Photoionization modeling of certain low-ionization broad absorption lines in quasars implies very compact (Delta R~0.01 pc), galaxy-scale (R kpc) absorbers blueshifted by several 1000 km s^-1. While these are likely signatures of quasar outflows, the lifetimes of such compact absorbers are too short for them to be direct ejecta from a nuclear wind. Instead, I argue that the absorbing clouds must be transient and created in situ. Following arguments detailed by Faucher-Giguere, Quataert, & Murray (2011), I show that a model in which the cool absorbers form in radiative shocks arising when a quasar blast wave impacts an interstellar cloud along the line of sight successfully explains the key observed properties. Using this radiative shock model, the outflow kinetic luminosities for three luminous quasars are estimated to be Edot,k~2-5% L_AGN (with corresponding momentum fluxes Pdot~2-15 L_AGN/c), consistent with feedback models of the M-sigma relation. These energetics are similar to those recently inferred of molecular outflows in local ultra-luminous infrared galaxies and in post-starburt winds, suggesting that active galactic nuclei (AGN) are capable of driving such outflows. Radiative shocks probably affect the multiphase structure of outflows in a range of other systems, including narrower and higher-ionization quasar absorption lines, and compact intergalactic absorbers ejected by star formation and AGN activity.
(Abridged) Compact groups, with their high number densities, small velocity dispersions, and an interstellar medium that has not been fully processed, provide a local analog to conditions of galaxy interactions in the earlier universe. The frequent and prolonged gravitational encounters that occur in compact groups affect the evolution of the constituent galaxies in a myriad of ways, for example gas processing and star formation. Recently, a statistically significant "gap" has been discovered mid-infrared IRAC colorspace of compact group galaxies. This gap is not seen in field samples and is a new example of how the compact group environment may affect the evolution of member galaxies. In order to investigate the origin and nature of this gap, we have compiled a sample of 49 compact groups. We find that a statistically significant deficit of galaxies in this gap region of IRAC colorspace is persistant in this sample, lending support to the hypothesis that the compact group environment inhibits moderate SSFRs. We note a curvature in the colorspace distribution, which is fully consistent with increasing dust temperature as the activity in a galaxy increases. This full sample of 49 compact groups allows us to subdivide the data according to physical properties of the groups. An analysis of these subsamples indicates that neither projected physical diameter nor density show a trend in colorspace within the values represented by this sample. We hypothesize that the apparent lack of a trend is due to the relatively small range of properties in this sample. Thus, the relative influence of stochastic effects becomes dominant. We analyze spectral energy distributions of member galaxies as a function of their location in colorspace and find that galaxies in different regions of MIR colorspace contain dust with varying temperatures and/or PAH emission.
We present a sample of 2865 emission line galaxies with strong nebular He II {\lambda}4686 emissions in Sloan Digital Sky Survey Data Release 7 and use this sample to investigate the origin of this line in star-forming galaxies. We show that star-forming galaxies and galaxies dominated by an active galactic nucleus form clearly separated branches in the He II {\lambda}4686/H{\beta} versus [N II] {\lambda}6584/H{\alpha} diagnostic diagram and derive an empirical classification scheme which separates the two classes. We also present an analysis of the physical properties of 189 star forming galaxies with strong He II {\lambda}4686 emissions. These star-forming galaxies provide constraints on the hard ionizing continuum of massive stars. To make a quantitative comparison with observation we use photoionization models and examine how different stellar population models affect the predicted He II {\lambda}4686 emission. We confirm previous findings that the models can predict He II {\lambda}4686 emission only for instantaneous bursts of 20% solar metallicity or higher, and only for ages of ~ 4 - 5 Myr, the period when the extreme-ultraviolet continuum is dominated by emission from Wolf-Rayet stars. We find however that 83 of the star-forming galaxies (40%) in our sample do not have Wolf-Rayet features in their spectra despite showing strong nebular He II {\lambda}4686 emission. We discuss possible reasons for this and possible mechanisms for the He II {\lambda}4686 emission in these galaxies.
The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc (~1.4 R_vir) of the group center, down to a limiting X-ray luminosity and HI mass of 3e39 erg/s and 2e8 M_sun, respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The HI results suggest moderate HI mass loss from the group members when compared to similar field galaxies. Six of the 20 HI-detected group members show HI evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low HI content, consistent with tidal removal of HI. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 HI detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.
We present far-infrared (FIR) analysis of 68 Brightest Cluster Galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500um), we calculate the obscured star formation rate (SFR). 22(+6.2,-5.3)% of the BCGs are detected in the far-infrared, with SFR= 1-150 M_sun/yr. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing Ha emission is also correlated with obscured star formation. For all but the most luminous BCGs (L_TIR > 2x10^11 L_sun), only a small (<0.4 mag) reddening correction is required for SFR(Ha) to agree with SFR_FIR. The relatively low Ha extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate form normal stellar mass loss.
We study the spatial distribution of satellite galaxies around isolated primaries using the Sloan Digital Sky Survey (SDSS) spectroscopic and photometric galaxy catalogues. We select isolated primaries from the spectroscopic sample and search for potential satellites in the much deeper photometric sample. For specific luminosity primaries we obtain robust statistical results by stacking as many as ~ 50, 000 galaxy systems. We derive accurate projected number density profiles of satellites down to 4 magnitudes fainter than their primaries. We find the normalized satellite profiles generally have a universal form and can be well fitted by projected NFW profiles. The NFW concentration parameter increases with decreasing satellite luminosity while being independent of the luminosity of the primary except for very bright primaries. The profiles of the faintest satellites show deviations from the NFW form with an excess at small galactocentric projected distances. In addition, we quantify how the radial distribution of satellites depends on the colour of the satellites and the colour and concentration of their primaries.
We develop a radiation pressure-balanced model for the interstellar medium of high-redshift galaxies that describes many facets of galaxy formation at z>~6, including star formation rates and distributions and gas accretion onto central black holes. We first show that the vertical gravitational force in the disk of such a model is dominated by the disk self-gravity but that both radiation pressure on dust grains and turbulent pressure from dense clumps and disk instabilities are negligible compared with the radiation pressure of starlight on gas. Constraining our model to reproduce the UV luminosity function of Lyman-break galaxies (LBGs), we limit the available parameter-space to wind mass-loading factors 1--4 times the canonical value for momentum-driven winds. We then focus our study by exploring the effects of different angular momentum transport mechanisms in the galactic disk and find that viscosity driven by gravitational torques, such as from linear spiral waves or non-linear orbit crossings, can build up black hole masses by z=6 consistent with canonical M-sigma relations with a duty cycle of unity, while infall mediated by a local viscosity such as in an alpha-disk results in negligible BH accretion. Both gravitational torque models produce X-ray emission from active galactic nuclei in high redshift LBGs in excess of the estimated contribution from high-mass X-ray binaries and consistent with a recent analysis of deep Chandra observations by Cowie et al. We find that future observations with larger sample sizes may be able to distinguish between these different angular momentum transport mechanisms.
In this article, I summarize and discuss the body of evidence which has accumulated in favor of dark matter in the form of approximately 10 GeV particles. This evidence includes the spectrum and angular distribution of gamma rays from the Galactic Center, the synchrotron emission from the Milky Way's radio filaments, the diffuse synchrotron emission from the Inner Galaxy (the "WMAP Haze") and low-energy signals from the direct detection experiments DAMA/LIBRA, CoGeNT and CRESST-II. This collection of observations can be explained by a relatively light dark matter particle with an annihilation cross section consistent with that predicted for a simple thermal relic (sigma v ~ 10^-26 cm^3/s) and with a distribution in the halo of the Milky Way consistent with that predicted from simulations. Astrophysical explanations for the gamma ray and synchrotron signals, in contrast, have not been successful in accommodating these observations. Similarly, the phase of the annual modulation observed by DAMA/LIBRA (and now supported by CoGeNT) is inconsistent with all known or postulated modulating backgrounds, but are in good agreement with expectations for dark matter scattering. This scenario is consistent with all existing indirect and collider constraints, as well as the constraints placed by CDMS. Consistency with xenon-based experiments can be achieved if the response of liquid xenon to very low-energy nuclear recoils is somewhat suppressed relative to previous evaluations, or if the dark matter possesses different couplings to protons and neutrons.
We have recently developed an extended merger-tree model that efficiently follows hierarchical evolution of galaxy clusters and provides a quantitative description of both their dark matter and gas properties. We employed this diagnostic tool to calculate the thermal SZ power spectrum and cluster number counts, accounting explicitly for uncertainties in the relevant statistical and intrinsic cluster properties, such as the halo mass function and the gas equation of state. Results of these calculations are compared with those obtained from a direct analytic treatment and from hydrodynamical simulations. We show that under certain assumptions on the gas mass fraction our results are consistent with the latest SPT measurement. Our approach can be particularly useful in predicting cluster number counts and their dependence on cluster and cosmological parameters.
The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate well motivated by particle physics is a weakly interacting massive particle (WIMP). Self-annihilating WIMPs would affect the stellar evolution especially in the early universe. Stars powered by self-annihilating WIMP dark matter should possess different properties compared with standard stars. While a direct detection of such dark matter powered stars seems very challenging, their cumulative emission might leave an imprint in the diffuse metagalactic radiation fields, in particular in the mid-infrared part of the electromagnetic spectrum. In this work the possible contributions of dark matter powered stars (dark stars; DSs) to the extragalactic background light (EBL) are calculated. It is shown that existing data and limits of the EBL intensity can already be used to rule out some DS parameter sets.
The Cold Dark Matter paradigm predicts vast numbers of dark matter sub-halos to be orbiting in galactic halos. The sub-halos are detectable through the gaps they create gaps in stellar streams. The gap-rate is an integral over the density of sub-halos, their mass function, velocity distribution and the dynamical age of the stream. The rate of visible gap creation is a function of the width of the stream. The available data for four streams: the NW stream of M31, the Pal~5 stream, the Orphan Stream and the Eastern Banded Structure, are compared to the LCDM predicted relation. We find a remarkably good agreement, although there remains much to be done to improve the quality of the result. The narrower streams require that there is a total population of order 10^5 sub-halos above 10^5 M_sun to create the gaps.
The mass function of superclusters is derived fully analytically with the help of the extended excursion set theory and shown to be in excellent agreement with the numerical results from various publicly available N-body simulation database. We introduce a new multi-dimensional barrier model in which the formation of superclusters occurs when the initial shear eigenvalues that perform non-Markovian random walks enter a clustering zone surrounded by one re ecting and two absorbing barriers. The multi-dimensional barrier heights are determined from the first order Lagrangian perturbation theory and found to be independent of redshift and background cosmology. With the help of our analytic model for the supercluster mass function, the relative abundance of the rich superclusters is analytically evaluated at a given epoch and found to be sensitive to the growth rate of the cosmic web. Our result implies that the relative abundance of the rich superclusters at a given epoch may be useful as a cosmological test of gravity.
Motivated by recent results on lognormal statistics showing that the moment hierarchy of a lognormal variable completely fails at capturing its information content in the large variance regime, we discuss in this work the inadequacy of the hierarchy of correlation functions to describe a correlated lognormal field, which provides a roughly accurate description of the non-linear cosmological matter density field. We present families of fields having the same hierarchy of correlation functions than the lognormal field at all orders. This explicitly demonstrates the little studied though known fact that the correlation function hierarchy never provides a complete description of a lognormal field, and that it fails to capture information in the non-linear regime, where other simple observables are left totally unconstrained. We discuss why perturbative, Edgeworth-like approaches to statistics in the non-linear regime, common in cosmology, can never reproduce or predict that effect, and why it is however generic for tailed fields, hinting at a breakdown of the perturbation theory based on the field fluctuations. We make a rough but successful quantitative connection to N-body simulations results, that showed that the spectrum of the log-density field carries more information than the spectrum of the field entering the non-linear regime.
In this paper we focus on the gravitational thermodynamics of the far future. Cosmological observations suggest that most matter will be diluted away by the cosmological expansion, with the rest collapsing into supermassive black holes. The likely future state of our local universe is a supermassive black hole slowly evaporating in an empty universe dominated by a positive cosmological constant. We describe some overlooked features of how the cosmological horizon responds to the black hole evaporation. The presence of a black hole depresses the entropy of the cosmological horizon by an amount proportional to the geometric mean of the entropies of the black hole and cosmological horizons. As the black hole evaporates and loses its mass in the process, the total entropy increases obeying the second law of thermodynamics. The entropy is produced by the heat from the black hole flowing across the extremely cold cosmological horizon. Once the evaporation is complete, the universe becomes empty de Sitter space that (in the presence of a true cosmological constant) is the maximum entropy thermodynamic equilibrium state. We propose that flat Minkowski space is an improper limit of this process which obscures the thermodynamics. The cosmological constant should be regarded not only as an energy scale, but also as a scale for the maximum entropy of a universe. In this context, flat Minkowski space is indistinguishable from de Sitter with extremely small cosmological constant, yielding a divergent entropy. This introduces an unregulated infinity in black hole thermodynamics calculations, giving possibly misleading results.
Links to: arXiv, form interface, find, astro-ph, recent, 1201, contact, help (Access key information)
We present a study of the ICM of the galaxy cluster CIZA J2242.8+5301 using deep XMM-Newton observations. The cluster hosts an extremely elongated (2 Mpc), narrow (~50 kpc) radio relic that has been nicknamed the "Sausage". Additionally, a counter-relic is also present, along with a faint, extended radio halo. We have searched for evidence of shock fronts in the surface brightness, temperature, density, and pressure, and we studied the cluster morphology using power ratios. The surface brightness profiles to the north and south of the centre are almost identical in shape. This symmetry supports the hypothesis that the two merging clusters have almost equal masses and a small impact parameter. The ICM on the inner side of the relics (the side towards the cluster centre), has a relatively low temperature of ~5 keV and only jumps to temperatures >10 keV after about 500 kpc. The jumps in temperature and pressure coincide with two symmetric "bumps" in the X-ray surface brightness profiles. We discuss possible causes for this. The inner shocks do not cause detectable radio relics. Surprisingly, the temperatures and pressures determined from the spectral fits depend strongly on the assumed abundance table and the absorption model. We speculate that this is characteristic of all clusters at low Galactic latitudes.
Observations of ionized and neutral gas outflows in radio-galaxies (RGs) suggest that AGN radio jet feedback has a galaxy-scale impact on the host ISM, but it is still unclear how the molecular gas is affected. We present deep Spitzer IRS spectroscopy of 8 RGs that show fast HI outflows. All of these HI-outflow RGs have bright H2 mid-IR lines that cannot be accounted for by UV or X-ray heating. This suggests that the radio jet, which drives the HI outflow, is also responsible for the shock-excitation of the warm H2 gas. In addition, the warm H2 gas does not share the kinematics of the ionized/neutral gas. The mid-IR ionized gas lines are systematically broader than the H2 lines, which are resolved by the IRS (with FWHM up to 900km/s) in 60% of the detected H2 lines. In 5 sources, the NeII line, and to a lesser extent the NeIII and NeV lines, exhibit blue-shifted wings (up to -900km/s with respect to the systemic velocity) that match the kinematics of the outflowing HI or ionized gas. The H2 lines do not show broad wings, except tentative detections in 3 sources. This shows that, contrary to the HI gas, the H2 gas is inefficiently coupled to the AGN jet-driven outflow of ionized gas. While the dissipation of a small fraction (<10%) of the jet kinetic power can explain the dynamical heating of the molecular gas, our data show that the bulk of the warm molecular gas is not expelled from these galaxies.
Modified gravity theories capable of genuine self-acceleration typically invoke a galileon scalar which mediates a long range force, but is screened by the Vainshtein mechanism on small scales. In such theories, non-relativistic stars carry the full scalar charge (proportional to their mass), while black holes carry none. Thus, for a galaxy free-falling in some external gravitational field, its central massive black hole is expected to lag behind the stars. To look for this effect, and to distinguish it from other astrophysical effects, one can correlate the gravitational pull from the surrounding structure with the offset between the stellar center and the black hole. The expected offset depends on the central density of the galaxy, and ranges up to ~0.1 kpc for small galaxies. The observed offset in M87 cannot be explained by this effect unless the scalar force is significantly stronger than gravity. We also discuss the systematic offset of compact objects from the galactic plane as another possible signature.
Galaxy clusters, the most massive collapsed structures, have been routinely used to determine cosmological parameters. When using clusters for cosmology, the crucial assumption is that they are relaxed. However, subarcminute resolution Sunyaev-Zel'dovich (SZ) effect images compared with high resolution X-ray images of some clusters show significant offsets between the two peaks. We have carried out self-consistent N-body/hydrodynamical simulations of merging galaxy clusters using FLASH to study these offsets quantitatively. We have found that significant displacements result between the SZ and X-ray peaks for large relative velocities for all masses used in our simulations as long as the impact parameters were about 100-250 kpc. Our results suggest that the SZ peak coincides with the peak in the pressure times the line-of-sight characteristic length and not the pressure maximum (as it would for clusters in equilibrium). The peak in the X-ray emission, as expected, coincides with the density maximum of the main cluster. As a consequence, the morphology of the SZ signal and therefore the offset between the SZ and X-ray peaks change with viewing angle. As an application, we compare the morphologies of our simulated images to observed SZ and X-ray images and mass surface densities derived from weak lensing observations of the merging galaxy cluster CL0152-1357. We find that a large relative velocity of 4800 km/s is necessary to explain these observations. We conclude that an analysis of the morphologies of multi-frequency observations of merging clusters can be used to put meaningful constraints on the initial parameters of the progenitors.
We reconstruct the shape of the primordial power spectrum of curvature perturbations in extended cosmological models, including addition of massive neutrinos, extra relativistic species or varying primordial helium abundance, from the latest cosmic microwave background data from the Wilkinson Microwave Anisotropy Probe, the Atacama Cosmology Telescope and the South Pole Telescope. We find that a scale-invariant primordial spectrum is disfavored by the data at 95% confidence level even in the presence of massive neutrinos, however it can lie within the 95% confidence region if the effective number of relativistic species or the primordial helium abundance is allowed to vary freely. The constraints on the extension parameters from WMAP7+ACT+H0+BAO, are the total mass of neutrinos sum(m_nu) < 0.48 eV (95% CL), the effective number of relativistic species N_eff = 4.50 +/- 0.81 and the primordial helium abundance Y_p = 0.303 +/- 0.075. The constraints from WMAP7+SPT+H0+BAO, are sum(m_nu) < 0.45 eV (95% CL), N_eff = 3.86 +/- 0.63 and Y_p = 0.277 +/- 0.050.
We have compared the oxygen and nitrogen abundances derived from global emission-line SDSS spectra of galaxies using (1) the Te method and (2) two recent strong line calibrations: the ON and NS calibrations. Using the Te method, anomously high N/O abundances ratios have been found in some SDSS galaxies. To investigate this, we have Monte Carlo simulated the global spectra of composite nebulae by a mix of spectra of individual components, based on spectra of well-studied HII regions in nearby galaxies. We found that the Te method results in an underestimated oxygen abundance (and hence in an overestimated nitrogen-to-oxygen ratio) if HII regions with different physical properties contribute to the global spectrum of composite nebulae. This effect is somewhat similar to the small-scale temperature fluctuations in HII regions discussed by Peimbert. Our work thus suggests that the high Te-based N/O abundances ratios found in SDSS galaxies may not be real. However, such an effect is not expected to be present in dwarf galaxies since they have generally an uniform chemical composition. The ON and NS calibrations give O and N abundances in composite nebulae which agree with the mean luminosity-weighted abundances of their components to within 0.2 dex.
I review work on modelling the infrared and submillimetre SEDs of galaxies. The underlying physical assumptions are discussed and spherically symmetric, axisymmetric, and 3-dimensional radiative transfer codes are reviewed. Models for galaxies with Spitzer IRS data and for galaxies in the Herschel-Hermes survey are discussed. Searches for high redshift infrared and submillimetre galaxies, the star formation history, the evolution of dust extinction, and constraints from source-counts, are briefly discussed.
[Abridged] We present a comparison between weak-lensing (WL) and X-ray mass estimates of a sample of numerically simulated clusters. The sample consists on the 20 most massive objects at redshift z=0.25 and Mvir > 5 x 10^{14} Msun h^{-1}. They were found in a cosmological simulation of volume 1 h^{-3} Gpc^3, evolved in the framework of a WMAP-7 normalized cosmology. Each cluster has been resimulated at higher resolution and with more complex gas physics. We processed it thought Skylens and X-MAS to generate optical and X-ray mock observations along three orthogonal projections. The optical simulations include lensing effects on background sources. Standard observational tools and methods of analysis are used to recover the mass profiles of each cluster projection from the mock catalogues. Given the size of our sample, we could also investigate the dependence of the results on cluster morphology, environment, temperature inhomogeneity, and mass. We confirm previous results showing that WL masses obtained from the fit of the cluster tangential shear profiles with NFW functionals are biased low by ~ 5-10% with a large scatter (~10-25%). We show that scatter could be reduced by optimally selecting clusters either having regular morphology or living in substructure-poor environment. The X-ray masses are biased low by a large amount (~25-35%), evidencing the presence of both non-thermal sources of pressure in the ICM and temperature inhomogeneity, but they show a significantly lower scatter than weak-lensing-derived masses. The X-ray mass bias grows from the inner to the outer regions of the clusters. We find that both biases are weakly correlated with the third-order power ratio, while a stronger correlation exists with the centroid shift. Finally, the X-ray bias is strongly connected with temperature inhomogeneities.
We precisely constrain the inner mass profile of Abell 2261 (z=0.225) for the first time and determine this cluster is not "over-concentrated" as found previously, implying a formation time in agreement with {\Lambda}CDM expectations. These results are based on strong lensing analyses of new 16-band HST imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). Combining this with revised weak lensing analyses of Subaru wide field imaging with 5-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass M_vir = 2.2\pm0.2\times10^15 M\odot/h70 (within r \approx 3 Mpc/h70) and concentration c = 6.2 \pm 0.3 when assuming a spherical halo. This agrees broadly with average c(M,z) predictions from recent {\Lambda}CDM simulations which span 5 <~ <c> <~ 8. Our most significant systematic uncertainty is halo elongation along the line of sight. To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be ~35% lower than our lensing-derived profile at r2500 ~ 600 kpc. Agreement can be achieved by a halo elongated with a ~2:1 axis ratio along our line of sight. For this elongated halo model, we find M_vir = 1.7\pm0.2\times10^15 M\odot/h70 and c_vir = 4.6\pm0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find these tend to lower Mvir further by ~7% and increase cvir by ~5%.
We investigate for the first time the effects of a Warm Dark Matter (WDM) power spectrum on the statistical properties of galaxies using a semi-analytic model of galaxy formation. The WDM spectrum we adopt as a reference case is suppressed - compared to the standard Cold Dark Matter (CDM) case - below a cut-off scale ~ 1 Mpc corresponding (for thermal relic WDM particles) to a mass m_X=0.75 keV. This ensures consistency with present bounds provided by the microwave background WMAP data and by the comparison of hydrodynamical N-body simulations with observed Lyman-{\alpha} forest. We run our fiducial semi-analytic model with such a WDM spectrum to derive galaxy luminosity functions (in B, UV, and K bands) and the stellar mass distributions over a wide range of cosmic epochs, to compare with recent observations and with the results in the CDM case. The predicted color distribution of galaxies in the WDM model is also checked against the data. When compared with the standard CDM case, the luminosity and stellar mass distributions we obtain assuming a WDM spectrum are characterized by: i) a flattening of the faint end slope and ii) a sharpening of the cutoff at the bright end for z \lesssim 0.8. We discuss how the former result is directly related to the smaller number of low-mass haloes collapsing in the WDM scenario, while the latter is related to the smaller number of satellite galaxies accumulating in massive haloes at low redshift, thus suppressing the accretion of small lumps on the central, massive galaxies. These results shows how a adopting a WDM power spectrum may contribute to solve two major problems of CDM galaxy formation scenarios, namely, the excess of predicted faint (low mass) galaxies at low and - most of all - high redshifts, and the excess of bright (massive) galaxies at low redshifts.
Using the group catalog obtained from zCOSMOS spectroscopic data and the complementary photometric data from the COSMOS survey, we explore segregation effects occurring in groups of galaxies at intermediate/high redshifts. We built two composite groups at intermediate (0.2 <= z <= 0.45) and high (0.45 < z <= 0.8) redshifts, and we divided the corresponding composite group galaxies into three samples according to their distance from the group center. We explored how galaxy stellar masses and colors - working in narrow bins of stellar masses - vary as a function of the galaxy distance from the group center. We found that the most massive galaxies in our sample (Log(M_gal/M_sun) >= 10.6) do not display any strong group-centric dependence of the fractions of red/blue objects. For galaxies of lower masses (9.8 <= Log(M_gal/M_sun) <= 10.6) there is a radial dependence in the changing mix of red and blue galaxies. This dependence is most evident in poor groups, whereas richer groups do not display any obvious trend of the blue fraction. Interestingly, mass segregation shows the opposite behavior: it is visible only in rich groups, while poorer groups have a a constant mix of galaxy stellar masses as a function of radius. We suggest a simple scenario where color- and mass-segregation originate from different physical processes. While dynamical friction is the obvious cause for establishing mass segregation, both starvation and galaxy-galaxy collisions are plausible mechanisms to quench star formation in groups at a faster rate than in the field. In poorer groups the environmental effects are caught in action superimposed to secular galaxy evolution. Their member galaxies display increasing blue fractions when moving from the group center to more external regions, presumably reflecting the recent accretion history of these groups.
We present gravitational lens models for 20 strong gravitational lens systems observed as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS) project. Fifteen of the lenses are taken from paper I while five are newly discovered systems. The systems are galaxy-galaxy lenses where the foreground deflector has an inclined disc, with a wide range of morphological types, from late-type spiral to lenticular. For each system, we compare the total mass inside the critical curve inferred from gravitational lens modelling to the stellar mass inferred from stellar population synthesis (SPS) models, computing the stellar mass fraction within the critical curve. We find that, for the lower mass SWELLS systems, adoption of a Salpeter stellar initial mass function (IMF) leads to estimates of the stellar mass fraction that exceed 1. This is unphysical, and provides strong evidence against the Salpeter IMF being valid for these systems. Taking the lower mass end of the SWELLS sample (lensing velocity dispersion less than 230 km/s), we find that the IMF is lighter (in terms of stellar mass-to-light ratio) than Salpeter with 98% probability, and consistent with the Chabrier IMF. This result is consistent with previous studies of spiral galaxies based on independent techniques. In combination with the heavier IMF inferred from the lensing and dynamical analysis of more massive early-type lens galaxies from the SLACS sample, this result provides strong evidence against a universal stellar IMF.
We construct a fully self-consistent mass model for the lens galaxy J2141 at z=0.14, and use it to improve on previous studies by modelling its gravitational lensing effect, gas rotation curve and stellar kinematics simultaneously. We adopt a very flexible axisymmetric mass model constituted by a generalized NFW dark matter halo and a stellar mass distribution obtained by deprojecting the MGE fit to the high-resolution K'-band LGSAO imaging data of the galaxy, with the (spatially constant) M/L ratio as a free parameter. We model the stellar kinematics by solving the anisotropic Jeans equations. We find that the inner logarithmic slope of the dark halo is weakly constrained (gamma = 0.82^{+0.65}_{-0.54}), and consistent with an unmodified NFW profile. We infer the galaxy to have (i) a dark matter fraction within 2.2 disk radii of 0.28^{+0.15}_{-0.10}, independent of the galaxy stellar population, implying a maximal disk for J2141; (ii) an apparently uncontracted dark matter halo, with concentration c_{-2} = 7.7_{-2.5}^{+4.2} and virial velocity v_{vir} = 242_{-39}^{+44} km/s, consistent with LCDM predictions; (iii) a slightly oblate halo (q_h = 0.75^{+0.27}_{-0.16}), consistent with predictions from baryon-affected models. Comparing the stellar mass inferred from the combined analysis (log_{10} Mstar/Msun = 11.12_{-0.09}^{+0.05}) with that inferred from SPS modelling of the galaxies colours, and accounting for a cold gas fraction of 20+/-10%, we determine a preference for a Chabrier IMF over Salpeter IMF by a Bayes factor of 5.7 (substantial evidence). We infer a value beta_{z} = 1 - sigma^2_{z}/sigma^2_{R} = 0.43_{-0.11}^{+0.08} for the orbital anisotropy parameter in the meridional plane, in agreement with most studies of local disk galaxies, and ruling out at 99% CL that the dynamics of this system can be described by a two-integral distribution function. [Abridged]
There are few data available with which to constrain the thermal history of the intergalactic medium (IGM) following global recombination. Thus far, most constraints flow from analyses of the Cosmic Microwave Background and optical spectroscopy along a few lines of sight. However, direct study of the IGM in emission or absorption against the CMB via the 1S hyperfine transition of Hydrogen would enable broad characterization thermal history and source populations. New generations of radio arrays are in development to measure this line signature. Bright foreground emission and the complexity of instrument calibration models are significant hurdles. How to optimize these is uncertain, resulting in a diversity in approaches. We discuss recent limits on line brightness, array efforts including the new Large Aperture Experiment to Detect the Dark Ages (LEDA), and the next generation Hydrogen Reionization Array (HERA) concept.
Energy exchange processes play a crucial role in the early Universe, affecting the thermal balance and the dynamical evolution of the primordial gas. In the present work we focus on the consequences of a non-thermal distribution of the level populations of H$_2$: first, we determine the excitation temperatures of vibrational transitions and the non-equilibrium heat transfer; second, we compare the modifications to chemical reaction rate coefficients with respect to the values obtained assuming local thermodynamic equilibrium; third, we compute the spectral distortions to the cosmic background radiation generated by the formation of H$_2$ in vibrationally excited levels. We conclude that non-equilibrium processes cannot be ignored in cosmological simulations of the evolution of baryons, although their observational signatures remain below current limits of detection. New fits to the equilibrium and non-equilibrium heat transfer functions are provided.
The cosmic star formation rate (CSFR), is an important clue to investigate the history of the assembly and evolution of galaxies. Here, we develop a method to study the CSFR from a purely theoretical point of view. Starting from detailed models of chemical evolution, we obtain the histories of star formation of galaxies of different morphological types. These histories are then used to determine the luminosity functions of the same galaxies by means of a spectro-photometric code. We obtain the CSFR under different hypothesis. First, we study the hypothesis of a pure luminosity evolution scenario, in which all galaxies are supposed to form at the same redshift and then evolve only in luminosity. Then we consider scenarios in which the number density or the slope of the LFs are assumed to vary with redshift. After comparison with available data we conclude that a pure luminosity evolution does not provide a good fit to the data, especially at very high redshift, although many uncertainties are still present in the data. On the other hand, a variation in the number density of ellipticals and spirals as a function of redshift can provide a better fit to the observed CSFR. We also explore cases of variable slope of the LFs with redshift and variations of number density and slope at the same time. We cannot find any of those cases which can improve the fit to the data respect to the solely number density variation. Finally, we compute the evolution of the average cosmic metallicity in galaxies with redshift.
SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg(UV) or D(4000) indices; (3) measure their redshift with an accuracy Delta(z)/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).
Statistical measures of galaxy clusters are sensitive to neutrino masses in the sub-eV range. We explore the possibility of using cluster number counts from the ongoing PLANCK/SZ and future cosmic-variance-limited surveys to constrain neutrino masses from CMB data alone. The precision with which the total neutrino mass can be determined from SZ number counts is limited mostly by uncertainties in the clusters mass function; these are explicitly accounted for in our forecast. We find that projected results from the PLANCK/SZ survey can be used to determine the total neutrino mass with a ($1\sigma$) uncertainty of 0.08-0.11 eV, assuming fiducial neutrino mass in the range 0.1-0.3 eV, if the survey detection limit is set at the $5\sigma$ significance level. This improves on the limits expected from PLANCK/CMB lensing measurements by a factor 1.5-2. With a cosmic-variance-limited SZ survey we obtain ($1\sigma$) uncertainty of 0.05-0.07 eV. Combined PLANCK and the X-ray RASS cluster catalogs could constrain $M_{\nu}$ at the 0.04 and 0.07, assuming fiducial neutrino masses 0.1 and 0.3 eV, respectively. A few percent uncertainty in the mass function parameters could result in a factor of up to $\sim 50%$ degradation of our PLANCK, CVL and PLANCK+RASS forecasts. The latter two, which significantly benefit from cluster surveys, are more prone to mass function uncertainty. This degradation becomes less significant for neutrino masses 0.3 eV or higher. This highlights the relevance of mass function uncertainties for cosmological parameter estimation. Our analysis shows that if the (total) neutrino mass is close to the lower limits deduced from neutrino oscillation experiments, cluster number counts provide a viable complimentary cosmological probe to CMB lensing constraints on $M_{\nu}$.
The bright Seyfert 1 galaxy Mrk 509 was monitored by XMM-Newton and other satellites in 2009 to constrain the location of the outflow. We have studied the response of the photoionised gas to changes in the ionising flux produced by the central regions. We used the 5 discrete ionisation components A-E detected in the time-averaged spectrum taken with the RGS. Using the ratio of fluxed EPIC and RGS spectra, we put tight constraints on the variability of the absorbers. Monitoring with the Swift satellite started 6 weeks before the XMM-Newton observations, allowing to use the ionising flux history and to develop a model for the time-dependent photoionisation. Components A and B are too weak for variability studies, but the distance for component A is known from optical imaging of the [O III] line to be ~3 kpc. During the 5 weeks of the XMM-Newton observations we found no evidence of changes in the 3 X-ray dominant ionisation components C-E, despite a huge soft X-ray intensity increase of 60% in the middle of our campaign. This excludes high-density gas close to the black hole. Instead, using our time-dependent modelling, we find low density and derive firm lower limits to the distance of these components. Component D shows evidence for variability on longer time scales, yielding an upper limit to the distance. For component E we derive an upper limit to the distance based on the argument that the thickness of the absorbing layer must be less than its distance to the black hole. Combining these results, at the 90% confidence level, component C has a distance of >70 pc, component D between 5-33 pc, and component E >5 pc but smaller than 21-400 pc, depending upon modelling details. These results are consistent with the upper limits from the HST/COS observations of our campaign and point to an origin of the dominant, slow (v<1000 km/s) outflow components in the NLR or torus-region of Mrk 509.
Harmonic analysis is a tool to infer cosmic topology from the measured astrophysical cosmic microwave background CMB radiation. For overall positive curvature, Platonic spherical manifolds are candidates for this analysis. We combine the specific point symmetry of the Platonic manifolds with their deck transformations. This analysis in topology leads from manifolds to orbifolds. We discuss the deck transformations of the orbifolds and give basis functions for the harmonic analysis as linear combinations of Wigner polynomials on the 3-sphere. They provide new tools for detecting cosmic topology from the CMB radiation.
We have calculated the ground state electronic structure of He under pressure from 0 to 1500 GPa using both all-electron full-potential and pseudopotential methods based on the density functional theory (DFT). We find that throughout this pressure range, pseudopotentials yield essentially the same energy-volume curve for all of bcc, fcc, and hcp configurations as does the full-potential method, a strong indication that pseudopotential approximation works well for He both as the common element in some giant planets and as detrimental impurities in fusion reactor materials. The hcp lattice is always the most stable structure and bcc the least stable one. Since the energy preference of hcp over fcc and bcc is within 0.01 eV below 100 GPa and about 0.1 eV at 1500 GPa, on the same order of the error bar in local or semi-local density approximations in DFT, phase transitions can only be discussed with more precise description of electron correlation in Quantum Monte Carlo or DFT-based GW methods.
The combination of GR and the Standard Model disagrees with numerous observations on scales from our Solar System up. In the concordance model of cosmology, these contradictions are removed or alleviated by the introduction of three completely independent new components of stress-energy -- the inflaton, dark matter, and dark energy. Each of these in its turn is meant to have (or to currently) dominate the dynamics of the universe. There is still no non-gravitational evidence for any of these dark sectors; nor for the required extensions of the standard model. An alternative is to imagine that GR itself must be modified. Certain coincidences of scale even suggest that one might expect not to have to make three independent. Because they must address the most different types of data, attempts to replace dark matter with modified gravity are the most controversial. A phenomenological model (or family of models), Modified Newtonian Dynamics, has, over the last few years seen several covariant realizations. We discuss a number of challenges that any model that seeks to replace dark matter with modified gravity must face: the loss of Birkhoff's Theorem, and the calculational simplifications it implies; the failure to explain clusters, whether static or interacting, and the consequent need to introduce dark matter of some form, whether hot dark matter neutrinos, or dark fields that arise in new sectors of the modified gravity theory; the intrusion of cosmological expansion into the modified force law, that arises precisely because of the coincidence in scale between the centripetal acceleration at which Newtonian gravity fails in galaxies, and the cosmic acceleration. We conclude with the observation that, although modified gravity may indeed manage to replace dark matter, it is likely to do so by becoming or incorporating, a dark matter theory itself.
Links to: arXiv, form interface, find, astro-ph, recent, 1201, contact, help (Access key information)
We present a first attempt to model the narrow-line (NL) region of active galactic nuclei (AGN) in hydrodynamic simulations of galaxy mergers, using a novel physical prescription. This model is used to determine the origin of double-peaked NL (dNL) AGN in merging galaxies and their connection to supermassive black hole (SMBH) pairs, motivated by recent observations of such objects. We find that dNL AGN induced by the relative motion of SMBH pairs are a generic but short-lived feature of gaseous major mergers. dNL AGN are most likely to be observed in late-stage mergers, during the kpc-scale phase of SMBH inspiral or soon after the SMBH merger. However, even within the kpc-scale phase, only a minority of dNL AGN are directly induced by SMBH motion; their lifetimes are typically a few Myr. Most double peaks arise from gas kinematics near the SMBH, although prior to the SMBH merger up to 80% of all dNL profiles may be influenced by SMBH motion via altered peak ratios or velocity offsets. The total lifetimes of dNL AGN depend strongly on viewing angle and on properties of the merging galaxies. Also, in a typical merger, at least 10-40% of the double peaks induced by SMBH motion have small projected separations, 0.1-1 kpc, such that dual peaks of stellar surface brightness are not easily resolved. Diffuse tidal features can indicate late-stage galaxy mergers, although they do not distinguish SMBH pairs from merged SMBHs. We show that dNL profiles with peak velocity splittings > 500 km s^-1 or with measurable overall velocity shifts are often associated with SMBH pairs. Our results support the notion that selection of dNL AGN is a promising method for identifying dual SMBH candidates, but demonstrate the critical importance of high-resolution, multi-wavelength follow-up observations, and the use of multiple lines of evidence, for confirming the dual nature of candidate SMBH pairs. (Abridged)
We present and analyse optical and ultra-violet colours for passive and optically-red Coma cluster galaxies for which we have spectroscopic age and element abundance estimates. Our sample of 150 objects covers a wide range in mass, from giant ellipticals to the bright end of the dwarf-galaxy regime. We focus on the colours FUV-i, NUV-i, FUV-NUV, u*-g and g-i. We find that all of these colours are correlated with both luminosity and velocity dispersion at the >5 sigma level, with FUV-i and FUV-NUV becoming bluer with increasing `mass' while the other colours become redder. We perform an empirical analysis to assess what fraction of the variation in each colour can be accounted for by variations in the average stellar populations, as traced by the optical spectra. For u*-g and g-i, most of the observed scatter (~80% after allowing for measurement errors and for systematic errors in u*-g) is attributable to stellar population variations, with colours becoming redder with increasing age and metallicity (Mg/H). The FUV-i colour becomes bluer with increasing age and with increasing Mg/H, favouring a `metal-rich single-star' origin for the UV upturn. However, correlations with the optically-dominant stellar populations account for only about half of the large observed scatter. We propose that the excess scatter in FUV-i may be due to a varying proportion of ancient stars in galaxies with younger average ages. The NUV-i colour is sensitive to age and Mg/H, but exhibits excess scatter that can be attributed to `leakage' of the FUV upturn. Applying a correction based on the FUV-i colour we account for ~80% of the variance in NUV-i, as for the optical colours. The FUV-NUV colour shows strong correlations with age and Mg/H, and little residual scatter. Interpreting this colour is complicated however, since it mixes the effects from the main-sequence turn-off with those from the hot evolved stars.
We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release Eight (SDSS DR8). The galaxies have photometric redshifts between $z = 0.45$ and $z = 0.65$, and cover 10,000 square degrees and thus probe a volume of 3$h^{-3}$Gpc$^3$, enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses $\sum m_\nu < 0.26$ eV, at 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call "CMASS", with WMAP 7 year Cosmic Microwave Background (CMB) data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range choice of $30 < \ell < 200$ in order to minimize non-linearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs, and find that this model causes a small ($\sim 1-1.5 \sigma$) bias in $\Omega_{\rm DM} h^2$. For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot noise-like free parameters. In this conservative case, the bounds are significantly weakened, e.g. $\sum m_\nu < 0.36$ eV (95% confidence level) for WMAP+HST+CMASS ($\ell_{\rm max}=200$). We also study the dependence of the neutrino bound on multipole range ($\ell_{\rm max}=150$ vs $\ell_{\rm max}=200$) and on which combination of data sets is included as a prior. The addition of supernova and/or Baryon Acoustic Oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. [abridged]
The interstellar and intra-cluster medium in giant elliptical galaxies and clusters of galaxies is often assumed to be in hydrostatic equilibrium. Numerical simulations, however, show that about 5-30% of the pressure in a cluster is provided by turbulence induced by, for example, the central AGN and merger activity. We aim to put constraints on the turbulent velocities and turbulent pressure in the ICM of the giant elliptical galaxies NGC 5044 and NGC 5813 using XMM-Newton RGS observations. The magnitude of the turbulence is estimated using the Fe XVII lines at 15.01 A, 17.05 A, and 17.10 A in the RGS spectra. At low turbulent velocities, the gas becomes optically thick in the 15.01 A line due to resonant scattering, while the 17 A lines remain optically thin. By comparing the (I(17.05)+I(17.10))/I(15.01) line ratio from RGS with simulated line ratios for different Mach numbers, the level of turbulence is constrained. The measurement is limited by systematic uncertainties in the atomic data, which are at the 20-30% level. We find that the line ratio in NGC 5813 is significantly higher than in NGC 5044. This difference can be explained by a higher level of turbulence in NGC 5044. The high turbulent velocities and the fraction of the turbulent pressure support of >40% in NGC 5044, assuming isotropic turbulence, confirm that it is a highly disturbed system, probably due to an off-axis merger. The turbulent pressure support in NGC 5813 is more modest at 15-45%. The (I(17.05)+I(17.10))/I(15.01) line ratio in an optically thin plasma, calculated using AtomDB v2.0.1, is 2 sigma above the ratio measured in NGC 5044, which cannot be explained by resonant scattering. This shows that the discrepancies between theoretical, laboratory, and astrophysical data on Fe XVII lines need to be reduced to improve the accuracy of the determination of turbulent velocities using resonant scattering.
In this work we investigate the link between galaxy velocity dispersion, mass and other properties (color, morphology) with the properties of dark matter halos by comparing the clustering of galaxies at both fixed mass and velocity dispersion. We use the Sloan Digital Sky Survey to define a volume limited sample of massive galaxies complete in both stellar mass (>6e10 Msun) and velocity dispersion (>75 km/s). Using this sample we show that at fixed velocity dispersion there is no dependence of the clustering amplitude on stellar or dynamical mass. Conversely when stellar or dynamical mass are fixed there is a clear dependence of the clustering amplitude on velocity dispersion with higher dispersion galaxies showing a higher clustering amplitude. We also show that whilst when stellar or dynamical mass are fixed there remains a dependence of clustering amplitude on morphology, there is no such dependency when dispersion is fixed. However, we do see a dependence of the clustering amplitude on color when both mass and dispersion are fixed. Despite this, even when we restrict our samples to only elliptical or red galaxies the relationship between dispersion and clustering amplitude at fixed mass remains. It seems likely that the residual correlation with color is driven by satellite galaxies in massive halos being redder at fixed dispersion. The lack of a similar morphology dependence implies that the mechanism turning satellites red is not changing their morphology. Our central result is that velocity dispersion is more closely related to the clustering amplitude of galaxies than either stellar or dynamical mass. This implies that velocity dispersion is more tightly correlated with the halo properties that determine clustering, either halo mass or age, and supports the notion that the star formation history of a galaxy is more closely related to its halo properties than its overall mass.
We use the Herschel-ATLAS survey to conduct the first large-scale statistical study of the sub-mm properties of optically selected galaxies. Using ~80,000 r-band selected galaxies from 126 deg^2 of the GAMA survey, we stack into sub-mm imaging at 250, 350 and 500{\mu}m to gain unprecedented statistics on the dust emission from galaxies at z < 0.35. We find that low redshift galaxies account for 5% of the cosmic 250{\mu}m background (4% at 350{\mu}m; 3% at 500{\mu}m), of which approximately 60% comes from 'blue' and 20% from 'red' galaxies (rest-frame g - r). We compare the dust properties of different galaxy populations by dividing the sample into bins of optical luminosity, stellar mass, colour and redshift. In blue galaxies we find that dust temperature and luminosity correlate strongly with stellar mass at a fixed redshift, but red galaxies do not follow these correlations and overall have lower luminosities and temperatures. We make reasonable assumptions to account for the contaminating flux from lensing by red sequence galaxies and conclude that galaxies with different optical colours have fundamentally different dust emission properties. Results indicate that while blue galaxies are more luminous than red galaxies due to higher temperatures, the dust masses of the two samples are relatively similar. Dust mass is shown to correlate with stellar mass, although the dust/stellar mass ratio is much higher for low stellar mass galaxies, consistent with the lowest mass galaxies having the highest specific star formation rates. We stack the 250{\mu}m/NUV luminosity ratio, finding results consistent with greater obscuration of star formation at lower stellar mass and higher redshift. Sub-mm luminosities and dust masses of all galaxies are shown to evolve strongly with redshift, indicating a fall in the amount of obscured star formation in ordinary galaxies over the last four billion years.
The XMM-Newton Distant Cluster Project is a serendipitous survey for clusters of galaxies at redshifts z>=0.8 based on deep archival XMM-Newton observations. ... Low-significance candidate high-z clusters are followed up with the seven-channel imager GROND (Gamma-Ray Burst Optical and Near-Infrared Detector) that is mounted at a 2m-class telescope. ... The test case is XMMU J0338.7+0030, suggested to be at z~1.45+/-0.15 from the analysis of the z-H vs H colour-magnitude diagram obtained from the follow-up imaging. Later VLT-FORS2 spectroscopy enabled us to identify four members, which set this cluster at z=1.097+/-0.002. To reach a better knowledge of its galaxy population, we observed XMMU J0338.7+0030 with GROND for about 6 hr. The publicly available photo-z code le Phare was used. The Ks-band number counts of the non-stellar sources out of the 832 detected down to z'~26 AB-mag in the 3.9x4.3 square arcmin region of XMMU J0338.7+0030 imaged at all GROND bands clearly exceed those computed in deep fields/survey areas at ~20.5 - 22.5 AB-mag. The photo-z's of the three imaged spectroscopic members yield z=1.12+/-0.09. The spatial distribution and the properties of the GROND sources with a photo-z in the range 1.01 - 1.23 confirm the correspondence of the X-ray source with a galaxy over-density at a significance of at least 4.3 sigma. Candidate members that are spectro-photometrically classified as elliptical galaxies define a red locus in the i'-z' vs z' colour-magnitude diagram that is consistent with the red sequence of the cluster RDCS J0910+5422 at z=1.106. XMMU J0338.7+0030 hosts also a population of bluer late-type spirals and irregulars. The starbursts among the photometric members populate both loci, consistently with previous results. The analysis of the available data set indicates that XMMU J0338.7+0030 is a low-mass cluster (M_200 ~ 1E14 M_sun) at z=1.1. (Abridged)
[abridged] We introduce the Phoenix Project, a set of LCDM simulations of the dark matter component of nine rich galaxy clusters. Each cluster is simulated at least at two different numerical resolutions. For eight of them, the highest resolution corresponds to ~1.3e8 particles within the virial radius, while for one this number is over one billion. Because of their recent assembly, these cluster haloes are significantly less relaxed than galaxy haloes, leading to decreased regularity, increased halo-to-halo variations, and systematic differences in concentration and substructure fraction. All density profiles steepen gradually from the centre outwards, but there is considerable scatter in the dependence of logarithmic slope, gamma on radius. At the innermost convergence radius, r_conv ~3 kpc/h (~ 0.2% of the virial radius) the mean and rms scatter is gamma=1.05+-0.19 for the nine haloes. As for galaxy haloes, there is little indication of an approach to an asymptotic inner power law. For individual clusters, strongly aspherical mass distributions can produce projected surface density variations at given radius spanning up to a factor of three, depending on projection direction. This may in part explain the high apparent concentration of some observed strong-lensing clusters. The shape of the surface density profile, gamma_p(R) depends only weakly on projection direction, however, and is quite well approximated in the inner regions by the NFW formula. Substructure in the Phoenix haloes is slightly more abundant, especially in the inner regions, than in the galaxy haloes of the Aquarius Project. The subhalo mass function is also steeper: dN/dM \propto M^{-1.98} in the range 1e-6<M_sub/M200<1e-3, compared to M^{-1.94} for Aquarius haloes. Resolved subhaloes nevertheless contribute only 11 +-3 of the virial mass in the Phoenix clusters.
The detection of clusters of galaxies in large surveys plays an important part in extragalactic astronomy, and particularly in cosmology, since cluster counts can give strong constraints on cosmological parameters. X-ray imaging is in particular a reliable means to discover new clusters, and large X-ray surveys are now available. Considering XMM-Newton data for a sample of 40 Abell clusters, we show that their analysis with a Kolmogorov distribution can provide a distinctive signature for galaxy clusters. The Kolmogorov method is sensitive to the correlations in the cluster X-ray properties and can therefore be used for their identification, thus allowing to search reliably for clusters in a simple way.
We study moderate gravitational lensing where a background galaxy is magnified substantially, but not multiply imaged, by an intervening galaxy. We focus on the case where both the lens and source are elliptical galaxies. The signatures of moderate lensing include isophotal distortions and systematic shifts in the fundamental plane and Kormendy relation, which can potentially be used to statistically determine the galaxy mass profiles. These effects are illustrated using Monte Carlo simulations of galaxy pairs where the foreground galaxy is modelled as a singular isothermal sphere model and observational parameters appropriate for the Large Synoptic Survey Telescope (LSST). The range in radius probed by moderate lensing will be larger than that by strong lensing, and is in the interesting regime where the density slope may be changing.
Using spectroscopic data taken with Keck II DEIMOS by the Z-PAndAS team in the Andromeda-Triangulum region, I present a comparison of the disc and satellite systems of Andromeda with those of our own Galaxy. I discuss the observed discrepancies between the masses and scale radii of Andromeda dwarf spheroidal galaxies of a given luminosity with those of the Milky Way. I also also present an analysis of the newly discovered M31 thick disc, which is measured to be hotter, more extended and thicker than that seen in the Milky Way.
Based on two models, we investigate the molecular-to-atomic gas ratio in Virgo cluster galaxies in comparison with field galaxies. We show that the enhanced metallicity for cluster members and the ram pressure stripping of atomic gas from the disk periphery cannot fully explain the observed gas component ratios. The additional environmental factors affecting the interstellar medium and leading to an increase in the molecular gas fraction should be taken into account for cluster galaxies.
The 6 cm and 20 cm radio continuum properties of all 85 galaxies with reported 22 GHz H2O maser emission and luminosity distance D > 0.5 Mpc are studied. For the total of 55 targets for which both 6 cm and 20 cm measurements exist and for the subsample of 42 sources with masers related to active galactic nuclei (AGN), a spectral index could be determined from an assumed power-law dependence. The mean value of the resulting spectral index is in both cases 0.66+-0.07. Comparing radio properties of the maser galaxies with a sample of Seyferts without detected H2O maser, we find that (1) the spectral indices agree within the error limits, and (2) maser host galaxies have higher nuclear radio continuum luminosities, exceeding those of the comparison sample by factors of order 5. Only considering the subsample of galaxies with masers associated with AGN, there seems to be a trend toward rising maser luminosity with nuclear radio luminosity (both at 6 cm and 20 cm). However, when accounting for the Malmquist effect, the correlation weakens to a level, which is barely significant. Overall, the study indicates that nuclear radio luminosity is a suitable indicator to guide future AGN maser searches and to enhance detection rates, which are otherwise quite low (<10%).
In setting up initial conditions for cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to the real-space clustering. As a stringent test of both approaches, I perform ensembles of simulations using power law models and exploit the self-similarity of these initial conditions to quantify the accuracy of the results. Originally proposed by Pen 1997 and implemented by Sirko 2005, I show that the real-space motivated approach, which allows the DC mode to vary, performs well in exhibiting the expected self-similar behavior in the mean xi(r) and P(k) and in both methods this behavior extends below the scale of the initial mean interparticle spacing. I also test the real-space method with simulations of a simplified, powerlaw model for baryon acoustic oscillations, again with success, and mindful of the need to generate mock catalogs using simulations I show extensive powerlaw tests for the halo mass function and halo bias in our simulations. Although requiring a few to many times more simulations than the standard, fourier-space method to reach a given certainty on the correlation function or power spectrum, I find that the real-space method is more reliable for modeling P(k) when the clustering level becomes significant on the scale of the simulation box. As such a carefully-constructed real-space approach could be optimal for simulating extremely red power spectra (n_eff < -2), as in excessively small box simulations to model the "end" of the CDM hierarchy. I conclude by discussing some possibilities for optimizing the real-space method for more general use and an appendix demonstrates the potential for using perturbation theory to model the effect of the box scale on the simulated growth of structure.
The cause for the observed acceleration in the expansion of the universe is unknown, and referred to as "dark energy" for convenience. Dark energy could be an unknown energy component, or a modification of Einstein's general relativity. This dictates the measurements that are optimal in unveiling the nature of dark energy: the cosmic expansion history, and the growth history of cosmic large scale structure. I will examine Type Ia supernovae and galaxy clustering as dark energy probes, and discuss recent results and future prospects.
Astronomical instruments generally possess spatially variant point-spread functions, which determine the amount by which an image pixel is blurred as a function of position. Several techniques have been devised to handle this variability in the context of the standard image deconvolution problem. We have developed an iterative gravitational lens modeling code called Mirage that determines the parameters of pixelated source intensity distributions for a given lens model. We are able to include the effects of spatially variant point-spread functions using the iterative procedures in this lensing code. In this paper, we discuss the methods to include spatially variant blurring effects and test the results of the algorithm in the context of gravitational lens modeling problems.
The Sloan Digital Sky Survey (SDSS) surveyed 14,555 square degrees, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between $z=0.45$ and $z=0.65$, constructed from the SDSS using methods described in Ross et al. (2011). This data-set spans 11,000 square degrees and probes a volume of $3h^{-3} \rm{Gpc}^3$, making it the largest volume ever used for galaxy clustering measurements. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at 4 redshift slices with an accuracy of ~15% with bin size of delta_l = 10 on scales of the Baryon Acoustic Oscillations (BAO) (at l~40-400). We derive cosmological constraints using the full-shape of the power-spectra. For a flat Lambda CDM model, when combined with Cosmic Microwave Background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H_0 constraints from 600 Cepheids observed by HST, we find \Omega_\Lambda = 0.73 +/- 0.019 and H_0 to be 70.5 +/- 1.6 km/s/Mpc. For an open Lambda CDM model, when combined with WMAP7 + HST, we find $\Omega_K = 0.0035 +/- 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+SN, we find w = -1.071 +/- 0.078, and H_0 to be 71.3 +/- 1.7 km/s/Mpc, which is competitive with the latest large scale structure constraints from large spectroscopic surveys such as SDSS Data Release 7 (DR7) (Reid et al. 2010, Percival et al. 2010, Montesano et al. 2011) and WiggleZ (Blake et al. 2011). The SDSS-III Data Release 8 (SDSS-III DR8) Angular Clustering Data allows a wide range of investigations into the cosmological model, cosmic expansion (via BAO), Gaussianity of initial conditions and neutrino masses. (abridged)
Analytic estimates of the viscous time-scale due to cloud-cloud collisions have been as high as thousands of Gyr. Consequently, cloud collisions are widely ignored as a source of viscosity in galactic disks. However, capturing the hydrodynamics of discs in simple analytic models is a challenge, both because of the wide dynamic range and importance of 2D and 3D effects. To test the validity of analytic models we present estimates for the viscous time-scale that are measured from three dimensional SPH simulations of disc formation and evolution. We have deliberately removed uncertainties associated with star-formation and feedback thereby enabling us to place lower bounds on the time-scale for this process. We also contrast collapse simulations with results from simulations of initially stable discs and examine the impact of numerical parameters and assumptions on our work, to constrain possible systematics in our estimates. We find that cloud-collision viscous time-scales are in the range of 0.6-16 Gyr, considerably shorter than previously estimated. This large discrepency can be understood in terms of how the efficiency of collisions is included in the analytical estimates. We find that the viscous time-scale only depends weakly on the number of clouds formed, and so while the viscous time-scale will increase with increasing resolution, this effect is too weak to alter our conclusions.
Simulations of cluster formation have demonstrated that condensation of baryons into central galaxies during cluster formation can drive the shape of the gas distribution in galaxy clusters significantly rounder, even at radii as large as half of the virial radius. However, such simulations generally predict stellar fractions within cluster virial radii that are ~2-3 times larger than the stellar masses deduced from observations. In this work we compare ellipticity profiles of clusters simulated with and without baryonic cooling to the cluster ellipticity profiles derived from Chandra and ROSAT observations in an effort to constrain the fraction of gas that cools and condenses into the central galaxies within clusters. We find that the observed ellipticity profiles are fairly constant with radius, with an average ellipticity of 0.18 +/- 0.05. The observed ellipticity profiles are in good agreement with the predictions of non-radiative simulations. On the other hand, the ellipticity profiles of the clusters in simulations that include radiative cooling, star formation, and supernova feedback (but no AGN feedback) deviate significantly from the observed ellipticity profiles at all radii. The non-radiative simulations overpredict (underpredict) ellipticity in the inner (outer) regions of galaxy clusters. By comparing the simulations with and without cooling, we show that the cooling of gas via cooling flows in the central regions of simulated clusters causes the gas distribution to be more oblate in the central regions, but makes the outer gas distribution more spherical. We find that late-time gas cooling and star formation is responsible for the significantly oblate gas distributions in cluster cores, but the gas shapes outside of cluster cores are set primarily by baryon dissipation at high-redshift z > 2.
We present a detailed analysis of the X-ray spectrum of the Seyfert 2 galaxy NGC454E, belonging to the interacting system NGC454. Observations performed with Suzaku, XMM-Newton and Swift allowed us to detect a dramatic change in the curvature of the 2-10 keV spectrum, revealing a significant variation of the absorbing column density along the line of sight (from ~ 1 x10^{24}cm^{-2} to ~ 1x10^{23}cm^{-2}). Consequently, we propose this source as a new member of the class of "changing look" AGN, i.e. AGN that have been observed both in Compton-thin (NH =10^{23 cm^{-2}) and reflection dominated states (Compton-thick, NH >10^{24} cm^{-2}). Due to the quite long time lag (6 months) between the Suzaku and XMM-Newton observations we cannot infer the possible location of the obscuring material causing the observed variability. In the 6-7 keV range the XMM-Newton observation also shows a clear signature of the presence of an ionized absorber. Since this feature is not detected during the Suzaku observation (despite its detectability), the simplest interpretation is that the ionized absorber is also variable; its location is estimated to be within ~10^{-3} pc from the central black hole, probably much closer in than the rather neutral absorber.
We explore the newly discovered "hangup-kick" effect, which greatly amplifies the recoil for configuration with partial spin- orbital-angular momentum alignment, by studying a set of 48 new simulations of equal-mass, spinning black-hole binaries. We propose a phenomenological model for the recoil that takes this new effect into account and then use this model, in conjunction with statistical distributions for the spin magnitude and orientations, based on accretion simulations, to find the probabilities for observing recoils of several thousand km/s. In addition, we provide initial parameters, eccentricities, radiated linear and angular momentum, precession rates and remnant mass, spin, and recoils for all 48 configurations. Our results indicate that surveys exploring peculiar (redshifted or blueshifted) differential line-of-sight velocities should observe at least one case above 2000 km/s out of four thousand merged galaxies. The probability that a remnant BH receives a total recoil exceeding the ~2000 km/s escape velocity of large elliptical galaxies is ten times larger. Probabilities of recoils exceeding the escape velocity quickly rise to 5% for galaxies with escape velocities of 1000 km/s and nearly 20% for galaxies with escape velocities of 500 km/s. In addition the direction of these large recoils is strongly peaked toward the angular momentum axis, with very low probabilities of recoils exceeding 350 km/s for angles larger than 45 deg. with respect to the orbital angular momentum axis.
We study oscillons, extremely long-lived localized oscillations of a scalar field, with three different potentials: quartic, sine-Gordon model and in a new class of convex potentials. We use an absorbing boundary at the end of the lattice to remove emitted radiation. The energy and the frequency of an oscillon evolve in time and are well fitted by a constant component and a decaying, radiative part obeying a power law as a function time. The power spectra of the emitted radiation show several distinct frequency peaks where oscillons release energy. In two dimensions, and with suitable initial conditions, oscillons do not decay within the range of the simulations, which in quartic theory reach 10^8 time units. While it is known that oscillons in three-dimensional quartic theory and sine-Gordon model decay relatively quickly, we observe a surprising persistence of the oscillons in the convex potential with no sign of demise up to 10^7 time units. This leads us to speculate that an oscillon in such a potential could actually live infinitely long both in two and three dimensions.
The aim of this paper is to report on the existence of a wide variety of exact solutions, ranging from black holes to wormholes, when a conformally coupled scalar field with a self interacting potential containing a linear, a cubic and a quartic self interaction is taken as a source of the energy-momentum tensor, in the Einstein theory with a cosmological constant. Among all the solutions there are two particularly interesting. On the one hand, the spherically symmetric black holes when the cosmological constant is positive; they are shown to be everywhere regular, namely there is no singularity neither inside nor outside the event horizon. On the other hand, there are spherically symmetric and topological wormholes that connect two asymptotically (anti) de Sitter regions with a different value for the cosmological constant. The regular black holes and the wormholes are supported by everywhere regular scalar field configurations.
The cosmological consequences of the f(R) gravity are reviewed in the framework of recent data obtained by PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) experiment. This collaboration has reported an excess of positron events that cannot be explained by conventional cosmology and particle physics, and are usually ascribed to the dark matter presence (in particular, weak interacting massive particles). The dark matter interpretation of PAMELA data has motivated the study of alternative cosmological models (with respect to the standard cosmology) owing to the fact that they predict an enhancement of the Hubble expansion rate, giving rise in such a way to thermal relics with a larger relic abundance. In this paper we face this problem for f(R) gravity models assuming a power law correction to the standard action of General Relativity, i.e. f(R) = R + \alpha R^n. In the regime in which the energy density induced by (higher order) curvature terms are greater than (or of the order of) the energy density of standard radiation, we find that the exponent n must assume values n > 1. In the opposite regime, taking into account the constraints provided by big bang nucleosynthesis, we get n < 1 + 2 \times 10^-3. The latter bound excludes the model f(R) = R + \alpha R^2. Our analysis shows that the considered model allows to explain the PAMELA puzzle for dark matter relic particles with masses greater or lesser than 10^2 GeV.
We determine the sensitivity to a possible variation of the proton-to-electron mass ratio \mu for torsion-wagging-rotation transitions in the ground state of methylamine (CH3NH2). Our calculation uses an effective Hamiltonian based on a high-barrier tunneling formalism combined with extended-group ideas. The \mu-dependence of the molecular parameters that are used in this model are derived and the most important ones of these are validated using the spectroscopic data of different isotopologues of methylamine. We find a significant enhancement of the sensitivity coefficients due to energy cancellations between internal rotational, overall rotational and inversion energy splittings. The sensitivity coefficients of the different transitions range from -19 to +24. The sensitivity coefficients of the 78.135, 79.008, and 89.956 GHz transitions that were recently observed in the disk of a z = 0.89 spiral galaxy located in front of the quasar PKS 1830-211 [S. Muller et al. Astron. Astrophys. 535, A103 (2011)] were calculated to be -0.87 for the first two and -1.4 for the third transition, respectively. From these transitions a preliminary upper limit for a variation of the proton to electron mass ratio of \Delta \mu/\mu< 9 x 10^{-6} is deduced.
We study the dynamics in the neighborhood of simple and double unstable periodic orbits in a rotating 3D autonomous Hamiltonian system of galactic type. In order to visualize the four dimensional spaces of section we use the method of color and rotation. We investigate the structure of the invariant manifolds that we found in the neighborhood of simple and double unstable periodic orbits in the 4D spaces of section. We consider orbits in the neighborhood of the families x1v2, belonging to the x1 tree, and the z-axis (the rotational axis of our system). Close to the transition points from stability to simple instability, in the neighborhood of the bifurcated simple unstable x1v2 periodic orbits we encounter the phenomenon of stickiness as the asymptotic curves of the unstable manifold surround regions of the phase space occupied by rotational tori existing in the region. For larger energies, away from the bifurcating point, the consequents of the chaotic orbits form clouds of points with mixing of color in their 4D representations. In the case of double instability, close to x1v2 orbits, we find clouds of points in the four dimensional spaces of section. However, in some cases of double unstable periodic orbits belonging to the z-axis family we can visualize the associated unstable eigensurface. Chaotic orbits close to the periodic orbit remain sticky to this surface for long times (of the order of a Hubble time or more). Among the orbits we studied we found those close to the double unstable orbits of the x1v2 family having the largest diffusion speed.
We present an updated analysis of the constrained minimal supersymmetric standard model with mu>0 supplemented by an `asymptotic' Yukawa coupling quasi-unification condition, which allows an acceptable b-quark mass. Imposing constraints from the cold dark matter abundance in the universe, B physics, the muon anomalous magnetic moment, and the mass m_h of the lightest neutral CP-even Higgs boson, we find that the lightest neutralino cannot act as a cold dark matter candidate. This is mainly because the upper bound on the lightest neutralino relic abundance from cold dark matter considerations, despite the fact that this abundance is drastically reduced by neutralino-stau coannihilations, is incompatible with the recent data on the branching ratio of B_s --> mu^+ mu^-. Allowing for a different particle, such as the axino or the gravitino, to be the lightest supersymmetric particle and, thus, constitute the cold dark matter in the universe, we find that the predicted m_h's in our model favor the range (119-126) GeV.
The gravitational wave signature emitted from a merging binary depends on the orientation of an observer relative to the binary. Previous studies suggest that emission along the total initial or total final angular momenta leads to both the strongest and simplest signal from a precessing compact binary. In this paper we describe a concrete counterexample: a binary with $m_1/m_2=4$, $a_1=0.6 \hat{x} = -a_2$, placed in orbit in the x,y plane. We extract the gravitational wave emission along several proposed emission directions, including the initial (Newtonian) orbital angular momentum; the final (~ initial) total angular momentum; and the dominant principal axis of $<L_a L_b>_M$. Using several diagnostics, we show that the suggested preferred directions are not representative. For example, only for a handful of other directions (< 15%) will the gravitational wave signal have comparable shape to the one extracted along each of these fiducial directions, as measured by a generalized overlap (>0.95). We conclude that the information available in just one direction (or mode) does not adequately encode the complexity of orientation-dependent emission for even short signals from merging black hole binaries. Future investigations of precessing, unequal-mass binaries should carefully explore and model their orientation-dependent emission.
Context. A number of millimeter and submillimeter facilities with linear polarization observing capabilities have started operating during last years. These facilities, as well as other previous millimeter telescopes and interferometers, require bright and stable linear polarization calibrators to calibrate new instruments and to monitor their instrumental polarization. The current limited number of adequate calibrators implies difficulties in the acquisition of these calibration observations. Aims. Looking for additional linear polarization calibrators in the millimeter spectral range, in mid-2006 we started monitoring 3C 286, a standard and highly stable polarization calibrator for radio observations. Methods. Here we present the 3 and 1mm monitoring observations obtained between September 2006 and October 2011 with the XPOL polarimeter on the IRAM 30m Millimeter Telescope. Results. Our observations show that 3C 286 is a bright source of constant total flux with 3mm flux density S_3mm = (0.90 \pm 0.02) Jy. The 3mm linear polarization degree (p_3mm = [13.6\pm 0.3]%) and polarization angle (chi_3mm = [37.5\pm 0.8] deg, expressed in the equatorial coordinate system) are also constant during the time span of our observations. Although with poorer time sampling and data quality, our 1mm observations of 3C 286 are also consistent with a constant 1mm source with flux density S_1mm = (0.29 \pm 0.03) Jy. Indeed, our statistical analysis demonstrate that the linear polarization degree and polarization angle of 3C 286 at 1mm (p_1mm = [16.1\pm1.6]%, and chi_1mm = [33.0 \pm 6.8] deg., respectively) are also constant. Conclusions. This, together with the previously known compact structure of 3C 286 -extended by \sim 3.5" in the sky- allow us to propose 3C 286 as a new calibrator for both single dish and interferometric polarization observations at 3mm, and possibly at shorter wavelengths.
Links to: arXiv, form interface, find, astro-ph, recent, 1201, contact, help (Access key information)
We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872,921 galaxies over ~ 10,000 deg^2 between 0.45<z<0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey (BOSS) luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, Ho et al. 2011, to derive the location of Baryon acoustic oscillations (BAO) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D_A/r_s= 9.212 + 0.416 -0.404 at z=0.54, and therefore, D_A= 1411+- 65 Mpc at z=0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D_A is 1.4 \sigma higher than what is expected for the concordance LCDM (Komatsu et al. 2011), in accordance to the trend of other spectroscopic BAO measurements for z >~ 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS (Percival et al. 2010) and WiggleZ (Blake et al. 2011). We refer to our companion papers (Ho et al. 2011; de Putter et al. 2011) for investigations on information of the full power spectrum.
SHARDS (Survey for High-z Absorption Red & Dead Sources) is an unbiased ultra-deep spectro-photometric survey with GTC@OSIRIS aimed at selecting and studying massive passively evolving galaxies at z=1.0-2.3 using a set of 24 medium-band filters (FWHM\sim17 nm) at 500-950 nm in GOODS-N. Our observing strategy is optimized to detect at z>1 the prominent Mg absorption feature at rest-frame ~280 nm, a distinctive, necessary, and sufficient feature of evolved stellar populations. Nonetheless, the data quality allow a plethora of studies on galaxy populations, including Emission Lines Galaxies (ELGs) about which we have started our first science verification project presented in this contribution.
We examine the dust and gas properties of the nearby, barred galaxy M83, which is part of the Very Nearby Galaxy Survey. Using images from the PACS and SPIRE instruments of Herschel, we examine the dust temperature and dust mass surface density distribution. We find that the nuclear, bar and spiral arm regions exhibit higher dust temperatures and masses compared to interarm regions. However, the distribution of dust temperature and mass are not spatially coincident. Assuming a trailing spiral structure, the dust temperature peaks in the spiral arms lie ahead of the dust surface density peaks. The dust mass surface density correlates well with the distribution of molecular gas as traced by CO (J=3-2) images (JCMT) and the star formation rate as traced by H?2 with a correction for obscured star formation using 24 micron emission. Using HI images from THINGS to trace the atomic gas component, we make total gas mass surface density maps and calculate the gas-to-dust ratio. We find a mean gas-to-dust ratio of 84 \pm 4 with higher values in the inner region assuming a constant CO-to-H2 conversion factor. We also examine the gas-to-dust ratio using CO-to-H2 conversion factor that varies with metallicity.
We introduce a new implementation of the FastICA algorithm on simulated LOFAR EoR data with the aim of accurately removing the foregrounds and extracting the 21-cm reionization signal. We find that the method successfully removes the foregrounds with an average fitting error of 0.5 per cent and that the 2D and 3D power spectra are recovered across the frequency range. We find that for scales above several PSF scales the 21-cm variance is successfully recovered though there is evidence of noise leakage into the reconstructed foreground components. We find that this blind independent component analysis technique provides encouraging results without the danger of prior foreground assumptions.
The study of the morphology of galaxies is important in order to understand the formation and evolution of galaxies and their sub-components as a function of luminosity, environment, and star-formation and galaxy assembly over cosmic time. Disentangling the many variables that affect galaxy evolution and morphology, requires large galaxy samples and automated ways to measure morphology. The advent of large digital sky surveys, with unprecedented depth and resolution, coupled with sophisticated quantitative methods for morphology measurement are providing new insights in this fast evolving field of astronomical research.
We present preliminary results of the long term spectral monitoring of two active galactic nuclei with different broad line shapes: Ark 564 and Arp 102B. Ark 564 is a bright nearby narrow line Syfert 1 (NLS1) galaxy with relatively narrow permitted optical emission lines and a high FeII/H${\beta}$ ratio, while Arp 102B is a nearby broad-line radio galaxy with broad double-peaked Balmer emission lines. The spectra of Ark 564 were observed during 11-year period (1999-2009) and the spectra of Arp 102B in the 12-year period (1998-2009), with SAO 6-m and 1-m telescopes (Russia) and the GHAO 2.1-m telescope (Cananea, Mexico).
We study the far infrared (60-500 $\mu$m) colours of late-type galaxies in the $Herschel$ Reference Survey, a K-band selected, volume limited sample of nearby galaxies. The far infrared colours are correlated with each other, with tighter correlations for the indices that are closer in wavelength. We also compare the different colour indices to various tracers of the physical properties of the target galaxies, such as the surface brightness of the ionising and non-ionising stellar radiation, the dust attenuation and the metallicity. The emission properties of the cold dust dominating the far infrared spectral domain are regulated by the properties of the interstellar radiation field. Consistent with that observed in nearby, resolved galaxies, our analysis shows that the ionising and the non-ionising stellar radiation, including that emitted by the most evolved, cold stars, both contribute to the heating of the cold dust component. This work also shows that metallicity is another key parameter characterising the cold dust emission of normal, late-type galaxies. A single modified black body with a grain emissivity index $\beta$=1.5 better fits the observed SPIRE flux density ratios $S250/S350$ vs. $S350/S500$ than $\beta$=2, although values of $\beta$ $\simeq$ 2 are possible in metal rich, high surface brightness galaxies. Values of $\beta$ $\lesssim$ 1.5 better represent metal poor, low surface brightness objects. This observational evidence provides strong constraints for dust emission models of normal, late type galaxies.
We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along 3 orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids respectively. We compare this method to a standard Friends-of-Friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.
Testing the cosmic distance duality relation (CDDR) constitutes an important task for cosmology and fundamental physics since any violation of it would be a clear evidence of new physics. In this {\it Letter}, we propose a new test for the CDDR using only measurements of the gas mass fraction of galaxy clusters from Sunyaev-Zeldovich ($f_{SZE}$) and X-ray surface brightness ($f_{X-ray}$) observations. We show that the relation between current $f_{X-ray}$ and $f_{SZE}$ observations is given by $f_{SZE}=\eta f_{X-ray}$, where $\eta$ quantifies deviations from the CDDR. Since this latter expression is valid for the same object in a given galaxy cluster sample, the method proposed removes possible contaminations from different systematics error sources and redshift differences involved in luminosity and angular diameter distance measurements. We apply this cosmological model-independent methodology to the most recent $f_{X-ray}$ and $f_{SZE}$ data and show that no significant violation of the CDDR is found.
A sample of 18286 radio-loud AGN is presented, constructed by combining the SDSS DR7 with the NVSS and FIRST radio surveys. Using this sample, the differences between `high-excitation' (or `quasar-mode'; HERG) and `low-excitation' (`radio-mode'; LERG) radio galaxies are investigated. A primary difference is the distinct nature of the Eddington-scaled accretion rate onto their central black holes: HERGs typically have accretion rates between 1 and 10% of Eddington, whereas LERGs predominatly accrete at a rate below 1% Eddington. This is consistent with models where the population dichotomy is caused by a switch between radiatively efficient and inefficient accretion modes at low accretion rates. Local radio luminosity functions are derived separately for the two populations, showing that although LERGs dominate at low luminosity and HERGs above 1e26 W/Hz, examples of both classes are found at all radio luminosities. Using the V/Vmax test it is shown that the populations show differential cosmic evolution at fixed radio luminosity: HERGs evolve strongly at all luminosities, while LERGs show weak or no evolution. This suggests that the luminosity-dependent evolution of the radio luminosity function is driven, at least in part, by the changing relative contributions of these two populations with luminosity. The host galaxies of the sources are also distinct: HERGs are typically of lower stellar mass, with lower black hole masses, bluer colours and weaker 4000-Ang breaks indicating younger stellar populations. These results offer strong support to the picture in which HERGs are fuelled at high rates through radiative accretion disks by cold gas, perhaps from mergers and interactions, while LERGs are fuelled via radiatively inefficient flows at low accretion rates, often by gas associated with the hot X-ray haloes of their host galaxy/cluster, as part of a radio-AGN feedback loop (abridged).
Unification Models of Active Galactic Nuclei postulate that all the observed differences between Type 1 and Type 2 objects are due to orientation effects with respect to the line-of-sight to the observer. The key ingredient of these models is the obscuring medium, historically envisaged as a toroidal structure on a parsec scale. However, many results obtained in the last few years are clearly showing the need for a more complex geometrical distribution of the absorbing media. In this paper we review the various pieces of evidence for obscuring media on different scales, from the vicinity of the black hole to the host galaxy, in order to picture an updated unification scenario explaining the complex observed phenomenology. We conclude by mentioning some of the open issues.
Following on after three previous papers discussing the formation of primordial black holes during the radiation-dominated era of the early universe, we present here a further investigation of the critical nature of the collapse. In particular, we focus on the long-lived intermediate state, which appears in collapses of perturbations close to the critical limit, and examine the extent to which this follows a similarity solution, as seen for critical collapse under more idealized circumstances (rather than within the context of an expanding universe, as studied here). We find that a similarity solution is indeed realised, to good approximation, for a region contained within the past light-cone of the forming black hole (and eventual singularity). The self-similarity is not exact, however, and this is explained by the presence within the light-cone of some outer matter still coupled to the expanding universe, which does not participate in the self-similarity. Our main interest, from a cosmological point of view, is in a radiative fluid with equation of state parameter $w=1/3$ (when the pressure $p$ and energy density $e$ are taken to be related by $p = we$). Other values of $w$, in the range $0 - 1$, have also been considered in the literature on critical collapse and we have looked at some of these too, within the context of our calculations, with the aim of gaining further insight into our main case of interest. As expected, we find that the features of scaling-law behaviour, intermediate state and similarity solution are preserved in all of the cases studied but with some interesting variations in the details. As in our previous work, we have started our simulations with initial supra-horizon scale perturbations of a type which could have come from inflation.
Quantum fields written on noncommutative spacetime (Groenewold - Moyal plane) obey twisted commutation relations. In this paper we show that these twisted commutation relations result in Hanbury-Brown Twiss (HBT) correlations that are distinct from that for ordinary bosonic or fermionic fields, and hence can provide us useful information about underlying noncommutative nature of spacetime. The deviation from usual bosonic/fermionic statistics becomes pronounced at high energies, suggesting that a natural place is to look at Ultra High Energy Cosmic Rays (UHECRs). Since the HBT correlations are sensitive only to the statistics of the particles, observations done with UHECRs are capable of providing unambiguous signatures of noncommutativity, without any detailed knowledge of the mechanism and source of origin of UHECRs.
Links to: arXiv, form interface, find, astro-ph, recent, 1201, contact, help (Access key information)
UV and optical surveys are essential to gain insight into the processes driving galaxy formation and evolution. The rest-frame UV emission is key to measure the cosmic SFR. However, UV light is strongly reddened by dust. In starburst galaxies, the UV colour and the attenuation are linked, allowing to correct for dust extinction. Unfortunately, evidence has been accumulating that the relation between UV colour and attenuation is different for normal star-forming galaxies when compared to starburst galaxies. It is still not understood why star-forming galaxies deviate from the UV colour-attenuation relation of starburst galaxies. Previous work and models hint that the role of the shape of the attenuation curve and the age of stellar populations have an important role. In this paper we aim at understanding the fundamental reasons to explain this deviation. We have used the CIGALE SED fitting code to model the far UV to the far IR emission of a set of 7 reasonably face-on spiral galaxies from the HRS. We have explored the influence of a wide range of physical parameters to quantify their influence and impact on the accurate determination of the attenuation from the UV colour, and why normal galaxies do not follow the same relation as starburst galaxies. We have found that the deviation can be best explained by intrinsic UV colour differences between different regions in galaxies. Variations in the shape of the attenuation curve can also play a secondary role. Standard age estimators of the stellar populations prove to be poor predictors of the intrinsic UV colour. These results are also retrieved on a sample of 58 galaxies when considering their integrated fluxes. When correcting the emission of normal star-forming galaxies for the attenuation, it is crucial to take into account possible variations in the intrinsic UV colour as well as variations of the shape of the attenuation curve.
We introduce a new technique that uses galaxy clustering to constrain how satellite galaxies lose stellar mass and contribute to the diffuse "intrahalo light" (IHL). We implement two models that relate satellite galaxy stellar mass loss to the detailed knowledge of subhalo dark matter mass loss. Model 1 assumes that the fractional stellar mass loss of a galaxy is proportional to the fractional amount of dark matter mass loss of its subhalo. Model 2 accounts for a delay in the time that stellar mass is lost since the galaxy resides deep in the potential well of the subhalo which may experience dark matter mass loss for some time before the galaxy is affected. We use these models to predict the stellar masses of a population of galaxies and use abundance matching to predict the clustering of several r-band luminosity threshold samples from the Sloan Digital Sky Survey. Abundance matching assuming no stellar mass loss (akin to abundance matching at the time of subhalo infall) over-estimates the correlation function on small scales (<~ 1 Mpc), while allowing too much stellar mass loss leads to an under-estimate. For each sample, we are thus able to constrain the amount of stellar mass loss required to match the observed clustering. We find that less luminous satellite galaxies experience more efficient stellar mass loss than luminous satellites. From these models, we can infer the amount of stellar mass that is deposited into the IHL. We find that both of our model predictions for the mean amount of IHL as a function of halo mass are consistent with current observational measurements. However, our two models predict a different amount of scatter in the IHL from halo to halo, with Model 2 being favored by observations. This demonstrates that a comparison to IHL measurements provides independent verification of our stellar mass loss models. (Abridged)
We have combined deep photometry in the B,V and I bands from CTIO/MOSAIC of the Sculptor dwarf spheroidal galaxy, going down to the oldest Main Sequence Turn-Offs, with spectroscopic metallicity distributions of Red Giant Branch stars. This allows us to obtain the most detailed and complete Star Formation History to date, as well as an accurate timescale for chemical enrichment. The Star Formation History shows that Sculptor is dominated by old ($>$10 Gyr), metal-poor stars, but that younger, more metal-rich populations are also present. Using Star Formation Histories determined at different radii from the centre we show that Sculptor formed stars with an increasing central concentration with time. The old, metal-poor populations are present at all radii, while more metal-rich, younger stars are more centrally concentrated. We find that within an elliptical radius of 1 degree, or 1.5 kpc from the centre, a total mass in stars of 7.8$\times10^{6}$ M$_{\odot}$ was formed, between 14 and 7 Gyr ago, with a peak at 13$-$14 Gyr ago. We use the detailed Star Formation History to determine age estimates for individual Red Giant Branch stars with high resolution spectroscopic abundances. Thus, for the first time, we can directly determine detailed timescales for the evolution of individual chemical elements. We find that the trends in alpha-elements match what is expected from an extended, relatively uninterrupted period of star formation continuing for 6$-$7 Gyr. The knee in the alpha-element distribution occurs at an age of 10.9$\pm$1Gyr, suggesting that SNe Ia enrichment began $\approx2\pm$1Gyr after the start of star formation in Sculptor.
We revisit the scaling relations and star-forming histories of local elliptical galaxies using a novel selection method applied to the Sloan Digital Sky Survey DR7. We combine two probability-based automated spectroscopic and morphological classifications of about 600000 galaxies with z<0.25 to isolate true elliptical galaxies. Our sample selection method does not introduce artificial cuts in the parameters describing the galaxy but instead it associates to every object a weight measuring the probability of being in a given spectro-morphological class. Thus the sample minimizes the selection biases. We show that morphologically defined ellipticals are basically distributed in 3 spectral classes, which dominate at different stellar masses. The bulk of the population (about 50%) is formed by a well defined class of galaxies with old stellar populations that formed their stars at very early epochs in a short episode of star formation. They dominate the scaling relations of elliptical galaxies known from previous works and represent the canonical elliptical class. At the low mass end, we find a population of slightly larger ellipticals, with smaller velocity dispersions at fixed stellar mass, which seem to have experienced a more recent episode of star formation probably triggered by gas-rich minor mergers. The high mass end tends to be dominated by a third spectral class, slightly more metal rich and with more efficient stellar formation than the reference class. This third class contributes to the curvature of the mass-size relation at high masses reported in previous works. Our method is therefore able to isolate typical spectra of elliptical galaxies following different evolutive pathways.
[Abridged] We make use of a semi-analytic cosmological model that includes simple prescriptions for dust attenuation and emission to make predictions for the observable and physical properties of galaxies that may be detected by the recently launched Herschel Space Observatory in deep fields such as GOODS-Herschel. We compare our predictions for differential galaxy number counts in the PACS (100 & 160) and SPIRE (250, 350, and 500 micron) bands with available observations. We find very good agreement with the counts in the PACS bands, for the overall counts and for galaxies binned by redshift at z< 2. At z > 2 our model underpredicts the number of bright galaxies by a factor of ten. The agreement is much worse for all three SPIRE bands, and becomes progressively worse with increasing wavelength. We discuss a number of possible reasons for these discrepancies, and hypothesize that the effect of blending on the observational flux estimates is likely to be the dominant issue. We note that the PACS number counts are relatively robust to changes in the dust emission templates, while the predicted SPIRE number counts are more template dependent. We present quantitative predictions for the relationship between the observed PACS 160 and SPIRE 250 micron fluxes and physical quantities such as halo mass, stellar mass, cold gas mass, star formation rate, and total infrared (IR) luminosity, at different redshifts. We also present quantitative predictions for the correlation between PACS 160 micron flux and the probability that a galaxy has experienced a recent major or minor merger. Although our models predict a strong correlation between these quantities, such that more IR-luminous galaxies are more likely to be merger-driven, we find that more than half of all high redshift IR-luminous galaxies detected by Herschel are able to attain their high star formation rates without enhancement by a merger.
We investigate the role of the environment on the colour and stellar population gradients in a local sample of ~3500 central and ~1150 satellite SDSS early-type galaxies (ETGs). The environment is parameterized in terms of the number of satellite galaxies, N_gal in each group. For central galaxies, we find that both optical colour and mass-to-light (M/L) ratio gradients are shallower in central galaxies residing in denser environments (higher N_gal). This trend is driven by metallicity gradients, while age gradients appear to be less dependent on the environment and to have a larger scatter. On the other hand, satellites do not show any differences in terms of the environment. The same results are found if galaxies are classified by central age, and both central and satellite galaxies have shallower gradients if they are older and steeper gradients if younger, satellites being independent of ages. In central galaxies, we show that the observed trends can be explained with the occurrence of dry mergings, which are more numerous in denser environments and producing shallower colour gradients because of more uniform metallicity distributions due to the mixing of stellar populations, while no final clues about merging occurrence can be obtained for satellites. Finally we discuss all systematics on stellar population fitting and their impact on the final results.
We performed an integrated optical polarization survey of 70 nearby galaxies to study the relationship between linear polarization and galaxy properties. To date this is the largest survey of its kind. The data were collected at McDonald Observatory using the Imaging Grism Polarimeter on the Otto Struve 2.1m telescope. Most of the galaxies did not have significant level of linear polarization, where the bulk is <1%. A fraction of the galaxies showed a loose correlation between the polarization and position angle of the galaxy, indicating that dust scattering is the main source of optical polarization. The unbarred spiral galaxies are consistent with the predicted relationship with inclination from scattering models of ~sin^2i.
Accretion of minor satellites has been postulated as the most likely mechanism to explain the significant size evolution of the massive galaxies over cosmic time. Using a sample of 629 massive (Mstar~10^11 Msun) galaxies from the near-infrared Palomar/DEEP-2 survey, we explore which fraction of these objects has satellites with 0.01 Msat < Mcentral < 1 (1:100) up to z=1 and which fraction has satellites with 0.1 Msat < Mcentral < 1 (1:10) up to z=2 within a projected radial distance of 100 kpc. We find that the fraction of massive galaxies with satellites, after the background correction, remains basically constant and close to ~30% for satellites with a mass ratio down to 1:100 up to z=1, and ~15% for satellites with a 1:10 mass ratio up to z=2. The family of spheroid-like massive galaxies presents a 2-3 times larger fraction of objects with satellites than the group of disk-like massive galaxies. A crude estimation of the number of 1:3 mergers a massive spheroid-like galaxy experiences since z~2 is around 2. For a disk-like galaxy this number decreases to ~1.
We investigate the constraints that can be placed on the cosmic string tension by using the current Pulsar Timing Array limits on the stochastic gravitational wave background (SGWB). We have developed a code to compute the spectrum of gravitational waves (GWs) based on the widely accepted one-scale model. In its simplest form the one-scale model allows one to vary: (i) the string tension, G\mu/c^2; (ii) the size of cosmic string loops relative to the horizon at birth, \alpha; (iii) the spectral index of the emission spectrum, q; (iii) the cut-off in the emission spectrum, n_*; and (v) the intercommutation probability, p. The amplitude and slope of the spectrum in the nHz frequency range is very sensitive to these unknown parameters. We have also investigated the impact of more complicated scenarios with multiple initial loop sizes, in particular the 2-\alpha models proposed in the literature and a log-normal distribution for \alpha. We have computed the constraint on G\mu/c^2 due to the limit on a SGWB imposed by data from the European Pulsar Timing Array. Taking into account all the possible uncertainties in the parameters we find a conservative upper limit of G\mu/c^2<5.3x 10^{-7} which typically occurs when the loop production scale is close to the gravitational backreaction scale, \alpha\approx\Gamma G\mu/c^2. Stronger limits are possible for specific values of the parameters which typically correspond to the extremal cases \alpha\ll \Gamma G\mu/c^2 and \alpha\gg \Gamma G\mu/c^2. This limit is less stringent than the previously published limits which are based on cusp emission, an approach which does not necessarily model all the possible uncertainties. We discuss the prospects for lowering this limit by two orders of magnitude, or even a detection of the SGWB, in the very near future in the context of the Large European Array for Pulsars and the Square Kilometre Array.
In this paper we explore the effect of decaying dark matter (DDM) on large-scale structure and possible constraints from galaxy imaging surveys. DDM models have been studied, in part, as a way to address apparent discrepancies between the predictions of standard cold dark matter models and observations of galactic structure. Our study is aimed at developing independent constraints on these models. In such models, DDM decays into a less massive, stable dark matter (SDM) particle and a significantly lighter particle. The small mass splitting between the parent DDM and the daughter SDM provides the SDM with a recoil or "kick" velocity vk, inducing a free-streaming suppression of matter fluctuations. This suppression may be probed via weak lensing power spectra measured by a number of forthcoming imaging surveys that aim primarily to constrain dark energy. Using scales on which linear perturbation theory alone is valid (multipoles < 300), surveys like Euclid or LSST can be sensitive to vk > 90 km/s for lifetimes ~ 1-5 Gyr. To estimate more aggressive constraints, we model nonlinear corrections to lensing power using a simple halo evolution model that is in good agreement with numerical simulations. In our most ambitious forecasts, using multipoles < 3000, we find that imaging surveys can be sensitive to vk ~ 10 km/s for lifetimes < 10 Gyr. Lensing will provide a particularly interesting complement to existing constraints in that they will probe the long lifetime regime far better than contemporary techniques. A caveat to these ambitious forecasts is that the evolution of perturbations on nonlinear scales will need to be well calibrated by numerical simulations before they can be realized. This work motivates the pursuit of such a numerical simulation campaign to constrain dark matter with cosmological weak lensing.
The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of "dark energy" with exotic physical properties, or that Einstein's theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious experimental efforts to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit "Stage IV" dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock-Paczynski test, and direct measurements of H_0. We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from GR, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and CMB data. We also show the level of precision required for other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets with broad applications, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over ever larger scales.
In this paper we point out that redshift surveys can break the degeneracy between the galaxy bias, the power spectrum normalization, \sigma_{8,0} and the growth factor, without the need for external information by using a simple and rather general parameterization for the growth rate, the well known \gamma-parameterization. We find that in next-generation surveys like Euclid \sigma_{8,0} and \gamma can be measured to within 1%, 5%, respectively, while the bias b(z) can be measured to within 1-2% in every redshift bin.
We discuss selected large-scale anomalies in the maps of temperature anisotropies in the cosmic microwave background. Specfically, these include alignments of the largest modes of CMB anisotropy with one another and with the geometry and direction of motion of the Solar System, and the unexpected absence of two-point angular corellations especially outside the region of the sky most contaminated by the Galaxy. We discuss these findings in relation to expectations from standard inflationary cosmology. This paper is adapted from a talk given by one of us (GDS) at the SEENET-2011 meeting in August 2011 on the Serbian bank of the Danube River.
The difference between vacuum energy of quantum fields in Minkowski space and in Friedmann-Robterson-Walker universe might be related to the observed dark energy. The vacuum energy of the Veneziano ghost field introduced to solve the $U(1)_A$ problem in QCD is of the form, $ H+ {\cal O}(H^2)$. Based on this, we study the dynamical evolution of a phenomenological dark energy model whose energy density is of the form $\alpha H+\beta H^2$. In this model, the universe approaches to a de Sitter phase at late times. We fit the model with current observational data including SnIa, BAO, CMB, BBN, Hubble parameter and growth rate of matter perturbation. It shows that the universe begins to accelerate at redshift $z\sim 0.75$ and this model is consistent with current data. In particular, this model fits the data of growth factor well as the $\Lambda CDM$ model.
We solve for the velocity fields of momentum-conserving supershells driven by feedback from supermassive black holes or nuclear star clusters (central massive objects: CMOs). We treat, for the first time, the case of CMOs embedded in gaseous protogalaxies with non-isothermal dark matter haloes having peaked circular-speed profiles. We find the CMO mass that is sufficient to drive any shell to escape any such halo. In the limit of large halo mass, relevant to real galaxies, this critical CMO mass depends only on the peak circular speed in the halo, scaling as M_crit \propto V_c,pk^4.
In this letter we compute stringent astrophysical and cosmological constraints on a recently proposed Eddington-inspired Born-Infeld theory of gravity. We find, using a generalized version of the Zel'dovich approximation, that in this theory a pressureless cold dark matter fluid has a non-zero effective sound speed. We compute the corresponding effective Jeans length and show that it is approximately equal to the fundamental length of the theory $R_*=\kappa^{1/2} G^{-1/2}$, where $\kappa$ is the only additional parameter of theory with respect to general relativity and $G$ is the gravitational constant. This scale determines the minimum size of compact objects which are held together by gravity. We also estimate the critical mass above which pressureless compact objects are unstable to colapse into a black hole, showing that it is approximately equal to the fundamental mass $M_* = \kappa^{1/2} c^2 G^{-3/2}$, and we show that the maximum density attainable inside stable compact stars is roughly equal to the fundamental density $\rho_*=\kappa^{-1} c^2$, where $c$ is the speed of light in vacuum. We find that the mere existence of astrophysical objects of size $R$ which are held together by their own gravity leads to the constraint $\kappa < G R^2$. In the case of neutron stars this implies that $\kappa < 10^{-2} \, {\rm m^5 \, kg^{-1} \, s^{-2}}$, a limit which is stronger by about 10 orders of magnitude than big bang nucleosynthesis constraints and by more than 7 orders of magnitude than solar constraints.
Power spectra of de-projected images of late-type galaxies in gas and/or dust emission are very useful diagnostics of the dynamics and stability of their interstellar medium. Previous studies have shown that the power spectra can be approximated as two power-laws, a shallow one at large scales (larger than 500 pc) and a steeper one at small scales, with the break between the two corresponding to the line-of-sight thickness of the galaxy disk. We present a thorough analysis of the power spectra of the dust and gas emission at several wavelengths in the nearby galaxy M33. In particular, we use the recently obtained images at five wavelengths by PACS and SPIRE onboard Herschel. The large dynamical range (2-3 dex in scale) of most images allow us to determine clearly the change in slopes from -1.5 to -4, with some variations with wavelength. The break scale is increasing with wavelength, from 100 pc at 24 and 100micron to 350 pc at 500micron, suggesting that the cool dust lies in a thicker disk than the warm dust, may be due to star formation more confined to the plane. The slope at small scale tends to be steeper at longer wavelength, meaning that the warmer dust is more concentrated in clumps. Numerical simulations of an isolated late-type galaxy, rich in gas and with no bulge, like M33, are carried out, in order to better interpret these observed results. Varying the star formation and feedback parameters, it is possible to obtain a range of power-spectra, with two power-law slopes and breaks, which nicely bracket the data. The small-scale power-law is indeed reflecting the 3D behaviour of the gas layer, steepening strongly while the feedback smoothes the structures, by increasing the gas turbulence. M33 appears to correspond to a fiducial model with an SFR of $\sim$ 0.7 Mo/yr, with 10% supernovae energy coupled to the gas kinematics.
We present a brief description of a model for the broad emission line region (BELR) in quasars, which is supported by analysis of CIV and other emission lines in the spectra of high-z SDSS quasars. Specifically we consider a two-component BELR with a disk and wind where the relative strength of each component is a function of luminosity. The implications of such a model for our understanding of quasar outflows and estimates of their black hole masses and accretion rates are discussed.
We present a detailed analysis of the global and fine structure of four middle-mass disc galaxies obtained from simulations in a $\Lambda$CDM scenario. These objects have photometric D/T ratios in good agreement with those observed for late-type spirals, as well as kinematic properties in agreement with the observational Tully-Fisher relation. We identify the different dynamical components at z=0 on the basis of both orbital parameters and the binding energy of stars in the galaxy. In this way, we recognize a slowly rotating centrally concentrated spheroid, and two disc components supported by rotation: a thin disc with stars in nearly circular orbits, and a thick disc with orbital parameters transitional between the thin disc and the spheroid. The spheroidal component is composed mainly by old, metal-poor and {\alpha}-enhanced stars. The distribution of metals in this component shows, however, a clear bimodality with a low-metallicity peak, which could be related to a classical bulge, and a high-metallicity peak, which could be related to a pseudo-bulge. The thin disc appears in our simulations as the youngest and most metal-rich component. The radial distribution of ages and colours in this component are U-shaped: the new stars are forming in the inner regions, and then migrate through secular processes. Finally, we also find a thick disc containing about 16% of the total stellar mass and with properties that are intermediate between those of the thin disc and the spheroid. Its low-metallicity stars are {\alpha}-enhanced when compared to thin disc stars of the same metallicity. The structural parameters (e.g., the scale height) of the simulated thick discs suggest that such a component could result from the combination of different thickening mechanisms that include merger-driven processes, but also long-lived internal perturbations of the thin disc. [Abridged]
Context. Gravitational lensing is one of the leading tools in understanding the dark side of the Universe. The need for accurate, efficient and effective methods which are able to extract this information along with other cosmological parameters from cosmic shear data is ever growing. COSEBIs, Complete Orthogonal Sets of E-/B-Integrals, is a recently developed statistical measure that encompasses the complete E-/B-mode separable information contained in the shear correlation functions measured on a finite angular range. Aims. The aim of the present work is to test the properties of this newly developed statistics for a higher-dimensional parameter space and to generalize and test it for shear tomography. Methods. We use Fisher analysis to study the effectiveness of COSEBIs. We show our results in terms of figure-of-merit quantities, based on Fisher matrices. Results. We find that a relatively small number of COSEBIs modes is always enough to saturate to the maximum information level. This number is always smaller for 'logarithmic COSEBIs' than for 'linear COSEBIs', and also depends on the number of redshift bins, the number and choice of cosmological parameters, as well as the survey characteristics. Conclusions. COSEBIs provide a very compact way of analyzing cosmic shear data, i.e., all the E-/B-mode separable second-order statistical information in the data is reduced to a small number of COSEBIs modes. Furthermore, with this method the arbitrariness in data binning is no longer an issue since the COSEBIs modes are discrete. Finally, the small number of modes also implies that covariances, and their inverse, are much more conveniently obtainable, e.g., from numerical simulations, than for the shear correlation functions themselves.
We discuss the theory and implementation of statistically rigorous fits to synchrotron self Compton models for datasets obtained from multi-wavelength observations of active galactic nuclei spectral energy distributions. The methods and techniques that we present are, then, exemplified reporting on a recent study of a nearby and well observed extragalactic source, Markarian 421.
From the viewpoint of no-cloning theorem we postulate a relation between the current accelerated expansion of our universe and the inflationary expansion in the very early universe. It implies that the fate of our universe should be in a state with accelerated expansion. Quantitatively we find that the no-cloning theorem leads to a lower bound on the cosmological constant which is compatible with observations.
We report the discovery of a Type Ia supernova (SNIa) at redshift z=1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field, and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SNIa with direct spectroscopic evidence for classification. It is also the first SN Ia at z>1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z>1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z~2, providing a complementary constraint on SN Ia progenitor models.
Self-consistent account of the most simple non-gauge vector fields leads to a broad spectrum of regular scenarios of temporal evolution of the Universe completely within the frames of the Einstein's General relativity. The longitudinal non-gauge vector field is "the missing link in the chain", displaying the repulsive elasticity and allowing the macroscopic description of the main features of the Universe evolution. The singular Big Bang turns into a regular inflation-like state of maximum compression with the further accelerated expansion at late times. The parametric freedom of the theory allows to forget the troubles of fine tuning. In the most interesting cases the analytical solutions of the Einstein's equations are found.
It has been pointed out recently that the presence of dilaton field in the early Universe can dilute the neutralino dark matter (DM) abundance, if Universe is not radiation dominated at DM decoupling, due to its dissipative-like coupling to DM. In this scenario two basic mechanisms compete, the modified Hubble expansion rate tending to increase the relic density and a dissipative force that tends to decrease it. The net effect can lead to an overall dramatic decrease of the predicted relic abundance, sometimes by amounts of the order of O(10^2) or so. This feature is rather generic, independent of any particular assumption on the underlying string dynamics, provided dilaton dominates at early eras after the end of inflation but before Big Bang Nucleosynthesis (BBN). The latter ensures that BBN is not upset by the presence of the dilaton. In this paper, within the context of such a scenario, we study the phenomenology of the constrained minimal supersymmetric model (CMSSM) by taking into account all recent experimental constraints, including those from the LHC searches. We find that the allowed parameter space is greatly enlarged and includes regions that are beyond the reach of LHC. The allowed regions are compatible with Direct Dark Matter searches since the small neutralino annihilation rates, that are now in accord with the cosmological data on the relic density, imply small neutralino-nucleon cross sections below the sensitivities of the Direct Dark Matter experiments. It is also important that the new cosmologically accepted regions are compatible with Higgs boson masses larger than 120 GeV, as it is indicated from the LHC experimental data.
We study the non-thermal jet emission of the BL Lac object B3 2247+381 during a high optical state. The MAGIC telescopes observed the source during 13 nights between September 30th and October 30th 2010, collecting a total of 14.2 hours of good quality very high energy (VHE) $\gamma$-ray data. Simultaneous multiwavelength data was obtained with X-ray observations by the Swift satellite and optical R-band observations at the KVA-telescope. We also use high energy $\gamma$-ray (HE, 0.1 GeV-100 GeV) data from the Fermi satellite. The BL Lac object B3 2247+381 (z=0.119) was detected, for the first time, at VHE $\gamma$-rays at a statistical significance of 5.6 $\sigma$. A soft VHE spectrum with a photon index of -3.2 $\pm$ 0.6 was determined. No significant short term flux variations were found. We model the spectral energy distribution using a one-zone SSC-model, which can successfully describe our data.
The observational relation between the density of baryon and dark matter in the Universe, $\Omega_{\rm DM}/\Omega_B\simeq 5$, is one of the most difficult problems to solve in modern cosmology. We discuss a scenario that explains this relation by combining the asymmetric dark matter scenario and the spontaneous baryogenesis associated with the flat direction in the supersymmetric standard model. A part of baryon asymmetry is transferred to charge asymmetry $D$ that dark matter carries, if a symmetry violating interaction that works at high temperature breaks not only $B-L$ but also $D$ symmetries simultaneously. In this case, the present number density of baryon and dark matter can be same order if the symmetric part of dark matter annihilates sufficiently. Moreover, the baryon number density can be enhanced as compared to that of dark matter if another $B-L$ violating interaction is still in thermal equilibrium after the spontaneous genesis of dark matter, which accommodates a TeV scale asymmetric dark matter model.
We argue that the local violation of P and CP invariance in heavy ion collisions and the universal thermal aspects observed in high energy collisions are in fact two sides of the same coin, and both are related to quantum anomalies of QCD. We argue that the low energy relations representing the quantum anomalies of QCD are saturated by coherent low dimensional vacuum configurations as observed in Monte Carlo lattice studies. The thermal spectrum and approximate universality of the temperature with no dependence on energy of colliding particles in this framework is due to the fact that the emission results from the distortion of these low dimensional vacuum sheets rather than from the colliding particles themselves. The emergence of the long- range correlations of P odd domains (a feature which is apparently required for explanation of the asymmetry observed at RHIC and LHC) is also a result of the same distortion of the QCD vacuum configurations. We formulate the corresponding physics using the effective low energy effective Lagrangian. We also formulate the same physics in terms of the dual holographic picture when low-dimensional sheets of topological charge embedded in 4d space, as observed in Monte Carlo simulations, are identified with D2 branes. Finally, we argue that study of these long range correlations in heavy ion collisions could serve as a perfect test of a proposal that the observed dark energy in present epoch is a result of a tiny deviation of the QCD vacuum energy in expanding universe from its conventional value in Minkowski spacetime.
Links to: arXiv, form interface, find, astro-ph, recent, 1201, contact, help (Access key information)