Coherent alignments of galaxy shapes, often called "intrinsic alignments" (IA), are the most significant source of astrophysical uncertainty in weak lensing measurements. We develop the tidal alignment model of IA and demonstrate its success in describing observational data. We also describe a technique to separate IA from galaxy-galaxy lensing measurements. Applying this technique to luminous red galaxy lenses in the Sloan Digital Sky Survey, we constrain potential IA contamination from associated sources to be below a few percent.
We develop an efficient method based on the linear regression algorithm to probe the cosmological CPT violation using the CMB polarisation data. We validate this method using simulated CMB data and apply it to recent CMB observations. We find that a combined data sample of BICEP1 and BOOMERanG 2003 favours a nonzero isotropic rotation angle at $2.3\sigma$ confidence level, ie, $\Delta\alpha=-3.3 \pm1.4$ deg (68% CL) with systematics included.
We present predictions for the clustering of galaxies selected by their total infra-red luminosity ($L_{\rm IR}$), and their emission at far infra-red (FIR) and sub-millimetre (sub-mm) wavelengths. We combine a new version of the GALFORM semi-analytic model of galaxy formation, implemented in a Millennium-style $N$-body simulation utilising the WMAP7 cosmology, with a self-consistent model for calculating the absorption and re-emission of stellar radiation by dust. In the model, galaxies selected at 850 $\mu$m predominantly reside in dark matter halos of mass ~$10^{11.5}-10^{12}$ $h^{-1}$ M$_{\odot}$, independent of redshift (for $0.2<z<4$) or flux (for $0.25<S_{850\mu\rm m}<4$ mJy). Around the peak of their redshift distribution ($z$~2.5) the brightest galaxies ($S_{850 \mu\rm m}$>4 mJy) exhibit a correlation length of $r_{0}=5.5_{-0.5}^{+0.3}$ $h^{-1}$ Mpc, consistent with observations. We show further that these galaxies evolve into $z=0$ descendants with stellar mass ~$10^{11}$ $h^{-1}$ M$_{\odot}$ occupying halos which span a broad range in mass ~$10^{12}-10^{14}$ $h^{-1}$ M$_{\odot}$. The FIR emissivity at shorter wavelengths (250, 350 and 500 $\mu$m) in our model is dominated by galaxies in the same halo mass range, again independent of redshift (for $0.5<z<5$). We compare our predictions for the angular power spectrum of Cosmic Infra-red Background (CIB) anisotropies at these wavelengths with recent observations, and find that the model agrees with the observed power to within a factor of ~2 over all scales and wavelengths, an improvement over earlier versions of the model. Simulating sub-mm imaging at 850 $\mu$m, we show that source confusion due to the coarse angular resolution of single-dish telescopes at this wavelength can significantly bias angular clustering measurements, severely complicating the interpretation of such observations.
We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands observatories, as part of the general optical follow-up programme undertaken by the Planck collaboration. In total, 78 SZ sources are discussed. Deep imaging observations were obtained for most of those sources; spectroscopic observations in either in long-slit or multi-object modes were obtained for many. We found optical counterparts for 73 of the 78 candidates. This sample includes 53 spectroscopic redshifts determinations, 20 of them obtained with a multi-object spectroscopic mode. The sample contains new redshifts for 27 Planck clusters that were not included in the first Planck SZ source catalogue (PSZ1).
We study the non-perturbative dynamics of the Standard Model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different post-inflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via non-perturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into $Z$ and $W^{\pm}$ bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its dominant decay products, until equipartition is established.
We calculate the colours and luminosities of redshift z = 0.1 galaxies from the EAGLE simulation suite using the GALAXEV population synthesis models. We take into account obscuration by dust in birth clouds and diffuse ISM using a two-component screen model, following the prescription of Charlot and Fall. We compare models in which the dust optical depth is constant to models where it depends on gas metallicity, gas fraction and orientation. The colours of EAGLE galaxies for the more sophisticated models are in broad agreement with those of observed galaxies. In particular, EAGLE produces a red sequence of passive galaxies and a blue cloud of star forming galaxies, with approximately the correct fraction of galaxies in each population and with g-r colours within 0.1 magnitudes of those observed. Luminosity functions from UV to NIR wavelengths differ from observations at a level comparable to systematic shifts resulting from a choice between Petrosian and Kron photometric apertures. Despite the generally good agreement there are clear discrepancies with observations. The blue cloud of EAGLE galaxies extends to somewhat higher luminosities than in the data, consistent with the modest underestimate of the passive fraction in massive EAGLE galaxies. There is also a moderate excess of bright blue galaxies compared to observations. The overall level of agreement with the observed colour distribution suggests that EAGLE galaxies at z = 0.1 have ages, metallicities and levels of obscuration that are comparable to those of observed galaxies.
[abridged] The ALESS survey has followed-up a sample of 122 sub-millimeter sources in the Extended Chandra Deep Field South at 870um with ALMA, allowing to pinpoint the positions of sub-millimeter galaxies (SMGs) to 0.3'' and to find their precise counterparts at different wavelengths. This enabled the first compilation of the multi-wavelength spectral energy distributions (SEDs) of a statistically reliable survey of SMGs. In this paper, we present a new calibration of the MAGPHYS modelling code that is optimized to fit these UV-to-radio SEDs of z>1 star-forming galaxies using an energy balance technique to connect the emission from stellar populations, dust attenuation and dust emission in a physically consistent way. We derive statistically and physically robust estimates of the photometric redshifts and physical parameters for the ALESS SMGs. We find that they have a median stellar mass $M_\ast=(8.9\pm0.1)\times10^{10} M_\odot$, SFR$=280\pm70 M_\odot$/yr, overall V-band dust attenuation $A_V=1.9\pm0.2$ mag, dust mass $M_\rm{dust}=(5.6\pm1.0)\times10^8 M_\odot$, and average dust temperature Tdust~40 K. The average intrinsic SED of the ALESS SMGs resembles that of local ULIRGs in the IR range, but the stellar emission of our average SMG is brighter and bluer, indicating lower dust attenuation, possibly because they are more extended. We explore how the average SEDs vary with different parameters, and we provide a new set of SMG templates. To put the ALESS SMGs into context, we compare their stellar masses and SFRs with those of less actively star-forming galaxies at the same redshifts. At z~2, about half of the SMGs lie above the star-forming main sequence, while half are at the high-mass end of the sequence. At higher redshifts (z~3.5), the SMGs tend to have higher SFR and Mstar, but the fraction of SMGs that lie significantly above the main sequence decreases to less than a third.
We study the effects of energy transport in the Sun by asymmetric dark matter with momentum and velocity-dependent interactions, with an eye to solving the decade-old Solar Abundance Problem. We study effective theories where the dark matter-nucleon scattering cross-section goes as $v_{\rm rel}^{2n}$ and $q^{2n}$ with $n = -1, 0, 1 $ or $2$, where $v_{\rm rel}$ is the dark matter-nucleon relative velocity and $q$ is the momentum exchanged in the collision. Such cross-sections can arise generically as leading terms from the most basic nonstandard DM-quark operators. We employ a high-precision solar simulation code to study the impact on solar neutrino rates, the sound speed profile, convective zone depth, surface helium abundance and small frequency separations. We find that the majority of models that improve agreement with the observed sound speed profile and depth of the convection zone also reduce neutrino fluxes beyond the level that can be reasonably accommodated by measurement and theory errors. However, a few specific points in parameter space yield a significant overall improvement. A 3-5 GeV DM particle with $\sigma_{SI} \propto q^2$ is particularly appealing, yielding more than a $6\sigma$ improvement with respect to standard solar models, while being allowed by direct detection and collider limits. We provide full analytical capture expressions for $q$- and $v_{\rm rel}$-dependent scattering, as well as complete likelihood tables for all models.
Scalar fields appear in many theories beyond the Standard Model of particle physics. In the early universe, they are exposed to extreme conditions, including high temperature and rapid cosmic expansion. Understanding their behavior in this environment is crucial to understand the implications for cosmology. We calculate the finite temperature effective action for the field expectation value in two particularly important cases, for damped oscillations near the ground state and for scalar fields with a flat potential. We find that the behavior in both cases can in good approximation be described by a complex valued effective potential that yields Markovian equations of motion. Near the potential minimum, we recover the solution to the well-known Langevin equation. For large field values we find a very different behavior, and our result for the damping coefficient significantly differs from the expressions given in the literature. We illustrate our results in a simple scalar model, for which we give analytic approximations for the effective potential and damping coefficient. We also provide various expressions for loop integrals at finite temperature that are useful for future calculations in other models.
We review recent developments on cosmology in extended teleparallel gravity, called "$F(T)$ gravity" with $T$ the torsion scalar in teleparallelism. We explore various cosmological aspects of $F(T)$ gravity including the evolution of the equation of state for the universe, finite-time future singularities, thermodynamics, and four-dimensional effective $F(T)$ gravity theories coming from the higher-dimensional Kaluza-Klein (KK) and Randall-Sundrum (RS) theories.
A new perspective on quintessence cosmology with an exponential potential $V(\phi)=V_{0}\exp(-\lambda\phi)$ is introduced. Different from the traditional phase space analysis, we analyze the cosmological parameters' space. We make a comparison of these two analyses and demonstrate many advantages of this new perspective. The whole evolution history of the universe is available in the cosmological parameters' space analysis. Associating the observational data, the current state of universe could be pinpointed in phase diagram, which could offer more information. We find that the stable attractor solutions are the final states of cosmic evolution instead of current state, while the intermediate evolutionary state is quite uncertain. We also numerically present valid regions of the initial conditions of the autonomous system. Using the numerical method, we obtain some results in an agreement with the phase space analysis. Moreover, the numerical method is appropriate to any dimension.
Links to: arXiv, form interface, find, astro-ph, recent, 1504, contact, help (Access key information)
Einstein's theory of General Relativity (GR) is tested accurately within the local universe i.e., the Solar System, but this leaves open the possibility that it is not a good description at the largest scales in the Universe. The standard model of cosmology assumes GR as the theory to describe gravity on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. The standard model of cosmology is based on a huge extrapolation of our limited knowledge of gravity. This discovery of the late time acceleration of the Universe may require us to revise the theory of gravity and the standard model of cosmology based on GR. We will review recent progress in constructing modified gravity models as an alternative to dark energy and developing cosmological tests of gravity.
Peculiar velocity measurements are the only tool available in the low-redshift Universe for mapping the large-scale distribution of matter and can thus be used to constrain cosmology. Using redshifts from the 2M++ redshift compilation, we reconstruct the density of galaxies within 200 Mpc/h, allowing for the first time good sampling of important superclusters such as the Shapley Concentration. We compare the predicted peculiar velocities from 2M++ to Tully-Fisher and SNe peculiar velocities. We find a value of $\beta^* \equiv \Omega_{\rm{m}}^{0.55}/b^* = 0.431 \pm 0.021$, suggesting $\Omega_{\rm{m}}^{0.55}\sigma_{\rm{8,lin}} = 0.401 \pm 0.024$, in good agreement with other probes. The predicted peculiar velocity of the Local Group arising from the 2M++ volume alone is $540 \pm 40$ km/s, towards $l = 268 \pm 4, b= 38 \pm 6$, only $10^\circ$ out of alignment with the Cosmic Microwave Background dipole. To account for velocity contributions arising from sources outside the 2M++ volume, we fit simultaneously for $\beta^*$ and an external bulk flow in our analysis. We find that an external bulk flow is preferred at the 5.1$\sigma$ level, and the best fit has a velocity of $159\pm23$ km/s towards $l=304 \pm 11, b = 6 \pm 13$. Finally, the predicted bulk flow of a 50 Mpc/h Gaussian-weighted volume centred on the Local Group is $230 \pm 30$ km/s, in the direction $l=293\pm 8, b = 14 \pm 10$, in agreement with predictions from $\Lambda$CDM.
(Abridged) Neutrino interactions beyond the standard model may affect the cosmological evolution and can be constrained through observations. We consider the possibility that neutrinos possess secret scalar or pseudoscalar interactions mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken global $U(1)$ symmetry, as in, e.g. , Majoron models. In such scenarios, neutrinos still decouple at $T\simeq 1$ MeV, but become tightly coupled again ('recouple') at later stages of the cosmological evolution. We use available observations of CMB anisotropies, including Planck 2013 and the joint BICEP2/Planck 2015 data, to derive constraints on the quantity $\gamma_{\nu \nu}^4$, parameterizing the neutrino collision rate due to (pseudo)scalar interactions. We consider both a minimal extension of the standard $\Lambda$CDM model, and scenarios with extra relativistic species or non-vanishing tensors. We find a typical constraint $\gamma_{\nu \nu}^4 < 0.9\times 10^{-27}$ (95\% C.L.), implying an upper limit on the redshift $z_{rec}$ of neutrino recoupling $< 8500$. In the framework of Majoron models, the upper limit on $\gamma_{\nu \nu}$ roughly translates on a constraint $g < 8.2\times 10^{-7}$ on the Majoron-neutrino coupling constant $g$. In general, the data show a weak ($\sim 1\sigma$) but intriguing preference for non-zero values of $\gamma_{\nu \nu}^4$, with best fits in the range $\gamma_{\nu \nu}^4 = (0.15 - 0.35)\times 10^{-27}$, depending on the particular dataset. This is more evident when either observations from ACT and SPT are included, or the possibility of non-vanishing tensor modes is considered. In particular, for the minimal model $\Lambda$CDM +$\gamma_{\nu \nu}$ and including the Planck 2013, ACT and SPT data, we report $\gamma_{\nu \nu}^4=( 0.45^{+0.15}_{-0.38} )\times10^{-27}$ ($200 < z_{rec} < 5700$) at 68\% confidence level.
In a cyclic entropy model in which the extroverse is jettisoned at turnaround with a Come Back Empty assumption, we address matching of the contraction scale factor $f(t_T)a(t)$ to the expansion scale factor $a(t)$, where $f(t_T)$ is the ratio at turnaround of the introverse to extroverse radii. Such matching is necessary for infinite cyclicity and fixes the CBE period at $\sim 2.6$ Ty. We then compare such a CBE model with alternative cyclic cosmologies including Penrose Conformal Cyclic Cosmology of period $10^{100}$ y, and speculate that the CBE model may be related to the CCC model by a highly nontrivial isomorphism.
We present SymPix, a special-purpose spherical grid optimized for efficient sampling of rotationally invariant linear operators. This grid is conceptually similar to the Gauss-Legendre (GL) grid, aligning sample points with iso-latitude rings located on Legendre polynomial zeros. Unlike the GL grid, however, the number of grid points per ring varies as a function of latitude, avoiding expensive over-sampling near the poles and ensuring nearly equal sky area per grid point. The ratio between the number of grid points in two neighbouring rings is required to be a low-order rational number (3, 2, 1, 4/3, 5/4 or 6/5) to maintain a high degree of symmetries. Our main motivation for this grid is to solve linear systems using multi-grid methods, and to construct efficient preconditioners through pixel-space sampling of the linear operator in question. The GL grid is not suitable for these purposes due to its massive over-sampling near the poles, leading to nearly degenerate linear systems, while HEALPix, another commonly used spherical grid, exhibits few symmetries, and is therefore computationally inefficient for these purposes. As a benchmark and representative example, we compute a preconditioner for a linear system with both HEALPix and SymPix that involves the operator $D + B^T N^{-1} B$, where $B$ and $D$ may be described as both local and rotationally invariant operators, and $N$ is diagonal in pixel domain. For a bandwidth limit of $\ell_\text{max}=3000$, we find that SymPix, due to its higher number of internal symmetries, yields average speed-ups of 360 and 23 for $B^T N^{-1} B$ and $D$, respectively, relative to HEALPix.
In this paper, based on the works of Capozziello et al., we have studied the Noether symmetry approach in the cosmological model with scalar and gauge fields proposed recently by Soda et al. The correct Noether symmetries and related Lie algebra are given according to the minisuperspace quantum cosmological model. The Wheeler-De Witt (WDW) equation is presented after quantization and the classical trajectories are then obtained in the semi-classical limit. The oscillating features of the wave function in the cosmic evolution recover the so-called Hartle criterion, and the selection rule in minisuperspace quantum cosmology is strengthened. Then we have realized now the proposition that Noether symmetries select classical universes.
We have constructed a spherically symmetric structure model in a cosmological background filled with perfect fluid with non-vanishing pressure as an exact solution of Einstein equations using the Lema\^{i}tre solution. To study its local and quasi-local characteristics including the novel features of its central black hole, we have suggested an algorithm to integrate the equations numerically. The result shows intriguing effects of the pressure inside the structure. The evolution of the central black hole within the FRW universe, its decoupling from the expanding parts of the model, the structure of its space-like apparent horizon, the limiting case of the dynamical horizon tending to a slowly evolving horizon, and the decreasing mass in-fall to the black hole is also studied. We have also calculated the redshift of a light emitted from nearby the cosmological structure to an observer in the FRW background and have shown that it contains both the local gravitational and the cosmological redshift with some observational consequences. It has been shown that this type of cosmological black holes have the flexibility to match with the NFW dark matter density profile.
Excess emission over expected diffuse astrophysical backgrounds in the direction of the Galactic center region has been claimed at various wavelengths, from radio to gamma rays. Among particle models advocated to explain such observations, several invoke interactions between dark matter particles and ordinary matter, such as cosmic rays, interstellar gas or free electrons. Depending on the specific interstellar matter particles' species and energy, such models predict distinct morphological features. In this study we make detailed predictions for the morphology of models where the relevant electromagnetic emission is proportional to the product of the dark matter density profile and the density of interstellar matter or cosmic rays. We compare the predicted latitudinal and longitudinal distributions with observations, and provide the associated set of relevant spatial templates.
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
In this paper we propose and extensively study mimetic $f({\cal G})$ modified
gravity models, with various scenarios of cosmological evolution, with or
without extra matter fluids. The easiest formulation is based on the use of
Lagrange multiplier constraint.
In certain versions of this theory, it is possible to realize accelerated
expansion of the Universe or even unified evolution which includes inflation
with dark energy, and at the same time in the same theoretical framework, dark
matter is described by the theory. This is achieved by the re-parametrization
of the metric tensor, which introduces a new degree of freedom in the
cosmological equations and leads to appearance of the mimetic "dark matter"
component. In the context of mimetic $f({\cal G})$ theory, we also provide some
quite general reconstruction schemes, which enable us to find which $f({\cal
G})$ gravity generates a specific cosmological evolution. In addition, we also
provide the general reconstruction technique for Lagrange multiplier $f({\cal
G})$ gravity. All our results are accompanied by illustrative examples, with
special emphasis on bouncing cosmologies.
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10^(-3), due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
We present the first fully calibrated H$_2$, 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-Field Infrared Imager on the CTIO 4-meter Blanco Telescope. Together with a NEWFIRM Br$\gamma$ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H$_2$-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are photodissociation regions viewed edge-on. Based on the morphologies of H$_2$, Br$\gamma$, $^{12}$CO, and 8$\mu$m emission, the H$_2$ to Br$\gamma$ line ratio and Cloudy models, we find that the H$_2$ emission is formed inside the photodissociation regions of 30 Doradus, 2 - 3 pc to the ionization front of the HII region, in a relatively low-density environment $<$ 10$^4$ cm$^{-3}$. Comparisons with Br$\gamma$, 8$\mu$m, and CO emission indicate that H$_2$ emission is due to fluorescence, and provide no evidence for shock excited emission of this line.
We study primordial tensor power-spectra generated during inflation in bimetric gravity. More precisely, we examine a homogeneous expanding spacetime in a minimal bimetric model with an inflaton and calculate tensor perturbations on the homogeneous background under slow-roll approximation. In terms of the mass eigenstates, only the power-spectrum of the massless state remains constant and both the power-spectrum of the massive state and the cross power-spectrum rapidly decay during inflation. The amplitude of the physical power-spectrum is suppressed due to the flavor mixing. All power-spectra in the flavor eigenstates coincide with each other up to the first order of the slow-roll parameter.
We report the identification of elongated (triaxial or prolate) galaxies in cosmological simulations at $z\simeq2$. These are preferentially low-mass galaxies ($M_s \le 10^{9.5} \ M_\odot$), residing in dark-matter (DM) haloes with strongly elongated inner parts, a common feature of high-redshift DM haloes in the $\Lambda$CDM cosmology. Feedback slows formation of stars at the centres of these halos, so that a dominant and prolate DM distribution gives rise to galaxies elongated along the DM major axis. As galaxies grow in stellar mass, stars dominate the total mass within the galaxy half-mass radius, making stars and DM rounder and more oblate. A large population of elongated galaxies produces a very asymmetric distribution of projected axis ratios, as observed in high-z galaxy surveys. This indicates that the majority of the galaxies at high redshifts are not discs or spheroids but rather galaxies with elongated morphologies.
Links to: arXiv, form interface, find, astro-ph, recent, 1504, contact, help (Access key information)
Recent $N$-body simulations have shown that Einasto radial profiles provide the most accurate description of dark matter halos. Predictions based on the traditional NFW functional form may fail to describe the structural properties of cosmic objects at the percent level required by precision cosmology. We computed the systematic errors expected for weak lensing analyses of clusters of galaxies if one wrongly models the lens properties. Even though the NFW fits of observed tangential shear profiles can be excellent, viral masses and concentrations of very massive halos ($>\sim10^{15}M_\odot/h$) can be over- and underestimated by $\sim 10$ per cent, respectively. Misfitting effects also steepen the observed mass-concentration relation, in a way similar to that seen in multiwavelength observations of galaxy groups and clusters. Einasto lenses can be distinguished from NFW halos either with deep observations of very massive structures ($>\sim10^{15}M_\odot/h$) or by stacking the shear profiles of thousands of group-sized lenses ($\sim 10^{14}M_\odot/h$).
While observations of large-scale structure and the cosmic microwave background (CMB) provide strong constraints on the amplitude of the primordial power spectrum (PPS) on scales larger than 10 Mpc, the amplitude of the power spectrum on sub-galactic length scales is much more poorly constrained. We study early structure formation in a cosmological model with a blue-tilted PPS. We assume that the standard scale-invariant PPS is modified at small length scales as $P(k) \sim k^{m_{\rm s}}$ with $m_{\rm s} > 1$. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with $m_{\rm s} > 1$, star-forming gas clouds are formed at $z > 100$, when formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while keeping a high temperature. The protostars formed in such "hot" clouds grow very rapidly by accretion to become extremely massive stars that may leave massive black holes with a few hundred solar-masses at $z > 100$. The shape of the PPS critically affects the properties and the formation epoch of the first generation of stars. Future experiments of the CMB polarization and the spectrum distortion may provide important information on the nature of the first stars and their formation epoch, and hence on the shape of the small-scale power spectrum.
We investigate the effect of equilateral-type primordial trispectrum on the halo/galaxy bispectrum. We consider three types of equilateral primordial trispectra which are generated by quartic operators naturally appeared in the effective field theory of inflation and can be characterized by three non-linearity parameters, $g_{\rm NL} ^{\dot{\sigma}^4}$, $g_{\rm NL} ^{\dot{\sigma}^2 (\partial \sigma)^2}$, and $g_{\rm NL} ^{(\partial \sigma)^4}$. Recently, constraints on these parameters have been investigated from CMB observations by using WMAP9 data. In order to consider the halo/galaxy bispectrum with the equilateral-type primordial trispectra, we adopt the integrated Perturbation Theory (iPT) in which the effects of primordial non-Gaussianity are wholly encapsulated in the linear primordial polyspectrum for the evaluation of the biased polyspectrum. We show the shapes of the halo/galaxy bispectrum with the equilateral-type primordial trispectra, and find that the primordial trispectrum characterized by $g_{\rm NL} ^{\dot{\sigma}^4}$ provides the same scale-dependence as the gravity-induced halo/galaxy bispectrum. Hence, it would be difficult to obtain the constraint on $g_{\rm NL} ^{\dot{\sigma}^4}$ from the observations of the halo/galaxy bispectrum. On the other hand, the primordial trispectra characterized by $g_{\rm NL} ^{\dot{\sigma}^2 (\partial \sigma)^2}$ and $g_{\rm NL} ^{(\partial \sigma)^4}$ provide the common scale-dependence which is different from that of the gravity-induced halo/galaxy bispectrum on large scales. Hence future observations of halo/galaxy bispectrum would give constraints on the non-linearity parameters, $g_{\rm NL} ^{\dot{\sigma}^2 (\partial \sigma)^2}$ and $g_{\rm NL} ^{(\partial \sigma)^4}$ independently from CMB observations and it is expected that these constraints can be comparable to ones obtained by CMB.
The existence of the cosmic neutrino background (CnuB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CnuB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CnuB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHEC\nus) at the Z-resonance, and the atomic de-excitation method are also discussed in this review.
We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M_r < -19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 +/- 0.003) is higher than that in all relaxed clusters (0.097 +/- 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.
Recently it has been shown that a large fraction of the dwarf satellite galaxies orbiting the Andromeda galaxy are surprisingly aligned in a thin, extended and kinematically coherent planar structure. The presence of such a structure seems to challenge the current Cold Dark Matter paradigm of structure formation, which predicts a more uniform distribution of satellites around central objects. We show that it is possible to obtain a thin, extended, rotating plane of satellites resembling the one in Andromeda in cosmological collisionless simulations based on the Cold Dark Matter model. Our new high resolution simulations show a correlation between the formation time of the dark matter halo and the thickness of the plane of satellites. Our simulations have a high incidence of satellite planes as thin, extended, and as rich as the one in Andromeda and with a very coherent kinematic structure when we select high concentration/early forming halos. By tracking the formation of the satellites in the plane we show that they have been mainly accreted onto the main object along thin dark matter filaments at high redshift. Our results show that the presence of a thin, extended, rotating plane of satellites is not a challenge for the Cold Dark Matter paradigm, but actually supports one of the predictions of this paradigm related to the presence of filaments of dark matter around galaxies at high redshift.
We use hydrodynamic simulations to study the interaction of realistic active galactic nucleus (AGN) feedback mechanisms (accretion-disk winds & Compton heating) with a multi-phase interstellar medium (ISM). Our ISM model includes radiative cooling and explicit stellar feedback from multiple processes. We simulate radii ~0.1-100 pc around an isolated (non-merging) black hole. These are the scales where the accretion rate onto the black hole is determined and where AGN-powered winds and radiation couple to the ISM. Our primary results include: (1) The black hole accretion rate on these scales is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates of ~0.03-1 Msun/yr, sufficient to power a luminous AGN. (2) The gas disk in the galactic nucleus undergoes an initial burst of star formation followed by several Myrs where stellar feedback suppresses the star formation rate per dynamical time. (3) AGN winds injected at small radii with momentum fluxes ~L/c couple efficiently to the ISM and have a dramatic effect on the ISM properties in the central ~100 pc. AGN winds suppress the nuclear star formation rate by a factor of ~10-30 and the black hole accretion rate by a factor of ~3-30. They increase the total outflow rate from the galactic nucleus by a factor of ~10. The latter is broadly consistent with observational evidence for galaxy-scale atomic and molecular outflows driven by AGN rather than star formation. (4) In simulations that include AGN feedback, the predicted column density distribution towards the black hole is reasonably consistent with observations, whereas absent AGN feedback, the black hole is isotropically obscured and there are not enough optically-thin sight lines to explain observed Type I AGN. A 'torus-like' geometry arises self-consistently because AGN feedback evacuates the gas in the polar regions.
The effect of metallicity on the observed light of Type Ia supernovae (SNe Ia) could lead to systematic errors as the absolute magnitudes of local and distant SNe Ia are compared to measure luminosity distances and determine cosmological parameters. The UV light may be especially sensitive to metallicity, though different modeling methods disagree as to the magnitude, wavelength dependence, and even the sign of the effect. The outer density structure, ^56 Ni, and to a lesser degree asphericity, also impact the UV. We compute synthetic photometry of various metallicity-dependent models and compare to UV/optical photometry from the Swift Ultra-Violet/Optical Telescope. We find that the scatter in the mid-UV to near-UV colors is larger than predicted by changes in metallicity alone and is not consistent with reddening. We demonstrate that a recently employed method to determine relative abundances using UV spectra can be done using UVOT photometry, but we warn that accurate results require an accurate model of the cause of the variations. The abundance of UV photometry now available should provide constraints on models that typically rely on UV spectroscopy for constraining metallicity, density, and other parameters. Nevertheless, UV spectroscopy for a variety of SN explosions is still needed to guide the creation of accurate models. A better understanding of the influences affecting the UV is important for using SNe Ia as cosmological probes, as the UV light may test whether SNe Ia are significantly affected by evolutionary effects.
The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the poor spatial resolution of Herschel. We present 870um 0.45" imaging obtained in Cycle 0 with the Atacama Large Millimeter/submillimeter Array (ALMA) of a sample of 29 HerMES DSFGs. The ALMA imaging reveals that these DSFGs comprise a total of 62 sources (down to the 5-sigma limit in our ALMA sample; sigma~0.2 mJy). Optical imaging indicates that 36 of the ALMA sources experience a significant flux boost from gravitational lensing (mu>1.1), but only 6 are strongly lensed and show multiple images. We introduce and make use of uvmcmcfit, a general purpose and publicly available Markov chain Monte Carlo visibility plane analysis tool to analyze the source properties. Combined with our previous work on brighter Herschel sources, the lens models presented here tentatively favor intrinsic number counts for DSFGs with a break near 8 mJy at 880um and a steep fall off at higher flux densities. Nearly 70% of the Herschel sources break down into multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sources discovered in single-dish sub-mm or FIR surveys. The ALMA counterparts to our Herschel targets are located significantly closer to each other than ALMA counterparts to sources found in the LABOCA ECDFS Submillimeter Survey. Theoretical models underpredict the excess number of sources with small separations seen in our ALMA sample. The high multiplicity rate and low projected separations between sources seen in our sample argue in favor of interactions and mergers plausibly driving both the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880 = 8 mJy.
The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.
Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the astrophysics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of intrinsic alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments took on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes intrinsic alignments an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments.
We present a unifying treatment of dark energy and modified gravity that allows distinct conformal-disformal couplings of matter species to the gravitational sector. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities. We compute the equations of motion for background quantities and linear perturbations. We illustrate our formalism with two simple scenarios, where either cold dark matter or a relativistic fluid is nonminimally coupled. This extends previous studies of coupled dark energy to a much broader spectrum of gravitational theories.
The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in large-scale structure tend to align the shapes and angular momenta of nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both $N$-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.
The AMS-02 collaboration has recently reported the antiproton to proton ratio with improved accuracy. In view of uncertainties of the production and the propagation of the cosmic rays, the observed ratio is still consistent with the secondary astrophysical antiproton to proton ratio. However, it is nonetheless enticing to examine whether the observed spectrum can be explained by a strongly motivated dark matter, the wino dark matter. As we will show, we find that the antiproton flux from the wino annihilation can explain the observed spectrum well for its mass range 2.5-3 TeV. The fit to data becomes particularly well compared to the case without the annihilation for the thermal wino dark matter case with a mass about 3 TeV. The ratio is predicted to be quickly decreased at the energy several hundreds of GeV, if this possibility is true, and it will be confirmed or ruled out in near future when the AMS-02 experiment accumulates enough data at this higher energy region.
Cosmological alpha-attractors give a natural explanation for the spectral index n_s of inflation as measured by Planck while predicting a range for the tensor-to-scalar ratio r, consistent with all observations, to be measured more precisely in future detection of gravity waves. Their embedding into supergravity exploits the hyperbolic geometry of the Poincare disk or half-plane. These geometries are isometric under Mobius transformations, which include the shift symmetry of the inflaton field. We introduce a new Kahler potential frame that explicitly preserves this symmetry, enabling the inflaton to be light. Moreover, we include higher-order curvature deformations, which can stabilize a direction orthogonal to the inflationary trajectory. We illustrate this new framework by stabilizing the single superfield alpha-attractors.
The measurement of frequency shifts for light beams exchanged between two test masses nearly in free fall is at the heart of gravitational wave detection. It is envisaged that the derivative of the frequency shift is in fact limited by differential forces acting on those test masses. We calculate the derivative of the frequency shift with a fully covariant, gauge-independent and coordinate-free method. This method is general and does not require a congruence of nearby beams' null geodesics as done in previous work. We show that the derivative of the parallel transport is the only means by which gravitational effects shows up in the frequency shift. This contribution is given as an integral of the Riemann tensor --the only physical observable of curvature-- along the beam's geodesic. The remaining contributions are: the difference of velocities, the difference of non-gravitational forces, and finally fictitious forces, either locally at the test masses or non-locally integrated along the beam's geodesic. As an application relevant to gravitational wave detection, we work out the frequency shift in the local Lorentz frame of nearby geodesics.
Links to: arXiv, form interface, find, astro-ph, recent, 1504, contact, help (Access key information)
Correlations between the star formation rates (SFRs) of nearby galaxies (so-called galactic conformity) have been observed for projected separations up to 4 Mpc, an effect not predicted by current semi-analytic models. We investigate correlations between the mass accretion rates (dMvir/dt) of nearby halos as a potential physical origin for this effect. We find that pairs of host halos "know about" each others' assembly histories even when their present-day separation is greater than thirty times the virial radius of either halo. These distances are far too large for direct interaction between the halos to explain the correlation in their dMvir/dt. Instead, halo pairs at these distances reside in the same large-scale tidal environment, which regulates dMvir/dt for both halos. Larger halos are less affected by external forces, which naturally gives rise to a mass dependence of the halo conformity signal. SDSS measurements of galactic conformity exhibit a qualitatively similar dependence on stellar mass, including how the signal varies with distance. Based on the expectation that halo accretion and galaxy SFR are correlated, we predict the scale-, mass- and redshift-dependence of large-scale galactic conformity, finding that the signal should drop to undetectable levels by z > 1. These predictions are testable with current surveys to z ~ 1; confirmation would establish a strong correlation between dark matter halo accretion rate and central galaxy SFR.
We report the discovery of 28 promising and a total of 58 new lens candidates from the CFHT Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first Space Warps lens search. The goal of the blind lens search was to identify lenses missed by lens finding robots (the RingFinder on galaxy scales and ArcFinder on group/cluster scales), which have been previously used to mine the CFHTLS for lenses. We compare some properties of lens samples detected by these algorithms to the SpaceWarps sample and found that they are broadly similar. The image separation distribution calculated from the SpaceWarps discovered sample shows that our previous constraints on the average density profile of the lens population are robust. Space Warps recovers about 60% of the known sample and the new candidates show a richer variety compared to the lenses found by the two robots. We find that analyzing only those classifications which are performed by the high power volunteers, Space Warps can achieve a detection rate of up to 75% for the known lens sample. Training and calibration of the performance of citizen scientists is crucial for the success of Space Warps. We also present the SIMCT pipeline, used for generating a sample of realistic simulated lensed images in the CFHTLS, and a sample of duds and false positives used in the training. Such a training sample has a legacy value for testing future lens finding algorithms. We make our training sample publicly available.
The boundaries of cold dark matter halos are commonly defined to enclose a density contrast $\Delta$ relative to a reference (mean or critical) density. We argue that a more physical boundary of halos is the radius at which accreted matter reaches its first orbital apocenter after turnaround. This splashback radius, $R_{sp}$, manifests itself as a sharp density drop in the halo outskirts, at a location that depends upon the mass accretion rate. We present calibrations of $R_{sp}$ and the enclosed mass, $M_{sp}$, as a function of the accretion rate and alternatively peak height. We find that $R_{sp}$ varies between $\approx0.8-1R_{200m}$ for rapidly accreting halos and $\approx1.5R_{200m}$ for slowly accreting halos. The extent of a halo and its associated environmental effects can thus extend well beyond the conventionally defined "virial" radius. We show that $M_{sp}$ and $R_{sp}$ evolve relatively strongly compared to other commonly used definitions. In particular, $M_{sp}$ evolves significantly even for the smallest dwarf-sized halos at $z=0$. We also contrast $M_{sp}$ with the mass enclosed within four scale radii of the halo density profile, $M_{<4rs}$, which characterizes the inner halo. During the early stages of halo assembly, $M_{sp}$ and $M_{<4rs}$ evolve similarly, but in the late stages $M_{<4rs}$ stops increasing while $M_{sp}$ continues to grow significantly. This illustrates that halos at low $z$ can have "quiet" interiors while continuing to accrete mass in their outskirts. We discuss potential observational estimates of the splashback radius and show that it may already have been detected in galaxy clusters.
We cross-correlate cosmic microwave background (CMB) lensing and galaxy weak lensing maps using the Planck 2013 and 2015 data and the 154 deg^2 Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). This measurement probes large-scale structure at intermediate redshifts ~0.9, between the high- and low-redshift peaks of the CMB and CFHTLenS lensing kernels, respectively. Using the noise properties of these data sets and standard Planck 2015 LCDM cosmological parameters, we forecast a signal-to-noise ratio ~4.6 for the cross-correlation. We find that the noise level of our actual measurement agrees well with this estimate, but the amplitude of the signal lies well below the theoretical prediction. The best-fit amplitudes of our measured cross-correlations are $A_{2013}=0.48\pm0.26$ and $A_{2015}=0.44\pm0.22$ using the 2013 and 2015 Planck CMB lensing maps, respectively, where $A=1$ corresponds to the fiducial Planck 2015 LCDM prediction. Due to the low measured amplitude, the detection significance is moderate (~2$\sigma$) and the data are in tension with the theoretical prediction (~2-$2.5\sigma$). The tension is reduced somewhat when compared to predictions using WMAP9 parameters, for which we find $A_{2013}=0.56\pm0.30$ and $A_{2015}=0.52\pm0.26$. We consider various systematic effects, finding that photometric redshift uncertainties, contamination by intrinsic alignments, and effects due to the masking of galaxy clusters in the Planck 2015 CMB lensing reconstruction are able to help resolve the tension at a significant level (~10% each). An overall multiplicative bias in the CFHTLenS shear data could also play a role, which can be tested with existing data. We close with forecasts for measurements of this cross-correlation using ongoing and future weak lensing surveys, which will definitively test the significance of the tension in our results with respect to LCDM.
Details of various unknown physical processes during the cosmic dawn and the epoch of reionization can be extracted from observations of the redshifted 21-cm signal. These observations, however, will be affected by the evolution of the signal along the line-of-sight which is known as the "light-cone effect". We model this effect by post-processing a dark matter $N-$body simulation with a 1-D radiative transfer code. We find that the effect is much stronger and dramatic in presence of inhomogeneous heating and Ly$\alpha$ coupling compared to the case where these processes are not accounted for. One finds increase (decrease) in the coeval spherically averaged power spectrum up to a factor of 3 (0.6) at large scales ($k \sim 0.05\, \rm Mpc^{-1}$), though these numbers are highly dependent on the source model. Consequently, the peak and trough-like features seen in the evolution of the large-scale power spectrum can be smoothed out to a large extent if the width of the frequency bands used in the experiment is large. We argue that it is important to account for the light-cone effect for any 21-cm signal prediction during cosmic dawn.
Weak gravitational lensing enables us to search clusters without the conventional assumption on the relation between visible and dark matter. We explore a variety of statistics of clusters selected with cosmic shear measurement by utilizing both analytic models and large numerical simulations. We first develop a halo model to predict the abundance and the clustering of weak lensing selected clusters. Observational effects such as galaxy shape noise are included in our model. We then generate realistic mock weak lensing catalogs to test the accuracy of our analytic model. To this end, we perform full-sky ray-tracing simulations that allow us to have multiple realizations of a large continuous area. We model the masked regions on the sky using the actual positions of bright stars, and generate 200 mock weak lensing catalogs with sky coverage of $\sim$1000 squared degrees. We utilize the large set of mock catalogs to evaluate the covariance matrices between the local and non-local statistics. We show that our theoretical model agrees well with the ensemble average of statistics and their covariances calculated directly from the mock catalogues. With a typical selection threshold, ignoring shape noise correction causes overestimation of the clustering of weak lensing selected clusters with a level of about $10\%$, and shape noise correction boosts the cluster abundance by a factor of a few. We calculate the cross-covariances using the halo model with accounting for the effective reduction of the survey area due to masks. The covariance of the cosmic shear auto power spectrum is affected by the mode-coupling effect that originates from sky masking. Our model and the results can be readily used for cosmological analysis with ongoing and future weak lensing surveys.
We report spatial fluctuation analysis of the sky brightness in near-infrared from observations toward the north ecliptic pole (NEP) by the AKARI at 2.4 and 3.2 micron. As a follow up study of our previous work on the Monitor field of AKARI, we used NEP deep survey data, which covered a circular area of about 0.4 square degrees, in order to extend fluctuation analysis at angular scales up to 1000". We found residual fluctuation over the estimated shot noise at larger angles than the angular scale of the Monitor field. The excess fluctuation of the NEP deep field smoothly connects with that of the Monitor field at angular scales with a few hundreds arcseconds and extends without any significant variation to larger angular scales up to 1000". By comparing excess fluctuations at two wavelengths, we confirm a blue spectrum feature similar to the result of the Monitor field. We find that the result of this study is consistent with Spitzer Space Telescope observations at 3.6 micron. The origin of the excess fluctuation in the near-infrared background remains to be answered, but we could exclude zodiacal light, diffuse Galactic light, and unresolved faint galaxies at low-redshift based on the comparison with mid- and far-infrared brightness, ground based near-infrared images.
We consider a higher order term in the $\delta N$ expansion for the CMB power asymmetry generated by a superhorizon isocurvature field fluctuation. The term can generate the asymmetry without requiring a large value of $f_{NL}$. Instead it produces a non-zero value of $g_{NL}$. A combination of constraints lead to an allowed region in $f_{NL}-g_{NL}$ space. To produce the asymmetry with this term without a large value of $f_{NL}$ we find that the isocurvature field needs to contribute less than the inflaton towards the power spectrum of the curvature perturbation.
Scale-dependent halo bias due to local primordial non-Gaussianity provides a strong test of single-field inflation. While it is universally understood that single-field inflation predicts negligible scale-dependent bias compared to current observational uncertainties, there is still disagreement on the exact level of scale-dependent bias at a level that could strongly impact inferences made from future surveys. In this paper, we clarify this confusion and derive in various ways that there is exactly zero scale-dependent bias in single-field inflation. Much of the current confusion follows from the fact that single-field inflation does predict a mode coupling of matter perturbations at the level of $f_{NL}^{loc} \approx -5/3$, which naively would lead to scale-dependent bias. However, we show explicitly that this mode coupling cancels out when perturbations are evaluated at a fixed physical scale rather than fixed coordinate scale. Furthermore, we show how the absence of scale-dependent bias can be derived easily in any gauge. This result can then be incorporated into a complete description of the observed galaxy clustering, including the previously studied general relativistic terms, which are important at the same level as scale-dependent bias of order $f_{NL}^{loc} \sim 1$. This description will allow us to draw unbiased conclusions about inflation from future galaxy clustering data.
The theory of cosmological fluctuations assumes that the pre-inflationary state of the universe was the quantum vacuum of a scalar field(s) coupled to gravity. The observed cosmic microwave background fluctuations are then interpreted as quantum fluctuations. Here we consider alternate interpretations of the classic calculations of scalar and tensor power spectra by replacing the quantum vacuum with a classical statistical distribution, and suggest a way of distinguishing the quantum from the classical alternatives. The possibility that the latter is governed by a fundamental length scale as in string theory is also explored.
We present basic properties of $\sim$3,300 emission line galaxies detected by the FastSound survey, which are mostly H$\alpha$ emitters at $z \sim$ 1.2-1.5 in the total area of about 20 deg$^2$, with the H$\alpha$ flux sensitivity limit of $\sim 1.6 \times 10^{-16} \rm erg \ cm^{-2} s^{-1}$ at 4.5 sigma. This paper presents the catalogs of the FastSound emission lines and galaxies, which will be open to the public in the near future. We also present basic properties of typical FastSound H$\alpha$ emitters, which have H$\alpha$ luminosities of $10^{41.8}$-$10^{43.3}$ erg/s, SFRs of 20--500 $M_\odot$/yr, and stellar masses of $10^{10.0}$--$10^{11.3}$ $M_\odot$. The 3D distribution maps for the four fields of CFHTLS W1--4 are presented, clearly showing large scale clustering of galaxies at the scale of $\sim$ 100--600 comoving Mpc. Based on 1,105 galaxies with detections of multiple emission lines, we estimate that contamination of non-H$\alpha$ lines is about 4% in the single-line emission galaxies, which are mostly [OIII]$\lambda$5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which H$\alpha$, [NII]$\lambda \lambda$6548,6583, [SII]$\lambda \lambda$6717, 6731, and [OI]$\lambda \lambda$6300,6364 are seen.
We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15<z<0.30, combining wide-field Spitzer 24um and GALEX NUV imaging with highly-complete spectroscopy of cluster members. The fraction (f_SF) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r200, but remains well below field values even at 3r200. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r200 of the cluster, but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f_SF-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ~15x from the core to 2r200. This requires star-formation to survive within recently accreted spirals for 2--3Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44-sigma_v at 0.3r500, and is 10--35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r500. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ~0.5--2Gyr beyond passing within r200. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which SFRs decline exponentially on quenching time-scales of 1.73\pm0.25 Gyr upon accretion into the cluster.
It has been pointed out that the null energy condition can be violated stably in some non-canonical scalar-field theories. This allows us to consider the Galilean Genesis scenario in which the universe starts expanding from Minkowski spacetime and hence is free from the initial singularity. We use this scenario to study the early-time completion of inflation, pushing forward the recent idea of Pirtskhalava et al. We present a generic form of the Lagrangian governing the background and perturbation dynamics in the Genesis phase, the subsequent inflationary phase, and the graceful exit from inflation, as opposed to employing the effective field theory approach. Our Lagrangian belongs to a more general class of scalar-tensor theories than the Horndeski theory and Gleyzes-Langlois-Piazza-Vernizzi generalization, but still has the same number of the propagating degrees of freedom, and thus can avoid Ostrogradski instabilities. We investigate the generation and evolution of primordial perturbations in this scenario and show that one can indeed construct a stable model of inflation preceded by (generalized) Galilean Genesis.
We argue a scenario motivated by the context of string landscape, where our universe is produced by a new vacuum bubble embedded in an old bubble and these bubble universes have not only different cosmological constants, but also their own different gravitational constants. We study these effects on the primordial curvature perturbations. In order to construct a model of varying gravitational constants, we use the Jordan-Brans-Dicke (JBD) theory where different expectation values of scalar fields produce difference of constants. In this system, we investigate the nucleation of bubble universe and dynamics of the wall separating two spacetimes. In particular, the primordial curvature perturbation on superhorizon scales can be affected by the wall trajectory as the boundary effect. We show the effect of gravitational constant in the exterior bubble universe can provide a peak like a bump feature at a large scale in a modulation of power spectrum.
The present Editorial introduces the Special Issue dedicated by the journal Universe to the General Theory of Relativity, the beautiful theory of gravitation of Einstein, a century after its birth. It reviews some of its key features in a historical perspective, and, in welcoming distinguished researchers from all over the world to contribute it, some of the main topics at the forefront of the current research are outlined.
Although f(R) modifications of late time cosmology is successful in explaining present cosmic acceleration, it is very difficult to simultaneously satisfy the fifth-force constraint. Even when the fifth-force constraint is satisfied, the effective scalar degree of freedom may move to a point (close to its minima) in the field space where the Ricci scalar diverges. We elucidate this point further with a specific example of f(R) gravity that incorporates several viable f(R) gravity models in the literature. In particular, we show that the nonlinear evolution of the scalar field in pressureless contracting dust can easily lead to the curvature singularity, making this theory unviable.
We derive the second order correction to the scalar and tensor spectral tilts for the inflationary models with non-minimally derivative coupling. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations.
CDMS II data from the 5-tower runs at the Soudan Underground Laboratory were reprocessed with an improved charge-pulse fitting algorithm. Two new analysis techniques to reject surface-event backgrounds were applied to the 612 kg days germanium-detector WIMP-search exposure. An extended analysis was also completed by decreasing the 10 keV analysis threshold to $\sim$5 keV, to increase sensitivity near a WIMP mass of 8 GeV/$c^2$. After unblinding, there were zero candidate events above a deposited energy of 10 keV and 6 events in the lower-threshold analysis. This yielded minimum WIMP-nucleon spin-independent scattering cross-section limits of $1.8 \times 10^{-44}$ and $1.18 \times 10 ^{-41}$ cm$^2$ at 90\% confidence for 60 and 8.6 GeV/$c^2$ WIMPs, respectively. This improves the previous CDMS II result by a factor of 2.4 (2.7) for 60 (8.6) GeV/$c^2$ WIMPs.
Recently the AMS-02 experiment reported an excess of cosmic ray antiprotons over the expected astrophysical background. We interpret the excess as a signal from annihilating or decaying dark matter and find that the observed spectrum is well fitted by adding contributions from the annihilation or decay of dark matter with mass of O(TeV) or larger. Interestingly, Wino dark matter with mass of around 3 TeV, whose thermal relic abundance is consistent with present dark matter abundance, can explain the antiproton excess. We also discuss the implications for the decaying gravitino dark matter with R-parity violation.
Links to: arXiv, form interface, find, astro-ph, recent, 1504, contact, help (Access key information)
The massive cluster MACSJ1149.5+2223 (z=0.544) displays five very large lensed images of a well resolved spiral galaxy at z_spect=1.491. It is within one of these images that the first example of a multiply-lensed supernova has been detected recently in deep Hubble Frontier Field imaging. The depth of this data also reveals many HII regions within the lensed spiral galaxy which we identify between the five counter-images. Here we expand the capability of our free-form method to incorporate these HII regions locally, with other reliable lensed galaxies added for a global solution. This improved accuracy allows us to estimate when the Refsdal supernova will appear within the other lensed images of the spiral galaxy to an accuracy of about 7%. We predict the reappearance of this supernova in one of the counter-images (RA=11:49:36.025, DEC=+22:23:48.11, J2000) on November first 2015 (plus minus 25 days), offering a unique opportunity to study the early phases of this supernova and to examine the consistency of the mass model and the cosmological model that have an impact on the time delay prediction.
We obtain solutions to the coupled Schr\"odinger-Poisson equations. The solutions describe the evolution of cold dark matter density perturbations in an otherwise homogeneous expanding Friedmann universe. We discuss the relationships between descriptions of cold dark matter in terms of a pressureless fluid, in terms of a wavefunction, of a classical scalar field, and a quantum scalar field. We identify the regimes where the various descriptions coincide and where they differ.
Attention has focussed recently on models of inflation that involve a second or more fields with a mass near the inflationary Hubble parameter $H$, as may occur in supersymmetric theories if the supersymmetry-breaking scale is not far from $H$. Quasi-single-field (QSF) inflation is a relatively simple family of phenomenological models that serve as a proxy for theories with additional fields with masses $m\sim H$. Here we consider the tensor-scalar-scalar (tss) three-point function that arises in QSF inflation. Since QSF involves fields in addition to the inflaton, the consistency conditions between correlations that arise in single-clock inflation are not necessarily satisfied. As a result, the tensor-scalar-scalar correlation may be larger than in single-field inflation. This tss correlation gives rise to local departures from statistical isotropy, or in other words, a nontrivial four-point function. The presence of the tensor mode may moreover be inferred geometrically from the shape dependence of the four-point function. We estimate the size of a galaxy survey required to detect this tss correlation in QSF inflation as a function of $H$. Our study of primordial correlators which include gravitons in seeking imprints of additional fields with masses $m\sim H$ during inflation can be seen as complementary to the recent "cosmological collider physics" proposal.
We apply the statefinder hierarchy plus the fractional growth parameter to explore the extended Ricci dark energy (ERDE) model, in which there are two independent coefficients $\alpha$ and $\beta$. By adjusting them, we plot evolution trajectories of some typical parameters, including Hubble expansion rate $E$, deceleration parameter $q$, the third and fourth order hierarchy $S_3^{(1)}$ and $S_4^{(1)}$ and fractional growth parameter $\epsilon$, respectively, as well as several combinations of them. For the case of variable $\alpha$ and constant $\beta$, in the low-redshift region the evolution trajectories of $E$ are in high degeneracy and that of $q$ separate somewhat. However, the $\Lambda$CDM model is confounded with ERDE in both of these two cases. $S_3^{(1)}$ and $S_4^{(1)}$, especially the former, perform much better. They can differentiate well only varieties of cases within ERDE except $\Lambda$CDM in the low-redshift region. For high-redshift region, combinations $\{S_n^{(1)},\epsilon\}$ can break the degeneracy. Both of $\{S_3^{(1)},\epsilon\}$ and $\{S_4^{(1)},\epsilon\}$ have the ability to discriminate ERDE with $\alpha=1$ from $\Lambda$CDM, of which the degeneracy cannot be broken by all the before-mentioned parameters. For the case of variable $\beta$ and constant $\alpha$, $S_3^{(1)}(z)$ and $S_4^{(1)}(z)$ can only discriminate ERDE from $\Lambda$CDM. Nothing but pairs $\{S_3^{(1)},\epsilon\}$ and $\{S_4^{(1)},\epsilon\}$ can discriminate not only within ERDE but also ERDE from $\Lambda$CDM. Finally we find that $S_3^{(1)}$ is surprisingly a better choice to discriminate within ERDE itself, and ERDE from $\Lambda$CDM as well, rather than $S_4^{(1)}$.
The geometry of the cosmic web drives in part the spin acquisition of galaxies. This can be explained in a Lagrangian framework, by identifying the specific long-wavelength correlations within the primordial Gaussian random field which are relevant to spin acquisition. Tidal Torque Theory is revisited in the context of such anisotropic environments, biased by the presence of a filament within a wall. The point process of filament-type saddles represents it most efficiently. The constrained misalignment between the tidal and the inertia tensors in the vicinity of filament-type saddles simply explains the distribution of spin directions. This misalignment implies in particular an azimuthal orientation for the spins of more massive galaxies and a spin alignment with the filament for less massive galaxies. This prediction is found to be in qualitative agreement with measurements in Gaussian random fields and N-body simulations. It relates the transition mass to the geometry of the saddle, and accordingly predicts its measured scaling with the mass of non-linearity. Implications for galaxy formation and weak lensing are briefly discussed, as is the dual theory of spin alignments in walls.
We report the presence of high significance diffuse radio emission from the Triangulum Australis cluster using observations made with the KAT-7 telescope and propose that this emission is a giant radio halo. We compare the radio power from this proposed halo with X-ray and SZ measurements and demonstrate that it is consistent with the established scaling relations for cluster haloes. By combining the X-ray and SZ data we calculate the ratio of non-thermal to thermal electron pressure within Triangulum Australis to be $X=0.658\pm0.054$. We use this ratio to constrain the maximum magnetic field strength within the halo region to be $B_{\rm max, halo} = 33.08\,\mu$G and compare this with the minimum field strength from equipartition of $B_{\rm min, halo} = 0.77(1+k)^{2/7}\,\mu$G to place limits on the range of allowed magnetic field strength within this cluster. We compare these values to those for more well-studied systems and discuss these results in the context of equipartition of non-thermal energy densities within clusters of galaxies.
Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogues. Here we present cosmoabc, a Python ABC sampler featuring a Population Monte Carlo (PMC) variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code is very flexible and can be easily coupled to an external simulator, while allowing to incorporate arbitrary distance and prior functions. As an example of practical application, we coupled cosmoabc with the numcosmo library and demonstrate how it can be used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function. cosmoabc is published under the GPLv3 license on PyPI and GitHub and documentation is available at this http URL
Binary Systems are the most studied sources of gravitational waves. The mechanisms of emission and the behavior of the orbital parameters are well known and can be written in analytic form in several cases. Besides, the strongest indication of the existence of gravitational waves has arisen from the observation of binary systems. On the other hand, when the detection of gravitational radiation becomes a reality, one of the observed pattern of the signals will be probably of stochastic background nature, which are characterized by a superposition of signals emitted by many sources around the universe. Our aim here is to develop an alternative method of calculating such backgrounds emitted by cosmological compact binary systems during their periodic or quasiperiodic phases. We use an analogy with a problem of Statistical Mechanics in order to perform this sum as well as taking into account the temporal variation of the orbital parameters of the systems. Such a kind of background is of particular importance since it could well form an important foreground for the planned gravitational wave interferometers DECI-Hertz Interferometer Gravitational wave Observatory (DECIGO), Big Bang Observer (BBO), Laser Interferometer Space Antenna (LISA) or Evolved LISA (eLISA), Advanced Laser Interferometer Gravitational-Wave Observatory (ALIGO) and Einstein Telescope (ET).
We present a detailed analysis of the local evolution of 206 Lagrangian
Volumes (LVs) selected at high redshift around galaxy seeds, identified in a
large-volume $\Lambda$CDM hydrodynamical simulation. The LVs have a mass range
of $1 - 1500 \times 10^{10} M_\odot$. We follow the dynamical evolution of the
density field inside these initially spherical LVs from $z=10$ up to $z_{\rm
low}= 0.05$, witnessing highly non-linear, anisotropic mass rearrangements
within them, leading to the emergence of the local cosmic web (CW). These mass
arrangements have been analysed in terms of the reduced inertia tensor
$I_{ij}^r$, focusing on the evolution of the principal axes of inertia and
their corresponding eigen directions, and paying particular attention to the
times when the evolution of these two structural elements declines. In
addition, mass and component effects along this process have also been
investigated.
We have found that deformations are led by DM dynamics and they transform
most of the initially spherical LVs into prolate shapes, i.e. filamentary
structures. An analysis of the individual freezing-out time distributions for
shapes and eigen directions shows that first most of the LVs fix their three
axes of symmetry (like a skeleton), while accretion flows towards them still
continue. Very remarkably, we have found that more massive LVs fix their
skeleton earlier on than less massive ones. We briefly discuss the
astrophysical implications our findings could have, including the galaxy
mass-morphology relation and the effects on the galaxy-galaxy merger parameter
space, among others.
It is shown that holographic cosmology implies an evolving Hubble radius $c^{-1}\dot{R}_H = -1 + 3\Omega_m$ in the presence of a dimensionless matter density $\Omega_m$ scaled to the closure density $3H^2/8\pi G$, where $c$ denotes the velocity of light and $H$ and $G$ denote the Hubble parameter and Newton's constant. It reveals a dynamical dark energy and a sixfold increase in gravitational attraction to matter on the scale of the Hubble acceleration. It reproduces the transition redshift $z_t\simeq 0.4$ to the present epoch of accelerated expansion and is consistent with $(q_0,(dq/dz)_0)$ of the deceleration parameter $q(z)=q_0+(dq/dz)_0z$ observed in Type Ia supernovae.
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.
We construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield X_NL containing the goldstino and satisfying X_NL^2 = 0, and a real superfield B_NL containing both the goldstino and the goldstone, satisfying X_NL B_NL = B_NL^3 = 0. We match results from our EFT formalism to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.
We describe Space Warps, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowd-sourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a classi- fication interface which records their estimates of the positions of candidate lensed features. Simulated lenses, and expert-classified images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the vol- unteers feedback on their performance, as well as to calibrate it in order to allow dynamical updates to the probability of any image they classify to contain a lens. Low probability systems are retired from the site periodically, concentrating the sample towards a set of candidates. Having divided 160 square degrees of Canada-France- Hawaii Telescope Legacy Survey (CFHTLS) imaging into some 430,000 overlapping 84 by 84 arcsecond tiles and displaying them on the site, we were joined by around 37,000 volunteers who contributed 11 million image classifications over the course of 8 months. The sample was reduced to 3368 Stage I candidates; these were then refined to yield a sample that we expect to be over 90% complete and 30% pure. We comment on the scalability of the Space Warps system to the wide field survey era, based on our finding that searches of 10$^5$ images can be performed by a crowd of 10$^5$ volunteers in 6 days.
We present optical photometric and spectroscopic observations of supernova 2013ej. It is one of the brightest type II supernovae exploded in a nearby ($\sim 10$ Mpc) galaxy NGC 628. The light curve characteristics are similar to type II SNe, but with a relatively shorter ($ \sim85 $ day) and steeper ($ \sim1.7 $ mag (100 d)$^{-1} $ in V) plateau phase. The SN shows a large drop of 2.4 mag in V band brightness during plateau to nebular transition. The absolute ultraviolet (UV) light curves are identical to SN 2012aw, showing a similar UV plateau trend extending up to 85 days. The radioactive $^{56}$Ni mass estimated from the tail luminosity is $ 0.02 $M$_{\odot}$ which is significantly lower than typical type IIP SNe. The characteristics of spectral features and evolution of line velocities indicate that SN 2013ej is a type II event. However, light curve characteristics and some spectroscopic features provide strong support in classifying it as a type IIL event. A detailed SYNOW modelling of spectra indicates the presence of some high velocity components in H$\alpha$ and H$\beta$ profiles, implying possible ejecta-CSM interaction. The nebular phase spectrum shows an unusual notch in the H$\alpha$ emission which may indicate bipolar distribution of $^{56}$Ni. Modelling of the bolometric light curve yields a progenitor mass of $ \sim14 $M$_{\odot}$ and a radius of $ \sim450 $R$_{\odot}$, with a total explosion energy of $ \sim2.3\times10^{51} $ erg.
Establishing the relative role of internally and externally driven mechanisms responsible for disc and bulge growth is essential to understand the evolution of disc galaxies. In this context, we have studied the physical properties of disc galaxies without classical bulges in comparison to those with classical bulges since z~0.9. Using images from the Hubble Space Telescope and Sloan Digital Sky Survey, we have computed both parametric and non-parametric measures, and examined the evolution in size, concentration, stellar mass, effective stellar mass density and asymmetry. We find that both disc galaxies with and without classical bulges have gained more than 50% of their present stellar mass over the last ~8 Gyrs. Also, the increase in disc size is found to be peripheral. While the average total (Petrosian) radius almost doubles from z~0.9 to z~0, the average effective radius undergoes a marginal increase in comparison. Additionally, increase in the density of the inner region is evident through the evolution of both concentration and effective stellar mass density. We find that the asymmetry index falls from higher to lower redshifts, but this is more pronounced for the bulgeless disc sample. Also, asymmetry correlates with the global effective radius, and concentration correlates with the global Sersic index, but better so for higher redshifts only. The substantial increase in mass and size indicates that accretion of external material has been a dominant mode of galaxy growth, where the circumgalactic environment plays a significant role.
We investigate whether the fuelling of low excitation radio galaxies (LERGs) is linked to major galaxy interactions. Our study utilizes a sample of 10,800 spectroscopic galaxy pairs and 97 post-mergers selected from the Sloan Digital Sky Survey with matches to multi-wavelength datasets. The LERG fraction amongst interacting galaxies is a factor of 3.5 higher than that of a control sample matched in local galaxy density, redshift and stellar mass. However, the LERG excess in pairs does not depend on projected separation and remains elevated out to at least 500 kpc, suggesting that major mergers are not their main fuelling channel. In order to identify the primary fuelling mechanism of LERGs, we compile samples of control galaxies that are matched in various host galaxy and environmental properties. The LERG excess is reduced, but not completely removed, when halo mass or D4000 are included in the matching parameters. However, when BOTH M_halo and D4000 are matched, there is no LERG excess and the 1.4 GHz luminosities (which trace jet mechanical power) are consistent between the pairs and control. In contrast, the excess of optical and mid-IR selected AGN in galaxy pairs is unchanged when the additional matching parameters are implemented. Our results suggest that whilst major interactions may trigger optically and mid-IR selected AGN, the gas which fuels the LERGs has two secular origins: one associated with the large scale environment, such as accretion from the surrounding medium or minor mergers, plus an internal stellar mechanism, such as winds from evolved stars.
We introduce a new set of simulations of a Milky Way like galaxy using the AMR code ART + hydrodynamics in a $\Lambda$CDM cosmogony. The simulation series is named GARROTXA and follow the formation of a late type galaxy from z=60 with a final virial mass of \sim$7.4$\times$10$^{11}$M$_{\odot}$. This system has no major mergers since z=3 and at z=0 becomes a disk late-type spiral galaxy. Several of its large scale properties fall inside recent observational limits of our Galaxy, like the rotation curve shape, the presence of a stellar bar and flare, and a gaseous disk warp, as well as the stellar and baryonic mass. Here, as a first scientific exploitation of the model we study the total amount and spatial distribution of hot X-ray luminous gas. We do not observe in our models a significant presence of a hot gas thick disk as has been recently discussed in observational studies. The analysis of hot gas mock observations (column density and emission measure) revealed that commonly used hypothesis assumed to derive the total hot gas mass in the MW halo from observations lead to biases of about one order of magnitude. Our results suggest that such hot gas distribution is highly anisotropic and that its total mass can account for a non-negligible portion of the missing cosmic baryons leaving still open the contribution of circumgalactic gas. Finally, we have found a clear correlation between the total hot gas mass and the dark matter halo mass of galactic systems. If confirmed, this correlation can become a new method to constrain the total mass of galaxies, in particular the one of the Milky Way.
We measure the clustering of X-ray, radio, and mid-IR-selected active galactic nuclei (AGN) at 0.2 < z < 1.2 using multi-wavelength imaging and spectroscopic redshifts from the PRIMUS and DEEP2 redshift surveys, covering 7 separate fields spanning ~10 square degrees. Using the cross-correlation of AGN with dense galaxy samples, we measure the clustering scale length and slope, as well as the bias, of AGN selected at different wavelengths. Similar to previous studies, we find that X-ray and radio AGN are more clustered than mid-IR-selected AGN. We further compare the clustering of each AGN sample with matched galaxy samples designed to have the same stellar mass, star formation rate, and redshift distributions as the AGN host galaxies and find no significant differences between their clustering properties. The observed differences in the clustering of AGN selected at different wavelengths can therefore be explained by the clustering differences of their host populations, which have different distributions in both stellar mass and star formation rate. Selection biases inherent in AGN selection, therefore, determine the clustering of observed AGN samples. We further find no significant difference between the clustering of obscured and unobscured AGN, using IRAC or WISE colors or X-ray hardness ratio.
Links to: arXiv, form interface, find, astro-ph, recent, 1504, contact, help (Access key information)