Theories of massive gravity with one or two dynamical metrics generically lack stable and observationally-viable cosmological solutions that are distinguishable from $\Lambda$CDM. We consider an extension to trimetric gravity, with three interacting spin-2 fields which are not plagued by the Boulware-Deser ghost. We systematically explore every combination with two free parameters in search of background cosmologies that are competitive with $\Lambda$CDM. For each case we determine whether the expansion history satisfies viability criteria, and whether or not it contains beyond-$\Lambda$CDM phenomenology. Among the many models we consider, there are only three cases that seem to be both viable and distinguishable from standard cosmology. One of the models has only one free parameter and displays a crossing from above to below the phantom divide. The other two provide scaling behavior, although they contain future singularities that need to be studied in more detail. These models possess interesting features that make them compelling targets for a full comparison to observations of both cosmological expansion history and structure formation.
The perturbative approach to structure formation has recently received a lot of attention in the literature. In such setups the final predictions for observables like the power spectrum is often derived under additional approximations such as a simplified time dependence. Here we provide all-order perturbative integral solutions for density and velocity fields in generalized cosmologies. We go beyond the standard results based on extending the EdS-like approximations. As an illustrative example, we apply our findings to the calculation of the one-loop power spectrum. We find corrections close to $1\%$ in the mildly non-linear regime of $\Lambda$CDM cosmologies for the density power spectrum, while in the case of the density-momentum power spectrum effects can reach up to $1.5\%$ for $k\sim 0.2h/$Mpc.
The recent detection of the binary black hole merger GW150914 demonstrates the existence of black holes more massive than previously observed in X-ray binaries in our Galaxy. This article explores different scenarios of black hole formation in the context of self-consistent cosmic chemical evolution models that simultaneously match observations of the cosmic star formation rate, optical depth to reionization and metallicity of the interstellar medium. This framework is used to calculate the mass distribution of merging black hole binaries and its evolution with redshift. We also study the implications of the black hole mass distribution for the stochastic gravitational wave background from mergers and from core collapse events.
Scalar dark energy fields that couple to the Standard Model can give rise to observable signatures at the LHC. In this work we show that $t\bar t+$missing energy and mono-jet searches are suitable probes in the limit where the dark energy scalar is stable on collider distances. We discuss the prospects of distinguishing the dark energy character of new physics signals from dark matter signatures and the possibility of probing the self-interactions of the dark energy sector.
The infrared dynamics of a light, minimally coupled scalar field in de Sitter spacetime with Ricci curvature $R=12H$, averaged over horizon sized regions of physical volume $V_H=\frac{4\pi}{3}\left(\frac{1}{H}\right)^3$, can be interpreted as Brownian motion in a medium with de Sitter temperature $T_{DS}=\frac{\hbar H}{2\pi}$. We demonstrate this by employing path integral techniques, deriving the effective action of scalar field fluctuations with wavelengths larger than the de Sitter curvature radius and generalizing Starobinsky's seminal results on stochastic inflation. The effective action describes stochastic dynamics and the fluctuating force drives the field to an equilibrium characterized by a thermal Gibbs distribution at temperature $T_{DS}$ which corresponds to a de Sitter invariant state. Hence, approach towards this state can be interpreted as thermalization. We show that the stochastic kinetic energy of the coarse-grained description corresponds to the norm of $\partial_\mu\phi$ and takes a well defined value per horizon volume $\frac{1}{2}\langle \left(\nabla\phi\right)^2\rangle = - \frac{1}{2}T_{DS}/V_H$. This approach allows for the non-perturbative computation of the de Sitter invariant stress energy tensor $\langle T_{\mu\nu} \rangle$ for an arbitrary scalar potential.
Stochastic effects in multi-field inflationary scenarios are investigated. A hierarchy of diffusion equations is derived, the solutions of which yield moments of the numbers of inflationary $e$-folds. Solving the resulting partial differential equations in multi-dimensional field space is more challenging than the single-field case. A few tractable examples are discussed, which show that the number of fields is, in general, a critical parameter. When more than two fields are present for instance, the probability to explore arbitrarily large-field regions of the potential, otherwise inaccessible to single-field dynamics, becomes non-zero. In some configurations, this gives rise to an infinite mean number of $e$-folds, regardless of the initial conditions. Another difference with respect to single-field scenarios is that multi-field stochastic effects can be large even at sub-Planckian energy. This opens interesting new possibilities for probing quantum effects in inflationary dynamics, since the moments of the numbers of $e$-folds can be used to calculate the distribution of primordial density perturbations in the stochastic-$\delta N$ formalism.
We revisit the WIMP-type dark matter scattering on electrons that results in atomic ionization, and can manifest itself in a variety of existing direct-detection experiments. Unlike the WIMP-nucleon scattering, where current experiments probe typical interaction strengths much smaller than the Fermi constant, the scattering on electrons requires a much stronger interaction to be detectable, which in turn requires new light force carriers. We account for such new forces explicitly, by introducing a mediator particle with scalar or vector couplings to dark matter and to electrons. We then perform state of the art numerical calculations of atomic ionization relevant to the existing experiments. Our goals are to consistently take into account the atomic physics aspect of the problem (e.g., the relativistic effects, which can be quite significant), and to scan the parameter space: the dark matter mass, the mediator mass, and the effective coupling strength, to see if there is any part of the parameter space that could potentially explain the DAMA modulation signal. While we find that the modulation fraction of all events with energy deposition above 2 keV in NaI can be quite significant, reaching ~50%, the relevant parts of the parameter space are excluded by the XENON10 and XENON100 experiments.
This article is an exploration of gamma ray signals of annihilating Higgs-portal singlet scalar and vector dark matter. Gamma ray signals are considered in the context of contributions from annihilations of singlets in the galactic halo to the Isotropic Gamma Ray Background (IGRB), in the context of the Galactic center excess, and in the context of observations of dwarf spheroidal galaxies. We find that Higgs-portal singlets of both species with a mass of $~$65 GeV can explain the Galactic center excess with reasonable accuracy, but that this mass range is in tension with current direct detection bounds. We also find that singlets in the mass range of 250-1000 GeV are consistent with both the Fermi-LAT IGRB observations and direct detection bounds. Additionally, bounds from gamma ray observations of the dwarf spheroidal galaxy Segue I are translated into bounds on the Higgs-portal couplings.
Links to: arXiv, form interface, find, astro-ph, recent, 1604, contact, help (Access key information)
We use cosmological luminosity distance ($d_L$) from the JLA Type Ia supernovae compilation and angular-diameter distance ($d_A$) based on BOSS and WiggleZ baryon acoustic oscillation measurements to test the distance-duality relation $\eta \equiv d_L / [ (1 + z)^2 d_A ] = 1$. The $d_L$ measurements are matched to $d_A$ redshift by a statistically-motivated compression procedure. By means of Monte Carlo methods, non-trivial and correlated distributions of $\eta$ can be explored in a straightforward manner without resorting to a particular evolution template $\eta(z)$. Assuming Planck cosmological parameter uncertainty, we find 5% constraints in favor of $\eta = 1$, consistent with the weaker 7--10% constraints obtained using WiggleZ data. These results stand in contrast to previous claims that $\eta < 1$ has been found close to or above $1\sigma$ level.
It was shown by (Nakamura et al. 1997) and (Sasaki et al. 2016) that primordial black holes (PBHs) binaries can form effectively at the cosmological stage of radiation dominance, and the merge of PBHs in pairs can explain the gravitational wave burst GW150914. In this paper, the model is re-examined by considering numerically the evolution of the PBHs orbit. We show that the calculations of (Nakamura et al. 1997) and (Sasaki et al. 2016) have rather high accuracy. However, evolution of the orbit gives additional factors. As a result, the rate of gravitational bursts is about five times higher than (Nakamura et al. 1997) and (Sasaki et al. 2016) predicted. The merge rate of PBHs binaries matches the LIGO data if the PBHs constitute f~10^-4-10^-3 fraction of dark matter. We discuss the effect of inflationary density perturbations which produce additional tidal forces on the binaries. The PBH binaries can form also at the stage of matter domination inside small dark matter halos. Under the influence of dynamic friction the PBHs can move to the halos centers and merge. These effects can change the resultant rate of gravitational bursts.
Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al (2013) has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ($w<-1$) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.
The comparison of the orientations of the optical-polarization vectors of quasars that are separated by billions of light-years has led to the discovery that they are aligned instead of pointing in random directions as expected. This discovery has been confirmed and the significance of the correlations enhanced. We devoted this doctoral thesis to an in-depth analysis of these striking observations that imply Gpc-scale correlations. We developed a new and independent statistical method which is dedicated to the study and the characterization of the distribution of the orientations of vectorial quantities that are perpendicular to the lines of sight of a set of sources spread on the celestial sphere. This allowed us to confirm independently the large-scale polarization-vector alignments and to refine the limits of the alignment regions through an unbiased characterization of the signal. We also provided a detailed analysis of a large sample of polarization measurements made at radio wavelengths in which similar polarization-vector alignments are found. The regions of alignments of the quasar-radio-polarization vectors are found to be close to these of optical alignments. This might suggest that quasar axes themselves could be aligned. Based on new observations, we further analyzed the optical-polarization vectors of quasars that belong to two large groups. Taking into account the link between the optical-polarization vectors and the morphologies of the quasars, we found that the spin axes of the quasars align with the axis of the large-quasar group to which they belong. We reinforced our findings using radio-polarization data and a large sample of large-quasar groups. We additionally found that the preferred orientations of the quasar spin axes depend on the richness of their host groups.
Parity violating physics beyond the standard model of particle physics induces a rotation of the linear polarization of photons. This effect, also known as cosmological birefringence (CB), can be tested with the observations of the cosmic microwave background (CMB) anisotropies which are linearly polarized at the level of $5-10\%$. In particular CB produces non-null CMB cross correlations between temperature and B mode-polarization, and between E- and B-mode polarization. Here we study the properties of the so called D-estimators, often used to constrain such an effect. After deriving the framework of both frequentist and Bayesian analysis, we discuss the interplay between birefringence and weak-lensing, which, albeit parity conserving, modifies pre-existing TB and EB cross correlation.
The B-mode polarization of the cosmic microwave background (CMB) provides a unique window into tensor perturbations from inflationary gravitational waves. Survey effects complicate the estimation and description of the power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions without the power spectrum as an intermediate step, but it does not have the large suite of tests available to power spectral methods. Searches for primordial B-modes must rigorously reject and rule out contamination. Many forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment subsets. The cross-power and the power spectrum of the difference of subset maps provide approaches to reject and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled in the likelihood produces parameter-dependent bias and complicates the interpretation of the difference map. We describe a null test that consistently weights the difference map. Excess variance should either be explicitly modeled in the covariance, or removed through reprocessing the data.
This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.
We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interactions of dark matter with matter, as well as dark matter self-interactions. We briefly discuss the implications of these theories at colliders, especially the (potentially novel) phenomenology of dark mesons in various regimes of the models. Throughout the review, we highlight the use of lattice calculations in the study of these strongly-coupled theories, to obtain precise quantitative predictions and new insights into the dynamics.
The Fundamental Plane (FP) describes the relation between stellar mass, size, and velocity dispersion of elliptical galaxies; the Faber-Jackson relation (FJR) is its projection onto {mass, velocity} space. In this work we redeploy and expand the framework of Desmond & Wechsler (2015) to ask whether abundance matching-based $\Lambda$CDM models that have shown success in matching the spatial distribution of galaxies are also capable of explaining key properties of the FJR and FP, including their scatter. Within our framework, agreement with the normalisation of the FJR requires haloes to expand in response to disc formation. We find that the tilt of the FP may be explained by a combination of the observed non-homology in galaxy structure and the variation in mass-to-light ratio produced by abundance matching with a universal IMF, provided that the anisotropy of stellar motions is taken into account. However, the predicted scatter around the FP is considerably increased by situating galaxies in cosmologically-motivated haloes due to variations in halo properties at fixed stellar mass, and appears to exceed that of the data. This implies that additional correlations between galaxy and halo variables may be required to fully reconcile these models with elliptical galaxy scaling relations.
In this study, we investigate a scenario that dark matter (DM) has only gravitational interaction. In the framework of effective field theory of gravity, we find that DM is still stable at tree level even if there is no symmetry to protect its longevity, but could decay into standard model particles due to gravitational loop corrections. The radiative corrections can lead to both higher- and lower-dimensional effective operators. We also first explore how DM can be produced in the early universe. Through gravitational interaction at high temperature, DM is then found to have mass around TeV $\lesssim m_X \lesssim 10^{11}$GeV to get the right relic abundance. When DM decays, it mostly decays into gravitons, which could be tested by current and future CMB experiments. We also estimate the resulting fluxes for cosmic rays, gamma-ray and neutrino.
We review a non-standard Big-Bang nucleosynthesis (BBN) scenario within the minimal supersymmetric standard model, and propose an idea to solve both ${}^{7}$Li and ${}^{6}$Li problems. Each problem is a discrepancy between the predicted abundance in the standard BBN and observed one. We focus on the stau, a supersymmetric partner of tau lepton, which is a long-lived charged particle when it is the next lightest supersymmetric particle and is degenerate in mass with the lightest supersymmetric particle. The long-lived stau forms a bound state with a nucleus, and provide non-standard nuclear reactions. One of those, the internal conversion process, accelerates the destruction of ${}^{7}$Be and ${}^{7}$Li, and leads to a solution to the ${}^{7}$Li problem. On the other hand, the bound state of the stau and ${}^{4}$He enhances productions of n, d, t, and ${}^{6}$Li. The over-production of ${}^{6}$Li could solve the ${}^{6}$Li problem. While, the over-productions of d and t could conflict with observations, and the relevant parameter space of the stau is strictly constrained. We therefore need to carefully investigate the stau-${}^{4}$He bound state to find a condition of solving the ${}^{6}$Li problem. The scenario of the long-lived stau simultaneously and successfully fit the abundances of light elements (d, t, ${}^{3}$He, ${}^{4}$He, ${}^{6}$Li, and ${}^{7}$Li) and the neutralino dark matter to the observed ones. Consequently parameter space both of the stau and the neutralino is determined with excellent accuracy.
We consider spherically symmetric space-times in GR under the unconventional assumptions that the spherical radius $r$ is either a constant or has a null gradient in the $(t,x)$ subspace orthogonal to the symmetry spheres (i.e., $(\partial r)^2 = 0$). It is shown that solutions to the Einstein equations with $r = \rm const$ contain an extra (fourth) spatial or temporal Killing vector and thus satisfy the Birkhoff theorem under an additional physically motivated condition that the lateral pressure is functionally related to the energy density. This leads to solutions that directly generalize the Bertotti-Robinson, Nariai and Plebanski-Hacyan solutions. Under similar conditions, solutions with $(\partial r)^2 = 0$ but $r\ne\rm const$, supported by an anisotropic fluid, contain a null Killing vector, which again indicates a Birkhoff-like behavior of the system. Similar space-times supported by pure radiation (in particular, a massless radiative scalar field) contain a null Killing vector without additional assumptions, which leads to one more extension of the Birkhoff theorem. Exact radial wave solutions have been found (i) with an anisotropic fluid and (ii) with a gas of radially directed cosmic strings (or a "string cloud") combined with pure radiation. Furthermore, it is shown that a perfect fluid with isotropic pressure and a massive or self-interacting scalar field cannot be sources of gravitational fields with a null but nonzero gradient of $r$.
We present the results of a search for unknown interactions that couple to mass between an optically levitated microsphere and a gold-coated silicon cantilever. The scale and geometry of the apparatus enables a search for new forces that appear at distances below 100 $\mu$m and which would have evaded previous searches due to screening mechanisms. The data are consistent with electrostatic backgrounds and place upper limits on the strength of new interactions at <0.1 fN in the geometry tested. For the specific example of a chameleon interaction with an inverse power law potential, these results exclude matter couplings $\beta > 5.6 \times 10^4$ in the region of parameter space where the self-coupling $\Lambda \gtrsim 5$ meV and the microspheres are not fully screened.
Spontaneously broken supersymmetry (SUSY) and a vanishingly small cosmological constant imply that R symmetry must be spontaneously broken at low energies. Based on this observation, we suppose that, in the sector responsible for low-energy R symmetry breaking, a discrete R symmetry remains preserved at high energies and only becomes dynamically broken at relatively late times in the cosmological evolution, i.e., after the dynamical breaking of SUSY. Prior to R symmetry breaking, the Universe is then bound to be in a quasi-de Sitter phase---which offers a dynamical explanation for the occurrence of cosmic inflation. This scenario yields a new perspective on the interplay between SUSY breaking and inflation, which neatly fits into the paradigm of high-scale SUSY: inflation is driven by the SUSY-breaking vacuum energy density, while the chiral field responsible for SUSY breaking, the Polonyi field, serves as the inflaton. Because R symmetry is broken only after inflation, slow-roll inflation is not spoiled by otherwise dangerous gravitational corrections in supergravity. We illustrate our idea by means of a concrete example, in which both SUSY and R symmetry are broken by strong gauge dynamics and in which late-time R symmetry breaking is triggered by a small inflaton field value. In this model, the scales of inflation and SUSY breaking are unified; the inflationary predictions are similar to those of F-term hybrid inflation in supergravity; reheating proceeds via gravitino decay at temperatures consistent with thermal leptogenesis; and the sparticle mass spectrum follows from pure gravity mediation. Dark matter consists of thermally produced winos with a mass in the TeV range.
We study the cosmological history of the classical conformal $B-L$ gauge extension of the standard model, in which the physical scales are generated via the Coleman-Weinberg-type symmetry breaking. Especially, we consider the thermal phase transition of the U$(1)_{B-L}$ symmetry in the early universe and resulting gravitational-wave production. Due to the classical conformal invariance, the phase transition tends to be a first-order one with ultra-supercooling, which enhances the strength of the produced gravitational waves. We show that, requiring (1) U$(1)_{B-L}$ is broken after the reheating, (2) the $B-L$ gauge coupling does not blow up below the Planck scale, (3) the thermal phase transition completes in almost all the patches in the universe, the gravitational wave spectrum can be as large as $\Omega_{\rm GW} \sim 10^{-8}$ at the frequency $f \sim 0.01$-$1$Hz for some model parameters, and a vast parameter region can be tested by future interferometer experiments such as eLISA, LISA, BBO and DECIGO.
Observationally, the quenching of star-forming galaxies appears to depend both on their mass and environment. The exact cause of the environmental dependence is still poorly understood, yet semi-analytic models (SAMs) of galaxy formation need to parameterise it to reproduce observations of galaxy properties. In this work, we use hydrodynamical simulations to investigate the quenching of disk galaxies through ram-pressure stripping (RPS) as they fall into galaxy clusters with the goal of characterising the importance of this effect for the reddening of disk galaxies. Our set-up employs a live model of a galaxy cluster that interacts with infalling disk galaxies on different orbits. We use the moving-mesh code AREPO, augmented with a special refinement strategy to yield high resolution around the galaxy on its way through the cluster in a computationally efficient way. Our direct simulations differ substantially from stripping models employed in current SAMs, which in most cases overpredict the mass loss from RPS. Furthermore, after pericentre passage, as soon as ram pressure becomes weaker, gas that remains bound to the galaxy is redistributed to the outer parts, an effect that is not captured in simplified treatements of RPS. Star formation in our model galaxies is quenched mainly because the hot gas halo is stripped, depriving the galaxy of its gas supply. The cold gas disk is only stripped completely in extreme cases, leading to full quenching and significant reddening on timescale of ~200 Myr. On the other hand, galaxies experiencing only mild ram pressure actually show an enhanced star formation rate that is consistent with observations and are quenched on timescales > 1 Gyr. Stripped gas in the wake is mixed efficiently with intracluster gas already a few tens of kpc behind the disk, and this gas is free of residual star formation.
Links to: arXiv, form interface, find, astro-ph, recent, 1604, contact, help (Access key information)
Cosmological observations reveal that the Universe contains a hierarchy of galaxy clustering with a transition to homogeneity on large scales according to the $\Lambda$CDM model. Some observational estimates suggest that the Universe behaves as a multifractal object, where galactic clustering is based on generalisation of the dimension in metric spaces. From this point of view, we study the spatial distribution of points by simulating galaxies on large scales in the Universe with samples from the Sloan Digital Sky Survey (SDSS), including observational holes in the masks. We build homogeneous samples following the radial selection function using the "shuffle" method for a main sample of $3,273,548$ points limited to the redshift range $0.002<z<0.2$. A random distribution of observational holes in right ascension and declination was created from the SDSS-Baryon Oscillation Spectroscopic Survey (BOSS) footprint. We determined the fractal dimension $D_q(r)$ in the range $-6<q<6$ and the lacunarity spectrum using the sliding window technique to characterise the hierarchical clustering in these catalogues. Our results show that observational holes cause a shift in the homogeneity scale; for $q>0$ and percentages of holes near $40\%$, $r_H$ is displaced on scales on the order of $120~Mpc/h$. Hole percentages between $10\%$ and $30\%$ show an $r_H$ of $70-90~Mpc/h$, and for percentages below $10\%$, $r_H$ decreases to become equal to the $r_H$ value of the SDSS-BOSS footprint \texttt{boss survey.ply}. For $q<0$, the homogeneity scales have strong fluctuations for all hole percentages studied.
The fraction of the Universe going into primordial black holes (PBHs) with initial mass M_* \approx 5 \times 10^{14} g, such that they are evaporating at the present epoch, is strongly constrained by observations of both the extragalactic and Galactic gamma-ray backgrounds. However, while the dominant contribution to the extragalactic background comes from the time-integrated emission of PBHs with initial mass M_*, the Galactic background is dominated by the instantaneous emission of those with initial mass slightly larger than M_* and current mass below M_*. Also, the instantaneous emission of PBHs smaller than 0.4 M_* mostly comprises secondary particles produced by the decay of directly emitted quark and gluon jets. These points were missed in the earlier analysis by Lehoucq et al. using EGRET data. For a monochromatic PBH mass function, with initial mass (1+\mu) M_* and \mu << 1, the current mass is (3\mu)^{1/3} M_* and the Galactic background constrains the fraction of the Universe going into PBHs as a function of \mu. However, the initial mass function cannot be precisely monochromatic and even a tiny spread of mass around M_* would generate a current low-mass tail of PBHs below M_*. This tail would be the main contributor to the Galactic background, so we consider its form and the associated constraints for a variety of scenarios with both extended and nearly-monochromatic initial mass functions. In particular, we consider a scenario in which the PBHs form from critical collapse and have a mass function which peaks well above M_*. In this case, the largest PBHs could provide the dark matter without the M_* ones exceeding the gamma-ray background limits.
The foundation of modern cosmology relies on the so-called cosmological principle which states an homogeneous and isotropic distribution of matter in the universe on large scales. However, recent observations, such as the temperature anisotropy of the cosmic microwave background (CMB) radiation, the motion of galaxies in the universe, the polarization of quasars and the acceleration of the cosmic expansion, indicate preferred directions in the sky. If these directions have a cosmological origin, the cosmological principle would be violated, and modern cosmology should be reconsidered. In this paper, by considering the preferred axis in the CMB parity violation, we find that it coincides with the preferred axes in CMB quadrupole and CMB octopole, and they all align with the direction of the CMB kinematic dipole. In addition, the preferred directions in the velocity flows, quasar alignment, anisotropy of the cosmic acceleration, the handedness of spiral galaxies, and the angular distribution of the fine-structure constant are also claimed to be aligned with the CMB kinematic dipole. Since CMB dipole was confirmed to be caused by the motion of our local group of galaxies relative to the reference frame of the CMB, the coincidence of all these preferred directions hints that these anomalies have a common origin, which is not cosmological or due to a gravitational effect. The systematical or contaminative errors in observation or in data analysis, which can be directly related to the motion of our local group of galaxies, can play an important role in explaining the anomalies.
We use 118 strong gravitational lenses observed by the SLACS, BELLS, LSD and SL2S surveys to constrain the total mass profile and the profile of luminosity density of stars (light-tracers) in elliptical galaxies up to redshift $z \sim 1$. Assuming power-law density profiles for the total mass density, $\rho=\rho_0(r/r_0)^{-\alpha}$, and luminosity density, $\nu=\nu_0(r/r_0)^{-\delta}$, we investigate the power law index and its first derivative with respect to the redshift. Using Monte Carlo simulations of the posterior likelihood taking the Planck's best-fitted cosmology as a prior, we find $\gamma= 2.132\pm0.055$ with a mild trend $\partial \gamma/\partial z_l= -0.067\pm0.119$ when $\alpha=\delta=\gamma$, suggesting that the total density profile of massive galaxies could have become slightly steeper over cosmic time. Furthermore, similar analyses performed on sub-samples defined by different lens redshifts and velocity dispersions, indicate the need of treating low, intermediate and high-mass galaxies separately. Allowing $\delta$ to be a free parameter, we obtain $\alpha=2.070\pm0.031$, $\partial \alpha/\partial z_l= -0.121\pm0.078$, and $\delta= 2.710\pm0.143$. The model in which mass traces light is rejected at $>95\%$ confidence and our analysis robustly indicates the presence of dark matter in the form of a mass component that is differently spatially extended than the light. In this case, intermediate-mass elliptical galaxies ($200$ km/s $ < \sigma_{ap} \leq 300$ km/s) show the best consistency with the singular isothermal sphere as an effective model of galactic lenses.
We use large-scale cosmological observations to place constraints on the dark matter pressure, sound speed and viscosity, and infer a limit on the mass of warm dark matter particles. Measurements of the cosmic microwave background (CMB) anisotropies constrain the equation of state and sound speed of the dark matter at last scattering at the per mille level. Since the redshifting of collisionless particles universally implies that these quantities scale like $a^{-2}$ absent shell crossing, we infer that today $w_{\rm (DM)}< 10^{-10.0}$, $c_{\rm s,(DM)}^2 < 10^{-10.7}$ and $c_{\rm vis, (DM)}^{2} < 10^{-10.3}$ at the $99\%$ confidence level. This very general bound can be translated to model-dependent constraints on dark matter models: for warm dark matter these constraints imply $m> 70$ eV, assuming it decoupled while relativistic around the same time as the neutrinos; for a cold relic, we show that $m>100$ eV. We separately constrain the properties of the DM fluid on linear scales at late times, and find upper bounds $c_{\rm s, (DM)}^2<10^{-5.9}$, $c_{\rm vis, (DM)}^{2} < 10^{-5.7}$, with no detection of non-dust properties for the DM.
We consider a vector-tensor gravitational model in which the action for the minimally coupled vector field also contains additional terms quadratic in the Maxwell tensor derivatives, and corresponds to the covariant form of the so-called Bopp-Podolsky electrodynamics. A term describing the non-minimal coupling between the cosmological mass current and the four-potential of the vector field as well as the self-interaction potential of the vector field is also included in the action. From a cosmological point of view we interpret the vector field as describing dark energy, which is responsible for the late acceleration of the Universe. The gravitational field equations of the model and the equations describing the evolution of the vector field are obtained and their Newtonian limit is investigated. The cosmological implications of a Bopp-Podolsky type dark energy term are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two models, corresponding to the absence and presence of the self-interaction potential of the field, respectively. The redshift evolution of the scale factor, the matter energy density, the Hubble function, the deceleration parameter and the field potential are obtained for both cases. In the presence of the vector type dark energy with quadratic terms in the Maxwell tensor derivatives the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state, independently of the presence or absence of the self-interaction potential.
[Abridged] We exploit the synergy between low-resolution spectroscopy and photometric redshifts to study environmental effects on galaxy evolution in slitless spectroscopic surveys from space. As a test case, we consider the future Euclid Deep survey (~40deg$^2$), which combines a slitless spectroscopic survey limited at H$\alpha$ flux $\leq5\times 10^{-17}$ erg cm$^{-2}$ s$^{-1}$ and a photometric survey limited in H-band ($H\leq26$). To test the power of the method, we use Euclid-like galaxy mock catalogues, in which we anchor the photometric redshifts to the 3D galaxy distribution of the available spectroscopic redshifts. We then estimate the local density contrast by counting objects in cylindrical cells with radius ranging from 1 to 10 h$^{-1}$Mpc over the redshift range 0.9<z<1.8. We compare this density field with the one computed in a mock catalogue with the same depth as the Euclid Deep survey (H=26) but without redshift measurement errors. We find that our method is successful in separating high from low density environments with an efficiency that increases at low redshift and large cells. The fraction of low density regions mistaken by high density peaks is below 1% for all scales and redshift explored, but for scales of 1 h$^{-1}$Mpc for which is a few percent. When small (1 h$^{-1}$Mpc) cells are used, our technique is successful, at z~1.5, at spotting the regions where the most massive galaxy clusters reside. These results show that we can efficiently study environment in photometric samples if spectroscopic information is available for a smaller sample of objects that sparsely samples the same volume. We demonstrate that these studies will be possible in the Euclid Deep survey, i.e. in a redshift range in which environmental effects are different from those observed in the local universe, hence providing new constraints for galaxy evolution models.
We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulae and a simple numerical approach to estimate the correction to the J- and D-factors required over simple spherical modeling. The formulae are validated with a series of equilibrium models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that they are prolate or oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly altered. We demonstrate that spherical estimates of the D-factors are very insensitive to the flattening and introduce uncertainties significantly less than the uncertainties in the D-factors from the other observables for all the dwarf spheroidals. We conclude by investigating the spread in correction factors produced by triaxial figures and provide uncertainties in the J-factors for the dwarf spheroidals using different physically-motivated assumptions for their intrinsic shape and axis alignments. We find that the uncertainty in the J-factors due to triaxiality increases with the observed ellipticity and, in general, introduces uncertainties of order 25 per cent in the J-factors. We discuss our results in light of the reported gamma-ray annihilation signal from the highly-flattened ultrafaint Reticulum II.
The Planck Collaboration has recently released maps of the microwave sky in both temperature and polarization. Diffuse astrophysical components (including Galactic emissions, cosmic far infrared (IR) background, y-maps of the thermal Sunyaev-Zeldovich (SZ) effect) and catalogs of many thousands of Galactic and extragalactic radio and far-IR sources, and galaxy clusters detected through the SZ effect are the main astrophysical products of the mission. A concise overview of these results and of astrophysical studies based on Planck data is presented.
J-factors (or D-factors) describe the distribution of dark matter in an astrophysical system and determine the strength of the signal provided by annihilating (or decaying) dark matter respectively. We provide simple analytic formulae to calculate the J-factors for spherical cusps obeying the empirical relationship between enclosed mass, velocity dispersion and half-light radius. We extend the calculation to the spherical Navarro-Frenk-White (NFW) model, and demonstrate that our new formulae give accurate results in comparison to more elaborate Jeans models driven by Markov Chain Monte Carlo methods. Of the known ultrafaint dwarf spheroidals, we show that Ursa Major II, Reticulum II, Tucana II and Horologium I have the largest J-factors and so provide the most promising candidates for indirect dark matter detection experiments. Amongst the classical dwarfs, Draco, Sculptor and Ursa Minor have the highest J-factors. We show that the behaviour of the J-factor as a function of integration angle can be inferred for general dark halo models with inner slope $\gamma$ and outer slope $\beta$. The central and asymptotic behaviour of the J-factor curves are derived as a function of the dark halo properties. Finally, we show that models obeying the empirical relation on enclosed mass and velocity dispersion have J-factors that are most robust at the integration angle equal to the projected half-light radius of the dSph divided by heliocentric distance. For most of our results, we give the extension to the D-factor which is appropriate for the decaying dark matter picture.
Classical Cepheid variable stars are high-sensitivity probes of stellar evolution and fundamental tracers of cosmic distances. While rotational mixing significantly affects the evolution of Cepheid progenitors (intermediate-mass stars), the impact of the resulting changes in stellar structure and composition on Cepheids on their pulsational properties is hitherto unknown. Here we present the first detailed pulsational instability analysis of stellar evolution models that include the effects of rotation, for both fundamental mode and first overtone pulsation. We employ Geneva evolution models spanning a three-dimensional grid in mass (1.7 - 15 $M_\odot$), metallicity (Z = 0.014, 0.006, 0.002), and rotation (non-rotating, average & fast rotation). We determine (1) hot and cool instability strip (IS) boundaries taking into account the coupling between convection and pulsation, (2) pulsation periods, and (3) rates of period change. We investigate relations between period and (a) luminosity, (b) age, (c) radius, (d) temperature, (e) rate of period change, (f) mass, (g) the flux-weighted gravity-luminosity relation (FWGLR). We confront all predictions aside from those for age with observations, finding generally excellent agreement. We tabulate period-luminosity relations (PLRs) for several photometric pass-bands and investigate how the finite IS width, different IS crossings, metallicity, and rotation affect PLRs. We show that a Wesenheit index based on H, V, and I photometry is expected to have the smallest intrinsic PLR dispersion. We confirm that rotation resolves the Cepheid mass discrepancy. Period-age relations depend significantly on rotation (rotation increases Cepheid ages), offering a straightforward explanation for evolved stars in binary systems that cannot be matched by conventional isochrones assuming a single age. Finally, we show that Cepheids obey a tight FWGLR.
We present the first attempt to detect outflows from galaxies approaching the Epoch of Reionization (EoR) using a sample of 9 star-forming (5 < SFR < 70 Msun/yr) z ~ 6 galaxies for which high-quality spectra of the [CII]158 micron line has been previously obtained with ALMA. We first fit each line with a Gaussian function and compute the residuals by subtracting the best fitting model from the data. We combine the residuals of all sample galaxies and find that the total signal is characterized by a flux excess that can be ascribed to broad wings of the [CII] line, which we interpret as a signature of starburst-driven outflows. The tentatively inferred outflow rate is dM/dt ~ 65 Msun/yr. Our interpretation is consistent with results from zoomed hydro- simulations of Dahlia, a z ~ 7 galaxy (SFR ~ 100 Msun/yr) whose feedback-regulated star formation results in an outflow rate dM/dt ~ 30 Msun/yr. These results suggest that starburst-driven outflows are in place in the EoR. Deeper observations of the [CII] line in the galaxies of this sample are required to better characterize stellar feedback at high-z and to understand the role of outflows in shaping early galaxy formation.
Links to: arXiv, form interface, find, astro-ph, recent, 1604, contact, help (Access key information)
Line intensity mapping experiments seek to trace large scale structure by measuring the spatial fluctuations in the combined emission, in some convenient spectral line, from individually unresolved galaxies. An important systematic concern for these surveys is line confusion from foreground or background galaxies emitting in other lines that happen to lie at the same observed frequency as the "target" emission line of interest. We develop an approach to separate this "interloper" emission at the power spectrum level. If one adopts the redshift of the target emission line in mapping from observed frequency and angle on the sky to co-moving units, the interloper emission is mapped to the wrong co-moving coordinates. Since the mapping is different in the line of sight and transverse directions, the interloper contribution to the power spectrum becomes anisotropic, especially if the interloper and target emission are at widely separated redshifts. This distortion is analogous to the Alcock-Paczynski test, but here the warping arises from assuming the wrong redshift rather than an incorrect cosmological model. We apply this to the case of a hypothetical [CII] emission survey at z~7 and find that the distinctive interloper anisotropy can, in principle, be used to separate strong foreground CO emission fluctuations. In our models, however, a significantly more sensitive instrument than currently planned is required, although there are large uncertainties in forecasting the high redshift [CII] emission signal. With upcoming surveys, it may nevertheless be useful to apply this approach after first masking pixels suspected of containing strong interloper contamination.
We study the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Equilibrium states in which the gravitational attraction and the attraction due to the self-interaction are counterbalanced by the quantum pressure exist only below a maximum mass $M_{\rm max}=1.012\hbar/\sqrt{Gm|a_s|}$ where $a_s<0$ is the scattering length of the bosons and $m$ is their mass. For $M>M_{\rm max}$ the system is expected to collapse and form a black hole. We study the collapse dynamics by making a Gaussian ansatz for the wave function. We find that the collapse time scales as $(M/M_{\rm max}-1)^{-1/4}$ for $M\rightarrow M_{\rm max}^+$ and as $M^{-1/2}$ for $M\gg M_{\rm max}$. We apply our results to standard axions with mass $m=10^{-4}\, {\rm eV}/c^2$ and scattering length $a_s=-5.8\times 10^{-53}\, {\rm m}$ for which $M_{\rm max}=6.5\times 10^{-14}M_{\odot}$ and $R=3.3\times 10^{-4}\, R_{\odot}$. We confirm our previous claim that bosons with attractive self-interaction, such as standard axions, may form low mass stars but cannot form dark matter halos of relevant mass and size. These mini axions stars could be the constituents of dark matter. They can collapse into mini black holes of mass $\sim 10^{-14}\, M_{\odot}$ in a few hours. In that case, dark matter halos would be made of mini black holes. We also apply our results to ultralight axions with mass $m=1.93\times 10^{-20}\, {\rm eV}/c^2$ and scattering length $a_s=-8.29\times 10^{-60}\, {\rm fm}$ for which $M_{\rm max}=0.39\times 10^6\, M_{\odot}$ and $R=33\, {\rm pc}$. These ultralight axions could cluster into dark matter halos. Axionic dark matter halos with attractive self-interaction can collapse into supermassive black holes of mass $\sim 10^{6}\, M_{\odot}$ in about one million years.
We construct ensembles of random scalar potentials for $N_f$ interacting scalar fields using non-equilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For $N_f={\cal O}({\rm few})$, these heavily featured scalar potentials give rise to power spectra that are highly non-linear, at odds with observations. For $N_f\gg 1$, the superhorizon evolution of the perturbations is generically substantial, yet the power spectra simplify considerably and become more predictive, with most realisations being well approximated by a linear power spectrum. This provides proof of principle that complex inflationary physics can give rise to simple emergent power spectra. We explain how these results can be understood in terms of large $N_f$ universality of random matrix theory.
Stochastic effects in generic scenarios of inflation with multiple fields are investigated. First Passage Time techniques are employed to calculate the statistical moments of the number of inflationary $e$-folds, which give rise to all correlation functions of primordial curvature perturbations through the stochastic $\delta N$ formalism. The number of fields is a critical parameter. The probability of exploring arbitrarily large-field regions of the potential becomes non-vanishing when more than two fields are driving inflation. The mean number of $e$-folds can be infinite, depending on the number of fields; for plateau potentials, this occurs even with one field. In such cases, correlation functions of curvature perturbations are infinite. They can however be regularised if a reflecting (or absorbing) wall is added at large energy or field value. The results are found to be independent of the exact location of the wall and this procedure is therefore well-defined for a wide range of cutoffs, above or below the Planck scale. Finally, we show that, contrary to single-field setups, multi-field models can yield large stochastic corrections even at sub-Planckian energy, opening interesting prospects for probing quantum effects on cosmological fluctuations.
We present a new N-body code, gevolution, for the evolution of large scale structure in the Universe. Our code is based on a weak field expansion of General Relativity and calculates all six metric degrees of freedom in Poisson gauge. N-body particles are evolved by solving the geodesic equation which we write in terms of a canonical momentum such that it remains valid also for relativistic particles. We validate the code by considering the Schwarzschild solution and, in the Newtonian limit, by comparing with the Newtonian N-body code Gadget-2. We then proceed with a simulation of large scale structure in a Universe with massive neutrinos where we study the gravitational slip induced by the neutrino shear stress. The code can be extended to include different kinds of dark energy or modified gravity models and going beyond the usually adopted quasi-static approximation. Our code is publicly available.
Ultralight scalar dark matter with mass at or below the eV scale and pressure from repulsive self-interaction could form a Bose-Einstein condensate in the early Universe and maybe in galaxies as well. It has been suggested to be a possible solution to the cusp/core problem or even to explain MOND phenomenology. In this paper, I initiate a study of possible self-interactions of ultralight scalar dark matter from the particle physics point of view. To protect its mass, the scalar dark matter is identified as a pseudo Nambu-Goldstone boson (pNGB). Quite a few pNGB models with different potentials such as the QCD axion and the dilaton lead to attractive self-interactions. Yet if an axion is a remnant of a 5D gauged U(1) symmetry, its self-interactions could be repulsive provided the masses and charges of the 5D matter contributing to its potential satisfy certain constraints. Collective symmetry breaking could also lead to a repulsive self-interaction yet with too large a strength that is ruled out by Bullet Cluster constraints. I also discuss cosmological and astrophysical constraints on ultralight repulsive dark matter in terms of a parametrization motivated by particle physics considerations.
In this paper, we provide a systematic investigation of high-order primordial perturbations with nonlinear dispersion relations due to quantum gravitational effects in the framework of {\em uniform asymptotic approximations}. Because of these effects, the equation of motion of the mode function in general has multiple-turning points. After obtaining analytically approximated solutions in different regions, associated with different types of turning points, to any order, we match them to the third one. To this order the errors are less than $0.15\%$. General expressions of the power spectra of the primordial tensor and scalar perturbations are derived explicitly. We also investigate effects of back-reactions of the quantum gravitational corrections, and make sure that inflation lasts long enough in order to solve underlying problems, such as flatness, horizon and monopole. Various features of the spectra that are observationally relevant are investigated. In particular, under a moderate assumption about the energy scale of the underlying theory of quantum gravity, we have shown that the quantum gravitational effects may alter significantly the ratio between the tensor and scalar power spectra, thereby providing a natural mechanism to alleviate the tension between observations and certain inflationary models, including the one with a quadratic potential.
We investigate the UV continuum slope $\alpha$ of a large quasar sample from SDSS DR7. By using specific continuum windows, we build two samples at lower ($0.71<z<1.19$) and higher ($1.90<z<3.15$) redshifts, which correspond to the continuum slopes at longer (NUV) and shorter (FUV) rest wavelength ranges respectively. Overall, the average continuum slopes are $-0.36$ and $-0.51$ for $\alpha_{\rm NUV}$ and $\alpha_{\rm FUV}$ with similar dispersions $\sigma_{\alpha} \sim 0.5$. For both samples, we confirm the luminosity dependence of the continuum slope, i.e., fainter quasars have redder spectra. We further find that both $\alpha_{\rm NUV}$ and $\alpha_{\rm FUV}$ have a common upper limit ($\sim 1/3$) which is almost independent of the quasar luminosity $L_{\rm bol}$. This finding implies that the intrinsic quasar continuum (or the bluest quasar), at any luminosity, obey the standard thin disk model. We propose that the other quasars with redder $\alpha$ are caused by the reddening from the dust {\it locally}. With this assumption, we employ the dust extinction scenario to model the observed $L_{\rm bol}-\alpha$ relation. We find that, a typical value of $E(B-V)\sim0.1$ to $0.3$ mag (depending on the types of extinction curve) of the quasar {\it local} dust is enough to explain the discrepancy of $\alpha$ between the observation ($\sim-0.5$) and the standard accretion disk model prediction ($\sim 1/3$).
Recent years have seen great progress towards deriving quantum cosmology models from the effective dynamics of condensate states in group field theory (GFT), where 'cosmology is the hydrodynamics of quantum gravity'; the classical Friedmann dynamics for homogeneous, isotropic universes, as well as loop quantum cosmology (LQC) corrections to general relativity have been shown to emerge from fundamental quantum gravity. We take one further step towards strengthening the link with LQC and show, in a rather wide class of GFT models for gravity coupled to a free massless scalar field and for generic initial conditions, that GFT condensates dynamically reach a low spin phase of many quanta of geometry, in which all but an exponentially small number of quanta are characterised by a single spin $j_0$ (i.e. by a constant volume per quantum). In one particular simple and natural case, this spin is the lowest one, $j_0=1/2$. The type of quantum state usually assumed in the derivation of LQC is hence derived from the quantum dynamics of GFT, and shown to be generic. As the low spin regime is reached, the dynamics of the total volume follows precisely the classical Friedmann equations. The latter result confirms and extends recent results by Oriti, Sindoni and Wilson-Ewing in the same setting.
We study the gauge-independent observables associated with two interesting stationary configurations of the Standard Model Higgs potential (extrapolated to high energy according to the present state of the art, namely the NNLO): i) the value of the top mass ensuring stability of the SM electroweak minimum, and ii) the value of the Higgs potential at a rising inflection point. We examine in detail and reappraise the experimental and theoretical uncertainties which plague their determination, finding that: i) stability of the SM is compatible with the present data at the 1.5 sigma level; ii) despite the large theoretical error plaguing the value of the Higgs potential at a rising inflection point, application of such configuration to models of primordial inflation displays a 3 sigma tension with the recent bounds on the tensor-to-scalar ratio of cosmological perturbations.
We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy the usual slow-roll condition (d V)^2 << V^2/Mp^2. They evade the usual slow-roll conditions on $V$ because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides an example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for the background evolution for Chromo-natural inflation. We also show that our EFT can be understood as a multi-field generalization of the single-field Cuscuton models. The multi-field case introduces a new feature, however: the scalar kinetic terms define a target-space 2-form, F_{ab}, whose antisymmetry gives new ways for slow roll to be achieved.
We describe a symmetron model in which the screening of fifth forces arises at the one-loop level through the Coleman-Weinberg mechanism of spontaneous symmetry breaking. We show that such a theory can avoid current constraints on the existence of fifth forces, but still has the potential to give rise to observable deviations from general relativity.
We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a $\Lambda$-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the $\Lambda$-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the $\Lambda$-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing "the emergence of time". Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyze the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.
Links to: arXiv, form interface, find, astro-ph, recent, 1604, contact, help (Access key information)
We investigate the impact of f(R) modified gravity on the internal properties of Milky Way sized dark matter halos in a set of cosmological zoom simulations of seven halos from the Aquarius suite, carried out with our code MG-GADGET in the Hu & Sawicki f(R) model. Also, we calculate the fifth forces in ideal NFW-halos as well as in our cosmological simulations and compare them against analytic model predictions for the fifth force inside spherical objects. We find that these theoretical predictions match the forces in the ideal halos very well, whereas their applicability is somewhat limited for realistic cosmological halos. Our simulations show that f(R) gravity significantly affects the dark matter density profile of Milky Way sized objects as well as their circular velocities. In unscreened regions, the velocity dispersions are increased by up to 40% with respect to LCDM for viable f(R) models. This difference is larger than reported in previous works. The Solar circle is fully screened in $f_{R0} = -10^{-6}$ models for Milky Way sized halos, while this location is unscreened for slightly less massive objects. Within the scope of our limited halo sample size, we do not find a clear dependence of the concentration parameter of dark matter halos on $f_{R0}$.
The hot ionized gas of the intra-cluster medium emits thermal radiation in the X-ray band and also distorts the cosmic microwave radiation through the Sunyaev-Zel'dovich (SZ) effect. Combining these two complementary sources of information through innovative techniques can therefore potentially improve the cluster detection rate when compared to using only one of the probes. Our aim is to build such a joint X-ray-SZ analysis tool, which will allow us to detect fainter or more distant clusters while maintaining high catalogue purity. We present a method based on matched multifrequency filters (MMF) for extracting cluster catalogues from SZ and X-ray surveys. We first designed an X-ray matched-filter method, analogous to the classical MMF developed for SZ observations. Then, we built our joint X-ray-SZ algorithm by combining our X-ray matched filter with the classical SZ-MMF, for which we used the physical relation between SZ and X-ray observations. We show that the proposed X-ray matched filter provides correct photometry results, and that the joint matched filter also provides correct photometry when the $F_{\rm X}/Y_{500}$ relation of the clusters is known. Moreover, the proposed joint algorithm provides a better signal-to-noise ratio than single-map extractions, which improves the detection rate even if we do not exactly know the $F_{\rm X}/Y_{500}$ relation. The proposed methods were tested using data from the ROSAT all-sky survey and from the Planck survey.
Using Arcminute Microkelvin Imager (AMI) SZ observations towards ten CLASH clusters we investigate the influence of cluster mergers on observational galaxy cluster studies. Although selected to be largely relaxed, there is disagreement in the literature on the dynamical states of CLASH sample members. We analyse our AMI data in a fully Bayesian way to produce estimated cluster parameters and consider the intrinsic correlations in our NFW/GNFW-based model. Varying pressure profile shape parameters, illustrating an influence of mergers on scaling relations, induces small deviations from the canonical self-similar predictions -- in agreement with simulations of Poole et al. 2007 who found that merger activity causes only small scatter perpendicular to the relations. We demonstrate this effect observationally using the different dependencies of SZ and X-ray signals to $n_{\rm e}$ that cause different sensitivities to the shocking and/or fractionation produced by mergers. Plotting $Y_{\rm X}$--$M_{\rm gas}$ relations (where $Y_{\rm X}=M_{\rm gas}T$) derived from AMI SZ and from $Chandra$ X-ray gives ratios of AMI and $Chandra$ $Y_{\rm X}$ and $M_{\rm gas}$ estimates that indicate movement of clusters \textit{along} the scaling relation, as predicted by Poole et al. 2007. Clusters that have moved most along the relation have the most discrepant $T_{\rm SZ}$ and $T_{\rm X}$ estimates: all the other clusters (apart from one) have SZ and X-ray estimates of $M_{\rm gas}$, $T$ and $Y_{\rm X}$ that agree within $r_{500}$. We use SZ vs X-ray discrepancies in conjunction with $Chandra$ maps and $T_{\rm X}$ profiles, making comparisons with simulated cluster merger maps in Poole et al. 2006, to identify disturbed members of our sample and estimate merger stages.
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.
We present a simplified method for the extraction of meaningful signals from Hanford and Livingstone 32 seconds data for the GW150914 event made publicly available by the LIGO collaboration and demonstrate its ability to reproduce the LIGO collaboration's own results quantitatively given the assumption that all narrow peaks in the power spectrum are a consequence of physically uninteresting signals and can be removed. After the clipping of these peaks and return to the time domain, the GW150914 event is readily distinguished from broadband background noise. This simple technique allows us to identify the GW150914 event without any assumption regarding its physical origin and with minimal assumptions regarding its shape. We also confirm that the LIGO GW150914 event is uniquely correlated in the Hanford and Livingston detectors for 4096 second data at the level of $6-7\,\sigma$ with a temporal displacement of $\tau=6.9 \pm 0.4\,$ms. We have also identified a few events that are morphologically close to GW150914 but less strongly cross correlated with it.
We study the possible rotation of cluster galaxies, developing, testing and applying a novel algorithm which identifies rotation, if such does exits, as well as its rotational centre, its axis orientation, rotational velocity amplitude and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte-Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z<~0.1 with member galaxies selected from the SDSS DR10 spectroscopic database. We find that ~35% of our clusters are rotating when using a set of strict criteria, while loosening the criteria we find this fraction increasing to ~48%. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation that the significance and strength of their rotation is correlated to dynamical youth but only when limiting our analysis to within a 1.5h^{-1}_{70} Mpc radius. The lack of significant such correlations when we increase the radius of analysis to 2.5h^{-1}_{70} Mpc points towards a different mechanism being responsible for the rotation of the inner and outer cluster region. The outer cluster rotation could possibly be related to coherent motions of infalling substructures. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.
In the first paper of this series, we proposed a novel method to probe large-scale intergalactic magnetic fields during the cosmic Dark Ages, using 21-cm tomography. This method relies on the effect of spin alignment of hydrogen atoms in a cosmological setting, and on the effect of magnetic precession of the atoms on the statistics of the 21-cm brightness-temperature fluctuations. In this paper, we forecast the sensitivity of future tomographic surveys to detecting magnetic fields using this method. For this purpose, we develop a minimum-variance estimator formalism to capture the characteristic anisotropy signal using the two-point statistics of the brightness-temperature fluctuations. We find that, depending on the reionization history, and subject to the control of systematics from foreground subtraction, an array of dipole antennas in a compact-grid configuration with a collecting area slightly exceeding one square kilometer can achieve a $1\sigma$ detection of $\sim$$10^{-21}$ Gauss comoving (scaled to present-day value) within three years of observation. Using this method, tomographic 21-cm surveys could thus probe ten orders of magnitude below current CMB constraints on primordial magnetic fields, and provide exquisite sensitivity to large-scale magnetic fields in situ at high redshift.
Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W' boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, gR = gL. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.
Recently, Li et al. (2016) claimed to have found evidence for multiple generations of stars in the intermediate age clusters NGC 1783, NGC 1696 and NGC 411 in the Large and Small Magellanic Clouds (LMC/SMC). Here we show that these young stellar populations are present in the field regions around these clusters and are not likely associated with the clusters themselves. Using the same datasets, we find that the background subtraction method adopted by the authors does not adequately remove contaminating stars in the small number Poisson limit. Hence, we conclude that their results do not provide evidence of young generations of stars within these clusters.
We investigate thermodynamics and Phase transition of the Reissner-Nordstr\"om black hole surrounded by quintessence. Using thermodynamical laws of black holes, we derive the expressions of some thermodynamics quantities for the Reissner-Nordstr\"om black hole surrounded by quintessence. The variations of the temperature and heat capacity with the entropy were plotted for different values of the state parameter related to the quintessence, $\omega_{q}$, and the normalization constant related to the density of quintessence $c$. We show that when varying the entropy of the black hole a phase transition is observed in the black hole. Moreover, when increasing the density of quintessence, the transition point is shifted to lower entropy and the temperature of the black hole decreases.
Complete set of cylindrical modes is constructed for the electromagnetic field inside and outside a cylindrical shell in the background of $(D+1)$% -dimensional dS spacetime. On the shell, the field obeys the generalized perfect conductor boundary condition. For the Bunch-Davies vacuum state, we evaluate the expectation values (VEVs) of the electric field squared and of the energy-momentum tensor. The shell-induced contributions are explicitly extracted. In this way, for points away from the shell, the renormalization is reduced to the one for the VEVs in the boundary-free dS bulk. As a special case, the VEVs are obtained for a cylindrical shell in the $(D+1)$% -dimensional Minkowski bulk. We show that the shell-induced contribution in the electric field squared is positive for both the interior and exterior regions. The corresponding Casimir-Polder forces are directed toward the shell. The vacuum energy-momentum tensor, in addition to the diagonal components, has a nonzero off-diagonal component corresponding to the energy flux along the direction normal to the shell. This flux is directed from the shell in both the exterior and interior regions. For points near the shell, the leading terms in the asymptotic expansions for the electric field squared and diagonal components of the energy-momentum tensor are obtained from the corresponding expressions in the Minkowski bulk replacing the distance from the shell by the proper distance in the dS bulk. The influence of the gravitational field on the local characteristics of the vacuum is essential at distances from the shell larger than the dS curvature radius. The results are extended for confining boundary conditions of flux tube models in QCD.
We perform a detailed analysis of the synchrotron signals produced by Dark Matter annihilations and decays. We consider different set-ups for the propagation of electrons and positrons, the galactic magnetic field and Dark Matter properties. We then confront these signals with radio and microwave maps, including Planck measurements, from a frequency of 22 MHz up to 70 GHz. We derive two sets of constraints: conservative and progressive, the latter based on a modeling of the astrophysical emission. Radio and microwave constraints are complementary to those obtained with other indirect detection methods, especially for dark matter annihilating into leptonic channels.
Based on Newtonian dynamics, observations show that the luminous masses of astrophysical objects that are the size of a galaxy or larger are not enough to generate the measured motions which they supposedly determine. This is typically attributed to the existence of dark matter, which possesses mass but does not radiate (or absorb radiation). Alternatively, the mismatch can be explained if the underlying dynamics is not Newtonian. Within this conceptual scheme, Modified Newtonian Dynamics (MOND) is a successful theoretical paradigm. MOND is usually expressed in terms of a nonlinear Poisson equation, which is difficult to analyse for arbitrary matter distributions. We study the MONDian gravitational field generated by slightly non-spherically symmetric mass distributions based on the fact that both Newtonian and MONDian fields are conservative (which we refer to as the compatibility condition). As the non-relativistic version of MOND has two different formulations (AQUAL and QuMOND) and the compatibility condition can be expressed in two ways, there are four approaches to the problem in total. The method involves solving a suitably defined linear deformation potential, which generally depends on the choice of MOND interpolation function. However, for some specific form of the deformation potential, the solution is independent of the interpolation function.
We construct high-precision models of the Universe that contain radiation, a cosmological constant, and periodically distributed inhomogeneous matter. The density contrasts in these models are allowed to be highly non-linear, and the cosmological expansion is treated as an emergent phenomenon. This is achieved by employing a generalised version of the post-Newtonian formalism, and by joining together inhomogeneous regions of space-time at reflection symmetric junctions. Using these models, we find general expressions that precisely and unambiguously quantify the effect of small-scale inhomogeneity on the large-scale expansion of space (an effect referred to as "back-reaction", in the literature). We then proceed to specialize our models to the case where the matter fields are given by a regular array of point-like particles. This allows us to derive extremely simple expressions for the emergent Friedmann-like equations that govern the large-scale expansion of space. It is found that the presence of radiation tends to reduce the magnitude of back-reaction effects, while the existence of a cosmological constant has only a negligible effect.
We present a tetrad-based method for solving the Einstein field equations for spherically-symmetric systems and compare it with the widely-used Lema\^itre-Tolman-Bondi (LTB) model. In particular, we focus on the issues of gauge ambiguity and the use of comoving versus 'physical' coordinate systems. We also clarify the correspondences between the two approaches, and illustrate their differences by applying them to the classic examples of the Schwarzschild and Friedmann-Robertson-Walker spacetimes. We demonstrate that the tetrad-based method does not suffer from the gauge freedoms inherent to the LTB model, naturally accommodates non-zero pressure and has a more transparent physical interpretation. We further apply our tetrad-based method to a generalised form of 'Swiss cheese' model, which consists of an interior spherical region surrounded by a spherical shell of vacuum that is embedded in an exterior background universe. In general, we allow the fluid in the interior and exterior regions to support pressure, and do not demand that the interior region be compensated. We pay particular attention to the form of the solution in the intervening vacuum region and verify the validity of Birkhoff's theorem at both the metric and tetrad level. We then reconsider critically the original theoretical arguments underlying the so-called $R_h = ct$ cosmological model, which has recently received considerable attention. These considerations in turn illustrate the interesting behaviour of a number of 'horizons' in general cosmological models.
We examine the cosmological sector of a gauge theory of gravity based on the SO(4,2) conformal group of Minkowski space. We allow for conventional matter coupled to the spacetime metric as well as matter coupled to the field that gauges special conformal transformations. An effective cosmological constant is generated dynamically via solution of the equations of motion, and this allows us to recover the late time acceleration of the universe. Furthermore, gravitational fields sourced by ordinary cosmological matter (i.e. dust and radiation) are significantly weakened in the very early universe, which has the effect of replacing the big bang with a big bounce. Finally, we find that this bounce is followed by a period of nearly-exponential slow roll inflation that can last long enough to explain the large scale homogeneity of the cosmic microwave background.
Links to: arXiv, form interface, find, astro-ph, recent, 1604, contact, help (Access key information)