Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. More details about how to get it can be found from the following website: https://sites.google.com/site/geclusters/
We report on simulations of the formation of the first stars in the Universe, where we identify regions of hot atomic gas (fH2 < 10-6) at densities above 10-14 g/cc, heated to temperatures ranging between 3000 and 8000 K. Within this temperature range atomic hydrogen is unable to cool effectively. We describe the kinetic and thermal characteristics of these regions and investigate their origin. We find that these regions, while small in total mass fraction of the cloud, may be dynamically important over the accretion timescale for the central clump in the cloud, particularly as a chemical, rather than radiative, mechanism for clearing the polar regions of the accretion disk of material and terminating accretion along these directions. These inherently three-dimensional effects stress the need for multi-dimensional calculations of protostellar accretion for reliable predictions of the masses of the very first stars.
We present a study of the dark and luminous matter in the isolated elliptical galaxy NGC720, based on deep X-ray data taken with Chandra and Suzaku. The gas is reliably measured to ~R2500, allowing us to place good constraints on the enclosed mass and baryon fraction (fb) within this radius (M2500=1.6e12+/-0.2e12 Msun, fb(2500)=0.10+/-0.01; systematic errors are <~20%). The data indicate that the hot gas is close to hydrostatic, which is supported by good agreement with a kinematical analysis of the dwarf satellite galaxies. We confirm a dark matter (DM) halo at ~20-sigma. Assuming an NFW DM profile, our physical model for the gas distribution enables us to obtain meaningful constraints at scales larger than R2500, revealing that most of the baryons are in the hot gas. We find that fb within Rvir is consistent with the Cosmological value, confirming theoretical predictions that a ~Milky Way-mass (Mvir=3.1e12+/-0.4e12 Msun) galaxy can sustain a massive, quasi-hydrostatic gas halo. While fb is higher than the cold baryon fraction typically measured in similar-mass spiral galaxies, both the gas fraction (fg) and fb in NGC720 are consistent with an extrapolation of the trends with mass seen in massive galaxy groups and clusters. After correcting for fg, the entropy profile is close to the self-similar prediction of gravitational structure formation simulations, as observed in galaxy clusters. Finally, we find a strong heavy metal abundance gradient in the ISM similar to those observed in massive galaxy groups.
We calculate the emission line spectrum produced by the debris released when a white dwarf (WD) is tidally disrupted by an intermediate-mass black hole (IMBH; $M\sim 10^{2}-10^{5}\msun$) and we explore the possibility of using the emission lines to identify such events and constrain the properties of the IMBH. To this end, we adopt and adapt the techniques developed by Strubbe & Quataert to study the optical emission lines produced when a main sequence (MS) star is tidally disrupted by a supermassive black hole. WDs are tidally disrupted outside of the event horizon of a $< 10^{5}\msun$ black hole, which makes these tidal disruption events good signposts of IMBHs. We focus on the optical and UV emission lines produced when the accretion flare photoionizes the stream of debris that remains unbound during the disruption. We find that the spectrum is dominated by lines due to ions of C and O, the strongest of which are \ion{C}{4} $\lambda$1549 at early times and [\ion{O}{3}] $\lambda$5007 at later times. Furthermore, we model the profile of the emission lines in the [\ion{O}{3}] $\lambda\lambda$4959, 5007 doublet and find that it is highly asymmetric with velocity widths of up to $\sim 2500 \rm{\;km\;s^{-1}}$, depending on the properties of the WD-IMBH system and the orientation of the observer. Finally, we compare the models with observations of X-ray flares and optical emission lines in the cores of globular clusters and propose how future observations can test if these features are due to a WD that has been tidally disrupted by an IMBH.
The oxygen abundances for four dwarf spiral galaxies have been determined using long-slit spectroscopy. The abundances of these galaxies have not previously reported in the literature. Several HII regions were detected in each galaxy. The electronic temperature method could be used only in one region because of the lack of the auroral lines of oxygen or sulfur. Therefore, four different semi empirical methods were used in the abundance determinations and a weighted-average abundance is obtained. The abundances of three of the galaxies are sub solar for all the regions, one of them having a very low metallicity. Only three HII regions in the fourth galaxy show slightly over solar abundances. Three of the HII regions might have a PN embedded. A comparison with the oxygen abundances among different types of late-type galaxies (BCG, LSBG, dI, Sm) is made. The conclusion is that all of them show the same range in metallicity. Also, the log(N/O) is similar, showing a secondary behaviour for abundances larger than 8.2 dex in spite of the morphological type of the mother galaxy.
Aperture synthesis observations of two HI cloud complexes located in the periphery of the Virgo galaxy cluster are presented. These low HI-mass clouds ($M_{HI}<$ 10$^{9}$) are seen projected on the M region of the western Virgo cluster, where the galaxy population is thought to lie behind the main A cluster surrounding M87. The kinematic measurements of both unresolved Arecibo and resolved VLA-C observations are in good agreement. The HI detections cannot be identified with any optical, IR, or UV emission from available archival imaging. They are inert at these wavelengths. The HI masses of the individual VLA detections range from 7.28 $\leq$ log($M_{HI}) \leq $ 7.85. The total dynamical mass estimates are several times their HI content, ranging from 7.00 $\leq$ log($M_{dyn}) \leq $ 9.07, with the assumption that the clouds are self-gravitating and in dynamical equilibrium. We report the observed parameters derived from the VLA observations. One of these HI clouds appears to be the most isolated optically inert detection observed in the outer reaches of Virgo.
We present a set of photoionization models that reproduce simultaneously the observed optical and mid-infrared spatial distribution of the HII region NGC595 in the disk of M33 using the code CLOUDY. Both optical (PMAS-Integral Field Spectroscopy) and mid-infrared (8 mi and 24 mi bands from Spitzer) data provide enough spatial resolution to model in a novel approach the inner structure of the HII region. We define a set of elliptical annular regions around the central ionizing cluster with an uniformity in their observed properties and consider each annulus as an independent thin shell structure. For the first time our models fit the relative surface brightness profiles in both the optical (Halpha, [OII], [OIII]) and the mid-infrared emissions (8 mi and 24 mi), under the assumption of a uniform metallicity (12+log(O/H) = 8.45; Esteban et al. 2009) and an age for the stellar cluster of 4.5 Myr (Malumuth et al. 1996). Our models also reproduce the observed uniformity of the R23 parameter and the increase of the [OII]/[OIII] ratio due to the decrease of the ionization parameter. The variation of the Halpha profile is explained in terms of the differences of the occupied volume (the product of filling factor and total volume of the shell) in a matter-bounded geometry, which also allows to reproduce the observed pattern of the extinction. The 8 mi/24 mi ratio is low (ranging between 0.04 and 0.4) because it is dominated by the surviving of small dust grains in the HII region, while the PAHs emit more weakly because they cannot be formed in these thin HII gas shells. The ratio is also well fitted in our models by assuming a dust-to-gas ratio in each annulus compatible with the integrated estimate for the whole HII region after the 70 mi, and 160 mi Spitzer observations.
The advent of large cosmological sky surveys - ushering in the era of precision cosmology - has been accompanied by ever larger cosmological simulations. The analysis of these simulations, which currently encompass tens of billions of particles and up to trillion particles in the near future, is often as daunting as carrying out the simulations in the first place. Therefore, the development of very efficient analysis tools combining qualitative and quantitative capabilities is a matter of some urgency. In this paper we introduce new analysis features implemented within ParaView, a parallel, open-source visualization toolkit, to analyze large N-body simulations. The new features include particle readers and a very efficient halo finder which identifies friends-of-friends halos and determines common halo properties. In combination with many other functionalities already existing within ParaView, such as histogram routines or interfaces to Python, this enhanced version enables fast, interactive, and convenient analyses of large cosmological simulations. In addition, development paths are available for future extensions.
Models of the Universe like the Concordance Model today used to interpret cosmological observations give expectation values for many cosmological observable so accurate that frequently peoples speak of Precision Cosmology. The quoted accuracies however do not include the effects of priors used in optimizing the Model nor allow to evaluate the confidence one can attach to the Model. We suggest an estimator of the Confidence Level for Models and the accuracies of the expectation values of the Model observables
XMM and Chandra opened a new area for the study of clusters of galaxies. Not only for cluster physics but also, for the detection of faint and distant clusters that were inaccessible with previous missions. This article presents 66 spectroscopically confirmed clusters (0.05<z<1.5) within an area of 6 deg2 enclosed in the XMM-LSS survey. Almost two thirds have been confirmed with dedicated spectroscopy only and 10% have been confirmed with dedicated spectroscopy supplemented by literature redshifts. Sub-samples, or classes, of extended-sources are defined in a two-dimensional X-ray parameter space allowing for various degrees of completeness and contamination. We describe the procedure developed to assess the reality of these cluster candidates using the CFHTLS photometric data and spectroscopic information from our own follow-up campaigns. Most of these objects are low mass clusters, hence constituting a still poorly studied population. In a second step, we quantify correlations between the optical properties such as richness or velocity dispersion and the cluster X-ray luminosities. We examine the relation of the clusters to the cosmic web. Finally, we review peculiar structures in the surveyed area like very distant clusters and fossil groups.
We apply the self-consistent field (SCF) method to create a time-evolving density/potential expansion approximation of the late growth of simulated N-body dark matter haloes. We demonstrate how the potential of a halo from the Aquarius Project can be accurately represented by a small number of basis functions. We explore the level of accuracy of the technique as well as some of its limitations. We find that the number of terms included in the expansion must be large enough to resolve the large-scale distribution and shape of the halo but, beyond this, additional terms result in little further improvement. Particle and subhalo orbits can be integrated in this realistic, time varying halo potential approximation, at much lower cost than the original simulation, with high fidelity for many individual orbits, and a good match to the distributions of orbital energy and angular momentum. Statistically, the evolution of structural subhalo properties, such as mass, half-mass radius and characteristic circular velocity, are very well reproduced in the SCF approximation over several gigayears. We demonstrate an application of the technique by following the evolution of an orbiting subhalo at much higher resolution than can be achieved in the original simulation. Our method represents a significant improvement over commonly used techniques based on static analytical descriptions of the halo potential.
Although broad emission lines are the best signature of the nuclear activity of a galaxy, and the location of the emitting material is well measured by the reverberation method, the physical cause of the formation of the broad line region is still under debate. We address this issue by studying the properties of the accretion disk underlying the broad line region. We have found that the effective temperature at the disk radius corresponding to the location of the broad line region is universal in all monitored sources and equal to 1100 K. This value is close to the limiting value which allows for the existence of the dust. The likely origin of the broad line region is the strong local dusty wind from the disk, which becomes exposed to the irradiation by the central regions when moving higher above the disk surface and subsequently behaves like a failed wind, thus leading to a local mixture of inflow and outflow. This may provide the physical explanation of the turbulence needed both to smooth line profiles as well as to contribute the additional mechanical heating.
We generalize the cosmic energy equation to the case when massive particles interact via a modified gravitational potential of the form phi(a, |r_1 - r_2|), where phi is allowed to explicitly depend upon the cosmological time through the expansion factor a(t). Using the nonrelativistic approximation for particle dynamics, we derive the equation for the cosmological expansion which has the form of the Friedmann equation with a renormalized gravitational constant. The generalized Layzer-Irvine cosmic energy equation and the associated cosmic virial theorem are applied to some recently proposed modifications of the Newtonian gravitational interaction between dark-matter particles. We also draw attention to the possibility that the cosmic energy equation may be used to probe the expansion history of the universe thereby throwing light on the nature of dark matter and dark energy.
We investigate the scientific impact of the Wide Field X-ray Telescope mission. We present simulated images and spectra of X-ray sources as observed from the three surveys planned for the nominal 5-year WFXT lifetime. The goal of these simulations is to provide WFXT images of the extragalactic sky in different energy bands based on accurate description of AGN populations, normal and star forming galaxies, groups and clusters of galaxies. The images are realized using a detailed PSF model, instrumental and physical backgrounds/foregrounds, accurate model of the effective area and the related vignetting effect. Thanks to this comprehensive modelization of the WFXT properties, the simulated images can be used to evaluate the flux limits for detection of point and extended sources, the effect of source confusion at very faint fluxes, and in general the efficiency of detection algorithms. We also simulate the spectra of the detected sources, in order to address specific science topics which are unique to WFXT. Among them, we focus on the characterization of the Intra Cluster Medium (ICM) of high-z clusters, and in particular on the measurement of the redshift from the ICM spectrum in order to build a cosmological sample of galaxy clusters. The end-to-end simulation procedure presented here, is a valuable tool in optimizing the mission design. Therefore, these simulations can be used to reliably characterize the WFXT discovery space and to verify the connection between mission requirements and scientific goals. Thanks to this effort, we can conclude on firm basis that an X-ray mission optimized for surveys like WFXT is necessary to bring X-ray astronomy at the level of the optical, IR, submm and radio wavebands as foreseen in the coming decade.
We discuss the central role played by the X-ray study of hot baryons within galaxy clusters to reconstruct the assembly of cosmic structures and to trace the past history of star formation and accretion onto supermassive Black Holes (BHs). We shortly review the progress in this field contributed by the current generation of X-ray telescopes. Then, we focus on the outstanding scientific questions that have been opened by observations carried out in the last years and that represent the legacy of Chandra and XMM: (a) When and how is entropy injected into the inter-galactic medium (IGM)? (b) What is the history of metal enrichment of the IGM? (c) What physical mechanisms determine the presence of cool cores in galaxy clusters? (d) How is the appearance of proto-clusters at z~2 related to the peak of star formation activity and BH accretion? (e) What do galaxy clusters tell us about the nature of primordial density perturbations and on the history of their growth? We show that the most efficient observational strategy to address these questions is to carry out a large-area X-ray survey, reaching a sensitivity comparable to that of deep Chandra and XMM pointings, but extending over several thousands of square degrees. A similar survey can only be carried out with a Wide-Field X-ray Telescope (WFXT), which combines a high survey speed with a sharp PSF across the entire FoV. We emphasize the important synergies that WFXT will have with a number of future ground-based and space telescopes, covering from the radio to the X-ray bands. Finally, we discuss the immense legacy value that such a mission will have for extragalactic astronomy at large.
We consider a phenomenological model where the effective fermion masses depend on the local value of Weyl tensor as a possible explanation for the recent data indicating a space-time variation of the electron-to-proton mass ratio ($\Delta \mu/\mu$) within the Milky Way. We also contrast the required value of the model's parameters with the bounds obtained for the same quantity from modern tests on the violation of the Weak Equivalence Principle (WEP). We obtain the theoretical expression for the variation of $\Delta \mu/\mu$ and for the violation of the WEP as a function of the model parameters. We perform a least square minimization in order to obtain constraints on the model parameters from bounds on the WEP. The bounds obtained on the model parameters from the variation of $\Delta \mu/\mu$ are inconsistent with the bounds obtained from constraints on the violation of the WEP. The variation of nucleon and electron masses through the Weyl tensor is not a viable model.
The Wide Field X-Ray Telescope (WFXT) is a medium-class mission designed to be 2-orders-of-magnitude more sensitive than any previous or planned X-ray mission for large area surveys and to match in sensitivity the next generation of wide-area optical, IR and radio surveys. Using an innovative wide-field X-ray optics design, WFXT provides a field of view of 1 square degree (10 times Chandra) with an angular resolution of 5" (Half Energy Width, HEW) nearly constant over the entire field of view, and a large collecting area (up to 1 m^2 at 1 keV, > 10x Chandra) over the 0.1-7 keV band. WFXTs low-Earth orbit also minimizes the particle background. In five years of operation, WFXT will carry out three extragalactic surveys at unprecedented depth and address outstanding questions in astrophysics, cosmology and fundamental physics. In this article, we illustrate the mission concept and the connection between science requirements and mission parameters.
We consider a variant of hybrid inflation where the waterfall phase transition happens during inflation. By adjusting the parameters associated with the mass of the waterfall field, we arrange that the phase transition is not sharp so inflation can proceed for an extended period after the waterfall phase transition. We show that one can work in the limit where the quantum back-reactions are subdominant compared to the classical back-reactions. It is shown that significant amount of large scale curvature perturbations are induced from the entropy perturbations. The curvature perturbations spectral index runs from a blue spectrum to a red spectrum depending on whether the mode of interest leaves the horizon before the phase transition or after the phase transition. This can have interesting observational consequences on CMB. The non-Gaussianity parameter $f_{NL}$ is calculated to be $\lesssim 1$ but much bigger than the slow-roll parameters.
The mass assembly and star formation histories of massive galaxies identified
at low redshift z in different cosmological hydrodynamical simulations, have
been studied through a detailed follow-up backwards in time of their
constituent mass elements (sampled by particles) of different types. Then, the
configurations they depict at progressively higher zs have been analysed.
The analyses show that these histories share common generic patterns,
irrespective of particular circumstances. In any case, the results we have
found are different depending on the particle type. The most outstanding
differences follow. We have found that by z ~ 3.5 - 6, mass elements identified
as stellar particles at z=0 exhibit a gaseous cosmic-web-like morphology with
scales of ~ 1 physical Mpc, where the densest mass elements have already turned
into stars by z ~ 6. These settings are in fact the densest pieces of the
cosmic web, where no hot particles show up, and dynamically organized as a
hierarchy of flow convergence regions, that is, attraction basins for mass
flows. On the other hand, mass elements identified at the diffuse hot coronae
surrounding massive galaxies at z = 0, do not display a clear web-like
morphology at any z. Diffuse gas is heated when flow convergence regions go
through contractive deformations, and most of it keeps hot and with low density
along the evolution.
To shed light on the physical foundations of the behaviour our analyses show
up, as well as on their possible observational implications, these patterns
have been confronted with some generic properties of singular flows as
described by the adhesion model. We have found that these common patterns
simulations show can be interpreted as a consequence of flow properties, that,
moreover, could explain different generic observational results on massive
galaxies or their samples. We briefly discuss some of them.[Abridged]
In the context of Type IIB compactified on a large volume Swiss-Cheese orientifold in the presence of a mobile space-time filling $D3$-brane and stacks of fluxed D7-branes wrapping the "big" divisor \Sigma_B of a Swiss-Cheese Calabi Yau in {\bf WCP}^4[1,1,1,6,9], we explore on various implications of moduli dynamics and discuss their couplings and decay into MSSM (-like) matter fields early in the history of universe to reach thermal equilibrium. Like finite temperature effects in O'KKLT, we observe that the local minimum of zero-temperature effective scalar potential is stable against any finite temperature corrections (up to two-loops) in large volume scenarios as well. Also we find that moduli are heavy enough to avoid any cosmological moduli problem.
We derive an expression for the accuracy with which sources can be localized using a network of gravitational wave detectors. The result is obtained via triangulation, using timing accuracies at each detector and is applicable to a network with any number of detectors. We use this result to investigate the ability of advanced gravitational wave detector networks to accurately localize signals from compact binary coalescences. We demonstrate that additional detectors can significantly improve localization results and illustrate our findings with networks comprised of the advanced LIGO, advanced Virgo and LCGT. In addition, we evaluate the benefits of relocating one of the advanced LIGO detectors to Australia.
This work represents the final year project for BSc Physics with Astrophysics degree and it mainly focuses on empirical investigation of the photometry of quasars in the Sloan Digital Sky Survey (SDSS) and the UK Infrared Telescope (UKIRT) Infrared Sky Survey (UKIDSS) systems. The studies include 5730 quasars matched from both surveys and examine UV/optical/near-IR properties of the population. The sample covers the redshift and absolute magnitude ranges 0.01 < z < 3 and -29.3 < M i < -13.8 and 17 per cent of the SDSS quasars have matching success to the UKIDSS data. The combination of SDSS ugriz with the JHK near-IR photometry from UKIDSS over large areas of the sky has enormous potential for advancing our understanding of quasar population, keeping in mind that these surveys have not reached their terminations.
The burn-up for SC56-1472 sample of the natural Oklo reactor zone 3 was calculated using the modern Monte Carlo codes. We reconstructed the neutron spectrum in the core by means of the isotope ratios: $^{147}$Sm/$^{148}$Sm and $^{176}$Lu/$^{175}$Lu. These ratios unambiguously determine the spectrum index and core temperature. The effective neutron absorption cross section of $^{149}$Sm calculated using this spectrum was compared with experimental one. The disagreement between these two values allows to limit a possible shift of the low laying resonance of $^{149}$Sm even more . Then, these limits were converted to the limits for the change of the fine structure constant $\alpha$. We found that for the rate of $\alpha$ change the inequality $|\delta \dot{\alpha}/\alpha| \le 5\cdot 10^{-18}$ is fulfilled, which is of the next higher order than our previous limit.
Links to: arXiv, form interface, find, astro-ph, recent, 1010, contact, help (Access key information)
We describe a 22-year survey for variable and transient radio sources, performed with archival images taken with the Molonglo Observatory Synthesis Telescope (MOST). This survey covers $2775 \unit{deg^2}$ of the sky south of $\delta < -30\degree$ at an observing frequency of 843 MHz, an angular resolution of $45 \times 45 \csc | \delta| \unit{arcsec^2}$ and a sensitivity of $5 \sigma \geq 14 \unit{mJy beam^{-1}}$. We describe a technique to compensate for image gain error, along with statistical techniques to check and classify variability in a population of light curves, with applicability to any image-based radio variability survey. Among radio light curves for almost 30000 sources, we present 53 highly variable sources and 15 transient sources. Only 3 of the transient sources, and none of the variable sources have been previously identified as transient or variable. Many of our variable sources are suspected scintillating Active Galactic Nuclei. We have identified three variable sources and one transient source that are likely to be associated with star forming galaxies at $z \simeq 0.05$, but whose implied luminosity is higher than the most luminous known radio supernova (SN1979C) by an order of magnitude. We also find a class of variable and transient source with no optical counterparts.
Observation of even a single massive cluster, especially at high redshift, can falsify the standard cosmological framework consisting of a cosmological constant and cold dark matter (LCDM) with Gaussian initial conditions by exposing an inconsistency between the well-measured expansion history and the growth of structure it predicts. Through a likelihood analysis of current cosmological data that constrain the expansion history, we show that the LCDM upper limits on the expected number of massive, distant clusters are nearly identical to limits predicted by all quintessence models where dark energy is a minimally coupled scalar field with a canonical kinetic term. We provide convenient fitting formulas for the confidence level at which the observation of a cluster of mass M at redshift z can falsify LCDM and quintessence given cosmological parameter uncertainties and sample variance, as well as for the expected number of such clusters in the light cone and the Eddington bias factor that must be applied to observed masses. By our conservative confidence criteria, which equivalently require masses 3 times larger than typically expected in surveys of a few hundred square degrees, none of the presently known clusters falsify these models. Various systematic errors, including uncertainties in the form of the mass function and differences between supernova light curve fitters, typically shift the exclusion curves by less than 10% in mass, making current statistical and systematic uncertainties in cluster mass determination the most critical factor in assessing falsification of LCDM and quintessence.
We present a series of cosmological magnetohydrodynamic (MHD) simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an Active Galactic Nucleus (AGN). Specifically, we investigate the influence of both the epoch of AGN (z $\sim$ 3-0.5) and the AGN energy ($\sim$ 3 $\times$ 10$^{57}$ - 2 $\times$ 10$^{60}$ ergs)on the final magnetic field distribution in a relatively massive cluster (M$_{vir}$ $\sim$10$^{15}$ M$_\odot$). We find that as long as the AGN magnetic fields are ejected before the major mergers in the cluster formation history, magnetic fields can be transported throughout the cluster and can be further amplified by the intra-cluster medium (ICM) turbulence cause by hierarchical mergers during the cluster formation process. The total magnetic energy in the cluster can reach $\sim$ $10^{61}$ ergs, with micro Gauss fields distributed over $\sim$ Mpc scale. The amplification of the total magnetic energy by the ICM turbulence can be significant, up to $\sim$1000 times in some cases. Therefore even weak magnetic fields from AGNs can be used to magnetize the cluster to the observed level. The final magnetic energy in the ICM is determined by the ICM turbulent energy, with a weak dependence on the AGN injection energy. We discuss the properties of magnetic fields throughout the cluster and the synthetic Faraday rotation measure maps they produce. We also show that high spatial resolution over most of the magnetic regions of the cluster is very important to capture the small scale dynamo process and maintain the magnetic field structure in our simulations.
We provide an exhaustive analysis of the Integrated Sach--Wolfe effect (ISW) in the context of coupled Dark Energy cosmologies where a component of massive neutrinos is also present. We focus on the effects of both the coupling between Dark Matter and Dark Energy and of the neutrino mass on the cross-correlation between galaxy/quasar distributions and ISW effect. Theoretical predictions of the cross--correlation function are then compared with observational data. We find that, while it is not possible to distinguish among the models at low redshifts, discrepancies between coupled models and $\Lambda$CDM increase with $z$. In spite of this, current data alone seems not able to distinguish between coupled models and $\Lambda$CDM. However, we show that upcoming galaxy surveys will permit tomographic analysis which allow to better discriminate among the models. We compare three different tomographic schemes and investigate how the expected signal to noise ratio of the ISW--LSS cross--correlation changes when increasing the number of tomographic bins. We find that, by increasing the number of the bins from five to ten, practically no improvement is achieved in discriminating the different models.
A search for 6 arcsec to 15 arcsec image separation lensing in the Jodrell Bank-Very Large Array Astrometric Survey (JVAS) and the Cosmic Lens All-Sky Survey (CLASS) by Phillips et al. found thirteen group and cluster gravitational lens candidates. Through radio and optical imaging and spectroscopy, Phillips et al. ruled out the lensing hypothesis for twelve of the candidates. In this paper, new optical imaging and spectroscopy of J0122+427, the final lens candidate from the JVAS/CLASS 6 arcsec to 15 arcsec image separation lens search, are presented. This system is found not to be a gravitational lens, but is just two radio-loud active galactic nuclei that are separated by ~10 arcsec on the sky and are at different redshifts. Therefore, it is concluded that there are no gravitational lenses in the JVAS and CLASS surveys with image separations between 6 arcsec to 15 arcsec. This result is consistent with the expectation that group- and cluster-scale dark matter haloes are inefficient lenses due to their relatively flat inner density profiles.
We examine the evolution of the spatial counts-in-cells distribution of galaxies and show that the form of the galaxy distribution function does not change significantly as galaxies merge and evolve. In particular, bound merging pairs follow a similar distribution to that of individual galaxies. From the adiabatic expansion of the universe we show how clustering, expansion and galaxy mergers affect the clustering parameter b. We also predict the evolution of b with respect to redshift.
Fireball model of the gamma-ray bursts (GRBs) predicts generation of numerous internal shocks, which efficiently accelerate charged particles and generate relatively small-scale stochastic magnetic and electric fields. The accelerated particles diffuse in space due to interaction with the random waves and so emit so called Diffusive Synchrotron Radiation (DSR) in contrast to standard synchrotron radiation they would produce in a large-scale regular magnetic fields. In this contribution we present key results of detailed modeling of the GRB spectral parameters, which demonstrate that the non-perturbative DSR emission mechanism in a strong random magnetic field is consistent with observed distributions of the Band parameters and also with cross-correlations between them.
We present a new cluster catalog extracted from the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) using an adaptive matched filter (AMF) cluster finder. We identify 69,173 galaxy clusters in the redshift range 0.045 \leq z < 0.78 in 9600 sq. deg. of the sky. We provide angular position, redshift, richness, core and virial radii estimates for these clusters, as well as an error analysis for each of these quantities. We also provide a catalog of more than 205,000 galaxies representing the three brightest galaxies in the r band which are possible BCG candidates. We show basic properties of the BCG candidates and study how their luminosity scales in redshift and cluster richness. A comparison with the maxBCG catalog (13,823 clusters in the range 0.1 \leq z \leq 0.3 on DR5) on the appropriately restricted sub-sample for the AMF catalog shows that clusters match one-to-one at about the 40% level for all redshifts. The AMF catalog matches all maxBCG clusters with N_{gal} \geq 100 and the maxBCG one about 90% of AMF clusters with \Lambda_{200} \geq 100. For the catalog produced by Wen, Han, and Liu from SDSS DR6 data, we find one-to-one matches for about 25% of their clusters. We cross match the AMF catalog with available X-ray data in the same area of the sky and find 539 matches, 119 of which with temperature measurements. We present scaling relations between optical and X-ray properties and cluster center comparison. We find that both \Lambda_{200} and R_{200} correlate well with both L_X and T_X, with no significant difference in trend if we restrict the matches to flux-limited X-ray samples.
Metallicity appears to be one the most important tool to study formation and evolution of galaxies. Recently, we have shown that metallicity of local galaxies is tightly related not only to stellar mass, but also to star formation rate (SFR). At low stellar mass, metallicity decreases sharply with increasing SFR, while at high stellar mass, metallicity does not depend on SFR. The residual metallicity dispersion across this Fundamental Metallicity Relation (FMR) is very small, about 0.05dex. High redshift galaxies, up to z~2.5, are found to follow the same FMR defined by local SDSS galaxies, with no indication of evolution. At z>2.5, evolution of about 0.6dex off the FMR is observed, with high-redshift galaxies showing lower metallicities. This result can be combined with our recent discover of metallicity gradients in three high redshift galaxies showing disk dynamics. In these galaxies, the regions with higher SFR also show lower metallicities. Both these evidences can be explained by the effect of smooth infall of gas into previously enriched galaxies, with the star-formation activity triggered by the infalling gas.
The generalized Chaplygin gas model represents a tentative to unify dark matter and dark energy. It is characterized by a fluid with an equation of state $p = - A/\rho^\alpha$. It can be obtained from a generalization of the DBI action for a scalar, tachyonic field. At background level, this model gives very good results, but it suffers from many drawbacks at perturbative level. We show that, while for background analysis it is possible to consider any value for $\alpha$, the perturbative analysis must be restricted to positive values of $\alpha$. This restriction can be circumvented if the origin of the generalized Chaplygin gas is traced back to a self-interacting scalar field, instead of the DBI action. But, in doing so, the predictions coming from formation of large scale structures reduce the generalized Chaplygin gas model to a kind of quintessence model, and the unification scenario is lost. However, if the unification condition is imposed from the beginning as a prior, the model may remain competitive.
We present 13.9-18.2 GHz observations of the Sunyaev-Zel'dovich (SZ) effect towards A2146 using the Arcminute Microkelvin Imager (AMI). The cluster is detected with a peak SNR ratio of 13 sigma in the radio source subtracted map. Comparison of the SZ and X-ray images suggests that they both have extended regions which lie approximately perpendicular to one another, with their emission peaks significantly displaced. These features indicate non-uniformities in the distributions of the gas temperature and pressure, indicative of a cluster merger. We use a Bayesian cluster analysis to explore the high-dimensional parameter space of the cluster-plus-sources model to obtain cluster parameter estimates in the presence of radio point sources, receiver noise and primordial CMB anisotropy; the probability of SZ + CMB primordial structure + radio sources + receiver noise to CMB + radio sources + receiver noise is 3 x 10^{6}:1. We compare the results from three different cluster models. Our preferred model exploits the observation that the gas fractions do not appear to vary greatly between clusters. Given the relative masses of the two merging systems in A2146, the mean gas temperature can be deduced from the virial theorem (assuming all of the kinetic energy is in the form of internal gas energy) without being affected significantly by the merger event, provided the primary cluster was virialized before the merger. In this model we fit a simple spherical isothermal beta-model, despite the inadequacy of this model for a merging system like A2146, and assume the cluster follows the mass-temperature relation of a virialized, singular, isothermal sphere. We note that this model avoids inferring large-scale cluster parameters internal to r_200 under the widely used assumption of hydrostatic equilibrium. We find that at r_200 M_T= 4.1 \pm 0.5 x 10^{14} h^{-1}M_sun and T=4.5 \pm 0.5 keV.
The caustic technique uses galaxy redshifts alone to measure the escape velocity and mass profiles of galaxy clusters to clustrocentric distances well beyond the virial radius, where dynamical equilibrium does not necessarily hold. We provide a detailed description of this technique and analyse its possible systematic errors. We apply the caustic technique to clusters with mass M_200>=10^{14}h^{-1} M_sun extracted from a cosmological hydrodynamic simulation of a LambdaCDM universe. With a few tens of redshifts per squared comoving megaparsec within the cluster, the caustic technique, on average, recovers the profile of the escape velocity from the cluster with better than 10 percent accuracy up to r~4 r_200. The caustic technique also recovers the mass profile with better than 10 percent accuracy in the range (0.6-4) r_200, but it overestimates the mass up to 70 percent at smaller radii. This overestimate is a consequence of neglecting the radial dependence of the filling function F_beta(r). The 1-sigma uncertainty on individual escape velocity profiles increases from ~20 to ~50 percent when the radius increases from r~0.1 r_200 to ~4 r_200. Individual mass profiles have 1-sigma uncertainty between 40 and 80 percent within the radial range (0.6-4) r_200. We show that the amplitude of these uncertainties is completely due to the assumption of spherical symmetry, which is difficult to drop. Alternatively, we can apply the technique to synthetic clusters obtained by stacking individual clusters: in this case, the 1-sigma uncertainty on the escape velocity profile is smaller than 20 percent out to 4 r_200. The caustic technique thus provides reliable average profiles which extend to regions difficult or impossible to probe with other techniques.
Angular power spectrum of CMB anisotropy and two point angular point correlation possess some equivalence. Noting this, we have investigated the association between the WMAP large-angle correlation anomalies and the WMAP power spectrum anomaly. We find the odd-parity preference in the power spectrum at low multipoles is the phenomenological origin of large-angle correlation anomalies. At this moment, it is not clear whether the odd-parity preference at large scales is due to unaccounted contamination or indeed cosmological. However, the data from Planck surveyor may allow us to resolve the origin of the anomaly.
We present 46 rest-frame ultraviolet (UV) spectra of 28 local starburst and star-forming galaxies which were observed with the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) of the Hubble Space Telescope (HST) at a spectral resolution of a few 100 km/s. We compare the HST spectra with lower resolution International Ultraviolet Explorer (IUE) spectra of the same galaxies and find systematic differences: the bright star clusters targeted in HST's ~1 arcsec apertures provide about 15% of the starburst luminosity traced by IUE's 10 arcsec by 20 arcsec aperture; they are bluer and have stronger stellar-wind features suggesting that the HST apertures have preferentially been placed on the youngest areas of the burst. In contrast, lines arising from the interstellar medium (ISM) show similar equivalent widths in both the large and small aperture observations, suggesting similar ISM properties from larger to smaller scales. In order to quantify the UV spectral morphology of star-forming galaxies, we created a set of UV line indices similar to the standard optical Lick indices. We discuss the relation between the UV spectral morphology and the properties of the galaxy host. We present our atlas of FOS and GHRS spectra both in print and electronically. The data set is useful as a baseline for comparisons with observations of the rest-frame UV spectra of star-forming galaxies at high redshift.
The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter, on the basis of a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM) and a model with equal but non-universal supersymmetry-breaking contributions to the Higgs masses (the NUHM1). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles.
We explore how to generate hierarchies in the splittings between superpartners. Some of the consequences are the existence of invisible components of dark matter, new inflaton candidates, invisible monopoles and a number of invisible particles that might dominate during various eras, in particular between BBN and recombination and decay subsequently.
Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is thought to usually be accompanied by the ejection of the star's envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of "failed supernovae", and our understanding of the core-collapse explosion mechanism.
We find the natural embedding of the (R+R^2)-inflationary model into the recently constructed N=1 F(\cal R)-supergravity. It gives a simple and viable realization of chaotic inflation in supergravity. The only requirement for a slow-roll inflation is the existence of the (\cal R)^3-term with an anomalously large coefficient in Taylor expansion of the F(\cal R) function, where \cal R is the covariantly-chiral scalar supercurvature superfield.
We explore the precision with which the Einstein Telescope (ET) will be able to measure the parameters of intermediate-mass-ratio inspirals (IMRIs). We calculate the parameter estimation errors using the Fisher Matrix formalism and present results of a Monte Carlo simulation of these errors over choices for the extrinsic parameters of the source. These results are obtained using two different models for the gravitational waveform which were introduced in paper I of this series. These two waveform models include the inspiral, merger and ringdown phases in a consistent way. One of the models, based on the transition scheme of Ori & Thorne [1], is valid for IMBHs of arbitrary spin, whereas the second model, based on the Effective One Body (EOB) approach, has been developed to cross-check our results in the non-spinning limit. In paper I of this series, we demonstrated that the predictions of these two models for signal-to-noise ratios (SNRs) are consistent to within ten percent. We now use these waveform models to estimate parameter estimation errors for binary systems with masses 1.4+100, 10+100, 1.4+500 and 10+500 solar masses (SMs), and various choices for the spin of the central intermediate-mass black hole (IMBH). Assuming a detector network of three ETs, the analysis shows that for a 10 SM compact object (CO) inspiralling into a 100 SM IMBH with spin q=0.3, detected with an SNR of 30, we should be able to determine the CO and IMBH masses, and the IMBH spin magnitude to fractional accuracies of 0.001, 0.0003, and 0.001, respectively. We also expect to determine the location of the source in the sky and the luminosity distance to within 0.003 steradians, and 10%, respectively. We also compute results for several different possible configurations of the third generation detector network to assess how the extrinsic parameter determination depends on the network configuration.
Links to: arXiv, form interface, find, astro-ph, recent, 1011, contact, help (Access key information)
We present a catalog of emission-line galaxies selected solely by their emission-line fluxes using a wide-field integral field spectrograph. This work is partially motivated as a pilot survey for the upcoming Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). We describe the observations, reductions, detections, redshift classifications, line fluxes, and counterpart information for 397 emission-line galaxies detected over 169 sq.arcmin with a 3500-5800 Ang. bandpass under 5 Ang. full-width-half-maximum (FWHM) spectral resolution. The survey's best sensitivity for unresolved objects under photometric conditions is between 4-20 E-17 erg/s/sq.cm depending on the wavelength, and Ly-alpha luminosities between 3-6 E42 erg/s are detectable. This survey method complements narrowband and color-selection techniques in the search for high redshift galaxies with its different selection properties and large volume probed. The four survey fields within the COSMOS, GOODS-N, MUNICS, and XMM-LSS areas are rich with existing, complementary data. We find 104 galaxies via their high redshift Ly-alpha emission at 1.9<z<3.8, and the majority of the remainder objects are low redshift [OII]3727 emitters at z<0.56. The classification between low and high redshift objects depends on rest frame equivalent width, as well as other indicators, where available. Based on matches to X-ray catalogs, the active galactic nuclei (AGN) fraction amongst the Ly-alpha emitters (LAEs) is 6%. We also analyze the survey's completeness and contamination properties through simulations. We find five high-z, highly-significant, resolved objects with full-width-half-maximum sizes >44 sq.arcsec which appear to be extended Ly-alpha nebulae. We also find three high-z objects with rest frame Ly-alpha equivalent widths above the level believed to be achievable with normal star formation, EW(rest)>240 Ang.
Galaxy formation is significantly modulated by energy output from supermassive black holes at the centers of galaxies which grow in highly efficient luminous quasar phases. The timescale on which black holes transition into and out of such phases is, however, unknown. We present the first measurement of the shutdown timescale for an individual quasar using X-ray observations of the nearby galaxy IC 2497, which hosted a luminous quasar no more than 70,000 years ago that is still seen as a light echo in `Hanny's Voorwerp', but whose present-day radiative output is lower by at least 2 and more likely by over 4 orders of magnitude. This extremely rapid shutdown provides new insights into the physics of accretion in supermassive black holes, and may signal a transition of the accretion disk to a radiatively inefficient state.
We show that the Hot-Dust-Poor (HDP) quasars found in the X-ray selected XMM-COSMOS type 1 AGN sample are just as common in two samples selected at optical/infrared wavelengthes: the Richards et al Spitzer/SDSS sample (10.3%\pm 2.4%), and the PG-quasar dominated sample of Elvis et al. (9.5%\pm5.0%). We compare the properties of the HDP quasars found in these different samples and find them to be consistent with XMM-COSMOS sample, except that, at 99.2% > 3$\sigma$ significance, a larger proportion of the HDP quasars in the Spitzer/SDSS sample have weak host galaxy contributions, probably due to the selection criteria used.
We study the escape of Ly-alpha photons from Ly-alpha emitting galaxies (LAEs) and the overall galaxy population using a sample of 98 LAEs at 1.9<z<3.8 detected through integral-field spectroscopy of blank fields by the HETDEX Pilot Survey. For 89 LAEs showing counterparts in deep broad-band images we measure the rest-frame UV luminosity and the UV slope, which we use to estimate E(B-V) under the assumption of a constant intrinsic UV slope for LAEs. These two quantities are used to measure the dust-corrected star formation rate (SFR). A comparison between the observed Ly-alpha luminosity and that predicted by the dust-corrected SFR yields the Ly-alpha escape fraction. We also measure the Ly-alpha luminosity function. Integration of the luminosity function provides a measurement of the Ly-alpha luminosity density across our redshift range. We combine our data with that from other surveys at 0.3<z<7.7 to trace the evolution of the Ly-alpha luminosity density. We then compare it to that expected from the star-formation history of the universe in order to characterize the evolution of the Ly-alpha escape fraction of the overall galaxy population...
We present Keck/NIRSPEC spectroscopic observations of three Lyman alpha emitting galaxies (LAEs) at z ~ 2.3 discovered with the HETDEX pilot survey. We detect Halpha, [OIII], and Hbeta emission from two galaxies at z = 2.29 and 2.49, designated HPS194 and HPS256, respectively, representing the first detection of multiple rest-frame optical emission lines in galaxies at high-redshift selected on the basis of their Lyman alpha emission. The redshifts of the Lyman alpha emission from these galaxies are offset redward of the systemic redshifts by Delta_v = 162 +/- 37 (photometric) +/- 42 (systematic) km/s for HPS194, and Delta_v = 36 +/- 35 +/- 18 km/s for HPS256. An interpretation for HPS194 is that a large-scale outflow may be occurring in its interstellar medium. The emission line ratios imply that neither LAE hosts an active galactic nucleus. Using the upper limits on the [NII] emission we place meaningful constraints on the gas-phase metallicities in these two LAEs of Z < 0.17 and < 0.28 Zsol (1 sigma). Measuring the stellar masses of these objects via spectral energy distribution (SED) fitting (~ 10^10 and 6 x 10^8 Msol, respectively), we study the nature of LAEs in a mass-metallicity plane. At least one of these two LAEs appears to be more metal poor than continuum-selected star-forming galaxies at the same redshift and stellar mass, implying that objects exhibiting Lyman alpha emission may be systematically less chemically enriched than the general galaxy population. We use the SEDs of these two galaxies to show that neglecting the emission lines when fitting stellar population models to the observed photometry can result in overestimates of the population age by orders of magnitude, and the stellar mass by a factor of ~ 2. This effect is particularly important at z > 7, where similarly strong emission lines may masquerade in the photometry as a 4000 A break (abridged).
A sample of very high resolution cosmological disk galaxy simulations is used to investigate the evolution of galaxy disk sizes back to redshift 1 within the Lambda CDM cosmology. Artificial images in the rest frame B band are generated, allowing for a measurement of disk scale lengths using surface brightness profiles as observations would, and avoiding any assumption that light must follow mass as previous models have assumed. We demonstrate that these simulated disks are an excellent match to the observed magnitude - size relation for both local disks, and for disks at z=1 in the magnitude/mass range of overlap. We disentangle the evolution seen in the population as a whole from the evolution of individual disk galaxies. In agreement with observations, our simulated disks undergo roughly 1.5 magnitudes/arcsec^2 of surface brightness dimming since z=1. We find evidence that evolution in the magnitude - size plane varies by mass, such that galaxies with M* > 10^9 M_sun undergo more evolution in size than luminosity, while dwarf galaxies tend to evolve potentially more in luminosity. The disks grow in such a way as to stay on roughly the same stellar mass - size relation with time. Finally, due to an evolving stellar mass - SFR relation, a galaxy at a given stellar mass (or size) at z=1 will reside in a more massive halo and have a higher SFR, and thus a higher luminosity, than a counterpart of the same stellar mass at z=0.
Many observed massive star-forming z~2 galaxies are large disks that exhibit irregular morphologies, with ~1kpc, ~10^(8-10)Msun clumps. We present high-resolution cosmological SPH simulations that zoom-in on the formation of individual M*~10^(10.5)Msun galaxies in ~10^(12)Msun halos at z~2 . Our code includes strong stellar feedback parameterized as momentum-driven galactic winds. This model reproduces many characteristic features of this observed class of galaxies, such as their clumpy morphologies, high gas fractions (~30%) and high specific star-formation rates, ~1Gyr^(-1). In accord with recent models, giant clumps (Mclump>~5x10^8Msun) form in-situ via gravitational instability. However, the galactic winds are critical for their subsequent evolution. In the cases we have studied, the clumps are short-lived and are disrupted by wind-driven mass loss. They do not virialise or migrate to the galaxy centers as suggested in recent work neglecting strong winds. Our simulations agree well with new observational constraints on clump kinematics and with the detection of winds from high-redshift galaxies and in particular from individual clumps.
The discovery of many novel realizations of the inflationary universe paradigm has led to a degeneracy problem: many different inflationary Lagrangians generate the same perturbation spectra. Resolving this problem requires the future discovery of additional observables, beyond the scalar adiabatic and tensor two-point functions on CMB scales. One important source of degeneracy arises in models where the density perturbation is generated by a non-inflationary degree of freedom, for example, through curvatons or modulated reheating. We consider the curvaton scenario as representative of this class, and analyze the degeneracy with single field, canonical inflation that results if the curvaton goes undetected by future observations. We perform Monte Carlo potential reconstructions in the absence of distinguishing observables, such as non-Gaussiantities or isocurvature modes. The resulting degeneracy is considerable and the improved measurements of spectral parameters from future probes like CMBPol, offer little to better the situation. Given a degeneracy-breaking observation, the observables must still be inverted to obtain the inflationary potential, with different observations resulting in reconstructions of varying quality. We find that a future detection of isocurvature modes or a precision measurement of the tensor spectral index will enable the most successful reconstructions in the presence of curvatons.
The James Webb Space Telescope (JWST) will enable observations of galaxies at redshifts z > 10 and hence allow to test our current understanding of structure formation at very early times. Previous work has shown that the very first galaxies inside halos with virial temperatures T < 10^4 K and masses M < 10^8 M_sun at z > 10 are probably too faint, by at least one order of magnitude, to be detected even in deep exposures with JWST. The light collected with JWST may therefore be dominated by radiation from galaxies inside ten times more massive halos. We use cosmological zoomed smoothed particle hydrodynamics simulations to investigate the assembly of such galaxies and assess their observability with JWST. We compare two simulations that are identical except for the inclusion of non-equilibrium H/D chemistry and radiative cooling by molecular hydrogen. In both simulations a large fraction of the halo gas settles in two nested, extended gas disks which surround a compact massive gas core. The presence of molecular hydrogen allows the disk gas to reach low temperatures and to develop marked spiral structure but does not change its stability against fragmentation. We post-process the simulated galaxies by combining idealized models for star formation with stellar population synthesis models to estimate the luminosities in nebular recombination lines as well as in the ultraviolet continuum. We demonstrate that JWST will be able to constrain the nature of the stellar populations in galaxies such as simulated here based on the detection of the He1640 recombination line. Extrapolation of our results to halos with masses both lower and higher than those simulated shows that JWST may find up to a thousand star-bursting galaxies in future deep exposures of the z > 10 universe.
Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the SN Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now new large surveys are bringing about a paradigm shift --- we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modeling, breakthroughs in understanding all aspects of SNe Ia are finally starting to happen.
We study the cosmological evolutions of the equation of state for dark energy $w_{\mathrm{DE}}$ in the exponential and logarithmic as well as their combination $f(T)$ theories. We show that the crossing of the phantom divide line of $w_{\mathrm{DE}} = -1$ can be realized in the combined $f(T)$ theory even though it cannot be in the exponential or logarithmic $f(T)$ theory. In particular, the crossing is from $w_{\mathrm{DE}} > -1$ to $w_{\mathrm{DE}} < -1$, in the opposite manner from $f(R)$ gravity models. We also demonstrate that this feature is favored by the recent observational data.
We apply the supernova(SN) extinction curves to reproduce the observed
properties of SST J1604+4304 which is a young infrared (IR) galaxy at z = 1.
The SN extinction curves used in this work were obtained from models of unmixed
ejecta of type II supernovae(SNe II) for the Salpeter initial mass function
(IMF) with a mass range from 8 to 30 M_sun or 8 to 40 M_sun.
The effect of dust distributions on the attenuation of starlight is
investigated by performing the chi-square fitting method against various dust
distributions. These are the commonly used uniform dust screen, the clumpy dust
screen, and the internal dust geometry. We add to these geometries three
scattering properties, namely, no-scattering, isotropic scattering, and
forward-only scattering. Judging from the chi-square values, we find that the
uniform screen models with any scattering property provide good approximations
to the real dust geometry. Internal dust is inefficient to attenuate starlight
and thus cannot be the dominant source of the extinction.
We show that the SN extinction curves reproduce the data of SST J1604+4304
comparable to or better than the Calzetti extinction curve. The Milky Way
extinction curve is not in satisfactory agreement with the data unless several
dusty clumps are in the line of sight. This trend may be explained by the
abundance of SN-origin dust in these galaxies; SN dust is the most abundant in
the young IR galaxy at z = 1, abundant in local starbursts, and less abundant
in the Galaxy. If dust in SST J1604+4304 is dominated by SN dust, the dust
production rate is about 0.1 M_sun per SN.
We present measurements of the masses of a sample of 25 moderate X-ray luminosity clusters of galaxies from the 160 square degree ROSAT survey. The masses were obtained from a weak lensing analysis of deep F814W images obtained using the Advanced Camera for Surveys (ACS). We present an accurate empirical correction for the effect of charge transfer (in)efficiency on the shapes of faint galaxies. A significant lensing signal is detected around most of the clusters. The lensing mass correlates tightly with the cluster richness. We measured the intrinsic scatter in the scaling relation between M_2500 and L_X and find the best fit power law slope and normalisation to be alpha=0.68+-0.07 and M_X=(1.2+-0.12)10^14M_sun (for L_X=2x10^44 erg/s). These results agree well with a number of recent studies, but the normalisation is lower compared to the study of Rykoff et al. (2008b). One explanation for this difference may be the fact that (sub)structures projected along the line-of-sight boost both the galaxy counts and the lensing mass. Such superpositions lead to an increased mass at a given L_X when clusters are binned by richness.
We present the study of five `dying' nearby radio galaxies belonging to the WENSS minisurvey and to the B2 bright catalogs: WNB1734+6407, WNB1829+6911, WNB1851+5707, B2 0120+33, and B2 1610+29. These sources have been selected on the basis of their extremely steep broad-band radio spectra. The modeling of the integrated spectra and the deep spectral index images obtained with the VLA confirmed that in these sources the central engine has ceased to be active for a significant fraction of their lifetime although their extended lobes have not yet completely faded away. We found that WNB1851+5707 is in reality composed by two distinct dying galaxies, which appear blend together as a single source in the WENSS. In the cases of WNB1829+6911 and B2 0120+33, the fossil radio lobes are seen in conjunction with a currently active core. A very faint core is detected also in a MERLIN image of WNB1851+5707a, one of the two dying sources composing WNB1851+5707. We found that all sources of our sample are located (at least in projection) at the center of an X-ray emitting cluster. Our results suggest that the duration of the dying phase for a radio source in cluster can be significantly higher with respect to that of a radio galaxy in the field. The simplest interpretation is that the low-frequency emission from the fading radio lobes last longer if their expansion is somewhat reduced or even stopped. Another possibility is that the occurrence of dying sources is higher in galaxy clusters. Radio sources in dense environment, like e.g. the center of cooling core clusters, may have a peculiar accretion mode which results in a bursting duty cycle sequence of active and quiescent periods. This result could have important implications for theories of the life cycles of radio sources and AGN feedback in clusters of galaxies but awaits confirmation from future observations of larger samples of objects.
The astrochemistry of the HnO+ (n=1..3) ions is important as the main gas-phase formation route for water, and as tracer of the interstellar ionization rate by cosmic rays and other processes. While interstellar H3O+ has been known since the early 1990's, interstellar OH+ and H2O+ have only recently been detected using the Herschel space observatory and also from the ground. This paper reviews detections of HnO+ toward external galaxies and compares with ground-based work. The similarities and differences of the HnO+ chemistry within the Galaxy and beyond are discussed. Special attention is given to the low H2O/H3O+ ratio in M82 of only 3.3, suggesting rapid H2O photodissociation, and the high apparent OH+ and H2O+ abundances in Mrk 231, suggesting radiative excitation and/or formation pumping. Photodissociation rates for H3O+ and collisional cross-sections for OH+ and H2O+ with H, He and electrons are needed to test these interpretations.
Apparent evolution of relativistic flows as traced by radio emission results from a combination of several factors related to propagation of relativistic blobs or shocks, velocity, density and pressure stratification of the underlying flow, plasma instability and (possibly also) phase and time travel effect. This combination can create an intricate and chaotic patterns of the observed morphological changes in radio emission, which complicates the analysis and interpretation of kinematic and physical properties of the jet plasma. Recent studies have indicated that slow and quasi-stationary patterns in jets are most likely formed by plasma instabilities while faster, superluminally moving patterns are related to highly relativistic plasma condensations produced by the nuclear flares. Some of the stationary patterns may also be related to recollimation shocks or locations where strong non-thermal continuum is produced in jets. Similarities and differences of the AGN and XRB jets in this respect are reviewed.
We present the deepest optical color-magnitude diagram (CMD) to date of the local elliptical galaxy M32. We have obtained F435W and F555W photometry based on HST ACS/HRC images for a region 110" from the center of M32 and a background field about 320" away from M32 center. Due to the high resolution of our Nyquist-sampled images, the small photometric errors, and the depth of our data we obtain the most detailed resolved photometric study of M32 yet. Deconvolution of HST images proves to be superior than other standard methods to derive stellar photometry on extremely crowded HST images. The location of the strong red clump in the CMD suggests a mean age between 8 and 10 Gyr for [Fe/H] = -0.2 in M32. We detect for the first time a red giant branch bump and an asymptotic giant branch bump in M32 which indicate that the mean age of M32's dominant population at ~2' from its center is between 5 and 10 Gyr. We see evidence of an intermediate-age population in M32 mainly due to the presence of bright asymptotic giant branch stars. Our detection of a blue component of stars (blue plume) may indicate for the first time the presence of a young stellar population, with ages of the order of 0.5 Gyr, in our M32 field. However, it is likely that the brighter stars of this blue plume belong to the disk of M31 rather than to M32. The fainter stars populating the blue plume indicate the presence of stars not younger than 1 Gyr and/or blue straggler stars in M32. M32's dominant population of 8--10 Gyr implies a formation redshift of 1 < z_f < 2, precisely when observations of the specific star formation rates and models of "downsizing" imply galaxies of M32's mass ought to be forming their stars. Our CMD therefore provides a "ground-truth" of downsizing scenarios at z=0. Our background field data represent the deepest optical observations yet of the inner disk and bulge of M31. [Abridged]
The relevance of non-thermal cluster studies and the importance of combining observations of future radio surveys with WFXT data are discussed in this paper.
We analyse the stellar and hot gas content of 18 nearby, low-mass galaxy clusters, detected in redshift space and selected to have a dynamical mass 3E14<M/Msun<6E14, as measured from the 2dF Galaxy Redshift Survey. We combine X-ray measurements from both Chandra and XMM with ground-based near-infrared observations from CTIO, AAT and CFHT to compare the mass in hot gas and stars to the dynamical mass and state of the clusters. Only 13 of the clusters are detected in X-ray emission, and for these systems we find that a range of 7-20 per cent of their baryonic mass, and <3 per cent of their dynamical mass, is detected in starlight, similar to what is observed in more massive clusters. In contrast, the five undetected clusters are underluminous in X-ray emission, by at least a factor 10, given their stellar mass. Although the velocity distribution of cluster members in these systems is indistinguishable from a Gaussian, all show subtle signs of being unrelaxed: either they lack a central, dominant galaxy, or the bright galaxy distribution is less concentrated and/or more elongated than the rest of the sample. Thus we conclude that low-mass clusters and groups selected from the velocity distribution of their galaxies exhibit a dichotomy in their hot gas properties. Either they are detected in X-ray, in which case they generally lie on the usual scaling relations, or they are completely undetected in X-ray emission. The non-detections may be partly related to the apparently young dynamical state of the clusters, but it remains a distinct possibility that some of these systems are exceptionally devoid of hot emitting gas as the result of its expulsion or rarefaction.
Since the discovery of quasars in papers often appeared and appear the assertions that the redshift quasar distribution includes a periodic component with the period $\Delta z = 0.063$ or 0.11. A statement of such kind, if it is correct, may manifest the existence of a far order in quasar distribution in cosmological time, that might lead to a fundamental revision all the cosmological paradigm. In the present time there is a unique opportunity to check this statement with a high precision, using the rich statictics of 2dF and SDSS catalogues (about 85000 quasars). Our analysis indicates that the periodic component in distribution of quasar redshifts is absent at high confidence level.
We report results of a study of the Newtonian dynamics of N self-gravitating particles which start in a quasi-uniform spherical configuration, without initial velocities. These initial conditions would lead to a density singularity at the origin at a finite time when N \rightarrow \infty, but this singularity is regulated at any finite N (by the associated density fluctuations). While previous studies have focussed on the behaviour as a function of N of the minimal size reached during the contracting phase, we examine in particular the size and energy of the virialized halo which results. We find the unexpected result that the structure decreases in size as N increases, scaling in proportion to N^{-1/3}, a behaviour which is associated with an ejection of kinetic energy during violent relaxation which grows in proportion to N^{1/3}. This latter scaling may be qualitatively understood, and if it represents the asymptotic behaviour in N implies that this ejected energy is unbounded above. We discuss also tests we have performed which indicate that this ejection is a mean-field phenomenon (i.e. a result of collisionless dynamics).
Several alternative ways to quantize gravitational interactions seem to indicate that gravity at short distances is effectively two-dimensional. If this were true, and the energy scale at which the dimensional transition occurs is of the order of the inflationary one, it is reasonable to investigate eventual signatures in the primordial perturbation spectra. In this paper we look at this possibility by assuming that the inflationary era was preceded by a two-dimensional evolution of the Universe. We model this by a mode matching and we show that, in this case, no observational signatures are expected in the tensor and scalar power spectra nor in their ratio. We also show that assuming modified dispersion relations before the matching between two sets of four-dimensional modes leads to similar results.
We explore a nuclear physics resolution to the discrepancy between the predicted standard BBN abundance of 7Li and its observational determination in metal-poor stars. The theoretical 7Li abundance is 3-4 times greater than the observational values, assuming the baryon-to-photon ratio, eta_{wmap}, determined by WMAP. The 7Li problem could be resolved within the standard BBN picture if additional destruction of A=7 isotopes occurs due to new nuclear reaction channels or upward corrections to existing channels. This could be achieved via missed resonant nuclear reactions, which is the possibility we consider here. We find some potential candidate resonances which can solve the lithium problem and specify their required resonant energies and widths. For example, a 1^- or 2^- excited state of 10C sitting at approximately 15.0 MeV above its ground state with a relatively low effective width of order 10 keV could resolve the 7Li problem. While reasonable, the existence of this excited state needs experimental verification. Other examples using known states include 7Be+t -> 10B(18.80 MeV), and 7Be+d -> 9B(16.71 MeV). All require experimental determination of their strengths in order to rule out or confirm them as a partial or complete solution to the lithium problem.
We formalize a classification of pair interactions based on the convergence properties of the {\it forces} acting on particles as a function of system size. We do so by considering the behavior of the probability distribution function (PDF) P(F) of the force field F in a particle distribution in the limit that the size of the system is taken to infinity at constant particle density, i.e., in the "usual" thermodynamic limit. For a pair interaction potential V(r) with V(r) \rightarrow \infty) \sim 1/r^a defining a {\it bounded} pair force, we show that P(F) converges continuously to a well-defined and rapidly decreasing PDF if and only if the {\it pair force} is absolutely integrable, i.e., for a > d-1, where d is the spatial dimension. We refer to this case as {\it dynamically short-range}, because the dominant contribution to the force on a typical particle in this limit arises from particles in a finite neighborhood around it. For the {\it dynamically long-range} case, i.e., a \leq d-1, on the other hand, the dominant contribution to the force comes from the mean field due to the bulk, which becomes undefined in this limit. We discuss also how, for a \leq d-1 (and notably, for the case of gravity, a=d-2) P(F) may, in some cases, be defined in a weaker sense. This involves a regularization of the force summation which is generalization of the procedure employed to define gravitational forces in an infinite static homogeneous universe. We explain that the relevant classification in this context is, however, that which divides pair forces with a > d-2 (or a < d-2), for which the PDF of the {\it difference in forces} is defined (or not defined) in the infinite system limit, without any regularization. In the former case dynamics can, as for the (marginal) case of gravity, be defined consistently in an infinite uniform system.
"Quasi-stationary" states are approximately time-independent out of equilibrium states which have been observed in a variety of systems of particles interacting by long-range interactions. We investigate here the conditions of their occurrence for a generic pair interaction V(r \rightarrow \infty) \sim 1/r^a with a > 0, in d>1 dimensions. We generalize analytic calculations known for gravity in d=3 to determine the scaling parametric dependences of their relaxation rates due to two body collisions, and report extensive numerical simulations testing their validity. Our results lead to the conclusion that, for a < d-1, the existence of quasi-stationary states is ensured by the large distance behavior of the interaction alone, while for a > d-1 it is conditioned on the short distance properties of the interaction, requiring the presence of a sufficiently large soft-core in the interaction potential.
Many probability measures in the multiverse depend exponentially on some observable parameters, giving rise to potential problems such as youngness bias, Q-catastrophe etc. In this paper we explore a possibility that the exponential runaway dependence should be viewed not as a problem, but as a feature that may help us to fix all parameters in the landscape, including the value of the cosmological constant, without using anthropic considerations.
Cosmic ray protons generate gamma-rays, neutrinos, and secondary electrons and positrons (e+/-) through pion-producing collisions with gas atoms. Any synchrotron or Inverse Compton (IC) radiation from secondary e+/- is therefore accompanied by pionic gamma-rays. Using the extragalactic gamma-ray background, we constrain the contribution of secondary e+/- to the cosmic radio, X-ray, and soft gamma-ray backgrounds. We find that IC-upscattered light from secondaries is <~1/4 of the MeV gamma-ray background, and <~10% of the X-ray background. The low intensity of the observed gamma-ray background is marginally inconsistent with a secondary e+/- origin for the radio background reported by ARCADE, unless the magnetic field strength in their sources is milliGauss or greater. These limits on the magnetic field strength are sensitive to uncertainties. However, any contribution to the gamma-ray background from sources not responsible for the ARCADE excess increases the inconsistency.
We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalizable QFT, the primordial bispectrum is of exactly the factorizable equilateral form with f_nl^eq=5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work.
We measure the recoil velocity as a function of spin for equal-mass, highly-spinning black-hole binaries, with spins in the orbital plane, equal in magnitude and opposite in direction. We confirm that the leading-order effect is linear in the spin and the cosine of angle between the spin direction and the infall direction at merger. We find higher-order corrections that are proportional to the odd powers in both the spin and cosine of this angle. Taking these corrections into account, we predict that the maximum recoil will be 3680+-130 km/s.
Without assuming necessary conditions for observers such as galaxies or entropy production, we show that the causal patch measure predicts the coincidence of vacuum energy and present matter density. Their common scale, and thus the enormous size of the visible universe, has its origin in the number of metastable vacua in the landscape.
Links to: arXiv, form interface, find, astro-ph, recent, 1011, contact, help (Access key information)
The aim of this work is to test to what extent the star cluster population of a galaxy can be utilised to constrain or estimate the star formation history, with the Large Magellanic Cloud as our testbed. We follow two methods to extract information about the star formation rate from star clusters, either using only the most massive clusters (Maschberger & Kroupa 2007) or using the whole cluster population, albeit this is only possible for a shorter age span. We compare these results with the star formation history derived from colour-magnitude diagrams and find good overall agreement for the most recent approximately 1 Gyr. For later ages, and especially during the "cluster age gap", there is a deficiency of star clusters in relation to the star formation rate derived from the colour-magnitude diagram. The star formation rates following from the whole cluster population lie a factor of approximately 10 lower than the star formation rates deduced from the most massive clusters or from the colour-magnitude diagram, suggesting that only approximately 10 per cent of all stars form in long-lived bound star clusters.
We study the Spectral Energy Distribution (SED) and the power spectrum of Galactic cirrus emission observed in the 14 deg^2 Science Demonstration Phase field of the Herschel-ATLAS using Herschel and IRAS data from 100 to 500 um. We compare the SPIRE 250, 350 and 500um maps with IRAS 100um emission, binned in 6' pixels. We assume a modified black-body SED with dust emissivity parameter beta (F ~ lambda^(-beta)) and a single dust temperature T_d, and find that the dust temperature and emissivity index varies over the science demonstration field as 10< T_rm < 25 K and 1 < beta< 4. The latter values are somewhat higher than the range of beta often quoted in the literature (1< beta< 2). We estimate the mean values of these parameters to be T_d=19.0 +/- 2.4 K and beta = 1.4 +/- 0.4. In regions of bright cirrus emission, we find that the dust has similar temperatures with T_d = 18.0 +/- 2.5 K, and similar values of beta, ranging from 1.4 +- 0.5 to 1.9+/- 0.5. We show that T_d and beta associated with diffuse cirrus emission are anti-correlated and can be described by the relationship: beta(T_d) = NT_d^alpha with [N=116+/-38, alpha=-1.4+/1 0.1]. The strong correlation found in this analysis is not just limited to high density clumps of cirrus emission as seen in previous studies, but is also seen in diffuse cirrus in low density regions. To provide an independent measure of $T_{\rm d}$ and $\beta$, we obtain the angular power spectrum of the cirrus emission in the {\it IRAS} and SPIRE maps, which is consistent with a power spectrum of the form P(k)=P_0(k/k_0)^gamma where gamma = \^a H R2.6+/-m 0.2 for scales of 50-200' in the SPIRE maps. The cirrus rms fluctuation amplitude at angular scales of 100' is consistent with a modified blackbody SED with T_d = 20.1+/- 0.9 K and beta = 1.3+/- 0.2, in agreement with the values obtained above.
Star forming galaxies represent a valuable tracer of cosmic history. Recent observational progress with Hubble Space Telescope has led to the discovery and study of the earliest-known galaxies corresponding to a period when the Universe was only ~800 million years old. Intense ultraviolet radiation from these early galaxies probably induced a major event in cosmic history: the reionization of intergalactic hydrogen. New techniques are being developed to understand the properties of these most distant galaxies and determine their influence on the evolution of the universe.
We revise and extend the stochastic approach to cumulative weak lensing (hereafter the sGL method) first introduced in Ref. [1]. Here we include a realistic halo mass function and density profiles to model the distribution of mass between and within galaxies, galaxy groups and galaxy clusters. We also introduce a modeling of the filamentary large-scale structures and a method to embed halos into these structures. We show that the sGL method naturally reproduces the weak lensing results for the Millennium Simulation. The strength of the sGL method is that a numerical code based on it can compute the lensing probability distribution function for a given inhomogeneous model universe in a few seconds. This makes it a useful tool to study how lensing depends on cosmological parameters and its impact on observations. The method can also be used to simulate the effect of a wide array of systematic biases on the observable PDF. As an example we show how simple selection effects may reduce the variance of observed PDF, which could possibly mask opposite effects from very large scale structures. The updated code turboGL 1.0 is available at turboGL.org.
We present high resolution observations of an extremely metal-poor damped Lyman-alpha system, at z_abs = 2.3400972 in the spectrum of the QSO J0035-0918, exhibiting an abundance pattern consistent with model predictions for the supernova yields of Population III stars. Specifically, this DLA has [Fe/H] = -3.04, shows a clear `odd-even' effect, and is C-rich with [C/Fe] = +1.53, a factor of about 20 greater than reported in any other damped Lyman-alpha system. In analogy to the carbon-enhanced metal-poor stars in the Galactic halo (with [C/Fe] > +1.0), this is the first reported case of a carbon-enhanced damped Lyman-alpha system. We determine an upper limit to the mass of 12C, M(12C) < 200 solar masses, which depends on the unknown gas density n(H); if n(H) > 1 atom per cubic cm (which is quite likely for this DLA given its low velocity dispersion), then M(12C) < 2 solar masses, consistent with pollution by only a few prior supernovae. We speculate that DLAs such as the one reported here may represent the `missing link' between the yields of Pop III stars and their later incorporation in the class of carbon-enhanced metal-poor stars which show no enhancement of neutron-capture elements (CEMP-no stars).
We present a composite spectrum of 60 long duration gamma-ray burst (GRB) afterglows with redshifts in the range 0.35<z<6.7 observed with low resolution optical spectra. The composite spectrum covers the wavelength range 700-6600 A in the rest frame and has a mean signal-to-noise ratio of 150 per 1 A pixel and reaches a maximum of ~300 in the range 2500-3500 A. Equivalent widths are measured from metal absorption lines from the Lya line to ~5200 A, and associated metal and hydrogen lines are identified between the Lyman break and Lya line. The average transmission within the Lyman forest is consistent with that found along quasar lines of sight. We find a temporal variation in fine structure lines when dividing the sample into bursts observed within 2 hours from their trigger and those observed later. Other lines in the predominantly neutral gas show variations too, but this is most likely a random effect caused by weighting of individual strong absorption lines and which mimics a temporal variation. Bursts characterized with high or low prompt GRB energy release produce afterglows with similar absorption lines strengths, and likewise for bursts with bright or faint optical afterglows. Bursts defined as dark from their optical to X-ray spectral index have stronger absorption lines relative to the optically bright bursts. The composite spectrum has strong CaII and MgII absorption lines as commonly found in dusty galaxies, however, we find no evidence for dust or a significant molecular content based on the non-detection of diffuse interstellar bands. Compared to starburst galaxy spectra, the GRB composite has much stronger fine structure lines, while metal absorption lines are weaker.
We study the connections between on-going star formation, galaxy mass, and extended halo gas, in order to distinguish between starburst-driven outflows and infalling clouds that produce the majority of observed MgII absorbers at large galactic radii (>~ 10 h^{-1} kpc) and to gain insights into halo gas contents around galaxies. We present new measurements of total stellar mass (M_star), H-alpha emission line strength (EW(H-alpha)), and specific star formation rate (sSFR) for the 94 galaxies published in H.-W. Chen et al. (2010). We find that the extent of MgII absorbing gas, R_MgII, scales with M_star and sSFR, following R_MgII \propto M_star^{0.28}\times sSFR^{0.11}. The strong dependence of R_MgII on M_star is most naturally explained, if more massive galaxies possess more extended halos of cool gas and the observed MgII absorbers arise in infalling clouds which will subsequently fuel star formation in the galaxies. The additional scaling relation of R_MgII with sSFR can be understood either as accounting for extra gas supplies due to starburst outflows or as correcting for suppressed cool gas content in high-mass halos. The latter is motivated by the well-known sSFR--M_star} inverse correlation in field galaxies. Our analysis shows that a joint study of galaxies and MgII absorbers along common sightlines provides an empirical characterization of halo gaseous radius versus halo mass. A comparison study of R_MgII around red- and blue-sequence galaxies may provide the first empirical constraint for resolving the physical origin of the observed sSFR--M_star} relation in galaxies.
We identified 24 SiIV absorption systems with z < 1 from a blind survey of 49 low-redshift quasars with archival Hubble Space Telescope ultraviolet spectra. We relied solely on the characteristic wavelength separation of the doublet to automatically detect candidates. After visual inspection, we defined a sample of 20 definite (group G = 1) and 4 "highly-likely'" (G = 2) doublets with rest equivalent widths W_r for both lines detected at > 3 sigma. The absorber line density of the G = 1 doublets was dN_SiIV/dX = 1.4+0.4/-0.3 for log N(Si+3) > 12.9. The best-fit power law to the G = 1 frequency distribution of column densities f(N(Si+3)) had normalization k = (1.2+0.5/-0.4) x 10^{-14} cm^-2 and slope alpha = -1.6+0.3/-0.3. Using the power-law model of f(N(Si+3)), we measured the Si+3 mass density relative to the critical density: Omega(Si+3) = (3.71+2.82/-1.68) x 10^-8. From a simple linear fit to Omega(Si+3) over the age of the Universe, we estimated a slow and steady increase from z = 5.5 --> 0 with dOmega/dt_age = (0.61+/-0.13) x 10^-8 Gyr^-1. We compared our ionic ratios N(Si+3)/N(C+3) to a 2 < z < 4.5 sample and concluded, from survival analysis, that the two populations are similar, with mean N(Si+3)/N(C+3) ~ 0.16.
Neutrinos coupled to an underlying scalar field in the scenario for unification of mass varying dark matter and cosmon-{\em like} dark energy is examined. In the presence of a tiny component of mass varying neutrinos, the conditions for the present cosmic acceleration and for the stability issue are reproduced. It is assumed that {\em sterile} neutrinos behave like mass varying dark matter coupled to mass varying {\em active} neutrinos through the {\em seesaw} mechanism, in a kind of {\em mixed} dark matter sector. The crucial point is that the dark matter mass may also exhibit a dynamical behavior driven by the scalar field. The scalar field mediates the nontrivial coupling between the mixed dark matter and the dark energy responsible for the accelerated expansion of the universe. The equation of state of perturbations reproduce the generalized Chaplygin gas (GCG) cosmology so that all the effective results from the GCG paradigm are maintained, being perturbatively modified by neutrinos.
We report new radio-continuum observations with the Australia Telescope Compact Array (ATCA) of the region surrounding the peculiar galaxy pair ESO 295-IG022, at the centre of the poor cluster Abell S0102. We observed this cluster at wavelengths of lambda=20/13 and 6/3 cm with the ATCA 6 km array. With these configurations, we achieved a resolution of ~2" at 3 cm which is sufficient to resolve the jet-like structure of ~3' length detected at 20 cm. From our new high resolution images at 6 and 3 cm we confirm the presence of a double jet structure, most likely originating from the northern galaxy (ESO295-IG022-N), bent and twisted towards the south. We found the spectral index of the jet to be very steep (alpha=-1.32). No point source was detected that could be associated with the core of ESO 295-IG022-N. On the other hand, ESO 295-IG022-S does not show any jet structure, but does show a point radio source. This source has variable flux and spectral index, and appears to be superposed on the line-of-sight of the jets (seen at 20-cm) originating from the northern galaxy ESO 295-IG022-N. Finally, regions of very high and somewhat well ordered polarisation were detected at the level of 70%.
Interstellar dust grains are responsible for modifying the spectral energy distribution (SED) of galaxies, both absorbing starlight at UV and optical wavelengths and converting this energy into thermal emission in the infrared. The detailed description of these phenomena is of fundamental importance in order to compare the predictions of theoretical models of galaxy formation and evolution with the most recent observations in the infrared region. In this paper we compare the results of GRASIL, a code explicitly solving for the equation of radiative transfer in a dusty medium, with the predictions of a variety of IR template libraries. We employ star formation history samples extracted from the semi-analytical galaxy formation model MORGANA to create libraries of synthetic SEDs from the near- to the far-infrared. We consider model predictions at different redshift ranges to explore any possible influence in the shape and normalization of the SEDs due to the expected evolution of the galaxy properties. We compute the total absorbed starlight predicted by GRASIL at optical wavelengths to statistically compare the synthetic SEDs with the selected IR templates. We show that synthetic SEDs at a given total infrared luminosity are predicted to be systematically different at different redshift and for different properties of the underlying model galaxy. However, we determine spectral regions where the agreement between the results of radiative transfer and IR templates is good in a statistical sense (i.e. in terms of the luminosity functions). Moreover, we highlight some potentially relevant discrepancies between the different approaches, both in the region dominated by PAH emission and at sub-mm wavelengths. These results determine potentially critical issues in the infrared luminosity functions as predicted by semi-analytical models coupled with different IR flux estimators.
We present the largest sample to-date of intermediate-resolution blue-to-red optical spectra of B-type supergiants in M31 and undertake the first survey of diffuse interstellar bands (DIBs) in this galaxy. Spectral classifications, radial velocities and interstellar reddenings are presented for 34 stars in three regions of M31. Radial velocities and equivalent widths are given for the 5780 and 6283 DIBs towards 11 stars. Equivalent widths are also presented for the following DIBs detected in three sightlines in M31: 4428, 5705, 5780, 5797, 6203, 6269, 6283, 6379, 6613, 6660, and 6993. All of these M31 DIB carriers reside in clouds at radial velocities matching those of interstellar Na I and/or H I. The relationships between DIB equivalent widths and reddening (E(B-V)) are consistent with those observed in the local ISM of the Milky Way. Many of the observed sightlines show DIB strengths (per unit reddening) which lie at the upper end of the range of Galactic values. DIB strengths per unit reddening are found (with 68% confidence), to correlate with the interstellar UV radiation field strength. The strongest DIBs are observed where the interstellar UV flux is lowest. The mean Spitzer 8/24 micron emission ratio in our three fields is slightly lower than that measured in the Milky Way, but we identify no correlation between this ratio and the DIB strengths in M31. Interstellar oxygen abundances derived from the spectra of three M31 H II regions in one of the fields indicate that the average metallicity of the ISM in that region is 12 + log[O/H] = 8.54 +- 0.18, which is approximately equal to the value in the solar neighbourhood.
We analyze a sample of galaxies with stellar masses greater than $10^{10} M_{\odot}$ and with redshifts in the range $0.025<z<0.05$ for which HI mass measurements are available from the GALEX Arecibo SDSS Survey (GASS) or from the Arecibo Legacy Fast ALFA survey (ALFALFA). At a given value of $M_*$, our sample consists primarily of galaxies that are more HI-rich than average. We constructed a series of three control samples for comparison with these HI-rich galaxies. As expected, HI-rich galaxies differ strongly from galaxies of same stellar mass that are selected without regard to HI content. The majority of these differences are attributable to the fact that galaxies with more gas are bluer and more actively star-forming. In order to identify those galaxy properties that are causally connected with HI content, we compare results derived for the HI sample with those derived for galaxies matched in stellar mass, size and NUV-$r$ colour. The only photometric property that is clearly attributable to increasing HI content, is the colour gradient of the galaxy. Galaxies with larger HI fractions have bluer, more actively star-forming outer disks compared to the inner part of the galaxy. HI-rich galaxies also have larger $g$-band radii compared to $i$-band radii. Our results are consistent with the "inside-out" picture of disk galaxy formation, which has commonly served as a basis for semi-analytic models of the formation of disks in the context of Cold Dark Matter cosmologies. The lack of any intrinsic connection between HI fraction and galaxy asymmetry suggests that gas is accreted smoothly onto the outer disk.
I briefly discuss the challenges presented by attempting to modify general relativity to obtain an explanation for the observed accelerated expansion of the universe. Foremost among these are the questions of theoretical consistency - the avoidance of ghosts in particular - and the constraints imposed by precision local tests of gravity within the solar system. For those models that clear these highly constraining hurdles, modern observational cosmology offers its own suite of tests, improving with upcoming datasets, that offer the possibility of ruling out modified gravity approaches or providing an intriguing hint of new infrared physics. In the second half of the talk, I discuss a recent approach to extracting cosmology from higher-dimensional induced gravity models.
To get insight in the nature of the ionized gas in the nuclear region of LINERs we have performed a study of HST Halpha imaging of 32 LINERs. The main conclusion from this analysis is that for the large majority of LINERs (84%) an unresolved nuclear source has been identified as well as extended emission with equivalent sizes ranging from few tens till about hundredths of parsecs. Their morphologies appear not to be homogeneous being basically grouped into three classes:nuclear outflow candidates (42%), core-halo morphologies (25%) and nuclear spiral disks (14%). Clumpy structures reminiscent of young stellar clusters are not a common property on LINERs. The remaining 5 galaxies are too dusty to allow a clear view of the ionized gas distribution. A size-luminosity relation has been found between the equivalent radius of the Halpha emission and the (2-10 keV) X-ray luminosities. Both ionised gas morphologies and the size-luminosity relation are indistinguishable from those of low luminosity Seyferts, suggesting the same origin for the NLR of LINERs and Seyferts. Also a relation between soft X-rays and ionized gas has been suggested for the first time in LINERs. From multiwavelength data, only 4 out of the 32 LINERs have no evidences on an AGN nature of theirnuclear sources from multiwavelength data, but extremely obscured AGNs cannot be discarded out given the Compton thick signatures of their X-ray emission. For the confirmed AGN LINERs, their Halpha imaging favour core-halo and outflow morphologies (65% of the cases). Finally, their calculated Eddington ratios show that our LINER sources radiate at sub-Eddington regime, with core-halo systems having on average larger Eddington ratios than outflow candidates.
The "ALFA Ultra Deep Survey" (AUDS) is an ongoing 21-cm spectral survey with the Arecibo 305m telescope. AUDS will be the most sensitive blind survey undertaken with Arecibo's 300 MHz Mock spectrometer. The survey searches for 21-cm HI line emission at redshifts between 0 and 0.16. The main goals of the survey are to investigate the HI content and probe the evolution of HI gas within that redshift region. In this paper, we report on a set of precursor observations with a total integration time of 53 hours. The survey detected a total of eighteen 21-cm emission lines at redshifts between 0.07 and 0.15 in a region centered around ra~0:00h, dec= 15:42deg. The rate of detection is consistent with the one expected from the local HI mass function. The derived relative HI density at the median redshift of the survey is rho_HI[z=0.125]=(1.0+/-0.3)*rho_0, where rho_0 is the HI density at zero redshift.
We present mass models for the dark matter component of seven dwarf galaxies taken from "The HI Nearby Galaxy Survey" (THINGS) and compare these with those from numerical Lambda Cold Dark Matter (LCDM) simulations. The THINGS high-resolution data significantly reduce observational uncertainties and thus allow us to derive accurate dark matter distributions in these systems. We here use the bulk velocity fields when deriving the rotation curves of the galaxies. Compared to other types of velocity fields, the bulk velocity field minimizes the effect of small-scale random motions more effectively and traces the underlying kinematics of a galaxy more properly. The "Spitzer Infrared Nearby Galaxies Survey" (SINGS) 3.6 micron and ancillary optical data are used for separating the baryons from their total matter content in the galaxies. The sample dwarf galaxies are found to be dark matter dominated over most radii. We find discrepancies between the derived dark matter distributions of the galaxies and those of LCDM simulations, even after corrections for non-circular motions have been applied. The observed solid body-like rotation curves of the galaxies rise too slowly to reflect the cusp-like dark matter distribution in CDM halos. Instead, they are better described by core-like models such as pseudo-isothermal halo models dominated by a central constant-density core. The mean value of the logarithmic inner slopes of the mass density profiles is alpha = -0.29 +- 0.07. They are significantly different from the steep slope of ~ -1.0 inferred from previous dark-matter-only simulations, and are more consistent with shallower slopes found in recent LCDM simulations of dwarf galaxies in which the effects of baryonic feedback processes are included.
We study the evolution of primordial neutrino-antineutrino asymmetries in the early universe, before and during Big Bang Nucleosynthesis (BBN). We consider quite a wide range for the total lepton number in the neutrino sector, eta_nu=eta_{nu_e}+eta_{nu_mu}+eta_{nu_tau} and the initial electron neutrino asymmetry eta_{nu_e}^{in}, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. We discuss how neutrino distributions can be parameterized in terms of two time-dependent parameters: a chemical potential and an effective temperature, which can be translated into the parameter N_{eff}, the effective number of neutrinos. Finally, refined bounds on both the total lepton number in the neutrino sector and the nu_e -bar{nu}_e asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial H2/H density ratio and He4 mass fraction. These constraints fix the maximum contribution of neutrinos with primordial asymmetries to the radiation of the universe, a cosmological parameter that will be soon measured with excellent precision from data of the Planck satellite.
We present results from our studies of radio emission from selectecd Ultra Luminous X-ray (ULX) sources, using archival Giant Metrewave Radio Telescope (GMRT) data and new European VLBI Network (EVN) observations. The GMRT data are used to find possible faint radio emission from ULX sources located in late-type galaxies in the Chandra Deep Fields. No detections are found at 235, 325 and 610 MHz, and upper limits on the radio flux densities at these frequencies are given. The EVN observations target milliarcsecond-scale structures in three ULXs with known radio counterparts (N4449- X1, N4088-X1, and N4861-X2). We confirm an earlier identification of the ULX N4449-X1 with a supernova remnant and obtain the most accurate estimates of its size and age. We detect compact radio emission for the ULX N4088-X1, which could harbour an intermediate mass black hole (IMBH) of 10^5 M\odot accreting at a sub-Eddington rate. We detect a compact radio component in the ULX N4861-X2, with a brightness temperature > 10^6 K and an indication for possible extended emission. If the extended structure is confirmed, this ULX could be an HII region with a diameter of 8.6 pc and surface brightness temperature \geq 10^5 K. The compact radio emission may be coming from a ~ 10^5 M\odot black hole accreting at 0.1M_Edd.
Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt Law, the LIR-L'CO correlation, and the LIR-L'HCN correlation. In particular, the linear LIR-L'HCN correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of "intermittency" in normal spirals - the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time-dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties - namely, the dust-to-gas ratio and the CO-H2 and HCN-H2 conversion factors - that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.
We employ spectroscopic and photometric data from SDSS DR7, in a 500 sq degree region, to understand the evolution of dwarf (~M*+2<M_z<M*+4) galaxies in the Coma supercluster (z=0.023). We show that in the Coma supercluster, the red dwarfs are mostly concentrated in the dense cores of the Coma and Abell 1367 clusters, and in the galaxy groups embedded in the filament connecting them. The post-starburst (k+A) dwarfs however are found in the infall regions of the Coma and Abell 1367 clusters, and occasionally in galaxy groups embedded along the filament, suggesting that strong velocity fields prevalent in the vicinity of deep potential wells may be closely related to the mechanism(s) leading to the post-starburst phase in dwarf galaxies. Moreover, the blue colour of some k+A dwarfs in the Coma cluster, found within its virial radius, suggests that the star formation in these galaxies was quenched very rapidly in the last 500 Myr. More than 60% of all red dwarf galaxies in the supercluster have 0-3 ang of H_\delta in absorption, which suggests that a major episode of star formation occurred in a non-negligible fraction of these galaxies, ending within the last Gyr, allowing them to move to the red sequence. The distribution of the blue dwarf galaxies in the Coma supercluster is bimodal in the EW(H_\alpha)-EW(H_\delta) plane, with one population having very high emission in H_\alpha, and some emission in H_\delta. A sub-population of blue dwarfs is coincident with the red dwarfs in the EW(H_\alpha)-EW(H_\delta) plane, showing absorption in H_\delta and relatively lower emission in H_\alpha. We suggest that a large fraction of the latter population are the progenitors of the passive dwarf galaxies that are abundantly found in the cores of low-redshift rich clusters such as Coma.
We report the detection of HCO+(J=4-3) emission in the Cloverleaf Quasar at z=2.56, using the IRAM Plateau de Bure Interferometer. HCO+ emission is a star formation indicator similar to HCN, tracing dense molecular hydrogen gas (n(H2) ~= 10^5 cm^-3) within star-forming molecular clouds. We derive a lensing-corrected HCO+(J=4-3) line luminosity of L'(HCO+(4-3)) = (1.6+/-0.3) x 10^9 (mu_L/11)^-1 K km/s pc^2, which corresponds to only 48% of the HCO+(J=1=0) luminosity, and <~4% of the CO(J=3-2) luminosity. The HCO+ excitation thus is clearly subthermal in the J=4-3 transition. Modeling of the HCO+ line radiative transfer suggests that the HCO+ emission emerges from a region with physical properties comparable to that exhibiting the CO line emission, but 2x higher gas density. This suggests that both HCO+ and CO lines trace the warm, dense molecular gas where star formation actively takes place. The HCO+ lines have only ~2/3 the width of the CO lines, which may suggest that the densest gas is more spatially concentrated. In contrast to the z=3.91 quasar APM08279+5255, the dense gas excitation in the Cloverleaf is consistent with being purely collisional, rather than being enhanced by radiative processes. Thus, the physical properties of the dense gas component in the Cloverleaf are consistent with those in the nuclei of nearby starburst galaxies. This suggests that the conditions in the dense, star-forming gas in active galactic nucleus-starburst systems at early cosmic times like the Cloverleaf are primarily affected by the starburst itself, rather than the central active black hole.
Evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation on relative and intrinsic parts, we introduce an another set of symmetric quantities which also governs the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on large scales the non-adiabatic pressure perturbation and rate of changes of comoving curvature perturbation. The analysis of these equations was made for several particular models.
Some galaxy clusters show diffuse radio emission in the form of peripheral relics (so far attributed to primary, shock-(re)accelerated electrons) or central halos. Analysing radio and X-ray data from the literature, we find new connections between halos and relics, such as a universal linear relation between their peak radio brightness and the gas column density. Our results indicate that halos, relics, and halo-relic bridges in a cluster, all arise from the same, homogeneous cosmic ray (CR) ion (CRI) distribution. We analytically derive the signature of synchrotron emission from secondary electrons and positrons (CREs) produced in hadronic CRI collisions, for an arbitrary magnetic field evolution. In our model, flat spectrum halos (both giant and minihalos) arise from steady-state magnetic fields, whereas relics and steep halos reflect recent or irregular magnetic growth. This naturally explains the properties of halos, relics, and the connections between them, without invoking particle (re)acceleration in weak shocks or turbulence. We find CRI energy densities in the range u_p~10^-[12.4,13.3]erg cm^-3, with a spectral index s_p=-2.20+-0.05, and identify a ~0.1 magnetic energy fraction in some halos and behind relics, as far as 2Mpc from the cluster's centre. The CRI homogeneity suggests strong CR diffusion, D(100GeV)>~10^32cm^2s^-1. The strong magnetisation imposes strict upper limits on >10GeV CRE (re)acceleration in weak shocks (efficiency <10^-4) and turbulence; indeed, each weak shock slightly lowers the energy fraction of flat CRs.
We describe the Cosmic Microwave Background (CMB) polarization experiment called Polarbear. This experiment will use the dedicated Huan Tran Telescope equipped with a powerful 1,200-bolometer array receiver to map the CMB polarization with unprecedented accuracy. We summarize the experiment, its goals, and current status.
The Wide-Field X-ray Telescope (WFXT) is a proposed NASA mission dedicated to performing surveys of the sky in the soft X-ray band (0.3-6 keV). The key characteristics of this missions are a constant point spread function with Half Energy Width of ~5 arcsec over a ~1 degree field of view as well as an effective area ~10 times larger than the one of Chandra. Despite the fact that the mission is tailored for extragalactic purposes, we show here that extremely interesting results can also be obtained on the study of neutron stars.
This paper investigates the fascinating diffuse polarization structures at 350 MHz that have previously been tentatively attributed to the Perseus cluster and, more specifically, tries to find out whether the structures are located at (or near) the Perseus cluster, or in the Milky Way. A wide field, eight point Westerbork Synthesis Radio Telescope mosaic of the area around the Perseus cluster was observed in full polarization. The frequency range was 324 to 378 MHz and the resolution of the polarization maps was 2'x3'. The maps were processed using Faraday rotation measure synthesis to counter bandwidth depolarization. The RM-cube covers Faraday depths of -384 to +381 rad m^{-2} in steps of 3 rad m^{-2}. There is emission all over the field at Faraday depths between -50 and +100 rad m^{-2}. All previously observed structures were detected. However, no compelling evidence was found supporting association of those structures with either the Perseus cluster or large scale structure formation gas flows in the Perseus-Pisces super cluster. On the contrary, one of the structures is clearly associated with a Galactic depolarization canal at 1.41 GHz. Another large structure in polarized intensity, as well as Faraday depth at a Faraday depth of +30 rad m^{-2}, coincides with a dark object in WHAM H-alpha maps at a kinematic distance of 0.5 \pm 0.5 kpc. All diffuse polarized emission at 350 MHz towards the Perseus cluster is most likely located within 1 kpc from the Sun. The layers that emit the polarized radiation are less than 40 pc/B|| thick.
The matter content of relativistic jets in AGNs is dominated by a mixture of protons, electrons, and positrons. During dissipative events these particles tap a significant portion of the internal and/or kinetic energy of the jet and convert it into electromagnetic radiation. While leptons - even those with only mildly relativistic energies - can radiate efficiently, protons need to be accelerated up to energies exceeding $10^{16-19}$ eV to dissipate radiatively a significant amount of energy via either trigerring pair cascades or direct synchrotron emission. Here I review various constraints imposed on the role of hadronic non-adiabatic cooling processes in shaping the high energy spectra of blazars. It will be argued that protons, despite being efficiently accelerated and presumably playing a crucial role in jet dynamics and dissipation of the jet kinetic energy to the internal energy of electrons and positrons, are more likely to remain radiatively passive in AGN jets.
The origin of the shallow-decay emission during early X-ray afterglows has been an open issue since the launch of the Swift satellite. One of the appealing models is the late internal dissipation model, where X-ray emission during the shallow-decay phase is attributed to internal dissipation, analogous to the prompt gamma-ray emission. We discuss possible scenarios of the late prompt emission, such as late internal shocks, magnetic reconnection, and photospheric dissipation. We also consider the consequences of late dissipation and a two-component (early and late) jet model for the high-energy (GeV-TeV) emission. We study not only synchrotron self-Compton (SSC) emission from the early and late jets but also external inverse-Compton (EIC) emission, which is naturally predicted in the late dissipation model. For the latter, we perform numerical calculations taking into account the equal-arrival-time surface of EIC photons, and show that the EIC component typically has a peak at ~1-100 GeV which may dominate over the SSC components. We demonstrate that very-high-energy gamma rays from both these components are detectable for nearby and/or energetic GRBs, with current and future Cherenkov detectors such as MAGIC, VERITAS, CTA and HAWC, and possibly Fermi. Although the expected event rate would not be large, detections should be useful as a test of the model. Multi-wavelength observations using both the ground-based telescopes and the Swift and/or Fermi satellites are also important to constrain the models.
Links to: arXiv, form interface, find, astro-ph, recent, 1011, contact, help (Access key information)
As one of the most powerful probes of cosmological structure formation, the abundance of massive galaxy clusters is a sensitive probe of modifications to gravity on cosmological scales. In this paper, we present results from N-body simulations of a general class of f(R) models, which self-consistently solve the non-linear field equation for the enhanced forces. Within this class we vary the amplitude of the field, which controls the range of the enhanced gravitational forces, both at the present epoch and as a function of redshift. Most models in the literature can be mapped onto the parameter space of this class. Focusing on the abundance of massive dark matter halos, we compare the simulation results to a simple spherical collapse model. Current constraints lie in the large-field regime, where the chameleon mechanism is not important. In this regime, the spherical collapse model works equally well for a wide range of models and can serve as a model-independent tool for placing constraints on f(R) gravity from cluster abundance. Using these results, we show how constraints from the observed local abundance of X-ray clusters on a specific f(R) model can be mapped onto other members of this general class of models.
We use Keck laser guide star adaptive optics imaging and exploit the magnifying effects of strong gravitational lensing (the effective resolution is FWHM ~ 200 pc) to investigate the sub-kpc scale of an intermediate-redshift (z = 0.63) massive early-type galaxy being lensed by a foreground early-type galaxy; we dub this class of strong gravitational lens systems EELs, e.g., early-type/early-type lenses. We find that the background source is massive (M* = 10^{10.9} M_sun) and compact (r_e = 1.1 kpc), and a two-component fit is required to model accurately the surface brightness distribution, including an extended low-surface-brightness component. This extended component may arise from the evolution of higher-redshift `red nuggets' or may already be in place at z ~ 2 but is unobservable due to cosmological surface brightness dimming.
We construct a filament catalogue using an extension of the halo based filament finder of Zhang et al.(2009), in a 250 Mpc/h side N-body simulation, and study the properties of filaments ending upon or surrounding galaxy clusters (within 10 Mpc/h). In this region, the majority of filamentary mass, halo mass, and galaxy richness centered upon the cluster tends to lie in sheets, which are not always coincident. Fixing a sheet width of 3 Mpc/h for definiteness, we find the sheet orientations and (connected) filamentary mass, halo mass and richness fractions relative to the surrounding sphere. Filaments usually have one or more endpoints outside the sheet determined by filament or halo mass or richness, with at least one having a large probability to be aligned with the perpendicular of the plane. Scatter in mock cluster mass measurements, for several observables, is often correlated with the observational direction relative to these local sheets, most often for richness and weak lensing, somewhat less for Compton decrement, and least often for velocity dispersions.
Gamma-ray bursts (GRBs) and their early afterglows ionise their circumburst material. Only high-energy spectroscopy therefore, allows examination of the matter close to the burst itself. Soft X-ray absorption allows an estimate to be made of the total column density in metals. The detection of the X-ray afterglow can also be used to place a limit on the total gas column along the line of sight based on the Compton scattering opacity. Such a limit would enable, for the first time, the determination of lower limits on the metallicity in the circumburst environments of GRBs. In this paper, we determine the limits that can be placed on the total gas column density in the vicinities of GRBs based on the Compton scattering. We simulate the effects of Compton scattering on a collimated beam of high energy photons passing through a shell of high column density material to determine the expected lightcurves, luminosities, and spectra. We compare these predictions to observations, and determine what limits can realistically be placed on the total gas column density. The smearing out of pulses in the lightcurve from Compton scattering is not likely to be observable, and its absence does not place strong constraints on the Compton depth for GRBs. However, the distribution of observed luminosities of bursts allows us to place statistical, model-dependent limits that are typically <~1e25 cm^{-2} for less luminous bursts, and as low as ~1e24 cm$^{-2} for the most luminous. Using the shape of the high-energy broadband spectrum, however, in some favourable cases, limits as low as ~5e24 cm^{-2} can placed on individual bursts, implying metallicity lower limits from X- and gamma-rays alone from 0 up to 0.01 Z/Zsun. At extremely high redshifts, this limit would be at least 0.02 Z/Z_sun, enough to discriminate population III from non-primordial GRBs.
The oxygen gradient of four dS galaxies has been determined using abundances for several HII regions determined with four different methods. The gradient slopes of the three non-barred galaxies in the sample are quite steep, larger than -0.2 dex/kpc, while the gradient of the barred galaxy is shallower, only -0.1 dex/kpc. Although these gradients are quite steep they are real, following all the galaxies the same trend. Moreover, the results obtained here agree with those marked by the late-type, non-dwarf spirals, particularly the relationship between the gradient and the absolute magnitude and the optical size for non-barred galaxies, and the surface density for barred ones.
Despite their prominent role in cosmography, little is yet known about the nature of type-Ia supernovae (SNe Ia), from the identity of their progenitor systems, through the evolution of those systems up to ignition and explosion, and to the causes of the environmental dependences of their observed properties. I briefly review some of those puzzles. I then focus on recent progress in reconstructing the SN Ia delay time distribution (DTD) -- the SN rate versus time that would follow a hypothetical brief burst of star formation. A number of measurements of the DTD over the past two years, using different methods and based on SNe Ia in different environments and redshift ranges, are converging. At delays 1<t<10 Gyr, these measurements show a similar 1/t power-law shape, with similar normalizations. The DTD peaks at the shortest delays probed, but there is still some uncertainty regarding its precise shape in the range 0.1<t<1 Gyr. At face value, this result supports Ron Webbink's (1984) idea of a double-degenerate progenitor origin for SNe Ia, but the numbers currently predicted by binary population synthesis models must be increased by factors of 3-10, at least. Single-degenerate progenitors may still play a role in producing short-delay SNe Ia, or perhaps all SNe Ia, if there is something important missing in the current modeling efforts.
Weak gravitational lensing has become an important method to determine the masses of galaxy clusters. The intrinsic shapes of the galaxies are a dominant source of uncertainty, but there are other limitations to the precision that can be achieved. In this paper we revisit a typically ignored source of uncertainty: structure along the line-of sight. Using results from the Millennium Simulation we confirm the validity of analytical calculations that have shown that such random projections are particularly important for studies of the cluster density profile. In general the contribution of large-scale structure to the total error budget is comparable to the statistical errors. We find that the precision of the mass measurement can be improved only slightly by modelling the large-scale structure using readily available data.
We present a new method to analyze the IMF at its high mass end in young stellar clusters, which rely on two integrated observables: the cluster bolometric and Halpha luminosity. Using several cluster samples selected in M33 we show that a stochastically sampled universal IMF is in better agreement with the data than a truncated IMF whose maximum stellar mass depends on cluster mass. We also discuss the possibility that a delayed formation of massive stars is taking place in low density star forming regions as an alternative to a strong leakage of ionizing photons from HII regions of young luminous clusters.
In this work we present some applications about the use of the so-called Cosmography with GRBs. In particular, we try to calibrate the Amati relation by using the luminosity distance obtained from the cosmographic analysis. Thus, we analyze the possibility of use GRBs as possible estimators for the cosmological parameters, obtaining as preliminary results a good estimate of the cosmological density parameters, just by using a GRB data sample.
Radio observations discovered large scale non thermal sources in the central Mpc regions of dynamically disturbed galaxy clusters (radio halos). The morphological and spectral properties of these sources suggest that the emitting electrons are accelerated by spatially distributed and gentle mechanisms, providing some indirect evidence for turbulent acceleration in the inter-galactic-medium (IGM). Radio and X-ray surveys allow to investigate the statistics of radio halos and unveil a bimodal behaviour of the radio properties of galaxy clusters: merging clusters host radio halos and trace the well known radio--X correlation, while more relaxed clusters do not host radio halos and populate a region well separated from that spanned by the above correlation. This appears consistent with the hypothesis that relativistic electrons can be reaccelerated by MHD turbulence generated during cluster mergers. In the context of this model the population of radio halos consists of a mixture of halos with different spectral properties, most of them with very steep spectrum and visible only at low radio frequencies. For this reason the future LOFAR surveys may provide a robust test to this theoretical hypothesis.
Direct evidence for in situ particle acceleration mechanisms in the inter-galactic-medium (IGM) is provided by the diffuse Mpc--scale synchrotron emissions observed from galaxy clusters. It has been proposed that MHD turbulence, generated during cluster-cluster mergers, may be a source of particle reacceleration in the IGM. Calculations of turbulent acceleration must account self-consistently for the complex non--linear coupling between turbulent waves and particles. This has been calculated in some detail under the assumption that turbulence interacts in a collisionless way with the IGM. In this paper we explore a different picture of acceleration by compressible turbulence in galaxy clusters, where the interaction between turbulence and the IGM is mediated by plasma instabilities and maintained collisional at scales much smaller than the Coulomb mean free path. In this regime most of the energy of fast modes is channeled into the reacceleration of relativistic particles and the acceleration process approaches a universal behaviour being self-regulated by the back-reaction of the accelerated particles on turbulence itself. Assuming that relativistic protons contribute to several percent (or less) of the cluster energy, consistent with the FERMI observations of nearby clusters, we find that compressible turbulence at the level of a few percent of the thermal energy can reaccelerate relativistic electrons at GeV energies, that are necessary to explain the observed diffuse radio emission in the form of giant radio halos.
Primordial non-Gaussianity (NG) affects the large scale structure (LSS) of the universe by leaving an imprint on the distribution of matter at late times. Much attention has been focused on using the distribution of collapsed objects (i.e. dark matter halos and the galaxies and galaxy clusters that reside in them) to probe primordial NG. An equally interesting and complementary probe however is the abundance of extended underdense regions or voids in the LSS. The calculation of the abundance of voids using the excursion set formalism in the presence of primordial NG is subject to the same technical issues as the one for halos, which were discussed e.g. in arXiv:1005.1203. However, unlike the excursion set problem for halos which involved random walks in the presence of one barrier $\delta_c$, the void excursion set problem involves two barriers $\delta_v$ and $\delta_c$. This leads to a new complication introduced by what is called the "void-in-cloud" effect discussed in the literature, which is unique to the case of voids. We explore a path integral approach which allows us to carefully account for all these issues, leading to a rigorous derivation of the effects of primordial NG on void abundances. The void-in-cloud issue in particular makes the calculation conceptually rather different from the one for halos. However, we show that its final effect can be described by a simple yet accurate approximation. Our final void abundance function is valid on larger scales than the expressions of other authors, while being broadly in agreement with those expressions on smaller scales.
We have used the seven year Wilkinson Microwave Anisotropy Probe (WMAP) data in order to update the measurements of the intensity signal in the G159.6-18.5 region within the Perseus Molecular Complex, and to set constraints on the polarization level of the anomalous microwave emission in the frequency range where this emission is dominant. At 23, 33 and 41 GHz, we obtain upper limits on the fractional linear polarization of 1.0, 1.8 and 2.7% respectively (with a 95 per cent confidence level). These measurements rule out a significant number of models based on magnetic dipole emission of grains that consist of a simple domain (Draine & Lazarian 1999) as responsible of the anomalous emission. When combining our results with the measurement obtained with the COSMOSOMAS experiment at 11 GHz (Battistelli et al. 2006), we find consistency with the predictions of the electric dipole and resonance relaxation theory (Lazarian & Draine 2000) at this frequency range.
The galileon model was recently proposed to locally describe a class of modified gravity theories, including the braneworld DGP model. We discuss spontaneous symmetry breaking of the self-accelerating branch in a multi-galileon theory with internal global symmetries. We show a modified version of Goldstone's theorem is applicable to the symmetry breaking pattern and discuss its implications. We also derive the Hamiltonian of a general multi-galileon theory and discuss its implications.
Analysis of highly precise pulsar timing observations may result in the detection of gravitational waves. Following Jenet et al. (2005) we present the detection significance of current and future radio observatories including the Parkes Pulsar Timing Array (PPTA), the GMRT, the Low-Frequency Array (LOFAR), the Arecibo Telescope and the Square Kilometre Array (SKA) to gravitational waves as a function of background amplitude and sensitivity. The feasibility of such detections and the required duration of observations are determined by the achievable root-mean-square (rms) error of the timing residuals and the timing stability of the pulsars involved. Using the same procedure as Jenet et al. (2005) the sensitivity curves produced here indicate the amplitude range detectable with these new observatories and provide bounds on the observability of gravitational waves with current radio interferometers. Through the generation of fake times-of arrival data files for millisecond pulsars, we investigate how the sensitivity function of each observatory varies with increasing observation time. An attempt to simulate and detect a gravitational wave background generated from cosmic strings, is also made.
Earth is bombarded by meteors, occasionally by one large enough to cause a significant explosion and possible loss of life. Although the odds of a deadly asteroid strike in the next century are low, the most likely impact is by a relatively small asteroid, and we suggest that the best mitigation strategy in the near term is simply to move people out of the way. We describe an "early warning" system that could provide a week's notice of most sizable asteroids or comets on track to hit the Earth. This system, dubbed "Asteroid Terrestrial-impact Last Alert System" (ATLAS), comprises two observatories separated by about 100km that simultaneously scan the visible sky twice a night, and can be implemented immediately for relatively low cost. The sensitivity of ATLAS permits detection of 140m asteroids (100 Mton impact energy) three weeks before impact, and 50m asteroids a week before arrival. An ATLAS alarm, augmented by other observations, should result in a determination of impact location and time that is accurate to a few kilometers and a few seconds. In addition to detecting and warning of approaching asteroids, ATLAS will continuously monitor the changing universe around us: most of the variable stars in our galaxy, many micro-lensing events from stellar alignments, luminous stars and novae in nearby galaxies, thousands of supernovae, nearly a million quasars and active galactic nuclei, tens of millions of galaxies, and a billion stars. With two views per day ATLAS will make the variable universe as familiar to us as the sunrise and sunset.
Big bang nucleosynthesis (BBN), an epoch of primordial nuclear transformations in the expanding Universe, has left an observable imprint in the abundances of light elements. Precision observations of such abundances, combined with high-accuracy predictions, provide a nontrivial test of the hot big bang and probe non-standard cosmological and particle physics scenarios. We give an overview of BBN sensitivity to different classes of new physics: new particle or field degrees of freedom, time-varying couplings, decaying or annihilating massive particles leading to non-thermal processes, and catalysis of BBN by charged relics.
We discuss some of the main open issues related to the light-up and evolution of the first accreting sources powering high redshift luminous quasars. We discuss the perspectives of future deep X-ray surveys with the International X-ray Observatory and possible synergies with the Wide Field X-ray Telescope.
The jets image modelling of gravitationally lensed sources have been performed. Several basic models of the lens mass distribution were considered, in particular, a singular isothermal ellipsoid, an isothermal ellipsoid with the core, different multi-components models with the galactic disk, halo and bulge. The obtained jet images were compared as with each other as with results of observations. A significant dependence of the Hubble constant on the model parameters was revealed for B0218+357, when the circular structure was took into account.
We examine the importance of secular stellar mass loss for fueling ongoing star formation in disk galaxies during the late stages of their evolution. For a galaxy of a given stellar mass, we calculate the total mass loss rate of its entire stellar population using star formation histories derived from the observed evolution of the M*-star formation rate relation, along with the predictions of standard stellar evolution models for stellar mass loss for a variety of initial stellar mass functions. Using cosmological simulations of galaxy formation, we test a prescription for modeling the rate at which gas that was returned by stars to interstellar medium will be consumed by star formation. Our model shows that recycled gas from stellar mass loss can provide most or all of the fuel required to sustain the current level of star formation in late type galaxies. Stellar mass loss can therefore remove the tension between the low gas infall rates that are derived from observations and the relatively rapid star formation occuring in disk galaxies. For galaxies where cold gas infall rates have been estimated, we demonstrate explicitly that stellar mass loss can account for most of the deficit between their star formation and infall rates.
Links to: arXiv, form interface, find, astro-ph, recent, 1011, contact, help (Access key information)