties of the tracers themselves, such as their host-halo mass and formation and assembly history. On very large scales, where density fluctuations are within the linear regime, this tracer bias results in a constant offset in the clustering amplitude, which is known as linear bias. Towards smaller non-linear scales, this is no longer the case and tracer bias becomes a complicated function of scale and time. We focus on tracer bias centered on cosmic voids, depressions of the density field that spatially dominate the universe. We consider three different types of tracers: galaxies, galaxy clusters and AGNs, extracted from the hydrodynamical simulation suite Magneticum Pathfinder. In contrast to common clustering statistics that focus on the auto-correlation of tracers, we find that void-tracer cross-correlations are successfully described by a linear bias-relation within voids. The tracer-density profile of voids can thus be related to their matter-density profile by a single number. We show that this number coincides with the linear tracer bias extracted from the large-scale auto-correlation function and expectations from theory, if sufficiently large voids are considered. For smaller voids we observe a shift towards higher values. This has important consequences on cosmological parameter inference from large-scale structure, as the problem of unknown tracer bias is alleviated up to a constant number. The smallest scales in existing datasets become accessible to simpler models, providing modes of the density field that have been disregarded so far, but may help to further reduce statistical errors and to constrain cosmology on smaller scales.
A novel proposal is presented, which manages to overcome the initial conditions problem of inflation with a plateau. An earlier period of proto-inflation, beginning at Planck scale, accounts for the Universe expansion and arranges the required initial conditions for inflation on the plateu to commence. We show that, if proto-inflation is power-law, it does not suffer from any eternal inflationary stage. A simple model realisation is constructed in the context of $\alpha$-attractors, which can both generate the inflationary plateau and the exponential slopes around it, necessary for the two inflation stages. Our mechanism allows to assume chaotic initial conditions at the Planck scale for proto-inflation, it is generic and it is shown to work without fine-tunings.
The most common statistic used to analyze large-scale structure surveys is the correlation function, or power spectrum. Here, we show how `slicing' the correlation function on local density brings sensitivity to interesting non-Gaussian features in the large-scale structure, such as the expansion or contraction of baryon acoustic oscillations (BAO) according to the local density. The sliced correlation function measures the large-scale flows that smear out the BAO, instead of just correcting them as reconstruction algorithms do. Thus, we expect the sliced correlation function to be useful in constraining the growth factor, and modified gravity theories that involve the local density. We find that the full run of the BAO peak location with density is best revealed when slicing on a $\sim$40 Mpc/$h$ filtered density. But slicing on a $\sim100$ Mpc/$h$ filtered density may be most useful in distinguishing between underdense and overdense regions, whose BAO peaks are shifted by a substantial $\sim$5 Mpc/$h$ at $z=0$. We also introduce `curtain plots' showing how local densities drive particle motions toward or away from each other over the course of an $N$-body simulation.
We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.
It is generally expected that heavy fields are present during inflation, which can leave their imprint in late-time cosmological observables. The main signature of these fields is a small amount of distinctly shaped non-Gaussianity, which if detected, would provide a wealth of information about the particle spectrum of the inflationary Universe. Here we investigate to what extent these signatures can be detected or constrained using futuristic 21-cm surveys. We construct model-independent templates that extract the squeezed-limit behavior of the bispectrum, and examine their overlap with standard inflationary shapes and secondary non-Gaussianities. We then use these templates to forecast detection thresholds for different masses and couplings using a 3D reconstruction of modes during the dark ages ($z\sim 30-100$). We consider interactions of several broad classes of models and quantify their detectability as a function of the baseline of a dark ages interferometer. Our analysis shows that there exists the tantalizing possibility of discovering new particles with different masses and interactions with future 21-cm surveys.
According to the holographic principle, the maximum amount of information stored in a region of space scales as the area of its two-dimensional surface, like a hologram. We show that the holographic principle can be understood heuristically as originated from quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant $\Lambda$ of the observed magnitude, in agreement with the result obtained for the present and recent cosmic eras, by using unimodular gravity and causal-set theory. By generalizing the concept of entropic gravity, we find a critical acceleration parameter related to $\Lambda$ in galactic dynamics, and we construct a phenomenological model of dark matter which we call "modified dark matter" (MDM). We provide successful observational tests of MDM at both the galactic and cluster scales. We also discuss the possibility that the quanta of both dark energy and dark matter obey the quantum Boltzmann statistics or infinite statistics as described by a curious average of the bosonic and fermionic algebras.
We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter mass region is further restricted to a narrow window between $54-62.2$ GeV in both cases, and it is excluded up to 660 GeV and 2800 GeV for the real and complex scalar, respectively.
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) have a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. These results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.
In this work we derive a scenario where the early Universe consists of radiation and the Bose-Einstein condensate. We have included in our analysis the possibility of gravitational self-interaction due to the Bose-Einstein condensate being attractive or repulsive. After presenting the general structure of our model, we proceed to compute the finite-norm wave packet solutions to the Wheeler-DeWitt equation. The behavior of the scale factor is studied by applying the many-worlds interpretation of quantum mechanics. At the quantum level the cosmological model, in both attractive and repulsive cases, is free from the Big Bang singularity.
Links to: arXiv, form interface, find, astro-ph, recent, 1610, contact, help (Access key information)