Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometric errors and parameter degeneracies, the redshift and type distributions can be recovered robustly thanks to the hierarchical nature of the model, which is not possible with common photometric redshift estimation techniques. As a result, redshift uncertainties can be fully propagated in cosmological analyses for the first time, fulfilling an essential requirement for the current and future generations of surveys.
In recent work we proposed a novel theory of dark matter (DM) superfluidity that matches the successes of the LambdaCDM model on cosmological scales while simultaneously reproducing MOdified Newtonian Dynamics (MOND) phenomenology on galactic scales. The agents responsible for mediating the MONDian force law are superfluid phonons that couple to ordinary (baryonic) matter. In this paper we propose an alternative way for the MOND phenomenon to emerge from DM superfluidity. The central idea is to use higher-gradient corrections in the superfluid effective theory. These next-to-leading order terms involve gradients of the gravitational potential, and therefore effectively modify the gravitational force law. In the process we discover a novel mechanism for generating the non-relativistic MOND action, starting from a theory that is fully analytic in all field variables. The idea, inspired by the symmetron mechanism, uses the spontaneous breaking of a discrete symmetry. For large acceleration, the symmetry is unbroken and the action reduces to Einstein gravity. For small acceleration, the symmetry is spontaneously broken and the action reduces to MONDian gravity. Cosmologically, however, the universe is always in the Einstein-gravity, symmetry-restoring phase. The expansion history and linear growth of density perturbations are therefore indistinguishable from LambdaCDM cosmology.
We use time-domain electromagnetic simulations to assess the spectral characteristics of the dish antenna for the Hydrogen Epoch of Reionization Array (HERA). These simulations are part of a multi-faceted campaign to determine the effectiveness of the dish's design for obtaining a detection of redshifted 21 cm emission from the epoch of reionization. Our simulations show the existence of reflections between HERA's suspended feed and its parabolic dish reflector, at certain frequencies, with an amplitude of roughly $ -35$dB at 100 ns which can lead to some loss of measurable modes and a modest reduction in sensitivity. Even in the presence of this structure, we find that the spectral response of the dish is sufficiently smooth for delay filtering, a proven foreground isolation technique, to contain foreground emission at line-of-sight wave numbers below $k_\parallel \lesssim 0.2h$Mpc$^{-1}$, in the region where the current PAPER experiment operates. Incorporating these results into a Fisher Matrix analysis, we find that the spectral structure observed in our simulations has only a small effect on the tight constraints HERA can achieve on the astrophysics of reionization.
We consider a twin WIMP scenario whose twin sector contains a full dark copy of the SM hadrons, where the lightest twin particles are twin pions. By analogy to the standard WIMP paradigm, the dark matter (DM) freezes out through twin electroweak interactions, and annihilates into a dark shower of light twin hadrons. These are either stable or decay predominantly to standard model (SM) photons. We show that this 'hadrosymmetric' scenario can be consistent with all applicable astrophysical, cosmological and collider constraints. In order to decay the twin hadrons before the big-bang nucleosynthesis epoch, an additional portal between the SM and twin sector is required. In most cases we find this additional mediator is within reach of either the LHC or future intensity frontier experiments. Furthermore, we conduct simulations of the dark shower and consequent photon spectra. We find that fits of these spectra to the claimed galactic center gamma-ray excess seen by Fermi-LAT non-trivially coincide with regions of parameter space that both successfully generate the observed DM abundance and exhibit minimal fine-tuning.
On 14th September 2015, a transient gravitational wave (GW150914) was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 experienced a Shapiro delay due to the gravitational potential of the mass distribution along the line of sight of about 1800 days. Also, the near-simultaneous arrival of gravitons over a frequency range of about 100 Hz within a 0.2 second window allows us to constrain any violations of Shapiro delay and Einstein's equivalence principle between the gravitons at different frequencies. From the calculated Shapiro delay and the observed duration of the signal, frequency-dependent violations of the equivalence principle for gravitons are constrained to an accuracy of $\mathcal{O}(10^{-9})$
Inspired by a recent ghost-free nonlinear massive gravity in four-dimensional spacetime, we study its higher dimensional scenarios. As a result, we are able to show the constant-like behavior of massive graviton terms for some well-known metrics such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini-(A)dS metrics in a specific five-dimensional nonlinear massive gravity under an assumption that its fiducial metrics are compatible with physical ones. In addition, some simple cosmological solutions of the five-dimensional massive gravity will be figured out consistently.
The first search for a dark matter annual modulation signal with NaI(Tl) target material in the Southern Hemisphere conducted with the DM-Ice17 experiment is presented. DM-Ice17 consists of 17 kg of NaI(Tl) scintillating crystal under 2200 m.w.e. overburden of Antarctic glacial ice. The analysis presented here utilizes a 60.8 kg yr exposure. While unable to exclude the signal reported by DAMA/LIBRA, the DM-Ice17 data are consistent with no modulation in the energy range of 4-20 keV, providing the strongest limits on WIMP candidates from a direct detection experiment located in the Southern Hemisphere. Additionally, the successful deployment and stable operation of 17 kg of NaI(Tl) crystal over 3.5 years establishes the South Pole ice as a viable location for future underground, low-background experiments.
Cosmology experiments at mm-wavelengths may be able to detect Planet Nine if it is the size of Neptune, has an effective temperature of 40 K, and is 700 AU from the Sun. It would appear as a ~30 mJy source at 1 mm (or ~8 mJy at 150 GHz) with a parallax of ~5 arcmin. The challenge will be to distinguish it from the ~4000 foreground asteroids brighter than 30 mJy. Fortunately, asteroids can by identified by looking for sources that move across a resolution element in a matter of hours, orders of magnitude faster than Planet Nine. If Planet Nine is smaller, colder, and/or more distant than expected, then it could be as faint as 1 mJy at 1 mm. There are approximately 1E6 asteroids this bright, making many cosmology experiments confusion limited for moving sources. Nonetheless, it may still be possible to find the proverbial needle in the haystack using a matched filter. This would require mm telescopes with high angular resolution and high sensitivity in order to alleviate confusion and to enable the identification of moving sources with relatively short time baselines. Regardless of its mm flux density, searching for Planet Nine would entail obtaining frequent radio measurements for large swaths of the sky, including the ecliptic and Galactic plane. Even if Planet Nine had already been detected by other means, measuring its mm-flux would constrain its internal energy budget, and therefore help resolve the mystery of Uranus and Neptune, which have vastly different internal heat.
We study inflation driven by a dilaton and an axion, both of which are coupled to a SU(2) gauge field. We find that the inflation driven by the dilaton occurs in the early stage of inflation during which the gauge field grows due to the gauge kinetic function. When the energy density of magnetic fields catches up with that of electric fields, chromo-natural inflation takes over in the late stage of inflation, which we call delayed chromo-natural inflation. Thus, the delayed chromo-natural inflation driven by the axion and the gauge field is induced by the dilaton. The interesting outcome of the model is generation of chiral primordial gravitational waves on small scales. Since the gauge field is inert in the early stage of inflation, it is viable in contrast to the conventinal chromo-natural inflation. We find the parameter region where chiral gravitational waves are generated in a frequency range higher than nHz, which are potentially detectable in future gravitational wave interferometers and pulsar timing arrays such as DECIGO, eLISA and SKA.
We expand the dynamical systems investigation of cosmological scalar fields characterised by kinetic corrections presented in [N. Tamanini, Phys. Rev. D 89 (2014) 083521]. In particular we do not restrict the analysis to exponential potentials only, but we consider arbitrary scalar field potentials and derive general results regarding the corresponding cosmological dynamics. Two specific potentials are then used as examples to show how these models can be employed not only to describe dark energy, but also to achieve dynamical crossing of the phantom barrier at late times. Stability and viability issues at the classical level are also discussed.
In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolutions regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behaviour of the Hubble factor). We show that quite generally, the lower bound for the singularity time can not be smaller than about 1.2 times the age of the universe, what roughly speaking means approximately 2.8 Gyrs from the present time.
Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays--in which the same mode on the sky is sampled by many antenna pairs--for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA's can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via "off-grid" antennas and increased angular resolution via far-flung "outrigger" antennas is possible with a redundantly calibratable array configuration.
Links to: arXiv, form interface, find, astro-ph, recent, 1602, contact, help (Access key information)
We present semi-analytic models of the epoch of reionization focusing on the differences between continuous and bursty star formation (SF). Our model utilizes physically motivated analytic fits to 1D radiative transfer simulations of HII regions around dark matter halos in a representative cosmic volume. Constraining our simulations with observed and extrapolated UV luminosity functions of high redshift galaxies, we find that for a fixed halo mass, stellar populations forming in bursty models produce larger HII regions which leave behind long-lived relic HII regions which are able to maintain partial ionization in the intergalactic medium (IGM) in a manner similar to an early X-ray background. The overall effect is a significant increase in the optical depth of the IGM, $\tau_e$, and a milder increase of the redshift of reionization. To produce $\tau_e =0.066$ observed by Planck and complete reionization by redshift $z_{\rm re}\sim 6$, models with bursty SF require an escape fraction $f_{\rm esc}\sim 2\%-10\%$ that is 2-10 times lower than $f_{\rm esc}\sim 17\%$ found assuming continuous SF and is consistent with upper limits on $f_{\rm esc}$ from observations at $z=0$ and $z\sim 1.3-6$. The ionizing photon budget needed to reproduce the observed $\tau_e$ and $z_{\rm re}$ depends on the period and duty cycle of the bursts of SF and the temperature of the neutral IGM. These results suggest that the tension between observed and predicted ionizing photon budget for reionization can be alleviated if reionization is driven by short bursts of SF, perhaps relating to the formation of Population~III stars and compact star clusters such as proto-globular clusters.
We apply the Alcock-Paczynski (AP) test to the stacked voids identified using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We also use 1000 mock galaxy catalogs that match the geometry, density, and clustering properties of the BOSS sample in order to characterize the statistical uncertainties of our measurements and take into account systematic errors such as redshift space distortions. For both BOSS data and mock catalogs, we use the ZOBOV algorithm to identify voids, we stack together all voids with effective radii of 30-100Mpc/h in the redshift range 0.43-0.7, and we accurately measure the shape of the stacked voids. Our tests with the mock catalogs show that we measure the stacked void ellipticity with a statistical precision of 2.6%. We find that the stacked voids in redshift space are slightly squashed along the line of sight, which is consistent with previous studies. We repeat this measurement of stacked void shape in the BOSS data assuming several values of Omega_m within the flat LCDM model, and we compare to the mock catalogs in redshift space in order to perform the AP test. We obtain a constraint of $\Omega_m = 0.38^{+0.18}_{-0.15}$ at the 68% confidence level from the AP test. We discuss the various sources of statistical and systematic noise that affect the constraining power of this method. In particular, we find that the measured ellipticity of stacked voids scales more weakly with cosmology than the standard AP prediction, leading to significantly weaker constraints. We discuss how AP constraints will improve in future surveys with larger volumes and densities.
HectoMAP is a dense redshift survey of red galaxies covering a 53 $deg^{2}$ strip of the northern sky. HectoMAP is 97\% complete for galaxies with $r<20.5$, $(g-r)>1.0$, and $(r-i)>0.5$. The survey enables tests of the physical properties of large-scale structure at intermediate redshift against cosmological models. We use the Horizon Run 4, one of the densest and largest cosmological simulations based on the standard $\Lambda$ Cold Dark Matter ($\Lambda$CDM) model, to compare the physical properties of observed large-scale structures with simulated ones in a volume-limited sample covering 8$\times10^6$ $h^{-3}$ Mpc$^3$ in the redshift range $0.22<z<0.44$. We apply the same criteria to the observations and simulations to identify over- and under-dense large-scale features of the galaxy distribution. The richness and size distributions of observed over-dense structures agree well with the simulated ones. Observations and simulations also agree for the volume and size distributions of under-dense structures, voids. The properties of the largest over-dense structure and the largest void in HectoMAP are well within the distributions for the largest structures drawn from 300 Horizon Run 4 mock surveys. Overall the size, richness and volume distributions of observed large-scale structures in the redshift range $0.22<z<0.44$ are remarkably consistent with predictions of the standard $\Lambda$CDM model.
The luminosity distance in the standard cosmology as given by $\Lambda$CDM and consequently the distance modulus for supernovae can be defined by the Pad\'e approximant. A comparison with a known analytical solution shows that the Pad\'e approximant for the luminosity distance has an error of $4\%$ at redshift $= 10$. A similar procedure for the Taylor expansion of the luminosity distance gives an error of $4\%$ at redshift $=0.7 $; this means that for the luminosity distance, the Pad\'e approximation is superior to the Taylor series. The availability of an analytical expression for the distance modulus allows applying the Levenberg--Marquardt method to derive the fundamental parameters from the available compilations for supernovae. A new luminosity function for galaxies derived from the truncated gamma probability density function models the observed luminosity function for galaxies when the observed range in absolute magnitude is modeled by the Pad\'e approximant. A comparison of $\Lambda$CDM with other cosmologies is done adopting a statistical point of view.
Density inhomogeneity in the intergalactic medium (IGM) on sub-Mpc scales can boost the recombination rate of ionized gas substantially, affecting the growth of H II regions during the Epoch of Reionization (EoR). Previous attempts to express this in terms of a clumping factor, C, typically failed to resolve the full range of mass scales which are important in establishing this effect, down to the Jeans scale in the pre-ionization IGM, along with the hydrodynamical back-reaction of reionization on it. Towards that end, we introduce GADGET-RT, a GADGET code with a new algorithm to transfer H-ionizing radiation, and perform a set of radiation-hydrodynamics simulations from cosmological initial conditions. We extend the mass resolution of previous work to the scale of minihalos, simulating sub-Mpc volumes. Pre-reionization structure is evolved until a redshift $z_i$ at which the ionizing radiation from external sources arrives to sweep an R-type ionization front supersonically across the volume in a few Myr, until it is trapped on the surfaces of minihalos and converted to D-type. Small-scale density structures during this time lead to a high (C > 10) clumping factor for ionized gas. This high clumping factor hugely boosts the recombination rate until the structures are mostly disrupted by the hydrodynamic feedback after $\sim 10 - 100 $ Myr. For incoming radiation with intensity $J_{21}$, a number of extra recombinations result per H atom, on top of what is expected from gas at the mean density, is given by 0.32 $[J_{21}]^{0.12} [(1 + z_i)/11]^{-1.7}$. In models in which most of the volume is ionized toward the end of reionization, this can add up to $\sim 0.7$ per H atom to the ionizing photon budget to achieve reionization. Even more recombinations will result when full account is also taken of the matter density inhomogeneity on scales larger than that of our sub-Mpc simulation volumes.
Weak lensing (WL) promises to be a particularly sensitive probe of both the growth of large scale structure (LSS) as well as the fundamental relation between matter density perturbations and metric perturbations, thus providing a powerful tool with which we may constrain modified theories of gravity (MG) on cosmological scales. Future deep, wide-field WL surveys will provide an unprecedented opportunity to constrain deviations from General Relativity (GR). Employing a three-dimensional (3D) analysis based on the spherical Fourier-Bessel (sFB) expansion, we investigate the extent to which MG theories will be constrained by a typical 3D WL survey configuration including noise from the intrinsic ellipticity distribution $\sigma_{\epsilon}$ of source galaxies. Here we focus on two classes of screened theories of gravity: i) $f(R)$ chameleon models and ii) environmentally dependent dilaton models. We use one-loop perturbation theory combined with halo models in order to accurately model the evolution of matter power-spectrum with redshift in these theories. Using a Fisher information matrix based approach, we show that for an all-sky spectroscopic survey, the parameter $f_{R_0}$ can be constrained in the range $f_{R_0}< 5\times 10^{-6}(9\times 10^{-6})$ for $n=1(2)$ with a 3$\sigma$ confidence level. This can be achieved by using relatively low order angular harmonics $\ell<100$. Including higher order harmonics $\ell>100$ can further tighten the constraints, making them comparable to current solar-system constraints. We also employ a Principal Component Analysis (PCA) in order to study the parameter degeneracies in the MG parameters. Our results can trivially be extended to other MG theories, such as the K-mouflage models. The confusion from intrinsic ellipticity correlation and modification of the matter power-spectrum at small scale due to feedback mechanisms is briefly discussed.
A Hubble diagram (HD) has recently been constructed in the redshift range 0<z<6.5 using a non-linear relation between the ultraviolet and X-ray luminosities of QSOs. The Type Ia SN HD has already provided a high-precision test of cosmological models, but the fact that the QSO distribution extends well beyond the supernova range (z<1.8), in principle provides us with an important complementary diagnostic whose significantly greater leverage in z can impose tighter constraints on the distance versus redshift relationship. In this paper, we therefore perform an independent test of nine different cosmological models, among which six are expanding, while three are static. Many of these are disfavoured by other kinds of observations (including the aforementioned Type Ia SNe). We wish to examine whether the QSO HD confirms or rejects these earlier conclusions. We find that four of these models (Einstein-de Sitter, the Milne universe, the Static Universe with simple tired light and the Static universe with plasma tired light) are excluded at the >99% C.L. The Quasi-Steady State Model is excluded at >95% C.L. The remaining four models (Lambda-CDM/wCDM, the R_h=ct Universe, the Friedmann open universe and a Static universe with a linear Hubble law) all pass the test. However, only Lambda-CDM/wCDM and $R_{\rm h}=ct$ also pass the Alcock-Paczynski (AP) test. The optimized parameters in Lambda-CDM/wCDM are Omega_m=0.20^{+0.24}_{-0.20} and w_{de}=-1.2^{+1.6}_{-infinity} (the dark-energy equation-of-state). Combined with the AP test, these values become Omega_m=0.38^{+0.20}_{-0.19} and w_{de}=-0.28^{+0.52}_{-0.40}. But whereas this optimization of parameters in Lambda-CDM/wCDM creates some tension with their concordance values, the $R_{\rm h}=ct$ Universe has the advantage of fitting the QSO and AP data without any free parameters.
We investigate a framework aiming to provide a common origin for the large-angle anomalies detected in the Cosmic Microwave Background (CMB), which are hypothesized as the result of the statistical inhomogeneity developed by different isocurvature fields of mass $m\sim H$ present during inflation. The inhomogeneity arises as the combined effect of $(i)$ the initial conditions for isocurvature fields (obtained after a fast-roll stage finishing many $e$-foldings before cosmological scales exit the horizon), $(ii)$ their inflationary fluctuations and $(iii)$ their coupling to other degrees of freedom. Our case of interest is when these fields (interpreted as the precursors of large-angle anomalies) leave an observable imprint only in isolated patches of the Universe. When the latter intersect the last scattering surface, such imprints arise in the CMB. Nevertheless, due to their statistically inhomogeneous nature, these imprints are difficult to detect, for they become hidden in the background similarly to the Cold Spot. We then compute the probability that a single isocurvature field becomes inhomogeneous at the end of inflation and find that, if the appropriate conditions are given (which depend exclusively on the preexisting fast-roll stage), this probability is at the percent level. Finally, we discuss several mechanisms (including the curvaton and the inhomogeneous reheating) whereby an initial statistically inhomogeneous isocurvature field fluctuation gives rise to some of the observed anomalies. In particular, we focus on the Cold Spot, the power deficit at low multipoles and the breaking of statistical isotropy.
Lorentz-invariant massive gravity is usually associated with a strong coupling scale $\Lambda_3$. By including non-trivial effects from the Stueckelberg modes, we show that about these vacua, one can push the strong coupling scale to higher values and evade the linear vDVZ-discontinuity. For generic parameters of the theory and generic vacua for the Stueckelberg fields, the $\Lambda_2$-decoupling limit of the theory is well-behaved and free of any ghost or gradient-like instabilities. We also discuss the implications for nonlinear sigma models with Lorentzian target spaces.
We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4% and 2.5% for the explored metrics and comes at almost no additional computational cost.
We study the effects of applying observational techniques to derive the properties of simulated galaxies, with the aim of making an unbiased comparison between observations and simulations. For our study, we used fifteen galaxies simulated in a cosmological context using three different feedback and chemical enrichment models, and compared their z=0 properties with data from the Sloan Digital Sky Survey (SDSS). We show that the physical properties obtained directly from the simulations without post-processing can be very different to those obtained mimicking observational techniques. In order to provide simulators a way to reliably compare their galaxies with SDSS data, for each physical property that we studied - colours, magnitudes, gas and stellar metallicities, mean stellar ages and star formation rates - we give scaling relations that can be easily applied to the values extracted from the simulations. These scalings have in general a high correlation, except for the galaxy mean stellar ages and gas oxygen metallicities. Our simulated galaxies are photometrically similar to galaxies in the blue cloud/green valley, but in general they appear older, passive and with lower metal content compared to most of the spirals in SDSS. As a careful assessment of the agreement/disagreement with observations is the primary test of the baryonic physics implemented in hydrodynamical codes, our study shows that considering the observational biases in the derivation of the galaxies' properties is of fundamental importance to decide on the failure/success of a galaxy formation model.
We present improved point-source catalogs for the 2 Ms Chandra Deep Field-North (CDF-N) and the 250 ks Extended Chandra Deep Field-South (E-CDF-S), implementing a number of recent improvements in Chandra source-cataloging methodology. For the CDF-N/E-CDF-S, we provide a main catalog that contains 683/1003 X-ray sources detected with wavdetect at a false-positive probability threshold of $10^{-5}$ that also satisfy a binomial-probability source-selection criterion of $P<0.004$/$P<0.002$. Such an approach maximizes the number of reliable sources detected: a total of 196/275 main-catalog sources are new compared to the Alexander et al. (2003) CDF-N/Lehmer et al. (2005) E-CDF-S main catalogs. We also provide CDF-N/E-CDF-S supplementary catalogs that consist of 72/56 sources detected at the same wavdetect threshold and having $P$ of $0.004-0.1$/$0.002-0.1$ and $K_s\le22.9/K_s\le22.3$ mag counterparts. For all $\approx1800$ CDF-N and E-CDF-S sources, including the $\approx500$ newly detected ones (these being generally fainter and more obscured), we determine X-ray source positions utilizing centroid and matched-filter techniques; we also provide multiwavelength identifications, apparent magnitudes of counterparts, spectroscopic and/or photometric redshifts, basic source classifications, and estimates of observed AGN and galaxy source densities around respective field centers. Simulations show that both the CDF-N and E-CDF-S main catalogs are highly reliable and reasonably complete. Background and sensitivity analyses indicate that the on-axis mean flux limits reached represent a factor of $\approx1.5-2.0$ improvement over the previous CDF-N and E-CDF-S limits. We make our data products publicly available.
We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a LCDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.
From higher dimensional theories, e.g. string theory, one expects the
presence of non-minimally coupled scalar fields. We review the notion of
conformal frames in cosmology and emphasize their physical equivalence, which
holds at least at a classical level.
Furthermore, if there is a field, or fields, which dominates the universe, as
it is often the case in cosmology, we can use such notion of frames to treat
our system, matter and gravity, as two different sectors. On one hand, the
gravity sector which describes the dynamics of the geometry and on the other
hand the matter sector which has such geometry as a playground. We use this
interpretation to build a model where the fact that a curvaton couples to a
particular frame metric could leave an imprint in the CMB.
MeV blazars are a sub--population of the blazar family, exhibiting larger--than--average jet powers, accretion luminosities and black hole masses. Because of their extremely hard X--ray continua, these objects are best studied in the X-ray domain. Here, we report on the discovery by the $Fermi$ Large Area Telescope and subsequent follow-up observations with $NuSTAR$, $Swift$ and GROND of a new member of the MeV blazar family: PMN J0641$-$0320. Our optical spectroscopy provides confirmation that this is a flat--spectrum radio quasar located at a redshift of $z=1.196$. Its very hard $NuSTAR$ spectrum (power--law photon index of $\sim$1 up to $\sim$80 keV) indicates that the emission is produced via inverse Compton scattering off photons coming from outside the jet.The overall spectral energy distribution of PMN J0641$-$0320 is typical of powerful blazars and by reproducing it with a simple one-zone leptonic emission model we find the emission region to be located either inside the broad line region or within the dusty torus.
It has been known that the generalized second law of black hole thermodynamics is difficult, if not impossible, to be violated by ghost condensation. Since not only black holes but also cosmology are expected to play important roles towards our better understanding of gravity, we consider a cosmological setup to test the theory of ghost condensation. In particular we shall show that the de Sitter entropy bound proposed by Arkani-Hamed, et.al. is satisfied if ghost inflation happened in the early epoch of our universe. We then propose a notion of cosmological Page time after inflation.
Galaxy clusters are the largest gravitationally bound objects in the universe and may be suitable targets for indirect dark matter searches. With 85 months of Fermi-LAT Pass 8 publicly available data, we analyze the gamma-ray emission in the directions of 16 nearby Galaxy Clusters with an unbinned likelihood analysis. No statistically/globally significant $\gamma-$ray line feature is identified and a weak signal may present at $\sim 42$ GeV. The 95\% confidence level upper limits on the velocity-averaged cross section of dark matter particles annihilating into double $\gamma-$rays (i.e., $\langle \sigma v \rangle_{\chi\chi\rightarrow \gamma\gamma}$) are derived. Unless very optimistic boost factors of dark matter annihilation in these Galaxy Clusters have been assumed, such constraints are much weaker than the bounds set by the Galactic $\gamma-$ray data.
The Standard Model's accidental and anomaly-free currents: $B-L$, $L_e-L_\mu$, $L_e-L_\tau$, and $L_\mu-L_\tau$, could be indicative of a hidden gauge structure beyond the Standard Model. Additionally, neutrino masses can be generated by a dimension-5 operator that generically breaks all of these symmetries. It is therefore important to investigate the compatibility of a gauged $U'(1)$ and neutrino phenomenology. We consider gauging each of the symmetries above with a minimal extended matter content. This includes the $Z'$, an order parameter to break the $U'(1)$, and three right-handed neutrinos. We find all but $B-L$ require additional matter content to explain the measured neutrino oscillation parameters. We also discuss the compatibility of the measured neutrino textures with a non-thermal dark matter production mechanism involving the decay of the $Z'$. Finally, we present a parametric relation that implies that a sterile neutrino dark matter candidate should not be expected to contribute to neutrino masses beyond ten parts per million.
A model for the universe with tachyonic and fermionic fields interacting through a Yukawa-type potential is investigated. It is shown that the tachyonic field answers for the initial accelerated regime and for the subsequent decelerated regime so that it behaves as an inflaton at early times and as a matter field at intermediate times, while the fermionic field has the role of a dark energy constituent, since it leads to an accelerated regime at later times. The interaction between the fields via a Yukawa-type potential controls the duration of the decelerated era, since a stronger coupling makes a shorter decelerated period.
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to "mimetic dark matter" or to "dark radiation" respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviours reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from $\Lambda$CDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Links to: arXiv, form interface, find, astro-ph, recent, 1602, contact, help (Access key information)
The extragalactic gamma-ray and neutrino emission may have a contribution from dark matter (DM) annihilations. In the case of discrepancies between observations and standard predictions, one could infer the DM pair annihilation cross section into cosmic rays by studying the shape of the energy spectrum. So far all analyses of the extragalactic DM signal have assumed the standard cosmological model (LambdaCDM) as the underlying theory. However, there are alternative DM scenarios where the number of low-mass objects is significantly suppressed. Therefore the characteristics of the gamma-ray and neutrino emission in these models may differ from LambdaCDM as a result. Here we show that the extragalactic isotropic signal in these alternative models has a similar energy dependence to that in LambdaCDM, but the overall normalisation is reduced. The similarities between the energy spectra combined with the flux suppression could lead one to misinterpret possible evidence for models beyond LambdaCDM as being due to CDM particles annihilating with a much weaker cross section than expected.
We explore the impact of a cosmic ray (CR) background generated by supernova explosions from the first stars on star-forming metal-free gas in a minihalo at $z\sim25$. Starting from cosmological initial conditions, we use the smoothed particle hydrodynamics code GADGET-2 to follow gas collapsing under the influence of a CR background up to densities of $n=10^{12}\,{\rm cm}^{-3}$, at which point we form sink particles. Using a suite of simulations with two sets of initial conditions and employing a range of CR background models, we follow each simulation for $5000\,$yr after the first sink forms. CRs both heat and ionise the gas, boosting ${\rm H}_2$ formation. Additional ${\rm H}_2$ enhances the cooling efficiency of the gas, allowing it to fulfil the Rees-Ostriker criterion sooner and expediting the collapse, such that each simulation reaches high densities at a different epoch. As it exits the loitering phase, the thermodynamic path of the collapsing gas converges to that seen in the absence of any CR background. By the time the gas approaches sink formation densities, the thermodynamic state of the gas is thus remarkably similar across all simulations. This leads to a robust characteristic mass that is largely independent of the CR background, of order $\sim$ a few $\times10\,{\rm M}_{\odot}$ even as the CR background strength varies by five orders of magnitude.
We present results of seven Suzaku mosaic observations (>200 ks) of the nearest non-cool core cluster, the Antlia Cluster, beyond its degree-scale virial radius (R_200) in its relaxed direction to the east. The temperature drops by a factor of three from ~2 keV near the center out to R_200, consistent with the scaled profiles of other clusters. Its pressure follows the universal profile. The density slope in its outskirts is significantly steeper than that of Virgo (a cool-core cluster with a similar temperature), but shallower than those of the massive clusters. The entropy (K) increases all the way out to R_200, consistent with the model predicted by a gravity heating-only mechanism in the outskirts. The enclosed gas mass fraction (f_gas) does not exceed the cosmic value out to 1.3 R_200. Thus, there is no evidence of significant gas clumping, electron-ion non-equipartition, or departure from the hydrostatic equilibrium (HSE) approximation that are suggested to explain the K and f_gas anomalies found in outskirts of some massive clusters. Compared to Virgo and two fossil groups with measurements out to R_200, which are all dynamically older than Antlia, the east direction is remarkably relaxed, in contrast to our expectations. We observe a diversity of gas properties among these low mass groups and we address the different gas properties found in group/cluster outskirts. We also present scaling relations for the gas fraction, entropy, and temperature (T_500) using 22 groups/clusters with published data in the literature. We find that the f_gas,200-T_500 relation has a power-law slope of 0.328+/-0.166 (0.168+/-0.221) for the sample with HSE (plus 3 weak lensing) mass measurements. The f_gas,200 is consistent with the cosmic value. The power-law slope of the K_200-T_500 relation is 0.638+/-0.205. The entropy deficit at R_200 cannot be fully accounted by the bias or deviation in f_gas.
We show that the black hole binary (BHB) coalescence rates inferred from the advanced LIGO (aLIGO) detection of GW150914 imply an unexpectedly loud GW sky at milli-Hz frequencies accessible to the evolving Laser Interferometer Space Antenna (eLISA), with several outstanding consequences. First, up to thousands of BHB will be individually resolvable by eLISA; second, millions of non resolvable BHBs will build a confusion noise detectable with signal-to-noise ratio of few to hundreds; third -- and perhaps most importantly -- up to hundreds of BHBs individually resolvable by eLISA will coalesce in the aLIGO band within ten years. eLISA observations will tell aLIGO and all electromagnetic probes weeks in advance when and where these BHB coalescences are going to occur, with uncertainties of <10s and <1deg^2. This will allow the pre-pointing of telescopes to realize coincident GW and multi-wavelength electromagnetic observations of BHB mergers. Time coincidence is critical because prompt emission associated to a BHB merger will likely have a duration comparable to the dynamical time-scale of the systems, and is only possible with low frequency GW alerts.
In this paper, we report our high-resolution ($0^{\prime\prime}.20\times0^{\prime\prime}.14$ or $\sim$$70\times49$ pc) observations of the CO(6-5) line emission, which probes warm and dense molecular gas, and the 434 $\mu$m dust continuum in the nuclear region of NGC 7130, obtained with the Atacama Large Millimeter Array (ALMA). The CO line and dust continuum fluxes detected in our ALMA observations are $1230\pm74$ Jy km s$^{-1}$ and $814\pm52$ mJy, respectively, which account for 100% and 51% of their total respective fluxes. We find that the CO(6-5) and dust emissions are generally spatially correlated, but their brightest peaks show an offset of $\sim$70 pc, suggesting that the gas and dust emissions may start decoupling at this physical scale. The brightest peak of the CO(6-5) emission does not spatially correspond to the radio continuum peak, which is likely dominated by an Active Galactic Nucleus (AGN). This, together with our additional quantitative analysis, suggests that the heating contribution of the AGN to the CO(6-5) emission in NGC 7130 is negligible. The CO(6-5) and the extinction-corrected Pa-$\alpha$ maps display striking differences, suggestive of either a breakdown of the correlation between warm dense gas and star formation at linear scales of $<$100 pc or a large uncertainty in our extinction correction to the observed Pa-$\alpha$ image. Over a larger scale of $\sim$2.1\,kpc, the double-lobed structure found in the CO(6-5) emission agrees well with the dust lanes in the optical/near-infrared images.
In the current epoch, one of the main mechanisms driving the growth of galaxy clusters is the continuous accretion of group-scale halos. In this process, the ram pressure applied by the hot intracluster medium on the gas content of the infalling group is responsible for stripping the gas from its dark-matter halo, which gradually leads to the virialization of the infalling gas in the potential well of the main cluster. Using deep wide-field observations of the poor cluster Hydra A/A780 with XMM-Newton and Suzaku, we report the discovery of an infalling galaxy group 1.1 Mpc south of the cluster core. The presence of a substructure is confirmed by a dynamical study of the galaxies in this region. A wake of stripped gas is trailing behind the group over a projected scale of 760 kpc. The temperature of the gas along the wake is constant at kT ~ 1.3 keV, which is about a factor of two less than the temperature of the surrounding plasma. We observe a cold front pointing westwards compared to the peak of the group, which indicates that the group is currently not moving in the direction of the main cluster, but is moving along an almost circular orbit. The overall morphology of the group bears remarkable similarities with high-resolution numerical simulations of such structures, which greatly strengthens our understanding of the ram-pressure stripping process.
The current accelerated expansion of the universe has been one of the most important fields in physics and astronomy since 1998. Many cosmological models have been proposed in the literature to explain this mysterious phenomenon. Since the nature and cause of the cosmic acceleration are still unknown, using model-independent approaches to study the evolution of the universe are welcome. One of the powerful model-independent approaches is the so-called cosmography. It only relies on the cosmological principle, without postulating any underlying theoretical model. However, there are several shortcomings in the usual cosmography. In the present work, we try to overcome these problems, and propose two new generalizations of cosmography inspired by Pad\'e approximant. We also confront them with the latest observational data by the help of a Markov chain Monte Carlo (MCMC) code emcee, and find that they work fairly well.
We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail and a method for the continuation of such cosmological evolutions beyond the singularity is developed.
The appealing properties of the Gauge-flation model at zeroth order in cosmological perturbation theory constitute a step ahead at cementing inflation on solid particle physics foundations; this, in turn, allows us to have an interesting connection between inflation and the physics of the subsequent evolution of the Universe. However, there are issues at the perturbative level which suggest a modification to the original model. As we want to be in agreement with the latest observations of Planck, we modify the model such that the new dynamics could produce a relation between the spectral index $n_{s}$ and the tensor-to-scalar ratio $r$ in agreement with the allowed parameter window. By including an identical mass term for each of the fields composing the system, we find an interesting dynamics among all the terms in the Lagrangian such that a successful inflationary period is still reproduced. It would indeed be the mass term the responsible for the expected successful modification of the $n_{s}$ vs. $r$ relation. As a first step, we study in this paper the model at zeroth order in cosmological perturbation theory, finding out the conditions for slow-roll inflation and an expression for the final amount of inflation as a function of the mass term. The numerical solution clearly reveals the impact of the mass term and leads us to conclude that the Gauge-flation, in its massive version, is still a good model that describes the inflationary evolution of the Universe.
The predictions of Standard model Higgs inflation are in excellent agreement with the Planck data, without the need for new fields. However, consistency of the theory requires the presence of (unknown) threshold corrections. These modify the running of the couplings, and thereby changes the shape of the inflationary potential. This raises the question how sensitive the CMB parameters are to the UV completion. We show that, due to a precise cancellation, the inflationary predictions are almost unaffected. This implies in general that one cannot predict the spectral index and tensor-to-scalar ratio from precise top and Higgs mass measurements at the LHC, nor can one probe effects of UV physics on the running.
I give a critical review of the holographic hypothesis, which posits that a universe with gravity can be described by a quantum field theory in fewer dimensions. I first recall how the idea originated from considerations on black hole thermodynamics and the so-called information paradox that arises when Hawking radiation is taken into account. String Quantum Gravity tried to solve the puzzle using the AdS/CFT correspondence, according to which a black hole in a 5-D anti-de Sitter space is like a flat 4-D field of particles and radiation. Although such an interesting holographic property, also called gauge/gravity duality, has never been proved rigorously, it has impulsed a number of research programs in fields as diverse as nuclear physics, condensed matter physics, general relativity and cosmology. I finally discuss the pros and cons of the holographic conjecture, and emphasizes the key role played by black holes for understanding quantum gravity and possible dualities between distant fields of theoretical physics.
Scalar particles coupled to the Standard Model fields through a disformal coupling arise in different theories, such as massive gravity or brane-world models. We will review the main phenomenology associated with such particles. Distinctive disformal signatures could be measured at colliders and with astrophysical observations. The phenomenological relevance of the disformal coupling demands the introduction of a set of symmetries, which may ensure the stability of these new degrees of freedom. In such a case, they constitute natural dark matter candidates since they are generally massive and weakly coupled. We will illustrate these ideas by paying particular attention to the branon case, since these questions arise naturally in brane-world models with low tension, where they were first discussed.
A class of vector-tensor theories arises naturally in the framework of quadratic gravity in spacetimes with linear vector distortion. Requiring the absence of ghosts for the vector field imposes an interesting condition on the allowed connections with vector distortion: the resulting one-parameter family of connections generalises the usual Weyl geometry with polar torsion. The cosmology of this class of theories is studied, focusing on isotropic solutions wherein the vector field is dominated by the temporal component. De Sitter attractors are found and inhomogeneous perturbations around such backgrounds are analysed. In particular, further constraints on the models are imposed by excluding pathologies in the scalar, vector and tensor fluctuations. Various exact background solutions are presented, describing a constant and an evolving dark energy, a bounce and a self-tuning de Sitter phase. However, the latter two scenarios are not viable under a closer scrutiny.
Links to: arXiv, form interface, find, astro-ph, recent, 1602, contact, help (Access key information)
We use the observed unresolved cosmic X-ray background (CXRB) in the soft 0.5-2 keV band to constrain the population of high redshift X-ray sources existing before the end of reionization. Because the nature of these sources is poorly understood, we consider hot gas, X-ray binaries and mini-quasars (i.e., sources with soft and hard X-ray spectra) as possible candidates. We show that all types of the considered sources naturally generate a soft band CXRB, but if they actually generate the observed background their efficiency in producing X-rays must be one-to-two orders of magnitude higher than what is normally assumed. We find that the efficiency of hard sources does not have to be increased as strongly as that of the soft ones in order to generate the observed background. In addition, we show that when models are normalized to the CXRB, cosmic heating occurs quite early, and in some cases X-rays become a significant driver of reionization competing with the UV photons, while the expected high-redshift 21-cm signal is reduced. Given the great uncertainty in the efficiency of early X-ray sources, the normalization to the CXRB yields an important upper limit on the effect that high-redshift X-ray sources can have on the thermal history of the Universe and on the 21-cm signal. For completeness, we also consider lower limits on the X-ray heating efficiency arising from recent upper limits on the 21-cm power spectrum. Weak heating would result in a strong 21-cm signal, which would be an easy target for radio telescopes.
We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favored $\Lambda$CDM cosmological model. It also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.
We investigate a constraint on reheating followed by alpha-attractor-type inflation (the E-model and T-model) from an observation of the spectral index n_s. When the energy density of the universe is dominated by an energy component with the cosmic equation-of-state parameter w_{re} during reheating, its e-folding number N_{re} and the reheating temperature T_{re} are bounded depending on w_{re}. When the reheating epoch consists of two phases, where the energy density of the universe is dominated by uniform inflaton field oscillations in the first phase and by relativistic non-thermalised particles in the second phase, we find a constraint on the e-folding number of the first oscillation phase, N_{sc}, depending the parameters of the inflaton potential. For the simplest perturbative reheating scenario, we find the lower bound for a coupling constant of inflaton decay in the E-model and T-model depending on the model parameters. We also find a constraint on the $\alpha$ parameter, \alpha\simgt 0.01, for the T-model and E-model when we assume a broad resonance reheating scenario.
Weak gravitational lensing is a powerful probe of cosmology and has emerged as a key probe for the Dark Universe. Up till now this science has been conducted mainly at optical wavelengths. Current upgraded and future radio facilities will provide greatly improved data that will allow lensing measurements to be made at these longer wavelengths. In this proceedings I show how the larger facilities such as the SKA can produce game changing cosmological measurements even compared to future optical telescopes. I will also discuss how radio surveys can also provide unique ways in which some of the most problematic systematic errors can be mitigated through the extra information that can be provided in the form of polarisation and rotational velocity measurements. I will also demonstrate the advantages to having overlapping optical and radio weak lensing surveys and how their cross-correlation leads to a cleaner extraction of the cosmological information. Key to the realisation of the great promise of radio weak lensing is the suitable measurements of galaxy shapes in the radio data, either from images or from the visibility data. I shall end with a description of the key issues related to this matter and the radioGREAT challenge which has been proposed to address them.
We study the challenges to detect the cosmic web at radio wavelengths with state-of-the-art cosmological simulations of extragalactic magnetic fields. The incoming generation of radio surveys operating at low frequency, like LOFAR, SKA-LOW and MWA will have the best chance to detect the large-scale, low surface brightness emission from the shocked cosmic web. The detected radio emission will enable to constrain the average magnetisation level of the gas in filaments and the acceleration efficiency of electrons by strong shocks. In case of detections, through statistical modelling (e.g. correlation functions) it will be possible to discriminate among competing scenarios for the magnetisation of large-scale structures (i.e. astrophysical versus primordial scenarios), making radio surveys an important probe of cosmic magnetogenesis.
Fast Radio Bursts have recently been used to place limits on Einstein's Equivalence Principle via observations of time delays between photons of different radio frequencies by \citet{wei15}. These limits on differential post-Newtonian parameters ($\Delta \gamma<2.52\times10^{-8}$) are the best yet achieved but still rely on uncertain assumptions, namely the relative contributions of dispersion and gravitational delays to the observed time delays and the distances to FRBs. Also very recently, the first FRB host galaxy has been identified, providing the first redshift-based distance estimate to FRB 150418 \citep{kea16}. Moreover, consistency between the \omegaigm\ estimate from FRB 150418 and \omegaigm~expected from $\Lambda$CDM models and WMAP observations leads one to conclude that the observed time delay for FRB 150418 is highly dominated by dispersion, with any gravitational delays small contributors. This points to even tighter limits on $\Delta \gamma$. In this paper, the technique of \citet{wei15} is applied to FRB 150418 to produce a limit of $\Delta \gamma < 1 - 2\times10^{-9}$, approximately an order of magnitude better than inferred by \citet{wei15}. Future substantial improvements in such limits will depend on accurately determining the contribution of individual ionized components to the total observed time delays for FRBs.
The likely association of a weak short gamma-ray burst observed by the Fermi GBM experiment with the gravitational wave detection GW150914 by the aLIGO instruments implies that self-accelerated Horndeski scalar-tensor theories cannot be linearly shielded. This breaks the dark degeneracy in the large-scale structure that limited a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must therefore manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration and show that its maximum likelihood yields a 2.4-sigma poorer fit to cosmological observations compared to a cosmological constant, which, although marginally still possible, questions the concept of cosmic acceleration from a genuine scalar-tensor modification of gravity.
In a previous paper, we pointed out that the gamma-ray source 3FGL J2212.5+0703 shows evidence of being spatially extended. If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo. With this prospect in mind, we scrutinize the gamma-ray emission from this source, finding that it prefers a spatially extended profile over that of a single point-like source with 5.1 sigma statistical significance. We also use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects. We argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky. In the case of 3FGL J2212.5+0703, a model with a second gamma-ray point source at the location of a known BZCAT/CRATES radio source yields fits that are comparable in quality to those obtained for a single extended source. If 3FGL J2212.5+0703 is a dark matter subhalo, it would imply that dark matter particles have a mass of ~18-33 GeV and an annihilation cross section on the order of sigma v ~ 10^-26 cm^3/s (for the representative case of annihilations to bb), similar to the values required to generate the Galactic Center gamma-ray excess.
In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in pinpointing their celestial coordinates. Here we present the discovery of a fast radio burst and the identification of a fading radio transient lasting $\sim 6$ days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be $z=0.492\pm0.008$. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionised baryons in the intergalactic medium of $\Omega_{\mathrm{IGM}}=4.9 \pm 1.3\%$, in agreement with the expectation from WMAP, and including all of the so-called "missing baryons". The $\sim6$-day transient is largely consistent with a short gamma-ray burst radio afterglow, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting there are at least two classes of bursts.
The propagation of very high energy gamma-rays ($E>100$~GeV) over cosmological distances is suppressed by pair-production processes with the ubiquitous extra-galactic soft photon background, mainly in the optical to near infra-red. The detailed spectroscopy of gamma-ray emitting blazars has revealed the signature of this absorption process leading to a meaningful measurement of the background photon field which is linked to the star-forming history of the universe. Deviations from the expected absorption have been claimed in the past. Here the status of the observations is summarized, an update on the search for the persisting anomalous transparency is given and discussed.
We give a basic introduction to ghost-free nonlinear theories involving massive spin-2 fields, focussing on bimetric theory. After motivating the construction of such models from field theoretical considerations, we review the linear theories for massive and massless spin-2 fluctuations propagating on maximally symmetric backgrounds. The structure of general nonlinear spin-2 interactions is explained before we specialise to the ghost-free case. We review the maximally symmetric solutions of bimetric theory, its mass spectrum and the parameter limit which brings the theory close to general relativity. Finally we discuss applications of bimetric theory to cosmology with particular emphasis on the role of the general relativity limit.
Dark Matter (DM) models providing possible alternative solutions to the small-scale crisis of standard cosmology are nowadays of growing interest. We consider DM interacting with light hidden fermions via well motivated fundamental operators showing the resultant matter power spectrum is suppressed on subgalactic scales within a plausible parameter region. Our basic description of evolution of cosmological perturbations relies on a fully consistent first principle derivation of a perturbed Fokker-Planck type equation, generalizing existing literature. The cosmological perturbation of the Fokker-Planck equation is presented for the first time in two different gauges, where the results transform into each other according to the rules of gauge transformation. Furthermore, our focus lies on a derivation of a broadly applicable and easily computable collision term showing important phenomenological differences to other existing approximations. As one of the main results and concerning the small-scale crisis, we show the equal importance between vector and scalar boson mediated interaction between DM and light fermions.
Links to: arXiv, form interface, find, astro-ph, recent, 1602, contact, help (Access key information)
The aim of this paper is the study of thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB) and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the thermo field dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, non trivial contribution to the energy of the universe is given by particles of masses of the order of $10^{-4}eV$ compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.
We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential $\psi$ that lead on large scales to the correct, fully relativistic description of density perturbations in the Newtonian gauge. We note that the relativistic constraint equation for $\psi$ can be cast as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe. Exploiting the weak time evolution of $\psi$ in all regimes of interest, this equation can be further accurately approximated as a Helmholtz equation, with an effective relativistic 'screening' scale $\ell$ related to the Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian gauge by replacing Poisson's equation with this Helmholtz equation, involving a trivial change in the Green's function kernel. Our results also motivate a simple, approximate (but very accurate) gauge transformation - $\delta_{\rm N}(\mathbf{k}) \approx \delta_{\rm sim}(\mathbf{k})\times (k^2+\ell^{-2})/k^2$ - to convert the density field $\delta_{\rm sim}$ of standard collisionless N-body simulations (initialised in the comoving synchronous gauge) into the Newtonian gauge density $\delta_{\rm N}$ at arbitrary times. A similar conversion can also be written in terms of particle positions. Our results can be interpreted in terms of a Jeans stability criterion induced by the expansion of the Universe. The appearance of the screening scale $\ell$ in the evolution of $\psi$, in particular, leads to a natural resolution of the 'Jeans swindle' in the presence of super-horizon modes.
We search for bulk motions in the Intra Cluster Medium (ICM) of massive clusters showing evidence of an ongoing or a recent major merger, with spatially resolved spectroscopy in {\sl Chandra} CCD data. We identify a sample of 6 merging clusters with >150 ks {\sl Chandra} exposure in the redshift range 0.1 < z < 0.3. By performing X-ray spectral analysis of projected ICM regions selected accordingly to their surface brightness, we obtain the projected redshift maps for all these clusters. After performing a robust analysis of the statistical and systematic uncertainties in the measured X-ray redshift $z_{\rm X}$, we check whether the global $z_{\rm X}$ distribution differs from that expected when the ICM is at rest. We find evidence of significant bulk motions at more than 3 $\sigma$ in A2142 and A115, and less than 2 $\sigma$ in A2034 and A520. Focusing on single regions, we identify significant localized velocity differences in all the merger clusters. We also perform the same analysis on 2 relaxed clusters with no signatures of recent mergers, finding no signs of bulk motions, as expected. Our results indicate that deep {\sl Chandra} CCD data enable us to identify the presence of bulk motions at the level of $v_{\rm BM} > 1000$ km/s in the ICM of massive merging clusters at 0.1 < z < 0.3. Despite the CCD spectral resolution is not sufficient for a detailed analysis of the ICM dynamics, {\sl Chandra} CCD data constitute a key diagnostic tool complementary to X-ray bolometers onboard future X-ray missions.
We introduce the Evolution of 21-cm Structure (EOS) project: providing periodic, public releases of the latest cosmological 21-cm simulations. 21-cm interferometry is set to revolutionize studies of the Cosmic Dawn (CD) and epoch of reionization (EoR), eventually resulting in 3D maps of the first billion years of our Universe. Progress will depend on sophisticated data analysis pipelines, which are in turn tested on large-scale mock observations. Here we present the 2016 EOS data release, consisting of the largest (1.6 Gpc on side with a 1024^3 grid), public 21-cm simulations of the CD and EoR. We include calibrated, sub-grid prescriptions for inhomogeneous recombinations and photo-heating suppression of star formation in small mass galaxies. We present two simulation runs that approximately bracket the contribution from faint unseen galaxies. From these two extremes, we predict that the duration of reionization (defined as a change in the mean neutral fraction from 0.9 to 0.1) should be between 2.7 < Delta z < 5.7. The large-scale 21-cm power during the advanced EoR stages can be different by up to a factor of ~10, depending on the model. This difference has a comparable contribution from: (i) the typical bias of sources; and (ii) a more efficient negative feedback in models with an extended EoR driven by faint galaxies. We also make detectability forecasts. With a 1000h integration, HERA and SKA1-low should achieve a signal-to-noise of ~few-hundreds throughout the EoR/CD, while in the maximally optimistic scenario of perfect foreground cleaning, all instruments should make a statistical detection of the cosmic signal. We also caution that our ability to clean foregrounds determines the relative performance of narrow/deep vs. wide/shallow surveys expected with SKA1. Our 21-cm power spectra, simulation outputs and visualizations are publicly available.
The neutral intergalactic medium in the post reionization epoch allows us to study cosmological structure formation through the observation of the redshifted 21 cm signal and the Lyman-alpha forest. We investigate the possibility of measuring the total neutrino mass through the suppression of power in the matter power spectrum. We investigate the possibility of measuring the neutrino mass through its imprint on the cross-correlation power spectrum of the 21-cm signal and the Lyman-alpha forest. We consider a radio-interferometric measurement of the 21 cm signal with a SKA1-mid like radio telescope and a BOSS like Lyman-alpha forest survey. A Fisher matrix analysis shows that at the fiducial redshift z = 2.5, a 10,000 hrs 21-cm observation distributed equally over 25 radio pointings and a Lyman-alpha forest survey with 30 quasars lines of sights in $1 {\rm deg}^2$, allows us to measure $\Omega_{\nu}$ at a $3.67 \%$ level. A total of 25,000 hrs radio-interferometric observation distributed equally over 25 radio pointings and a Lyman-alpha survey with $\bar n = 60 {\rm deg}^{-2}$ will allow $\Omega_{\nu}$ to be measured at a $ 2.46 \%$ level. This corresponds to a measurement of $\sum m_{\nu}$ at the precision of $(0.1 \pm 0.012) \rm eV$ and $f_{\nu}= \Omega_{\nu}/ \Omega_{m}$ at $2.73 \%$.
After Planck 2013, a broad class of inflationary models called \alpha-attractors was developed which has universal observational predictions. For small values of the parameter \alpha, the models have good consistency with the recent CMB data. In this work, we first calculate analytically (and verify numerically) the predictions of these models for spectral index, n_s and tensor-to-scalar ratio, r and then using BICEP2/Keck 2015 data we impose constraints on \alpha-attractors. Then, we study the reheating in \alpha-attractors. The reheating temperature, T_{re} and the number of e-folds during reheating, N_{re} are calculated as functions of n_s. Using these results, we determine the range of free parameter \alpha for two clasees of \alpha-attractors which satisfy the constraints of recent CMB data.
The thermal Sunyaev-Zeldovich effect (tSZ) is a powerful probe to study clusters of galaxies and is complementary with respect to X-ray, lensing or optical observations. Previous arcmin resolution tSZ observations ({\it e.g.} SPT, ACT and Planck) only enabled detailed studies of the intra-cluster medium morphology for low redshift clusters ($z < 0.2$). Thus, the development of precision cosmology with clusters requires high angular resolution observations to extend the understanding of galaxy cluster towards high redshift. NIKA2 is a wide-field (6.5 arcmin field of view) dual-band camera, operated at $100 \ {\rm mK}$ and containing $\sim 3300$ KID (Kinetic Inductance Detectors), designed to observe the millimeter sky at 150 and 260 GHz, with an angular resolution of 18 and 12 arcsec respectively. The NIKA2 camera has been installed on the IRAM 30-m telescope (Pico Veleta, Spain) in September 2015. The NIKA2 tSZ observation program will allow us to observe a large sample of clusters (50) at redshift ranging between 0.5 and 1. As a pathfinder for NIKA2, several clusters of galaxies have been observed at the IRAM 30-m telescope with the NIKA prototype to cover the various configurations and observation conditions expected for NIKA2.
We perform large-scale field theoretical simulations in expanding universe to characterize a network of strings that can form composed bound states. The network consists of two copies of Abelian Higgs strings (which we label $p$ and $q$, respectively) coupled via a potential term to give $pq$ bound states. The simulations are performed using two different kinds of initial conditions: the first one with a network of $p$- and $q$-strings, and the second one with a network of $q$- and $pq$-strings. This way, we start from two opposite situations: one with no initial $pq$-strings, and one with a large initial number of $pq$-strings. We find that in both cases the system scales, and in both cases the system prefers to have a low fraction of $pq$-strings. This is somewhat surprising in the case for the second type of conditions, showing that the unzipping mechanism is very efficient. We also find hints that both initial conditions tend to asymptote to a common configuration, though we would need a larger dynamical range to confirm it. The average velocities of the different types of strings in the network have also been explored for the first time.
We analyse the evolution of scalar field dark energy in the spherical halos of dark matter at the late stages of formation of gravitationally bound systems in the expanding Universe. The dynamics of quintessential dark energy at the center of dark matter halo strongly depends on the value of effective sound speed $c_s$ (in units of speed of light). If $c_s\sim1$ (classical scalar field) then the dark energy in the gravitationally bound systems is only slightly perturbed and its density is practically the same as in cosmological background. The dark energy with small value of sound speed ($c_s<0.1$), on the contrary, is important dynamical component of halo at all stages of their evolution: linear, non-linear, turnaround, collapse, virialization and later up to current epoch. These properties of dark energy can be used for constraining the value of effective sound speed $c_s$ by comparison the theoretical predictions with observational data related to the large scale gravitationally bound systems.
In this work, a correspondence between the interacting holographic, new agegraphic dark energy models, the quintessence, tachyon and K-essence scalar field in an anisotropic universe are investigated. The both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting holographic/new agegraphic dark energy model are reconstructed. Our numerical result show the effects of the interaction and anisotropic on the evolutionary behaviour the holographic and new agegraphic scalar field models
`Direct collapse black holes' (DCBHs) provide possible seeds for supermassive black holes that exist at redshifts as high as z~7. We study Lyman Alpha (Lya) radiative transfer through simplified representations of the DCBH-scenario. We find that gravitational heating of the collapsing cloud gives rise to a Lya cooling luminosity of up to ~ 1e38(M_gas/1e6 Msun)^2 erg/s. The Lya production rate can be significantly larger during the final stages of collapse, but collisional deexcitation efficiently suppresses the emerging Lya flux. Photoionization by a central source boosts the Lya luminosity to L~1e43(M_BH/1e6 M_sun) erg/s during specific evolutionary stages of the cloud, where M_BH denotes the mass of the black hole powering this source. We predict that the width and velocity off-set of the Lya spectral line range from a few tens to few thousands km/s, depending sensitively on the evolutionary state of the cloud. We also compare our predictions to observations of CR7 (Sobral et al. 2015), a luminous Lya emitter at z~7, which is potentially associated with a DCBH. If CR7 is powered by a black hole, then its Lya flux alone requires that M_BH> 1e7 M_sun, which exceeds the mass of DCBHs when they first form. The observed width of the Lya spectrum favors the presence of only a low column density of hydrogen, log [N_HI/cm^-2]~19-20. The shape of the Lya spectrum indicates that this gas is outflowing. These requirements imply that if CR7 harbors a DCBH, then the physical conditions that enabled its formation have been mostly erased, which is in agreement with theoretical expectations.
In this paper we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large Scale Polarization Explorer (LSPE) for the Cosmic Microwave Background (CMB) polarization. This study is motivated by the fact that maximizing the sensitivity of TES bolometers, under the augmented background due to the multi-mode design, requires a non trivial choice of detector parameters. We evaluate the best parameter combination taking into account scanning strategy, noise constraints, saturation power and operating temperature of the cryostat during the flight.
We describe the coupling of matter fields to an inflationary sector of supergravity, the inflaton $\Phi$ and a stabilizer $S$, in models where the Kahler potential has a flat inflaton direction. Such models include, in particular, advanced versions of the hyperbolic $\alpha$-attractor models with a flat inflaton direction Kahler potential, providing a good fit to the observational data. If the superpotential is at least quadratic in the matter fields $U^{i}$, with restricted couplings to the inflaton sector, we prove that under certain conditions: i) The presence of the matter fields does not affect a successful inflationary evolution. ii) There are no tachyons in the matter sector during and after inflation. iii) The matter masses squared are higher than $3H^2$ during inflation. The simplest class of theories satisfying all required conditions is provided by models with a flat direction Kahler potential, and with the inflaton $\Phi$ and a stabilizer $S$ belonging to a hidden sector, so that matter fields have no direct coupling to the inflationary sector in the Kahler potential and in the superpotential.
A new paradigm for inflationary model building appeared recently, in which inflationary observables are determined by the structure of a pole in the inflaton kinetic term rather than the shape of the inflaton potential. We comprehensively study this framework with an arbitrary order of the pole taking into account possible additional poles in the kinetic term or in the potential. Depending on the setup, the canonical potential becomes the form of hilltop or plateau models, variants of natural inflation, or monomial or polynomial chaotic inflation. We demonstrate attractor behavior of these models and compute corrections from the additional poles to the inflationary observables.
Aims. We investigate the environmental dependence of the stellar mass
fundamental plane (FP$_*$) using the early-type galaxy sample from the Sloan
Digital Sky Survey Data Release 7 (SDSS DR7).
Methods. The FP$_*$ is calculated by replacing the luminosity in the
fundamental plane (FP) with stellar mass. Based on the SDSS group catalog, we
characterize the galaxy environment according to the mass of the host dark
matter halo and the position in the halo. In halos with the same mass bin, the
color distributions of central and satellite galaxies are different. Therefore,
we calculate FP$_*$ coefficients of galaxies in different environments and
compare them with those of the FP to study the contribution of the stellar
population.
Results. We find that coefficient $a$ of the FP$_*$ is systematically larger
than that of the FP, but coefficient $b$ of the FP$_*$ is similar to the FP.
Moreover, the environmental dependence of the FP$_*$ is similar to that of the
FP. For central galaxies, FP$_*$ coefficients are significantly dependent on
the halo mass. For satellite galaxies, the correlation between FP$_*$
coefficients and the halo mass is weak.
Conclusions. We conclude that the tilt of the FP is not primarily driven by
the stellar population.
We study H-alpha, far- and near-ultraviolet luminosity functions (LF) of the sample of 795 luminous compact star-forming galaxies with z<0.65. The parameters of optimal functions for LFs are obtained using the maximum likelihood method and the accuracy of fitting is estimated with the chi-squared method. We find that these LFs cannot be reproduced by the Schechter function because of an excess of very luminous galaxies. On the other hand, the Saunders function, the log-normal distribution and some new related functions are good approximations of LFs. The fact that LFs are not reproduced by the Schechter function can be explained by the propagating star formation. This may result in an excess of luminous starbursts with the mass of a young stellar population above 2*10^8 M_Sun as compared to the LF of the quiescent galaxies. The most luminous compact galaxies are characterised by H-alpha luminosities of > 5*10^{42} erg/s and star formation rates of > 40 M_Sun/yr.
The EDGES experiment strives to detect the the sky-average brightness temperature from the $21$-cm line emitted during the Epoch of Reionization (EoR) in the redshift range $14 \gtrsim z \gtrsim 6$. To probe this signal, EDGES conducts single-antenna measurements in the frequency range $\sim 100-200$ MHz from the Murchison Radio-astronomy Observatory in Western Australia. In this paper we describe the current strategy for calibration of the EDGES instrument and, in particular, of its receiver. The calibration involves measuring accurately modeled passive and active noise sources connected to the receiver input in place of the antenna. We model relevant uncertainties that arise during receiver calibration and propagate them to the calibrated antenna temperature using a Monte Carlo approach. Calibration effects are isolated by assuming that the sky foregrounds and the antenna beam are perfectly known. We find that if five polynomial terms are used to account for calibration systematics, most of the calibration measurements conducted for EDGES produce residuals of $1$ mK or less at $95\%$ confidence. The largest residuals are due to uncertainty in the antenna and receiver reflection coefficients at levels below $20$ mK when observing a low-foreground region. These residuals could be reduced by restricting the band to a smaller frequency range motivated by tighter reionization priors. They could also be reduced by 1) improving the accuracy in reflection measurements, especially their phase, 2) decreasing the changes with frequency of the antenna reflection phase, and 3) improving the impedance match at the antenna-receiver interface.
We revisit the velocity-dependent one-scale model for topological defect evolution, and present a new alternative formulation in terms of a physical (rather than invariant) characteristic length scale. While the two approaches are equivalent (as we explicitly demonstrate), the new one is particularly relevant when studying the evolution of ultra-relativistic defects. Moreover, a comparison of the two provides further insight on the interpretation of the model's two phenomenological parameters, $c$ related to energy losses and $k$ related to the curvature of the defects. As an illustration of the relevance of the new formulation, we use it to study the evolution of cosmic string and domain wall networks in contracting universes. We show that these networks are ultra-relativistic and conformally contracted, with the physical length scale behaving as $L_{ph}\propto a$ and the density as $\rho\propto a^{-4}$ (as in a radiation fluid) in both cases. On the other hand the velocity and invariant length respectively behave as $(\gamma v)\propto a^{-n}$ and $L_{inv}\propto a^{\frac{4}{4-n}}$, where $n$ is the number of dimensions of the defect's worldsheet. Finally we also study an alternative friction-dominated scenario and show that the stretching and Kibble regimes identified in the case of expanding universes can also occur for contracting ones.
Links to: arXiv, form interface, find, astro-ph, recent, 1602, contact, help (Access key information)