We present sCOLA -- an extension of the N-body COmoving Lagrangian Acceleration (COLA) method to the spatial domain. Similar to the original temporal-domain COLA, sCOLA is an N-body method for solving for large-scale structure in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory. Incorporating the sCOLA method in an N-body code allows one to gain computational speed by capturing the gravitational potential from the far field using perturbative techniques, while letting the N-body code solve only for the near field. The far and near fields are completely decoupled, effectively localizing gravity for the N-body side of the code. Thus, running an N-body code for a small simulation volume using sCOLA can reproduce the results of a standard N-body run for the same small volume embedded inside a much larger simulation. We demonstrate that sCOLA can be safely combined with the original temporal-domain COLA. sCOLA can be used as a method for performing zoom-in simulations. It also allows N-body codes to be made embarrassingly parallel, thus allowing for efficiently tiling a volume of interest using grid computing. Moreover, sCOLA can be useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering. Surveys that will benefit the most are ones with large aspect ratios, such as pencil-beam surveys, where sCOLA can easily capture the effects of large-scale transverse modes without the need to substantially increase the simulated volume. As an illustration of the method, we present proof-of-concept zoom-in simulations using a freely available sCOLA-based N-body code.
The CMB temperature-redshift relation, T_CMB(z)=T_0(1+z), is a key prediction of the standard cosmology, but is violated in many non standard models. Constraining possible deviations to this law is an effective way to test the LambdaCDM paradigm and to search for hints of new physics. We have determined T_CMB(z), with a precision up to 3%, for a subsample (104 clusters) of the Planck SZ cluster catalog, at redshift in the range 0.01-- 0.94, using measurements of the spectrum of the Sunyaev Zel'dovich effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T_CMB(z) at cluster redshift relies on the use of SZ intensity change, Delta I_SZ(nu), at different frequencies, and on a Monte-Carlo Markov Chain approach. By applying this method to the sample of 104 clusters, we limit possible deviations of the form T_CMB(z)=T_0(1+z)^(1-beta) to be beta= 0.022 +/- 0.018, at 1 sigma uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results we get beta=0.016+/-0.012.
FastSound is a galaxy redshift survey using the near-infrared Fiber Multi-Object Spectrograph (FMOS) mounted on the Subaru Telescope, targeting H$\alpha$ emitters at $z \sim 1.18$--$1.54$ down to the sensitivity limit of H$\alpha$ flux $\sim 2 \times 10^{-16} \ \rm erg \ cm^{-2} s^{-1}$. The primary goal of the survey is to detect redshift space distortions (RSD), to test General Relativity by measuring the growth rate of large scale structure and to constrain modified gravity models for the origin of the accelerated expansion of the universe. The target galaxies were selected based on photometric redshifts and H$\alpha$ flux estimates calculated by fitting spectral energy distribution (SED) models to the five optical magnitudes of the Canada France Hawaii Telescope Legacy Survey (CFHTLS) Wide catalog. The survey started in March 2012, and all the observations were completed in July 2014. In total, we achieved $121$ pointings of FMOS (each pointing has a $30$ arcmin diameter circular footprint) covering $20.6$ deg$^2$ by tiling the four fields of the CFHTLS Wide in a hexagonal pattern. Emission lines were detected from $\sim 4,000$ star forming galaxies by an automatic line detection algorithm applied to 2D spectral images. This is the first in a series of papers based on FastSound data, and we describe the details of the survey design, target selection, observations, data reduction, and emission line detections.
TeV-blazars potentially heat the intergalactic medium (IGM) as their gamma rays interact with photons of the extragalactic background light to produce electron-positron pairs, which lose their kinetic energy to the surrounding medium through plasma instabilities. This results in a heating mechanism that is only weakly sensitive to the local density, and therefore approximately spatially uniform, naturally producing an inverted temperature-density relation in underdense regions. In this paper we go beyond the approximation of uniform heating and quantify the heating rate fluctuations due to the clustered distribution of blazars and how this impacts on the thermal history of the IGM. We analytically compute a filtering function that relates the heating rate fluctuations to the underlying dark matter density field. We implement it in the cosmological code GADGET-3 and perform large scale simulations to determine the impact of inhomogeneous heating. We show that, because of blazar clustering, blazar heating is inhomogeneous for z>= 2. At high redshift, the temperature-density relation shows an important scatter and presents a low temperature envelope of unheated regions, in particular at low densities and within voids. However, the median temperature of the IGM is close to that in the uniform case, albeit slightly lower at low redshift. We find that blazar heating is more complex than initially assumed and that the temperature-density relation is not unique. Our analytic model for the heating rate fluctuations couples well with large scale simulations and provides a cost-effective alternative to subgrid models.
We critically review the role of cosmological moduli in determining the post-inflationary history of the universe. Moduli are ubiquitous in string and M-theory constructions of beyond the Standard Model physics, where they parametrize the geometry of the compactification manifold. For those with masses determined by supersymmetry breaking this leads to their eventual decay slightly before Big Bang Nucleosynthesis (without spoiling its predictions). This results in a matter dominated phase shortly after inflation ends, which can influence baryon and dark matter genesis, as well as observations of the Cosmic Microwave Background and the growth of large-scale structure. Given progress within fundamental theory, and guidance from dark matter and collider experiments, non-thermal histories have emerged as a robust and theoretically well-motivated alternative to a strictly thermal one. We review this approach to the early universe and discuss both the theoretical challenges and the observational implications.
We present the discovery of two z > 6 quasars, selected as i band dropouts in the VST ATLAS survey. Our first quasar has redshift, z = 6.31 \pm 0.03, z band magnitude, zAB = 19.63 \pm 0.08 and rest frame 1450A absolute magnitude, M1450 = -27.8 \pm 0.2, making it one of the two most luminous quasars known at z > 6. The second quasar has z = 6.02 \pm 0.03, zAB = 19.54 \pm 0.08 and M1450 = -27.0 \pm 0.1. We also recover a z = 5.86 quasar discovered by Venemans et al. (2015, in prep.). To select our quasars we use a new 3D colour space, combining the ATLAS optical colours with mid-infra-red data from the WISE Space Telescope. We use iAB - zAB colour to exclude main sequence stars, galaxies and lower redshift quasars, W1 - W2 to exclude L dwarfs and zAB - W2 to exclude T dwarfs. A restrictive set of colour cuts returns only our three high redshift quasars and no contaminants, albeit with a sample completeness of \sim50%. We discuss how less restrictive cuts in our 3D colour space can be used to reject the majority of contaminants from samples of bright 5.7 < z < 6.4 quasars, replacing follow-up near-infra-red photometry, whilst retaining high completeness.
A key component of explaining the array of galaxies observed in the Universe is the feedback of active galactic nuclei, each powered by a massive black hole's accretion disc. For accretion to occur, angular momentum must be lost by that which is accreted. Electromagnetic radiation must offer some respite in this regard, the contribution for which is quantified in this paper using solely general relativity under the thin-disc regime. Herein, I calculate extremised situations where photons are entirely responsible for energy removal in the disc and then extend and relate this to the standard relativistic accretion disc outlined by Novikov & Thorne that includes the effect of viscosity. While there is potential for the contribution of angular-momentum removal from photons to be >~1% out to ~10^4 Schwarzschild radii, especially if the disc is irradiated and is liberated of angular momentum through scattering, it is more likely of order 10^2 Schwarzschild radii if thermal emission from the disc itself is stronger. Near the horizons of fast-spinning black holes, these modes of angular-momentum liberation become dominant.
In this study we investigate the relationship between the star formation rate, SFR, and AGN luminosity, L(AGN), for ~2000 X-ray detected AGN. The AGN span over three orders of magnitude in X-ray luminosity (10^(42) < L(2-8keV) < 10^(45.5) erg/s) and are in the redshift range z = 0.2 - 2.5. Using infrared (IR) photometry (8 - 500um), including deblended Spitzer and Herschel images and taking into account photometric upper limits, we decompose the IR spectral energy distributions into AGN and star formation components. Using the IR luminosities due to star formation, we investigate the average SFRs as a function of redshift and AGN luminosity. In agreement with previous studies, we find a strong evolution of the average SFR with redshift, tracking the observed evolution of the overall star forming galaxy population. However, we find that the relationship between the average SFR and AGN luminosity is flat at all redshifts and across all the AGN luminosities investigated. By comparing to empirical models, we argue that the observed flat relationship is due to short timescale variations in AGN luminosity, driven by changes in the mass accretion rate, which wash out any underlying correlations between SFR and L(AGN). Furthermore, we show that the exact form of the predicted relationship between SFR and AGN luminosity (and it's normalisation) is highly sensitive to the assumed intrinsic Eddington ratio distribution.
The broad line region (BLR) of luminous active galactic nuclei (AGN) is a prominent observational signature of the accretion flow around supermassive black holes, which can be used to measure their masses (M_BH) over cosmic history. Due to the <100 {\mu}as angular size of the BLR, current direct constraints on BLR kinematics are limited to those provided by reverberation mapping studies, which are most efficiently carried out on low-luminosity L and low-redshift z AGN. We analyze the possibility to measure the BLR size and study its kinematic structure using spectroastrometry, whereby one measures the spatial position centroid of emission line photons as a function of velocity. We calculate the expected spectroastrometric signal of a rotation-dominated BLR for various assumptions about the ratio of random to rotational motions, and the radial distribution of the BLR gas. We show that for hyper-luminous quasars at z < 2.5, the size of the low-ionization BLR can already be constrained with existing telescopes and adaptive optics systems, thus providing a novel method to spatially resolve the kinematics of the accretion flow at 10^3 -- 10^4 gravitational radii, and measure M_BH at the high-L end of the AGN family. With a 30m-class telescope, BLR spectroastrometry should be routinely detectable for much fainter quasars out to z ~ 6, and for various emission lines. This will enable kinematic M_BH measurements as a function of luminosity and redshift, providing a compelling science case for next generation telescopes.
Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken $U(1)'$ gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the LSS and CMB, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon - dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simple formalism which aims to describe the effects of dissipative dark matter in a fairly model independent way. This formalism is then applied to generic disk galaxies. We also consider specific examples, including NGC 1560 and a sample of dwarf galaxies from the LITTLE THINGS survey. We find that dissipative dark matter, as developed here, does a fairly good job accounting for the rotation curves of the galaxies considered. Not only does dissipative dark matter explain the linear rise of the rotational velocity of dwarf galaxies at small radii, but it can also explain the observed wiggles in rotation curves which are known to be correlated with corresponding features in the disk gas distribution.
Inflation is nowadays a well-established paradigm consistent with all the observations. The precise nature of the inflaton is however unknown and its role could be played by any candidate able to imitate a scalar condensate in the slow-roll regime. The discovery of a fundamental scalar in the LHC provides the less speculative candidate. Could the Higgs field itself be responsible for inflation? Do we really need to advocate new physics to explain the properties of the Universe at large scales? Which is the relation between the Standard Model parameters and the inflationary observables? What happens if our vacuum becomes unstable below the scale of inflation? We present an overview of Higgs inflation trying to provide answers to the previous questions with special emphasis on the vacuum stability issue.
Links to: arXiv, form interface, find, astro-ph, recent, 1503, contact, help (Access key information)
New data are reported from the operation of a 2-liter C$_3$F$_8$ bubble chamber in the 2100 meter deep SNOLAB underground laboratory, with a total exposure of 211.5 kg-days at four different recoil energy thresholds ranging from 3.2 keV to 8.1 keV. These data show that C3F8 provides excellent electron recoil and alpha rejection capabilities at very low thresholds, including the first observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with significant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering.
We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z=8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. (2015). Twenty-one cm power spectra with amplitudes of hundreds of mK^2 can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the Cosmic Microwave Background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z=8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ~5 K for neutral fractions between 10% and 85%, above ~7 K for neutral fractions between 15% and 80%, or above ~10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.
We discuss methods for performing weak lensing using radio observations to recover information about the intrinsic structural properties of the source galaxies. Radio surveys provide unique information that can benefit weak lensing studies, such as HI emission, which may be used to construct galaxy velocity maps, and polarized synchrotron radiation; both of which provide information about the unlensed galaxy and can be used to reduce galaxy shape noise and the contribution of intrinsic alignments. Using a proxy for the intrinsic position angle of an observed galaxy, we develop techniques for cleanly separating weak gravitational lensing signals from intrinsic alignment contamination in forthcoming radio surveys. Random errors on the intrinsic orientation estimates introduce biases into the shear and intrinsic alignment estimates. However, we show that these biases can be corrected for if the error distribution is accurately known. We demonstrate our methods using simulations, where we reconstruct the shear and intrinsic alignment auto and cross-power spectra in three overlapping redshift bins. We find that the intrinsic position angle information can be used to successfully reconstruct both the lensing and intrinsic alignment power spectra with negligible residual bias.
The $\Lambda$CDM framework offers a remarkably good description of our
universe with a very small number of free parameters, which can be determined
with high accuracy from currently available data. However, this does not mean
that the associated physical quantities, such as the curvature of the universe,
have been directly measured. Similarly, general relativity is assumed, but not
tested. Testing the relevance of general relativity for cosmology at the
background level includes a verification of the relation between its energy
contents and the curvature of space. Using an extended Newtonian formulation,
we propose an approach where this relation can be tested. Using the recent
measurements on cosmic microwave background, baryonic acoustic oscillations and
the supernova Hubble diagram, we show that the prediction of general relativity
is well verified in the framework of standard $\Lambda$CDM assumptions, i.e. an
energy content only composed of matter and dark energy, in the form of a
cosmological constant or equivalently a vacuum contribution.
However, the actual equation of state of dark fluids cannot be directly
obtained from cosmological observations. We found that relaxing the equation of
state of dark energy opens a large region of possibilities, revealing a new
type of degeneracy between the curvature and the total energy content of the
universe.
We review five often used quad lens models, each of which has analytical solutions and can produce four images at most. Each lens model has two parameters, including one that describes the intensity of non-dimensional mass density, and the other one that describes the deviation from the circular lens. In our recent work, we have found that the cusp and the fold summations are not equal to 0, when a point source infinitely approaches a cusp or a fold from inner side of the caustic. Based on the magnification invariant theory, which states that the sum of signed magnifications of the total images of a given source is a constant, we calculate the cusp summations for the five lens models. We find that the cusp summations are always larger than 0 for source on the major cusps, while can be larger or smaller than 0 for source on the minor cusps. We also find that if these lenses tend to the circular lens, the major and minor cusp summations will have infinite values, and with positive and negative signs respectively. The cusp summations do not change significantly if the sources are slightly deviated from the cusps. In addition, through the magnification invariants, we also derive the analytical signed cusp relations on the axes for three lens models. We find that both on the major and the minor axes the larger the lenses deviated from the circular lens, the larger the signed cusp relations. The major cusp relations are usually larger than the absolute minor cusp relations, but for some lens models with very large deviation from circular lens, the minor cusp relations can be larger than the major cusp relations.
We model the abundance of haloes in the $\sim(3 \ \text{Gpc}/h)^3$ volume of the MICE Grand Challenge simulation by fitting the universal mass function with an improved Jack-Knife error covariance estimator that matches theory predictions. We present unifying relations between different fitting models and new predictions for linear ($b_1$) and non-linear ($c_2$ and $c_3$) halo clustering bias. Different mass function fits show strong variations in their overall poor performance when including the low mass range ($M_h \lesssim 3 \ 10^{12} \ M_{\odot}/h$) in the analysis, which indicates noisy friends-of-friends halo detection given the MICE resolution ($m_p \simeq 3 \ 10^{10} \ M_{\odot}$/h). Together with fits from the literature we find an overall variance in the amplitudes of around $10%$ in the low mass and up to $50%$ in the high mass (galaxy cluster) range ($M_h > 10^{14} \ M_{\odot}/h$). These variations propagate into a $10%$ change in $b_1$ predictions and a $50%$ change in $c_2$ or $c_3$. Despite these strong variations we find tight universal relations between $b_1$ and $c_2$ or $c_3$ for $b_1\gtrsim 1.5$ for which we provide simple fits. Their dependence on the mass function fit increases moderately for smaller $b_1$. Excluding low mass haloes, different models fitted with reasonable goodness in this analysis, show percent level agreement in their $b_1$ predictions, but are systematically $5-10%$ lower than the bias directly measured with two-point halo-mass clustering. This result confirms previous findings on larger volumes (and larger masses). Inaccuracies in the bias predictions propagate into the prediction of bias ratios at two redshifts, which would lead to $5-10%$ errors in growth measurements. They also affect any HOD fitting or (cluster) mass calibration from clustering measurements.
Scalar-tensor Cosmologies can be dealt under the standard of the Hojman conservation theorem that allows to fix the form of the coupling $F(\phi)$, of the potential $V(\phi)$ and to find out exact solutions for related cosmological models. Specifically, the existence of a symmetry transformation vector for the equations of motion gives rise to a Hojman conserved quantity on the corresponding minisuperpace and exact solutions for the cosmic scale factor $a$ and the scalar field $\phi$ can be achieved. In particular, we take advantage of the fact that minimally coupled solutions, previously obtained in the Einstein frame, can be conformally transformed in non-minimally coupled solutions in the Jordan frame. Some physically relevant examples are worked out.
Since its launch in 2008 June, the Fermi Gamma-ray Space Telescope has opened
a new era in high-energy astrophysics. The unprecedented sensitivity, angular
resolution and effective area of the Large Area Telescope on board Fermi,
together with the nearly continuous observation of the entire gamma-ray sky
assures a formidable opportunity to study in detail gamma-ray emitting AGN of
various types. In this context the Swift satellite, thanks to its broad band
coverage and scheduling flexibility, creates a perfect synergy with Fermi.
Swift and Fermi coordinated monitoring campaigns of radio-loud AGN allowed us
to investigate correlated variability at different frequencies and to build
time-resolved spectral energy distributions from optical to gamma-rays,
constraining the emission mechanisms at work in these objects. The rapid Swift
follow-up observations of gamma-ray flaring AGN detected by Fermi-LAT were also
fundamental in firmly associating the gamma-ray sources with their low-energy
counterparts. We present some interesting results obtained from Fermi-LAT and
Swift observations of gamma-ray flaring AGN in the first six years of Fermi
operation.
We study the asymptotic scaling properties of domain wall networks with three different tensions in various cosmological epochs. We discuss the conditions under which a scale-invariant evolution of the network (which is well established for simpler walls) still applies, and also consider the limiting case where defects are locally planar and the curvature is concentrated in the junctions. We present detailed quantitative predictions for scaling densities in various contexts, which should be testable by means of future high-resolution numerical simulations.
We use the Planck LFI 70GHz data to further probe point source detection technique in the sky maps of the cosmic microwave background (CMB) radiation. The method developed by Tegmark et al. for foreground reduced maps and the Kolmogorov parameter as the descriptor are adopted for the analysis of Planck satellite CMB temperature data. Most of the detected points coincide with point sources already revealed by other methods. However, we have also found 9 source candidates for which still no counterparts are known.
In the light of the history of researches on electromagnetic wave spectrum, a sharp emission line of gravitational-wave background (GWB) would be an interesting observational target. Here we study an efficient method to detect a line GWB by correlating data of multiple ground-based detectors. We find that the width of frequency bin for coarse graining is a critical parameter, and the commonly-used value 0.25 Hz is far from optimal, decreasing the signal-to-noise ratio by up to a factor of seven. By reanalyzing the existing data with a smaller bin width, we might detect a precious line signal from the early universe.
We review inflationary cosmology in modified gravity such as $R^2$ gravity with its extensions in order to generalize the Starobinsky inflation model. In particular, we explore inflation realized by three kinds of effects: modification of gravity, the quantum anomaly, and the $R^2$ term in loop quantum cosmology. It is explicitly demonstrated that in these inflationary models, the spectral index of scalar modes of the density perturbations and the tensor-to-scalar ratio can be consistent with the Planck results. Bounce cosmology in $F(R)$ gravity is also explained.
Accurate numerical solutions of the equations of hydrodynamics play an ever more important role in many fields of astrophysics. In this work, we reinvestigate the accuracy of the moving-mesh code \textsc{Arepo} and show how its convergence order can be improved for general problems. In particular, we clarify that for certain problems \textsc{Arepo} only reaches first-order convergence for its original formulation. This can be rectified by simple modifications we propose to the time integration scheme and the spatial gradient estimates of the code, both improving the accuracy of the code. We demonstrate that the new implementation is indeed second-order accurate under the $L^1$ norm, and in particular substantially improves conservation of angular momentum. Interestingly, whereas these improvements can significantly change the results of smooth test problems, we also find that cosmological simulations of galaxy formation are unaffected, demonstrating that the numerical errors eliminated by the new formulation do not impact these simulations. In contrast, simulations of binary stars followed over a large number of orbital times are strongly affected, as here it is particularly crucial to avoid a long-term build up of errors in angular momentum conservation.
We investigate the prospects of indirect and direct dark matter searches within the minimal supersymmetric standard model with nine parameters (MSSM-9). These nine parameters include three gaugino masses, Higgs, slepton and squark masses, all treated independently. We perform a Bayesian Monte Carlo scan of the parameter space taking into consideration all available particle physics constraints such as the Higgs mass of 126 GeV, upper limits on the scattering cross-section from direct-detection experiments, and assuming that the MSSM-9 provides all the dark matter abundance through thermal freeze-out mechanism. Within this framework we find two most probable regions for dark matter: 1-TeV higgsino-like and 3-TeV wino-like neutralinos. We discuss prospects for future indirect (in particular the Cherenkov Telescope Array, CTA) and direct detection experiments. We find that for slightly contracted dark matter profiles in our Galaxy, which can be caused by the effects of baryonic infall in the Galactic center, CTA will be able to probe a large fraction of the remaining allowed region in synergy with future direct detection experiments like XENON-1T.
Active galactic nuclei (AGNs) are well-known to exhibit flux variability across a wide range of wavelength regimes, but the precise origin of the variability at different wavelengths remains unclear. To investigate the relatively unexplored near-IR variability of the most luminous AGNs, we conduct a search for variability using well sampled JHKs-band light curves from the 2MASS survey calibration fields. Our sample includes 27 known quasars with an average of 924 epochs of observation over three years, as well as one spectroscopically confirmed blazar (SDSSJ14584479+3720215) with 1972 epochs of data. This is the best-sampled NIR photometric blazar light curve to date, and it exhibits correlated, stochastic variability that we characterize with continuous auto-regressive moving average (CARMA) models. None of the other 26 known quasars had detectable variability in the 2MASS bands above the photometric uncertainty. A blind search of the 2MASS calibration field light curves for AGN candidates based on fitting CARMA(1,0) models (damped-random walk) uncovered only 7 candidates. All 7 were young stellar objects within the {\rho} Ophiuchus star forming region, five with previous X-ray detections. A significant {\gamma}-ray detection (5{\sigma}) for the known blazar using 4.5 years of Fermi photon data is also found. We suggest that strong NIR variability of blazars, such as seen for SDSSJ14584479+3720215, can be used as an efficient method of identifying previously-unidentified {\gamma}-ray blazars, with low contamination from other AGN.
Links to: arXiv, form interface, find, astro-ph, recent, 1503, contact, help (Access key information)
We propose a decision criterion for segmenting the cosmic web into different structure types (voids, sheets, filaments and clusters) on the basis of their respective probabilities and the strength of data constraints. Our approach is inspired by an analysis of games of chance where the gambler only plays if a positive expected net gain can be achieved based on some degree of privileged information. The result is a general solution for classification problems in the face of uncertainty, including the option of not committing to a class for a candidate object. As an illustration, we produce high-resolution maps of web-type constituents in the nearby Universe as probed by the Sloan Digital Sky Survey main galaxy sample. Other possible applications include the selection and labeling of objects in catalogs derived from astronomical survey data.
We utilize $\Lambda$CDM halo occupation models of galaxy clustering to investigate the evolving stellar mass dependent clustering of galaxies in the PRIsm MUlti-object Survey (PRIMUS) and DEEP2 Redshift Survey over the past eight billion years of cosmic time, between $0.2<z<1.2$. These clustering measurements provide new constraints on the connections between dark matter halo properties and galaxy properties in the context of the evolving large-scale structure of the universe. Using both an analytic model and a set of mock galaxy catalogs, we find a strong correlation between central galaxy stellar mass and dark matter halo mass over the range $M_\mathrm{halo}\sim10^{11}$-$10^{13}~h^{-1}M_\odot$, approximately consistent with previous observations and theoretical predictions. However, the stellar-to-halo mass relation (SHMR) and the mass scale where star formation efficiency reaches a maximum appear to evolve more strongly than predicted by other models. We find that the fraction of satellite galaxies in haloes of a given mass decreases by $\approx5\%$ from $z\sim0.5$ to $z\sim0.9$, and we find that the $M_1/M_\mathrm{min}$ ratio, which quantifies the critical mass above which haloes host at least one satellite, decreases from $\approx20$ at $z\sim0$ to $\approx13$ at $z\sim0.9$. Considering the evolution of the subhalo mass function vis-\`{a}-vis satellite abundances, this trend has implications for relations between satellite galaxies and halo substructures and for intracluster mass, which we argue has grown due to stripped and disrupted satellites between $z\sim0.9$ and $z\sim0.5$.
Hydrodynamical simulations of galaxy formation such as the Illustris simulations have progressed to a state where they approximately reproduce the observed stellar mass function from high to low redshift. This in principle allows self-consistent models of reionization that exploit the accurate representation of the diffuse gas distribution together with the realistic growth of galaxies provided by these simulations, within a representative cosmological volume. In this work, we apply and compare two radiative transfer algorithms implemented in a GPU-accelerated code to the $106.5\,{\rm Mpc}$ wide volume of Illustris in postprocessing in order to investigate the reionization transition predicted by this model. We find that the first generation of galaxies formed by Illustris is just about able to reionize the universe by redshift $z\sim 7$, provided quite optimistic assumptions about the escape fraction and the resolution limitations are made. Our most optimistic model finds an optical depth of $\tau\simeq 0.065$, which is in very good agreement with recent Planck 2015 determinations. Furthermore, we show that moment-based approaches for radiative transfer with the M1 closure give broadly consistent results with our angular-resolved radiative transfer scheme as far as the global reionization history is concerned. We also confirm earlier findings that the reduced speed-of-light approximation introduces non-neglibible inaccuracies. In our favoured fiducial model, 20% of the hydrogen is reionized by redshift $z=9.20$, and this rapidly climbs to 80% by redshift $z=6.92$. It then takes until $z=6.24$ before 99% of the hydrogen is ionized. On average, reionization proceeds `inside-out' in our models, with a size distribution of reionized bubbles that progressively features regions of ever larger size while the abundance of small bubbles stays fairly constant.
We present cosmological bounds on the thermal axion mass in an extended cosmological scenario in which the primordial power spectrum of scalar perturbations differs from the usual power-law shape predicted by the simplest inflationary models. The power spectrum is instead modeled by means of a "piecewise cubic Hermite interpolating polynomial" (PCHIP). When using Cosmic Microwave Background measurements combined with other cosmological data sets, the thermal axion mass constraints are degraded only slightly. The addition of the measurements of $\sigma_8$ and $\Omega_m$ from the 2013 Planck cluster catalogue on galaxy number counts relaxes the bounds on the thermal axion mass, mildly favouring a $\sim 1$~eV axion mass, regardless of the model adopted for the primordial power spectrum.
We report the results of a multi-waveband analysis of the masses and luminosities of $\sim$600 galaxy groups and clusters identified in the maxBCG catalogue. These data are intended to form the basis of future work on the formation of the "$m_{12}$ gap" in galaxy groups and clusters. We use SDSS spectroscopy and $g$, $r$ and $i$ band photometry to estimate galaxy group/cluster virial radii, masses and total luminosities. In order to establish the robustness of our results, we compare them with literature studies that utilize a variety of mass determinations techniques (dynamical, X-ray, weak lensing) and total luminosities estimated in the $B$, $r$, $i$, and $K$ wavebands. We also compare our results to predictions derived from the Millennium Simulation. We find that, once selection effects are properly accounted for, excellent agreement exists between our results and the literature with the exception of a single observational study. We also find that the Millennium Simulation does an excellent job of predicting the effects of our selection criteria. Our results show that, over the mass range $\sim10^{13}-10^{15}$ M$_{\odot}$, variations in the slope of the mass-luminosity scaling relation with mass detected in this and many other literature studies is in part the result of selection effects. We show that this can have serious ramifications on attempts to determine how the mass-to-light ratio of galaxy groups and cluster varies with mass.
We obtain conditions for the existence of an attractor in the system of equations describing a tachyon warm inflationary model with bulk viscosity taken into account. When these conditions are met the evolution approaches slow-roll regime. We present the primordial power spectrum for the tachyon field by considering a dissipation coefficient depending on the scalar field and temperature.
We derive an analytical expression for extracting the gravitational waveforms at null infinity using the Weyl scalar $\psi_4$ measured at a finite radius. Our expression is based on a series solution in orders of 1/r to the equations for gravitational perturbations about a spinning black hole. We compute this expression to order $1/r^2$ and include the spin parameter $a$ of the Kerr background. We test the accuracy of this extraction procedure by measuring the waveform for a merging black-hole binary at ten different extraction radii (in the range r/M=75-190) and for three different resolutions in the convergence regime. We find that the extraction formula provides a set of values for the radiated energy and momenta that at finite extraction radii converges towards the expected values with increasing resolution, which is not the case for the `raw' waveform at finite radius. We also examine the phase and amplitude errors in the waveform as a function of observer location and again observe the benefits of using our extraction formula. The leading corrections to the phase are ${\cal O}(1/r)$ and to the amplitude are ${\cal O}(1/r^2)$. This method provides a simple and practical way of estimating the waveform at infinity, and may be especially useful for scenarios such as well separated binaries, where the radiation zone is far from the sources, that would otherwise require extended simulation grids in order to extrapolate the `raw' waveform to infinity. Thus this method saves important computational resources and provides an estimate of errors.
In the upcoming synoptic all--sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disc. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated $>2.5$ billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to: train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our data are openly available to the community and are complemented by online eResearch tools, located at this http URL .
We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and `anti-alignment' of $C_4$ axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the `generalized' weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of $C_4$ axions in type IIB compactifications on a Calabi-Yau three-fold is dominated by contributions from $D7$-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.
Links to: arXiv, form interface, find, astro-ph, recent, 1503, contact, help (Access key information)
We investigate the properties of dark matter haloes and subhaloes in an $f(R)$ gravity model with $|f_{R0}|=10^{-6}$, using a very high-resolution N-body simulation. The model is a borderline between being cosmologically interesting and yet still consistent with current data. We find that the halo mass function in this model has a maximum 20% enhancement compared with the $\Lambda$CDM predictions between $z=1$ and $z=0$. Because of the chameleon mechanism which screens the deviation from standard gravity in dense environments, haloes more massive than $10^{13}h^{-1}M_\odot$ in this $f(R)$ model have very similar properties to haloes of similar mass in $\Lambda$CDM, while less massive haloes, such as that of the Milky Way, can have steeper inner density profiles and higher velocity dispersions due to their weaker screening. The halo concentration is remarkably enhanced for low-mass haloes in this model due to a deepening of the total gravitational potential. Contrary to the naive expectation, the halo formation time $z_f$ is later for low-mass haloes in this model, a consequence of these haloes growing faster than their counterparts in $\Lambda$CDM at late times and the definition of $z_f$. Subhaloes, especially those less massive than $10^{11}h^{-1}M_\odot$, are substantially more abundant in this $f(R)$ model for host haloes less massive than $10^{13}h^{-1}M_\odot$. We discuss the implications of these results for the Milky Way satellite abundance problem. Although the overall halo and subhalo properties in this borderline $f(R)$ model are close to their $\Lambda$CDM predictions, our results suggest that studies of the Local Group and astrophysical systems, aided by high-resolution simulations, can be valuable for further tests of it.
This is the first of a series of papers where we compare the expected performance of two of the largest stage IV next-generation surveys in the optical and infrared (LSST and Euclid), with a particular focus on cluster surveys. In this first paper, we introduce the mock catalogues we have utilized in this work, an N-body simulation+semi-analytical cone with a posterior modification with PhotReal, a technique which modifies the original photometry to make it more realistic by using an empirical library of spectral templates. We have confirmed the reliability of the mock catalogue by comparing the obtained color-magnitude relation, the luminosity and mass function and the angular correlation function with those of real data. We also analyze the behavior of the expected photometric redshifts for each different survey, in terms of photometric redshift resolution, photometric redshift bias and fraction of outliers. In addition, we discuss the benefits of using the BPZ \emph{odds} photometric redshift quality parameter to select the best quality data of the sample. We find that very deep near infrared surveys such as Euclid will provide very good performance ($\Delta z/(1+z) \sim 0.025-0.053$) down to H$\sim$24 AB mag and up to redshift $\sim 3$ depending on the optical observations available from the ground whereas extremely deep optical surveys such as LSST will obtain an overall lower photometric redshift resolution ($\Delta z/(1+z) \sim 0.045$) down to $i\sim27.5$ AB mag, being substantially improved ($\Delta z/(1+z) \sim 0.035$) if we restrict the sample down to i$\sim$24 AB mag. We highlight the fact that those numbers can be improved substantially by selecting a subsample of galaxies with the best quality photometric redshifts. We finally discuss the impact that these surveys will have for the community in terms of photometric redshift legacy once the data is available. (Abridged)
One of the most compelling tasks of modern cosmology is to constrain the expansion history of the Universe, since this measurement can give insights on the nature of dark energy and help to estimate cosmological parameters. In this letter are presented two new measurements of the Hubble parameter H(z) obtained with the cosmic chronometer method up to $z\sim2$. Taking advantage of near-infrared spectroscopy of the few very massive and passive galaxies observed at $z>1.4$ available in literature, the differential evolution of this population is estimated and calibrated with different stellar population synthesis models to constrain H(z), including in the final error budget all possible sources of systematic uncertainties (star formation history, stellar metallicity, model dependencies). This analysis is able to extend significantly the redshift range coverage with respect to present-day constraints, crossing for the first time the limit at $z\sim1.75$. The new H(z) data are used to estimate the gain in accuracy on cosmological parameters with respect to previous measurements in two cosmological models, finding a small but detectable improvement ($\sim$5 %) in particular on $\Omega_{M}$ and $w_{0}$. Finally, a simulation of a Euclid-like survey has been performed to forecast the expected improvement with future data. The provided constraints have been obtained just with the cosmic chronometers approach, without any additional data, and the results show the high potentiality of this method to constrain the expansion history of the Universe at these redshifts.
Standard cosmological models based on general relativity (GR) with dark energy predict that the Universe underwent a transition from decelerating to accelerating expansion at a moderate redshift $z_{acc} \sim 0.7$. Clearly, it is of great interest to directly measure this transition in a model-independent way, without the assumption that GR is the correct theory of gravity. We explore to what extent supernova (SN) luminosity distance measurements provide evidence for such a transition: we show that, contrary to intuition, the well-known "turnover" in the SN distance residuals $\Delta\mu$ relative to an empty (Milne) model does not give firm evidence for such a transition within the redshift range spanned by SN data. The observed turnover in that diagram is predominantly due to the negative curvature in the Milne model, {\em not} the deceleration predicted by $\Lambda$CDM and relatives. We show that there are several advantages in plotting distance residuals against a flat, non-accelerating model $(w = -1/3)$, and also remapping the $z-$axis to $u = \ln(1+z)$; we outline a number of useful and intuitive properties of this presentation. We conclude that there are significant complementarities between SNe and baryon acoustic oscillations (BAOs): SNe offer high precision at low redshifts and give good constraints on the net {\em amount} of acceleration since $z \sim 0.7$, but are weak at constraining $z_{acc}$; while radial BAO measurements are probably superior for placing direct constraints on $z_{acc}$.
This article details the computation of the two-point correlators of the convergence, $E$- and $B$-modes of the cosmic shear induced by the weak-lensing by large scale structure assuming that the background spacetime is spatially homogeneous and anisotropic. After detailing the perturbation equations and the general theory of weak-lensing in an anisotropic universe, it develops a weak shear approximation scheme in which one can compute analytically the evolution of the Jacobi matrix. It allows one to compute the angular power spectrum of the $E$- and $B$-modes. In the linear regime, the existence of $B$-modes is a direct tracer of a late time anisotropy and their angular power spectrum scales as the square of the shear. It is then demonstrated that there must also exist off-diagonal correlations between the $E$-modes, $B$-modes and convergence that are linear in the geometrical shear and allow one to reconstruct the eigendirections of expansion. These spectra can be measured in future large scale surveys, such as Euclid and SKA, and offer a new tool to test the isotropy of the expansion of the universe at low redshift.
We compute the angular power spectrum of the $B$-modes of the weak-lensing shear in a spatially anisotropic spacetime. We find that there must also exist off-diagonal correlations between the $E$-modes, $B$-modes, and convergence that allow one to reconstruct the eigendirections of expansion. Focusing on future surveys such as Euclid and SKA, we show that observations can constrain the geometrical shear in units of the Hubble rate at the percent level, or even better, offering a new and powerful method to probe our cosmological model.
The $\Lambda$ cold dark matter ($\Lambda\textrm{CDM}$) model is currently known as the simplest cosmology model that best describes observations with minimal number of parameters. Here we introduce a cosmology model that is preferred over the conventional $\Lambda\textrm{CDM}$ one by constructing dark energy as the sum of the cosmological constant $\Lambda$ and the additional fluid that is designed to have an extremely short transient spike in energy density during the radiation-matter equality era and the early scaling behavior with radiation and matter densities. The density parameter of the additional fluid is defined as a Gaussian function plus a constant in logarithmic scale-factor space. Searching for the best-fit cosmological parameters in the presence of such a dark energy spike gives a far smaller chi-square value by about five times the number of additional parameters introduced and narrower constraints on matter density and Hubble constant compared with the best-fit $\Lambda\textrm{CDM}$ model. The significant improvement in reducing chi-square mainly comes from the better fitting of Planck temperature power spectrum around the third ($\ell \approx 800$) and sixth ($\ell \approx 1800$) acoustic peaks. The likelihood ratio test and the Akaike information criterion suggest that the model of dark energy spike is strongly favored by the current cosmological observations over the conventional $\Lambda\textrm{CDM}$ model. However, based on the Bayesian information criterion which penalizes models with more parameters, the strong evidence supporting the presence of dark energy spike disappears. Our result emphasizes that the alternative cosmological parameter estimation with even better fitting of the same observational data is allowed in the Einstein's gravity.
One of the main challenges left for the present and future Cosmic Microwave Background (CMB) experiments is the high precision measurement of the CMB polarization anisotropies at large angular scales. The reionization bump in the CMB polarization power spectra encodes unique informations about the reionization history of the Universe and the inflationary epoch. Such valuable information can be accessed only with an unprecedented accuracy and care on each step of the data analysis and its interpretation. In this paper we present a cross-spectra based approach for the analysis of the CMB data at large angular scales to constrain the reionization optical depth, the tensor to scalar ratio and the amplitude of the primordial scalar perturbations. Using cross-spectra has the advantage to eliminate spurious noise bias and to give a better handle of residual systematics with respect to the pixel-based approach used so far, allowing to efficiently combine the cosmological information encoded in cross-frequency or cross-dataset spectra. We present two solutions to deal with the non-Gaussianity of the Cl estimator distributions at large angular scales: the first relies on an analytical parametrization of the estimator distribution, while the second is based on modification of the Hamimache&Lewis likelihood approximation at large angular scales. The modified HL method (oHL) is extremely powerful as it allows to easily deal with multipole and mode correlations for a combined temperature and polarization analysis. We validate our methods on realistic simulations generated with publicly available specifications, showing that they give consistent results for the constraints of the relevant cosmological parameters in the case of a realistic experimental settings that account for anisotropic correlated noise and incomplete sky coverage.
Highly ionized, z=0 metal absorption lines detected in the X-ray spectra of background active galactic nuclei (AGNs) provide an effective method to probe the hot ($T\sim10^6$ K) gas and its metal content in and around the Milky Way. We present an all-sky survey of the $K_{\alpha}$ transition of the local O VII absorption lines obtained by Voigt-profile fitting archival XMM-Newton observations. A total of 43 AGNs were selected, among which 12 are BL Lac-type AGNs, and the rest are Seyfert 1 galaxies. At above the $3\sigma$ level the local O VII absorption lines were detected in 21 AGNs, among which 7 were newly discovered in this work. The sky covering fraction, defined as the ratio between the number of detections and the sample size, increases from at about 40% for all targets to 100% for the brightest targets, suggesting a uniform distribution of the O VII absorbers. We correlate the line equivalent width with the Galactic coordinates and do not find any strong correlations between these quantities. Some AGNs have warm absorbers that may complicate the analysis of the local X-ray absorber since the recession velocity can be compensated by the outflow velocity, especially for the nearby targets. We discuss the potential impact of the warm absorbers on our analysis. A comprehensive theoretical modelling of the X-ray absorbers will be presented in a later paper.
We investigate the validity of the Cosmological Principle by mapping the cosmological parameters $H_0$ and $q_0$ through the celestial sphere. In our analysis, performed in a low-redshift regime to follow a model-independent approach, we use two compilations of type Ia Supernovae (SNe Ia), namely the Union2.1 and the JLA datasets. Firstly, we show that the angular distributions for both SNe Ia datasets are statistically anisotropic at high confidence level ($p$-value $<$ 0.0001), in particular the JLA sample. Then we find that the cosmic expansion and acceleration are mainly of dipolar type, with maximal anisotropic expansion [acceleration] pointing towards $(l,b) \simeq (326^{\circ},12^{\circ})$ [$(l,b) \simeq (174^{\circ},27^{\circ})$], and $(l,b) \simeq (58^{\circ},-60^{\circ})$ [$(l,b) \simeq (225^{\circ},51^{\circ})$] for the Union2.1 and JLA data, respectively. Secondly, we use a geometrical method to test the hypothesis that the non-uniformly distributed SNe Ia events could introduce anisotropic imprints on the cosmological expansion and acceleration. For the JLA compilation, we found significant correlations between the celestial distribution of data points and the directional studies of $H_0$ and $q_0$, suggesting that these results can be attributed to the intrinsic anisotropy of the sample. In the case of the Union2.1 data, nonetheless, these correlations are less pronounced, and we verify that the dipole asymmetry found in the $H_0$ analyses coincides with the well-known bulk-flow motion of our local group. From these analyses, we conclude that the directional asymmetry on the cosmological parameters maps are mainly either of local origin or due to celestial incompleteness of current SNe Ia samples.
We study the angular momentum of galaxies in the Illustris cosmological simulation, which captures gravitational and gas dynamics within galaxies, as well as feedback from stars and black holes. We find that the angular momentum of the simulated galaxies matches observations well, and in particular two distinct relations are found for late-type versus early-type galaxies. The relation for late-type galaxies corresponds to the value expected from full conservation of the specific angular momentum generated by cosmological tidal torques. The relation for early-type galaxies corresponds to retention of only ~30% of that, but we find that those early-type galaxies with low angular momentum at z=0 nevertheless reside at high redshift on the late-type relation. To gain further insight, we explore the scaling relations in simulations where the galaxy formation physics is modified with respect to the fiducial model. We find that galactic winds with high mass-loading factors are essential for obtaining the high angular momentum relation typical for late-type galaxies, while AGN feedback largely operates in the opposite direction. Hence, feedback controls the angular momentum of galaxies, and appears to be instrumental for establishing the Hubble sequence.
We investigate signatures of population III (PopIII) stars in the metal-enriched environment of GRBs originating from population II-I (PopII/I) stars by using abundance ratios derived from numerical simulations that follow stellar evolution and chemical enrichment. We find that at $z>10$ more than $10%$ of PopII/I GRBs explode in a medium previously enriched by PopIII stars (we refer to them as GRBII$\rightarrow$III). Although the formation of GRBII$\rightarrow$III is more frequent than that of pristine PopIII GRBs (GRBIIIs), we find that the expected GRBII$\rightarrow$III observed rate is comparable to that of GRBIIIs, due to the usually larger luminosities of these latter. GRBII$\rightarrow$III events take place preferentially in small proto-galaxies with stellar masses $\rm M_\star \sim 10^{4.5} - 10^7\,\rm M_\odot$, star formation rates $\rm SFR \sim 10^{-3}-10^{-1}\,\rm M_\odot/yr$ and metallicities $Z \sim 10^{-4}-10^{-2}\,\rm Z_\odot$. On the other hand, galaxies with $Z < 10^{-2.8}\,\rm Z_\odot$ are dominated by metal enrichment from PopIII stars and should preferentially host GRBII$\rightarrow$III. Hence, measured GRB metal content below this limit could represent a strong evidence of enrichment by pristine stellar populations. We discuss how to discriminate PopIII metal enrichment on the basis of various abundance ratios observable in the spectra of GRBs' afterglows. By employing such analysis, we conclude that the currently known candidates at redshift $z\simeq 6$ -- i.e. GRB 050904 \cite[][]{2006Natur.440..184K} and GRB 130606A \cite[][]{2013arXiv1312.5631C} -- are likely not originated in environments pre-enriched by PopIII stars.
Ram pressure stripping can remove hot and cold gas from galaxies in the intracluster medium (ICM), as shown by observations of X-ray and HI galaxy wakes in nearby clusters of galaxies. However, ram pressure stripping, including pre-processing in group environments, does not remove all the hot coronal gas from cluster galaxies. Recent high-resolution Chandra observations have shown that $\sim 1 - 4$ kpc extended, hot galactic coronae are ubiquitous in group and cluster galaxies. To better understand this result, we simulate ram pressure stripping of a cosmologically motivated population of galaxies in isolated group and cluster environments. The galaxies and the host group and cluster are composed of collisionless dark matter and hot gas initially in hydrostatic equilibrium with the galaxy and host potentials. We show that the rate at which gas is lost depends on the galactic and host halo mass. Using synthetic X-ray observations, we evaluate the detectability of stripped galactic coronae in real observations by stacking images on the known galaxy centers. We find that coronal emission should be detected within $\sim 10$ arcsec, or $\sim 5$ kpc up to $\sim 2.3$ Gyr in the lowest (0.1 - 1.2 keV) energy band. Thus the presence of observed coronae in cluster galaxies significantly smaller than the hot X-ray halos of field galaxies indicates that at least some gas removal occurs within cluster environments for recently accreted galaxies. Finally, we evaluate the possibility that existing and future X-ray cluster catalogs can be used in combination with optical galaxy positions to detect galactic coronal emission via stacking analysis. We briefly discuss the effects of additional physical processes on coronal survival, and will address them in detail in future papers in this series.
MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a 6-year
SDSS-IV survey that will obtain resolved spectroscopy from 3600 $\AA$ to 10300
$\AA$ for a representative sample of over 10,000 nearby galaxies. In this
paper, we derive spatially resolved stellar population properties and radial
gradients by performing full spectral fitting of observed galaxy spectra from
P-MaNGA, a prototype of the MaNGA instrument. These data include spectra for
eighteen galaxies, covering a large range of morphological type. We derive age,
metallicity, dust and stellar mass maps, and their radial gradients, using high
spectral-resolution stellar population models, and assess the impact of varying
the stellar library input to the models. We introduce a method to determine
dust extinction which is able to give smooth stellar mass maps even in cases of
high and spatially non-uniform dust attenuation.
With the spectral fitting we produce detailed maps of stellar population
properties which allow us to identify galactic features among this diverse
sample such as spiral structure, smooth radial profiles with little azimuthal
structure in spheroidal galaxies, and spatially distinct galaxy sub-components.
In agreement with the literature, we find the gradients for galaxies identified
as early-type to be on average flat in age, and negative (- 0.15 dex / R$_e$ )
in metallicity, whereas the gradients for late-type galaxies are on average
negative in age (- 0.39 dex / R$_e$ ) and flat in metallicity. We demonstrate
how different levels of data quality change the precision with which radial
gradients can be measured. We show how this analysis, extended to the large
numbers of MaNGA galaxies, will have the potential to shed light on galaxy
structure and evolution.
We explore the behaviour of [CII]-157.74um forbidden fine-structure line observed in a sample of 28 galaxies selected from ~50deg^2 of the H-ATLAS survey. The sample is restricted to galaxies with flux densities higher than S_160um>150mJy and optical spectra from the GAMA survey at 0.02<z<0.2. Far-IR spectra centred on this redshifted line were taken with the PACS instrument on-board the Herschel Space Observatory. The galaxies span 10<log(L_IR/Lo)<12 (where L_IR=L_IR[8-1000um]) and 7.3<log(L_[CII]/Lo)<9.3, covering a variety of optical galaxy morphologies. The sample exhibits the so-called [CII] deficit at high IR luminosities, i.e. L_[CII]/L_IR (hereafter [CII]/IR) decreases at high L_IR. We find significant differences between those galaxies presenting [CII]/IR>2.5x10^-3 with respect to those showing lower ratios. In particular, those with high ratios tend to have: (1) L_IR<10^11Lo; (2) cold dust temperatures, T_d<30K; (3) disk-like morphologies in r-band images; (4) a WISE colour 0.5<S_12um/S_22um<1.0; (5) low surface brightness Sigma_IR~10^8-9 Lo kpc^-2, (6) and specific star-formation rates of sSFR~0.05-3 Gyr^-1. We suggest that the strength of the far-UV radiation fields (<G_O>) is main parameter responsible for controlling the [CII]/IR ratio. It is possible that relatively high <G_O> creates a positively charged dust grain distribution, impeding an efficient photo-electric extraction of electrons from these grains to then collisionally excite carbon atoms. Within the brighter IR population, 11<log(L_IR/Lo)<12, the low [CII]/IR ratio is unlikely to be modified by [CII] self absorption or controlled by the presence of a moderately luminous AGN (identified via the BPT diagram).
The spectrum of the supernova relic neutrino (SRN) background from past stellar collapses including black hole formation (failed supernovae) is calculated. The redshift dependence of the black hole formation rate is considered on the basis of the metallicity evolution of galaxies. Assuming the mass and metallicity ranges of failed supernova progenitors, their contribution to SRNs is quantitatively estimated for the first time. Using this model, the dependences of SRNs on the cosmic star formation rate density, shock revival time and equation of state are investigated. The shock revival time is introduced as a parameter that should depend on the still unknown explosion mechanism of core collapse supernovae. The dependence on equation of state is considered for failed supernovae, whose collapse dynamics and neutrino emission are certainly affected. It is found that the low-energy spectrum of SRNs is mainly determined by the cosmic star formation rate density. These low-energy events will be observed in the Super-Kamiokande experiment with gadolinium-loaded water.
The late-type spiral galaxy NGC 6946 is a prime example of molecular gas dynamics driven by `bars within bars'. Here we use data from the BIMA SONG and HERACLES surveys to analyse the structure and stability of its molecular disc. Our radial profiles exhibit a clear transition at distance R ~ 1 kpc from the galaxy centre. In particular, the surface density profile breaks at R ~ 0.8 kpc and is well fitted by a double exponential distribution with scale lengths R_1 ~ 200 pc and R_2 ~ 3 kpc, while the 1D velocity dispersion sigma decreases steeply in the central kpc and is approximately constant at larger radii. The fact that we derive and use the full radial profile of sigma rather than a constant value is perhaps the most novel feature of our stability analysis. We show that the profile of the Q stability parameter traced by CO emission is remarkably flat and well above unity, while the characteristic instability wavelength exhibits clear signatures of the nuclear starburst and inner bar within bar. We also show that CO-dark molecular gas, stars and other factors can play a significant role in the stability scenario of NGC 6946. Our results provide strong evidence that gravitational instability, radial inflow and disc heating have driven the formation of the inner structures and the dynamics of molecular gas in the central kpc.
The statistical properties of the primordial density perturbations has been considered in the past decade as a powerful probe of the physical processes taking place in the early universe. Within the inflationary paradigm, the properties of the bispectrum are one of the keys that serves to discriminate among competing scenarios concerning the details of the origin of cosmological perturbations. However, all of the scenarios, based on the conventional approach to the so-called "quantum-to-classical transition" during inflation, lack the ability to point out the precise physical mechanism responsible for generating the inhomogeneity and anisotropy of our universe starting from and exactly homogeneous and isotropic vacuum state associated with the early inflationary regime. In past works, we have shown that the proposals involving a spontaneous dynamical reduction of the quantum state provide plausible explanations for the birth of said primordial inhomogeneities and anisotropies. In the present manuscript we show that, when considering within the context of such proposals, the characterization of the spectrum and bispectrum turn out to be quite different from those found in the traditional approach, and in particular, some of the statistical features, must be treated in a different way leading to some rather different conclusions.
Many theories of modified gravity, including the well studied Horndeski models, are characterized by a screening mechanism that ensures that standard gravity is recovered near astrophysical bodies. In a recently introduced class of gravitational theories that goes beyond Horndeski, it has been found that new derivative interactions lead to a partial breaking of the Vainshtein screening mechanism inside any gravitational source, although not outside. We study the impact of this new type of deviation from standard gravity on the density profile of a spherically symmetric matter distribution, in the nonrelativistic limit. For simplicity, we consider a polytropic equation of state and derive the modifications to the standard Lane-Emden equations. We also show the existence of a universal upper bound on the amplitude of this type of modified gravity, independently of the details of the equation of state.
Links to: arXiv, form interface, find, astro-ph, recent, 1503, contact, help (Access key information)
We perform a 3D multi-probe analysis of the rich galaxy cluster A1689 by combining improved weak-lensing data from new BVRi'z' Subaru/Suprime-Cam observations with strong-lensing, X-ray, and Sunyaev-Zel'dovich effect (SZE) data sets. We reconstruct the projected matter distribution from a joint weak-lensing analysis of 2D shear and azimuthally integrated magnification constraints, the combination of which allows us to break the mass-sheet degeneracy. The resulting mass distribution reveals elongation with axis ratio ~0.7 in projection. When assuming a spherical halo, our full weak-lensing analysis yields a projected concentration of $c_{200c}^{2D}=8.9\pm 1.1$ ($c_{vir}^{2D}\sim 11$), consistent with and improved from earlier weak-lensing work. We find excellent consistency between weak and strong lensing in the region of overlap. In a parametric triaxial framework, we constrain the intrinsic structure and geometry of the matter and gas distributions, by combining weak/strong lensing and X-ray/SZE data with minimal geometric assumptions. We show that the data favor a triaxial geometry with minor-major axis ratio 0.39+/-0.15 and major axis closely aligned with the line of sight (22+/-10 deg). We obtain $M_{200c}=(1.2\pm 0.2)\times 10^{15} M_{\odot}/h$ and $c_{200c}=8.4\pm 1.3$, which overlaps with the $>1\sigma$ tail of the predicted distribution. The shape of the gas is rounder than the underlying matter but quite elongated with minor-major axis ratio 0.60+/-0.14. The gas mass fraction within 0.9Mpc is 10^{+3}_{-2}%. The thermal gas pressure contributes to ~60% of the equilibrium pressure, indicating a significant level of non-thermal pressure support. When compared to Planck's hydrostatic mass estimate, our lensing measurements yield a spherical mass ratio of $M_{Planck}/M_{GL}=0.70\pm 0.15$ and $0.58\pm 0.10$ with and without corrections for lensing projection effects, respectively.
Primordial black holes (PBHs) are black holes which may have formed very early on during the radiation dominated era in the early universe. We present here a method by which the large scale perturbations in the density of primordial black holes may be used to place tight constraints on non-gaussianity if PBHs account for dark matter (DM). The presence of local-type non-gaussianity is known to have a significant effect on the abundance of primordial black holes, and modal coupling from the observed CMB scale modes can significantly alter the number density of PBHs that form within different regions of the universe, which appear as DM isocurvature modes. Using the recent \emph{Planck} constraints on isocurvature perturbations, we show that PBHs are excluded as DM candidates for even very small local-type non-gaussianity, $|f_{NL}|\approx0.001$ and remarkably the constraint on $g_{NL}$ is almost as strong. Even small non-gaussianity is excluded if DM is composed of PBHs. If local non-Gaussianity is ever detected on CMB scales, the constraints on the fraction of the universe collapsing into PBHs (which are massive enough to have not yet evaporated) will become much tighter.
The dipolar model \cite{Gordon:2005ai} has attracted much interest because it may phenomenologically explain the CMB hemispherical power asymmetry found in the WMAP and Planck data. Since such a model explicitly breaks isotropy at large angular scales it is natural to wonder whether it can also explain other CMB directional anomalies. Focusing on the low $\ell$ alignments and assuming $\Lambda$CDM, we confirm that the quadrupole/octupole and the dipole/quadrupole/octupole alignments are anomalous with a significance up to $99.9\%$ C.L., for both WMAP and Planck data. Moreover, we show for the first time that such features are anomalous also in the dipolar model, roughly at the same level as in $\Lambda$CDM. We conclude that the dipolar model does not provide a better fit to the data than the $\Lambda$CDM.
Detection of the cosmological 21-cm signal coming from the epoch of reionization (EoR) is challenging in the presence of astrophysical foregrounds and direction (in)dependent systematic errors of the instrument. Even after removing the foregrounds, the residual Stokes I maps contain, in addition to the system noise, the polarized foreground leaked from Stokes Q, U due to systematic and random errors which can mimic the EoR signal. Here we discuss the systematic errors, especially the primary beam, of LOFAR and present realistic simulations of the leakages caused by them. We made a Stokes Q, U sky model of the Galactic diffuse emission based on the LOFAR observations of the 3C196 field, simulated the full-Stokes visibilities that would be produced by LOFAR in the presence of its nominal model beam, created RM-cubes and the cylindrically and spherically averaged 3D power spectra (PS), and compared them with the PS of a simulated EoR signal. From the spherical PS, we found that at 134-166 MHz, within the central 4 deg of the field the (Q, U ) to I leakage power is lower than the EoR signal at k < 0.3 /Mpc. The leakage was found to be localized around a Faraday depth of 0, and in the cylindrical PS, the rms of the leakage as a fraction of the rms of the polarized emission was shown to vary between 0.2-0.3%, both of which could be utilized in the removal of leakage. Moreover, we could define an 'EoR window' in terms of the polarization leakage in the cylindrical PS above the PSF-induced wedge and below $k_\parallel\sim 0.5$ /Mpc, and the window extended up to $k_\parallel\sim 1$ /Mpc at all $k_\perp$ when 70% of the leakage had been removed. These LOFAR results show that even a modest polarimetric calibration over a field of view of $\lesssim$ 4 deg in the future arrays like SKA will ensure that the polarization leakage remains well below the expected EoR signal at the scales of 0.02-1 /Mpc.
A systematic dynamical system approach is applied to study the cosmology of anisotropic Bianchi I universes in which a vector field is assumed to operate on a disformal frame. This study yields a number of new fixed points, among which anisotropic scaling solutions. Within the simplifying assumption of (nearly) constant-slope potentials these are either not stable attractors, do not describe accelerating expansion or else they feature too large anisotropies to be compatible with observations. Nonetheless, some solutions do have an appeal for cosmological applications in that isotropy is retained due to rapid oscillations of the vector field.
Rotating neutron stars, or pulsars, are plausibly the source of power behind many astrophysical systems, such as gamma-ray bursts, supernovae, pulsar wind nebulae and supernova remnants. In the past several years, 3D numerical simulations made it possible to compute pulsar spindown luminosity from first principles and revealed that oblique pulsar winds are more powerful than aligned ones. However, what causes this enhanced power output of oblique pulsars is not understood. In this work, using time-dependent 3D magnetohydrodynamic (MHD) and force-free simulations, we show that, contrary to the standard paradigm, the open magnetic flux, which carries the energy away from the pulsar, is laterally non-uniform. We argue that this non-uniformity is the primary reason for the increased luminosity of oblique pulsars. To demonstrate this, we construct simple analytic descriptions of aligned and orthogonal pulsar winds and combine them to obtain an accurate 3D description of the pulsar wind for any obliquity. Our approach describes both the warped magnetospheric current sheet and the smooth variation of pulsar wind properties outside of it. We find that generically the magnetospheric current sheet separates plasmas that move at mildly relativistic velocities relative to each other. This suggests that the magnetospheric reconnection is a type of driven, rather than free, reconnection. The jump in magnetic field components across the current sheet decreases with increasing obliquity, which could be a mechanism that reduces dissipation in near-orthogonal pulsars. Our analytical description of the pulsar wind can be used for constructing models of pulsar gamma-ray emission, pulsar wind nebulae, and magnetar-powered core-collapse gamma-ray bursts and supernovae.
Aims: We investigate the effect of ram pressure stripping (RPS) on
simulations of merging pairs of gas-rich spiral galaxies. Our goal is to
provide an estimate of the combined effect of merging and RPS on stripping
efficiency and star formation rate.
Methods: We make use of the combined N-body/hydrodynamic code GADGET-2. In
our simulations, we vary mass ratios between 1:4 and 1:8 in a binary merger. We
sample different geometric configurations of the merging systems (edge-on and
face-on mergers, different impact parameters). Furthermore, we vary the
properties of the intracluster medium (ICM) in rough steps: The speed of the
merging system relative to the ICM between 500 and 1000 km/s, the ICM density
between $10^{-29}$ and $10^{-27}$ g/cm$^3$, and the ICM direction relative to
the mergers' orbital plane. Ram pressure is kept constant within a simulation
time period, as is the ICM temperature of $10^7$ K. Each simulation in the ICM
is compared to simulations of the merger in vacuum and the non-merging galaxies
with acting ram pressure.
Results: Averaged over the simulation time (1 Gyr) the merging pairs show a
negligible 5% enhancement in SFR, when compared to single galaxies under the
same environmental conditions. The SFRs peak at the time of the galaxies first
fly-through. There, our simulations show SFRs of up to 20 M$_{\odot}$/yr
(compared to 3 M$_{\odot}$/yr of the non-merging galaxies in vacuum). In the
most extreme case, this constitutes a short-term ($<50$ Myr) SFR increase of
50% over the non-merging galaxies experiencing ram pressure. The wake of
merging galaxies in the ICM typically has a third to half the star mass seen in
the non-merging galaxies and 5% to 10 % less gas mass. The joint effect of RPS
and merging, according to our simulations, is not significantly different from
pure ram pressure effects.
The ratio of total mass $M$ to surface radius $R$ of spherical perfect fluid ball has an upper bound, $M/R < B$. Buchdahl obtained $B = 4/9$ under the assumptions; non-increasing mass density in outward direction, and barotropic equation of states. Barraco and Hamity decreased the Buchdahl's bound to a lower value $B = 3/8$ $(< 4/9)$ by adding the dominant energy condition to Buchdahl's assumptions. In this paper, we further decrease the Barraco-Hamity's bound to $B \simeq 0.3636403$ $(< 3/8)$ by adding the subluminal (slower-than-light) condition of sound speed. In our analysis, we solve numerically Tolman-Oppenheimer-Volkoff equations, and the mass-to-radius ratio is maximized by variation of mass, radius and pressure inside the fluid ball as functions of mass density.
We consider a pure scalar-Gauss-Bonnet gravitational theory without the Ricci scalar. We demonstrate that such a theory, with a quadratic coupling function between the scalar field and the Gauss-Bonnet term, naturally supports inflationary -- de Sitter -- solutions. During inflation, the scalar field decays exponentially and its effective potential remains always bounded. The theory contains also solutions where these de Sitter phases possess a natural exit mechanism and are replaced by linearly expanding -- Milne -- phases.
It is shown that Starobinsky-like inflation can be realized in non-geometric flux compactifications of string theory, where the inflaton is an axion whose shift symmetry can protect UV-corrections to the scalar potential. For that purpose we evaluate the backreacted, uplifted F-term axion-monodromy potential for large field values. Limitations due to the use of an effective field theory description are pointed out.
A brief description of the elements of noncommutative spectral geometry as an approach to unification is presented. The physical implications of the doubling of the algebra are discussed. Some high energy phenomenological as well as various cosmological consequences are presented. A constraint in one of the three free parameters, namely the one related to the coupling constants at unification, is obtained, and the possible role of scalar fields is highlighted. A novel spectral action approach based upon zeta function regularisation, in order to address some of the issues of the traditional bosonic spectral action based on a cutoff function and a cutoff scale, is discussed.
Links to: arXiv, form interface, find, astro-ph, recent, 1503, contact, help (Access key information)