We demonstrate that, in the context of the $\Lambda$CDM model, it is in principle possible to measure the value of the cosmological constant by tracing, across cosmic time, the evolution of the turnaround radius of cosmic structures. The novelty of the presented method is that it is local, in the sense that it uses the effect of the cosmological constant on the relatively short scales of cosmic structures and not on the dynamics of the Universe at its largest scales. In this way, it can provide an important consistency check for the standard cosmological model and can give signs of new physics, beyond $\Lambda$CDM.
We present a Bayesian approach to combine $Planck$ data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters ($0.056<z<1.24$, $kT> 3$ keV) observed with $Chandra$. We exploited the high-level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependency of the gas fraction. This cosmological test, in combination with $Planck$+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-$w$ model, we have $w=-1.010\pm0.030$ and $\Omega_m=0.311\pm0.014$, while for a time-evolving equation of state of dark energy $w(z)$ we have $\Omega_m=0.308\pm 0.017$, $w_0=-0.993\pm0.046$ and $w_a=-0.123\pm0.400$. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favor the cosmological constant with $w\equiv-1$, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.
The anisotropy study cosmic microwave background (CMB) is one of the main observational tools for modern cosmology. However, alongside the study of the thermal fluctuations of the CMB are other equally important information, which is known as the polarization of the CMB. The inflationary model predicts that the CMB is linearly polarized and the physical mechanism of this polarization is studied from the Thompson scattering, the dominant process on the surface of last scattering. There are basically two types of polarization called E and B modes, the first produced by scalar perturbations and the latter by tensor perturbations, such as those due to gravitational waves in the primordial universe. So if we are able to measure these types of polarization will have an entry to the study of the inflationary epoch. This paper presents the main physical mechanisms that support theoretically the polarization of the CMB due to primordial gravitational waves (PGW) and the revision of the main observables, grouped in so-called Stokes parameters (Q, U, I), Which brings us information to achieve the contrast the angular power spectrum produced by the polarization of the CMB, which shows to be in excellent agreement with the $\Lambda$CDM model.
Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic MHD turbulence shows a very different statistical behaviour from the isotropic (standard) one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are able to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropy can also drive kinetic instabilities which grow faster near the ions kinetic scales. Observations from the solar wind suggest that these micro- instabilities scatter the ions, thus relaxing the anisotropy. This work aims to compare this relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the scattering rate provided by the parallel firehose, mirror, and ion-cyclotron instabilities, for a set of plasma parameters resulting from anisotropic MHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the marginal instabilities thresholds. Previous work demonstrated that if the anisotropy is constrained by these thresholds, then the turbulence statistics and magnetic field amplification in the ICM converges to the collisional MHD results.
In the last decade, the study of the overall shape of the universe, called Cosmic Topology, has become testable by astronomical observations, especially the data from the Cosmic Microwave Background (hereafter CMB) obtained by WMAP and Planck telescopes. Cosmic Topology involves both global topological features and more local geometrical properties such as curvature. It deals with questions such as whether space is finite or infinite, simply-connected or multi-connected, and smaller or greater than its observable counterpart. A striking feature of some relativistic, multi-connected small universe models is to create multiples images of faraway cosmic sources. While the last CMB (Planck) data fit well the simplest model of a zero-curvature, infinite space model, they remain consistent with more complex shapes such as the spherical Poincare Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. We review the theoretical and observational status of the field.
We construct forecasts for cosmological parameter constraints from weak gravitational lensing surveys involving the Square Kilometre Array (SKA). Considering matter content, dark energy and modified gravity parameters, we show that the first phase of the SKA (SKA1) can be competitive with other Stage III experiments such as the Dark Energy Survey (DES) and that the full SKA (SKA2) can potentially form tighter constraints than Stage IV optical weak lensing experiments, such as those that will be conducted with LSST or Euclid-like facilities. Using weak lensing alone, going from SKA1 to SKA2 represents improvements by factors of $\sim10$ in matter, $\sim8$ in dark energy and $\sim5$ in modified gravity parameters. We also show, for the first time, the powerful result that comparably tight constraints (within $\sim5\%$) for both Stage III and Stage IV experiments, can be gained from cross-correlating shear maps between the optical and radio wavebands, a process which will also eliminate a number of potential sources of systematic errors which can otherwise greatly limit the utility of weak lensing cosmology.
We construct a pipeline for simulating weak lensing cosmology surveys with the Square Kilometre Array (SKA), taking as inputs telescope sensitivity curves; correlated source flux, size and redshift distributions; a simple ionospheric model; source redshift and ellipticity measurement errors. We then use this simulation pipeline to optimise a 2-year weak lensing survey performed with the first deployment of the SKA (SKA1). Our assessments are based on the total signal-to-noise of the recovered shear power spectra, a metric that we find to correlate very well with a standard dark energy figure of merit. We first consider the choice of frequency band, trading off increases in number counts at lower frequencies against poorer resolution; our analysis strongly prefers the higher frequency Band 2 (950-1760 MHz) channel of the SKA-MID telescope to the lower frequency Band 1 (350-1050 MHz). Best results would be obtained by allowing the centre of Band 2 to shift towards lower frequency, around 1.1 GHz. We then move on to consider survey size, finding that an area of 5,000 square degrees is optimal for most SKA1 instrumental configurations. Finally, we forecast the performance of a weak lensing survey with the second deployment of the SKA. The increased survey size (3$\pi$ steradian) and sensitivity improves both the signal-to-noise and the dark energy metrics by two orders of magnitude.
We study the inflationary quantum-to-classical transition for the adiabatic curvature perturbation $\zeta$ due to quantum decoherence, focusing on the role played by squeezed-limit mode couplings. We evolve the quantum state $\Psi$ in the Schr\"odinger picture, for a generic cubic coupling to additional environment degrees of freedom. Focusing on the case of minimal gravitational interactions, we find the evolution of the reduced density matrix for a given long-wavelength fluctuation by tracing out the other (mostly shorterwavelength) modes of $\zeta$ as an environment. We show that inflation produces phase oscillations in the wave functional $\Psi[\zeta(\mathbf{x})]$, which suppress off-diagonal components of the reduced density matrix, leaving a diagonal mixture of different classical configurations. Gravitational nonlinearities thus provide a minimal mechanism for generating classical stochastic perturbations from inflation. We identify the time when decoherence occurs, which is delayed after horizon crossing due to the weak coupling, and find that Hubble-scale modes act as the decohering environment. We also comment on the observational relevance of decoherence and its relation to the squeezing of the quantum state.
We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, $\lambda \gtrsim 1/(\alpha \mu_5)$, the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential $\mu_{5}$ parametrizes the chiral asymmetry and $\alpha$ is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale $\lambda$, finding $\delta \mathcal{H} \sim \lambda T$ and $\tau \sim \alpha \lambda^3 T^2$ for a relativistic plasma at temperature $T$. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time $t \sim T^3/(\alpha^5 \mu_5^4)$ until it reaches an equilibrium value $\mathcal{H} \sim \mu_{5} T^2 / \alpha$, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, $\mu_5 < T/\alpha$, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which $t \sim T / (\alpha^3 \mu_{5}^2)$. This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including ${\rm U}(1)$ gauge interactions, such as asymmetric dark matter models.
We investigate the nonlocal gravity theory by deriving nonlocal equations of motion using the traditional variation principle in a homogeneous background. We focus on a class of models with a linear nonlocal modification term in the action. It is found that the resulting equations of motion contain the advanced Green's function, implying that there is an acausality problem. As a consequence, a divergence arises in the solutions due to contributions from the future infinity unless the Universe will go back to the radiation dominated era or become the Minkowski spacetime in the future. We also discuss the relation between the original nonlocal equations and its biscalar-tensor representation and identify the auxiliary fields with the corresponding original nonlocal terms. Finally, we show that the acusality problem cannot be avoided by any function of nonlocal terms in the action.
An ultralight axion around $10^{-23}$ eV is known as a viable dark matter candidate. A distinguished feature of such a dark matter is the oscillating pressure which produces the oscillation of the gravitational potential with frequency in the nano Hz range. Recently, Khmelnitsky and Rubakov pointed out that this time dependent potential induces the pulse arrival residual and could be observed by the SKA pulsar timing array experiment. In this paper, we study the detectability of the oscillating pressure of the axion in the framework of $f(R)$ theory, and show that the amplitude of the gravitational potential can be enhanced or suppressed compared to that in Einstein's theory depending on the parameters of $f(R)$ model and mass of the axion. In particular, we investigate the Hu-Sawicki model and find the condition that the Hu-Sawicki model is excluded.
A cosmology of Poincare gauge theory is developed, and its analytic solution is obtained. The calculation results agree with observational data and can be compared with the $\Lambda $CDM model. The cosmological constant puzzle, the coincidence and fine tuning problem are relieved naturally at the same time. The cosmological constant turns out to be the intrinsic torsion and curvature of the vacuum universe and is derived from the theory naturally rather than added artificially. The dark energy originates from geometry, includes the cosmological constant but differs from it. The analytic expression of the state equations of the dark energy and the density parameters of the matter and the geometric dark energy are derived. The full equations of linear cosmological perturbations and the solutions are obtained.
In the flat Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) geometry, we consider the expansion of the universe powered by the gravitationally induced `adiabatic' matter creation. To demonstrate how matter creation works well with the expanding universe, we have considered a general creation rate and analyzed this rate in the framework of dynamical analysis. The dynamical analysis hints the presence of a non-singular universe (without the big bang singularity) with two successive accelerated phases, one at the very early phase of the universe (i.e., inflation), and the other one describes the current accelerating universe, where this early, late accelerated phases are associated with an unstable fixed point (i.e., repeller) and a stable fixed (attractor) points, respectively. We have described this phenomena by analytic solutions of the Hubble function and the scale factor of the FLRW universe. Using Jacobi Last multiplier method, we have found a Lagrangian for this matter creation rate describing this scenario of the universe. To match with our early physics results, we introduce an equivalent dynamics driven by a single scalar field and discussed the associated observable parameters compared them with the latest PLANCK data sets. Then introducing the teleparallel modified gravity, we have established an equivalent gravitational theory in the framework of matter creation. Further, introducing an equivalence between matter creation and decaying vacuum, we have found an equivalent decaying vacuum model. Finally, we have discussed a model independent test, cosmography, for the present matter creation model.
Measurements of the luminosity of type Ia supernovae vs. redshift provided the original evidence for the accelerating expansion of the Universe and the existence of dark energy. Despite substantial improvements in survey methodology, systematic uncertainty in flux calibration dominates the error budget for this technique, exceeding both statistics and other systematic uncertainties. Consequently, any further collection of type Ia supernova data will fail to refine the constraints on the nature of dark energy unless we also improve the state of the art in astronomical flux calibration to the order of 1%. We describe how these systematic errors arise from calibration of instrumental sensitivity, atmospheric transmission, and Galactic extinction, and discuss ongoing efforts to meet the 1% precision challenge using white dwarf stars as celestial standards, exquisitely calibrated detectors as fundamental metrologic standards, and real-time atmospheric monitoring.
We present a generalization of the effective field theory (EFT) formalism for dark energy and modified gravity models to include operators with higher order spatial derivatives. This allows the extension of the EFT framework to a wider class of gravity theories such as Horava gravity. We present the corresponding extended action, both in the EFT and the Arnowitt-Deser-Misner (ADM) formalism, and proceed to work out a convenient mapping between the two, providing a self contained and general procedure to translate a given model of gravity into the EFT language at the basis of the Einstein-Boltzmann solver EFTCAMB. Putting this mapping at work, we illustrate, for several interesting models of dark energy and modified gravity, how to express them in the ADM notation and then map them into the EFT formalism. We also provide for the first time, the full mapping of GLPV models into the EFT framework. We next perform a thorough analysis of the physical stability of the generalized EFT action, in absence of matter components. We work out viability conditions that correspond to the absence of ghosts and modes that propagate with a negative speed of sound in the scalar and tensor sector, as well as the absence of tachyonic modes in the scalar sector. Finally, we extend and generalize the phenomenological basis in terms of $\alpha$-functions introduced to parametrize Horndeski models, to cover all theories with higher order spatial derivatives included in our extended action. We elaborate on the impact of the additional functions on physical quantities, such as the kinetic term and the speeds of propagation for scalar and tensor modes.
Links to: arXiv, form interface, find, astro-ph, recent, 1601, contact, help (Access key information)
We explore the origin of flux ratio anomaly in quadruple lens systems. Using a semi-analytic method based on $N$-body simulations, we estimate the effect of possible magnification perturbation caused by subhaloes with a mass scale of <~ $ 10^9\,h^{-1} \textrm{M}_\odot$ in lensing galaxy haloes. Taking into account astrometric shifts by perturbers, we find that the expected change to the flux ratios per a multiply lensed image is just a few percent and the mean of the expected convergence perturbation at the effective Einstein radius of the lensing galaxy halo is $\langle \delta \kappa_{\textrm{sub}} \rangle = 0.003$, corresponding to the mean of the ratio of a projected dark matter mass fraction in subhaloes $\langle f_{\textrm{sub}} \rangle = 0.006$ for observed 11 quadruple lens systems. In contrast, the expected change to the flux ratio caused by line-of-sight structures in intergalactic spaces is typically ~10 percent and the mean of the convergence perturbation is $\langle |\delta \kappa_{\textrm{los}}| \rangle = 0.008$, corresponding to $\langle f_{\textrm{los}} \rangle = 0.017$. The contribution of magnification perturbation caused by subhaloes is $\sim 40$ percent of the total at a source redshift $z_\textrm{S}= 0.7$ and decreases monotonically in $z_\textrm{S}$ to $\sim 20$ percent at $z_\textrm{S}= 3.6$. Assuming statistical isotropy, the convergence perturbation estimated from the 11 systems has a positive correlation with the source redshift $z_\textrm{S}$, which is much stronger than that with the lens redshift $z_{\textrm{L}}$. This feature also supports the idea that the flux ratio anomaly is caused mainly by line-of-sight structures rather than subhaloes. We also discuss about a possible imprint of line-of-sight structures in demagnification of minimum images due to locally underdense structures in the line of sight.
The usual assumption in direct dark matter searches is to only consider the spin-dependent or spin-independent scattering of dark matter particles. However, especially in models with light dark matter particles $\mathcal{O}(\mathrm{GeV/c^2})$, operators which carry additional powers of the momentum transfer $q^2$ can become dominant. One such model based on asymmetric dark matter has been invoked to overcome discrepancies in helioseismology and an indication was found for a particle with preferred mass of 3 $\mathrm{GeV/c^2}$ and cross section of $10^{-37} \mathrm{cm^2}$. Recent data from the CRESST-II experiment, which uses cryogenic detectors based on $\mathrm{CaWO_4}$ to search for nuclear recoils induced by dark matter particles, are used to constrain these momentum-dependent models. The low energy threshold of 307 eV for nuclear recoils of the detector used, allows us to rule out the proposed best fit value above.
We present an extension of the ROMA map-making algorithm for the generation
of optimal CMB temperature and polarization maps. The new code takes into
account a possible cross-correlated noise component among the detectors of a
CMB experiment. A promising application is the forthcoming LSPE balloon
experiment, devoted to the observation of CMB polarization at large angular
scales.
To check the reliability of the code, we tested the extended ROMA algorithm
on real and simulated data of the BOOMERanG(2003) mission, in order to compare
our conclusions with already established results. Hence, we performed a
preliminary forecast of the LSPE/SWIPE instrument.
We found that considering the cross-correlation among the detectors results
in a more realistic estimate of the angular power spectra. In particular, the
extended ROMA map-making algorithm provides a strong reduction of the spectra
error bars. We expect that this improvement will be crucial in constraining the
B component of CMB polarization at the largest scales.
The ratio of baryonic to dark matter densities is assumed to have remained constant throughout the formation of structure. With this, simulations show that the fraction f_gas(z) of baryonic mass to total mass in galaxy clusters should be nearly constant with redshift z. However, the measurement of these quantities depends on the angular distance to the source, which evolves with z according to the assumed background cosmology. An accurate determination of f_gas(z) for a large sample of hot (kT_e > 5 keV), dynamically relaxed clusters could therefore be used as a probe of the cosmological expansion up to z < 2. The fraction f_gas(z) would remain constant only when the "correct" cosmology is used to fit the data. In this paper, we compare the predicted gas mass fractions for both LCDM and the R_h=ct Universe and test them against the 3 largest cluster samples. We show that R_h=ct is consistent with a constant f_gas in the redshift range z < 2, as was previously shown for the reference LCDM model (with parameter values H_0=70 km/s/Mpc, Omega_m=0.3 and w_de=-1). Unlike LCDM, however, the R_h=ct Universe has no free parameters to optimize in fitting the data. Model selection tools, such as the Akaike Information Criterion (AIC) and the Bayes Information Criterion (BIC), therefore tend to favour R_h=ct over LCDM. For example, the BIC favours R_h=ct with a likelihood of ~95% versus ~5% for LCDM.
We found the alignement of elongated clusters of BM type I and III (the excess of small values of the \Delta\theta angles is observed), having range till about 60Mpc/h. The first one is probably connected with the origin of supergiant galaxy, while the second one with environmental effects in clusters, originated on the long filament or plane.
From the Voigt profile fitting analysis of 183 intervening CIV systems at 1.7 < z < 3.3 in 23 high-quality UVES/VLT and HIRES/Keck QSO spectra, we find that a majority of CIV systems (~75%) display a well-characterised scaling relation between integrated column densities of HI and CIV with a negligible redshift evolution, when column densities of all the HI and CIV components are integrated within a given (-150, +150) km/sec range centred at the CIV flux minimum. The integrated CIV column density N(CIV, sys) increases with N(HI, sys) at log N(HI, sys) = 14.0--15.5 and log N(CIV, sys) = 11.8--14.0, then becomes almost independent of N(HI, sys) at log N(HI, sys) > 16, with a large scatter: at log N(HI, sys) = 14--22, log N(CIV, sys) = C1 / (log(NHI, sys) + C2) + C3, with C1 = -1.90+0.55, C2 = -14.11+0.19 and C3 = 14.76+0.17, respectively. The steep (flat) part is dominated by SiIV-free (SiIV-enriched) CIV systems. Extrapolating the N(HI, sys)-N(CIV, sys) relation implies that most absorbers with log N(HI) < 14 are virtually CIV-free. The N(HI, sys)-N(CIV, sys) relation does not hold for individual components, clumps or the integration velocity range less than +-100 km/sec. It is expected if the line-of-sight extent of CIV is smaller than HI and N(CIV, sys) decreases more rapidly than N(HI, sys) at the larger impact parameter, regardless of the location of the HI+CIV gas in the IGM filaments or in the intervening galactic halos.
In this paper we investigate how to realize various quite well known cosmological bouncing models in the context of the recently developed unimodular $F(R)$ gravity. Particularly, we shall study the matter bounce scenario, the singular bounce, the superbounce and a symmetric bounce scenario. We present the behavior of the Hubble radius for each of the bouncing models we shall take into account and we investigate which era of the bouncing model is responsible for the cosmological perturbations. As we shall demonstrate, the various bouncing models do not behave in the same way, so the cosmological perturbations for each model may correspond to a different era, in comparison to other models. After the study of the Hubble horizon evolution, we investigate how to realize each model by a unimodular $F(R)$ gravity. Since the unimodular $F(R)$ gravity formalism makes necessary the introduction of another time parameter, the unimodular time variable $\tau$, the reconstruction procedure is followed first by assuming that the bouncing behavior occurs in the cosmic time $t$-variable. In addition, we also assume that the bounce occurs in the unimodular $\tau$-variable, in which case we apply the reconstruction formalism of the unimodular $F(R)$ gravity, in order to generate the bounces. Note that we consider the cosmic time variable as being the physical variable, but we present result in terms of the other variable which is consistent with the unimodular constraint, for comparison. Finally, we demonstrate how it is possible to solve a cosmological constant problem in the context of unimodular $F(R)$ gravity.
In this paper we study the causes of the reported mass-dependence of the slope of SFR-M* relation, the so-called "Main Sequence" of star-forming galaxies, and discuss its implication on the physical processes that shaped the star formation history of massive galaxies over cosmic time. We make use of the near-infrared high-resolution imaging from the Hubble Space Telescope in the CANDELS fields to perform a careful bulge-to-disk decomposition of distant galaxies and measure for the first time the slope of the SFR-Mdisk relation at z=1. We find that this relation follows very closely the shape of the nominal SFR-M* correlation, still with a pronounced flattening at the high-mass end. This is clearly excluding, at least at z=1, the secular growth of quiescent stellar bulges in star-forming galaxies as the main driver for the change of slope of the Main Sequence. Then, by stacking the Herschel data available in the CANDELS field, we estimate the gas mass (Mgas) and the star formation efficiency (SFE=SFR/Mgas) at different positions on the SFR-M* relation. We find that the relatively low SFRs observed in massive galaxies (M* > 5x10^10 Msun) are caused by a decreased star formation efficiency, by up to a factor of 3 as compared to lower stellar mass galaxies, and not by a reduced gas content. We argue that this stellar-mass-dependent SFE can explain the varying slope of the Main Sequence since z=1.5, hence over 70% of the Hubble time. The drop of SFE occurs at lower masses in the local Universe (M* > 2x10^10 Msun) and is not present at z=2. Altogether this provides evidence for a slow downfall of the star formation efficiency in massive Main Sequence galaxies. The resulting loss of star formation is found to be rising starting from z=2 to reach a level comparable to the mass growth of the quiescent population by z=1. We finally discuss the possible physical origin of this phenomenon.
Gamma-ray bursts (GRBs) are short and intense flashes at the cosmological distances, which are the most luminous explosions in the Universe. The high luminosities of GRBs make them detectable out to the edge of the visible universe. So, they are unique tools to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal evolution of the Universe. First, they can be used to constrain the history of cosmic acceleration and the evolution of dark energy in a redshift range hardly achievable by other cosmological probes. Second, long GRBs are believed to be formed by collapse of massive stars. So they can be used to derive the high-redshift star formation rate, which can not be probed by current observations. Moreover, the use of GRBs as cosmological tools could unveil the reionization history and metal evolution of the Universe, the intergalactic medium (IGM) properties and the nature of first stars in the early universe. But beyond that, the GRB high-energy photons can be applied to constrain Lorentz invariance violation (LIV) and to test Einstein's Equivalence Principle (EEP). In this paper, we review the progress on the GRB cosmology and fundamental physics probed by GRBs.
In this work we consider a singlet scalar propagating in a flat large extra dimension. The first Kaluza-Klein mode associated to this singlet scalar will be a viable dark matter candidate. The tower of new particles enriches the calculation of the relic density due effect of coannihilation. For large mass splitting, the model converges to the predictions of the singlet dark matter model. For nearly degenerate mass spectrum, coannihilations increase the cross sections used for direct and indirect dark matter searches. We investigate the impact of the Kaluza-Klein tower associated to singlet scalar for indirect and direct detection of dark matter.
We present the distributions of geometrical covering factors of active galactic nuclei (AGNs) dusty tori (f2) using an X-ray selected complete sample of 227 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The AGN have z from 0.05 to 1.7, 2-10 keV luminosities between 10^42 and 10^46 erg/s and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS and the Wide-field Infrared Survey Explorer in a previous work we determined the rest-frame 1-20 microns continuum emission from the torus which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGN are intrinsically different, with type 2 AGN having on average tori with higher f2 than type 1 AGN. Nevertheless, ~20 per cent of type 1 AGN have tori with large covering factors while ~23-28 per cent of type 2 AGN have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGN the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction an X-ray absorption takes place in material that shares an overall geometry and most likely belongs to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ~1-20 microns nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.
Aims: Recently, cosmological fast radio bursts (FRBs) have been used to provide the most stringent limit up to date on Einstein's Equivalence Principle (EEP). We study how to further test EEP with FRBs. Methods: Future systematic radio surveys will certainly find abundant FRBs at cosmological distances and some of them will inevitably be located behind clusters of galaxies. Here we suggest to use those FRBs to further test EEP. Results: We find that the robustness and accuracy of testing EEP can be improved further by orders of magnitude with these FRBs. The same methodology can also be applied to any other types of fast and bright transients at cosmological distances.
The accelerated expansion of the universe is a rather established fact in cosmology and many different models have been proposed as a viable explanation. Many of these models are based on the standard general relativistic framework of non-interacting fluids or more recently of coupled (interacting) dark energy models, where dark energy (the scalar field) is coupled to the dark matter component giving rise to a fifth-force. An interesting alternative is to couple the scalar field directly to the gravity sector via the Ricci scalar. These models are dubbed non-minimally coupled models and give rise to a time-dependent gravitational constant. In this work we study few models falling into this category and describe how observables depend on the strength of the coupling. We extend recent work on the subject by taking into account also the effects of the perturbations of the scalar field and showing their relative importance on the evolution of the mass function. By working in the framework of the spherical collapse model, we show that perturbations of the scalar field have a limited impact on the growth factor (for small coupling constant) and on the mass function with respect to the case where perturbations are neglected.
Determining the most general, consistent scalar tensor theory of gravity is important for building models of inflation and dark energy. In this work we investigate the number of degrees of freedom present in the theory of beyond Horndeski. We discuss how to construct the theory from the extrinsic curvature of the constant scalar field hypersurface, and find a simple expression for the action which guarantees the existence of the primary constraint necessary to avoid the Ostrogradsky instability. Our analysis is completely gauge-invariant. However we confirm that, mixing together beyond Horndeski with a different order of Horndeski, obstructs the construction of this primary constraint. Instead, when the mixing is between actions of the same order, the theory can be mapped to Horndeski through a generalised disformal transformation. This mapping however is impossible with beyond Horndeski alone, since we find that the theory is invariant under such a transformation. The picture that emerges is that beyond Horndeski is a healthy but isolated theory: combined with Horndeski, it either propagates a ghost mode, or simply becomes Horndeski.
Links to: arXiv, form interface, find, astro-ph, recent, 1601, contact, help (Access key information)
We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the EAGLE and APOSTLE projects. We identify Milky Way analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best fit Maxwellian distribution (with peak speed of 223 - 289 km/s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved.
We modify Einstein General Relativity by adding non-dynamical scalar fields to account simultaneously for both dark matter and dark energy. The dark energy in this case can be distributed in-homogeneously even within horizon scales. Its inhomogeneities can contribute to the late time integrated Sachs-Wolfe effect, possibly removing some of the low multipole anomalies in the temperature fluctuations of the CMB spectrum. The presence of the inhomogeneous dark matter also influences structure formation in the universe.
Morphology is often used to infer the state of relaxation of galaxy clusters. The regularity, symmetry, and degree to which a cluster is centrally concentrated inform quantitative measures of cluster morphology. The Cluster Lensing and Supernova survey with Hubble Space Telescope (CLASH) used weak and strong lensing to measure the distribution of matter within a sample of 25 clusters, 20 of which were deemed to be relaxed based on their X-ray morphology and alignment of the X-ray emission with the BCG. Towards a quantitative characterization of this important sample of clusters, we present uniformly estimated X-ray morphological statistics for all 25 CLASH clusters. We compare X-ray morphologies of CLASH clusters with those identically measured for a large sample of simulated clusters from the MUSIC-2 simulations, selected by mass. We confirm a threshold in X-ray surface brightness concentration of C>0.4 for cool-core clusters, where C is the ratio of X-ray emission inside 100 kpc/h70 compared to inside 500 kpc/h70. We report and compare morphologies of these clusters inferred from Sunyaev-Zeldovich Effect (SZE) maps of the hot gas and in from projected mass maps based on strong and weak lensing. We find a strong agreement in alignments of the orientation of major axes for the lensing, X-ray, and SZE maps of nearly all of the CLASH clusters at radii of 500 kpc (approximately 0.5R500 for these clusters). We also find a striking alignment of clusters shapes at the 500 kpc scale, as measured with X-ray, SZE, and lensing, with that of the near-infrared stellar light at 10 kpc scales for the 20 "relaxed" clusters. This strong alignment indicates a powerful coupling between the cluster- and galaxy-scale galaxy formation processes.
The Bianchi I metric describes a homogeneous, but anisotropic universe and is commonly used to fit cosmological data. A fit to the angular distribution of 740 supernovae of type Ia with measured redshift and apparent luminosity is presented. It contains an intriguing, yet non-significant signal of a preferred direction in the sky. The Large Synoptic Survey Telescope being built in Chile should measure some 500 000 supernovae within the next 20 years and verify or falsify this signal.
Additional physics beyond standard hydrodynamics is needed to fully model the intracluster medium (ICM); however, as we move to more sophisticated models, it is important to consider the role of magnetic fields and the way the fluid approximation breaks down. This paper represents a first step towards developing a self-consistent model of the ICM by characterizing the statistical properties of magnetic fields in cosmological simulations of galaxy clusters. We find that plasma conditions are largely homogeneous across a range of cluster masses and relaxation states. We also find that the magnetic field length scales are resolution dependent and not based on any particular physical process. Energy transfer mechanisms and scales are also identified, and imply the existence of small scale dynamo action. The scales of the small scale dynamo are resolution limited and driven by numerical resistivity and viscosity.
This paper describes a new publicly available codebase for modelling galaxy formation in a cosmological context, the "Semi-Analytic Galaxy Evolution" model, or SAGE for short. SAGE is a significant update to that used in Croton et al. (2006) and has been rebuilt to be modular and customisable. The model will run on any N-body simulation whose trees are organised in a supported format and contain a minimum set of basic halo properties. In this work we present the baryonic prescriptions implemented in SAGE to describe the formation and evolution of galaxies, and their calibration for three N-body simulations: Millennium, Bolshoi, and GiggleZ. Updated physics include: gas accretion, ejection due to feedback, and reincorporation via the galactic fountain; a new gas cooling--radio mode active galactic nucleus (AGN) heating cycle; AGN feedback in the quasar mode; a new treatment of gas in satellite galaxies; and galaxy mergers, disruption, and the build-up of intra-cluster stars. Throughout, we show the results of a common default parameterization on each simulation, with a focus on the local galaxy population.
The direct collapse black hole (DCBH) scenario describes the isothermal collapse of a pristine gas cloud directly into a massive, M_BH=10^4-10^6 M_sun black hole. In this paper we show that large HI column densities of primordial gas at T~10^4 K with low molecular abundance - which represent key aspects of the DCBH scenario - provide optimal conditions for pumping of the 2p-level of atomic hydrogen by trapped Lyman alpha (Lya) photons. This Lya pumping mechanism gives rise to inverted level population of the 2s_1/2-2p_3/2 transition, and therefore to stimulated fine structure emission at 3.04 cm (rest-frame). We show that simplified models of the DCBH scenario amplify the CMB by up to a factor of 10^5, above which the maser saturates. Hyperfine splitting of the 3-cm transition gives rise to a characteristic broad (FWHM ~ tens of MHz in the observers frame) asymmetric line profile. This signal subtends an angular scale of ~ 1-10 mas, which translates to a flux of ~ 0.3-3 microJy, which is detectable with ultra-deep surveys being planned with SKA1-MID. While challenging, as the signal is visible for a fraction of the collapse time of the cloud, the matching required physical conditions imply that a detection of the redshifted 3-cm emission line would provide direct evidence for the DCBH scenario.
We investigate the properties of star formation-driven outflows by using a large spectroscopic sample of ~160,000 local "normal" star forming galaxies, drawn from the SDSS, spanning a wide range of star formation rates and stellar masses. The galaxy sample is divided into a fine grid of bins in the M_*-SFR parameter space, for each of which we produce a composite spectrum by stacking together the SDSS spectra of the galaxies contained in that bin. We exploit the high signal-to-noise of the stacked spectra to study the emergence of faint features of optical emission lines that may trace galactic outflows and would otherwise be too faint to detect in individual galaxy spectra. We adopt a novel approach that relies on the comparison between the line-of-sight velocity distribution (LoSVD) of the ionised gas (as traced by the [OIII]5007 and Halpha+[NII]6548,6583 emission lines) and the LoSVD of the stars, which are used as a reference tracing virial motions. Significant deviations of the gas kinematics from the stellar kinematics in the high velocity tail of the LoSVDs are interpreted as a signature of outflows. Our results suggest that the incidence of ionised outflows increases with SFR and sSFR. The outflow velocity (v_out) correlates tightly with the SFR for SFR>1 M_Sun/yr, whereas at lower SFRs the dependence of v_out on SFR is nearly flat. The outflow velocity, although with a much larger scatter, increases also with the stellar velocity dispersion, and we infer velocities as high as v_out~(6-8)*sigma_stars. Strikingly, we detect the signature of ionised outflows only in galaxies located above the main sequence (MS) of star forming galaxies in the M_*-SFR diagram, and the incidence of such outflows increases sharply with the offset from the MS. Our complementary analysis of the stellar kinematics reveals the presence of blue asymmetries of a few 10 km/s in the stellar LoSVDs. [abridged]
The spatial and velocity distributions of dark matter particles in the Milky Way Halo affect the signals expected to be observed in searches for dark matter. Results from direct detection experiments are often analyzed assuming a simple isothermal distribution of dark matter, the Standard Halo Model (SHM). Yet there has been skepticism regarding the validity of this simple model due to the complicated gravitational collapse and merger history of actual galaxies. In this paper we compare the SHM to the results of cosmological hydrodynamical simulations of galaxy formation to investigate whether or not the SHM is a good representation of the true WIMP distribution in the analysis of direct detection data. We examine two Milky Way-like galaxies from the MaGICC cosmological simulations (a) with dark matter only and (b) with baryonic physics included. The inclusion of baryons drives the shape of the DM halo to become more spherical and makes the velocity distribution of dark matter particles less anisotropic especially at large heliocentric velocities, thereby making the SHM a better fit. We also note that we do not find a significant disk-like rotating dark matter component in either of the two galaxy halos with baryons that we examine, suggesting that dark disks are not a generic prediction of cosmological hydrodynamical simulations. We conclude that in the Solar neighborhood, the SHM is in fact a good approximation to the true dark matter distribution in these cosmological simulations (with baryons) which are reasonable representations of the Milky Way, and hence can also be used for the purpose of dark matter direct detection calculations.
We investigate a fluid description of inflationary cosmology. It is shown that the three observables of the inflationary universe: the spectral index of the curvature perturbations, the tensor-to-scalar ratio of the density perturbations, and the running of the spectral index, can be compatible with the Planck analysis. In addition, we reconstruct the equation of state (EoS) for a fluid from the spectral index of the curvature perturbations consistent with the Planck results. We explicitly demonstrate that the universe can gracefully exit from inflation in the reconstructed fluid models. Furthermore, we explore the singular inflation for a fluid model.
We review the effective field theory (EFT) approach to gravitational dynamics. We focus on extended objects in long-wavelength backgrounds and gravitational wave emission from spinning binary systems. We conclude with an introduction to EFT methods for the study of cosmological large scale structures.
The neutron star Low-Mass X-ray Binary GS 1826-238 was observed with Suzaku on 2009 October 21, for a total exposure of 103 ksec. Except for the type I bursts, the source intensity was constant to within ~10%. Combining the Suzaku XIS, HXD-PIN and HXD-GSO data, burst-removed persistent emission was detected over the 0.8-100 keV range, at an unabsorbed flux of 2.6e-9 erg/s/cm/cm. Although the implied 0.8-100 keV luminosity, 1.5e37 erg/s (assuming a distance of 7 kpc), is relatively high, the observed hard spectrum confirms that the source was in the hard state. The spectrum was successfully explained with an emission from a soft standard accretion disk partially Comptonized by a hot electron cloud. These results are compared with those from previous studies, including those on the same source by Thompson et al. (2005) and Cocchi et al. (2011), as well as that of Aql X-1 in the hard state obtained with Suzaku (Sakurai et al. 2014).
These are lectures on General Theory of Relativity that were given to students of the Mathematical Faculty of the Higher School of Economics in Moscow.
Links to: arXiv, form interface, find, astro-ph, recent, 1601, contact, help (Access key information)
We examine how the properties of dark matter, parameterised by an equation of state parameter $w$ and two perturbative Generalised Dark Matter (GDM) parameters $c^2_s$ (the sound speed) and $c^2_\text{vis}$ (the viscosity), are constrained by existing cosmological data, particularly the Planck 2015 data release. We find that the GDM parameters are consistent with zero, and are strongly constrained, showing no evidence for extending the dark matter model beyond the Cold Dark Matter (CDM) paradigm. The dark matter equation of state is constrained to be within $-0.000896<w<0.00238$ at the $3\sigma$ level which is several times stronger than constraints found previously using WMAP data. The parameters $c^2_s$ and $c^2_\text{vis}$ are constrained to be less than $3.21\times10^{-6}$ and $6.06\times10^{-6}$ respectively at the $3\sigma$ level. The inclusion of the GDM parameters does significantly affect the error bars on several $\Lambda$CDM parameters, notably the dimensionless dark matter density $\omega_g$ and the derived parameters $\sigma_8$ and $H_0$. This can be partially alleviated with the inclusion of data constraining the expansion history of the universe.
The Lema\'itre-Toman-Bondi (LTB) models have reported to suffer from incompatibility with cosmological observations and fine-tuning of the observer's location. Further analysis of these issues indicates that they could be resolved by models that are compatible with the supernova Ia data, but less inhomogeneous than those that have been presented in the literature so far. We study if such models exist by employing the degrees of freedom of the LTB models in a novel manner. We discovered two scenarios which may meet the expectations, but extensive numerical and analytical investigation showed them inviable. We extended our studies to the $\Lambda$LTB models, which generalizes the LTB models by including a non-zero cosmological constant $\Lambda$ in Einsteins equations. This adds an additional degree of freedom for the earlier scenarios and introduces a new scenario capable of meeting the expectations. However, extensive numerical and analytical investigation reveals that inclusion of $\Lambda$ does not enhance the viability of the models. We identify the lack of degrees of freedom to be the reason for the unviability. However, the method presented here can be generalized to models including more degrees of freedom, like the Szekeres models, which have more promise to overcome the issues in the LTB models.
We study the general NMSSM with an emphasis on the parameter regions with a very strong first-order electroweak phase transition (EWPT). In the presence of heavy fields coupled to the Higgs sector, the analysis can be problematic due to the existence of sizable radiative corrections. In this paper we propose a subtraction scheme that helps to circumvent this problem. For simplicity we focus on a parameter region that is by construction hidden from the current collider searches. The analysis proves that (at least) in the identified parameter region the EWPT can be very strong and striking gravitational wave signals can be produced. The corresponding gravitational stochastic background can potentially be detected at the planned space-based gravitational wave observatory eLISA, depending on the specific experiment design that will be approved.
Isolated long-range interacting particle systems appear generically to relax to non-equilibrium states ("quasi-stationary states" or QSS) which are stationary in the thermodynamic limit. A fundamental open question concerns the "robustness" of these states when the system is not isolated. In this paper we explore, using both analytical and numerical approaches to a paradigmatic one dimensional model, the effect of a simple class of perturbations. We call them "internal local perturbations" in that the particle energies are perturbed at collisions in a way which depends only on the local properties. Our central finding is that the effect of the perturbations is to drive all the very different QSS we consider towards a unique QSS. The latter is thus independent of the initial conditions of the system, but determined instead by both the long-range forces and the details of the perturbations applied. Thus in the presence of such a perturbation the long-range system evolves to a unique non-equilibrium stationary state, completely different to its state in absence of the perturbation, and it remains in this state when the perturbation is removed. We argue that this result may be generic for long-range interacting systems subject to perturbations which are dependent on the local properties (e.g. spatial density or velocity distribution) of the system itself.
We give a unified description of the flip-flop effect in spinning binary black holes and the anti-alignment instability in terms of real and imaginary flip-flop frequencies. We find that this instability is only effective for mass ratios $0.5<q<1$. We provide analytic expressions that determine the region of parameter space for which the instability occurs in terms of maps of the mass ratio and spin magnitudes $(q,\alpha_1,\alpha_2)$. This restricts the priors of parameter estimation techniques for the observation of gravitational waves from binary black holes and it is relevant for astrophysical modeling and final recoil computations of such binary systems.
In general, non-minimal models of the dark sector such as Dynamical Dark Matter posit the existence of an ensemble of individual dark components with differing masses, cosmological abundances, and couplings to the Standard Model. Perhaps the most critical among these features is the spectrum of masses, as this goes a long way towards determining the cosmological abundances and lifetimes of the corresponding states. Many different underlying theoretical structures can be imagined for the dark sector, each giving rise to its own mass spectrum and corresponding density of states. In this paper, by contrast, we investigate the spectrum of masses that emerges statistically from underlying processes which are essentially random. We find a density of states $n(m)$ which decreases as a function of mass and actually has an upper limit $m_{\rm max}$ beyond which $n(m)=0$. We also demonstrate that this "emergent" density of states is particularly auspicious from the perspective of the Dynamical Dark Matter framework, leading to cosmological abundances and decay widths that are suitably balanced against each other across the dark-matter ensemble. Thus randomness in the dark sector coexists quite naturally with Dynamical Dark Matter, and we examine the prospects for observing the signals of such scenarios in dark-matter indirect-detection experiments.
Using high-resolution radio imaging with VLBI techniques, the TANAMI program has been observing the parsec-scale radio jets of southern (declination south of -30{\deg}) gamma-ray bright AGN simultaneously with Fermi/LAT monitoring of their gamma-ray emission. We present the radio and gamma-ray properties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi/LAT data. A large fraction (72%) of the TANAMI sample can be associated with bright gamma-ray sources for this time range. Association rates differ for different optical classes with all BL Lacs, 76% of quasars and just 17% of galaxies detected by the LAT. Upper limits were established on the gamma-ray flux from TANAMI sources not detected by LAT. This analysis led to the identification of three new Fermi sources whose detection was later confirmed. The gamma-ray and radio luminosities are related by $L_\gamma \propto L_r^{0.89+-0.04}$. The brightness temperatures of the radio cores increase with the average gamma-ray luminosity, and the presence of brightness temperatures above the inverse Compton limit implies strong Doppler boosting in those sources. The undetected sources have lower gamma/radio luminosity ratios and lower contemporaneous brightness temperatures. Unless the Fermi/LAT-undetected blazars are strongly gamma-ray-fainter than the Fermi/LAT-detected ones, their gamma-ray luminosity should not be significantly lower than the upper limits calculated here.
A parametric reconstruction of the jerk parameter, the third order derivative of the scale factor expressed in a dimensionless way, has been discussed. Observational constraints on the model parameters have been obtained by Maximum Likelihood Analysis of the models using Supernova Distance Modulus data (SNe), Observational Hubble Data (OHD), Baryon Acoustic Oscillation (BAO) data and CMB shift parameter data (CMBShift). The present value of the jerk parameter has been kept open to start with, but the plots of various cosmological parameter like deceleration parameter $q(z)$, jerk parameter $j(z)$, dark energy equation of state parameter $w_{DE}(z)$ indicate that the reconstructed models are very close to a $\Lambda$CDM model with a slight inclination towards a non-phantom behaviour of the evolution.
We investigate the gas mass distribution in the high redshift cluster MS 1054-0321 using Chandra X-ray and OCRA SZ effect data. We use a superposition of offset $\beta$-type models to describe the composite structure of MS 1054-0321. We find gas mass fractions $f_{gas}^\rm{X\mbox{-}ray} = 0.087_{-0.001}^{+0.005}$ and $f_{gas}^\rm{SZ} = 0.094_{-0.001}^{+0.003}$ for the (main) eastern component of MS 1054-0321 using X-ray or SZ data, but $f_{gas}^\rm{X\mbox{-}ray} = 0.030 _{-0.014}^{+0.010}$ for the western component. The gas mass fraction for the eastern component is in agreement with some results reported in the literature, but inconsistent with the cosmic baryon fraction. The low gas mass fraction for the western component is likely to be a consequence of gas stripping during the ongoing merger. The gas mass fraction of the integrated system is $0.060_{-0.009}^{+0.004}$: we suggest that the missing baryons from the western component are present as hot diffuse gas which is poorly represented in existing X-ray images. The missing gas could appear in sensitive SZ maps.
We analyze the properties of a generic cosmological fluid described by the van der Waals equation of state. Exact solutions for the energy density evolution are found as implicit functions of the scale factor for a flat Friedmann-Robertson-Walker space-time. The possible values of the free parameter in the van der Waals equation are selected \emph{a posteriori}, in accordance with asymptotic behaviors that are physically relevant. The stability of the model against small perturbations is studied through the hydrodynamic perturbations of the fluid for the relevant cases. It is found that a van der Waals fluid seems appropriate to describe non-eternal inflationary scenarios.
We study the local dark matter velocity distribution in four simulated Milky Way-mass galaxies, generated at high resolution with both dark matter and baryons. We find that the dark matter in the Solar neighborhood is influenced appreciably by the inclusion of baryons, increasing the speed of dark matter particles compared to dark matter-only simulations. The baryonic effects responsible for the transfer of energy to the dark matter component increase the amount of high velocity dark matter, resulting in velocity distributions which are more similar to the Maxwellian Standard Halo Model than predicted from dark matter-only simulations. Further, the velocity structures present in baryonic simulations possess a greater diversity than expected from dark matter-only simulation. We show the impact on the direct detection experiments LUX, DAMA/Libra, and CoGent using our simulated velocity distributions. Our results indicate that the Standard Halo Model overpredicts the amount of dark matter in the high velocity tail, and thus leads to overly optimistic direct detection bounds on models which are dependent on this region of phase space for an experimental signal. Our work further demonstrates that it is critical to transform simulated velocity distributions to the lab frame of reference, due to the fact that velocity structure in the Solar neighborhood appears when baryons are included. This velocity structure is not present in dark matter-only simulations, and even when baryons are included its importance is not as apparent in the Galactic frame of reference.
We consider the branch of the projectable Horava-Lifshitz model which exhibits ghost instabilities in the low energy limit. It turns out that, due to the Lorentz violating structure of the model and to the presence of a finite strong coupling scale, the vacuum decay rate into photons is tiny in a wide range of phenomenologically acceptable parameters. The strong coupling scale, understood as a cutoff on ghosts' spatial momenta, can be raised up to $\Lambda \sim 10$ TeV. At lower momenta, the projectable Horava-Lifshitz gravity is equivalent to General Relativity supplemented by a fluid with a small positive sound speed squared (10^{-42} \lesssim) c^2_s \lesssim 10^{-20}, that could be a promising candidate for the Dark Matter. Despite these advantages, the unavoidable presence of the strong coupling obscures the implementation of the original Ho\v{r}ava's proposal on quantum gravity. The low energy projectable Horava-Lifshitz gravity can be also related to mimetic dark matter, where the analogue of the projectability condition is achieved by a non-invertible conformal transformation of the metric.
Links to: arXiv, form interface, find, astro-ph, recent, 1601, contact, help (Access key information)
Matter near a gravitational lens galaxy or projected along the line of sight (LOS) can affect strong lensing observables by more than contemporary measurement errors. We simulate lens fields with realistic three-dimensional mass configurations (self-consistently including voids), and then use lens models to quantify biases and uncertainties associated with different ways of treating the lens environment (ENV) and LOS. We identify the combination of mass, projected offset, and redshift that determines the importance of a perturbing galaxy for lensing. Foreground structures have a stronger effect on the lens potential than background structures, due to non-linear effects in the foreground and downweighting in the background. There is dramatic variation in the net strength of ENV/LOS effects across different lens fields; modeling fields individually yields stronger priors on $H_0$ than ray tracing through N-body simulations. Lens systems in groups tend to have stronger ENV/LOS contributions than non-group lenses. In models, ignoring mass outside the lens yields poor fits and biased results. Adding external shear can account for tidal stretching from galaxies at redshifts $z \ge z_{\rm lens}$, but it requires corrections for external convergence and cannot reproduce non-linear effects from foreground galaxies. Using the tidal approximation is reasonable for most perturbers as long as non-linear redshift effects are included. Yet even then, the scatter in $H_0$ is limited by the lens profile degeneracy. Asymmetric image configurations produced by highly elliptical lens galaxies are less sensitive to the lens profile degeneracy, so they offer appealing targets for precision lensing analyses in future surveys like LSST.
We report on the detection of two O VI absorbers separated in velocity by 710 km/s at z ~ 0.4 towards the background quasar SBS0957+599. Both absorbers are multiphase systems tracing substantial reservoirs of warm baryons. The low and intermediate ionization metals in the first absorber is consistent with an origin in photoionized gas. The O VI has a velocity structure different from other metal species. The Ly-alpha shows the presence of a broad feature. The line widths for O VI and the broad Ly-alpha suggest T = 7.1 x 10^5 K. This warm medium is probing a baryonic column which is an order of magnitude more than the total hydrogen in the cooler photoionized gas. The second absorber is detected only in H I and O VI. Here the temperature of 4.6 x 10^4 K supports O VI originating in a low-density photoionized gas. A broad component is seen in the Ly-alpha, offset from the O VI. The temperature in the broad Ly-alpha is T < 2.1 x 10^5 K. The absorbers reside in a galaxy overdensity region with 7 spectroscopically identified galaxies within ~ 10 Mpc and delta_v ~ 1000 km/s of the first absorber, and 2 galaxies inside a similar separation from the second absorber. The distribution of galaxies relative to the absorbers suggest that the line of sight could be intercepting a large-scale filament connecting galaxy groups, or the extended halo of a sub-L* galaxy. Though kinematically proximate, the two absorbers reaffirm the diversity in the physical conditions of low redshift O VI systems and the galactic environments they inhabit.
Type Ia supernova (SN Ia) cosmology provides the most direct evidence for the presence of dark energy. This result is based on the assumption that the look-back time evolution of SN Ia luminosity, after light-curve corrections, would be negligible. Recent studies show, however, that the Hubble residual (HR) of SN Ia is correlated with the mass and morphology of host galaxies, implying the possible dependence of SN Ia luminosity on host galaxy properties. In order to investigate this more directly, we have initiated spectroscopic survey for the early-type host galaxies, for which population age and metallicity can be more reliably determined from the absorption lines. As the first paper of the series, here we present the results from high signal-to-noise ratio (>100 per pixel) spectra for 27 nearby host galaxies in the southern hemisphere. For the first time in host galaxy studies, we find a significant (~3.9sigma) correlation between host galaxy mass (velocity dispersion) and population age, which is consistent with the "downsizing" trend among non-host early-type galaxies. This result is rather insensitive to the choice of population synthesis models. Since we find no correlation with metallicity, our result suggests that stellar population age is mainly responsible for the relation between host mass and HR. If confirmed, this would imply that the luminosity evolution plays a major role in the systematic uncertainties of SN Ia cosmology.
We have investigated structure formation in the $\gamma$ gravity $f(R)$ model with {\it N}-body simulations. The $\gamma$ gravity model is a proposal which, unlike other viable $f(R)$ models, not only changes the gravitational dynamics, but can in principle also have signatures at the background level that are different from those obtained in $\Lambda$CDM (Cosmological constant, Cold Dark Matter). The aim of this paper is to study the nonlinear regime of the model in the case where, at late times, the background differs from $\Lambda$CDM. We quantify the signatures produced on the power spectrum, the halo mass function, and the density and velocity profiles. To appreciate the features of the model, we have compared it to $\Lambda$CDM and the Hu-Sawicki $f(R)$ models. For the considered set of parameters we find that the screening mechanism is ineffective, which gives rise to deviations in the halo mass function that disagree with observations. This does not rule out the model per se, but requires choices of parameters such that $|f_{R0}|$ is much smaller, which would imply that its cosmic expansion history cannot be distinguished from $\Lambda$CDM at the background level.
Over the last few years the $R_{\mathrm{h}}=ct$ universe has received a lot of attention, particularly when observational evidence seems to favor this over the standard $\Lambda$ cold dark matter ($\Lambda CDM$) universe. Like the $\Lambda CDM$, the $R_{\mathrm{h}}=ct$ universe is based on a Friedmann-Robertson-Walker (FRW) cosmology where the total energy density $\rho$ and pressure $p$ of the cosmic fluid contain a dark energy component besides the usual (dark and baryonic) matter and radiation components. However unlike the $\Lambda CDM$ this model has the simple equation of state (EOS) $\rho + 3p = 0$, i.e., its total active gravitational mass vanishes, which would therefore exclude a cosmological constant as the source of its dark energy component. Faced with this issue, in this paper we examine various possible sources for the dark energy component of the $R_{\mathrm{h}}=ct$ universe and show that quintessence which has been used in other various dynamical dark energy models could also be a possible source in this case.
We develop a new model-independent method to probe the constancy of the speed of light $c$. In our method, the degeneracy between the cosmic curvature and the speed of light can be eliminated, which makes the test more natural and general. Combining the independent observations of Hubble parameter $H(z)$ and luminosity distance $d_L(z)$, we use the model-independent smoothing technique, Gaussian processes, to reconstruct them and then detect variation of the speed of light. We find no signal of deviation from the present value of the speed of light $c_0$. Moreover, to demonstrate the improvement in probing the constancy of the speed of light from future experiments, we produce a series of simulated data. The Dark Energy Survey will be able to detect $\Delta c /c_0 \sim 4\%$ at $2\sigma$ confidence level. If the errors are reduced to one-tenth of the expected DES ones, it is easy to detect a $\Delta c /c_0 \sim 0.1\%$ variation at $2\sigma$ confidence level.
We discuss how the redshift (Mattig) method in Friedmann cosmology relates to dynamical distance indicators based on Newton's gravity (Teerikorpi 2011). It belongs to the class of indicators where the relevant length inside the system is the distance itself (in this case the proper metric distance). As the Friedmann model has Newtonian analogy, its use to infer distances has instructive similarities to classical dynamical distance indicators. In view of the theoretical exact linear distance-velocity law, we emphasize that it is conceptually correct to derive the cosmological distance via the route: redshift (primarily observed) --> space expansion velocity (not directly observed) --> metric distance (physical length in "cm"). Important properties of the proper metric distance are summarized.
We discussed the dynamics of cosmological models in which the cosmological constant term is a time dependent function through the scale factor $a(t)$, Hubble function $H(t)$, Ricci scalar $R(t)$ and scalar field $\phi(t)$. We considered five classes of models; two non-covariant parametrization of $\Lambda$: 1) $\Lambda(H)$CDM cosmologies where $H(t)$ is the Hubble parameter, 2) $\Lambda(a)$CDM cosmologies where $a(t)$ is the scale factor, and three covariant parametrization of $\Lambda$: 3) $\Lambda(R)$CDM cosmologies, where $R(t)$ is the Ricci scalar, 4) $\Lambda(\phi)$-cosmologies with diffusion, 5) $\Lambda(X)$-cosmologies, where $X=\frac{1}{2}g^{\alpha\beta}\nabla_{\alpha}\nabla_{\beta}\phi$ is a kinetic part of density of the scalar field. We also considered the case of an emergent $\Lambda(a)$ relation obtained from the behavior of trajectories in a neighborhood of an invariant submanifold. In study of dynamics we use dynamical system methods for investigating how a evolutional scenario can depend on the choice of special initial conditions. We showed that methods of dynamical systems offer the possibility of investigation all admissible solutions of a running $\Lambda$ cosmology for all initial conditions, their stability, asymptotic states as well as a nature of the evolution in the early universe (singularity or bounce) and a long term behavior at the large times. We also formulated an idea of the emergent cosmological term derived directly from an approximation of exact dynamics. We show that some non-covariant parametrizations of Lambda term like $\Lambda(a)$, $\Lambda(H)$ give rise to pathological and nonphysical behaviour of trajectories in the phase space. This behaviour disappears if the term $\Lambda(a)$ is emergent from the covariant parametrization.
Several recent cosmological analyses have found tension between constraints derived from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) data and those derived from other data sets, such as the Planck cosmic microwave background (CMB) temperature anisotropies. Similarly, a direct cross-correlation of the CFHTLenS data with Planck CMB lensing data yielded an anomalously low amplitude compared to expectations based on Planck or WMAP-derived cosmological parameters (Liu & Hill 2015). One potential explanation for these results is a multiplicative bias afflicting the CFHTLenS galaxy shape measurements, from which shears are inferred. Simulations are used in the CFHTLenS pipeline to calibrate such biases, but no data-driven constraints have been presented to date. In this paper, we cross-correlate CFHTLenS galaxy density maps with CFHTLenS shear maps and Planck CMB lensing maps to independently calibrate the multiplicative shear bias in CFHTLenS, $m$, following methods suggested by Vallinotto (2012) and Das et al. (2013). We analyze three magnitude-limited galaxy samples, finding $2$--$4\sigma$ evidence for $m<1$ using the deepest sample ($i < 24$), while the others are consistent with $m=1$ (no bias). This matches the expectation that the shapes of faint galaxies are the most difficult to measure. Our results for $m$ are essentially independent of the assumed cosmology, and only weakly sensitive to assumptions about the galaxy bias. We consider three galaxy bias models, finding in all cases that the best-fit multiplicative shear bias is less than unity. A value of $m \approx 0.9$ would suffice to reconcile the amplitude of density fluctuations inferred from the CFHTLenS shear two-point statistics with that inferred from Planck CMB temperature data. This scenario is consistent with our results.
We use simulated galaxy surveys to study: i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and ii) the accuracy of a mean dynamical cluster mass, $M_\sigma(\lambda)$, derived from stacked pairwise spectroscopy of clusters with richness $\lambda$. Using $\sim\! 130,000$ galaxy pairs patterned after the SDSS redMaPPer cluster sample study of Rozo et al. (2015 RMIV), we show that the pairwise velocity PDF of central--satellite pairs with $m_i < 19$ in the simulation matches the form seen in RMIV. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes $\sim 60\%$ of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. (2008) to the velocity normalization matches, to within a few percent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with mis-centering and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at $z=0.2$ of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al. (2015), we find $\langle \ln(M_{200c})|\lambda \rangle = \ln(M_{30}) + \alpha_m \ln(\lambda/30)$ with $M_{30} = 1.56 \pm 0.35 \times 10^{14} M_\odot$ and $\alpha_m = 1.31 \pm 0.06_{stat} \pm 0.13_{sys}$. Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.
We explore strategies to extract cosmological constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, galaxy clustering, cluster number counts and cluster weak lensing. We utilize the CosmoLike software to simulate results from an LSST like data set, specifically, we 1) compare individual and joint analyses of the different probes, 2) vary the selection criteria for lens and source galaxies, 3) investigate the impact of blending, 4) investigate the impact of the assumed cosmological model in multi-probe covariances, 6) quantify information content as a function of scales, and 7) explore the impact of intrinsic galaxy alignment in a multi-probe context. Our analyses account for all cross correlations within and across probes and include the higher-order (non-Gaussian) terms in the multi-probe covariance matrix. We simultaneously model cosmological parameters and a variety of systematics, e.g. uncertainties arising from shear and photo-z calibration, cluster mass-observable relation, galaxy intrinsic alignment, and galaxy bias (up to 54 parameters altogether). We highlight two results: First, increasing the number density of source galaxies by ~30%, which corresponds to solving blending for LSST, only gains little information. Second, including small scales in clustering and galaxy-galaxy lensing, by utilizing HODs, can substantially boost cosmological constraining power. The CosmoLike modules used to compute the results in this paper will be made publicly available at https://github.com/elikrause/CosmoLike_Forecasts.
We investigate the impact of astrophysical systematics on cosmic shear cosmological parameter constraints from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), and the concordance with cosmic microwave background measurements by Planck. We present updated CFHTLenS cosmic shear tomography measurements extended to degree scales using a covariance calibrated by a new suite of N-body simulations. We analyze these measurements with a new model fitting pipeline, accounting for key systematic uncertainties arising from intrinsic galaxy alignments, baryonic effects in the nonlinear matter power spectrum, and photometric redshift uncertainties. We examine the impact of the systematic degrees of freedom on the cosmological parameter constraints, both independently and jointly. When the systematic uncertainties are considered independently, the intrinsic alignment amplitude is the only degree of freedom that is substantially preferred by the data. When the systematic uncertainties are considered jointly, there is no consistently strong preference in favor of the more complex models. We quantify the level of concordance between the CFHTLenS and Planck datasets by employing two distinct data concordance tests, grounded in Bayesian evidence and information theory. We find that the two data concordance tests largely agree with one another, and that the level of concordance between the CFHTLenS and Planck datasets is sensitive to the exact details of the systematic uncertainties included in our analysis, ranging from decisive discordance to substantial concordance as the treatment of the systematic uncertainties becomes more conservative. The least conservative scenario is the one most favored by the cosmic shear data, but it is also the one that shows the greatest degree of discordance with Planck. The data and analysis code are public at https://github.com/sjoudaki/cfhtlens_revisited.
Assuming that Fast Radio Bursts (FRBs) are of extragalactic origin, we have developed a formalism to predict the FRB detection rate and the redshift distribution of the detected events for a telescope with given parameters. We have adopted FRB 110220, for which the emitted pulse energy is estimated to be $E_0 = 5.4 \times 10^{33}J$, as the reference event. The formalism requires us to assume models for (1) pulse broadening due to scattering in the ionized inter-galactic medium - we consider two different models for this, (2) the frequency spectrum of the emitted pulse - we consider a power law model $E_{\nu} \propto \nu^{-\alpha}$ with $-5 \leq \alpha \leq 5$, and (3) the comoving number density of the FRB occurrence rate $n(E,w_i,z)$ - we ignore the z dependence and assume a fixed intrinsic pulse width $w_i = 1$ms for all the FRBs. The distribution of the emitted pulse energy $E$ is modelled through (a) a delta-function where all the FRBs have the same energy $E = E_0$ , and (b) a Schechter luminosity function where the energies have a spread around $E_0$. The models are all normalized using the 4 FRBs detected by Thornton et al. (2013). Our model predictions for the Parkes telescope are all consistent with the inferred redshift distribution of the fourteen FRBs detected there to date. We also find that scattering places an upper limit on the redshift of the FRBs detectable by a given telescope; for the Parkes telescope this is $z \sim 2$. Considering the upcoming Ooty Wide Field Array, we predict a FRB detection rate of $\sim 0.01$ to $\sim 10^3$ per day.
We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the $T$, $E$, and $B$ modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with a simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.
The South Pole Telescope (SPT) is a high-resolution microwave-frequency telescope designed to observe the Cosmic Microwave Background (CMB). To date, two cameras have been installed on the SPT to conduct two surveys of the CMB, the first in intensity only (SPT-SZ) and the second in intensity and polarization (SPTpol). A third-generation polarization-sensitive camera is currently in development (SPT-3G). This thesis describes work spanning all three instruments on the SPT. I present my work in time-reversed order, to follow the canonical narrative of instrument development, deployment, and analysis. First, the development and testing of novel 3-band multichroic Transition Edge Sensor (TES) bolometers for the SPT-3G experiment is detailed, followed by the development and deployment of the frequency multiplexed cryogenic readout electronics for the SPTpol experiment, and concluding with the analysis of data taken by the SPT-SZ instrument. I describe the development of a Bayesian likelihood based method I developed for measuring the integrated Comptonization (Ysz) of galaxy clusters from the Sunyaev-Zel'dovich (SZ) effect, and constraining galaxy cluster Ysz-mass scaling relations.
We study the realization of slow-roll inflation in $\mathcal N = 1$ supergravities with a single chiral field. If there is only one flat direction in field space, it is possible to derive a single-field effective field theory (EFT) parametrized by the sound speed $c_s$ at which curvature perturbations propagate during inflation. The value of $c_s$ is determined by the rate of bend of the inflationary trajectory resulting from the shape of the $F$-term potential. We show that $c_s$ must respect an inequality that involves the curvature tensor of the K\"ahler manifold defining the class of supergravity, as well as the ratio between the mass of fluctuations ortogonal to the inflationary trajectory and the Hubble expansion rate. Because in order to have a reliable EFT this ratio must be large, we find that the inequality implies that $c_s \simeq 1$. As a consequence, EFT's of inflation derived from $\mathcal N = 1$ supergravities cannot differ drastically from canonical single field inflation ($c_s = 1$), and non-Gaussianity must be suppressed unless other degrees of freedom play a role during inflation. Conversely, if large non-Gaussianity is observed, supergravity models of inflation will be disfavored.
With detections of quasars powered by increasingly massive black holes (BHs) at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early BH formation and growth. Here we review the emerging picture of how the first massive BHs formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed BHs, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Finally, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive BHs over the course of the first billion years following the Big Bang.
We investigate limits on the extinction values of Type Ia supernovae to statistically determine the most probable color excess, E(B-V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, $R_V$, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-Infrared Survey with \textit{Herschel} (KINGFISH, Kennicutt et al. (2011)). We use Type Ia supernova spectral templates (Hsiao et al. 2007) to develop a Monte Carlo simulation of color excess E(B-V) with $R_V$ = 3.1 and investigate the color excess probabilities E(B-V) with projected radial galaxy center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa-Sap, Sab-Sbp, Sbc-Scp, Scd-Sdm, S0 and Irregular galaxy classes as a function of $R/R_{25}$. We find that the largest expected reddening probability are in Sab-Sb and Sbc-Sc galaxies, while S0 and Irregulars are very dust poor. We present a new approach for determining the absorption-to-reddening ratio $R_V$ using color excess probability functions, and find for a sample of 21 SNe Ia observed in Sab-Sbp galaxies, and 34 SNe in Sbc-Scp, an $R_V$ of 2.71 $\pm$ 1.58 and $R_V$ = 1.70 $\pm$ 0.38 respectively.
Links to: arXiv, form interface, find, astro-ph, recent, 1601, contact, help (Access key information)