We study 203 extended X-ray sources in the Swift GRB fields that are located within the Sloan Digital Sky Survey (SDSS) DR8 footprint. We search for galaxy over-densities in three-dimensional space using SDSS galaxies and their photometric redshifts near the Swift cluster candidates. We find 103 Swift clusters with a >3 sigma over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in almost half of the 103 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z < 0.3 and is still 80% complete up to z < 0.4, consistent with the survey depth of SDSS. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 2 and 1 matches in optical, X-ray and SZ catalogs, respectively, so the majority of these clusters are new detections.
We present the first cosmological measurement derived from a galaxy density
field subject to a `clipping' transformation. By enforcing an upper bound on
the galaxy number density field in the Galaxy and Mass Assembly survey (GAMA),
contributions from the nonlinear processes of virialisation and galaxy bias are
greatly reduced. This leads to a galaxy power spectrum which is easier to
model, without calibration from numerical simulations.
We develop a theoretical model for the power spectrum of a clipped field in
redshift space, which is exact for the case of anisotropic Gaussian fields.
Clipping is found to extend the applicability of the conventional Kaiser
prescription by more than a factor of three in wavenumber, or a factor of
thirty in terms of the number of Fourier modes. By modelling the galaxy power
spectrum on scales k < 0.3 h/Mpc and density fluctuations $\delta_g < 4$ we
measure the normalised growth rate $f\sigma_8(z = 0.18) = 0.29 \pm 0.10$.
Galaxy proto-clusters at z >~ 2 provide a direct probe of the rapid mass assembly and galaxy growth of present day massive clusters. Because of the need of precise galaxy redshifts for density mapping and the prevalence of star formation before quenching, nearly all the proto-clusters known to date were confirmed by spectroscopy of galaxies with strong emission lines. Therefore, large emission-line galaxy surveys provide an efficient way to identify proto-clusters directly. Here we report the discovery of a large-scale structure at z = 2.44 in the HETDEX Pilot Survey. On a scale of a few tens of Mpc comoving, this structure shows a complex overdensity of Lya emitters (LAE), which coincides with broad-band selected galaxies in the COSMOS/UltraVISTA photometric and zCOSMOS spectroscopic catalogs, as well as overdensities of intergalactic gas revealed in the Lya absorption maps of Lee et al. (2014). We construct mock LAE catalogs to predict the cosmic evolution of this structure. We find that such an overdensity should have already broken away from the Hubble flow, and part of the structure will collapse to form a galaxy cluster with 10^14.5 +- 0.4 M_sun by z = 0. The structure contains a higher median stellar mass of broad-band selected galaxies, a boost of extended Lya nebulae, and a marginal excess of active galactic nuclei relative to the field, supporting a scenario of accelerated galaxy evolution in cluster progenitors. Based on the correlation between galaxy overdensity and the z = 0 descendant halo mass calibrated in the simulation, we predict that several hundred 1.9 < z < 3.5 proto-clusters with z = 0 mass of > 10^14.5 M_sun will be discovered in the 8.5 Gpc^3 of space surveyed by the Hobby Eberly Telescope Dark Energy Experiment.
Supernovae type Ia (SNIa) are used as "standard candles" for cosmological
distance scales. To fit their light curve shape -- absolute luminosity
relation, one needs to assume an intrinsic color and a likelihood of host
galaxy extinction or a convolution of these, a color distribution prior. The
host galaxy extinction prior is typically assumed to be an exponential drop-off
for the current supernova programs ($P(A_V) \propto e^{-A_V/\tau_0}$). We
explore the validity of this prior using the distribution of extinction values
inferred when two galaxies accidentally overlap (an occulting galaxy pair). We
correct the supernova luminosity distances from the SDSS-III Supernova projects
(SDSS-SN) by matching the host galaxies to one of three templates from
occulting galaxy pairs based on the host galaxy mass and the $A_V$-bias -
prior-scale ($\tau_0$) relation from Jha et al. (2007).
We find that introducing an $A_V$ prior that depends on host mass results in
lowered luminosity distances for the SDSS-SN on average but it does not reduce
the scatter in individual measurements. This points, in our view, to the need
for many more occulting galaxy templates to match to SNIa host galaxies to rule
out this possible source of scatter in the SNIa distance measurements. We match
occulting galaxy templates based on both mass and projected radius and we find
that one should match by stellar mass first with radius as a secondary
consideration. We discuss the caveats of the current approach and our aim is to
convince the reader that a library of occulting galaxy pairs observed with HST
will provide sufficient priors to improve (optical) SNIa measurements to the
next required accuracy in Cosmology.
In this paper, we study several issues in the linear equation-of-motion (EoM) and in-in approaches of computing the two-point correlation functions in multi-field inflation. We prove the equivalence between this EoM approach and the first-principle in-in formalism. We check this equivalence using several explicit examples, including cases with scale-invariant corrections and scale-dependent features. Motivated by the explicit proof, we show that the usual procedures in these approaches can be extended and applied to some interesting model categories beyond what has been studied in the literature so far. These include the density perturbations with strong couplings and correlated multi-field initial states.
We present optimal quadratic estimators for the Fourier analysis of cosmological surveys that detect several different types of tracers of large-scale structure. Our estimators can be used to simultaneously fit the matter power spectrum and the biases of the tracers - as well as redshift-space distortions (RSDs), non-Gaussianities (NGs), or any other effects that are manifested through differences between the clusterings of distinct species of tracers. Our estimators reduce to the one by Feldman, Kaiser & Peacock (ApJ 1994, FKP) in the case of a survey consisting of a single species of tracer. We show that the multi-tracer estimators are unbiased, and that their covariance is given by the inverse of the multi-tracer Fisher matrix (Abramo, MNRAS 2013; Abramo & Leonard, MNRAS 2013). When the biases, RSDs and NGs are fixed to their fiducial values, and one is only interested in measuring the underlying power spectrum, our estimators are projected into the estimator found by Percival, Verde & Peacock (MNRAS 2003). We have tested our estimators on simple (lognormal) simulated galaxy maps, and we show that it performs as expected, being either equivalent or superior to the FKP method in all cases we analyzed. Finally, we have shown how to extend the multi-tracer technique to include the 1-halo term of the power spectrum.
Observations on the high-redshift galaxies at $z>6$ imply that their ionizing emissivity is unable to fully reionize the Universe at $z\sim 6$. Either a high escape fraction of ionizing photons from these galaxies or a large population of faint galaxies below the detection limit are required. However, these requirements are somewhat in tension with present observations. In this work, we explored the combined contribution of mini-quasars and stars to the reionization of cosmic hydrogen and helium. Our model is roughly consistent with: (1) the low escape fractions of ionizing photons from the observed galaxies, (2) the optical depth of Cosmic Microwave Background (CMB) measured by the WMAP-7, and (3) the redshift of the end of hydrogen and helium reionization at $z\approx 6$ and $z\approx 3$, respectively. Neither an extremely high escape fraction nor a large population of fainter galaxies is required in this scenario. In our most optimistic model, more than $\sim20\%$ of the cosmic helium is reionized by $z\sim6$, and the ionized fraction of cosmic helium rapidly climbs to more than $50\%$ by $z\sim5$. These results may imply that better measurements of helium reionization, especially at high redshifts, could be helpful in constraining the growth of intermediate-mass black holes (IMBHs) in the early Universe, which would shed some light on the puzzles concerning the formation of supermassive black holes (SMBHs).
We present in this paper a new Bayesian semi-blind approach for foreground removal in observations of the 21-cm signal with interferometers. The technique, which we call HIEMICA (HI Expectation-Maximization Independent Component Analysis), is an extension of the Independent Component Analysis (ICA) technique developed for two-dimensional (2D) CMB maps to three-dimensional (3D) 21-cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from signal based on the diversity of their power spectra. Only relying on the statistical independence of the components, this approach can jointly estimate the 3D power spectrum of the 21-cm signal and, the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21-cm intensity mapping observations. Based on the Expectation-Maximization (EM) algorithm, this blind approach provides much better recovery of the 21-cm power spectrum over all scales than the commonly used Principal Component Analysis (PCA). This technique can be applied straightforwardly to all 21-cm interferometric observations, including epoch of reionization measurements, and can be extended to single-dish observations as well.
Not much by themselves, aparently.
We try to reconstruct the scale factor $a(t)$ of the universe from the SNe Ia
data, i.e. the luminosity distance $d_{L}(z)$, using only the cosmological
principle and the assumption that gravitation is governed by a metric theory.
In our hence "model-independent," or "cosmographic" study, we fit functions to
$d_{L}(z)$ rather than $a(t)$, since $d_{L}(z)$ is what is measured. We find
that the acceleration history of the universe cannot be reliably determined in
this approach due to the irregularity and parametrization-dependence of the
results.
However, adding the GRB data to the dataset cures most of the irregularities,
at the cost of compromising the model-independent nature of the study slightly.
Then we can determine the redshift of transition to cosmic acceleration as
$z_{\rm t} \sim 0.50 \pm 0.09$ for a flat universe (larger for positive spatial
curvature).
If Einstein gravity (GR) is assumed, we find a redshift at which the density
of the universe predicted from the $d_{L}(z)$ data is independent of curvature.
We use this point to derive an upper limit on matter density, hence a lower
limit on the density of dark energy. While these limits do not improve the
generally accepted ones, they are derived *only using the $d_{L}(z)$ data*.
It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible to do equivalent analysis in a certain frame in which the perturbation equations are simpler. In this paper we revisit the problem of conformal invariances of cosmological perturbations in terms of the covariant approach in which the perturbation variables have clear geometric and physical meanings. We show that with this approach the conformal invariant perturbations are easily identified.
We analyze the parametric space of the constrained minimal supersymmetric standard model (CMSSM) with mu>0 supplemented by a generalized asymptotic Yukawa coupling quasi-unification condition which yields acceptable masses for the fermions of the third family. We impose constraints from the cold dark matter abundance in the universe and its direct detection experiments, the B-physics, as well as the masses of the sparticles and the lightest neutral CP-even Higgs boson, m_h. We identify two distinct allowed regions with M_{1/2}>m_0 and m_0>>M_{1/2} classified in the hyperbolic branch of the radiative electroweak symmetry breaking. In the first region we obtain, approximately, 44<=tan beta<=52, -3<=A_0/M_{1/2}<=0.1, 122<=m_h/GeV<=127, and mass of the lightest sparticle in the range (0.75-1.43) TeV. Such heavy lightest sparticle masses can become consistent with the cold dark matter requirement on the lightest sparticle relic density thanks to neutralino-stau coannihilations. In the latter region, fixing m_h to its central value from the LHC, we find a wider allowed parameter space with milder electroweak-symmetry-breaking fine-tuning, 40<=tanbeta<=50, -11<=A_0/M_{1/2}<=15 and mass of the lightest sparticle in the range (0.09-1.1) TeV. This sparticle is possibly detectable by the present cold dark matter direct search experiments.
Links to: arXiv, form interface, find, astro-ph, recent, 1505, contact, help (Access key information)
We report the first results of a programme aimed at studying the properties
of high redshift galaxies with on-going massive and dominant episodes of star
formation (HII galaxies). We use the $L(\mathrm{H}\beta) - \sigma$ distance
estimator based on the correlation between the ionized gas velocity dispersions
and Balmer emission line luminosities of HII galaxies and Giant HII regions to
trace the expansion of the Universe up to $z \sim 2.33$. This approach provides
an independent constraint on the equation of state of dark energy and its
possible evolution with look-back time.
Here we present high-dispersion (8,000 to 10,000 resolution) spectroscopy of
HII galaxies at redshifts between 0.6 and 2.33, obtained at the VLT using
XShooter. Using six of these HII galaxies we obtain broad constraints on the
plane $\Omega_m - w_0$. The addition of 19 high-z HII galaxies from the
literature improves the constraints and highlights the need for high quality
emission line profiles, fluxes and reddening corrections. The 25 high-z HII
galaxies plus our local compilation of 107 HII galaxies up to $z=0.16$ were
used to impose further constraints. Our results are consistent with recent
studies, although weaker due to the as yet small sample and low quality of the
literature data of high-z HII galaxies.
We show that much better and competitive constraints can be obtained using a
larger sample of high redshift HII galaxies with high quality data that can be
easily obtained with present facilities like KMOS at the VLT.
We present a non-parametric approach to reconstruct the interaction between dark energy and dark matter directly from SNIa Union 2.1 data using Gaussian Processes, which is a fully Bayesian approach for smoothing data. In this method, once the equation of state ($w$) of dark energy is specified, the interaction can be reconstructed with respect to redshift. For the decaying vacuum energy case with $w=-1$, the reconstructed interaction is consistent with the $\Lambda$CDM model, namely, there is no evidence for the interaction. This also holds for the constant $w$ cases from $-0.9$ to $-1.1$ and for the CPL parameterization case. If the equation of state deviates obviously from $-1$, the reconstructed interaction exits at $95\%$ confidence level. This shows the degeneracy between the interaction and the equation of state of dark energy when they get constraints from the observational data.
We study the simple gauge invariant model ${f^2}FF$ as a way to generate primordial magnetic fields (PMF) in Natural Inflation (NI). We compute both magnetic and electric spectra generated by the ${f^2}FF$ model in NI for different values of model parameters and find that both de Sitter and power law expansion lead to the same results at sufficiently large number of e-foldings. We also find that the necessary scale invariance property of the PMF cannot be obtained in NI in first order of slow roll limits under the constraint of inflationary potential, $V\left( 0 \right) \simeq 0$. Furthermore, if this constraint is relaxed to achieve scale invariance, then the model suffers from the backreaction problem for almost all values of model parameters. We show that there is a narrow range of the height of the potential $\Lambda $ around ${\Lambda _{\min }} \approx 0.00874{M_{{\rm{Pl}}}}$ and of the co-moving wave number $k$ around ${k_{\min }} \sim 0.0173{\rm{Mp}}{{\rm{c}}^{ - 1}}$, at which the problem of backreaction might be avoided. The value of ${\Lambda _{\min }}$ lies within the range of $\Lambda $ compatible with the BICEP2 results, and the range of $k$ lies within some the observable scale. However, the relatively short range of $k$ presents a serious challenge to the viability of this model.
It has recently been shown that the presence of a spectator pseudoscalar field, coupled to photons through a Chern-Simons term, can amplify the primordial tensor spectrum without observationally disrupting the primordial scalar spectrum. The amplification occurs due to an instability that develops for the vector fields. We extend previous studies to account for the contribution arising from an inhomogeneous vector background, which emerges as the dominant correction to the primordial tensor spectrum. These semiclassical contributions dominate over the quantum loop contributions and possibly enhance the primordial tensor spectrum such as to have observational effects even though the loop corrections might be undetectable. A similar effect would occur by replacing the visible electromagnetic U(1) by an unbroken dark U(1).
The initial conditions for $N$-body simulations are usually generated by applying the Zel'dovich approximation to the initial displacements of the particles using an initial power spectrum of density fluctuations generated by an Einstein-Boltzmann solver. We show that the initial displacements generated in this way generally receive a first-order relativistic correction. We define a new gauge, the $N$-body gauge, in which this relativistic correction is absent and show that a conventional Newtonian $N$-body simulation includes all first-order relativistic contributions if we identify the coordinates in Newtonian simulations with those in the $N$-body gauge.
We consider theories where dark matter is composed of a thermal relic of weak scale mass, whose couplings to the Standard Model (SM) are however too small to give rise to the observed abundance. Instead, the abundance is set by annihilation to light hidden sector states that carry no charges under the SM gauge interactions. In such a scenario the constraints from direct and indirect detection, and from collider searches for dark matter, can easily be satisfied. The masses of such light hidden states can be protected by symmetry if they are Nambu-Goldstone bosons, fermions, or gauge bosons. These states can then contribute to the cosmic energy density as dark radiation, leading to observable signals in the cosmic microwave background (CMB). Furthermore, depending on whether or not the light hidden sector states self-interact, the fraction of the total energy density that free-streams is either decreased or increased, leading to characteristic effects on both the scalar and tensor components of the CMB anisotropy that allows these two cases to be distinguished. The magnitude of these signals depends on the number of light degrees of freedom in the hidden sector, and on the temperature at which it kinetically decouples from the SM. We consider a simple model that realizes this scenario, based on a framework in which the SM and hidden sector are initially in thermal equilibrium through the Higgs portal, and show that the resulting signals are compatible with recent Planck results, while large enough to be detected in upcoming experiments such as CMBPol and CMB Stage-IV. Invisible decays of the Higgs into hidden sector states at colliders can offer a complementary probe of this model.
This is the first version (v1) of the Gravitational LENses and DArk MAtter (GLENDAMA) database accessible at this http URL The new database contains more than 6000 ready-to-use (processed) astronomical frames corresponding to 15 objects that fall into three classes: (1) lensed QSO (8 objects), (2) binary QSO (3 objects), and (3) accretion-dominated radio-loud QSO (4 objects). Data are also divided into two categories: freely available and available upon request. The second category includes observations related to our yet unpublished analyses. Although this v1 of the GLENDAMA archive incorporates an X-ray monitoring campaign for a lensed QSO in 2010, the rest of frames (imaging, polarimetry and spectroscopy) were taken with NUV, visible and NIR facilities over the period 1999$-$2014. The monitorings and follow-up observations of lensed QSOs are key tools for discussing the accretion flow in distant QSOs, the redshift and structure of intervening (lensing) galaxies, and the physical properties of the Universe as a whole.
With the use of a background Milky-Way-like potential model, we performed stellar orbital and magnetohydrodynamic (MHD) simulations. As a first experiment, we studied the gaseous response to a bisymmetric spiral arm potential: the widely employed cosine potential model and a self-gravitating tridimensional density distribution based model called PERLAS. Important differences are noticeable in these simulations, while the simplified cosine potential produces two spiral arms for all cases, the more realistic density based model produces a response of four spiral arms on the gaseous disk, except for weak arms -i.e. close to the linear regime- where a two-armed structure is formed. In order to compare the stellar and gas response to the spiral arms, we have also included a detailed periodic orbit study and explored different structural parameters within observational uncertainties. The four armed response has been explained as the result of ultra harmonic resonances, or as shocks with the massive bisymmetric spiral structure, among other. From the results of this work, and comparing the stellar and gaseous responses, we tracked down an alternative explanation to the formation of branches, based only on the orbital response to a self-gravitating spiral arms model. The presence of features such as branches, might be an indication of transiency of the arms.
We describe the primeval inflationary phase of the early Universe within a quantum field theoretical (QFT) framework that can be viewed as the effective action of vacuum decay in the early times. Interestingly enough, the model accounts for the "graceful exit" of the inflationary phase into the standard radiation regime. The underlying QFT framework considered here is Supergravity (SUGRA), more specifically an existing formulation in which the Starobinsky-type inflation (de-Sitter background) emerges from the quantum corrections to the effective action after integrating out the gravitino fields in their (dynamically induced) massive phase. We also demonstrate that the structure of the effective action in this model is consistent with the generic idea of renormalization group (RG) running of the cosmological parameters, specifically it follows from the corresponding RG equation for the vacuum energy density as a function of the Hubble rate, $\rho_{\Lambda}(H)$. Overall our combined approach amounts to a concrete-model realization of inflation triggered by vacuum decay in a fundamental physics context which, as it turns out, can also be extended for the remaining epochs of the cosmological evolution until the current dark energy era.
The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to $1.25 M_{\odot}$ rules out primordial black holes with masses $\sim 10^{19}$ gm - $10^{20}$ gm as a dominant constituent of the local dark matter density. Black holes with masses as large as $10^{24}$ gm will be excluded if recent observations by the NuStar collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range $10^{20}$ gm - $10^{22}$ gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism proposed in this paper can constrain a variety of other dark matter scenarios such as Q balls, annihilation/collision of large composite states of dark matter and models of dark matter where the accretion of dark matter leads to the formation of compact cores within the star. White dwarfs, with their astronomical lifetimes and sizes, can thus act as large space-time volume detectors enabling a unique probe of the properties of dark matter, especially of dark matter candidates that have low number density. This mechanism also raises the intriguing possibility that a class of supernova may be triggered through rare events induced by dark matter rather than the conventional mechanism of accreting white dwarfs that explode upon reaching the Chandrasekhar mass.
Numerical methods to improve the treatment of magnetic fields in smoothed field magnetohydrodynamics (SPMHD) are developed and tested. Chapter 2 is a review of SPMHD. In Chapter 3, a mixed hyperbolic/parabolic scheme is developed which cleans divergence error from the magnetic field. Average divergence error is an order of magnitude lower for all test cases considered, and allows for the stable simulation of the gravitational collapse of magnetised molecular cloud cores. The effectiveness of the cleaning may be improved by explicitly increasing the hyperbolic wave speed or by cycling the cleaning equations between timesteps. In the latter, it is possible to achieve DivB=0. Chapter 4 develops a switch to reduce dissipation of the magnetic field from artificial resistivity. Compared to the existing switch in the literature, this leads to sharper shock profiles in shocktube tests, lower overall dissipation of magnetic energy, and importantly, is able to capture magnetic shocks in the highly super-Alfvenic regime. Chapter 5 compares these numerical methods against grid-based MHD methods (using the Flash code) in simulations of the small-scale dynamo amplification of a magnetic field in driven, isothermal, supersonic turbulence. Both codes exponentially amplify the magnetic energy at a constant rate, though SPMHD shows a resolution dependence that arises from the scaling of the numerical dissipation terms. The time-averaged saturated magnetic spectra have similar shape, and both codes have PDFs of magnetic field strength that are log-normal, which become lopsided as the magnetic field saturates. We conclude that SPMHD is able to reliably simulate the small-scale dynamo amplification of magnetic fields. Chapter 6 concludes the thesis and presents some preliminary work demonstrating that SPMHD can activate the magneto-rotational instability in 2D shearing box tests.
We show that General Relativity coupled to a quantum field theory generically leads to non-local effects in the matter sector. These non-local effects can be described by non-local higher dimensional operators which remarkably have an approximate shift symmetry. When applied to inflationary models, our results imply that small non-Gaussianities are a generic feature of models based on General Relativity coupled to matter fields. However, these effects are too small to be observable in the Cosmic Microwave Background.
We discuss a high-scale SUSY breaking scenario with the wino dark matter in the five-dimensional supergravity model on $S^1/Z_2$. The extra U(1) symmetries broken by the orbifold projection control the flavor structure of soft SUSY-breaking parameters as well as the Yukawa couplings, and a scalar component of the one of moduli multiplets, which arise from extra-dimensional components of the U(1) vector multiplets, induces the slow-roll inflation. Because of the supersymmetric moduli stabilization as well as the moduli inflation, it is found that the correct dark matter relic abundance is non-thermally generated by the gravitino decaying into the wino.
Context. Some circumstellar-interacting (CSI) supernovae (SNe) are produced by the explosions of massive stars that have lost mass shortly before the SN explosion. There is evidence that the precursors of some SNe IIn were luminous blue variable (LBV) stars. For a small number of CSI SNe, outbursts have been observed before the SN explosion. Eruptive events of massive stars are named as SN impostors (SN IMs) and whether they herald a forthcoming SN or not is still unclear. The large variety of observational properties of CSI SNe suggests the existence of other progenitors, such as red supergiant (RSG) stars with superwinds. Furthermore, the role of metallicity in the mass loss of CSI SN progenitors is still largely unexplored. Aims. Our goal is to gain insight on the nature of the progenitor stars of CSI SNe by studying their environments, in particular the metallicity at their locations. Methods. We obtain metallicity measurements at the location of 60 transients (including SNe IIn, SNe Ibn, and SN IMs), via emission-line diagnostic on optical spectra obtained at the Nordic Optical Telescope and through public archives. Metallicity values from the literature complement our sample. We compare the metallicity distributions among the different CSI SN subtypes and to those of other core-collapse SN types. We also search for possible correlations between metallicity and CSI SN observational properties. Results. We find that SN IMs tend to occur in environments with lower metallicity than those of SNe IIn. Among SNe IIn, SN IIn-L(1998S-like) SNe show higher metallicities, similar to those of SNe IIL/P, whereas long-lasting SNe IIn (1988Z-like) show lower metallicities, similar to those of SN IMs. The metallicity distribution of SNe IIn can be reproduced by combining the metallicity distributions of SN IMs (that may be produced by major outbursts of massive stars like LBVs) and SNe IIP (produced by RSGs). The same applies to the distributions of the Normalized Cumulative Rank (NCR) values, which quantifies the SN association to H II regions. For SNe IIn, we find larger mass-loss rates and higher CSM velocities at higher metallicities. The luminosity increment in the optical bands during SN IM outbursts tend to be larger at higher metallicity, whereas the SN IM quiescent optical luminosities tend to be lower. Conclusions. The difference in metallicity between SNe IIn and SN IMs suggests that LBVs are only one of the progenitor channels for SNe IIn, with 1988Z-like and 1998S-like SNe possibly arising from LBVs and RSGs, respectively. Finally, even though linedriven winds likely do not primarily drive the late mass-loss of CSI SN progenitors, metallicity has some impact on the observational properties of these transients. Key words. supernovae: general - stars: evolution - galaxies: abundances
Observations suggest that high-redshift galaxies are either very dusty or essentially dust free. The evolution from one regime to the other must also be very fast, since evolved and dusty galaxies show up at redshifts corresponding to a Universe which is only about 500 Myr old. In the present paper models which predicts the existence of an apparent dichotomy between dusty and dust-free galaxies at high redshift are considered. Galaxies become dusty as soon as they reach an evolved state and the transition is very rapid. A special case suggests that while stellar dust production is overall relatively insignificant -- contrary to what has been argued recently -- it can at the same time be consistent with efficient dust production in supernovae in the local Universe. Special attention will be given to the recent discovery of a dusty normal galaxy (A1689-zD1) at a very high redshift z = 7.5 +/- 0.2.
We study the relativistic dynamics of a pressure-less and irrotational fluid of dark matter (CDM) with a cosmological constant ($\Lambda$), up to second order in cosmological perturbation theory. In our analysis we also account for primordial non-Gaussianity. We consider three gauges: the synchronous-comoving gauge, the Poisson gauge and the total matter gauge, where the first is the unique relativistic Lagrangian frame of reference, and the latters are convenient choices for Eulerian frames. Our starting point is the metric and fluid variables in the Poisson gauge. We then perform a gauge-transformation to the synchronous-comoving gauge, and subsequently to the total matter gauge. Our expressions for the metrics, densities, velocities, and the gauge generators are novel and coincide with known results in the limit of a vanishing cosmological constant.
Links to: arXiv, form interface, find, astro-ph, recent, 1505, contact, help (Access key information)
We study the H2 molecular content in high redshift damped Lyman-alpha systems (DLAs) as a function of the HI column density. We find a significant increase of the H2 molecular content around log N(HI) (cm^-2)~21.5-22, a regime unprobed until now in intervening DLAs, beyond which the majority of systems have log N(H2) > 17. This is in contrast with lines of sight towards nearby stars, where such H2 column densities are always detected as soon as log N(HI)>20.7. This can qualitatively be explained by the lower average metallicity and possibly higher surrounding UV radiation in DLAs. However, unlike in the Milky Way, the overall molecular fractions remain modest, showing that even at a large N(HI) only a small fraction of overall HI is actually associated with the self-shielded H2 gas. Damped Lyman-alpha systems with very high-N(HI) probably arise along quasar lines of sight passing closer to the centre of the host galaxy where the gas pressure is higher. We show that the colour changes induced on the background quasar by continuum (dust) and line absorption (HI Lyman and H2 Lyman & Werner bands) in DLAs with log N(HI)~22 and metallicity ~1/10 solar is significant, but not responsible for the long-discussed lack of such systems in optically selected samples. Instead, these systems are likely to be found towards intrinsically fainter quasars that dominate the quasar luminosity function. Colour biasing should in turn be severe at higher metallicities.
In order to obtain robust cosmological constraints from Type Ia supernova (SN Ia) data, we have applied Markov Chain Monte Carlo (MCMC) to SN Ia lightcurve fitting. We develop a method for sampling the resultant probability density distributions (pdf) of the SN Ia lightcuve parameters in the MCMC likelihood analysis to constrain cosmological parameters. Applying this method to the Joint Lightcurve Analysis (JLA) data set of SNe Ia, we find that sampling the SN Ia lightcurve parameter pdf's leads to cosmological parameters closer to that of a flat Universe with a cosmological constant, compared to the usual practice of using only the best fit values of the SN Ia lightcurve parameters. Our method will be useful in the use of SN Ia data for precision cosmology.
Major mergers between massive clusters have a profound effect in the intracluster gas, which may be used as a probe of the dynamics of structure formation at the high end of the mass function. An example of such a merger is observed at the northern component of Abell 1758, comprised of two massive sub-clusters separated by approximately 750 kpc. One of the clusters exhibits an offset between the dark matter and the intracluster gas. We aim to determine whether it is possible to reproduce the specific morphological features of this cluster by means of a major merger. We perform dedicated SPH (smoothed particle hydrodynamics) N-body simulations in an attempt to simultaneously recover several observed features of Abell 1758, such as the X-ray morphology and the separation between the two peaks in the projected galaxy luminosity map. We propose a specific scenario for the off-axis collision of two massive clusters. This model adequately reproduces several observed features and suggests that Abell 1758 is seen approximately 0.4 Gyr after the first pericentric passage, and that the clusters are already approaching their maximum separation. This means that their relative velocity is as low as 380 km/s. At the same time, the simulated model entails shock waves of ~4500 km/s, which are currently undetected presumably due to the low-density medium. We explain the difference between these velocities and argue that the predicted shock fronts, while plausible, cannot be detected from currently available data.
We investigate non-thermal gravitino production after tribrid inflation in supergravity, which is a variant of supersymmetric hybrid inflation where three fields are involved in the inflationary model and where the inflaton field resides in the matter sector of the theory. In contrast to conventional supersymmetric hybrid inflation, where non-thermal gravitino production imposes severe constraints on the inflationary model, we find that the "non-thermal gravitino problem" is generically absent in models of tribrid inflation, mainly due to two effects: (i) With the inflaton in tribrid inflation (after inflation) being lighter than the waterfall field, the latter has a second decay channel with a much larger rate than for the decay into gravitinos. This reduces the branching ratio for the decay of the waterfall field into gravitinos. (ii) The inflaton generically decays later than the waterfall field, and does not produce gravitinos when it decays. This leads to a dilution of the gravitino population from the decays of the waterfall field. The combination of both effects generically leads to a strongly reduced gravitino production in tribrid inflation.
In light of recent findings from the kinematic morphology-density relation, we investigate whether the same trends exist in the original morphology density relation, using the same data as Dressler. In addition to Dressler's canonical relations, we find that further refinements are possible when considering the average local projected density of galaxies in a cluster. Firstly, the distribution of ellipticals in a cluster depends on the relative local density of galaxies in that cluster: equivalent rises in the elliptical fraction occur at higher local densities for clusters with higher average local densities. This is not true for the late-type fraction, where the variation with local density within a cluster is independent of the average local density of galaxies in that cluster, and is as Dressler originally found. Furthermore, the overall ratio of ellipticals to early-types in a cluster does not depend on the average density of galaxies in that cluster (unlike the ratio of lenticulars to disk systems), and is fixed at around 30%. In the paradigm of fast and slow rotators, we show that such an elliptical fraction in the early-type population is consistent with a slow rotator fraction of 15% in the early-type population, using the statistics of the ATLAS3D survey. We also find the scatter in the overall ratio of ellipticals to early-types is greatest for clusters with lower average densities, such that clusters with the highest elliptical fractions have the lowest average local densities. Finally, we show that average local projected density correlates well with global projected density, but the latter has difficulty in accurately characterising the density of irregular cluster morphologies.
Although there is overwhelming evidence of dark matter from its gravitational interaction, we still do not know its precise gravitational interaction strength or whether it obeys the equivalence principle. Using the latest available cosmological data and working within the framework of $\Lambda\mbox{CDM}$, we first update the measurement of the Newton's constant for all matter: $G_N=7.26^{+0.27}_{-0.27}\times 10^{-11}\,\mbox{m}^{3}\mbox{kg}^{-1}\mbox{s}^{-2}$, which differs by $2.2 \sigma$ from the standard laboratory-based value. In general relativity, dark matter equivalence principle breaking can be mimicked by a long-range dark matter force mediated by an ultra light scalar field. Using the Planck three year data, we find that the dark matter "fifth-force" strength is constrained to be weaker than $10^{-4}$ of the gravitational force. We also introduce a phenomenological, post-Newtonian two-fluid description to explicitly break the equivalence principle by introducing a difference between dark matter inertial and gravitational masses. Depending on the decoupling time of the dark matter and ordinary matter fluids, the ratio of the dark matter gravitational mass to inertial mass is constrained to be unity at the $10^{-6}$ level.
We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for $z \gtrsim 5$. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.
We investigate the ability of current implementations of galaxy group finders to recover colour-dependent halo occupation statistics. To test the fidelity of group catalogue inferred statistics, we run three different group finders used in the literature over a mock that includes galaxy colours in a realistic manner. Overall, the resulting mock group catalogues are remarkably similar, and most colour-dependent statistics are recovered with reasonable accuracy. However, it is also clear that certain systematic errors arise as a consequence of correlated errors in group membership determination, central/satellite designation, and halo mass assignment. We introduce a new statistic, the halo transition probability (HTP), which captures the combined impact of all these errors. As a rule of thumb, errors tend to equalize the properties of distinct galaxy populations (i.e. red vs. blue galaxies or centrals vs. satellites), and to result in inferred occupation statistics that are more accurate for red galaxies than for blue galaxies. A statistic that is particularly poorly recovered from the group catalogues is the red fraction of central galaxies as function of halo mass. Group finders do a good job in recovering galactic conformity, but also have a tendency to introduce weak conformity when none is present. We conclude that proper inference of colour-dependent statistics from group catalogues is best achieved using forward modelling (i.e., running group finders over mock data), or by implementing a correction scheme based on the HTP, as long as the latter is not too strongly model-dependent.
We present a two stage hybrid inflationary scenario in non-minimal supergravity which can predict values of the tensor-to-scalar ratio of the order of few times 0.01. For the parameters considered, the underlying supersymmetric particle physics model possesses two inflationary paths, the trivial and the semi-shifted one. The trivial path is stabilized by supergravity corrections and supports a first stage of inflation with a limited number of e-foldings. The tensor-to-scalar ratio can become appreciable while the value of the scalar spectral index remains acceptable as a result of the competition between the relatively mild supergravity corrections and the strong radiative corrections to the inflationary potential. The additional number of e-foldings required for solving the puzzles of hot big bang cosmology are generated by a second stage of inflation taking place along the semi-shifted path. This is possible only because the semi-shifted path is almost perpendicular to the trivial one and, thus, not affected by the strong radiative corrections along the trivial path and also because the supergravity effects remain mild. At the end of inflation, cosmic strings are produced, which may contribute to the primordial curvature perturbation. The requirement that this contribution be restricted to an acceptable level limits the possible values of the tensor-to-scalar ratio not to exceed about 0.03.
In the last decade, a combination of high sensitivity, high spatial resolution observations and of coordinated multi-wavelength surveys has revolutionized our view of extra-galactic black hole (BH) astrophysics. We now know that supermassive black holes reside in the nuclei of almost every galaxy, grow over cosmological times by accreting matter, interact and merge with each other, and in the process liberate enormous amounts of energy that influence dramatically the evolution of the surrounding gas and stars, providing a powerful self-regulatory mechanism for galaxy formation. The different energetic phenomena associated to growing black holes and Active Galactic Nuclei (AGN), their cosmological evolution and the observational techniques used to unveil them, are the subject of this chapter. In particular, I will focus my attention on the connection between the theory of high-energy astrophysical processes giving rise to the observed emission in AGN, the observable imprints they leave at different wavelengths, and the methods used to uncover them in a statistically robust way. I will show how such a combined effort of theorists and observers have led us to unveil most of the SMBH growth over a large fraction of the age of the Universe, but that nagging uncertainties remain, preventing us from fully understating the exact role of black holes in the complex process of galaxy and large-scale structure formation, assembly and evolution.
We examine vacuum fluctuations in theories with modified dispersion relations which represent dimensional reduction at high energies. By changing units of energy and momentum we can obtain a description rendering the dispersion relations undeformed and transferring all the non-trivial effects to the integration measure in momentum space. Using this description we propose a general quantization procedure, which should be applicable whether or not the theory explicitly introduces a preferred frame. Based on this scheme we evaluate the power spectrum of quantum vacuum fluctuations. We find that in {\it all} theories which run to 2 dimensions in the ultraviolet the vacuum fluctuations, in the ultraviolet regime, are scale-invariant. This is true in flat space but also for "inside the horizon" modes in an expanding universe. We spell out the conditions upon the gravity theory for this scale-invariance to be preserved as the modes are frozen-in outside the horizon. We also digress on the meaning of dimensionality (in momentum and position space) and suggest that the spectral index could itself provide an operational definition of dimensionality.
Links to: arXiv, form interface, find, astro-ph, recent, 1505, contact, help (Access key information)
We study the primordial magnetic field generated by the simple model $f^2 FF$ in Starobinsky, $R^2$-inflationary, model. The scale invariant PMF is achieved at relatively high power index of the coupling function, $\left| \alpha \right| \approx 7.44$. This model does not suffer from the backreaction problem as long as, the rate of inflationary expansion, $H$, is in the order of or less than the upper bound reported by Planck ($\le 3.6 \times 10^{-5} M_\rm{Pl}$) in both de Sitter and power law expansion, which show similar results. We calculate the lower limit of the reheating parameter, $R_\rm{rad} > 6.888$ in $R^2$-inflation. Based on the upper limit obtained from CMB, we find that the upper limits of magnetic field and reheating energy density as, $\left(\rho_{B_\rm{end}} \right)_\rm{CMB} < 1.184 \times 10^{-20} M_\rm{Pl}^4$ and $\left(\rho_\rm{reh} \right)_\rm{CMB} < 8.480 \times 10^{-22} M_\rm{Pl}^4$. All of foregoing results are well more than the lower limit derived from WMAP7 for both large and small field inflation. By using the Planck inflationary constraints, 2015 in the context of ${R^2}$-inflation, the upper limit of reheating temperature and energy density for all possible values of $w _\rm{reh}$ are respectively constrained as, $T_\rm{reh} < 4.32 \times 10^{13} \rm{GeV}$ and $\rho_\rm{reh} < 3.259 \times 10^{-18} M_\rm{Pl}^4$ at $n_\rm{s} \approx 0.9674$. This value of spectral index is well consistent with Planck, 2015 results. Adopting $T_\rm{reh}$, enables us to constrain the reheating e-folds number, $N_\rm{reh}$ on the range $1 < N_\rm{reh} < 8.3$, for $- 1/3 < w_\rm{reh} < 1$. By using the scale invariant PMF generated by $f^2 FF$, we find that the upper limit of present magnetic field, $B_0 < 8.058 \times 10^{-9} \rm{G}$.
Observed galaxy clustering exhibits local transverse statistical isotropy around the line-of-sight (LOS). The variation of the LOS across a galaxy survey complicates the measurement of the observed clustering as a function of the angle to the LOS, as Fast Fourier Transforms (FFTs) based on cartesian grids, cannot individually allow for this. Recent advances in methodology for calculating LOS-dependent clustering in Fourier space include the realisation that power spectrum LOS-dependent moments can be constructed from sums over galaxies, based on approximating the LOS to each pair of galaxies by the LOS to one of them. We show that we can implement this method using multiple FFTs, each measuring the LOS-weighted clustering along different axes. The N log(N) nature of FFTs means that the computational speed-up is a factor of >1000 compared with summing over galaxies. This development should be beneficial for future projects such as DESI and Euclid which will provide an order of magnitude more galaxies than current surveys.
We investigate the higher-order correlation properties of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to test the hierarchical scaling hypothesis at z~1 and the dependence on galaxy luminosity, stellar mass, and redshift. We also aim to assess deviations from the linearity of galaxy bias independently from a previously performed analysis of our survey (Di Porto et al. 2014). We have measured the count probability distribution function in cells of radii 3 < R < 10 Mpc/h, deriving $\sigma_{8g}$, the volume-averaged two-,three-,and four-point correlation functions and the normalized skewness $S_{3g}$ and kurtosis $S_{4g}$ for volume-limited subsamples covering the ranges $-19.5 \le M_B(z=1.1)-5log(h) \le -21.0$, $9.0 < log(M*/M_{\odot} h^{-2}) \le 11.0$, $0.5 \le z < 1.1$. We have thus performed the first measurement of high-order correlations at z~1 in a spectroscopic redshift survey. Our main results are the following. 1) The hierarchical scaling holds throughout the whole range of scale and z. 2) We do not find a significant dependence of $S_{3g}$ on luminosity (below z=0.9 $S_{3g}$ decreases with luminosity but only at 1{\sigma}-level). 3) We do not detect a significant dependence of $S_{3g}$ and $S_{4g}$ on scale, except beyond z~0.9, where the dependence can be explained as a consequence of sample variance. 4) We do not detect an evolution of $S_{3g}$ and $S_{4g}$ with z. 5) The linear bias factor $b=\sigma_{8g}/\sigma_{8m}$ increases with z, in agreement with previous results. 6) We quantify deviations from the linear bias by means of the Taylor expansion parameter $b_2$. Our results are compatible with a null non-linear bias term, but taking into account other available data we argue that there is evidence for a small non-linear bias term.
We use the "Evolution and Assembly of GaLaxies and their Environments" ( EAGLE ) suite of hydrodynamical cosmological simulations to measure offsets between the centres of stellar and dark matter components of galaxies. We find that the vast majority (>95%) of the simulated galaxies display an offset smaller than the gravitational softening length of the simulations ($\epsilon = 700$ pc), both for field galaxies and satellites in clusters and groups. We also find no systematic trailing or leading of the dark matter along a galaxy's direction of motion. The offsets are consistent with being randomly drawn from a Maxwellian distribution with $\sigma = 196$ pc. Since astrophysical effects produce no feasible analogues for the $1.62^{+0.47}_{-0.49}$ kpc offset recently observed in Abell 3827, this observational result is in tension with the collisionless cold dark matter model assumed in the simulations.
This paper calculates the expected gravitational wave background (GWB) in the quasi-steady state cosmology (QSSC). The principal sources of gravitational waves in the QSSC are the minicreation events (MCE). With suitable assumptions the GWB can be computed both numerically and with analytical methods. It is argued that the GWB in QSSC differs from that predicted for the standard cosmology and a future technology of detectors will be able to decide between the two predictions. We also derive a formula for the flux density of a typical extragalactic source of gravitational waves.
We propose a new class of dark matter models with unusual phenomenology. What is ordinary about our models is that dark matter particles are WIMPs, they are weakly coupled to the Standard Model and have weak scale masses. What is unusual is that they come in multiplets of a new "dark" non-Abelian gauge group with milli-weak coupling. The massless dark gluons of this dark gauge group contribute to the energy density of the universe as a form of weakly self-interacting dark radiation. In this paper we explore the consequences of having i.) dark matter in multiplets ii.) self-interacting dark radiation and iii.) dark matter which is weakly coupled to dark radiation. We find that i.) dark matter cross sections are modified by multiplicity factors which have significant consequences for collider searches and indirect detection, ii.) dark gluons have thermal abundances which affect the CMB as dark radiation. Unlike additional massless neutrino species the dark gluons are interacting and have vanishing viscosity and iii.) the coupling of dark radiation to dark matter represents a new mechanism for damping the large scale structure power spectrum. A combination of additional radiation and slightly damped structure is interesting because it can remove tensions between global $\Lambda$CDM fits from the CMB and direct measurements of the Hubble expansion rate ($H_0$) and large scale structure ($\sigma_8$).
The Standard Model Higgs potential becomes unstable at large field values. After clarifying the issue of gauge dependence of the effective potential, we study the cosmological evolution of the Higgs field in presence of this instability throughout inflation, reheating and the present epoch. We conclude that anti-de Sitter patches in which the Higgs field lies at its true vacuum are lethal for our universe. From this result, we derive upper bounds on the Hubble constant during inflation, which depend on the reheating temperature and on the Higgs coupling to the scalar curvature or to the inflaton. Finally we study how a speculative link between Higgs meta-stability and consistence of quantum gravity leads to a sharp prediction for the Higgs and top masses, which is consistent with measured values.
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because the two types of dark matter interact through the vector field, a ghostly degree of freedom in the decoupling limit is reintroduced in the dark matter sector. Crucial questions to address in future work is whether the polarisation mechanism can be realized in absence of ghosts, and what are the cosmological implications of the model.
We exploit long-baseline ALMA sub-mm observations of the lensed star-forming galaxy SDP 81 at z=3.042 to investigate the properties of inter-stellar medium on scales of 50-100pc. The kinematics of the CO gas within this system are well described by a rotationally-supported disk with an inclination-corrected rotation speed, v=320+/-20km/s and a dynamical mass of M=(3.5+/-1.0)x10^10Mo within a radius of 1.5 kpc. The disk is gas rich and unstable, with a Toomre parameter, Q=0.30+/-0.10 and so should collapse in to star-forming regions with Jeans length L_J~130pc. We identify five star-forming regions within the ISM on these scales and show that their scaling relations between luminosity, line-widths and sizes are significantly offset from those typical of molecular clouds in local Galaxies (Larson's relations). These offsets are likely to be caused by the high external hydrostatic pressure for the interstellar medium (ISM), P/kB=(40+/-20)x10^7K/cm3, which is ~10,000x higher than the typical ISM pressure in the Milky Way. The physical conditions of the star-forming ISM and giant molecular clouds appears to be similar to the those found in the densest environments in the local Universe, such as those in the Galactic center.
We discuss a new scenario for early cosmology when the inflationary de Sitter phase emerges dynamically. This genuine quantum effect occurs as a result of dynamics of the topologically nontrivial sectors in a strongly coupled QCD- like gauge theory in an expanding universe. We test these ideas by explicit computations in hyperbolic space $ \mathbb{H}^3_{\kappa}\times \mathbb{S}^1_{\kappa^{-1}}$. We argue that the key element for this idea to work is the presence of nontrivial holonomy computed along $\mathbb{S}^1_{\kappa^{-1}}$. The effect is non-local in nature, non-analytical in coupling constant and can not be described in terms of any local propagating degree of freedom such as scalar inflaton field $\Phi(x)$. We discuss some profound phenomenological consequences of this scenario for inflationary cosmology. We also suggest to test these ideas in a tabletop experiment by measuring some specific corrections to the Casimir pressure in the Maxwell theory formulated on a topologically nontrivial manifold.
We present high-resolution 870-um ALMA continuum maps of 30 bright sub-millimeter sources in the UKIDSS UDS field. These sources are selected from deep, 1-square degrees 850-um maps from the SCUBA--2 Cosmology Legacy Survey, and are representative of the brightest sources in the field (median SCUBA2 flux S_850=8.7+/-0.4 mJy). We detect 52 sub-millimeter galaxies (SMGs) at >4-sigma significance in our 30 ALMA maps. In 61+/-17% of the ALMA maps the single-dish source comprises a blend of >=2 SMGs, where the secondary SMGs are Ultra--Luminous Infrared Galaxies (ULIRGs) with L_IR>10^12 Lo. The brightest SMG contributes on average 80+/-4% of the single-dish flux density, and in the ALMA maps containing >=2 SMGs the secondary SMG contributes 25+/-3% of the integrated ALMA flux. We construct source counts and show that multiplicity boosts the apparent single-dish cumulative counts by 20% at S_870>7.5mJy, and by 60% at S_870>12mJy. We combine our sample with previous ALMA studies of fainter SMGs and show that the counts are well-described by a double power-law with a break at 8.5+/-0.6mJy. The break corresponds to a luminosity of ~6x10^12Lsol or a star-formation rate of ~1000Mo/yr. For the typical sizes of these SMGs, which are resolved in our ALMA data with r=1.2+/-0.1kpc, this yields a limiting SFR density of ~100Msol/yr/kpc2. Finally, the number density of S_870>2mJy SMGs is 80+/-30 times higher than that derived from blank-field counts. An over-abundance of faint SMGs is inconsistent with line-of-sight projections dominating multiplicity in the brightest SMGs, and indicates that a significant proportion of these high-redshift ULIRGs must be physically associated.
Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious, One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations of strong but declining ultraviolet emission from a Type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some Type Ia supernovae arise from the single degenerate channel.
Modified Newtonian dynamics (MoND) is an empirical theory originally proposed to explain the rotation curves of spiral galaxies by modifying the gravitational acceleration, rather than by invoking dark matter. Here, we set constraints on MoND using an up-to-date compilation of kinematic tracers of the Milky Way and a comprehensive collection of morphologies of the baryonic component in the Galaxy. In particular, we find that the so-called "standard" interpolating function cannot explain at the same time the rotation curve of the Milky Way and that of external galaxies for any of the baryonic models studied, while the so-called "simple" interpolating function remains viable for a subset of models. Upcoming astronomical observations will refine our knowledge on the morphology of baryons and will ultimately confirm or rule out the validity of MoND in the Milky Way. We also present constraints on MoND-like theories without making any assumptions on the interpolating function.
We study the hydrodynamic regime of chiral plasmas at high temperature. We find a new type of gapless collective excitation induced by chiral effects in an external magnetic field. This is a transverse wave and is present even in incompressible fluids, unlike the chiral magnetic and chiral vortical waves. The velocity is proportional to the coefficient of the gravitational anomaly. We briefly discuss possible relevance of this "chiral Alfv\'en wave" in physical systems.
We report the multi-wavelength identification of the X-ray sources found in the Subaru-XMM-Newton Deep Survey (SXDS) using deep imaging data covering the wavelength range between the far-UV to the mid-IR. We select a primary counterpart of each X-ray source by applying the likelihood ratio method to R-band, 3.6micron, near-UV, and 24micron source catalogs as well as matching catalogs of AGN candidates selected in 1.4GHz radio and i'-band variability surveys. Once candidates of Galactic stars, ultra-luminous X-ray sources in a nearby galaxy, and clusters of galaxies are removed there are 896 AGN candidates in the sample. We conduct spectroscopic observations of the primary counterparts with multi-object spectrographs in the optical and NIR; 65\% of the X-ray AGN candidates are spectroscopically-identified. For the remaining X-ray AGN candidates, we evaluate their photometric redshift with photometric data in 15 bands. Utilising the multi-wavelength photometric data of the large sample of X-ray selected AGNs, we evaluate the stellar masses, M*, of the host galaxies of the narrow-line AGNs. The distribution of the stellar mass is remarkably constant from z=0.1 to 4.0. The relation between M* and 2--10 keV luminosity can be explained with strong cosmological evolution of the relationship between the black hole mass and M*. We also evaluate the scatter of the UV-MIR spectral energy distribution (SED) of the X-ray AGNs as a function of X-ray luminosity and absorption to the nucleus. The scatter is compared with galaxies which have redshift and stellar mass distribution matched with the X-ray AGN. The UV-NIR SEDs of obscured X-ray AGNs are similar to those of the galaxies in the matched sample. In the NIR-MIR range, the median SEDs of X-ray AGNs are redder, but the scatter of the SEDs of the X-ray AGN broadly overlaps that of the galaxies in the matched sample.
Links to: arXiv, form interface, find, astro-ph, recent, 1505, contact, help (Access key information)
Model-independent methods in cosmology have become an essential tool in order to deal with an increasing number of theoretical alternatives for explaining the late-time acceleration of the Universe. In principle, this provides a way of testing the Cosmological Concordance (or $\Lambda$CDM) model under different assumptions and to rule out whole classes of competing theories. One such model-independent method is the so-called cosmographic approach, which relies only in the homogeneity and isotropy of the Universe on large scales. We show that this method suffers from many shortcomings, providing biased results depending on the auxiliary variable used in the series expansion and is unable to rule out models or adequately reconstruct theories with higher-order derivatives in either the gravitational or matter sector. Consequently, in its present form, this method seems unable to provide reliable or useful results for cosmological applications.
Cosmic reionization holds the key to understand structure formation in the Universe, and can inform us about the properties of the first sources, as their star formation efficiency and escape fraction of ionizing photons. By combining the recent release of Planck electron scattering optical depth data with observations of high-redshift quasar absorption spectra, we obtain strong constraints on viable reionization histories. We show that inclusion of Planck data favors a reionization scenario with a single stellar population. The mean $x_{\rm HI}$ drops from $\sim0.9$ at $z=10.6$ to $\sim0.02$ at $z=5.8$ and reionization is completed around $5.8\lesssim z\lesssim9.3$ (2-$\sigma$), thus indicating a significant reduction in contributions to reionization from high redshift sources. We can put independent constraints on the escape fraction $f_{\rm esc}$ of ionizing photons by incorporating the high-redshift galaxy luminosity function data into our analysis. We find that $f_{\rm esc}$ increases moderately from $9\%$ to $20\%$ in the redshift range $z=6-9$. Such result is however consistent at 2-$\sigma$ confidence level with a non-evolving escape fraction.
We consider decaying dark matter (DDM) as a resolution to the possible tension between cosmic microwave background (CMB) and weak lensing (WL) based determinations of the amplitude of matter fluctuations, $\sigma_8$. We perform N-body simulations in a model where dark matter decays into dark radiation and develop an accurate fitting formula for the non-linear matter power spectrum, which enables us to test the DDM model by the combined measurements of CMB, WL and the baryon acoustic oscillation (BAO). We employ a Markov chain Monte Carlo analysis to examine the overlap of posterior distributions of the cosmological parameters, comparing CMB alone with WL+BAO. We find an overlap that is significantly larger in the DDM model than in the standard CDM model. This may be hinting at DDM, although current data is not constraining enough to unambiguously favour a non-zero dark matter decay rate $\Gamma$. From the combined CMB+WL data, we obtain a lower bound $\Gamma^{-1}\ge 97$ Gyr at 95 % C.L, which is less tight than the constraint from CMB alone.
In previous work [Amendola {\it et al.}, Phys. Rev. D86 (2012) 063515], Principal Component Analysis based methods to constrain the dark energy equation of state using Type Ia supernovae and other low redshift probes were extended to spectroscopic tests of the stability fundamental couplings, which can probe higher redshifts. Here we use them to quantify the gains in sensitivity obtained by combining spectroscopic measurements expected from ESPRESSO at the VLT and the high-resolution ultra-stable spectrograph for the E-ELT (known as ELT-HIRES) with future supernova surveys. In addition to simulated low and intermediate redshift supernova surveys, we assess the dark energy impact of high-redshift supernovas detected by JWST and characterized by the E-ELT or TMT. Our results show that a detailed characterization of the dark energy properties beyond the acceleration phase (i.e., deep in the matter era) is viable, and may reach as deep as redshift 4.
Merging galaxy clusters leave long-lasting signatures on the baryonic and non-baryonic cluster constituents, including shock fronts, cold fronts, X-ray substructure, radio halos, and offsets between the dark matter and the gas components. Using observations from Chandra, the Jansky Very Large Array, the Giant Metrewave Radio Telescope, and the Hubble Space Telescope, we present a multiwavelength analysis of the merging Frontier Fields cluster MACS J0416.1-2403 (z=0.396), which consists of a NE and a SW subclusters whose cores are separated on the sky by ~250 kpc. We find that the NE subcluster has a compact core and hosts an X-ray cavity, yet it is not a cool core. Approximately 450 kpc south-south west of the SW subcluster, we detect a density discontinuity that corresponds to a compression factor of ~1.5. The discontinuity was most likely caused by the interaction of the SW subcluster with a less massive structure detected in the lensing maps SW of the subcluster's center. For both the NE and the SW subclusters, the dark matter and the gas components are well-aligned, suggesting that MACS J0416.1-2403 is a pre-merging system. The cluster also hosts a radio halo, which is unusual for a pre-merging system. The halo has a 1.4 GHz power of (1.06 +/- 0.09) x 10^{24} W Hz^{-1}, which is somewhat lower than expected based on the X-ray luminosity of the cluster. We suggest that we are either witnessing the birth of a radio halo, or have discovered a rare ultra-steep spectrum halo.
We investigate the effects of a K-mouflage modification of gravity on the dynamics of clusters of galaxies. We extend the description of K-mouflage to situations where the scalar field responsible for the modification of gravity is coupled to a perfect fluid with pressure. We describe the coupled system at both the background cosmology and cosmological perturbations levels, focusing on cases where the pressure emanates from small-scale nonlinear physics. We derive these properties in both the Einstein and Jordan frames, as these two frames already differ by a few percents at the background level for K-mouflage scenarios, and next compute cluster properties in the Jordan frame that is better suited to these observations. Galaxy clusters are not screened by the K-mouflage mechanism and therefore feel the modification of gravity in a maximal way. This implies that the halo mass function deviates from $\Lambda$-CDM by a factor of order one for masses $M\gtrsim 10^{14} \ h^{-1} M_\odot$. We then consider the hydrostatic equilibrium of gases embedded in galaxy clusters and the consequences of K-mouflage on the X-ray cluster luminosity, the gas temperature and the Sunyaev-Zel'dovich effect. We find that the cluster temperature function, and more generally number counts, are largely affected by K-mouflage, mainly due to the increased cluster abundance in these models. Other scaling relations such as the mass-temperature and the temperature-luminosity relations are only modified at the percent level due to the constraints on K-mouflage from local Solar System tests.
We examine the Chevallier-Polarski-Linder (CPL) parametrization, in the context of quintessence and barotropic dark energy models, to determine the subset of such models to which it can provide a good fit. The CPL parametrization gives the equation of state parameter $w$ for the dark energy as a linear function of the scale factor $a$, namely $w = w_0 + w_a(1-a)$. In the case of quintessence models, we find that over most of the $w_0$, $w_a$ parameter space the CPL parametrization maps onto a fairly narrow form of behavior for the potential $V(\phi)$, while a one-dimensional subset of parameter space, for which $w_a = \kappa (1+w_0)$, with $\kappa$ constant, corresponds to a wide range of functional forms for $V(\phi)$. For barotropic models, we show that the functional dependence of the pressure on the density, up to a multiplicative constant, depends only on $w_i = w_a + w_0$ and not on $w_0$ and $w_a$ separately. Our results suggest that the CPL parametrization is not optimal for testing either type of model.
We study lensing by voids in Cubic Galileon and Nonlocal gravity cosmologies, which are examples of theories of gravity that modify the lensing potential. We find voids in the dark matter and halo density fields of N-body simulations and compute their lensing signal analytically from the void density profiles, which we show are well fit by a simple analytical formula. In the Cubic Galileon model, the modifications to gravity inside voids are not screened and they approximately double the size of the lensing effects compared to GR. The difference is largely determined by the direct effects of the fifth force on lensing and less so by the modified density profiles. For this model, we also discuss the subtle impact on the force and lensing calculations caused by the screening effects of haloes that exist in and around voids. In the Nonlocal model, the impact of the modified density profiles and the direct modifications to lensing are comparable, but they boost the lensing signal by only $\approx 10\%$, compared with that of GR. Overall, our results suggest that lensing by voids is a promising tool to test models of gravity that modify lensing.
We provide a prescription for setting initial conditions for cosmological N-body simulations, which simultaneously employ Lagrangian meshes (`particles') and Eulerian grids (`fields'). Our description is based on coordinate systems in arbitrary geometry, and can therefore be used in any metric theory of gravity. We apply our prescription to a choice of Effective Field Theory of Modified Gravity, and show how already in the linear regime, particle trajectories are curved. For some viable models of modified gravity, the Dark Matter trajectories are affected at the level of 5% at Mpc scales. Moreover, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description.
The Cheshire Cat is a relatively poor group of galaxies dominated by two luminous elliptical galaxies surrounded by at least four arcs from gravitationally lensed background galaxies that give the system a humorous appearance. Our combined optical/X-ray study of this system reveals that it is experiencing a line of sight merger between two groups with a roughly equal mass ratio with a relative velocity of ~1350 km/s. One group was most likely a low-mass fossil group, while the other group would have almost fit the classical definition of a fossil group. The collision manifests itself in a bimodal galaxy velocity distribution, an elevated central X-ray temperature and luminosity indicative of a shock, and gravitational arc centers that do not coincide with either large elliptical galaxy. One of the luminous elliptical galaxies has a double nucleus embedded off-center in the stellar halo. The luminous ellipticals should merge in less than a Gyr, after which observers will see a massive 1.2-1.5 x 10^14 solar mass fossil group with an M_r = -24.0 brightest group galaxy at its center. Thus, the Cheshire Cat offers us the first opportunity to study a fossil group progenitor. We discuss the limitations of the classical definition of a fossil group in terms of magnitude gaps between the member galaxies. We also suggest that if the merging of fossil (or near-fossil) groups is a common avenue for creating present-day fossil groups, the time lag between the final galactic merging of the system and the onset of cooling in the shock-heated core could account for the observed lack of well-developed cool cores in some fossil groups.
We characterize the expected statistical errors with which the parameters of black-hole binaries can be measured from gravitational-wave (GW) observations of their inspiral, merger and ringdown by a network of second-generation ground-based GW observatories. We simulate a population of black-hole binaries with uniform distribution of component masses in the interval $(3,80)~M_\odot$, distributed uniformly in comoving volume, with isotropic orientations. From signals producing signal-to-noise ratio $\geq 5$ in at least two detectors, we estimate the posterior distributions of the binary parameters using the Bayesian parameter estimation code LALInference. The GW signals will be redshifted due to the cosmological expansion and we measure only the "redshifted" masses. By assuming a cosmology, it is possible to estimate the gravitational masses by inferring the redshift from the measured posterior of the luminosity distance. We find that the measurement of the gravitational masses will be in general dominated by the error in measuring the luminosity distance. In spite of this, the component masses of more than $50\%$ of the population can be measured with accuracy better than $\sim 25\%$ using the Advanced LIGO-Virgo network. Additionally, the mass of the final black hole can be measured with median accuracy $\sim 18\%$. Spin of the final black hole can be measured with median accuracy $\sim 5\% ~(17\%)$ for binaries with non-spinning (aligned-spin) black holes. Additional detectors in Japan and India significantly improve the accuracy of sky localization, and moderately improve the estimation of luminosity distance, and hence, that of all mass parameters. We discuss the implication of these results on the observational evidence of intermediate-mass black holes and the estimation of cosmological parameters using GW observations.
We have analysed a sample of 574 Spitzer 4.5 micron-selected galaxies with [4.5]<23 and Ks>24 (AB) over the UltraVISTA ultra-deep COSMOS field. Our aim is to investigate whether these mid-IR bright, near-IR faint sources contribute significantly to the overall population of massive galaxies at redshifts z>=3. By performing a spectral energy distribution (SED) analysis using up to 30 photometric bands, we have determined that the redshift distribution of our sample peaks at redshifts z~2.5-3.0, and ~32% of the galaxies lie at z>=3. We have studied the contribution of these sources to the galaxy stellar mass function (GSMF) at high redshifts. We found that the [4.5]<23, Ks>24 galaxies produce a negligible change to the GSMF previously determined for Ks<24 sources at 3=<z<4, but their contribution is more important at 4=<z<5, accounting for >~50% of the galaxies with stellar masses Mst>~6 x 10^10 Msun. We also constrained the GSMF at the highest-mass end (Mst>~2 x 10^11 Msun) at z>=5. From their presence at 5=<z<6, and virtual absence at higher redshifts, we can pinpoint quite precisely the moment of appearance of the first most massive galaxies as taking place in the ~0.2 Gyr of elapsed time between z~6 and z~5. Alternatively, if very massive galaxies existed earlier in cosmic time, they should have been significantly dust-obscured to lie beyond the detection limits of current, large-area, deep near-IR surveys.
The loop quantum dynamics of Kantowski-Sachs spacetime and the interior of higher genus black hole spacetimes with a cosmological constant has some peculiar features not shared by various other spacetimes in loop quantum cosmology. As in the other cases, though the quantum geometric effects resolve the physical singularity and result in a non-singular bounce, after the bounce a spacetime with small spacetime curvature does not emerge in either the subsequent backward or the forward evolution. Rather, in the asymptotic limit the spacetime manifold is a product of two constant curvature spaces. Interestingly, though the spacetime curvature of these asymptotic spacetimes is very high, their effective metric is a solution to the Einstein's field equations. Analysis of the components of the Ricci tensor shows that after the singularity resolution, the Kantowski-Sachs spacetime leads to an effective metric which can be interpreted as the `charged' Nariai, while the higher genus black hole interior can similarly be interpreted as anti Bertotti-Robinson spacetime with a cosmological constant. These spacetimes are `charged' in the sense that the energy momentum tensor that satisfies the Einstein's field equations is formally the same as the one for the uniform electromagnetic field, albeit it has a purely quantum geometric origin. The asymptotic spacetimes also have an emergent cosmological constant which is different in magnitude, and sometimes even its sign, from the cosmological constant in the Kantowski-Sachs and the interior of higher genus black hole metrics. With a fine tuning of the latter cosmological constant, we show that `uncharged' Nariai, and anti Bertotti-Robinson spacetimes with a vanishing emergent cosmological constant can also be obtained.
We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. We find that fluctuations in the scalar sector can acquire a direction-dependent phase. For the tensor sector, we show that one of the polarization modes can be significantly amplified throughout the whole period of inflation.
An accelerated universe should naturally have a vacuum energy density determined by its dynamical curvature. The cosmological constant is most likely a temporary description of a dynamical variable that has been drastically evolving from the early inflationary era to the present. In this Essay we propose a unified picture of the cosmic history implementing such an idea, in which the cosmological constant problem is fixed at early times. All the main stages, from inflation and its (``graceful'') exit into a standard radiation regime, as well as the matter and dark energy epochs, are accounted for. Finally, we show that for a generic Grand Unified Theory associated to the inflationary phase, the amount of entropy generated from primeval vacuum decay can explain the huge measured value today.
Links to: arXiv, form interface, find, astro-ph, recent, 1505, contact, help (Access key information)