In high-resolution X-ray observations of the hot plasma in clusters of galaxies significant structures caused by AGN feedback, mergers, and turbulence can be detected. Many clusters have been observed by Chandra in great depth and at high resolution. Using archival data taken with the Chandra ACIS instrument the aim was to study thermodynamic perturbations of the X-ray emitting plasma and to apply this to better understand the thermodynamic and dynamic state of the intra cluster medium (ICM). We analysed deep observations for a sample of 33 clusters with more than 100 ks of Chandra exposure each at distances between redshift 0.025 and 0.45. The combined exposure of the sample is 8 Ms. Fitting emission models to different regions of the extended X-ray emission we searched for perturbations in density, temperature, pressure, and entropy of the hot plasma. For individual clusters we mapped the thermodynamic properties of the ICM and measured their spread in circular concentric annuli. Comparing the spread of different gas quantities to high-resolution 3D hydrodynamic simulations, we constrain the average Mach number regime of the sample to Mach1D ~ 0.16 +- 0.07. In addition we found a tight correlation between metallicity, temperature and redshift with an average metallicity of Z ~ 0.3 +- 0.1 Z(solar). This study provides detailed perturbation measurements for a large sample of clusters which can be used to study turbulence and make predictions for future X-ray observatories like eROSITA, Astro-H, and Athena.
Quantifying the concordance between different cosmological experiments is important for testing the validity of theoretical models and systematics in the observations. In earlier work, we thus proposed the Surprise, a concordance measure derived from the relative entropy between posterior distributions. We revisit the properties of the Surprise and describe how it provides a general, versatile, and robust measure for the agreement between datasets. We also compare it to other measures of concordance that have been proposed for cosmology. As an application, we extend our earlier analysis and use the Surprise to quantify the agreement between WMAP 9, Planck 13 and Planck 15 constraints on the $\Lambda$CDM model. Using a principle component analysis in parameter space, we find that the large Surprise between WMAP 9 and Planck 13 (S = 17.6 bits, implying a deviation from consistency at 99.8% confidence) is due to a shift along a direction that is dominated by the amplitude of the power spectrum. The Surprise disappears when moving to Planck 15 (S = -5.1 bits). This means that, unlike Planck 13, Planck 15 is not in tension with WMAP 9. These results illustrate the advantages of the relative entropy and the Surprise for quantifying the disagreement between cosmological experiments and more generally as an information metric for cosmology.
We explore a time-dependent energy dissipation of the energetic electrons in the inhomogeneous intergalactic medium (IGM) during the epoch of cosmic reionization. In addition to the atomic processes we take into account the Inverse Compton (IC) scattering of the electrons on the comic microwave background (CMB) photons, which is the dominant channel of energy loss for the electrons with energies above a few MeV. We show that: (1) the effect on the IGM has both local (atomic processes) and non-local (IC radiation) components; (2) the energy distribution between Hydrogen and Helium ionizations depends on the initial electron energy; (3) the local baryon overdensity significantly affects the fractions of energy distributed in each channel; and (4) the relativistic effect of atomic cross section become important during the epoch of cosmic reionization. We release our code as open source for further modification by the community.
Recently, we have shown that the propagation speed $c_T$ of the primordial gravitational waves (GWs) might be nontrivially varying during inflation, which could induce local oscillations in the power spectrum of primordial GWs. In this paper, we numerically confirm that, although with a disformal redefinition of the metric the nontrivial $c_T$ may be set as unity, the power spectrum in the frame with $c_T=1$ is completely same with that in the original disformal frame, i.e., the oscillating shape in the power spectrum is still reserved, since here the effect of $c_T$ is actually encoded in the nontrivially varying Hubble parameter. In addition, we also clarify how obtaining a blue-tilt GWs spectrum by imposing a rapidly decreasing $c_T$ during inflation.
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations of cosmic reionization from the Cosmic Reionization On Computers (CROC) project. We find that the mean signal varies between about $\pm20\rm{mK}$. Most significantly, we find that the negative pre-reionization dip at $z\sim10-15$ only extends to $\langle\Delta T_B\rangle\sim-20\rm{mK}$, in agreement with prior simulation results and in significant contrast to Pritchard & Loeb analytical model, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE). We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be mis-estimated by 25-50\% at scales $k\sim 0.1-1h\rm{Mpc}^{-1}$. This scale range is of a particular interest, because the upcoming 21 cm experiments (MWA, PAPER, HERA) are expected to be most sensitive within it.
The simplest two-field completion of natural inflation has a regime in which both fields are active and in which its predictions are within the Planck 1-$\sigma$ confidence contour. We show this for the original model of natural inflation, in which inflation is achieved through the explicit breaking of a U(1) symmetry. We consider the case in which the mass coming from explicit breaking of this symmetry is comparable to that from spontaneous breaking, which we show is consistent with a hierarchy between the corresponding energy scales. While both masses are comparable when the observable modes left the horizon, the mass hierarchy is restored in the last e-foldings of inflation, rendering the predictions consistent with the isocurvature bounds. For completeness, we also study the predictions for the case in which there is a large hierarchy of masses and an initial period of inflation driven by the (heavy) radial field.
We show that the Cosmic Microwave Background can be used to measure our peculiar velocity in a novel way, by looking at Doppler-induced distortions of the intensity blackbody spectrum which couple different multipoles. The frequency dependence of such a signal is called y-type, and is degenerate with the thermal SZ (tSZ) effect. Interestingly, like the kinetic Doppler quadrupole, its measurement is not limited by cosmic variance of the temperature spectrum; instead it only depends on experimental noise and on the small contamination due to the tSZ effect. Already with Planck this method yields a signal-to-noise ratio of about 9, and future experiments can increase this to somewhere around 15-40, and in principle even further if tSZ effect can be subtracted using data from clusters. Such a signal is present at all multipoles, but mostly in ell <~ 400, providing thus an independent way to measure our velocity that might also clarify the mixing between Doppler and a possible anomalous intrinsic dipolar modulation of the CMB spectrum, which seems to be present in temperature data at large scales.
Improvements in current instruments and the advent of next-generation instruments will soon push observational 21 cm cosmology into a new era, with high significance measurements of both the power spectrum and the mean ("global") signal of the 21 cm brightness temperature. In this paper we use the recently commenced Hydrogen Epoch of Reionization Array as a worked example to provide forecasts on astrophysical and cosmological parameter constraints. In doing so we improve upon previous forecasts in a number of ways. First, we provide updated forecasts using the latest best-fit cosmological parameters from the Planck satellite, exploring the impact of different Planck datasets on 21 cm experiments. We also show that despite the exquisite constraints that other probes have placed on cosmological parameters, the remaining uncertainties are still large enough to have a non-negligible impact on upcoming 21 cm data analyses. While this complicates high-precision constraints on reionization models, it provides an avenue for 21 cm reionization measurements to constrain cosmology. We additionally forecast HERA's ability to measure the ionization history using a combination of power spectrum measurements and semi-analytic simulations. Finally, we consider ways in which 21 cm global signal and power spectrum measurements can be combined, and propose a method by which power spectrum results can be used to train a compact parameterization of the global signal. This parameterization reduces the number of parameters needed to describe the global signal, increasing the likelihood of a high significance measurement.
The coupling between spin and torsion in the Einstein-Cartan-Sciama-Kibble theory of gravity generates gravitational repulsion at very high densities, which prevents a singularity in a black hole and may create there a new universe. We show that quantum particle production in such a universe near the last bounce, which represents the Big Bang gives the dynamics that solves the horizon, flatness, and homogeneity problems in cosmology. For a particular range of the particle production coefficient, we obtain a nearly constant Hubble parameter that gives an exponential expansion of the universe with more than 60 $e$-folds, which lasts about $\sim 10^{-42}$ s. This scenario can thus explain cosmic inflation without requiring a fundamental scalar field and reheating. From the obtained time dependence of the scale factor, we follow the prescription of Ellis and Madsen to reconstruct in a non-parametric way a scalar field potential which gives the same dynamics of the early universe. This potential gives the slow-roll parameters of cosmic inflation, from which we calculate the tensor-to-scalar ratio, the scalar spectral index of density perturbations, and its running as functions of the production coefficient. We find that these quantities do not significantly depend on the scale factor at the Big Bounce. Our predictions for these quantities are consistent with the Planck 2015 observations.
We investigate the impact of modified theories of gravity on the kinetic Sunyaev-Zeldovich (kSZ) effect of the cosmic microwave background. We focus on a specific class of $f(R)$ models of gravity and compare their predictions for the kSZ power spectrum to that of the $\Lambda$CDM model. We use a publicly available modified version of Halofit to properly include the nonlinear matter power spectrum of $f(R)$ in the modeling of the kSZ signal. We find that the well known modifications of the growth rate of structure in $f(R)$ can indeed induce sizable changes in the kSZ signal, which are more significant than the changes induced by modifications of the expansion history. We discuss prospects of using the kSZ signal as a complementary probe of modified gravity, giving an overview of assumptions and possible caveats in the modeling.
A detailed model of the tidal disruption events (TDE) has been constructed using stellar dynamical and gas dynamical inputs that include black hole mass $M_{\bullet}$, specific orbital energy $E$ and angular momentum $J$, star mass $M_{\star}$ and radius $R_{\star}$ and pericenter of the star orbit $r_{p}(E,\hspace{1mm}J,\hspace{1mm}M_{\bullet})$. We have solved the steady state Fokker- Planck equation using the standard loss cone theory for the galactic density profile $\rho (r) \propto r^{-\gamma}$ and stellar mass function $\xi(m) $ where $m=M_{\star}/M_{\odot}$ and obtained the feeding rate of stars to the black hole integrated over the phase space as $\dot{N}_{t} \propto M_{\bullet}^\beta$ where $\beta= -0.3\pm 0.01$ for $M_{\bullet}>10^7 M_{\odot}$ and $\sim 6.8 \hspace{1mm} \times 10^{-5}$ Yr$^{-1}$ for $\gamma=0.7$. Using this we model the in fall rate of the disrupted debris, $\dot{M}(E,\hspace{1mm}J,\hspace{1mm}m,\hspace{1mm}t)$ and discuss conditions for the disk formation and find that the accretion disk is formed almost always for the fiduciary range of the physical parameters. We also find the conditions under which the disk formed from the tidal debris of a given star has a super Eddington accretion phase. We have simulated the light curve profiles in relevant optical g band and soft X-rays for both super and sub Eddington accretion disks as function of $\dot{M}(E,\hspace{1mm}J,\hspace{1mm}t)$. Using this, standard cosmological parameters and mission instrument details, we predict the detectable TDE rates for various forthcoming surveys finally as a function of $\gamma$.
Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent measurements of the dynamical masses $M_{\rm bh}$ of supermassive black holes in specific galaxies at known distances and leverage this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of $M_{\rm bh}$ in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves can already constrain the mass ratios of hypothetical black hole binaries in a dozen galaxies in our samples. The constraints are stronger for galaxies with larger $M_{\rm bh}$ and at smaller distances. For the black holes with $M_{\rm bh} \gtrsim 5\times 10^9 M_\odot$ at the centers of NGC 4889, NGC 4486 (M87) and NGC 4649 (M60), any binary companion in orbit within the PTA frequency bands would have to have a mass ratio of less than about 1:10.
We investigate the backreaction of the Affleck-Dine leptogenesis to inflaton dynamics in the F-term hybrid and chaotic inflation models in supergravity. We determine the lightest neutrino mass in both models so that the predictions of spectral index, tensor-to-scalar ratio, and baryon abundance are consistent with observations.
Neutrino masses and light (keV-GeV) sterile neutrinos can arise naturally via a modified, low energy seesaw mechanism if the right-handed neutrinos are charged under a new symmetry broken by a PeV scale vacuum expectation value, presumably tied to supersymmetry breaking. The additional field content also allows for freeze-in production of sterile neutrino dark matter. This framework can accommodate the recently observed 3.5 keV X-ray line, while a straightforward extension of the framework, using the new symmetry and the PeV energy scale, can explain the PeV energy neutrino events at IceCube. Together, these can therefore be taken as hints of the existence of a PeV scale supersymmetric neutrino sector.
We study the preheating phase for multifield models of inflation involving nonminimal couplings. The strong single-field attractor behavior during inflation in these models generically persists after the end of inflation, thereby avoiding the "de-phasing" that is typical in multifield models with minimally coupled scalar fields. Hence we find efficient transfer of energy from the oscillating inflation field(s) to coupled fluctuations. We develop a doubly-covariant formalism for studying such resonances and identify several features of preheating specific to the nonminimal couplings, including effects that arise from the nontrivial field-space manifold. In particular, whereas long-wavelength fluctuations in both the adiabatic and isocurvature directions may be resonantly amplified for small or modest values of the dimensionless couplings, $\xi_I \leq 1$, we find suppression of the growth of long-wavelength isocurvature modes in the limit of strong coupling, $\xi_I \gg 1$.
The collapse of the primordial gas in the density regime $\sim 10^{8}\hbox{--}10^{10}$ cm$^{-3}$ is controlled by the three-body $\rm H_2$ formation process, in which the gas can cool faster than free-fall time $\hbox{--}$ a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop~III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihaloes. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating ($pdV$). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because $\rm H_2$ cooling, the heating due to $\rm H_2$ formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.
We propose a new type of axion inflation with complex structure moduli in the framework of type IIB superstring theory compactified on Calabi-Yau manifold. The inflaton is identified as the axion for the complex structure moduli whose potential is originating from instantonic corrections appearing through the period vector of mirror Calabi-Yau manifold. The axionic shift symmetry is broken down to the discrete one by the inclusion of instantonic correction and certain three-from fluxes. Our proposed inflation scenario is compatible with K\"ahler moduli stabilization. We also study a typical reheating temperature in the case of complex structure moduli inflation.
We extend a general maximum likelihood foreground estimation for cosmic microwave background polarization data to include estimation of instrumental systematic effects. We focus on two particular effects: frequency band measurement uncertainty, and instrumentally induced frequency dependent polarization rotation. We assess the bias induced on the estimation of the $B$-mode polarization signal by these two systematic effects in the presence of instrumental noise and uncertainties in the polarization and spectral index of Galactic dust. Degeneracies between uncertainties in the band and polarization angle calibration measurements and in the dust spectral index and polarization increase the uncertainty in the extracted CMB $B$-mode power, and may give rise to a biased estimate. We provide a quantitative assessment of the potential bias and increased uncertainty in an example experimental configuration. For example, we find that with 10\% polarized dust, tensor to scalar ratio of $r=0.05$, and the instrumental configuration of the EBEX balloon payload, the estimated CMB $B$-mode power spectrum is recovered without bias when the frequency band measurement has 5% uncertainty or less, and the polarization angle calibration has an uncertainty of up to 4$^{\circ}$.
Links to: arXiv, form interface, find, astro-ph, recent, 1511, contact, help (Access key information)
We present the CosmoBolognaLib, a large set of Open Source C++ numerical libraries for cosmological calculations. CosmoBolognaLib is a living project aimed at defining a common numerical environment for cosmological investigations of the large-scale structure of the Universe. In particular, one of the primary focuses of this software is to help in handling astronomical catalogues, both real and simulated, measuring one-point, two-point and three-point statistics in configuration space, and performing cosmological analyses. In this paper, we discuss the main features of this software, providing an overview of all the available C++ classes implemented up to now. Both the CosmoBolognaLib and their associated doxygen documentation can be freely downloaded at https://github.com/federicomarulli/CosmoBolognaLib. We provide also some examples to explain how these libraries can be included in either C++ or Python codes.
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use $N_f$--quadratic inflation as an illustrative example, finding that the number of $e$-folds $N_*$ between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
We examine the internal consistency of the Planck 2015 cosmic microwave background (CMB) temperature anisotropy power spectrum. We show that tension exists between cosmological constant cold dark matter (LCDM) model parameters inferred from multipoles l<1000 (roughly those accessible to WMAP), and from l>=1000, particularly the CDM density, Omega_ch^2, which is discrepant at 2.5 sigma for a Planck-motivated prior on the optical depth, tau=0.07+/-0.02. We find some parameter tensions to be larger than previously reported because of inaccuracy in the code used by the Planck Collaboration to generate model spectra. The Planck l>=1000 constraints are also in tension with low-redshift data sets, including Planck's own measurement of the CMB lensing power spectrum (2.4 sigma), and the most precise baryon acoustic oscillation (BAO) scale determination (2.5 sigma). The Hubble constant predicted by Planck from l>=1000, H_0=64.1+/-1.7 km/s/Mpc, disagrees with the most precise local distance ladder measurement of 73.0+/-2.4 km/s/Mpc at the 3.0 sigma level, while the Planck value from l<1000, 69.7+/-1.7 km/s/Mpc, is consistent within 1 sigma. A discrepancy between the Planck and South Pole Telescope (SPT) high-multipole CMB spectra disfavors interpreting these tensions as evidence for new physics. We conclude that the parameters from the Planck high-multipole spectrum probably differ from the underlying values due to either an unlikely statistical fluctuation or unaccounted-for systematics persisting in the Planck data.
The first observational evidence for the violation of the maximum turn-around radius on the galaxy group scale is presented. The NGC 5353/4 group is chosen as an ideal target of our investigation of the bound-violation because of its proximity, low-density environment, optimal mass scale, and existence of a nearby thin straight filament. Using the observational data on the line-of-sight velocities and three dimensional distances of the filament galaxies located in the bound zone of the NGC 5353/4 group, we construct their radial velocity profile as a function of separation distance from the group center and then compares it with the analytic formula obtained empirically by Falco et al. (2014) to find the best-fit value of an adjustable parameter with the help of the maximum likelihood method. The turn-around radius of NGC 5353/4 is determined as the separation distance where the adjusted analytic formula for the radial velocity profile yields zero. The estimated turn-around radius of NGC 5353/4 turns out to substantially exceed the upper limit predicted by the spherical model based on the LambdaCDM cosmology. Even when the restrictive condition of spherical symmetry is released, the estimated value is found to be only marginally consistent with the LambdaCDM expectation.
We investigate the production of the hypermagnetic gyrotropy when the electric and magnetic gauge couplings evolve at different rates, as it happens in the the relativistic theory of the Van der Waals forces. If a pseudo-scalar interaction breaks the duality symmetry of the corresponding equations, the gyrotropic configurations of the hypermagnetic fields can be amplified from the vacuum during an inflationary stage of expansion. After charting the parameter space of the model in terms of the rates of evolution of the magnetic and electric gauge couplings, we identify the regions where the gyrotropy is sufficiently intense to seed the baryon asymmetry of the Universe at the electroweak epoch while the backreaction constraints, the strong coupling bounds and the other astrophysical limits are concurrently satisfied.
The conventional $\Lambda$CDM cosmological model supplemented by the inflation concept describes the Universe very well. However, there are still a few concerns: new Planck data impose constraints on the shape of the inflaton potential, which exclude a lot of inflationary models; dark matter is not detected directly, and dark energy is not understood theoretically on a satisfactory level. In this brief sketch we investigate an alternative cosmological model with spherical spatial geometry and an additional perfect fluid with the constant parameter $\omega=-1/3$ in the linear equation of state. It is demonstrated explicitly that in the framework of such a model it is possible to satisfy the supernovae data at the same level of accuracy as within the $\Lambda$CDM model and at the same time suppose that the observed cosmic microwave background (CMB) radiation originates from a very limited space region. This is ensured by introducing an additional condition of light propagation between the antipodal points during the age of the Universe. Consequently, the CMB uniformity can be explained without the inflation scenario. The corresponding drawbacks of the model with respect to its comparison with the CMB data are also discussed.
We calculate the correlation function of 79,091 galaxy clusters in the redshift region of $0.05 \leq z \leq 0.5$ selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of $3.9 \sigma$. By fitting the correlation function with a $\Lambda$CDM model curve, we find $D_v(z = 0.331) r_d^{fid}/r_d = 1269.4 \pm 58$ Mpc which is consistent with the Planck 2015 cosmology. We find that the correlation functions of the higher mass sub-samples show a higher amplitude at small scales of $r < 80~h^{-1}{\rm Mpc}$, which is consistent with our precious result. We find a clear signal of the `Finger-of-God' effect on the 2D correlation function of the whole sample, which indicates the random peculiar motion of central bright galaxies in the gravitation potential well of clusters.
We quantify the contamination from polarized diffuse Galactic synchrotron and thermal dust emissions to the B-modes of the CMB anisotropies on the degree angular scale, using data from the Planck and WMAP satellites. We compute power spectra of foreground polarized emissions in 352 circular sky patches located at Galactic latitude |b|>20{\deg}, each of which covering a fraction of the sky of about 1.5%. We make use of the spectral properties derived from Planck and WMAP data to extrapolate, in frequency, the amplitude of synchrotron and thermal dust B-modes spectra in the multipole bin centered at $\ell\simeq80$. In this way we estimate, for each analyzed region, the amplitude and frequency of the foreground minimum. We detect both dust and synchrotron signal, at degree angular scale and at 3 confidence level, in 28 regions. Here the minimum of the foreground emission is found at frequencies between 60 and 100 GHz with an amplitude,expressed in terms of the equivalent tensor-to-scalar ratio, r_FG, between ~0.06 and ~1. Some of these regions are located at high Galactic latitudes, in areas close to the ones which are being observed by sub-orbital experiments.In all the other sky patches, where synchrotron or dust B-modes are not detectable with the required confidence, we put upper limits on the minimum foreground contamination and find values of r_FG between ~0.05 and ~1.5, in the frequency range 60-90 GHz. Our results indicate that, with the current sensitivity at low frequency, it is not possible to exclude the presence of synchrotron contamination to CMB cosmological B-modes at the level requested to measure a gravitational waves signal with r~0.01, at frequency <100 GHz, anywhere. Therefore, more accurate data are essential in order to better characterize the synchrotron polarized component, and eventually, remove its contamination to CMB signal through foreground cleaning.
At present, the best model for the evolution of the cosmos requires that dark matter makes up approximately 25% of the energy content of the Universe. Most approaches to explain the microscopic nature of dark matter, to date, have assumed its composition to be of intrinsically weakly-interacting particles; however, this need not be the case to have consistency with all extant observations. Given decades of no conclusive evidence to support any dark matter candidate so far, there is strong motivation to consider alternatives to the standard particle scenario. One such example is macro dark matter, a class of candidates that could interact quite strongly with the particles of the Standard Model, have large masses and physical sizes, yet behave as dark matter. Here we reconsider the effect of inelastically interacting macro dark matter on the abundance of primordially produced $^4\text{He}$, revising older constraints by both revisiting the phenomenology and taking into account recent improved measurements of the primordial $^4\text{He}$ abundance. An important aspect of our analysis is that even neutral Macros could affect the abundance of the light elements because, due to differences in their masses, those elements would be absorbed at rates that differ from each other by order unity.
We show that simple thermodynamic conditions determine, to a great extent, the equation of state and dynamics of cosmic defects of arbitrary dimensionality. We use these conditions to provide a more direct derivation of the Velocity-dependent One-Scale (VOS) model for the macroscopic dynamics of topological defects of arbitrary dimensionality in a $N+1$-dimensional homogeneous and isotropic universe. We parameterize the modifications to the VOS model associated to the interaction of the topological defects with other fields, including, in particular, a new dynamical degree of freedom associated to the variation of the mass per unit $p$-area of the defects, and compute the corresponding scaling solutions. The observational impact of this new dynamical degree of freedom is also briefly discussed.
We perform a computational survey of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of weakly self-interacting dark matter. We show that astrophysically weak self-interactions of dark matter may impart subtle yet measurable structures to the distribution of mass in high-speed collision galaxy clusters without significantly disrupting the colliding galaxy clusters or their dark matter halos. Interesting structures appear in the projected mass density maps of collision galaxy clusters as dark matter concentrations at large scattering angles and the distances from the collision center commensurate with that of the outgoing galaxy groups. Convincing observation of such structures would be a clear indication of the self-interacting nature of dark matter, as purely gravitational effects in high-speed galaxy cluster collisions are observed to produce material ejecta only in the forward and the backward cones around the collision axis. Our simulations indicate that as much as 20% of the total collision cluster mass may be deposited to produce such structures without noticeably disrupting the participating galaxy clusters or their dark matter halos. Our findings appear to explain the ring-like dark matter feature recently observed in long-range reconstructions of the mass density profile of the collision galaxy cluster CL0024+017. The size of this feature implies an estimate for the dark matter self-interaction strength of $\sigma_{DM}/m_{DM} \approx 0.1\ cm^2/g$.
The density field reconstruction technique, which was developed to partially reverse the nonlinear degradation of the Baryon Acoustic Oscillation (BAO) feature in the galaxy redshift surveys, has been successful in substantially improving the cosmology constraints from recent galaxy surveys such as Baryon Oscillation Spectroscopic Survey (BOSS). We estimate the efficiency of the reconstruction method as a function of various reconstruction details. To directly quantify the BAO information in nonlinear density fields before and after reconstruction, we calculate the cross-correlations (i.e., propagators) of the pre(post)-reconstructed density field with the initial linear field using a mock galaxy sample that is designed to mimic the clustering of the BOSS CMASS galaxies. The results directly provide the BAO damping as a function of wavenumber that can be implemented into the Fisher matrix analysis. We focus on investigating the dependence of the propagator on a choice of smoothing filters and on two major different conventions of the redshift-space density field reconstruction that have been used in literature. By estimating the BAO signal-to-noise for each case, we predict constraints on the angular diameter distance and Hubble parameter using the Fisher matrix analysis. We thus determine an optimal Gaussian smoothing filter scale for the signal-to-noise level of the BOSS CMASS. We also present appropriate BAO fitting models for different reconstruction methods based on the first and second order Lagrangian perturbation theory in Fourier space. Using the mock data, we show that the modified BAO fitting model can substantially improve the accuracy of the BAO position in the best fits as well as the goodness of the fits.
We consider the case of very low reheating scenarios ($T_{\rm RH}\sim\mathcal{O}({\rm MeV})$) with a better calculation of the production of the relic neutrino background (with three-flavor oscillations). At 95% confidence level, a lower bound on the reheating temperature $T_{\rm RH}>4.1$ MeV is obtained from Big Bang Nucleosynthesis, while $T_{\rm RH}>4.3$ MeV from Planck data for very light ($\sum m_i = 0.06$ eV) neutrinos. If neutrino masses are allowed to vary, Planck data yield $T_{\rm RH}>4.7$ MeV, the most stringent bound on the reheating temperature to date. Neutrino masses as large as 1 eV are possible for very low reheating temperatures.
Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations in turn exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to the behavior of planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20--300$R_{\rm g}$, where $R_{\rm g}=2GM/c^{2}$ is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.
Cosmic reionization by starlight from early galaxies affected their evolution, thereby impacting reionization, itself. Star formation suppression, for example, may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for Cold Dark Matter. Reionization modelling requires simulating volumes large enough ~(100 Mpc)^3 to sample reionization "patchiness", while resolving millions of galaxy sources above ~10^8 Msun, combining gravitational and gas dynamics with radiative transfer. Modelling the Local Group requires initial cosmological density fluctuations pre-selected to form the well-known structures of the local universe today. Cosmic Dawn ("CoDa") is the first such fully-coupled, radiation-hydrodynamics simulation of reionization of the local universe. Our new hybrid CPU-GPU code, RAMSES-CUDATON, performs hundreds of radiative transfer and ionization rate-solver timesteps on the GPUs for each hydro-gravity timestep on the CPUs. CoDa simulated (91 Mpc)^3 with 4096^3 particles and cells, to redshift 4.23, on ORNL supercomputer Titan, utilizing 8192 cores and 8192 GPUs. Global reionization ended slightly later than observed. However, a simple temporal rescaling which brings the evolution of ionized fraction into agreement with observations also reconciles ionizing flux density, cosmic star formation history, CMB electron scattering optical depth and galaxy UV luminosity function with their observed values. Haloes below ~3 x 10^9 Msun were severely affected by the rising UV background: photoionization heating suppressed their star formation. For most of reionization, star formation was dominated by haloes between 10^10 - 10^11Msun. Intergalactic filaments display sheathed structures, with hot envelopes surrounding cooler cores, but do not self-shield, unlike regions denser than 100 rho_average.
A complete analysis of the dynamics of the Hu-Sawicki modification to General Relativity is presented. In particular, the full phase-space is given for the case in which the model parameters are taken to be n=1, c1=1, and several stable de Sitter equilibrium points together with an unstable "matter-like" point are identified. We find that if the cosmological parameters are chosen to take on their Lambda CDM values today, this results in a universe which, until very low redshifts, is dominated by an equation of state parameter equal t1/3, leading to an expansion history very different from Lambda CDM. We demonstrate that this problem can be resolved by choosing Lambda CDM initial conditions at high redshifts and integrating the equations to the present day.
Modified gravity has attracted much attention over the last few years and remains a potential candidate for dark energy. In particular, the so-called viable f(R) gravity theories, which are able to both recover General Relativity (GR) and produce late-time cosmic acceleration, have been widely studied in recent literature. Nevertheless, extended theories of gravity suffer from several shortcomings which compromise their ability to provide realistic alternatives to the standard cosmological Lambda CDM Concordance model. We address the existence of cosmological singularities and the conditions that guarantee late-time acceleration,assuming reasonable energy conditions for standard matter in the so-called Hu-Sawicki f(R) model, currently among the most widely studied modifications to General Relativity. Then using the Supernovae Ia Union 2.1 catalogue, we further constrain the free parameters of this model. The combined analysis of both theoretical and observational constraints sheds some light on the viable parameter space of these models and the form of the underlying effective theory of gravity.
After giving a brief introduction and presenting a complete classification of gravitational waves (GWs) according to their frequencies, we review and summarize the detection methods, the sensitivities, and the sources. We notice that real-time detections are possible above 300 pHz. Below 300 pHz, the detections are possible on GW imprints or indirectly. We are on the verge of detection. The progress in this field will be promising and thriving. We will see improvement of a few orders to several orders of magnitude in the GW detection sensitivities over all frequency bands in the next hundred years.
The thermodynamical evolution of gas during the collapse of the primordial star-forming cloud depends significantly on the initial degree of rotation. However, there is no clear understanding of how the initial rotation can affect the heating and cooling process and hence the temperature that leads to the fragmentation of the gas during Population III star formation. We report the results from three\hbox{-}dimensional, smoothed-particle hydrodynamics (SPH) simulations of a rotating self-gravitating primordial gas cloud with a modified version of the Gadget-2 code, in which the initial ratio of the rotational to the gravitational energy ($\beta_0$) is varied over two orders of magnitude. We find that despite the lack of any initial turbulence and magnetic fields in the clouds, the angular momentum distribution leads to the formation and build-up of a disk that fragments into several clumps. We further examine the behavior of the protostars that form in both idealized as well as more realistic minihalos from the cosmological simulations. The thermodynamical evolution and the fragmentation behavior of the cosmological minihalos are similar to that of the artificial cases, especially in those with a similar $\beta_0$-parameter. Protostars with a higher rotation support exhibit spiral-arm-like structures on several scales, and have lower accretion rates. These type of clouds tend to fragment more, while some of the protostars escape from the cluster with the possibility of surviving until the present day. They also take much longer to form compared to their slowly rotating counterparts. We conclude that the use of appropriate initial conditions of the gas in minihalos is a pivotal and decisive quantity to study the evolution and final fate of the primordial stars.
Nowadays, $f(R)$ theory has been one of the leading modified gravity theories to explain the current accelerated expansion of the universe, without invoking dark energy. It is of interest to find the exact cosmological solutions of $f(R)$ theories. In fact, symmetry has been proved as a powerful tool to find exact solutions in physics. As is well known, Noether symmetry has been extensively used in cosmology and gravity theories. Recently, the so-called Hojman symmetry was also considered in the literature. Hojman symmetry directly deals with the equations of motion, rather than Lagrangian or Hamiltonian, unlike Noether symmetry. In this work, we consider Hojman symmetry in $f(R)$ theories in both the metric and Palatini formalisms, and find the corresponding exact cosmological solutions of $f(R)$ theories via Hojman symmetry. We show that the results are different from the ones obtained by using Noether symmetry in $f(R)$ theories. The present work confirms that Hojman symmetry can bring new features to cosmology and gravity theories.
We consider the application of group invariant transformations in order to constrain a flat isotropic and homogeneous cosmological model, containing of a Brans-Dicke scalar field and a perfect fluid with a constant equation of state parameter $w$, where the latter is not interacting with the scalar field in the gravitational action integral. The requirement that the Wheeler-DeWitt equation be invariant under one-parameter point transformations provides us with two families of power-law potentials for the Brans-Dicke field, in which the powers are functions of the Brans-Dicke parameter $\omega_{BD}$ and the parameter $w$. The existence of the Lie symmetry in the Wheeler-DeWitt equation is equivalent to the existence of a conserved quantity in field equations and with oscillatory terms in the wavefunction of the universe. This enables us to solve the field equations. For a specific value of the conserved quantity, we find a closed-form solution for the Hubble factor, which is equivalent to a cosmological model in general relativity containing two perfect fluids. This provides us with different models for specific values of the parameters $\omega_{BD},$ and $w$. Finally, the results hold for the specific case where the Brans-Dicke parameter $\omega_{BD}$ is zero, that is, for the O'Hanlon massive dilaton theory, and consequently for $f\left( R\right) $-gravity in the metric formalism.
We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9+eCMB+BAO+ $H_0$) dataset, the PLANCK+WP dataset, and the PLANCK $TT,TE,EE$+lowP+Lensing+ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the $\Lambda$CDM model, since at late times the NMDC effect is tiny due to small curvature.
We present a five-band Herschel study (100-500um) of three galaxy clusters at z~1.2 from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS). With a sample of 120 spectroscopically-confirmed cluster members, we investigate the role of environment on galaxy properties utilizing the projected cluster phase space (line-of-sight velocity versus clustercentric radius), which probes the time-averaged galaxy density to which a galaxy has been exposed. We divide cluster galaxies into phase-space bins of (r/r200) x (v/sigma_v), tracing a sequence of accretion histories in phase space. Stacking optically star-forming cluster members on the Herschel maps, we measure average infrared star formation rates, and, for the first time in high-redshift galaxy clusters, dust temperatures for dynamically distinct galaxy populations---namely, recent infalls and those that were accreted onto the cluster at an earlier epoch. Proceeding from the infalling to virialized (central) regions of phase space, we find a steady decrease in the specific star formation rate and increase in the stellar age of star-forming cluster galaxies. We perform a probability analysis to investigate all acceptable infrared spectral energy distributions within the full parameter space and measure a ~4 sigma drop in the average dust temperature of cluster galaxies in an intermediate phase-space bin, compared to an otherwise flat trend with phase space. We suggest one plausible quenching mechanism which may be consistent with these trends, invoking ram-pressure stripping of the warmer dust for galaxies within this intermediate accretion phase.
In this work, we decided to study the Power Law Entropy Corrected Holographic Dark Energy (PLECHDE) model in the framework of a spatially non-flat Universe and in the framework of Ho\v{r}ava-Lifshitz cosmology with infrared (IR) cut-off given by recently proposed Granda-Oliveros cut-off which contains one term proportional to the Hubble parameter squared and one proportional to the time derivative of the Hubble parameter. For the two cases corresponding to non-interacting and interacting DE and Dark Matter (DM), we derive the evolutionary form of the energy density of DE, the Equation of State (EoS) parameter $\omega_D$, the evolutionary form of the fractional energy density $\Omega_D'$ and the deceleration parameter $q$. Using the parametrization of the EoS parameter $\omega_D\left(z\right)=\omega_0+\omega_1 z$, we obtain the expressions of $\omega_0$ and $\omega_1$ for both non-interacting and interacting Dark Sectors. We also study the statefinder parameters $\left\{ r,s \right\}$, the properties of some cosmographic parameters and the squared speed of the sound for the model considered.
It was shown recently that, without jeopardizing the success of the $\Lambda$CDM model on cosmic scales, the MOdified Newtonian Dynamics (MOND) can be derived as an emergent phenomenon when axion-like dark matter particles condense into superfluid on galactic scales. We propose in this letter a Dirac-Born-Infeld (DBI) dark energy conformally coupled to local matter components to solve both galactic and cosmic coincidences that the MOND critical acceleration coincides with present Hubble scale and the matter energy density coincides with dark energy density today. The cosmological evolution of DBI dark energy behaves as a freezing Chaplygin gas and approaches to a cosmological constant in the asymptotic future.
Horndeski models with a de Sitter critical point for any kind of material content may provide a mechanism to alleviate the cosmological constant problem. We study the cosmological evolution of two classes of families - the linear models and the non-linear models with shift symmetry. We conclude that the latter models can deliver a background dynamics compatible with the latest observational data.
Links to: arXiv, form interface, find, astro-ph, recent, 1511, contact, help (Access key information)
Early dark energy (EDE) models are a class of quintessence dark energy with a dynamically evolving scalar field which display a small but non-negligible amount of dark energy at the epoch of matter-radiation equality. Compared with a cosmological constant, the presence of dark energy at early times changes the cosmic expansion history and consequently the shape of the linear theory power spectrum and potentially other observables. We constrain the cosmological parameters in the EDE cosmology using recent measurements of the cosmic microwave background and baryon acoustic oscillations. The best-fitting models favour no EDE; here we consider extreme examples which are in mild tension with current observations in order to explore the observational consequences of a maximally allowed amount of EDE. We study the non-linear evolution of cosmic structure in EDE cosmologies using large volume N-body simulations. Many large-scale structure statistics are found to be very similar between the $\Lambda$ cold dark matter ($\Lambda$CDM) and EDE models. We find that the most promising way to distinguish EDE from $\Lambda$CDM is to measure the power spectrum on large scales, where differences of up to 15% are expected.
The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars. Using detailed Monte Carlo simulations, we measure, for the first time, the source count distribution, $dN/dS$, of extragalactic $\gamma$-ray sources at $E>50$ GeV and find that it is compatible with a Euclidean distribution down to the lowest measured source flux in the 2FHL ($\sim8\times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$). We employ a one-point photon fluctuation analysis to constrain the behavior of $dN/dS$ below the source detection threshold. Overall the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, $S_b$, in the range $[8 \times 10^{-12},1.5 \times 10^{-11}]$ ph cm$^{-2}$ s$^{-1}$ and power-law indices below and above the break of $\alpha_2 \in [1.60,1.75]$ and $\alpha_1 = 2.49 \pm 0.12$ respectively. Integration of $dN/dS$ shows that point sources account for at least $86^{+16}_{-14}\%$ of the total extragalactic $\gamma$-ray background. The simple form of the derived source count distribution is consistent with a single population (i.e. blazars) dominating the source counts to the minimum flux explored by this analysis. We estimate the density of sources detectable in blind surveys that will be performed in the coming years by the Cherenkov Telescope Array.
We present observations of four rapidly rising (t_{rise}~10d) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M_{peak}~-20) - one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey (SNLS). The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as a Type II SN due to broad Halpha emission, but an unusual absorption feature, which can be interpreted as either high velocity Halpha (though deeper than in previously known cases) or Si II (as seen in Type Ia SNe), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM) and magnetar spindown can not readily explain the observations. We look into the intriguing possibility of a "Type 1.5 SN" scenario for our events, but can not confirm nor reject this interpretation. More detailed models for these kinds of transients and more constraining observations of future such events should help better determine their nature.
Recent Cosmic Microwave Background (CMB) temperature and polarization anisotropy measurements from the Planck mission have significantly improved previous constraints on the neutrino masses as well as the bounds on extended models with massless or massive sterile neutrino states. However, due to parameter degeneracies, additional low redshift priors are mandatory in order to sharpen the CMB neutrino bounds. We explore here the role of different priors on low redshift quantities, such as the Hubble constant, the cluster mass bias, and the reionization optical depth $\tau$. Concerning current priors on the Hubble constant and the cluster mass bias, the bounds on the neutrino parameters may differ appreciably depending on the choices adopted in the analyses. With regard to future improvements in the priors on the reionization optical depth, a value of $\tau=0.05\pm 0.01$, motivated by astrophysical estimates of the reionization redshift, would lead to $\sum m_\nu<0.0993$~eV at $95\%$~CL, thereby opening the window to unravel the neutrino mass hierarchy with existing cosmological probes.
The presence of megaparsec-scale radio halos in galaxy clusters has already been established by many observations over the last two decades. The emerging explanation for the formation of these giant sources of diffuse synchrotron radio emission is that they trace turbulent regions in the intracluster medium, where particles are trapped and accelerated during cluster mergers. Our current observational knowledge is, however, mainly limited to massive systems. Here we present observations of a sample of 14 mass-selected galaxy clusters, i.e. $M_{\rm 500} > 4\times10^{14}$~M${_\odot}$, in the Southern Hemisphere, aimed to study the occurrence of radio halos in low mass clusters and test the correlation between the radio halo power at 1.4 GHz $P_{\rm 1.4}$ and the cluster mass $M_{\rm 500}$. Our observations were performed with the 7-element Karoo Array Telescope at 1.86 GHz. We found three candidates to host diffuse cluster-scale emission and derived upper limits at the level of $0.6 - 1.9 \times 10^{24}$~Watt~Hz$^{-1}$ for $\sim 50\%$ of the clusters in the sample, significantly increasing the number of clusters with radio halo information in the considered mass range. Our results confirm that bright radio halos in less massive galaxy clusters are statistically rare.
We present an extension to the time-dependent photo-ionization code C$^2$-Ray to calculate photo-heating in an efficient and accurate way. In C$^2$-Ray, the thermal calculation demands relatively small time-steps for accurate results. We describe two novel methods to reduce the computational cost associated with small time-steps, namely, an adaptive time-step algorithm and an asynchronous evolution approach. The adaptive time-step algorithm determines an optimal time-step for the next computational step. It uses a fast ray-tracing scheme to quickly locate the relevant cells for this determination and only use these cells for the calculation of the time-step. Asynchronous evolution allows different cells to evolve with different time-steps. The asynchronized clocks of the cells are synchronized at the times where outputs are produced. By only evolving cells which may require short time-steps with these short time-steps instead of imposing them to the whole grid, the computational cost of the calculation can be substantially reduced. We show that our methods work well for several cosmologically relevant test problems and validate our results by comparing to the results of another time-dependent photo-ionization code.
DarkSide-50 is the first physics detector of the DarkSide dark matter search program. The detector features a dual-phase underground-argon Time Projection Chamber (TPC) of 50 kg active mass surrounded by an organic liquid-scintillator neutron veto (30 tons) and a water-Cherenkov muon detector (1000 tons). The TPC is currently fully shielded and operating underground at Gran Sasso National Laboratory. A first run of 1422 kg-day exposure with atmospheric argon represents the most sensitive dark matter search using a liquid argon target. The TPC is now filled with underground argon, greatly reduced in 39Ar, and DarkSide-50 is in its final configuration for an extended dark matter search. Overviews of the design, performance, and results obtained so far with DarkSide-50 will be presented, along with future prospects for the DarkSide program.
We present the first study of the spatial distribution of star formation in z~0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS0717.5+3745 and MACS1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 10^8-10^11 M_sun, and star formation rates in the range 1-20 M_sun/yr. Both in clusters and in the field, H{\alpha} is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. In ~20% of the cases, the H{\alpha} emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the H{\alpha} emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models and find no conclusive results. The diversity of morphologies and sizes observed in H_alpha illustrates the complexity of the environmental process that regulate star formation. Upcoming analysis of the full GLASS dataset will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial dataset.
Collisional debris around interacting and post-interacting galaxies often display condensations of gas and young stars that can potentially form gravitationally bound objects: Tidal Dwarf Galaxies (TDGs). We summarise recent results on TDGs, which are originally published in Lelli et al. (2015, A&A). We study a sample of six TDGs around three different interacting systems, using high-resolution HI observations from the Very Large Array. We find that the HI emission associated to TDGs can be described by rotating disc models. These discs, however, would have undergone less than one orbit since the time of the TDG formation, raising the question of whether they are in dynamical equilibrium. Assuming that TDGs are in dynamical equilibrium, we find that the ratio of dynamical mass to baryonic mass is consistent with one, implying that TDGs are devoid of dark matter. This is in line with the results of numerical simulations where tidal forces effectively segregate dark matter in the halo from baryonic matter in the disc, which ends up forming tidal tails and TDGs.
The photo-dissociation of H$_2$ by a nearby anisotropic source of radiation is seen as a critical component in creating an environment in which a direct collapse black hole may form. Employing radiative transfer we model the effect of multi-frequency (0.76 eV - 60 eV) radiation on a collapsing halo at high redshift. We vary both the shape of the spectrum which emits the radiation and the distance to the emitting galaxy. We use blackbody spectra with temperatures of $\rm{T = 10^4\ K}$ and $\rm{T = 10^5\ K}$ and a realistic stellar spectrum. We find that an optimal zone exists between 1 kpc and 4 kpc from the emitting galaxy. If the halo resides too close to the emitting galaxy the photo-ionising radiation creates a large HII region which effectively disrupts the collapsing halo, too far from the source and the radiation flux drops below the level of the expected background and the H$_2$ fraction remains too high. When the emitting galaxy is initially placed between 1 kpc and 2 kpc from the collapsing halo, with a spectral shape consistent with a star-forming high redshift galaxy, then a large central core forms. The mass of the central core is between 5000 and 10000 $\rm{M_{\odot}}$ at a temperature of approximately 700 K. This core is however surrounded by a reservoir of hotter gas at approximately 8000 K which leads to mass inflow rates of the order of $\sim 0.1$ $\rm{M_{\odot}}$ yr$^{-1}$. This environment has the potential to form a massive primordial star which can then lead to the formation of a direct collapse black hole.
We conduct a survey of low surface brightness (LSB) satellite galaxies around the Local Volume massive spirals using long exposures with small amateur telescopes. We identified 27 low and very low surface brightness objects around the galaxies NGC,672, 891, 1156, 2683, 3344, 4258, 4618, 4631, and 5457 situated within 10 Mpc from us, and found nothing new around NGC,2903, 3239, 4214, and 5585. Assuming that the dwarf candidates are the satellites of the neighboring luminous galaxies, their absolute magnitudes are in the range of -8.6 > M_B > -13.3, their effective diameters are 0.4-4.7 kpc, and the average surface brightness is 26.1 mag/sq arcsec. The mean linear projected separation of the satellite candidates from the host galaxies is 73 kpc. Our spectroscopic observations of two LSB dwarfs with the Russian 6-meter telescope confirm their physical connection to the host galaxies NGC,891 and NGC,2683.
We consider the general scalar field Horndeski Lagrangian coupled to matter. Within this class of models, we present two results that are independent of the particular form of the model. First, we show that in a Friedmann-Robertson-Walker metric the Horndeski Lagrangian coincides with the pressure of the scalar field. Second, we employ the previous result to identify the most general form of the Lagrangian that allows for cosmological scaling solutions, i.e. solutions where the ratio of matter to field density and the equation of state remain constant. Scaling solutions of this kind may help solving the coincidence problem since in this case the presently observed ratio of matter to dark energy does not depend on initial conditions, but rather on the theoretical parameters.
Links to: arXiv, form interface, find, astro-ph, recent, 1511, contact, help (Access key information)
We present accurate measurements of the linear, quadratic, and cubic local bias of dark matter halos, using curved "separate universe" N-body simulations which effectively incorporate an infinite-wavelength overdensity. This can be seen as an exact implementation of the peak-background split argument. We compare the results with the linear and quadratic bias measured from the halo-matter power spectrum and bispectrum, and find good agreement. On the other hand, the standard peak-background split applied to the Sheth & Tormen (1999) and Tinker et al. (2008) halo mass functions matches the measured linear bias parameter only at the level of 10%. The prediction from the excursion set-peaks approach performs much better, which can be attributed to the stochastic moving barrier employed in the excursion set-peaks prediction. We also provide convenient fitting formulas for the nonlinear bias parameters $b_2(b_1)$ and $b_3(b_1)$.
We introduce a method for identifying "twin" Type Ia supernovae, and using them to improve distance measurements. This novel approach to Type Ia supernova standardization is made possible by spectrophotometric time series observations from the Nearby Supernova Factory (SNfactory). We begin with a well-measured set of supernovae, find pairs whose spectra match well across the entire optical window, and then test whether this leads to a smaller dispersion in their absolute brightnesses. This analysis is completed in a blinded fashion, ensuring that decisions made in implementing the method do not inadvertently bias the result. We find that pairs of supernovae with more closely matched spectra indeed have reduced brightness dispersion. We are able to standardize this initial set of SNfactory supernovae to 0.083 +/- 0.012 magnitudes, implying a dispersion of 0.072 +/- 0.010 magnitudes in the absence of peculiar velocities. We estimate that with larger numbers of comparison SNe, e.g, using the final SNfactory spectrophotometric dataset as a reference, this method will be capable of standardizing high-redshift supernovae to within 0.06 +/-0.07 magnitudes. These results imply that at least 3/4 of the variance in Hubble residuals in current supernova cosmology analyses is due to previously unaccounted-for astrophysical differences among the supernovae
Quasars are the most luminous non-transient sources in the epoch of cosmological reionization (i.e., which ended a billion years after the Big Bang, corresponding to a redshift of z ~ 5), and are powerful probes of the inter-galactic medium at that time. This review covers current efforts to identify high-redshift quasars and how they have been used to constrain the reionization history. This includes a full description of the various processes by which neutral hydrogen atoms can absorb/scatter ultraviolet photons, and which lead to the Gunn-Peterson effect, dark gap and dark pixel analyses, quasar near zones and damping wing absorption. Finally, the future prospects for using quasars as probes of reionization are described.
We review the observable consequences of the epoch of reionization (EoR) on the cosmic microwave background (CMB), and the resulting constraints on the EoR. We discuss how Thomson scattering with the free electrons produced during EoR equates to an optical depth for CMB photons. The optical depth measurements from the WMAP and Planck satellites, using large-scale CMB polarization power spectra, is one of the few current constraints on the timing of cosmic reionization. We also present forecasts for the precision with which the optical depth will be measured by future satellite missions. Second, we consider the kinematic Sunyaev-Zel'dovich (kSZ) effect, and how the kSZ power spectrum depends on the duration of reionization. We review current measurements of the kSZ power and forecasts for future experiments. Finally, we mention proposals to look for spectral distortions in the CMB that are related to the electron temperature at EoR, and ideas to map the variations in the optical depth across the sky.
In this introductory chapter, we outline expectations for when and how the hydrogen and helium atoms in the universe turned from neutral to ionized, focusing on the earliest, least well understood stages, and emphasizing the most important open questions. We include a historical summary, and highlight the role of reionization as one of the few milestones in the evolution of the universe since the Big Bang, and its status as a unique probe of the beginning stages of structure formation.
One of the most exciting probes of the early phases of structure formation and reionization is the spin-flip line of neutral hydrogen, with a rest wavelength of 21 cm. This chapter introduces the physics of this transition and the astrophysical parameters upon which it depends, including discussions of the radiation fields that permeate the intergalactic medium that fix the brightness of this transition. We describe the critical points in the evolution of the 21-cm background and focus on the sky-averaged brightness and the power spectrum as representative measurements. Finally, we include a discussion of observations and the challenges they face in the near future.
A major goal of observational and theoretical cosmology is to observe the largely unexplored time period in the history of our universe when the first galaxies form, and to interpret these measurements. Early galaxies dramatically impacted the gas around them in the surrounding intergalactic medium (IGM) by photoionzing the gas during the Epoch of Reionization (EoR). This epoch likely spanned an extended stretch in cosmic time: ionized regions formed and grew around early generations of galaxies, gradually filling a larger and larger fraction of the volume of the universe. At some time -- thus far uncertain, but within the first billion years or so after the big bang -- essentially the entire volume of the universe became filled with ionized gas. The properties of the IGM provide valuable information regarding the formation time and nature of early galaxy populations, and many approaches for studying the first luminous sources are hence based on measurements of the surrounding intergalactic gas. The prospects for improved reionization-era observations of the IGM and early galaxy populations over the next decade are outstanding. Motivated by this, we review the current state of models of the IGM during reionization. We focus on a few key aspects of reionization-era phenomenology and describe: the redshift evolution of the volume-averaged ionization fraction, the properties of the sources and sinks of ionizing photons, along with models describing the spatial variations in the ionization fraction, the ultraviolet radiation field, the temperature of the IGM, and the gas density distribution.
Neutral diffuse intergalactic gas that existed during the Epoch of Reionization (EoR) suppresses Lyman Alpha (Lya) flux emitted by background galaxies. In this chapter I summarise the increasing observational support for the claim that Lya photons emitted by galaxies at z>6 are suppressed by intervening HI gas. I describe key physical processes that affect Lya transfer during the EoR. I argue that in spite of the uncertainties associated with this complex multiscale problem, the data on Lya emitting galaxies at z=0-6 strongly suggests that the observed reduction in Lya flux from galaxies at z>6 is due to additional intervening HI gas. The main question is what fraction of this additional HI gas is in the diffuse neutral IGM. I summarise how future surveys on existing and upcoming instruments are expected to reduce existing observational uncertainties enormously. With these improved data we will likely be able to nail down reionization with Lya emitting galaxies.
The anisotropies of the B-mode polarization in the cosmic microwave background radiation play a crucial role for the study of the very early Universe. However, in the real observation, the mixture of the E-mode and B-mode can be caused by the partial sky surveys, which must be separated before applied to the cosmological explanation. The separation method developed by Smith (\citealt{PhysRevD.74.083002}) has been widely adopted, where the edge of the top-hat mask should be smoothed to avoid the numerical errors. In this paper, we compare three different smoothing methods, and investigate the leakage residuals of the E-B mixture. We find that, if the less information loss is needed and the smaller region is smoothed in the analysis, the \textit{sin}- and \textit{cos}-smoothing methods are better. However, if we need a clean constructed B-mode map, the larger region around the mask edge should be smoothed. In this case, the \textit{Gaussian}-smoothing method becomes much better. In addition, we find that the leakage caused by the numerical errors in the \textit{Gaussian}-smoothing method mostly concentrates on two bands, which is quite easy to be reduced for the further E-B separations.
Under very general assumptions of metric theory of spacetime, photons traveling along null geodesics and photon number conservation, two observable concepts of cosmic distance, i.e. the angular diameter and the luminosity distances are related to each other by the so called distance duality relation (DDR) $D^L=D^A(1+z)^2$. Observational validation of this relation is quite important because any evidence of its violation could be a signal of new physics. In this letter we introduce a new method to test DDR based on strong gravitational lensing systems and supernovae Ia. Using a new compilation of strong lensing systems and JLA compilation of SNe Ia we found no evidence of DDR violation. However, not so much the final result but the method itself is worth attention, because unlike previously proposed techniques, it does not depend on prior assumptions concerning the details of cosmological model and galaxy cluster modelling.
Linear halo bias is the response of dark matter halo number density to a long wavelength fluctuation in the dark matter density. Using abundance matching between separate universe simulations which absorb the latter into a change in the background, we test the consistency relation between the change in a one point function, the halo mass function, and a two point function, the halo-matter cross correlation in the long wavelength limit. We find excellent agreement between the two at the $1-2\%$ level for average halo biases between $1 \lesssim \bar b_1 \lesssim 4$ and no statistically significant deviations at the $4-5\%$ level out to $\bar b_1 \approx 8$. The separate universe technique provides a way of calibrating linear halo bias efficiently for even highly biased rare halos in the $\Lambda$CDM model. Observational violation of the consistency relation would indicate new physics, e.g.~in the dark matter, dark energy or primordial non-Gaussianity sectors.
We study the local response to long wavelength fluctuations in cosmological $N$-body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, most probably more precise, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naive derivation assuming a universal mass function by 18%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.
We study the $TT\mu$ bispectrum, generated by correlations between Cosmic Microwave Background temperature (T) anisotropies and chemical potential ($\mu$) distortions, and we analyze its dependence on primordial local trispectrum parameters $g_{\rm NL}$ and $\tau_{\rm NL}$. We cross-check our results by comparing the full bispectrum calculation with the expectations from a general physical argument, based on predicting the shape of $\mu$-T correlations from the couplings between short and long perturbation modes induced by primordial non-Gaussianity. We show that $both$ $g_{\rm NL}$ and $\tau_{\rm NL}$-parts of the primordial trispectrum source a non-vanishing $TT\mu$ signal, contrary to the $\mu\mu$ auto-correlation function, which is sensitive only to the $\tau_{\rm NL}$-component. A simple Fisher matrix-based forecast shows that a futuristic, cosmic-variance dominated experiment could in principle determine $g_{\rm NL}$ and $\tau_{\rm NL}$ from $TT\mu$ with $\Delta g_{\rm NL} \simeq 4$, $\Delta \tau_{\rm NL} \simeq 0.02$ sensitivities.
It is often argued that inflation erases all the information about what took place before it started. Quantum gravity, relevant in the Planck era, seems therefore mostly impossible to probe with cosmological observations. In general, only very ad hoc scenarios or hyper fine-tuned initial conditions can lead to observationally testable theories. Here we consider a well-defined and well motivated candidate quantum cosmology model that predicts inflation. Using the most recent observational constraints on the cosmic microwave background B modes, we show that the model is excluded for all its parameter space, without any tuning. Some important consequences are drawn for the deformed algebra approach to loop quantum cosmology. We emphasize that neither loop quantum cosmology in general nor loop quantum gravity are disfavored by this study but their falsifiability is established.
We establish a correspondence between general relativity with diffeomorphism invariance and scalar field theories with Galilean invariance: notions as the Levi-Civita connection and the Riemann tensor have a Galilean counterpart. This suggests Galilean field theories as the unique non-trivial alternative to gauge theories (including general relativity). Moreover, it is shown that the requirement of a first-order Palatini formalism uniquely determines the Galileon models with second-order field equations, similar to the Lovelock gravity theories. Possible extensions are discussed.
Context. Blazars are among the most energetic objects in the Universe. In
2008 August, Fermi/LAT detected the blazar PKS 1502+106 showing a rapid and
strong gamma-ray outburst followed by high and variable flux over the next
months. This activity at high energies triggered an intensive multi-wavelength
campaign covering also the radio, optical, UV, and X-ray bands indicating that
the flare was accompanied by a simultaneous outburst at optical/UV/X-rays and a
delayed outburst at radio bands.
Aims: In the current work we explore the phenomenology and physical
conditions within the ultra-relativistic jet of the gamma-ray blazar PKS
1502+106. Additionally, we address the question of the spatial localization of
the MeV/GeV-emitting region of the source.
Methods: We utilize ultra-high angular resolution mm-VLBI observations at 43
and 86 GHz complemented by VLBI observations at 15 GHz. We also employ
single-dish radio data from the F-GAMMA program at frequencies matching the
VLBI monitoring.
Results: PKS 1502+106 shows a compact core-jet morphology and fast
superluminal motion with apparent speeds in the range 5--22 c. Estimation of
Doppler factors along the jet yield values between ~7 up to ~50. This Doppler
factor gradient implies an accelerating jet. The viewing angle towards the
source differs between the inner and outer jet, with the former at ~3 degrees
and the latter at ~1 degree, after the jet bends towards the observer beyond 1
mas. The de-projected opening angle of the ultra-fast, magnetically-dominated
jet is found to be (3.8 +/- 0.5) degrees. A single jet component can be
associated with the pronounced flare both at high-energies and in radio bands.
Finally, the gamma-ray emission region is localized at less than 5.9 pc away
from the jet base.
We study the distribution and evolution of highly ionised intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of SiIV, CIV, NV, OVI and NeVIII absorbers with observations at redshift z = 0 to ~ 6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of two substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong OVI, are directly sensitive to the strength of the feedback.
The Local Group of galaxies offer some of the most discriminating tests of models of cosmic structure formation. For example, observations of the Milky Way (MW) and Andromeda satellite populations appear to be in disagreement with N-body simulations of the "Lambda Cold Dark Matter" ({\Lambda}CDM) model: there are far fewer satellite galaxies than substructures in cold dark matter halos (the "missing satellites" problem); dwarf galaxies seem to avoid the most massive substructures (the "too-big-to-fail" problem); and the brightest satellites appear to orbit their host galaxies on a thin plane (the "planes of satellites" problem). Here we present results from APOSTLE (A Project Of Simulating The Local Environment), a suite of cosmological hydrodynamic simulations of twelve volumes selected to match the kinematics of the Local Group (LG) members. Applying the Eagle code to the LG environment, we find that our simulations match the observed abundance of LG galaxies, including the satellite galaxies of the MW and Andromeda. Due to changes to the structure of halos and the evolution in the LG environment, the simulations reproduce the observed relation between stellar mass and velocity dispersion of individual dwarf spheroidal galaxies without necessitating the formation of cores in their dark matter profiles. Satellite systems form with a range of spatial anisotropies, including one similar to that of the MW, confirming that such a configuration is not unexpected in {\Lambda}CDM. Finally, based on the observed velocity dispersion, size, and stellar mass, we provide new estimates of the maximum circular velocity for the halos of nine MW dwarf spheroidals.
While the use of numerical general relativity for modeling astrophysical phenomena and compact objects is commonplace, the application to cosmological scenarios is only just beginning. Here, we examine the expansion of a spacetime using the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism of numerical relativity in synchronous gauge. The universe that emerges exhibits an average Friedmann-Lema\"itre-Robertston-Walker (FLRW) behavior, however this universe also exhibits locally inhomogeneous expansion beyond that expected in linear perturbation theory around a FLRW background. This departure from FLRW is an important path-dependent effect that will need to be considered for precise calculations of physical observables in an inhomogeneous universe.
We present cosmological-scale numerical simulations of an evolving universe in full general relativity (GR) and introduce a new numerical tool, {\sc CosmoGRaPH}, which employs the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism on a 3-dimensional grid. Using {\sc CosmoGRaPH}, we calculate the effect of an inhomogeneous matter distribution on the evolution of a spacetime. We also present the results of a set of standard stability tests to demonstrate the robustness of our simulations.
The elegance of inflationary cosmology and cosmological perturbation theory ends with the formation of the first stars and galaxies, the initial sources of light that launched the phenomenologically rich process of cosmic reionization. Here we review the current understanding of early star formation, emphasizing unsolved problems and technical challenges. We begin with the first generation of stars to form after the Big Bang and trace how they influenced subsequent star formation. The onset of chemical enrichment coincided with a sharp increase in the overall physical complexity of star forming systems. Ab-initio computational treatments are just now entering the domain of the predictive and are establishing contact with local observations of the relics of this ancient epoch.
In this paper we present a new theory for unification of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations on the four-dimensional spacetime from the five-dimensional Einstein field equation. We show that, besides the Einstein field equation on the four-dimensional spacetime, a new electromagnetic field equation is also derived: $\nabla_a F^{ab}-\xi R^b_{\;\,a}A^a=-4\pi J^b$ with $\xi=-2$, where $F^{ab}$ is the antisymmetric electromagnetic field tensor defined by the potential vector $A^a$, $R_{ab}$ is the Ricci curvature tensor of the hypersurface, and $J^a$ is the electric current vector. The new electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term $\xi R^b_{\;\,a}A^a$, which addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge as discussed in a previous paper by the author. Hence, the new theory is different from the Kaluza-Klein theory and its variants. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. We show that, under some conditions the unidentified matter can be interpreted as a cosmological constant on the four-dimensional spacetime. We argue that, the new electromagnetic field equation and hence the new unified theory can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.
Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\alpha-\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\odot$ and an accretion rate of $10^{-3}$~M$_\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\odot$ and an accretion rate of $10^{-1}$~M$_\odot$~yr$^{-1}$. For the $10$~M$_\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\odot$ and a mass outflow rate of $10^{-3.7}$~M$_\odot$~yr$^{-1}$. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least $1000$~AU. The jet luminosity corresponds to $\sim10^{6.0}$~L$_\odot$, and a mass outflow rate of $10^{-2.1}$~M$_\odot$~yr$^{-1}$. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.
We investigate signatures that would be produced in the spectrum and sky distribution of UHECR by a population of the Galactic sources of high-energy protons in the energy range around 1 EeV, i.e., around the diffusive-to-ballistic transition. In this regime, the CR flux has to be calculated numerically. We employ the approach that consists in backtracking anti-protons from Earth through the Galaxy and integrating the source emissivity along the trajectory. This approach makes evident two generic features of the transition region: sharp increase of the total flux as the energy decreases across the transition region, and its strong anisotropy (appearance of a bright compact spot) all the way until the onset of the diffusive regime. We then discuss and compare several methods to experimentally detect or constrain these features. We find that a few percent admixture of the Galactic protons can in principle be detected by the current UHECR experiments.
Flux magnification is an interesting complement to shear-based lensing measurements, especially at high redshift where sources are harder to resolve. One measures either changes in the source density (magnification bias) or in the shape of the flux distribution (e.g. magnitude-shift). The interpretation of these measurements relies on theoretical estimates of how the observables change under magnification. Here we present simulations to create multi-band photometric mock catalogues of Lyman-break galaxies in a CFHTLenS-like survey that include several observational effects that can change these relations, making simple theoretical estimates unusable. In particular, we show how the magnification bias can be affected by photometric noise, colour selection, and dust extinction. We find that a simple measurement of the slope of the number-counts is not sufficient for the precise interpretation of virtually all observations of magnification bias. We also explore how sensitive the shift in the mean magnitude of a source sample in different photometric bands is to magnification including the same observational effects. Again we find significant deviations from simple analytical estimates. We also discover a wavelength-dependence of the magnitude-shift effect when applied to a colour-selected noisy source sample. Such an effect can mimic the reddening by dust in the lens. It has to be disentangled from the dust extinction before the magnitude-shift/colour-excess can be used to measure the distribution of either dark matter or extragalactic dust. Using simulations like the ones presented here these observational effects can be studied and eventually removed from observations making precise measurements of flux magnification possible.
We present fully nonlinear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. For each fluid component we ignore the anisotropic stress. The multiple component nature, however, introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully nonlinear equations and the third-order perturbation equations of the nonrelativistic pressure fluids in the CDM-comoving gauge.
We consider models of chaotic inflation driven by the real parts of a conjugate pair of Higgs superfields involved in the spontaneous breaking of a grand unification symmetry at a scale assuming its Supersymmetric (SUSY) value. We combine a superpotential, which is uniquely determined by applying a continuous R symmetry, with a class of logarithmic or semi-logarithmic Kahler potentials which exhibit a prominent shift-symmetry with a tiny violation, whose strengths are quantified by c- and c+ respectively. The inflationary observables provide an excellent match to the recent Bicep2/Keck Array and Planck results setting 3.5x10^{-3}<=\r+-=\c+/\c-<=1/N where N=3 or 2 is the prefactor of the logarithm. Inflation can be attained for subplanckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.
Links to: arXiv, form interface, find, astro-ph, recent, 1511, contact, help (Access key information)
We test the imprint of f(R) modified gravity on the halo mass function, using N-body simulations and a theoretical model developed in (Kopp et al. 2013). We find a very good agreement between theory and simulations. We extend the theoretical model to the conditional mass function and apply it to the prediction of the linear halo bias in f(R) gravity. Using the halo model we obtain a prediction for the non-linear matter power spectrum accurate to ~10% at z=0 and up to k=2h/Mpc. We also study halo profiles for the f(R) models and find a deviation from the standard general relativity result up to 40%, depending on the halo masses and redshift. This has not been pointed out in previous analysis. Finally we study the number density and profiles of voids identified in these f(R) N-body simulations. We underline the effect of the bias and the sampling to identify voids. We find significant deviation from GR when measuring the f(R) void profiles with fR0<-10^{-6}.
A key physical quantity during reionization is the size of HII regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm -- widely used for void finding in galaxy surveys -- which we show to be an unbiased method with the lowest dispersion and best performance on Monte-Carlo realizations of a known bubble size PDF. We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect those volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, HII regions in simulations are significantly larger (by factors of 10-1000 in volume) than analytic predictions. The size PDF is narrower, and evolves more slowly with time, than predicted. It becomes more sharply peaked as reionization progresses. These effects are likely caused by bubble mergers, which are inadequately modeled by analytic theory. Our results have important consequences for high-redshift 21cm observations, the mean free path of ionizing photons, and the visibility of Ly-alpha emitters, and point to a fundamental failure in our understanding of the characteristic scales of the reionization process.
The reionization of intergalactic hydrogen has received intense theoretical scrutiny over the past two decades. Here, we approach the process formally as a percolation process and phase transition. Using semi-numeric simulations, we demonstrate that an infinitely-large ionized region abruptly appears at an ionized fraction of ~0.1 and quickly grows to encompass most of the ionized gas: by an ionized fraction of 0.3, nearly ninety percent of the ionized material is part of this region. Throughout most of reionization, nearly all of the intergalactic medium is divided into just two regions, one ionized and one neutral, and both infinite in extent. We also show that the discrete ionized regions that exist before and near this transition point follow a near-power law distribution in volume, with equal contributions to the total filling factor per logarithmic interval in size up to a sharp cutoff in volume. These qualities are generic to percolation processes, with the detailed behavior a result of long-range correlations in the underlying density field. These insights will be crucial to understanding the distribution of ionized and neutral gas during reionization and provide precise meaning to the intuitive description of reionization as an "overlap" process.
The extragalactic background light is expected to be comprised of the cumulative radiation from all galaxies and active galactic nuclei over the cosmic history. In addition to point sources, EBL also contains information from diffuse sources of radiation. An example is the intra-halo light, associated with diffuse stars in dark matter halos resulting from galaxy mergers and tidal interactions, identified based on measurements involving the angular power spectrum of infrared background anisotropies. The angular power spectra of the near-infrared intensities could still contain additional signals and a complete understanding of the nature of the IR background is still lacking in the literature. Here we explore the constraints that can be placed on the decay products associated with particle decays, especially candidate dark matter models involving axions that trace dark matter halos of galaxies. Axions with a mass around a few eV will decay via two photons with wavelengths in the near-IR band, and will leave a signature in the IR background intensity power spectrum. Using recent power spectra measurements from the Hubble Space Telescope (HST) and Cosmic Infrared Background Experiment (CIBER), we find that the 0.6 to 1.6 micron power spectra can be explained with an axion mass of around 4 eV and a total axion abundance as a fractional energy density Omega_a~0.05. Such an abundance is comparable to the baryon density of the Universe. The absolute EBL intensity of axion decay photons is slightly below 1 nW m^-2 sr^-1 at near-IR wavelengths, roughly a factor of 10 to 20 below the total integrated light from galaxies. The suggested axion mass and abundance are not ruled out by existing cosmological observations.
Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation theory in these kind of models. More specifically, we calculate the anisotropic corrections due to the presence of the vector field. We then generalize the separate universe formalism to our anisotropic set up and use it in some specific examples of anisotropic inflation. Finally, we connect the primordial anisotropies to the specific examples and to CMB observations. We calculate the TT, TE, TB, EB and BB correlation in the model of charged scalar field model and look for the unique signatures that the anisotropic inflation can have on the CMB map. Any future detection of these statistical anisotropies would rule out the isotropic FRW models.
Generic scalar-tensor theories of gravity predict deviations from Newtonian physics inside astrophysical bodies. In this paper, we point out that low mass stellar objects, red and brown dwarf stars, are excellent probes of these theories. We calculate two important and potentially observable quantities: the radius of brown dwarfs and the minimum mass for hydrogen burning in red dwarfs. The brown dwarf radius can differ significantly from the GR prediction and upcoming surveys that probe the mass-radius relation for stars with masses $<\mathcal{O}(0.1M_\odot)$ have the potential to place new constraints. The minimum mass for hydrogen burning can be larger than several presently observed Red Dwarf stars. This places a new and extremely stringent constraint on the parameters that appear in the effective field theory of dark energy and rules out several well-studied dark energy models.
Early-matter-like dark energy is defined as a dark energy component whose equation of state approaches that of cold dark matter (CDM) at early times. Such a component is an ingredient of unified dark matter (UDM) models, which unify the cold dark matter and the cosmological constant of the LambdaCDM concordance model into a single dark fluid. Power series expansions in conformal time of the perturbations of the various components for a model with early-matter-like dark energy are provided. They allow the calculation of the cosmic microwave background (CMB) anisotropy from the primordial initial values of the perturbations. For a phenomenological UDM model, which agrees with the observations of the local Universe, the CMB anisotropy is computed and compared with the CMB data. It is found that a match to the CMB observations is possible if the so-called effective velocity of sound c_eff of the early-matter-like dark energy component is very close to zero. The modifications on the CMB temperature and polarization power spectra caused by varying the effective velocity of sound are studied.
We study the counter terms in the Eulerian version of the EFT of Large Scale Structure. We reformulate the equations to solve for the displacement of fluid elements as a bookkeeping variable and study the structure of the counter terms in this formulation. We show that in many cases the time dependence of the amplitude of the counter terms is irrelevant, as solutions obtained for various time dependences differ by terms that can be reabsorbed by higher order counter terms. We show that including all effects due to the non-locality in time and the time dependence of the counter terms there are six new parameters relevant for the two loop power spectrum calculation. We give explicit expressions for all these terms and study the contributions to them from large and small modes. We show that the shape of all these terms is very similar.
We investigate matter couplings in massive bigravity. We find a new family of such consistent couplings, including and extending known consistent matter couplings, and we investigate their decoupling limits, ADM decompositions, Higuchi bounds and further aspects. We show that differences to previous known consistent couplings only arise beyond the $\Lambda_3$ decoupling limit and discuss the uniqueness of consistent matter couplings and how this is related to the so-called symmetric vielbein condition. Since we work in a vielbein formulation, these results easily generalise to multi-gravity.
We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high density environments. We replace the virialized dark matter haloes obtained by a large cosmological $N$-body simulation with $N$-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then re-simulate nine cluster forming regions, whose masses range from 1e+14 Msun to 5e+14 Msun. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass--size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between $z=2$ and $z=0$. These growths favorably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass--size evolution is approximated as R propto M_{*}^{alpha}, with alpha ~ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass--size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ~ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.
The steep spectrum of neutrinos measured by IceCube extending from >1 PeV down to ~10 TeV has an energy flux now encroaching on the Fermi isotropic GeV background. We examine several implications starting from source energetics requirements for neutrino production. We show how the environment of extragalactic nuclei can extinguish ~10-100 TeV gamma rays and convert their energy to X-rays for plausible conditions of infrared luminosity and magnetic field, so that the Fermi background is not overwhelmed by cascades. We address a variety of scenarios, such as for acceleration by supermassive black holes and hadronic scenarios, and observations that may help elucidate the neutrinos' shadowy origins.
The Einstein Telescope is a conceived third generation gravitational-wave detector that is envisioned to be an order of magnitude more sensitive than advanced LIGO, Virgo and Kagra, which would be able to detect gravitational-wave signals from the coalescence of compact objects with waveforms starting as low as 1Hz. With this level of sensitivity, we expect to detect sources at cosmological distances. In this paper we introduce an improved method for the generation of mock data and analyse it with a new low latency compact binary search pipeline called gstlal. We present the results from this analysis with a focus on low frequency analysis of binary neutron stars. Despite compact binary coalescence signals lasting hours in the Einstein Telescope sensitivity band when starting at 5 Hz, we show that we are able to discern various overlapping signals from one another. We also determine the detection efficiency for each of the analysis runs conducted and and show a proof of concept method for estimating the number signals as a function of redshift. Finally, we show that our ability to recover the signal parameters has improved by an order of magnitude when compared to the results of the first mock data and science challenge. For binary neutron stars we are able to recover the total mass and chirp mass to within 0.5% and 0.05%, respectively.
We report a new detection of neutral deuterium in the sub Damped Lyman Alpha system with low metallicity [O/H]\,=\,$-2.042 \pm 0.005$ at $z_{\rm abs}=2.437$ towards QSO~J\,1444$+$2919. The hydrogen column density in this system is log$N$(H\,{\sc i})~$=19.983\pm0.010$ and the measured value of deuterium abundance is log(D/H)~$=-4.706\pm0.007_{\rm stat}\pm0.067_{\rm syst}$. This system meets the set of strict selection criteria stated recently by Cooke et al. and, therefore, widens the {\it Precision Sample} of D/H. However, possible underestimation of systematic errors can bring bias into the mean D/H value (especially if use a weighted mean). Hence, it might be reasonable to relax these selection criteria and, thus, increase the number of acceptable absorption systems with measured D/H values. In addition, an unweighted mean value might be more appropriate to describe the primordial deuterium abundance. The unweighted mean value of the whole D/H data sample available to date (15 measurements) gives a conservative value of the primordial deuterium abundance (D/H)$_{\rm p}=(2.55\pm 0.19)\times10^{-5}$ which is in good agreement with the prediction of analysis of the cosmic microwave background radiation for the standard Big Bang nucleosynthesis. By means of the derived (D/H)$_{\rm p}$ value the baryon density of the Universe $\Omega_{\rm b}h^2=0.0222\pm0.0013$ and the baryon-to-photon ratio $\eta_{10} = 6.09\pm 0.36$ have been deduced. These values have confident intervals which are less stringent than that obtained for the {\it Precision Sample} and, thus, leave a broader window for new physics. The latter is particularly important in the light of the lithium problem.
Unimodular Gravity (UG) is a restricted version of General Relativity (GR) in which the determinant of the metric is a fixed function and the field equations are given by the trace-free part of the full Einstein equations. The background equations in UG and GR are identical. It was recently claimed that, the first order contribution in the temperature fluctuation of the Cosmic Microwave Background (CMB) in UG is different from GR. In this work, we calculate the first order perturbation equations in UG and show that the Sachs-Wolfe effect in UG, in terms of gauge invariant variables, is identical to GR. We also show that the second order perturbation equation of Mukhnanov-Sasaki variable in UG, is identical to GR. The only difference comes from the gauge choices due the constraint on the metric determinant. Hence, UG and GR are identical and indistinguishable in CMB data on large scales.
Many alternatives to canonical slow-roll inflation have been proposed over the years, one of the main motivations being to have a model, capable of generating observable values of non-Gaussianity. In this work, we (re-)explore the physical implications of a great majority of such models within a single, effective field theory framework (including novel models with large non-Gaussianity discussed for the first time below.) The constraints we apply---both theoretical and experimental---are found to be rather robust, determined to a great extent by just three parameters: the coefficients of the quadratic EFT operators $(\delta N)^2$ and $\delta N \delta E$, and the slow-roll parameter $\varepsilon$. This allows to significantly limit the majority of single-field alternatives to canonical slow-roll inflation. While the existing data still leaves some room for most of the considered models, the situation would change dramatically if the current upper limit on the tensor-to-scalar ratio decreased down to $r < 10^{-2}$. Apart from inflationary models driven by plateau-like potentials, the single-field model that would have a chance of surviving this bound is the recently proposed slow-roll inflation with weakly-broken galileon symmetry. In contrast to \textit{canonical} slow-roll inflation, the latter model can support $r < 10^{-2}$ even if driven by a convex potential, as well as generate observable values for the amplitude of non-Gaussianity.
Links to: arXiv, form interface, find, astro-ph, recent, 1511, contact, help (Access key information)