We study the effect of local stellar radiation and UVB on the physical properties of DLAs and LLSs at z=3 using cosmological SPH simulations. We post-process our simulations with the ART code for radiative transfer of local stellar radiation and UVB. We find that the DLA and LLS cross sections are significantly reduced by the UVB, whereas the local stellar radiation does not affect them very much except in the low-mass halos. This is because clumpy high-density clouds near young star clusters effectively absorb most of the ionizing photons from young stars. We also find that the UVB model with a simple density threshold for self-shielding effect can reproduce the observed column density distribution function of DLAs and LLSs very well, and we validate this model by direct radiative transfer calculations of stellar radiation and UVB with high angular resolution. We show that, with a self-shielding treatment, the DLAs have an extended distribution around star-forming regions typically on ~ 10-30 kpc scales, and LLSs are surrounding DLAs on ~ 30-60 kpc scales. Our simulations suggest that the median properties of DLA host haloes are: Mh = 2.4*10^10 Msun, SFR = 0.3 Msun/yr, M* = 2.4*10^8 Msun, and Z/Zsun = 0.1. About 30 per cent of DLAs are hosted by haloes having SFR = 1 - 20 Msun/yr, which is the typical SFR range for LBGs. More than half of DLAs are hosted by the LBGs that are fainter than the current observational limit. Our results suggest that fractional contribution to LLSs from lower mass haloes is greater than for DLAs. Therefore the median values of LLS host haloes are somewhat lower with Mh = 9.6*10^9 Msun, SFR = 0.06 Msun/yr, M* = 6.5*10^7 Msun and Z/Zsun = 0.08. About 80 per cent of total LLS cross section are hosted by haloes with SFR < 1 Msun/yr, hence most LLSs are associated with low-mass halos with faint LBGs below the current detection limit.
We calculate the angular power spectrum of galaxies selected from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) by using a quadratic estimation method with KL-compression. The primary data sample includes over 18 million galaxies covering more than 5,700 square degrees after masking areas with bright objects, reddening greater than 0.2 magnitudes, and seeing of more than 1.5 arcseconds. We test for systematic effects by calculating the angular power spectrum by SDSS stripe and find that these measurements are minimally affected by seeing and reddening. We calculate the angular power spectrum for l \leq 200 multipoles by using 40 bandpowers for the full sample, and l \leq 1000 multipoles using 50 bandpowers for individual stripes. We also calculate the angular power spectrum for this sample separated into 3 magnitude bins with mean redshifts of z = 0.171, z = 0.217, and z = 0.261 to examine the evolution of the angular power spectrum. We determine the theoretical linear angular power spectrum by projecting the 3D power spectrum to two dimensions for a basic comparison to our observational results. By minimizing the {\chi}^2 fit between these data and the theoretical linear angular power spectrum we measure a loosely-constrained fit of {\Omega}_m = 0.31^{+0.18}_{-0.11} with a linear bias of b = 0.94 \pm 0.04.
The leading candidate for the very early universe is described by a period of rapid expansion known as inflation. While the standard paradigm invokes a single slow-rolling field, many different models may be constructed which fit the current observational evidence. In this work we outline theoretical and observational studies of non-Gaussian fluctuations produced by models of inflation and by cosmic strings - topological defects that may be generated in the very early universe during a phase transition. In particular, we consider the imprint of cosmic strings on the cosmic microwave background (CMB) and describe a formalism for the measurement of general four-point correlation functions, or trispectra, using the CMB. In addition we describe the application of our methodology to non-Gaussian signals imprinted in the large scale structure of the universe. Such deviations from Gaussianity are generally expressed in terms of the so-called bispectrum and trispectrum.
We report on a Suzaku measurement of the shock feature associated with the western radio relic in the merging cluster A3376. The temperature profile is characterized by an almost flat radial shape with kT ~ 4 keV within 0.5 r200 and a rise by about 1 keV inside the radio relic. Across the relic region (0.6-0.8 r200), the temperature shows a remarkable drop from about 4.7 keV to 1.3 keV. This is a clear evidence that the radio relic really corresponds to a shock front possibly caused by a past major merger. The observed sharp changes of the temperature and electron density indicate the Mach number M~3. The radial entropy profile is flatter than the prediction (r^1.1) of numerical simulations within 0.5 r200}, and becomes steeper around the relic region. These observed features and time-scale estimation consistently imply that the ICM around the radio relic has experienced a merger shock and is in the middle of the process of dynamical and thermal relaxation.
We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to ISM-ICM interaction, albeit to a lesser degree. Based on the abundances of 3 H I deficient spirals and 2 H I normal spirals, we observe a heavy element abundance offset of +0.13\pm0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log(O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.
Aims. The detection and measurement of gravitational-waves from coalescing
neutron-star binary systems is an important science goal for ground-based
gravitational-wave detectors. In addition to emitting gravitational-waves at
frequencies that span the most sensitive bands of the LIGO and Virgo detectors,
these sources are also amongst the most likely to produce an electromagnetic
counterpart to the gravitational-wave emission. A joint detection of the
gravitational-wave and electromagnetic signals would provide a powerful new
probe for astronomy.
Methods. During the period between September 19 and October 20, 2010, the
first low-latency search for gravitational-waves from binary inspirals in LIGO
and Virgo data was conducted. The resulting triggers were sent to
electromagnetic observatories for followup. We describe the generation and
processing of the low-latency gravitational-wave triggers. The results of the
electromagnetic image analysis will be described elsewhere.
Results. Over the course of the science run, three gravitational-wave
triggers passed all of the low-latency selection cuts. Of these, one was
followed up by several of our observational partners. Analysis of the
gravitational-wave data leads to an estimated false alarm rate of once every
6.4 days, falling far short of the requirement for a detection based solely on
gravitational-wave data.
In the past decade or so observations of supernovae, Large Scale Structures (LSS), and Cosmic Microwave Background (CMB) have confirmed the presence of what is called dark energy, and measured its density as well as the value of other cosmological parameters according to concordance - Lambda-CDM model with few percent uncertainties. Next generation of surveys will allow to distinguish between a Lambda-CDM and alternative models such as modified gravity and (interacting)-quintessence models. In this work we parametrize homogeneous and anisotropic components of matter density in the context of interacting dark energy models with the goal discriminating between f(R) modified gravity and its generalization, and interacting dark energy models, for which we also propose a phenomenological description of energy-momentum conservation equations inspired by particle physics. It is based on the fact that the simplest interactions between particles/fields are elastic scattering and decay. The parametrization of growth rate proposed here is nonetheless general and can be used to constrain other interactions. We also present a crude estimation of the accuracy of the measurement of these parameters using Euclid and Planck surveys data.
The angular clustering of 230,829 photometrically selected quasar candidates from SDSS NBCKDE catalogue with photometric redshifts within the range 0.8<z_phot<2.2 is studied with the help of the angular two-point correlation function. For this purpose own technique of the random catalogue generation was investigated and used. The obtained angular 2pCF of photometrically selected quasars within 0.6'-40' scales is fitted well with the power-low w(\theta)=(\theta_0/\theta)^{\alpha} with parameters \theta_0=2.3^{+1.0}_{-0.9} arcsec and \alpha=0.87\pm0.06, that agree well with previous studies of earlier releases of this catalogue, as well as with the results on clustering of X-ray point sources which are mostly active galactic nuclei. Investigation of the sample showed that except the well-known stellar contamination of photometrically selected quasar candidates there is also a small (about 0.1%) contamination by artifacts of the automatic selection technique of point-like sources, like star formation regions in spiral galaxies or parts of interference crosses of bright stars.
One possibility for explaining the apparent accelerating expansion of the universe is that we live in the center of a spherically inhomogeneous universe. Although current observations cannot fully distinguish $\Lambda$CDM and these inhomogeneous models, direct measurement of the acceleration of the universe can be a powerful tool in probing them. We have shown that, if $\Lambda$CDM is the correct model, DECIGO/BBO would be able to detect the positive redshift drift (which is the time evolution of the source redshift $z$) in 3--5 year gravitational wave (GW) observations from neutron-star binaries, which enables us to rule out any Lema\^itre-Tolman-Bondi (LTB) void model with monotonically increasing density profile. We may even be able to rule out any LTB model unless we allow unrealistically steep density profile at $z\sim 0$. This test can be performed with GW observations alone, without any reference to electromagnetic observations, and is more powerful than the redshift drift measurement using Lyman $\alpha$ forest.
We present a new more accurate approach to the composite spectra construction based on stacking spectra with similar slopes \alpha_\lambda\ within the wavelength range redward of Ly\alpha\ emission line, which allows to reduce a noise. With the help of this technique a detailed study of the HI Ly\alpha-forest region (\lambda_rest~1050-1200 \AA) of the own sample of 3,439 medium-resolution quasar spectra from SDSS DR7 was performed. More than 14 lines were found within it, three of which were found in previous studies of quasar composite spectra from SDSS and some others were found in composite spectra from space-based telescopes or high-resolution spectra of individual quasars from ground-based telescopes. The parameters of these lines were calculated. It was shown that the continuum level within the Ly\alpha-forest region cannot be considered as a power-low with the same slope as in the region redward of Ly\alpha\ emission line. Any dependence of the slope \alpha_\lambda\ on luminosity in SDSS u, g, r and i bands as far as on luminosity in 1450-1470 \AA\ band was not found. The proposed approach can be applied for generation of new templates for more precise quasar redshift measurements, theoretical determination of K-correction and color-indexes, as far as for determination of continuum and mean transmission in Ly\alpha-forest studies. It was shown that the uncertainties in the mean transmission caused by using the composite spectra made with common approach can constitute about 20%.
We study the effect of primordial magnetic fields (PMFs) on the anisotropies of the cosmic microwave background (CMB). We assume the spectrum of PMFs is described by log-normal distribution which has a characteristic scale, rather than power-law spectrum. This scale is expected to reflect the generation mechanisms and our analysis is complementary to previous studies with power-law spectrum. We calculate power spectra of energy density and Lorentz force of the log-normal PMFs, and then calculate CMB temperature and polarization angular power spectra from scalar, vector, and tensor modes of perturbations generated from such PMFs. By comparing these spectra with WMAP7, QUaD, CBI, Boomerang, and ACBAR data sets, we find that the current CMB data set places the strongest constraint at $k\simeq 10^{-2.5}$ Mpc$^{-1}$ with the upper limit $B\lesssim 3$ nG.
We present the results of CO (J=1-0) observations towards nine barred spiral galaxies at z=0.08-0.25 using the 45-m telescope at Nobeyama Radio Observatory (NRO). This survey is the first one specialized for barred spiral galaxies in this redshift range. We detected CO emission from six out of nine galaxies, whose CO luminosity (L_CO') ranges (1.09-10.8)\times10^9 K km s^{-1} pc^2. These are the infrared (IR) dimmest galaxies that have ever been detected in CO at z~0.1 to date. They follow the L_CO'-L_IR relation among local spiral galaxies, Luminous Infrared Galaxies (LIRGs), Ultra-Luminous Infrared Galaxies (ULIRGs) and Sub-millimeter Galaxies (SMGs). Their L_CO' and L_IR are higher than that of local spiral galaxies which have been detected in CO so far, and L_IR/L'_CO, which is a measure of star formation efficiency, is comparable to or slightly higher than that of local ones. This result suggests that these galaxies are forming stars more actively than local spirals galaxies simply because they have more fuel.
We consider inflationary models in which vector fields are responsible for part or eventually all of the primordial curvature perturbation \zeta. Such models are phenomenologically interesting since they naturally introduce anisotropies in the probability distribution function of the primordial fluctuations that can leave a measurable imprint in the cosmic microwave background. Assuming that non-Gaussianity is generated due to the superhorizon evolution, we use the \delta N formalism to do a complete tree level calculation of the non-Gaussianity parameters f_{NL} and \tau_{NL} in the presence of vector fields. We isolate the isotropic pieces of the non-Gaussianity parameters, which anyway have contributions from the vector fields, and show that they obey the Suyama-Yamaguchi consistency relation \tau^{iso}_{NL}>=(6/5f^{iso}_{NL})^2. Other ways of defining the non-Gaussianity parameters, which could be observationally relevant, are stated and the respective Suyama-Yamaguchi-like consistency relations are obtained.
We study the role of viscosity and the effects of a magnetic field on a rotating, self-gravitating fluid, using Newtonian theory and adopting the ideal magnetohydrodynamic approximation. Our results confirm that viscosity can generate vorticity in inhomogeneous environments, while the magnetic tension can produce vorticity even in the absence of fluid pressure and density gradients. Linearizing our equations around an Einstein-de Sitter cosmology, we find that viscosity adds to the diluting effect of the universal expansion. Typically, however, the dissipative viscous effects are confined to relatively small scales. We also identify the characteristic length bellow which the viscous dissipation is strong and beyond which viscosity is essentially negligible. In contrast, magnetism seems to favor cosmic rotation. The magnetic presence is found to slow down the standard decay-rate of linear vortices, thus leading to universes with more residual rotation than generally anticipated.
It has been proposed that ultracompact minihalos (UCMHs) might be formed in earlier epoch. If dark matter consists of Weakly Interacting Massive Particles (WIMPs), UCMHs can be treated as the {\gamma}-ray sources due to dark matter annihilation within them. In this paper, we investigate the contributions of UCMHs formed during three phase transi- tions (i.e., electroweak symmetry breaking, QCD confinement and e+ e- annihilation) to the extragalactic {\gamma}-ray background. Moreover, we use the Fermi-LAT observation data of the extragalactic {\gamma}-ray background to get the constraints on the current abundance of UCMHs produced during these phase transitions. We also compare these results with those obtained from Cosmic Microwave Background (CMB) observations and find that the constraints from the Fermi-LAT are more stringent than those from CMB
We present 1.1 mm observations of the dust continuum emission from the MBM12 high-latitude molecular cloud observed with the Astronomical Thermal Emission Camera (AzTEC) mounted on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. We surveyed a 6.34 deg$^2$ centered on MBM12, making this the largest area that has ever been surveyed in this region with submillimeter and millimeter telescopes. Eight secure individual sources were detected with a signal-to-noise ratio of over 4.4. These eight AzTEC sources can be considered to be real astronomical objects compared to the other candidates based on calculations of the false detection rate. The distribution of the detected 1.1 mm sources or compact 1.1 mm peaks is spatially anti-correlated with that of the 100 micronm emission and the $^{12}$CO emission. We detected the 1.1 mm dust continuum emitting sources associated with two classical T Tauri stars, LkHalpha262 and LkHalpha264. Observations of spectral energy distributions (SEDs) indicate that LkHalpha262 is likely to be Class II (pre-main-sequence star), but there are also indications that it could be a late Class I (protostar). A flared disk and a bipolar cavity in the models of Class I sources lead to more complicated SEDs. From the present AzTEC observations of the MBM12 region, it appears that other sources detected with AzTEC are likely to be extragalactic and located behind MBM12. Some of these have radio counterparts and their star formation rates are derived from a fit of the SEDs to the photometric evolution of galaxies in which the effects of a dusty interstellar medium have been included.
The past 15 years have seen an explosion in the number of redshifts recovered via wide area spectroscopic surveys. At the current time there are approximately 2million spectroscopic galaxy redshifts known (and rising) which represents an extraordinary growth since the pioneering work of Marc Davis and John Huchra. Similarly there has been a parallel explosion in wavelength coverage with imaging surveys progressing from single band, to multi-band, to truly multiwavelength or pan-chromatic involving the coordination of multiple facilities. With these empirically motivated studies has come a wealth of new discoveries impacting almost all areas of astrophysics. Today individual surveys, as best demonstrated by the Sloan Digital Sky Survey, now rank shoulder-to-shoulder alongside major facilities. In the coming years this trend is set to continue as we being the process of designing and conducting the next generation of spectroscopic surveys supported by multi-facility wavelength coverage.
In a recent article by Benson et al., 2011, the authors show the latest measurements from the South Pole Telescope (SPT) Sunyaev Zel'dovich (SZ) cluster survey to better constrain some cosmological parameters. In particular, the authors found that adding the SPT cluster data significantly improves the constraints on equation of state of dark energy, w, beyond those found when using measurements of the CMB, supernovae, BAO and the Hubble constant. The main aim of the present research note is to give a further quantitative estimation of the above better constraints, through the computation of the Figure of Merit (FoM) applied to \Omega_m and w plots for the 68% and 95% confidence regions. This allows a better evaluation and a better comparison of the continuous improvements on the cosmological constraints, obtained using new different cosmological probes and different surveys.
We construct a theoretical model to predict the number of orphan afterglows
(OA) from gamma-ray bursts (GRBs) triggered by primordial metal free (Pop III)
stars expected to be observed by the Gaia mission. In particular, we consider
primordial metal free stars which were affected by radiation from other stars
(Pop III.2) as a possible target.
We use a semi-analytical approach, with the inclusion of all relevant
feedback effects, to construct the cosmic star formation history and its
connection with GRBs cumulative number. The OA events are generated via
Monte-Carlo method, and realistic simulations of Gaia's scanning law are
performed to derive the observation probability expectation. We show that $\sim
0.4\%$ of all Pop III.2 afterglows should appear in the sky above of Gaia
observational flux limit. Combining this result with simulations of Gaia's
scanning law, we expect to observe an average of $\sim 13\% \pm 7\%$ of all OA
above the observational sensitivity.
We have studied the star-formation and AGN activity of massive galaxies in the redshift range $z=0.4-2$, which are detected in a deep survey field using the AKARI InfraRed (IR) astronomical satellite and {\em Subaru} telescope toward the North Ecliptic Pole (NEP). The AKARI/IRC Mid-InfraRed (MIR) multiband photometry is used to trace their star-forming activities with the Polycyclic-Aromatic Hydrocarbon (PAH) emissions, which is also used to distinguish star-forming populations from AGN dominated ones and to estimate the Star Formation Rate (SFR) derived from their total emitting IR (TIR) luminosities. In combination with analyses of their stellar components, we have studied the MIR SED features of star-forming and AGN-harboring galaxies.
Model-independent parametrisations for examining departures from General Relativity have been increasingly studied over the past few years. Various observables have been used to constrain the parameters and forecasts for future surveys have been carried out. In one such forecast, galaxy cluster counts were used to constrain the parameters. Here, we carry out a limited set of $N$-body simulations, with a modified Poisson equation, to examine the accuracy of existing mass functions for modified gravity cosmologies. As well as altering the gravitational calculation, we include the effect of a screening scale to ensure consistency of the theory with solar system tests. Our results suggest that if a screening scale exists its effect can be taken into account in the cluster count calculation through its effect on the linear matter power spectrum. If this is done, the accuracy of the standard mass function formalism in modified gravity theories with reasonably small departures from General Relativity, as tested in this work, is comparable to the standard case.
One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ~ 8. Its two-tiered "wide and deep" strategy bridges significant gaps in existing near-infrared surveys. In this Letter we report on eight z ~ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers ~ 62.9 sq.arcmin to 4 ks per filter depth in the Great Observatories Origins Deep Survey southern field. Three of our candidates have J<26.2 mag, and are at least ~ 1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright-end of the rest-frame ultraviolet luminosity function of galaxies at z ~ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Two of our candidates, one of which is among the top three brightest, are securely detected in Spitzer Infrared Array Camera images, which are the first such detections at z ~ 8. Their derived stellar masses are on the order of 10^{9.3-10.2} Msun, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ~ 8. The high number density of very luminous and very massive galaxies at z ~ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.
A relativistic fluid ball with an inhomogeneous static stratified matter configuration is considered. A model of an astrophysical object with this structure of matter is constructed.
The extension of the Minimal Standard Model by three right-handed sterile neutrinos with masses smaller than the electroweak scale (nuMSM) is discussed in a Q_6 flavor symmetry framework. The lightness of the keV sterile neutrino and the near mass degeneracy of two heavier sterile neutrinos are naturally explained by exploiting group properties of Q_6. A normal hierarchical mass spectrum and an approximately mu-tau symmetric mass matrix are predicted for three active neutrinos. Non-zero theta_{13} can be obtained together with a deviation of theta_{23} from the maximality, where both mixing angles are consistent with the latest global data including T2K and MINOS results. Furthermore, the tiny active-sterile mixing is related to the mass ratio between the lightest active and lightest sterile neutrinos.
We reconsider the effective mass of a scalar field which interact with visible sector via Planck-suppressed coupling in supergravity framework. We focus on the radiation-dominated (RD) era after inflation. In this era, the effective mass is given by thermal average of interaction terms. To make our analysis clear, we rely on Kadanoff-Baym equations to evaluate the thermal average. We find that, in RD era, a scalar field acquires the effective mass of the order of $H$.
We investigate the constraints on the scalar, vector and spin-3/2 dark matter interaction with the standard model particles, from the observations of dark matter relic density, the direct detection experiments of CDMS and XENON, and the indirect detection of the antiproton-to-proton ratio by PAMELA. A model independent way is adopted by constructing the most general 4-particle effective interaction operators up to dimension 6 between dark matter and standard model particles. We find that the constraints from different experiments are complementary with each other, and the comparision among these constraints may exclude some effective models of dark matter and limit the parameters of some others. The spin-independent direct detection gives very strong constraints for some operators, while the indirect detection of antiproton-to-proton data can be more sensitive than direct detection or relic density for light dark matter (whose mass less than 70 GeV) in some cases. The constraints on some operators for spin-3/2 dark matter are shown to be similar to those on their analogous operators for Dirac fermionic dark matter. There are still some operators not sensitive to the current dark matter direct and indirect search experiments.
We present a 1.1 mm emission map of the OMC1 region observed with AzTEC, a new large-format array composed of 144 silicon-nitride micromesh bolometers that was in use at the James Clerk Maxwell Telescope (JCMT). The AzTEC observations of the OMC1 region at 1.1 mm reveal dozens of cloud cores and a tail of filaments in a manner that is almost identical to the submillimeter continuum emission of the entire OMC1 region at 450 and 850 micronm. The density power spectrum provides the size distribution of the structures. We find that a single power law might be fitted to the calculated power spectrum of the 1.1 mm emission between 0.3 pc and 0.03 pc. The slope of the best fit power law is \gamma~-2.6 and is similar to the spectral index of the power spectrum of \gamma~-2.7 found in numerical simulations. However, there is a distinct spectral break in the power spectrum at a characteristic scale of ~0.3 pc in OMC1. The effects of beam size and noise spectrum on the shape and slope of the power spectrum are also included in the present analysis. The slope of the power law and a range of different scales change at scales below ~0.3 pc as the beam size increases.
The asteroid (147857) 2005 UW381 will pass over the supergiant star Betelgeuse on January 2nd 2012. The event is visible on a limited geographical region, and the magnitude drop is only 0.01 magnitudes for a maximum duration of 3.6 seconds. The opportunity to measure this phenomenon can be interesting for dealing with extrasolar planetary transits.
In this note I provide an extended version of the talk given at BW2011 workshop. The concise introduction to the non-local SFT motivated models is given with an emphasis on the non-local generalization of gravity. A number of open questions and future directions in the development of such models is outlined.
Links to: arXiv, form interface, find, astro-ph, recent, 1201, contact, help (Access key information)
Spectroscopic confirmation of galaxies at z~7 and above has been extremely difficult, owing to a drop in intensity of Ly-alpha emission in comparison with samples at z~6. This crucial finding could potentially signal the ending of cosmic reionization. However it is based on small datasets, often incomplete and heterogeneous in nature. We introduce a flexible Bayesian framework, useful to interpret such evidence. Within this framework, we implement two simple phenomenological models: a smooth one, where the distribution of Ly-alpha is attenuated by a factor \es with respect to z~6; a patchy one where a fraction \ep is absorbed/non-emitted while the rest is unabsorbed. From a compilation of 39 observed z~7 galaxies we find \es=0.69+-0.12 and \ep=0.66+-0.16. The models can be used to compute fractions of emitters above any equivalent width W. For W>25\AA, we find X^{25}_{z=7}=0.37+-0.11 (0.14+-0.06) for galaxies fainter (brighter) than M_{UV}=-20.25 for the patchy model, consistent with previous work, but with smaller uncertainties by virtue of our full use of the data. At z~8 we combine new deep (5-\sigma flux limit 10^{-17}ergs^{-1}cm^{-2}) Keck-NIRSPEC observations of a bright Y-dropout identified by our BoRG Survey, with those of three objects from the literature and find that the inference is inconclusive. We compute predictions for future near-infrared spectroscopic surveys and show that it is challenging but feasible to constrain the distribution of Ly-alpha emitters at z~8 and distinguish between models.
The Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) provides a new sample of 101 star-forming galaxies at z < 0.2 with unprecedented multi-wavelength coverage. New mid- to far-infrared spectroscopy from the Spitzer Space Telescope is added to a rich suite of previous imaging and spectroscopy, including ROSAT, Galaxy Evolution Explorer, Sloan Digital Sky Survey, Two Micron All Sky Survey, and Spitzer/SWIRE. Sample selection ensures an even coverage of the full range of normal galaxy properties, spanning two orders of magnitude in stellar mass, color, and dust attenuation. In this paper we present the SSGSS data set, describe the science drivers, and detail the sample selection, observations, data reduction, and quality assessment. Also in this paper, we compare the shape of the thermal continuum and the degree of silicate absorption of these typical, star-forming galaxies to those of starburst galaxies. We investigate the link between star formation rate, infrared luminosity, and total polycyclic aromatic hydrocarbon luminosity, with a view to calibrating the latter for spectral energy distribution models in photometric samples and at high redshift. Last, we take advantage of the 5-40 micron spectroscopic and far-infrared photometric coverage of this sample to perform detailed fitting of the Draine et al. dust models, and investigate the link between dust mass and star formation history and active galactic nucleus properties.
The estimation and analysis of large-scale bulk flow moments of peculiar velocity surveys is complicated by non-spherical survey geometry, the non-uniform sampling of the matter velocity field by the survey objects, and the typically large measurement errors of the measured line-of-sight velocities. Previously we have developed an optimal "minimum variance" (MV) weighting scheme for using peculiar velocity data to estimate bulk flow moments for idealized dense and isotropic surveys with Gaussian radial distributions that avoids many of these complications. These moments are designed to be easy to interpret and are comparable between surveys. In this paper, we test the robustness of our MV estimators using numerical simulations. Using MV weights, we estimate the underlying bulk flow moments for DEEP, SFI++ and COMPOSITE mock catalogues extracted from the LasDamas and the Horizon Run numerical simulations and compare these estimates to the true moments calculated directly from the simulation boxes. We show that the MV estimators are negligibly affected by nonlinear flows; in particular they are unbiased and have errors that are consistent with predictions from linear theory.
Jeans mass calculated with different combination of parameters involved has shown interesting variation with remarkable shifting of position of peak value from x = m/T = 0.5 to 5.5. The standard deviation is 2.217. In particular, using the harmonic mean square velocity, shifts the peak Jeans mass to x = m/T ~ 2, which is remarkably less than previously reported value of 4.2. Different scales of neutrino structures including virialized moments have also been compared.
The interaction of magnetic turbulence and relativistic particles is a important process for understanding particles propagation and acceleration in many astrophysical environments. Large-scale turbulence can be generated in the intra-cluster-medium (ICM) during mergers between galaxy clusters and affects their non-thermal properties. Giant radio halos, Mpc-scale synchrotron sources observed in merging clusters, may probe the connection between turbulence and non-thermal cluster-scale emission. After discussing relevant aspects of the physics of turbulence and turbulent acceleration in the ICM, I will focus on recent advances in the modeling of non-thermal emission from galaxy clusters.
We study cosmological perturbations arising from thermal fluctuations in the big-bounce cosmology in the Einstein-Cartan-Sciama-Kibble theory of gravity. We show that such perturbations cannot have a scale-invariant spectrum if fermionic matter minimally coupled to the torsion tensor is macroscopically averaged as a spin fluid, but have a scale-invariant spectrum if the Dirac form of the spin tensor of the fermionic matter is used.
We present the first interferometric HCN(J = 3-2) and HCO+(J = 3-2) maps in the circumnuclear region of NGC 1097, obtained with the Submillimeter Array. The goal is to study the characteristics of the dense gas associated with the starburst ring/Seyfert nucleus. With these transitions, we suppress the diffuse low density emission in the nuclear region. We detect and resolve the individual compact giant molecular cloud associations (GMAs) in the 1.4 kpc circumnuclear starburst ring and within the 350 pc nuclear region. The nucleus is brighter than the ring in both lines, and contributes to ~20% and ~30% to the total detected HCO+(J = 3-2) and HCN(J = 3-2) flux, within the central 1.4 kpc. The intensity ratios of HCN(J = 3-2)/HCO+(J = 3-2) are roughly unity in the GMAs of the starburst ring. However, this ratio is up to ~2 in the nuclear region. From the HCN(J = 3-2)/HCN(J = 1-0) ratio of <0.2 in the nucleus, we infer that the nuclear HCN(J = 3-2) emission might be optically thin. The HCO+(J = 3-2) and HCN(J = 3-2) show correlations with 12CO(J = 3-2) and the 24{\mu}m emission. The tight correlations of HCN(J = 3-2), HCO+(J = 3-2) and 24{\mu}m emission in the starburst ring suggest that the dense molecular gas and the dust are from the same origins of star forming regions. On the other hand, the HCN(J = 3-2) emission of the nucleus is significantly enhanced, indicating mechanisms other than star formation, such as AGN activities. A self-consistent check of the fractional abundance enhanced by X-ray ionization chemistry of the nucleus is possible with our observations.
In this article we consider the detection of compact sources in maps of the Cosmic Microwave Background radiation (CMB) following the philosophy behind the Mexican Hat Wavelet Family (MHWn) of linear filters. We present a new analytical filter, the Biparametric Adaptive Filter (BAF), that is able to adapt itself to the statistical properties of the background as well as to the profile of the compact sources, maximizing the amplification and improving the detection process. We have tested the performance of this filter using realistic simulations of the microwave sky between 30 and 857 GHz as observed by the Planck satellite, where complex backgrounds can be found. We demonstrate that doing a local analysis on flat patches allows one to find a combination of the optimal scale of the filter R and the index of the filter g that will produce a global maximum in the amplification, enhancing the signal-to-noise ratio (SNR) of the detected sources in the filtered map and improving the total number of detections above a threshold. We conclude that the new filter is able to improve the overall performance of the MHW2, increasing the SNR of the detections and, therefore, the number of detections above a 5 sigma threshold. The improvement of the new filter in terms of SNR is particularly important in the vicinity of the galactic plane and in the presence of strong galactic emission. Finally, we compare the sources detected by each method and find that the new filter is able to detect more new sources than the MHW2 at all frequencies and in clean regions of the sky. The BAF is also less affected by spurious detections, associated to compact structures in the vicinity of the galactic plane.
We investigate bounds on the strength of the primordial magnetic field (PMF) from the cosmic microwave background (CMB) bispectra of the intensity (temperature) modes induced from the auto- and cross-correlated bispectra of the scalar and tensor components of the PMF anisotropic stress. At first, we construct a general formula for the CMB intensity and polarization bispectra from PMFs composed of any type of perturbation. Then we derive an approximate expression which traces the exact shape of the CMB bispectrum in order to reduce the computation time with respect to a large number of the multipole configurations, and also show that the non-Gaussian structure coming from PMFs is classified as the local-type configuration. Computing the signal-to-noise ratio based on the approximate formula with the information of the instrumental noises and resolutions, we find expected upper bounds on the magnetic field strength, when the magnetic spectrum is nearly scale invariant, smoothed on $1 {\rm Mpc}$ scale at 95% confidence level from the WMAP and PLANCK experiments as $B_{1 \rm Mpc} < 4.0 - 6.7 {\rm nG}$ and $3.8 - 6.5 {\rm nG}$, respectively, depending on the energy scale of the magnetic field production from $10^{14} {\rm GeV}$ to $10^3 {\rm GeV}$. Our new consequences imply slight overestimations by the previous rough discussions.
We report a dynamically evolving low ionization broad absorption line flow in the QSO SDSS J133356.02+001229.1 (at z_em = 0.9197). These observations are part of our ongoing monitoring of low ionization broad absorption line (BAL) QSOs with the 2m telescope at IUCAA Girawali observatory (IGO). The broad Mg II absorption with an ejection velocity of 1.7x10^4 km/s, found in the Sloan Digital Sky Survey (SDSS) spectra, has disappeared completely in our IGO spectra. We found an emerging new component at an ejection velocity of 2.8 x 10^4 km/s. During our monitoring period this component has shown strong evolution both in its velocity width and optical depth and nearly disappeared in our latest observations. Acceleration of a low velocity component seen in SDSS spectrum to a higher velocity is unlikely as the Mg II column densities are always observed to be higher for the new component. We argue that the observed variations may not be related to ionization changes and are consistent with absorption produced by multi-streaming flow transiting across our line of sight. We find a possible connection between flux variation of the QSO and N(Mg II) of the newly emerged component. This could mean the ejection being triggered by changes in the accretion disk or dust reddening due to the outflowing gas.
Using archival multi--epoch ACS/WFC images in the F606W and F814W filters of a resolved stellar field in Local Group dwarf elliptical galaxy M32 we have made an accurate Colour-Magnitude Diagram and a careful search for RR Lyr variable stars. We identified 416 bona fide RR Lyr stars over our field of view, and their spatial distribution shows a rising number density towards the centre of M32. These new observations clearly confirm the tentative result of Fiorentino et al. (2010), on a much smaller field of view, associating an ancient population of RR Lyr variables to M32. We associate at least 83 RR Lyr stars in our field to M32. In addition the detection of 4 Anomalous Cepheids with masses in the range 1.2-1.9 Mo indicates the presence of relatively young, 1-4 Gyr old, stars in this field. They are most likely associated to the presence of the blue plume in the Colour-Magnitude Diagram. However these young stars are unlikely to be associated with M32 because the radial distribution of the blue plume does not follow the M32 density profile, and thus they are more likely to belong to the underlying M31 stellar population. Finally the detection of 3 Population II Cepheids in this field gives an independent measurement of the distance modulus in good agreement with that obtained from the RRLyr, mu0=24.33 +- 0.21 mag.
The relation between dark matter halos and the loci of star formation at high redshift is a pressing question in contemporary cosmology. Matching the abundance of halos to the abundance of infrared (IR) galaxies, we explicit the link between dark matter halo mass (Mh), stellar mass (M*) and star-formation rate (SFR) up to a redshift of 2. Our findings are five-fold. First, we find a strong evolution of the relation between M* and SFR as a function of redshift with an increase of sSFR = SFR/M* by a factor ~30 between z=0 and z= 2.3. Second, we observe a decrease of sSFR with stellar mass. These results reproduce observed trends at redshift z>0.3. Third, we find that the star formation is most efficient in dark matter halos with Mh~5x10^11 Msun, with hints of an increase of this mass with redshift. Fourth, we find that SFR/Mh increases by a factor ~15 between z = 0 and z = 2.3. Finally we find that the SFR density is dominated by halo masses close to ~7x10^11 Msun at all redshift, with a rapid decrease at lower and higher halo masses. Despite its simplicity, our novel use of IR observations unveils some characteristic mass-scales governing star formation at high redshift.
In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this paper we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.
X-ray-emitting coronae of nearby galaxies are expected to be produced either by accretion from the intergalactic medium and/or by various galactic feedback. We herein present a systematical analysis of the Chandra observations of 53 nearby edge-on disk galaxies over a range of 3 orders of magnitude in SFR. Various coronal properties, such as the luminosity, vertical/horizontal extent, and other inferred parameters, are characterized for all the sample galaxies. For galaxies with high enough counting statistics, we also examine the thermal and chemical states of the coronal gas. Here we concentrate on the coronal luminosity (Lx), estimated in 0.5-2keV and within 5 times the diffuse X-ray vertical scale height. We find Lx strongly correlates with the SFR for the whole sample. But the inclusion of Ia SNe in the total energy input (E_SN) gives an even tighter correlation, which may be characterized with a linear relation, Lx=0.5%E_SN, and with a dispersion of 0.45dex. Moreover, the coronal radiation efficiency (\eta=Lx/E_SN) shows little correlation with either the stellar mass or the gravitational mass (M_TF, inferred from the rotation velocity), but is significantly correlated with their ratio (M_TF/M_*), which may be expressed as a linear scaling relation \eta=0.35%M_TF/M_* for the entire ranges of galaxy parameters. This joint scaling relation suggests that the coronae are self-regulated by the combination of gravitational confinement and feedback. But SN appears to be the primary heating source, because about half of our galaxies are not massive enough to allow for the accretion to play a major role. The commonly low \eta further suggests that the bulk of the SN energy likely flows out into large-scale galactic halos for essentially all the galaxies. Such ubiquitous outflows could have profound implications for understanding the ecosystem, hence the evolution of galaxies.
At the faintest radio flux densities (S_1.4 < 10 mJy), conflicting results have arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz), and e.g. 1.4 GHz. We present a new catalogue of 843 MHz radio sources in the ELAIS-S1 field that contains the sources, their ATLAS counterparts, and the spectral index distributions of the sources as a function of flux density. We do not find any statistically significant evidence for a trend towards flatter spectral indices with decreasing flux density. We then investigate the spectral index distribution with redshift for those sources with reliable redshifts and explore the infrared properties. An initial sample of faint Compact Steep Spectrum sources in ATLAS is also presented, with a brief overview of their properties.
We have developed a multi-scale structure identification algorithm for the detection of overdensities in galaxy data that identifies structures having radii within a user-defined range. Our "multi-scale probability mapping" technique combines density estimation with a shape statistic to identify local peaks in the density field. This technique takes advantage of a user-defined range of scale sizes, which are used in constructing a coarse-grained map of the underlying fine-grained galaxy distribution, from which overdense structures are then identified. In this study we have compiled a catalogue of groups and clusters at 0.025 < z < 0.24 based on the Sloan Digital Sky Survey, Data Release 7, quantifying their significance and comparing with other catalogues. Most measured velocity dispersions for these structures lie between 50 and 400 km/s. A clear trend of increasing velocity dispersion with radius from 0.2 to 1 Mpc/h is detected, confirming the lack of a sharp division between groups and clusters. A method for quantifying elongation is also developed to measure the elongation of group and cluster environments. By using our group and cluster catalogue as a coarse-grained representation of the galaxy distribution for structure sizes of <~ 1 Mpc/h, we identify 53 filaments (from an algorithmically-derived set of 100 candidates) as elongated unions of groups and clusters at 0.025 < z < 0.13. These filaments have morphologies that are consistent with previous samples studied.
On large scales a nonlinear transformation of matter density field can be viewed as a biased tracer of the density field itself. A nonlinear transformation also modifies the redshift space distortions in the same limit, giving rise to a velocity bias. In models with primordial nongaussianity a nonlinear transformation generates a scale dependent bias on large scales. We derive analytic expressions for these for a general nonlinear transformation. These biases can be expressed entirely in terms of the one point distribution function (PDF) of the final field and the parameters of the transformation. Our analysis allows one to devise nonlinear transformations with nearly arbitrary bias properties, which can be used to increase the signal in the large scale clustering limit. We apply the results to the ionizing equilibrium model of Lyman-alpha forest, in which Lyman-alpha flux F is related to the density perturbation delta via a nonlinear transformation. Velocity bias can be expressed as an average over the Lyman-alpha flux PDF. At z=2.4 we predict the velocity bias of -0.1, compared to the observed value of -0.13 +/- 0.03. Bias and primordial nongaussianity bias depend on the parameters of the transformation. Measurements of bias can thus be used to constrain these parameters, and for reasonable values of the ionizing background intensity we can match the predictions to observations. Matching to the observed values we predict the ratio of primordial nongaussianity bias to bias to have the opposite sign and lower magnitude than the corresponding values for the highly biased galaxies, but this depends on the model parameters and can also vanish or change the sign.
We present an extension to the short-characteristic ray-tracing and non-equilibrium photon-ionization code C2Ray. The new version includes the effects of helium and improved multi-frequency heating. The motivation for this work is to be able to deal with harder ionizing spectra, such as for example from quasar-like sources during cosmic reionization. We review the basic algorithmic ingredients of C2-Ray before describing the changes implemented, which include a treatment of the full on the spot (OTS) approximation, secondary ionization, and multi-frequency photo-ionization and heating. We performed a series of tests against equilibrium solutions from CLOUDY as well as comparisons to the hydrogen only solutions by C2-Ray in the extensive code comparison in Iliev et al. (2006). We show that the full, coupled OTS approximation is more accurate than the simplified, uncoupled one. We find that also with helium and a multi-frequency set up, long timesteps (up to ~10% of the recombination time) still give accurate results for the ionization fractions. On the other hand, accurate results for the temperature set strong constrains on the timestep. The details of these constraints depend however on the optical depth of the cells. We use the new version of the code to confirm that the assumption made in many reionization simulations, namely that helium is singly ionized everywhere were hydrogen is, is indeed valid when the sources have stellar-like spectra.
There are hidden observables for inflation, such as features localized in position space, which do not manifest themselves when only one inflation trajectory is considered. To address this issue, we investigate inflation dynamics in a landscape mimicked by a random potential. We calculate the probability for bifurcation of the inflation trajectory in multi-stream inflation. Depending on the shape of the random bumps and the distance between bumps in the potential, there is a phase transition: on one side of the critical curve in parameter space isocurvature fluctuation are exponentially amplified and bifurcation becomes very probable. On the other side bifurcation is dominated by a random walk where bifurcations are less likely to happen.
We review on the models of gravity with a constraint by the Lagrange multiplier field. The constraint breaks general covariance or Lorentz symmetry in the ultraviolet region. We report on the $F(R)$ gravity model with the constraint and the proposal of the covariant (power-counting) renormalized gravity model by using the constraint and scalar projectors. We will show that the model admits flat space solution, its gauge-fixing formulation is fully developed, and the only propagating mode is (higher derivative) graviton, while scalar and vector modes do not propagate. The preliminary study of FRW cosmology indicates to the possibility of inflationary universe solution is also given.
Casimir-Polder potential is investigated for a polarizable microparticle in the geometry of a straight cosmic string with a metallic cylindrical shell. The electromagnetic field Green tensor is evaluated on the imaginary frequency axis. The expressions for the Casimir-Polder potential is derived in the general case of anisotropic polarizability for the both interior and exterior regions of the shell. The potential is decomposed into pure string and shell-induced parts. The latter dominates for points near the shell, whereas the pure string part is dominant near the string and at large distances from the shell. For the isotropic case and in the region inside the shell the both pure string and shell-induced parts in the Casimir-Polder force are repulsive with respect to the string. In the exterior region the shell-induced part of the force is directed toward the cylinder whereas the pure string part remains repulsive with respect to the string. At large distances from the shell the total force is repulsive.
We discuss experimental probes of isospin-violating dark matter (IVDM), including direct and indirect detection strategies. We point out the important role which IVDM plays in understanding recent data regarding low-mass dark matter, and describe strategies for finding evidence of IVDM at current and upcoming experiments.
Supersymmetric Unified theories which incorporate a renormalizable Type I seesaw mechanism for small neutrino masses can also provide slow roll inflection point inflation along a flat direction associated with a gauge invariant combination of the Higgs, slepton and right handed sneutrino superfields. Inflationary parameters are related to the Majorana and Dirac couplings responsible for neutrino masses with the scale of inflation set by the lightest right-handed neutrino mass $M_{\nu^c} \sim 10^6-10^{10}$ GeV. Tuning of the neutrino Dirac and Majorana superpotential couplings and soft Susy breaking parameters is required to enforce flatness of the inflationary potential. In contrast to previous inflection point inflation models, provided $M_{\nu^c}>>M_{Susy}$, the tuning is almost independent of the soft parameters and thus radiatively stable. The fine tuning required for Type I seesaw inflation is much less stringent than that in the case of MSSM inflation or Dirac neutrino inflation due to the much larger value of the inflaton mass, and thus requires no additional dynamics to make it plausible. Our scenario is motivated and illustrated by the completely realistic New Minimal Supersymmetric SO(10) GUT.
Links to: arXiv, form interface, find, astro-ph, recent, 1201, contact, help (Access key information)
In the intracluster medium (ICM) of galaxy clusters, heat and momentum are transported almost entirely along (but not across) magnetic field lines. We perform the first fully self-consistent Braginskii-MHD simulations of galaxy clusters including both of these effects. Specifically, we perform local and global simulations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability (HBI) and assess the effects of viscosity on their saturation and astrophysical implications. We find that viscosity has only a modest effect on the saturation of the MTI. As in previous calculations, we find that the MTI can generate nearly sonic turbulent velocities in the outer parts of galaxy clusters, although viscosity somewhat suppresses the magnetic field amplification. At smaller radii in cool-core clusters, viscosity can decrease the linear growth rates of the HBI. However, it has less of an effect on the HBI's nonlinear saturation, in part because three-dimensional interchange motions (magnetic flux tubes slipping past each other) are not damped by anisotropic viscosity. In global simulations of cool core clusters, we show that the HBI robustly inhibits radial thermal conduction and thus precipitates a cooling catastrophe. The effects of viscosity are, however, more important for higher entropy clusters. We argue that viscosity can contribute to the global transition of cluster cores from cool-core to non cool-core states: additional sources of intracluster turbulence, such as can be produced by AGN feedback or galactic wakes, suppress the HBI, heating the cluster core by thermal conduction; this makes the ICM more viscous, which slows the growth of the HBI, allowing further conductive heating of the cluster core and a transition to a non cool-core state.
We present new z~8 galaxy candidates from a search over ~95 arcmin^2 of WFC3/IR data. These are used to determine the bright end of the UV luminosity function (LF) of star-forming galaxies at z~8. Our analysis is based on newly acquired WFC3/IR imaging data obtained as part of the CANDELS Multi-Cycle Treasury program over the GOODS South field, which allows us to triple the search area for bright z~8 galaxies in the GOODS South. These new data are combined with existing deep optical ACS imaging to search for relatively bright (M_UV<-19.5 mag) z~8 galaxy candidates using the Lyman Break technique. To minimize contamination from lower redshift galaxies, we make full use of all optical data and impose strict non-detection criteria based on an optical chi^2_opt flux measurement. In the whole search area we identify 11 candidate z~8 galaxies, spanning a magnitude range H_160,AB =25.8-27.5 mag. The new data show that the UV LF is a factor ~2 lower at M_UV < -19.5 mag than previously determined. Combining this new sample with the previous candidates from the HUDF09 and ERS data allows us to perform the most accurate measurement of the z~8 UV LF yet. Schechter function fits to the combined data result in a best-fit characteristic magnitude of M_*(z=8) = -19.80+-0.52 mag. The faint-end slope is very steep, though quite uncertain, with alpha=-2.06+-0.41. A combination of wide area data with additional ultra-deep imaging will be required to significantly reduce the uncertainties on these parameters in the future.
Recent observations have constrained the galaxy UV luminosity function up to z~10. However, these observations alone allow for a wide range of reionization scenarios due to uncertainties in the abundance of faint galaxies and the escape fraction of ionizing photons. We show that requiring continuity with post-reionization (z<6) measurements, where the Lya forest provides a complete probe of the cosmological emissivity of ionizing photons, significantly reduces the permitted parameter space. Models that are simultaneously consistent with the measured UV luminosity function, the Thomson optical depth to the CMB, and the Lya forest data require either: 1) extrapolation of the galaxy luminosity function down to very faint UV magnitudes M_lim ~ -10, corresponding roughly to the UV background suppression scale; 2) an increase of f_esc by a factor > ~10 from z=4 (where the best fit is 4%) to z=9; or 3) more likely, a hybrid solution in which undetected galaxies contribute significantly and f_esc increases more modestly. Models in which star formation is strongly suppressed in low-mass, reionization-epoch haloes of mass up to ~10^10 M_sun (e.g., owing to a metallicity dependence) are only allowed for extreme assumptions for the evolution of f_esc. However, variants of such models in which the suppression mass is reduced (e.g., assuming an earlier or higher metallicity floor) are in better agreement with the data. Concordance scenarios satisfying the available data predict a consistent redshift of 50% ionized fraction z_reion(50%) ~ 10. On the other hand, the duration of reionization is sensitive to the relative contribution of bright versus faint galaxies, with scenarios dominated by faint galaxies predicting a more extended reionization event. Scenarios relying heavily on high-redshift dwarfs are disfavored by kinetic Sunyaev-Zeldovich measurements, which prefer a short reionization history.
We present a set of bulge-disk decompositions for a sample of 71,825 SDSS main-sample galaxies in the redshift range 0.003<z<0.05. We have fit each galaxy with either a de Vaucouleurs ('classical') or an exponential ('pseudo-') bulge and an exponential disk. Two dimensional Sersic fits are performed when the 2-component fits are not statistically significant or when the fits are poor, even in the presence of high signal-to-noise. We study the robustness of our 2-component fits by studying a bright subsample of galaxies and we study the systematics of these fits with decreasing resolution and S/N. Only 30% of our sample have been fit with two-component fits in which both components are non-zero. The g-r and g-i colours of each component for the two-component models are determined using linear templates derived from the r-band model. We attempt a physical classification of types of fits into disk galaxies, pseudo-bulges, classical bulges, and ellipticals. Our classification of galaxies agrees well with previous large B+D decomposed samples. Using our galaxy classifications, we find that Petrosian concentration is a good indicator of B/T, while overall Sersic index is not. Additionally, we find that the majority of green valley galaxies are bulge+disk galaxies. Furthermore, in the transition from green to red B+D galaxies, the total galaxy colour is most strongly correlated with the disk colour.
As an increasing number of well measured type Ia supernovae (SNe Ia) become
available, the statistical uncertainty on w has been reduced to the same size
as the systematic uncertainty. The statistical error will decrease further in
the near future, and hence the improvement of systematic uncertainties needs to
be addressed, if further progress is to be made. We study how uncertainties in
the primary reference spectrum - which are a main contribution to the
systematic uncertainty budget - affect the measurement of the Dark Energy
equation of state parameter w from SNe Ia. The increasing number of SN
observations can be used to reduce the uncertainties by including perturbations
of the reference spectrum as nuisance parameters in a cosmology fit, thus
"self-calibrating" the Hubble diagram.
We employ this method to real SNe data for the first time and find the
perturbations of the reference spectrum consistent with zero at the 1%-level.
For future surveys we estimate that ~3500 SNe will be required for our method
to outperform the standard method of deriving the cosmological parameters.
We present a new approach to constrain galaxy physical parameters from the combined interpretation of stellar and nebular emission in wide ranges of observations. This approach relies on the Bayesian analysis of any type of galaxy spectral energy distribution using a comprehensive library of synthetic spectra assembled using state-of-the-art models of star formation and chemical enrichment histories, stellar population synthesis, nebular emission and attenuation by dust. We focus on the constraints set by 5-band photometry and low- and medium-resolution spectroscopy at optical rest wavelengths on a set of physical parameters characterizing the stars and the interstellar medium. Since these parameters cannot be known a priori for any galaxy sample, we assess the accuracy to which they can be retrieved by simulating `pseudo-observations' using models with known parameters. Assuming that these models are good approximations of true galaxies, we find that the combined analysis of stellar and nebular emission in low-resolution galaxy spectra provides valuable constraints on all physical parameters. At higher resolution, the analysis of the combined stellar and nebular emission in 12,660 SDSS star-forming galaxies using our approach yields likelihood distributions of stellar mass, gas-phase oxygen abundance, optical depth of the dust and specific star formation rate similar to those obtained in previous separate analyses of the stellar and nebular emission at the original (twice higher) SDSS spectral resolution. We show that the constraints derived on galaxy physical parameters from these different types of observations depend sensitively on signal-to-noise ratio. Our approach can be extended to the analysis of any type of observation across the wavelength range covered by spectral evolution models. [abridged]
We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer 3.6micron imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z~1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star-formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded 37,000 high quality redshifts in our first 5.3 sq.degs of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6micron fluxes of our selection, we find typical uncertainties of sigma_z/(1+z) < 0.015. In comparisons with previously published VVDS redshifts, for example, we find a scatter of sigma_z/(1+z) = 0.012 for galaxies at 0.8< z< 1.2. For galaxies brighter and fainter than i=23 mag, we find sigma_z/(1+z) = 0.009 and sigma_z/(1+z) = 0.025, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.
We present a new catalogue of mid-IR sources using the AKARI NEP-Deep survey. The InfraRed Camera (IRC) onboard AKARI has a comprehensive mid-IR wavelength coverage with 9 photometric bands at 2 - 24 micron. We utilized all of these bands to cover a nearly circular area adjacent to the North Ecliptic Pole (NEP). We designed the catalogue to include most of sources detected in 7, 9, 11, 15 and 18 micron bands, and found 7284 sources in a 0.67 deg^2 area. From our simulations, we estimate that the catalogue is ~80 per cent complete to 200 micro Jy at 15 - 18 micron, and ~10 per cent of sources are missed, owing to source blending. Star-galaxy separation is conducted using only AKARI photometry, as a result of which 10 per cent of catalogued sources are found to be stars. The number counts at 11, 15, 18, and 24 micron are presented for both stars and galaxies. A drastic increase in the source density is found in between 11 and 15 micron at the flux level of ~300 micro Jy. This is likely due to the redshifted PAH emission at 8 micron, given our rough estimate of redshifts from an AKARI colour-colour plot. Along with the mid-IR source catalogue, we present optical-NIR photometry for sources falling inside a Subaru/Sprime-cam image covering part of the AKARI NEP-Deep field, which is deep enough to detect most of AKARI mid-IR sources, and useful to study optical characteristics of a complete mid-IR source sample.
Interactions between dark matter and dark energy which result in a power-law behavior (with respect to the cosmic scale factor) of the ratio between the energy densities of the dark components (thus generalizing the LCDM model) have been considered as an attempt to alleviate the cosmic coincidence problem phenomenologically. We generalize this approach by allowing for a variable equation of state for the dark energy within the CPL-parametrization. Based on analytic solutions for the Hubble rate and using the Constitution and Union2 SNIa sets, we present a statistical analysis and classify different interacting and non-interacting models according to the Akaike (AIC) and the Bayesian (BIC) information criteria. We do not find noticeable evidence for an alleviation of the coincidence problem with the mentioned type of interaction.
We study the formation of early-type galaxies (ETGs) through mergers with a sample of 70 high-resolution numerical simulations of binary mergers of disc galaxies. These simulations encompass various mass ratios, initial conditions and orbital parameters. We find that binary mergers of disc galaxies with mass ratios of 3:1 and 6:1 are nearly always classified as Fast Rotators according to the Atlas3D criterion: they preserve the structure of the input fast rotating spiral progenitors. Major disc mergers (mass ratios of 2:1 and 1:1) lead to both Fast and Slow Rotators. Most of the Slow Rotators hold a stellar Kinematically Distinct Core (KDC) in their 1-3 central kilo-parsec: these KDCs are built from the stellar components of the progenitors. The mass ratio of the progenitors is a fundamental parameter for the formation of Slow Rotators in binary mergers, but it also requires a retrograde spin for the progenitor galaxies with respect to the orbital angular momentum. The importance of the initial spin of the progenitors is also investigated in the library of galaxy mergers of the GalMer project.
We present the results of multifrequency observations of two asymmetric, Mpc-scale radio sources with the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA). The radio luminosity of these two sources, J1211+743 and J1918+742, are in the Fanaroff-Riley class II (FRII) range, but have diffuse radio components on one side of the galaxy while the opposite component appears edge-brightened with a prominent hot-spot. Although the absence of a hot-spot is reminiscent of FRI radio galaxies, suggesting a hybrid morphology, the radio jet facing the diffuse lobe in J1211+743 is similar to those in FRII radio sources, and it is important to consider these aspects as well while classifying these sources in the FR scheme. The observed asymmetries in these Mpc-scale sources are likely to be largely intrinsic rather than being due to the effects of orientation and relativistic motion. The formation of a diffuse lobe facing the radio jet in J1211+743 is possibly due to the jet being highly dissipative. The low-frequency spectral indices of the lobes are in the range of approximately -0.8 to -1, while at the outer edges these vary from approximately -0.65 to -1.05 suggesting steep injection spectral indices, which need to be examined further from observations at even lower frequencies by telescopes such as the LOw Frequency ARray (LOFAR).
We present the first complete calculation of the parameter f_NL, a quantity introduced to characterize the extent of non-Gaussianity, for a variety of single field inflationary models that lead to features in the scalar power spectrum. The calculation is performed numerically by means of a new, efficient and accurate Fortran code that can evaluate all the contributions to the bi-spectrum in any configuration. We consider different sets of models that lead to similar features in the scalar power spectrum, and investigate if f_NL^{eq} (viz. f_NL evaluated in the equilateral configuration) can help us discriminate between the models. We find that certain differences in the background dynamics - reflected in the behavior of the slow roll parameters - can lead to a reasonably large difference in the f_NL^{eq} generated by the models. We close with a discussion on the implications of the results we obtain.
Using high signal-to-noise spectra (S/N 30) taken with the Cosmic Origins Spectrograph (COS) of the z=0.9754 quasar PG1148+549, we report on the physical conditions of Ne VIII + OVI absorption line systems at z=0.6838, 0.7015, 0.7248. At these redshifts, absorption lines from multiple ionization stages of oxygen (O II, O III, O IV, O VI) are available to constrain the ionization and physical conditions of the gas. A single-phase model with only photoionization or collisional ionization fails to reproduce the observed column density ratios. Even with extreme modifications to the ionizing background, single-phase photoionzation models fail to produce enough Ne VIII. We thus conclude that the O VI and Ne VIII are produced via collisional ionization. The metallicities of these systems are determined to be [O/H] >-0.5, higher than the typically assumed value for O VI absorbers of [O/H]\sim -1.0. Densities of n(H) \sim 10^-4 cm-3 are determined for the photoionized phase, indicating that these systems reside in regions of overdensity \Delta \sim 80. The collisionally ionized component of the gas traced by O VI and Ne VIII bears temperatures of T\sim 10^5.7 K. We determine the redshift density of Ne VIII absorbers dN/dz \sim 7 (+7,-3), similar to the redshift density of O VI absorbers of comparable equivalent width to these systems. Based on the redshift density and galaxy luminosity function at z\sim0.7, we estimate the cross section radius of the O VI + Ne VIII absorbers to be \sim70-150 kpc. We find a star forming \simL\star galaxy at the redshift of the zabs=0.7248 system, at an impact parameter of 217 kpc.
We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 sq deg. area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R~700-800) spectra and redshifts for ~60 member galaxies on average per cluster. The dynamical masses M_200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z=0.50 and a median mass M_200c=11x10^14 Msun/h_70 with a lower limit M_200c ~ 5x10^14 Msun/h_70, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the central SZE amplitude y0, the Compton signal within a 0.5' pixel y_0.5', and the integrated Compton signal Y_200c, which we use to derive SZE-Mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (11%-16%), in agreement with numerical simulations. The influence of dynamically disturbed clusters on these scaling relations is also considered. Using the 3-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that ~50% of the clusters are disturbed. We conclude that disturbed systems do not significantly bias the scaling relations but might modestly boost their scatter.
Dynamical mass measurements to date have allowed determinations of the mass M and the distance D of the galactic center black hole Sgr A* as well as those of other nearby supermassive black holes. In the case of Sgr A*, these measurements are limited by a degeneracy between the mass and distance scaling roughly as M ~ D^2. Future very-long baseline interferometric observations will image a bright and narrow ring surrounding the shadow of the supermassive black hole, if its accretion flow is optically thin. In this paper, we show that the combination of dynamical measurements and VLBI imaging of the ring of Sgr A* breaks the degeneracy between mass and distance. We estimate the signal to noise ratio of near-future VLBI arrays consisting of five to six stations and simulate measurements of the mass and distance of Sgr A* using the expected size of the ring image and existing data of stellar ephemerides. We demonstrate that VLBI observations at 1 mm can already improve the error on the mass by a factor of three compared to the results from the monitoring of stellar orbits alone; observations at 0.5 mm can reduce the error by as much as a factor of 7.5. In addition, we calculate the angular sizes of the bright rings of a number of other nearby supermassive black holes and identify the optimal targets besides Sgr A* that could be imaged by a ground-based VLBI array or a future space-VLBI mission allowing for refined mass measurements.
We study leading order perturbative corrections to the two point correlation function of the scalar field describing the curvature perturbation in a slow-roll inflationary background, paying particular attention to the contribution of entropy mode loops. We find that the infrared divergences are worse than in pure de Sitter space: they are power law rather than logarithmic. The validity of perturbation theory and thus of the effective field theory of cosmological perturbations leads to stringent constraints on the coupling constants describing the interactions, in our model the quartic self-interaction coupling constant of the entropy field. If the self coupling constant is larger than some critical value which depends in particular on the duration of the inflationary phase, then perturbation theory breaks down. Our analysis may have implications for the stability of de Sitter space: the quantum effects which lead to an instability of de Sitter space will be larger in magnitude in the presence of entropy fluctuations.
The IceCube Neutrino Observatory includes a tightly spaced inner array in the deepest ice, called DeepCore, which gives access to low-energy neutrinos with a sizable surrounding cosmic ray muon veto. Designed to be sensitive to neutrinos at energies as low as 10 GeV, DeepCore will be used to study diverse physics topics with neutrino signatures, such as dark matter annihilations and atmospheric neutrino oscillations. The first year of DeepCore physics data-taking has been completed, and the first observation of atmospheric neutrino-induced cascades with IceCube and DeepCore are presented.
It is widely suspected that AGN activity ultimately sweeps galaxies clear of their gas. We work out the observable properties required to achieve this. Large-scale AGN-driven outflows should have kinetic luminosities $\sim \eta\le/2 \sim 0.05\le$ and momentum rates $\sim 20\le/c$, where $\le$ is the Eddington luminosity of the central black hole and $\eta\sim 0.1$ its radiative accretion efficiency. This creates an expanding two-phase medium in which molecular species coexist with hot gas, which can persist after the central AGN has switched off. This picture predicts outflow velocities $\sim 1000 - 1500$ km\,s$^{-1}$ and mass outflow rates up to $4000 \msun\,{\rm yr}^{-1}$ on kpc scales, fixed mainly by the host galaxy velocity dispersion (or equivalently black hole mass). All these features agree with those of outflows observed in galaxies such as Mrk231. This strongly suggests that AGN activity is what sweeps galaxies clear of their gas on a dynamical timescale and makes them red and dead. We suggest future observational tests of this picture.
A sterile neutrino with a mass around the keV scale could be an interesting candidate for warm dark matter. Although there are several scenarios and production mechanisms known in which such a particle could yield the correct abundance, there are astonishingly few models around that can actually yield an explanation for the appearance of a keV-like scale. We here review three main classes of such mass models for keV sterile neutrino dark matter, based on split seesaw, on L_e - L_\mu - L_\tau\ symmetry, and on the Froggatt-Nielsen mechanism, respectively.
We consider an electro-weak scale model for Dark Matter (DM) and radiative neutrino mass generation. Despite the leptophilic nature of DM with no direct couplings to quarks and gluons, scattering with nuclei is induced at the 1-loop level through photon exchange. Effectively, there are charge-charge, dipole-charge and dipole-dipole interactions. We investigate the parameter space consistent with constraints from neutrino masses and mixing, charged lepton-flavour violation, perturbativity, and the thermal production of the correct DM abundance, and calculate the expected event rate in DM direct detection experiments. We show that current data from XENON100 start to constrain certain regions of the allowed parameter space, whereas future data from XENON1T has the potential to significantly probe the model.
Three limits to the physical world (quantum physics, gravity and dark energy) are presented on a triangular diagram having as summits the Planck scale, the Universe and a neutrino-like object.
We review the main cosmological backgrounds of gravitational waves accessible to detectors in space sensitive to the range $10^{-4}$ to $10^{-1}$ Hz, with a special emphasis on those backgrounds due to phase transitions or networks of cosmic strings. We apply this to identify the scientific potential of the NGO/eLISA mission of ESA, regarding the detectability of such cosmological backgrounds.
Links to: arXiv, form interface, find, astro-ph, recent, 1201, contact, help (Access key information)
The success of future large scale weak lensing surveys will critically depend on the accurate estimation of photometric redshifts of very large samples of galaxies. This in turn depends on both the quality of the photometric data and the photo-z estimators. In a previous study, (Bordoloi et al. 2010) we focussed primarily on the impact of photometric quality on photo-z estimates and on the development of novel techniques to construct the N(z) of tomographic bins at the high level of precision required for precision cosmology, as well as the correction of issues such as imprecise corrections for Galactic reddening. We used the same set of templates to generate the simulated photometry as were then used in the photo-z code, thereby removing any effects of "template error". In this work we now include the effects of "template error" by generating simulated photometric data set from actual COSMOS photometry. We use the trick of simulating redder photometry of galaxies at higher redshifts by using a bluer set of passbands on low z galaxies with known redshifts. We find that "template error" is a rather small factor in photo-z performance, at the photometric precision and filter complement expected for all-sky surveys. With only a small sub-set of training galaxies with spectroscopic redshifts, it is in principle possible to construct tomographic redshift bins whose mean redshift is known, from photo-z alone, to the required accuracy of 0.002(1+z).
We report the identification of a very metal-poor damped Lyman-alpha system (DLA) at z_abs = 3.067295 that is modestly carbon-enhanced, with an iron abundance of ~1/700 solar ([Fe/H] = -2.84) and [C,O/Fe] ~ +0.6. Such an abundance pattern is likely to be the result of nucleosynthesis by massive stars. On the basis of 17 metal absorption lines, we derive a 2 sigma upper limit on the DLA's kinetic temperature of T_DLA <= 4700 K. While the best-fitting abundance pattern shows the expected hallmarks of Population III nucleosynthesis, models of high-mass Population II stars can match the abundance pattern almost as well. We discuss current limitations in distinguishing between these two scenarios and the marked improvement in identifying the remnants of Population III stars expected from the forthcoming generation of 30-metre class telescopes.
Understanding the formation and evolution of the very first stars and galaxies represents one of the most exciting and challenging questions facing the scientific community today. Since the universe was filled with neutral hydrogen at early times, the most promising method for observing the epoch of the first stars is using the prominent 21-cm spectral line of the hydrogen atom (Hogan & Rees 1979, Madau et al. 1997). Current observational efforts (Furlanetto et al. 2006) are focused on the reionization era (cosmic age around 500 million years), with earlier times considered much more challenging. Here we discuss the formation of the first stars in light of a recently noticed effect of relative velocity between the dark matter and gas (Tseliakhovich & Hirata 2010). We produce simulated maps of the first stars and show that the relative velocity effect significantly enhances large-scale clustering and produces a prominent cosmic web on 100 comoving Mpc scales in the 21-cm intensity distribution. This structure makes it much more feasible for radio astronomers to detect early stars from a cosmic age of less than 200 million years. We thus hope to stimulate much more theoretical and observational work focused on a first detection of these early sources.
We present the first measurement of the evolution of the galaxy group stellar mass function (GrSMF) to redshift z>~1 and low masses (M*>10^12 Msun). Our results are based on early data from the Carnegie-Spitzer-IMACS (CSI) Survey, utilizing low-resolution spectra and broadband optical/near-IR photometry to measure redshifts for a 3.6um selected sample of 37,000 galaxies over a 5.3 deg^2 area to z~1.2. Employing a standard friends-of-friends algorithm for all galaxies more massive than log(M*/Msun)=10.5, we find a total of ~4000 groups. Correcting for spectroscopic incompleteness (including slit collisions), we build cumulative stellar mass functions for these groups in redshift bins at z>0.35, comparing to the z=0 and z>0 mass functions from various group and cluster samples. Our derived mass functions match up well with z>0.35 X-ray selected clusters, and strong evolution is evident at all masses over the past 8 Gyr. Given the already low level of star formation activity in galaxies at these masses, we therefore attribute most of the observed growth in the GrSMF to group-group and group-galaxy mergers, in accordance with qualitative notions of hierarchical structure formation. Given the factor 3-10 increase in the number density of groups and clusters with M*>10^12 Msun since z=1 and the strong anticorrelation between star formation activity and environmental density, this late-time growth in group-sized halos may therefore be an important contributor to the structural and star-formation evolution of massive galaxies over the past 8 Gyr.
Squeezed primordial non-Gaussianity can strongly constrain early-universe physics, but it can only be observed on the CMB after it has been gravitationally lensed. We give a new simple non-perturbative prescription for accurately calculating the effect of lensing on any squeezed primordial bispectrum shape, and test it with simulations. We give the generalization to polarization bispectra, and discuss the effect of lensing on the trispectrum. We explain why neglecting the lensing smoothing effect does not significantly bias estimators of local primordial non-Gaussianity, even though the change in shape can be >~10%. We also show how tau_NL trispectrum estimators can be well approximated by much simpler CMB temperature modulation estimators, and hence that there is potentially a ~10-30% bias due to very large-scale lensing modes, depending on the range of modulation scales included. Including dipole sky modulations can halve the tau_NL error bar if kinematic effects can be subtracted using known properties of the CMB temperature dipole. Lensing effects on the g_NL trispectrum are small compared to the error bar. In appendices we give the general result for lensing of any primordial bispectrum, and show how any full-sky squeezed bispectrum can be decomposed into orthogonal modes of distinct angular dependence.
The spectral energy distribution (SED) of a galaxy contains information on the galaxy's physical properties, and multi-wavelength observations are needed in order to measure these properties via SED fitting. In planning these surveys, optimization of the resources is essential. The Fisher Matrix formalism can be used to quickly determine the best possible experimental setup to achieve the desired constraints on the SED fitting parameters. However, because it relies on the assumption of a Gaussian likelihood function, it is in general less accurate than other slower techniques that reconstruct the probability distribution function (PDF) from the direct comparison between models and data. We compare the uncertainties on SED fitting parameters predicted by the Fisher Matrix to the ones obtained using the more thorough PDF fitting techniques. We use both simulated spectra and real data, and consider a large variety of target galaxies differing in redshift, mass, age, star formation history, dust content, and wavelength coverage. We find that the uncertainties reported by the two methods agree within a factor of two in the vast majority (~ 90%) of cases. If the age determination is uncertain, the top-hat prior in age used in PDF fitting to prevent each galaxy from being older than the Universe needs to be incorporated in the Fisher Matrix, at least approximately, before the two methods can be properly compared. We conclude that the Fisher Matrix is a useful tool for astronomical survey design.
We study the evolution of galaxy populations around the spectroscopic WiggleZ sample of starforming galaxies at 0.25 < z < 0.75 using the photometric catalog from the Second Red-Sequence Cluster Survey (RCS2). We probe the optical photometric properties of the net excess neighbor galaxies. The key concept is that the marker galaxies and their neighbors are located at the same redshift, providing a sample of galaxies representing a complete census of galaxies in the neighborhood of star-forming galaxies. The results are compared with those using the RCS WiggleZ Spare-Fibre (RCS-WSF) sample as markers, representing galaxies in cluster environments at 0.25 < z < 0.45. By analyzing the stacked color-color properties of the WiggleZ neighbor galaxies, we find that their optical colors are not a strong function of indicators of star-forming activities such as EW([OII]) or GALEX NUV luminoisty of the markers. The galaxies around the WiggleZ markers exhibit a bimodal distribution on the color-magnitude diagram, with most of them located in the blue cloud. The optical galaxy luminosity functions (GLF) of the blue neighbor galaxies have a faint-end slope \alpha of \sim -1.3, similar to that for galaxies in cluster environments drawn from the RCS-WSF sample. The faint-end slope of the GLF for the red neighbors, however, is \sim -0.4, significantly shallower than the \sim -0.7 found for those in cluster environments. This suggests that the build-up of the faint-end of the red sequence in cluster environments is in a significantly more advanced stage than that in the star-forming and lower galaxy density WiggleZ neighborhoods. We find that the red galaxy fraction (fred) around the star-forming WiggleZ galaxies has similar values from z \sim 0.3 to z \sim 0.6 with fred \sim 0.28, but drops to fred \sim 0.20 at z > \sim0.7. This change of fred with redshift suggests that (and more...)
The physical state of interstellar gas and dust is dependent on the processes which heat and cool this medium. To probe heating and cooling of the ISM over a large range of infrared surface brightness, on sub-kiloparsec scales, we employ line maps of [C \ii] 158 $\mu$m, [O \one] 63 $\mu$m, and [N \ii] 122 $\mu$m in NGC 1097 and NGC 4559, obtained with the PACS spectrometer onboard {\it Herschel}. We matched new observations to existing Spitzer-IRS data that trace the total emission of polycyclic aromatic hydrocarbons (PAHs). We confirm at small scales in these galaxies that the canonical measure of photoelectric heating efficiency, ([C \ii] + [O \one])/TIR, decreases as the far-infrared color, $\nu f_\nu$(70 $\mu$m)/$\nu f_\nu$(100 $\mu$m), increases. In contrast, the ratio of far-infrared (far-IR) cooling to total PAH emission, ([C \ii] + [O \one])/PAH, is a near constant $\sim$6% over a wide range of far-infrared color, 0.5 \textless\ $\nu f_\nu$(70 $\mu$m)/$\nu f_\nu$(100 $\mu$m) $\lesssim$ 0.95. In the warmest regions, where $\nu f_\nu$(70 $\mu$m)/$\nu f_\nu$(100 $\mu$m) $\gtrsim$ 0.95, the ratio ([C \ii] + [O \one])/PAH drops rapidly to 4%. We derived representative values of the local UV radiation density, $G_0$, and the gas density, $n_H$, by comparing our observations to models of photodissociation regions. The ratio $G_0/n_H$, derived from fine-structure lines, is found to correlate with the mean dust-weighted starlight intensity, $<U>$ derived from models of the IR SED. Emission from regions that exhibit a line deficit is characterized by an intense radiation field, indicating that small grains are susceptible to ionization effects. We note that there is a shift in the 7.7 / 11.3 $\mu$m PAH ratio in regions that exhibit a deficit in ([C \ii] + [O \one])/PAH, suggesting that small grains are ionized in these environments.
We observed Mrk 509 during the fall of 2009 during a multiwavelength campaign using XMM-Newton, Chandra, HST/COS, SWIFT, and Integral. The 600-ks XMM/RGS spectrum finds two kinematic components and a discrete distribution of ionized absorbers. Our high S/N COS spectrum detects additional complexity in the known UV absorption troughs from a variety of sources in Mrk 509, including the outflow from the active nucleus, the ISM and halo of the host galaxy, and infalling clouds or stripped gas from a merger that are illuminated by the AGN. The UV absorption only partially covers the emission from the AGN nucleus with covering fractions lower than those previously seen with STIS, and are comparable to those seen with FUSE. Given the larger apertures of COS and FUSE compared to STIS, we favor scattered light from an extended region near the AGN as the explanation for the partial covering. As observed in prior X-ray and UV spectra, the UV absorption has velocities comparable to the X-ray absorption, but the bulk of the ultraviolet absorption is in a lower ionization state with lower total column density than the gas responsible for the X-ray absorption. Variability compared to prior UV spectra lets us set limits on the location, density, mass flux, and kinetic energy of the outflowing gas. For component 1 at $-400 \rm km s^{-1}$, the kinetic energy flux of both the UV and the X-ray outflow is insufficient to have a significant impact on further evolution of the host galaxy.
We combine new Wide Field Camera~3 IR Channel (WFC3/IR) F160W (H) imaging data for NGC1399, the central galaxy in the Fornax cluster, with archival F475W (g), F606W (V), F814W (I), and F850LP (z) optical data from the Advanced Camera for Surveys (ACS). The purely optical g-I, V-I, and g-z colors of NGC1399's rich globular cluster (GC) system exhibit clear bimodality, at least for magnitudes $I_814 > 21.5$. The optical-IR I-H color distribution appears unimodal, and this impression is confirmed by mixture modeling analysis. The V-H colors show marginal evidence for bimodality, consistent with bimodality in V-I and unimodality in I-H. If bimodality is imposed for I-H with a double Gaussian model, the preferred blue/red split differs from that for optical colors; these "differing bimodalities" mean that the optical and optical-IR colors cannot both be linearly proportional to metallicity. Consistent with the differing color distributions, the dependence of I-H on g-I for the matched GC sample is significantly nonlinear, with an inflection point near the trough in the g-I color distribution; the result is similar for the I-H dependence on g-z colors taken from the ACS Fornax Cluster Survey. These g-z colors have been calibrated empirically against metallicity; applying this calibration yields a continuous, skewed, but single-peaked metallicity distribution. Taken together, these results indicate that nonlinear color-metallicity relations play an important role in shaping the observed bimodal distributions of optical colors in extragalactic GC systems.
We report the discovery of Balmer broad absorption lines (BALs) in the quasar LBQS 1206+1052 and present a detailed analysis of the peculiar absorption line spectrum. Besides Mg II $\lambda \lambda 2796, 2803$ doublet, BALs are also detected in He I* multiplet at $\lambda \lambda 2946, 3189, 3889$ \AA arising from metastable helium $2^3S$ level, and in H$\alpha$ and H$\beta$ from excited hydrogen H I* $n=2$ level, which are rarely seen in quasar spectra. We identify two components in the BAL troughs of $\Delta v\sim$2000 km s$^{-1}$ width: One component shows an identical profile in H I*, \hei* and \mgii with its centroid blueshifted by $-v_{\rm c}\approx 726$ km\ s$^{-1}$. The other component is detected in \hei* and \mgii with $-v_{\rm c}\approx 1412$ km s$^{-1}$. We estimate the column densities of H I*, He I*, and Mg II, and compare them with possible level population mechanisms. Our results favor the scenario that the Balmer BALs originate in a partially ionized region with a column density of $N_{\rm H}\sim 10^{21-22}$ cm$^{-2}$ for an electron density of $n_e\sim 10^{6-8} $cm$^{-3}$ via Ly$\alpha$ resonant scattering pumping. The harsh conditions needed may help to explain the rarity of Balmer absorption line systems in quasar spectra. With an $i$-band PSF magnitude of 16.50, LBQS 1206+1052 is the brightest Balmer-BAL quasar ever reported. Its high brightness and unique spectral properties make LBQS 1206+1052 a promising candidate for follow-up high-resolution spectroscopy, multi-band observations, and long-term monitoring.
Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for Rgc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.
We analyze a suite of 33 cosmological simulations following the evolution of Milky Way-mass galaxies in low-density environments. Our sample at z = 0 comprises galaxies with a broad range of Hubble types, from nearly bulgeless disks to bulge-dominated galaxies. The bulges are typically pseudo-bulges, with a Sersic index lower than 2, and 70% of the galaxies have bars. Despite the fact that a large fraction of the bulge is typically in place by z = 1, we find no significant correlation between the morphology at z = 1 and at z = 0. The progenitors of disk galaxies span a whole range of morphologies at z = 1, including smooth disks, unstable disks, interacting galaxies and bulge-dominated systems. By z = 0.5, the progenitor morphology is correlated with the z = 0 morphology, with spiral arms and bars largely in place at z = 0.5. From this sample we analyze the formation histories of galaxies with a bulge-to-total ratio below 0.3 (typically Sb and later types). They do form in our simulations, but with a lower abundance than observed - a common failure of cosmological simulations. Amongst these galaxies, we find a correlation between the bulge fraction at z = 0 and the mass ratio of the largest merger undergone after z = 2, as well as a correlation with the gas accretion rate at z > 1. We find that the most disk-dominated galaxies have an extremely quiet baryon input history; there are typically no major mergers after z = 2, and gas is accreted at a low and constant rate, with the angular momentum stable at a fixed direction. By contrast, more violent merger or gas accretion histories give birth to galaxies with more prominent bulges. The galaxies with the highest bulge Sersic index at z = 0 are those with intense gas accretion and disk instabilities, including early bar formation, rather than the galaxies with the most active merger histories.
We present numerical simulations of galaxy clusters with anisotropic heating
from active galactic nuclei (AGN) that are able, for the first time, to
reproduce the observed entropy and temperature profiles of both non-cool-core
(NCC) and cool-core (CC) clusters.
Our study uses N-body hydrodynamical simulations to investigate how star
formation, metal production, black hole accretion, and the associated feedback
from supernovae and AGN, heat and enrich diffuse gas in galaxy clusters. We
assess how different implementations of these processes affect the thermal and
chemical properties of the intracluster medium (ICM), using high-quality X-ray
observations of local clusters to constrain our models. For the purposes of
this study we have resimulated a sample of 25 massive galaxy clusters extracted
from the Millennium Simulation. Sub-grid physics is handled using a
semi-analytic model of galaxy formation, thus guaranteeing that the source of
feedback in our simulations is a population of galaxies with realistic
properties. We find that supernova feedback has no effect on the entropy and
metallicity structure of the ICM, regardless of the method used to inject
energy and metals into the diffuse gas. By including AGN feedback, we are able
to explain the observed entropy and metallicity profiles of clusters, as well
as the X-ray luminosity-temperature scaling relation for NCC systems. A
physical model of AGN energy injection based on anisotropic jet heating -
presented for the first time here - is crucial for this success. With the
addition of metal-dependent radiative cooling, our model is also able to
produce CC clusters, without over-cooling of gas in dense, central regions.
A new method is proposed to measure the Hubble constant H0 through the mean transmitted flux observed from high redshift quasars. A semi-analytical model for the cosmological-independent volume density distribution function is adopted which allows one to obtain constraints over the cosmological parameters once a moderate knowlegde of the InterGalactic Medium (IGM) parameters is assumed. By assuming a flat LCDM cosmology, we show that such method alone cannot provide good constraints on the pair of free parameters (h, Omega_m). However, it is possible possible to break the degeneracy on the mass density parameter by applying a joint analysis involving the baryon acoustic oscillations (BAOs). Our analysis based on two different samples of Lyman-alpha forest restricts the parameters on the intervals 0.58 < h < 0.91 and 0.215 < Omega_m < 0.245 (1 sigma). Although the constraints are weaker comparatively to other estimates, we point out that with a bigger sample and a better knowledge of the IGM this method may present competitive results to measure the Hubble constant independently of the cosmic distance ladder.
Observations in the near- and mid-ultraviolet (NUV: 2000--3500$\AA$) performed with the NASA Swift UVOT instrument have revealed that optically-normal SNe Ia feature NUV-optical color evolution that can be divided into NUV-blue and NUV-red groups, with roughly one-third of the observed events exhibiting NUV-blue color curves. Combined with an apparent correlation between NUV-blue events and the detection of unburned carbon in the optical spectra, the grouping might point to a fundamental difference within the normal SN Ia classfication. Recognizing the dramatic temporal evolution of the NUV-optical colors for all SNe Ia, as well as the existence of this sub-division, is important for studies that compare nearby SNe Ia with intermediate or high-$z$ events, for the purpose of the cosmological utilization of SNe Ia. SN 2011fe is shown to be of the NUV-blue groups, which will be useful towards interpretation of the gamma-ray line results from the INTEGRAL SPI campaign on SN 2011fe.
One of the central goals of multi-wavelength galaxy cluster cosmology is to unite all cluster observables to form a consistent understanding of cluster mass. Here, we study the impact of systematic effects from optical cluster catalogs on stacked SZ signals. We show that the optically predicted Y-decrement can vary by as much as 50% based on the current 2 sigma systematic uncertainties in the observed mass-richness relationship. Mis-centering and impurities will suppress the SZ signal compared to expectations for a clean and perfectly centered optical sample, but to a lesser degree. We show that the level of these variations and suppression is dependent on the amount of systematics in the optical cluster catalogs. We also study luminosity-dependent sub-sampling of the optical catalog, which creates Malmquist-like effects that biases upwards the observed Y-decrement of the stacked signal. We show that the current Planck measurements of the Y-decrement around SDSS optical clusters and their X-ray counterparts are consistent with expectations after accounting for the 1sigma (2sigma) optical systematic uncertainties using the Johnston (Rozo) mass-richness relation.
We propose a new scenario for the bouncing universe in a simple five-dimensional braneworld model in the framework of Einstein-Gauss-Bonnet gravity, which works even with ordinary matter on the brane. In this scenario, the so-called branch singularity located at a finite physical radius in the bulk spacetime plays an essential role. We show that a three-brane moving in the bulk may reach and safely pass through it in spite that it is a curvature singularity. The bulk spacetime is extended beyond the branch singularity in the C^0 sense and then the branch singularity is identified as a massive thin shell. From the bulk point of view, this process is the collision of the three-brane with the shell of branch singularity. From the point of view on the brane, this process is a sudden transition from the collapsing phase to the expanding phase of the universe. This opens a completely new possibility to achieve the bouncing brane universe as a higher-curvature effect.
We report unique EVLA observations of SN 2011fe representing the most sensitive radio study of a Type Ia supernova to date. Our data place direct constraints on the density of the surrounding medium at radii ~10^15-10^16 cm, implying an upper limit on the mass loss rate from the progenitor system of Mdot <~ 6 x 10^-10 Msol/yr (assuming a wind speed of 100 km/s), or expansion into a uniform medium with density n_CSM <~ 6 cm^-3. Drawing from the observed properties of non-conservative mass transfer among accreting white dwarfs, we use these limits on the density of the immediate environs to exclude a phase space of possible progenitors systems for SN 2011fe. We rule out a symbiotic progenitor system and also a system characterized by high accretion rate onto the white dwarf that is expected to give rise to optically-thick accretion winds. Assuming that a small fraction, 1%, of the mass accreted is lost from the progenitor system, we also eliminate much of the potential progenitor parameter space for white dwarfs hosting recurrent novae or undergoing stable nuclear burning. Therefore, we rule out the most popular single degenerate progenitor models for SN 2011fe, leaving a limited phase space inhabited by some double degenerate systems and exotic progenitor scenarios.
We report on optical spectroscopy of 165 Flat Spectrum Radio Quasars (FSRQs) in the Fermi 1LAC sample, which have helped allow a nearly complete study of this population. Fermi FSRQ show significant evidence for non-thermal emission even in the optical; the degree depends on the gamma-ray hardness. They also have smaller virial estimates of hole mass than the optical quasar sample. This appears to be largely due to a preferred (axial) view of the gamma-ray FSRQ and non-isotropic (H/R ~ 0.4) distribution of broad-line velocities. Even after correction for this bias, the Fermi FSRQ show higher mean Eddington ratios than the optical population. A comparison of optical spectral properties with Owens Valley Radio Observatory radio flare activity shows no strong correlation.
Using recent fits to numerical simulations, we show that the entire hierarchy of moments ceases to provide a complete description of the convergence one-point probability density function already for values of the associated matter fluctuations variance as low as 0.1, still in the weak lensing regime. This suggests that the full correlation function hierarchy of the convergence field becomes quickly generically incomplete and a very poor cosmological probe on non linear scales. At the scale of unit variance, only 5 % of the Fisher information content of the one-point probability density function is still contained in its hierarchy of moments, making clear that information escaping the hierarchy is a far stronger effect than information propagating to higher order moments. It follows that the constraints on cosmological parameters achievable through extraction of the entire hierarchy become suboptimal by large amounts. A simple logarithmic mapping makes the moment hierarchy well suited again for parameter extraction, putting 80% of the total information back into the first two and 95% in the first three members.
We report evidence for extended gamma-ray emission from the Virgo, Fornax and Coma clusters based on a maximum-likelihood analysis of the 3-year Fermi-LAT data. For all three clusters, excess emission is observed within three degrees of the center, peaking at the GeV scale. This emission cannot be accounted for by known Fermi sources or by the galactic and extragalactic backgrounds. If interpreted as annihilation emission from supersymmetric dark matter (DM) particles, the data prefer models with a particle mass in the range 20-60 GeV annihilating into the b-bbar channel, or 2-10 GeV and >1 TeV annihilating into mu-mu final states. Our results are consistent with those obtained by Hooper and Linden from a recent analysis of Fermi-LAT data in the region of the Galactic Centre. An extended DM annihilation profile dominated by emission from substructures is preferred over a simple point source model. The significance of DM detection is 4.4 sigma in Virgo and lower in the other two clusters. We also consider the possibility that the excess emission arises from cosmic ray (CR) induced gamma-rays, and infer a CR level within a factor of three of that expected from analytical models. However, the significance of a CR component is lower than the significance of a DM component, and there is no need for such a CR component in the presence of a DM component in the preferred DM mass range. We also set flux and cross-section upper limits for DM annihilation into the b-bbar and mu-mu channels in all three clusters.
General relativity allows a variety of future singularities to occur in the evolution of the universe. At these future singularities, the universe will end in a singular state after a finite proper time and geometrical invariants of the space time will diverge. One question that naturally arises with respect to these cosmological scenarios is the following: can quantum effects lead to the avoidance of these future singularities? We analyze this problem considering massless and conformally coupled scalar fields in an isotropic and homogeneous background leading to future singularities. It is shown that near strong, big rip-type singularities, with violation of the energy conditions, the quantum effects are very important, while near some milder classes of singularity like the sudden singularity, which preserve the energy conditions, quantum effects are irrelevant.
Motivated by a model of pseudo-Majoron dark matter, we show how the breaking of a global symmetry that acts nontrivially in lepton generation space can lead to a viable pseudo-familon dark matter candidate. Unlike the pseudo-Majoron, the pseudo-familon in our model decays primarily to charged leptons and can account for the excess observed in the cosmic ray electron and positron spectra.
Links to: arXiv, form interface, find, astro-ph, recent, 1201, contact, help (Access key information)