We performed a spectroscopic galaxy survey, complete to $m_{F814W}\leq20.3$ ($L_B>0.15L_B^{\star}$ at z=0.3), within 100x100'' of the quasar Q1127-145 ($z_{em}=1.18$). The VLT/UVES quasar spectrum contains three $z_{abs}<0.33$ MgII absorption systems. We obtained eight new galaxy redshifts, adding to the four previously known, and galaxy star formation rates (SFRs) and metallicities were computed where possible. A strong MgII system [$W_r(2796)=1.8$A], which is a known damped Ly$\alpha$ absorber (DLA), had three previously identified galaxies; we found two additional galaxies associated with this system. These five galaxies form a group with diverse properties, such as a luminosity range of $0.04\leq L_B\leq0.63 L_B^{\star}$, an impact parameter range of $17\leq D \leq 241$ kpc and velocity dispersion of $\sigma$=115 km/s. The DLA group galaxy redshifts span beyond the 350 km/s velocity spread of the metallic absorption lines of the DLA itself. The two brightest group galaxies have SFRs of $\sim$few $M_{\odot}$ yr$^{-1}$ and should not have strong winds. We have sufficient spectroscopic information to directly compare three of the five group galaxies' (emission-line) metallicities with the DLA (absorption) metallicity: the DLA metallicity is 1/10th solar, substantially lower than the three galaxies' which range between less than 1/2 solar to solar metallicity. HST/WFPC-2 imaging shows perturbed morphologies for the three brightest group galaxies, with tidal tails extending $\sim$25 kpc. We favor a scenario where the DLA absorption originates from tidal debris in the group environment. Another absorber exhibits weak MgII absorption [$W_r(2796)$=0.03A] and had a previously identified galaxy at a similar redshift. We have identified a second galaxy associated with this system. Both galaxies have solar metallicities and unperturbed morphologies in the HST/WFPC-2 image. The SFR of one galaxy is much lower than expected for strong outflows. Finally, we have also identified five galaxies at large impact parameters with no associated MgII absorption [$W_r(2796) \lesssim 5.7$mA, 3$\sigma$] in the spectrum of Q1127-145.
Massive galaxies in the early Universe have been shown to be forming stars at surprisingly high rates. Prominent examples are dust-obscured galaxies which are luminous when observed at sub-millimeter (sub-mm) wavelengths and which may be forming stars at rates upto 1,000Mo/yr. These intense bursts of star formation are believed to be driven by mergers between gas rich galaxies. However, probing the properties of individual star-forming regions within these galaxies is beyond the spatial resolution and sensitivity of even the largest telescopes at present. Here, we report observations of the sub-mm galaxy SMMJ2135-0102 at redshift z=2.3259 which has been gravitationally magnified by a factor of 32 by a massive foreground galaxy cluster lens. This cosmic magnification, when combined with high-resolution sub-mm imaging, resolves the star-forming regions at a linear scale of just ~100 parsecs. We find that the luminosity densities of these star-forming regions are comparable to the dense cores of giant molecular clouds in the local Universe, but they are ~100x larger and 10^7 times more luminous. Although vigorously star-forming, the underlying physics of the star formation processes at z~2 appears to be similar to that seen in local galaxies even though the energetics are unlike anything found in the present-day Universe.
We investigate the effect of the stochastic gravitational wave (GW) background produced by kinks on infinite cosmic strings, whose spectrum was derived in our previous work, on the B-mode power spectrum of the cosmic microwave background (CMB) anisotropy. We find that the B-mode polarization due to kinks is comparable to that induced by the motion of the string network and hence the contribution of GWs from kinks is important for estimating the B-mode power spectrum originating from cosmic strings. If the tension of cosmic strings \mu is large enough i.e., G\mu >~ 10^{-8}, B-mode polarization induced by cosmic strings can be detected by future CMB experiments.
In this work we study the contribution of magnetic fields to the Sunyaev Zeldovich (SZ) effect in the intracluster medium. In particular we calculate the SZ angular power spectrum and the central temperature decrement. The effect of magnetic fields is included in the hydrostatic equilibrium equation by splitting the Lorentz force into two terms one being the force due to magnetic pressure which acts outwards and the other being magnetic tension which acts inwards. A perturbative approach is adopted to solve for the gas density profile for weak magnetic fields (< 4 micro G}). This leads to an enhancement of the gas density in the central regions for nearly radial magnetic field configurations. Previous works had considered the force due to magnetic pressure alone which is the case only for a special set of field configurations. However, we see that there exists possible sets of configurations of ICM magnetic fields where the force due to magnetic tension will dominate. Subsequently, this effect is extrapolated for typical field strengths (~ 10 micro G) and scaling arguments are used to estimate the angular power due to secondary anisotropies at cluster scales. In particular we find that it is possible to explain the excess power reported by CMB experiments like CBI, BIMA, ACBAR at l > 2000 with sigma_8 ~ 0.8 (WMAP 5 year data) for typical cluster magnetic fields. In addition we also see that the magnetic field effect on the SZ temperature decrement is more pronounced for low mass clusters (<T> ~ 2 keV). Future SZ detections of low mass clusters at few arc second resolution will be able to probe this effect more precisely. Thus, it will be instructive to explore the implications of this model in greater detail in future works.
We present an analysis of a deep archival Chandra observation of Willman 1, an object suspected to straddle the line of what constitutes a dwarf galaxy and an extreme globular cluster. Our main goal is to examine potential observational signatures in X-rays that might distinguish its true identity either through an unusual point source population or based on the existence of prominent diffuse emission in its core. We identify a total of 26 sources within the central 5 arcminutes to a limiting 0.5-2.0 keV X-ray flux of 6 x 10^{-16} ergs/cm^{2}/s. While some of these sources could be formal members of Willman 1, we find no outstanding evidence for either an unusual population of bright X-ray sources or a densely populated clustercore. In fact, the entire X-ray population could be explained by background active galactic nuclei and/or foreground stars unrelated to Willman 1. As a result, there is no substantial evidence in X-rays to argue against a dwarf galaxy classification for Willman 1 down to current observational limits. This result enhances the qualifications of Willman 1 as an ideal target for indirect dark matter searches. Accordingly, we derive upper limits for a possible sterile neutrino signature with a mass of 1.6-16.0 keV and finish with a discussion of previous measurements.
The QSO HE0450-2958 and the companion galaxy with which it is interacting, both ultra luminous in the infrared, have been the subject of much attention in recent years, as the quasar host galaxy remained undetected. This led to various interpretations on QSO and galaxy formation and co-evolution, such as black hole ejection, jet induced star formation, dust obscured galaxy, or normal host below the detection limit. We carried out deep observations in the near-IR in order to solve the puzzle concerning the existence of any host. The object was observed with the ESO VLT and HAWK-I in the near-IR J-band for 8 hours. The images have been processed with the MCS deconvolution method (Magain, Courbin & Sohy, 1998), permitting accurate subtraction of the QSO light from the observations. The compact emission region situated close to the QSO, called the blob, which previously showed only gas emission lines in the optical spectra, is now detected in our near-IR images. Its high brightness implies that stars likely contribute to the near-IR emission. The blob might thus be interpreted as an off-centre, bright and very compact host galaxy, involved in a violent collision with its companion.
The AKARI FU-HYU mission program carried out mid-infrared imaging of several well studied Spitzer fields preferentially selecting fields already rich in multi-wavelength data from radio to X-ray wavelengths filling in the wavelength desert between the Spitzer IRAC and MIPS bands.We present the initial results for the FU-HYU survey in the GOODS-N field.We utilize the supreme multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths, containing more than 4393 sources, including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. We find that the longer mid-infrared bands from AKARI (IRC-L18W 18 micron band) and Spitzer (MIPS24 24 micron band) provide an accurate measure of the total MIR emission of the sources and therefore their probable total mid-infrared luminosity. We also find that colours incorporating the AKARI IRC-S11 11 micron band produce a bimodal distribution where an excess at 11 microns preferentially selects moderate redshift star-forming galaxies. These powerful colour-colour diagnostics are further used as tools to extract anomalous colour populations, in particular a population of Silicate Break galaxies from the GOODS-N field showing that dusty starbursts can be selected of specific redshift ranges (z=1.2 - 1.6) by mid-infrared drop-out techniques. The FU-HYU catalogue will be made publically available to the astronomical community.
With the aim of quantifying the contribution of the environment on the evolution of galaxies at z=0 we have used the DR7 catalogue of the Sloan Digital Sky Survey (SDSS) to reconstruct the 3-D distribution of 4132 galaxies in 420 square degrees of the Coma supercluster, containing two rich clusters (Coma and A1367), several groups, and many filamentary structures belonging to the "Great Wall", at the approximate distance of 100 Mpc. At this distance the galaxy census is complete to Mi=-17.5 mag, i.e. approx 4 mag fainter than M*. The morphological classification of galaxies into early- (ellipticals) and late-types (spirals) was carried out by inspection of individual SDSS images and spectra. The density around each galaxies was determined in cylinders of 1 Mpc radius and 1000 km s^-1 half length. The color-luminosity relation was derived for galaxies in bins morphological type and in four thresholds of galaxy density-contrast, ranging from delta{1,1000} <= 0 (UL = the cosmic web); 0 < delta{1,1000} <= 4 (L = the loose groups); 4 < delta{1,1000} <= 20 (H = the large groups and the cluster's outskirts) and delta{1,1000} > 20 (UH = the cluster's cores). The fraction of early-type galaxies increases with the log of the over-density. A well defined "red sequence" composed of early-type galaxies exists in all environments at high luminosity, but it lacks of low luminosity (dwarf) galaxies in the lowest density environment. Conversely low luminosity isolated galaxies are predominantly of late-type. In other words the low luminosity end of the distribution is dominated by red dE galaxies in clusters and groups and by dwarf blue amorphous systems in the lowest density regions. At z=0 we find evidence for strong evolution induced by the environment (Nurture). Transformations take place mostly at low luminosity when star forming dwarf galaxies inhabiting low density environments migrate into amorphous passive dwarf ellipticals in their infall into denser regions. The mechanism involves suppression of the star formation due to gas stripping, without significant mass growth, as proposed by Boselli et al. (2008a). This process is more efficient and fast in ambients of increasing density. In the highest density environments (around clusters) the truncation of the star formation happens fast enough (few 100 Myr) to produce the signature of post-star-burst in galaxy spectra. PSB galaxies, that are in fact found significantly clustered around the largest dynamical units, represent the remnants of star forming isolated galaxies that had their star formation violently suppressed during their infall in clusters in the last 0.5-1.5 Gyrs, and the progenitors of future dEs.
We present new KPNO 0.9-m optical and VLA HI spectral line observations of the Orion dwarf galaxy. This nearby (D ~ 5.4 Mpc), intermediate-mass (M_dyn = 1.1x10^10 Solar masses) dwarf displays a wealth of structure in its neutral ISM, including three prominent "hole/depression" features in the inner HI disk. We explore the rich gas kinematics, where solid-body rotation dominates and the rotation curve is flat out to the observed edge of the HI disk (~6.8 kpc). The Orion dwarf contains a substantial fraction of dark matter throughout its disk: comparing the 4.7x10^8 Solar masses of detected neutral gas with estimates of the stellar mass from optical and near-infrared imaging (3.7x10^8 Solar masses) implies a mass-to-light ratio of ~13. New H alpha observations show only modest-strength current star formation (~0.04 Solar masses per year); this star formation rate is consistent with our 1.4 GHz radio continuum non-detection.
We present a novel method to significantly speed up cosmological parameter sampling. The method relies on constructing an interpolation of the CMB-log-likelihood based on sparse grids, which is used as a shortcut for the likelihood-evaluation. We obtain excellent results over a large region in parameter space, comprising about 25 log-likelihoods around the peak, and we reproduce the one-dimensional projections of the likelihood almost perfectly. In speed and accuracy, our technique is competitive to existing approaches to accelerate parameter estimation based on polynomial interpolation or neural networks, while having some advantages over them. In our method, there is no danger of creating unphysical wiggles as it can be the case for polynomial fits of a high degree. Furthermore, we do not require a long training time as for neural networks, but the construction of the interpolation is determined by the time it takes to evaluate the likelihood at the sampling points, which can be parallelised to an arbitrary degree. Our approach is completely general, and it can adaptively exploit the properties of the underlying function. We can thus apply it to any problem where an accurate interpolation of a function is needed.
We study models in which soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, $M_{in}$, above the GUT scale, $\mgut$. We assume that the scalar masses and gaugino masses have common values, $m_0$ and $m_{1/2}$ respectively, at $M_{in}$. We use the renormalization-group equations of the minimal supersymmetric SU(5) GUT to evaluate their evolutions down to $\mgut$, studying their dependences on the unknown parameters of the SU(5) superpotential. After displaying some generic examples of the evolutions of the soft supersymmetry-breaking parameters, we discuss the effects on physical sparticle masses in some specific examples. We note, for example, that near-degeneracy between the lightest neutralino and the lighter stau is progressively disfavoured as $M_{in}$ increases. This has the consequence, as we show in $(m_{1/2}, m_0)$ planes for several different values of $\tan \beta$, that the stau coannihilation region shrinks as $M_{in}$ increases, and we delineate the regions of the $(M_{in}, \tan \beta)$ plane where it is absent altogether. Moreover, as $M_{in}$ increases, the focus-point region recedes to larger values of $m_0$ for any fixed $\tan \beta$ and $m_{1/2}$. We conclude that the regions of the $(m_{1/2}, m_0)$ plane that are commonly favoured in phenomenological analyses tend to disappear at large $M_{in}$.
We investigate consequences of an ultraviolet fixed point in quantum gravity for the cosmological constant. For this purpose we perform dimensional reduction of a general dilatation symmetric effective action $\Gamma$ in dimension $d>4$ to an effective four-dimensional theory of gravity with a dilaton field. We find a stable flat phase in the space of extrema of $\Gamma$ which results in a vanishing four-dimensional cosmological constant $\Lambda$. In order to understand the self-tuning mechanism leading to $\Lambda = 0$ we discuss in detail the most general warped geometries with maximal four-dimensional symmetry and $SO(d-4)$ isometry of internal space. While the solutions of the $d$-dimensional field equations admit singular spaces with arbitrary $\Lambda$, the extremum condition for $\Gamma$ imposes additional restrictions which result in $\Lambda = 0$. In cosmology, the dilatation symmetric fixed point may only be reached for asymptotic time $t \to \infty$. At finite $t$ dilatation anomalies result in an effective potential and mass for the pseudo-dilaton or cosmon and in dark energy.
Lynds dark cloud LDN1622 represents one of the best examples of anomalous dust emission, possibly originating from small spinning dust grains. We present Cosmic Background Imager (CBI) 31 GHz data of LDN1621, a diffuse dark cloud to the north of LDN1622 in a region known as Orion East. A broken ring with diameter g\approx 20 arcmin of diffuse emission is detected at 31 GHz, at \approx 20-30 mJy beam$^{-1}$ with an angular resolution of \approx 5 arcmin. The ring-like structure is highly correlated with Far Infra-Red emission at $12-100 \mu$m with correlation coefficients of r \approx 0.7-0.8, significant at $\sim10\sigma$. Multi-frequency data are used to place constraints on other components of emission that could be contributing to the 31 GHz flux. An analysis of the GB6 survey maps at 4.85 GHz yields a $3\sigma$ upper limit on free-free emission of 7.2 mJy beam$^{-1}$ ($\la 30 per cent of the observed flux) at the CBI resolution. The bulk of the 31 GHz flux therefore appears to be mostly due to dust radiation. Aperture photometry, at an angular resolution of 13 arcmin and with an aperture of diameter 30 arcmin, allowed the use of IRAS maps and the {\it WMAP} 5-year W-band map at 93.5 GHz. A single modified blackbody model was fitted to the data to estimate the contribution from thermal dust, which amounts to $\sim$ 10 per cent at 31 GHz. In this model, an excess of 1.52\pm 0.66 Jy (2.3\sigma) is seen at 31 GHz. Future high frequency $\sim$ 100-1000 GHz data, such as those from the {\it Planck} satellite, are required to accurately determine the thermal dust contribution at 31 GHz. Correlations with the IRAS $100 \mu$m gave a coupling coefficient of $18.1\pm4.4 \mu$K (MJy/sr)$^{-1}$, consistent with the values found for LDN1622.
Photon charge has been of interest as a phenomenological testing ground for basic assumptions in fundamental physics. There have been several constraints on the photon charge based on very different considerations. In this paper we put further limits based on the well known properties of charged black holes and their subsequent evaporation by Hawking radiation and the assumption of charge conservation over this long physical process.
Nurowski [arXiv:1003.1503] has recently suggested a link between the observation of Dark Energy in cosmology and the projective equivalence of certain Friedman-Lemaitre-Robertson-Walker (FLRW) metrics. Specifically, he points out that two FLRW metrics with the same unparameterized geodesics have their energy densities differing by a constant. From this he queries whether the existence of dark energy is meaningful. We point out that physical observables in cosmology are not projectively invariant and we relate the projective symmetry uncovered by Nurowski to some previous work on projective equivalence in cosmology.
We introduce and carefully define an entire class of field theories based on non-standard spinors. Their dominant interaction is via the gravitational field which makes them naturally dark; we refer to them as Dark Spinors. We provide a critical analysis of previous proposals for dark spinors noting that they violate Lorentz invariance. As a working assumption we restrict our analysis to non-standard spinors which preserve Lorentz invariance, whilst being non-local and explicitly construct such a theory. We construct the complete energy-momentum tensor and derive its components explicitly by assuming a specific projection operator. It is natural to next consider dark spinors in a cosmological setting. We find various interesting solutions where the spinor field leads to slow roll and fast roll de Sitter solutions. We also analyse models where the spinor is coupled conformally to gravity, and consider the perturbations and stability of the spinor.
Links to: arXiv, form interface, find, astro-ph, recent, 1003, contact, help (Access key information)
The time-dependent propagation of neutral quanta through space is governed by a rigorous continuity equation (the Boltzmann transport equation). Requiring this equation to take the form of a Lorentz-covariant wave equation implies (i) properties of space-time which an observer would describe as a uniform expansion in agreement with Hubble's law, and (ii) that the quantum transport behaves like in a multiplicative medium with multiplication factor = 2. This inherent, essentially explosive multiplicity of vacuum, caused by the requirement of Lorentz-covariance, is in the paper suggested as a potential origin of dark energy. In addition, it is shown that this requirement of Lorentz-covariant quantum transport leads to an apparent accelerated expansion of the universe in potential agreement with recent astronomical observations.
Recent observations have gathered a considerable sample of high redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to standard physical processes, a detailed treatment of the Pop III-Pop II transition in early objects. The simulated high-z galaxies match remarkably well the amplitude and slope of the observed LF in the redshift range 5<z<10. The LF shifts towards fainter luminosities with increasing redshift, while its faint-end slope keeps an almost constant value, \alpha ~-2. The stellar populations of high-z galaxies have ages of 100-300 (40-130) Myr at z=5 (z=7-8), implying an early (z>9.4) start of their star formation activity; the specific star formation rate is almost independent of galactic stellar mass. These objects are enriched rapidly with metals and galaxies identified by HST/WFC3 (M_UV < -18) show metallicities ~0.1 Zsun even at z=7-8. Most of the simulated galaxies at z~7 (noticeably the smallest ones) are virtually dust-free, and none of them has an extinction larger than E(B-V) = 0.01. The bulk (50%) of the ionizing photons is produced by objects populating the faint-end of the LF (M_UV < -16), which JWST will resolve up to z=7.3. PopIII stars continue to form essentially at all redshifts; however, at z=6 (z=10) the contribution of Pop III stars to the total galactic luminosity is always less than 5% for M_UV < -17 (M_UV < -16). The typical high-z galaxies closely resemble the GRB host galaxy population observed at lower redshifts, strongly encouraging the use of GRBs to detect the first galaxies.
(Abridged) We apply a very general statistical theorem introduced by Cramer (1936) to study the origin of the deviations of the halo spin PDF from the reference lognormal shape. We find that these deviations originate from correlations between two quantities entering the definition of spin, namely the ratio $J/M^{5/2}$ (which depends only on mass) and the total gravitational binding energy $E$. To reach this conclusion, we have made usage of the results deduced from two high spatial- and mass resolution simulations. Our simulations cover a relatively small volume and produce a sample of more than 16.000 gravitationally bound halos, each traced by at least 300 particles. We verify that our results are stable to different systematics, by comparing our results with those derived by the GIF2 and by a more recent simulation performed by Maccio' et al. We find that the spin probability distribution function shows systematic deviations from a lognormal, at all redshifts z <= 1. These deviations depend on mass and redshift: at small masses they change little with redshift, and also the best lognormal fits are more stable. The J-M relationship is well described by a power law of exponent $\alpha$ very near to the linear theory prediction (alpha=5/3), but systematically lower than this at z<= 0.3. We argue that the fact that deviations from a lognormal PDF are present only for high-spin halos could point to a role of large-scale tidal fields in the evolution of the spin PDF.
We introduce a powerful semi-numeric modeling tool, 21cmFAST, designed to efficiently simulate the cosmological 21-cm signal. Our code generates 3D realizations of evolved density, ionization, peculiar velocity, and spin temperature fields, which it then combines to compute the 21-cm brightness temperature. Although the physical processes are treated with approximate methods, we compare our results to a state-of-the-art large-scale hydrodynamic simulation, and find good agreement on scales pertinent to the upcoming observations (>~ 1 Mpc). The power spectra from 21cmFAST agree with those generated from the numerical simulation to within 10s of percent, down to the Nyquist frequency. We show results from a 1 Gpc simulation which tracks the cosmic 21-cm signal down from z=250, highlighting the various interesting epochs. Depending on the desired resolution, 21cmFAST can compute a redshift realization on a single processor in just a few minutes. Our code is fast, efficient, customizable and publicly available, making it a useful tool for 21-cm parameter studies.
Most of the baryonic matter in the Universe is permeated by magnetic fields
which affect many, if not most, of astrophysical phenomena both, in compact
sources and in diffuse gas. Recent years have been marked by a worldwide surge
of interest in the astrophysical magnetic fields, their origin, and their
influence on the formation and evolution of astrophysical objects (stars,
galaxies, cooling flows). This growing interest is in part due to the fact that
it has become possible to trace magnetic fields in molecular clouds, over vast
extensions of the Milky Way and to study extragalactic magnetic fields,
including fields in clusters of galaxies. With the combination of various
techniques, such as Zeeman and Faraday rotation measurements with synchrotron
and aligned grain polarimetry, it is now possible to undertake quantitative
observational studies of magnetic fields, the results of which can be compared
with high resolution dynamo and MHD turbulence simulations. This brings the
field to a new stage.
In this paper, I will briefly review the importance of the cosmic magnetic
fields both from a theoretical and from an observational perspective, focusing
on their role in stellar and compact objects, in the interstellar medium and
star formation regions, and in galaxies, clusters of galaxies, and the
primordial Universe.
We present evidence that 'bona fide' disks and starburst systems occupy distinct regions in the gas mass versus star formation (SF) rate plane, both for the integrated quantities and for the respective surface densities. This result is based on CO observations of galaxy populations at low and high redshifts, and on the current consensus for the CO luminosity to gas mass conversion factors. The data suggest the existence of two different star formation regimes: a long-lasting mode for disks and a more rapid mode for starbursts, the latter probably occurring during major mergers or in dense nuclear SF regions. Both modes are observable over a large range of SF rates. The detection of CO emission from distant near-IR selected galaxies reveals such bimodal behavior for the first time, as they allow us to probe gas in disk galaxies with much higher SF rates than are seen locally. The different regimes can potentially be interpreted as the effect of a top-heavy IMF in starbursts. However, we favor a different physical origin related to the fraction of molecular gas in dense clouds. The IR luminosity to gas mass ratio (i.e., the SF efficiency) appears to be inversely proportional to the dynamical (rotation) timescale. Only when accounting for the dynamical timescale, a universal SF law is obtained, suggesting a direct link between global galaxy properties and the local SF rate.
In this paper we first present a complete classification of gravitational waves according to their frequencies: (i) Ultra high frequency band (above 1 THz); (ii) Very high frequency band (100 kHz - 1 THz); (iii) High frequency band (10 Hz - 100 kHz); (iv) Middle frequency band (0.1 Hz - 10 Hz); (v) Low frequency band (100 nHz - 0.1 Hz); (vi) Very low frequency band (300 pHz - 100 nHz); (vii) Ultra low frequency band (10 fHz - 300 pHz); (viii) Hubble (extremely low) frequency band (1 aHz - 10 fHz); (ix) Infra-Hubble frequency band (below 1 aHz). After briefly discussing the method of detection for different frequency bands, we review the concept and status of space gravitational-wave missions --- LISA, ASTROD, ASTROD-GW, Super-ASTROD, DECIGO and Big Bang Observer. We then address to the determination of dark energy equation, and probing the inflationary physics using space gravitational wave detectors.
We present a new efficient technique for measuring evolution of the galaxy luminosity function. The method reconstructs the evolution over the luminosity-redshift plane using any combination of three input dataset types: 1) number counts, 2) galaxy redshifts, 3) integrated background flux measurements. The evolution is reconstructed in adaptively sized regions of the plane according to the input data as determined by a Bayesian formalism. We demonstrate the performance of the method using a range of different synthetic input datasets. We also make predictions of the accuracy with which forthcoming surveys conducted with SCUBA2 and the Herschel Space Satellite will be able to measure evolution of the sub-millimetre luminosity function using the method.
The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\nu presently derived from LSS combined with cosmic microwave background (CMB) data does not in fact arise from the possible small-scale power suppression due to neutrino free-streaming, if we limit the model framework to minimal LambdaCDM+m_\nu. However, in more complicated models, such as those extended with extra light degrees of freedom and a dark energy equation of state parameter w differing from -1, shape information becomes crucial for the resolution of parameter degeneracies. This conclusion will remain true even when data from the Planck surveyor become available. In the course of our analysis, we introduce a new dewiggling procedure that allows us to extend consistently the use of the SDSS HPS to models with an arbitrary sound horizon at decoupling. All the cases considered here are compatible with the conservative 95%-bounds \sum m_\nu < 1.16 eV, N_eff = 4.8 \pm 2.0.
Models of galaxy formation invoke the major merger of gas-rich progenitor galaxies as the trigger for significant phases of black hole growth and the associated feedback that suppresses star formation to create red spheroidal remnants. However, the observational evidence for the connection between mergers and active galactic nucleus (AGN) phases is not clear. We analyze a sample of low-mass early-type galaxies known to be in the process of migrating from the blue cloud to the red sequence via an AGN phase in the green valley. Using deeper imaging from SDSS Stripe 82, we show that the fraction of objects with major morphological disturbances is high during the early starburst phase, but declines rapidly to the background level seen in quiescent early-type galaxies by the time of substantial AGN radiation several hundred Myr after the starburst. This observation empirically links the AGN activity in low-redshift early-type galaxies to a significant merger event in the recent past. The large time delay between the merger-driven starburst and the peak of AGN activity allows for the merger features to decay to the background and hence may explain the weak link between merger features and AGN activity in the literature.
We present results from an on-going survey for the HI 21 cm line and the OH 18 cm lines in IR galaxies with the Arecibo 305 m Radio Telescope. The observations of 85 galaxies extracted from the 2 Jy IRAS-NVSS sample in the R.A. (B1950) range 20 h-00 h are reported in this paper. We detected the HI 21 cm line in 82 of these galaxies, with 18 being new detections, and the OH 18 cm lines in 7 galaxies, with 4 being new detections. In some cases, the HI spectra show the classic double-horned or single-peaked emission profiles. However, the majority exhibit distorted HI spectral features indicating that the galaxies are in interacting and/or merging systems. From these HI and OH observations, various properties of the sample are derived and reported.
We study the general evolution of spherical overdensities for thawing class of dark energy models. We model dark energy with scalar fields having canonical as well as non-canonical kinetic energy. For non-canonical case, we consider models where the kinetic energy is of the Born-Infeld Form. We consider various potentials like linear, inverse-square, exponential as well as PNGB-type. We also consider that the dark energy virializes together with the matter component inside the spherical overdensity. Our study shows that models with linear potential in particular with Born-Infeld type kinetic term can have siginificant deviations from the $\Lambda$CDM model in terms of density contrast at the time of virialization.
Cosmology provides a unique and very powerful laboratory for testing neutrino physics. Here, I review the current status of cosmological neutrino measurements. Future prospects are also discussed, with particular emphasis on the interplay with experimental neutrino physics. Finally I discuss the possibility of a direct detection of the cosmic neutrino background and its associated anisotropy.
The rate of gravitational wave bursts from the mergers of massive primordial black holes in clusters is calculated. Such clusters of black holes can be formed through phase transitions in the early Universe. The central black holes in clusters can serve as the seeds of supermassive black holes in galactic nuclei. The expected burst detection rate by the LISA gravitational wave detector is estimated.
A semiclassical approach to Gravitoelectromagnetic Inflation (GEMI) using a Lorentz gauge in an effective 4D vacuum equation of state obtained from a 5D vacuum is revisited. The dynamics of seminal inflaton and electromagnetic fields in the early inflationary universe is studied taking into account the source terms in the dynamics of the electromagnetic fluctuations, which were omitted in a previous work. We found that the spectrum of electric fluctuations suffer important modifications.
We show that cold clumps in the intra--cluster medium (ICM) efficiently lose their angular momentum as they fall in, such that they can rapidly feed the central AGN and maintain a heating feedback process. Such cold clumps are predicted by the cold feedback model, a model for maintaining the ICM in cooling flows hot by a feedback process. The clumps very effectively lose their angular momentum in two channels: the drag force exerted by the ICM and the random collisions between clumps when they are close to the central black hole. We conclude that the angular momentum cannot prevent the accretion of the cold clumps, and the cold feedback mechanism is a viable model for a feedback mechanism in cooling flows. Cold feedback does not suffer from the severe problems of models that are based on the Bondi accretion.
Intrinsic alignments constitute the major astrophysical systematic for cosmological weak lensing surveys. We present a purely geometrical method with which one can study gravitational shear-intrinsic ellipticity correlations directly in weak lensing data. Linear combinations of second-order cosmic shear measures are constructed such that the intrinsic alignment signal is boosted while suppressing the contribution by gravitational lensing. We then assess the performance of a specific parametrisation of the weights entering these linear combinations for three representative survey models. Moreover a relation between this boosting technique and the intrinsic alignment removal via nulling is derived. For future all-sky weak lensing surveys with photometric redshift information the boosting technique yields statistical errors on model parameters of intrinsic alignments whose order of magnitude is compatible with current constraints determined from indirect measurements. Parameter biases due to a residual cosmic shear signal are negligible in case of quasi-spectroscopic redshifts and remain sub-dominant for typical values of the photometric redshift scatter. We find good agreement between the performance of the intrinsic alignment removal based on the boosting technique and standard nulling methods, possibly indicating a fundamental limit in the separation of lensing and intrinsic alignment signals.
A possible solution to the dark energy problem is that Einstein's theory of general relativity is modified. A suite of models have been proposed that, in general, are unable to predict the correct amount of large scale structure in the distribution of galaxies or anisotropies in the Cosmic Microwave Background. It has been argued, however, that it should be possible to constrain a general class of theories of modified gravity by focusing on properties such as the growing mode, gravitational slip and the effective, time varying Newton's constant. We show that assuming certain physical requirements such as stability, metricity and gauge invariance, it is possible to come up with consistency conditions between these various parameters. In this paper we focus on theories which have, at most, 2nd derivatives in the metric variables and find restrictions that shed light on current and future experimental constraints without having to resort to a (as yet unknown) complete theory of modified gravity. We claim that future measurements of the growth of structure on small scales (i.e. from 1-200 h^{-1} Mpc) may lead to tight constraints on both dark energy and modified theories of gravity.
We present OASIS observations obtained at the Canada-France-Hawaii Telescope for the SB(rs)c galaxy NGC 4900. About 800 spectra in the wavelength range 4700-5500 AA and 6270- 7000 AA have been collected with a spatial resolution of ~50 pc. This galaxy is part of a sample to study the stellar populations and their history in the central region of galaxies. In this paper, we present our iterative technique developed to describe consistently the different stellar com- ponents seen through emission and absorption lines. In NGC 4900 we find many young bursts of star formation distributed along the galaxy large scale bar on each side of the nucleus. They represent nearly 40 per cent of the actual stellar mass in the field of view. The age for these bursts ranges from 5.5 to 8 Myr with a metallicity near and above 2 Zsun . The extinction map gives E(B-V) values from 0.19+/-0.01 near the youngest bursts to 0.62+/-0.06 in a dusty internal bar perpendicular to the large scale bar. The Mg 2 and Fe I absorption lines indicate the superposition of a background stellar population with an age between 100 Myr to 3 Gyr and a sub-solar metallicity on average. We propose that all these episodes of star formation are the consequence of a secular evolution. In this scenario, the galactic large scale bar plays an important role with respect to the recent bursts and the dusty nuclear bar observed. The iterative technique allows us to improve the determination of the stellar population parameters, mainly an older age is obtained for the old component and more reliable stellar population masses are found. A composite/transition type activity in the galaxy nucleus is also revealed with this technique.
We explore how radiative cooling, supernova feedback, cosmic rays and a new model of the energetic feedback from active galactic nuclei (AGN) affect thermal Sunyaev-Zel'dovich (SZ) power spectra. To do this, we use a suite of hydrodynamical TreePM-SPH simulations of the cosmic web in large periodic boxes and tailored higher resolution simulations of individual galaxy clusters. Our AGN feedback simulations match the recent universal pressure profile and cluster mass scaling relations of the REXCESS X-ray cluster sample better than previous analytical or numerical approaches. For multipoles l < 2000, our power spectra with and without enhanced feedback are similar, suggesting theoretical uncertainties over that range are relatively small, although current analytic and semi-analytic approaches overestimate this SZ power. We find the power at high 2000-10000 multipoles which ACT and SPT probe is sensitive to the feedback prescription, hence can constrain the theory of intracluster gas, in particular for the highly uncertain redshifts >0.8. The apparent tension between sigma_8 from primary cosmic microwave background power and from analytic SZ spectra inferred using ACT and SPT data is lessened with our AGN feedback spectra.
We study scalar field fluctuations of the inflaton field in an early inflationary universe with a black-hole, which is described by an effective 4D SdS metric, which is obtained after make a planar coordinate transformation on a 5D Ricci-flat Schwarzschild-de Sitter (SdS) static metric. The spectrum of fluctuations at zeroth order result to be independent of the scalar field mass $M$ on Schwarzschild scales, while on cosmological scales it exhibits a mass dependence. In the first-order expansion, the spectrum depends of the inflaton mass.
In this review I demonstrate that a realistic model for the formation of galaxy disks depends on a proper treatment of the gas in galaxies. Historically, cosmological simulations of disk galaxy formation have suffered from a lack of resolution and a physically motivated feedback prescription. Recent computational progress has allowed for unprecedented resolution, which in turn allows for a more realistic treatment of feedback. These advances have led to a new examination of gas accretion, evolution, and loss in the formation of galaxy disks. Here I highlight the role that gas inflows, the regulation of gas by feedback, and gas outflows play in achieving simulated disk galaxies that better match observational results as a function of redshift.
We investigate the generation of gravitational waves in the hybrid quintessential inflationary model. The full gravitational-wave energy spectrum is calculated using the method of continuous Bogoliubov coefficients. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a peak at high frequencies. The maximum of the peak is firmly located at the MHz-GHz region of the spectrum and corresponds to $\Omega_{GW} \simeq 10^{-12}$. This peak is substantially smaller than the one appearing in the gravitational-wave energy spectrum of the original quintessential inflationary model, therefore avoiding any conflict with the nucleosynthesis constraint on $\Omega_\Omega_{GW}$.
Links to: arXiv, form interface, find, astro-ph, recent, 1003, contact, help (Access key information)
We introduce an objective method to assess the probability of finding extreme events in the cold dark matter such as voids, overdensities or very high mass haloes. Our approach uses an ensemble of N-body simulations of the hierarchical clustering of dark matter to find extreme structures. The frequency of extreme events, in our case the cell or smoothing volume with the highest count of cluster-mass dark matter haloes, is well described by a Gumbel distribution. This distribution can then be used to forecast the probability of finding even more extreme events, which would otherwise require a much larger ensemble of simulations to quantify. We use our technique to assess the chance of finding concentrations of massive clusters or superclusters, like the two found in the two-degree field galaxy redshift survey (2dFGRS), using a counts-in-cells analysis. The Gumbel distribution gives an excellent description of the distribution of extreme cell counts across two large ensembles of simulations covering different cosmologies, and measuring the clustering in both real and redshift space. We find examples of structures like those found in the 2dFGRS in the simulations. However, the chance of finding such structures in a volume equal to that of the 2dFGRS is less than 1%.
We present high-resolution 345 GHz interferometric observations of two extreme luminous (L_{IR}>10^{13} L_sun), submillimetre-selected galaxies (SMGs) in the COSMOS field with the Submillimeter Array (SMA). Both targets were previously detected as unresolved point-sources by the SMA in its compact configuration, also at 345 GHz. These new data, which provide a factor of ~3 improvement in resolution, allow us to measure the physical scale of the far-infrared in the submillimetre directly. The visibility functions of both targets show significant evidence for structure on 0.5-1 arcsec scales, which at z=1.5 translates into a physical scale of 5-8 kpc. Our results are consistent with the angular and physical scales of two comparably luminous objects with high-resolution SMA followup, as well as radio continuum and CO sizes. These relatively compact sizes (<5-10 kpc) argue strongly for merger-driven starbursts, rather than extended gas-rich disks, as the preferred channel for forming SMGs. For the most luminous objects, the derived sizes may also have important physical consequences; under a series of simplifying assumptions, we find that these two objects in particular are forming stars close to or at the Eddington limit for a starburst.
We investigate whether the subhalos of Lambda-CDM galaxy halos have potentials consistent with the observed properties of Milky Way satellites, particularly those with high-quality photometric and kinematic data: Fornax, Leo I, Sculptor, Sextans, and Carina. We compare spherical models with isotropic velocity dispersion tensors to the observed, circularly averaged star counts, line-of-sight velocity dispersion profiles and line-of-sight velocity distributions. We identify subhalos within the six high-resolution dark matter halos of the Aquarius Project for which the spherically averaged potentials result in excellent fits to each of the five galaxies. In particular, our simple one-integral models reproduce the observations in the inner regions, proving that these data are fully consistent with Lambda-CDM expectations and do not require cored dark matter distributions. For four of the five satellites the fits require moderately cusped {\it stellar} density profiles. The star count data for Leo I, however, do require a cored distribution of star counts. Current data suggest that these five satellites may be hosted by Lambda-CDM subhalos with maximum circular velocities in the range 10 to 30 km/s.
Previous observational studies of the infrared (IR)-radio relation out to high redshift employed any detectable star forming systems at a given redshift within the restricted area of cosmological survey fields. Consequently, the evolution inferred relies on a comparison between the average IR/radio properties of (i) very IR-luminous high-z sources and (ii) more heterogeneous low(er)-z samples that often lack the strongest IR emitters. In this report we consider populations of objects with comparable luminosities over the last 10 Gyr by taking advantage of deep IR (esp. Spitzer 24 micron) and VLA 1.4 GHz observations of the COSMOS field. Consistent with recent model predictions, both Ultra Luminous Infrared Galaxies (ULIRGs) and galaxies on the bright end of the evolving IR luminosity function do not display any change in their average IR/radio ratios out to z~2 when corrected for bias. Uncorrected data suggested ~0.3 dex of positive evolution.
The anisotropy of clustering in redshift space provides a direct measure of the growth rate of large scale structure in the Universe. Future galaxy redshift surveys will make high precision measurements of these distortions, and will potentially allow us to distinguish between different scenarios for the accelerating expansion of the Universe. Accurate predictions are needed in order to distinguish between competing cosmological models. We study the distortions in the redshift space power spectrum in $\Lambda$CDM and quintessence dark energy models, using large volume N-body simulations, and test predictions for the form of the redshift space distortions. We find that the linear perturbation theory prediction by \citet{Kaiser:1987qv} is a poor fit to the measured distortions, even on surprisingly large scales $k \sim 0.03 h$Mpc$^{-1}$. An improved model for the redshift space power spectrum, including the non-linear velocity divergence power spectrum, is presented and agrees with the power spectra measured from the simulations up to $k \sim 0.2 h$Mpc$^{-1}$. We have found a density-velocity relation which is cosmology independent and which relates the non-linear velocity divergence spectrum to the non-linear matter power spectrum. We provide a formula which generates the non-linear velocity divergence $P(k)$ at any redshift, using only the non-linear matter power spectrum and the linear growth factor at the desired redshift. This formula is accurate to better than 10% on scales $k<0.2 h $Mpc$^{-1}$ for all the cosmological models discussed in this paper. Our results will extend the statistical power of future galaxy surveys.
We study the cosmological perturbations created during the New Higgs inflationary phase. In the New Higgs Inflation, the Higgs boson is kinetically coupled to the Einstein tensor and only three perturbative degrees of freedom, a scalar and two tensorial (gravitational waves), propagate during Inflation. Scalar perturbations are found to match the latest WMAP-7yrs data within Standard Model Higgs parameters. Primordial gravitational waves also, although propagating with superluminal speed, are consistent with present data. Finally, we estimate the values of the parameter of the New Higgs Inflation in relation to the Higgs mass, the spectral index and amplitude of the primordial scalar perturbations showing that the unitarity bound of the theory is not violated.
We analyze the behavior of the parsec-scale jet of the quasar 3C~454.3 during pronounced flaring activity in 2005-2008. Three major disturbances propagated down the jet along different trajectories with Lorentz factors $\Gamma>$10. The disturbances show a clear connection with millimeter-wave outbursts, in 2005 May/June, 2007 July, and 2007 December. High-amplitude optical events in the $R$-band light curve precede peaks of the millimeter-wave outbursts by 15-50 days. Each optical outburst is accompanied by an increase in X-ray activity. We associate the optical outbursts with propagation of the superluminal knots and derive the location of sites of energy dissipation in the form of radiation. The most prominent and long-lasting of these, in 2005 May, occurred closer to the black hole, while the outbursts with a shorter duration in 2005 Autumn and in 2007 might be connected with the passage of a disturbance through the millimeter-wave core of the jet. The optical outbursts, which coincide with the passage of superluminal radio knots through the core, are accompanied by systematic rotation of the position angle of optical linear polarization. Such rotation appears to be a common feature during the early stages of flares in blazars. We find correlations between optical variations and those at X-ray and $\gamma$-ray energies. We conclude that the emergence of a superluminal knot from the core yields a series of optical and high-energy outbursts, and that the mm-wave core lies at the end of the jet's acceleration and collimation zone.
Accurate weak-lensing analysis requires not only accurate measurement of galaxy shapes but also precise and unbiased measurement of galaxy redshifts. The photometric redshift technique appears as the only possibility to determine the redshift of the background galaxies used in the weak-lensing analysis. Using the photometric redshift quality, simple shape measurement requirements, and a proper sky model, we explore what could be an optimal weak-lensing dark energy mission based on FoM calculation. We found that photometric redshifts reach their best accurracy for the bulk of the faint galaxy population when filters have a resolution R~3.2. We show that an optimal mission would survey the sky through 8 filters using 2 cameras (visible and near infrared). Assuming a 5-year mission duration, a mirror size of 1.5m, a 0.5deg2 FOV with a visible pixel scale of 0.15", to maximize the Weak Lensing FoM, an optimal exposure time is found to be 4x200s per filter (at the Galactic poles) thus covering ~11000deg2 of the sky over the mission. This work demonstrates that a full account of the observational strategy is required to properly optimize the instrument parameters to maximize the FoM of the future weak-lensing space dark energy mission.
We have made the first detections of the 88 micron [OIII] line from galaxies in the early Universe, detecting the line from the lensed AGN/starburst composite systems APM 08279+5255 at z = 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities ~10^11 L_solar. For APM 08279, the [OIII] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, Teff >36,000 K, similar to the starburst found in M82. The model implies ~35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 88 micron line can also be generated in the narrow line region of the AGN if gas densities are around a few 1000 cm-3. For SMM J02399 the [OIII] line likely arises from HII regions formed by hot (Teff >40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [OIII] line for characterizing starbursts and AGN within galaxies in the early Universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.
The particle mass used in cosmology N-body simulations is close to 10^10\Msun, which is about 10^65 times larger than the GeV scale expected in particle physics. However, self-gravity interacting particle systems made up of different particles mass have different statistical and dynamical properties. Here we demonstrate that, due to this particle mass difference, the nowaday cosmology N-body simulations can have introduced an excessive core collapse process, especially for the low mass halos at high redshift. Such dynamical effect introduces an excessive cuspy center for these small halos, and it implies a possible connection to the so called "small scale crisis" for CDM models. Our results show that there exist a physical limit in cosmological simulations, and we provide a simple suggestion based on it to relieve those effects from the bias.
Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.
We present for the first time a coherent model of the polarized Galactic synchrotron and thermal dust emissions which are the main diffuse foreground for the measurement of the polarized power spectra of the CMB fluctuations with the Planck satellite mission. We produce 3D models of the Galactic magnetic field including regular and turbulent components, and of the distribution of matter in the Galaxy, relativistic electrons and dust grains. By integrating along the line of sight we construct maps of the polarized Galactic synchrotron and thermal dust emission for each of these models and compare them to currently available data. We consider the 408 MHz all-sky continuum survey, the 23 GHz band of the Wilkinson Microwave Anisotropy Probe and the 353 GHz Archeops data.}{The best-fit parameters obtained are consistent with previous estimates in the literature based only on synchrotron emission and pulsar rotation measurements. They allows us to reproduce the large scale structures observed on the data. Poorly understood local Galactic structures and turbulence make difficult an accurate reconstruction of the observations in the Galactic plane. Finally, using the best-fit model we are able to estimate the expected polarized foreground contamination at the Planck frequency bands. For the CMB bands, 70, 100, 143 and 217 GHz, at high Galactic latitudes although the CMB signal dominates in general, a significant foreground contribution is expected at large angular scales. In particular, this contribution will dominate the CMB signal for the B modes expected from realistic models of a background of primordial gravitational waves.
We present results of deep polarization imaging at 1.4 GHz with the Dominion Radio Astrophysical Observatory as part of the DRAO Planck Deep Fields project. This deep extragalactic field covers 15.16 square degrees centered at RA = 16h 14m and DEC = 54d 56', has an angular resolution of 42" x 62" at the field center, and reaches a sensitivity of 55 microJy/beam in Stokes I and 45 microJy/beam in Stokes Q and U. We detect 958 radio sources in Stokes I of which 136 are detected in polarization. We present the Euclidean-normalized polarized differential source counts down to 400 microJy. These counts indicate that sources have a higher degree of fractional polarization at fainter Stokes I flux density levels than for brighter sources, confirming an earlier result. We find that the majority of our polarized sources are steep-spectrum objects with a mean spectral index of -0.77, and there is no correlation between fractional polarization and spectral index. We also matched deep field sources to counterparts in the Faint Images of the Radio Sky at Twenty Centimeters catalogue. Of the polarized sources, 77% show structure at the arc-second scale whereas only 38% of the sources with no detectable polarization show such structure. The median fractional polarization is for resolved sources is 6.8%, while it is 4.4% for compact objects. The polarized radio sources in our deep field are predominantly those sources which are resolved and show the highest degrees of fractional polarization, indicating that the lobe dominated structure may be the source of the highly polarized sources. These resolved radio galaxies dominate the polarized source counts at P_0 = sqrt(Q^2 + U^2) < 3 mJy.
In this series of lectures we review observational evidence for, and theoretical investigations into, cosmic acceleration and dark energy. The notes are in four sections. First I review the basic cosmological formalism to describe the expansion history of the universe and how distance measures are defined. The second section covers the evidence for cosmic acceleration from cosmic distance measurements. Section 3 discusses the theoretical avenues being considered to explain the cosmological observations and section 4 discusses how the growth of inhomogeneities and large scale structure observations might help us pin down the theoretical origin of cosmic acceleration.
We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to mu_b ~ 29 mag sq. arcsec, confirming the results of Mihos et al. (2005), who saw a vast web of low-surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's low-surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000 arcsec, and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B-V ~ 0.8. The common colors of these features suggests that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.
It has been argued that rather generic features of string-inspired inflationary theories with low-energy supersymmetry (SUSY) make it difficult to achieve inflation with a Hubble scale H > m_{3/2}, where m_{3/2} is the gravitino mass in the SUSY-breaking vacuum state. We present a class of string-inspired supergravity realizations of chaotic inflation where a simple, dynamical mechanism yields hierarchically small scales of post-inflationary supersymmetry breaking. Within these toy models we can easily achieve small ratios between m_{3/2} and the Hubble scale of inflation. This is possible because the expectation value of the superpotential <W> relaxes from large to small values during the course of inflation. However, our toy models do not provide a reasonable fit to cosmological data if one sets the SUSY-breaking scale to m_{3/2} < TeV. Our work is a small step towards relieving the apparent tension between high-scale inflation and low-scale supersymmetry breaking in string compactifications.
We study the initial value formulation of metric-affine f(R)-gravity in presence of a Klein-Gordon scalar field acting as source of the field equations. Sufficient conditions for the well-posedness of the Cauchy problem are formulated. This result completes the analysis of the same problem already considered for other sources.
We show how taking into account the kinematical effect of extra dimensions can have a significant impact on the gravity wave emission from cosmic strings. Additional dimensions both round off cusps, as well as reduce the probability of their formation. We recompute the cusp gravity wave burst with these factors and find a significant dimension dependent damping of the gravity waves.
It is now more than 40 years since the discovery of gamma-ray bursts (GRBs) and in the last two decades there has been major progress in the observations of bursts, the afterglows and their host galaxies. This recent progress has been fueled by the ability of gamma-ray telescopes to quickly localise GRBs and the rapid follow-up observations with multi-wavelength instruments in space and on the ground. A total of 674 GRBs have been localised to date using the coded aperture masks of the four gamma-ray missions, BeppoSAX, HETE II, INTEGRAL and Swift. As a result there are now high quality observations of more than 100 GRBs, including afterglows and host galaxies, revealing the richness and progress in this field. The observations of GRBs cover more than 20 orders of magnitude in energy, from 10^-5 eV to 10^15 eV and also in two non-electromagnetic channels, neutrinos and gravitational waves. However the continuation of progress relies on space based instruments to detect and rapidly localise GRBs and distribute the coordinates.
We point out that there are regions in the MSSM parameter space which successfully provide a dark matter (DM) annihilation explanation for observed positron excess (e.g. PAMELA), while still remaining in agreement with all other data sets. Such regions (e.g. the uplifted Higgs region) can realize an enhanced neutralino DM annihilation dominantly into leptons via a Breit-Wigner resonance through the CP-odd Higgs channel. Such regions can give the proper thermal relic DM abundance, and the DM annihilation products are compatible with current antiproton and gamma ray observations. This scenario can succeed without introducing any additional degrees of freedom beyond those already in the MSSM.
Links to: arXiv, form interface, find, astro-ph, recent, 1003, contact, help (Access key information)
We present multi-wavelength observations of the centre of RXCJ1504.1-0248 - the galaxy cluster with the most luminous and relatively nearby cool core at z~2. Although there are several galaxies within 100 kpc of the cluster core, only the brightest cluster galaxy (BCG), which lies at the peak of the X-ray emission, has blue colours and strong line-emission. Approximately 80 Msun/yr of intracluster gas is cooling below X-ray emitting temperatures, similar to the observed UV star formation rate of ~140 Msun/yr. Most star formation occurs in the core of the BCG and in a 42 kpc long filament of blue continuum, line emission, and X-ray emission, that extends southwest of the galaxy. The surrounding filamentary nebula is the most luminous around any observed BCG. The number of ionizing stars in the BCG is barely sufficient to ionize and heat the nebula, and the line ratios indicate an additional heat source is needed. This heat source can contribute to the H\alpha-deduced star formation rates (SFRs) in BCGs and therefore the derived SFRs should only be considered upper limits. AGN feedback can slow down the cooling flow to the observed mass deposition rate if the black hole accretion rate is of the order of 0.5 Msun/yr at 10% energy output efficiency. The average turbulent velocity of the nebula is vturb ~325 km/s which, if shared by the hot gas, limits the ratio of turbulent to thermal energy of the intracluster medium to less than 6%.
We present a first-principles derivation of the evolution equations describing a thin axisymmetric disk of gas and stars with an arbitrary rotation curve that is kept in a state of marginal gravitational instability and energy equilibrium due to the balance between energy released by accretion and energy lost due to decay of turbulence. Unlike previous analyses of this problem, our results do not depend on an assumed model for the rate of mass and angular momentum transport due to gravitational instability, or on an order-of-magnitude energy equilibrium argument. Instead, we self-consistently determine the position- and time-dependent transport rates from the fluid dynamical equations. We show that there is a steady-state configuration for disks dominated by gravitational instability, and for disks in this state we analytically determine the velocity dispersion, surface density, and rates of mass and angular momentum transport as a function of the gas mass fraction, the rotation curve, and the rate of external accretion onto the disk edge. We show that disks that are initially out of steady state will evolve into it on timescales comparable to the orbital period if the accretion rate is high. Finally, we discuss the implications of these results for the structure of disks in a broad range of environments, including high redshift galaxies, the outer gaseous disks of local galaxies, and accretion disks around protostars.
We present the results of modeling dust SEDs across the SMC with the aim of mapping the distribution of PAHs in a low-metallicity environment. Using Spitzer Survey of the SMC (S3MC) photometry from 3.6-160 um over the main star-forming regions of the Wing and Bar along with spectral mapping from 5-38 um from the Spitzer Spectroscopic Survey of the SMC (S4MC) in selected regions, we model the dust SED and emission spectrum to determine the fraction of dust in PAHs across the SMC. We use the regions of overlapping photometry and spectroscopy to test the reliability of the PAH fraction as determined from SED fits alone. The PAH fraction in the SMC is low compared to the Milky Way and variable--with relatively high fractions (q_PAH~1-2%) in molecular clouds and low fractions in the diffuse ISM (<q_PAH>=0.6%). We use the map of PAH fraction across the SMC to test a number of ideas regarding the production, destruction and processing of PAHs in the ISM. We find weak or no correlation between the PAH fraction and the distribution of carbon AGB stars, the location of supergiant H I shells and young SN remnants, or the turbulent Mach number. We find that the PAH fraction is correlated with CO intensity, peaks in the dust surface density and the molecular gas surface density as determined from 160 um emission. The PAH fraction is high in regions of active star-formation, as predicted by its correlation with molecular gas, but is suppressed in H II regions. Because the PAH fraction in the diffuse ISM is generally very low--in accordance with previous work on modeling the SED of the SMC--and the PAH fraction is relatively high in molecular regions, we suggest that PAHs are destroyed in the diffuse ISM of the SMC and/or PAHs are forming in molecular clouds. We discuss the implications of these observations for our understanding of the PAH life cycle, particularly in low-metallicity galaxies.
Holography is expected as one of the promising descriptions of quantum general relativity. We present a model for a cosmological system involving two holographic screens and find that their equilibrium exactly yields a standard Friedmann-Robertson-Walker universe. We discuss its cosmological implications by taking into account higher order quantum corrections and quantum nature of horizon evaporation. We will show that this model could give rise to a holographic inflation at high energy scales and realize a late-time acceleration in a unified approach. We test our model from the SN Ia observations and find it can give a nice fit to the data.
We study the kinematics of GALEX-selected H_alpha knots in the outer disk (beyond R25) of NGC 628 (M74), a galaxy representative of large, undisturbed, extended UV (Type 1 XUV) disks. Our spectroscopic target sample of 235 of the bluest UV knots surrounding NGC 628 yielded 15 H_alpha detections (6%), roughly the number expected given the different mean ages of the two populations. The measured vertical velocity dispersion of the H_alpha knots between 1 - 1.8 R25 (13.5 - 23.2 kpc) is < 11 km/s. We assume that the H_alpha knots trace an 'intermediate' vertical mass density distribution (between the isothermal sech(z)^2 and exponential distributions) with a constant scaleheight across the outer disk (h_z = 700 pc) and estimate a total surface mass density of 7.5 solar masses/pc^2. This surface mass density can be accounted for by the observed gas and stars in the outer disk (little or no dark matter in the disk is required). The vertical velocity dispersion of the outer disk H_alpha knots nearly matches that measured from older planetary nebulae near the outskirts of the optical disk by Herrmann et al., suggesting a low level of scattering in the outer disk. A dynamically cold stellar component extending nearly twice as far as the traditional optical disk poses interesting constraints on the accretion history of the galaxy.
Strong lensing is one of the most direct probes of the mass distribution in the inner regions of galaxy clusters. It can be used to constrain the density profiles and to measure the mass of the lenses. Moreover, the abundance of strong lensing events can be used to constrain the structure formation and the cosmological parameters through the so-called "arc-statistics" approach. However, several issues related to the usage of strong lensing clusters in cosmological applications are still controversial, leading to the suspect that several biases may affect this very peculiar class of objects. With this study we aim at better understanding the properties of galaxy clusters which can potentially act as strong lenses. We do so by investigating the properties of a large sample of galaxy clusters extracted from the N-body/hydrodynamical simulation MareNostrum Universe. We explore the correlation between the cross section for lensing and many properties of clusters, like the mass, the three-dimensional and projected shapes, their concentrations, the X-ray luminosity and the dynamical activity. We find that the probability of strong alignments between the major axes of the lenses and the line of sight is a growing function of the lensing cross section. In projection, the strong lenses appear rounder within R200, but we find that their cores tend to be more elliptical as the lensing cross section increases. We also find that the cluster concentrations estimated from the projected density profiles tend to be biased high. The X-ray luminosity of strong lensing clusters is higher than that of normal lenses of similar mass and redshift. This is particular significant for the least massive lenses. Finally, we find that the strongest lenses generally exhibit an excess of kinetic energy within the virial radius, indicating that they are more dynamically active than usual clusters.
We introduced a semi-analytic model to study the detail of radial related processes on galaxy disks. Based on this recipe, we can calculate neutral and molecular gas in interstellar medium, and include the molecular phase into star formation recipes. From our model, we reproduced the radial surface density profiles and mass functions shown in the observational results. We can also give some predictions and explanations to the scale relations of neutral and molecular gas in disk galaxies.
We discovered Balmer-lines absorption from Halpha to H9 in iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5 by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru telescope. The redshift of the Balmer-lines absorption is 2.0530+/-0.0003, and it is blueshifted by 5370 km/s from Balmer emission lines. They are > 4000 km/s blueshifted from the previously known UV absorption lines. Relatively strong (EW_res}=20 A) [O III] emission lines are detected, and it is similar to other broad absorption line quasars with Balmer-lines absorption We derived the column density of neutral hydrogen of 5.2 x 10^17 cm^-2 by using the curve of growth and taking account of Lyalpha trapping. We searched for UV absorption lines which have the same redshift with Balmer-lines absorption. We found at least Al III and Fe ||| absorption lin es at z=2.053 which corresponds to previously unidentified absorption lines.
It is generally assumed that a large fraction of stars are initially born in clusters. However, a large fraction of these disrupt on short timescales and the stars end up belonging to the field. Understanding this process is of paramount importance if we wish to constrain the star formation histories of external galaxies using star clusters. We attempt to understand the relation between field stars and star clusters by simultaneously studying both in a number of nearby galaxies. As a pilot study, we present results for the late-type spiral NGC 4395 using HST/ACS and HST/WFPC2 images. Different detection criteria were used to distinguish point sources (star candidates) and extended objects (star cluster candidates). Using a synthetic CMD method, we estimated the star formation history. Using simple stellar population model fitting, we calculated the mass and age of the cluster candidates. The field star formation rate appears to have been roughly constant, or to have possibly increased by up to about a factor of two, for ages younger than $\sim$300 Myr within the fields covered by our data. Our data do not allow us to constrain the star formation histories at older ages. We identify a small number of clusters in both fields. Neither massive ($>10^5$ M$_\odot$) clusters nor clusters with ages $\geq1$ Gyr were found in the galaxy and we found few clusters older than 100 Myr. Based on our direct comparison of field stars and clusters in NGC 4395, we estimate the ratio of star formation rate in clusters that survive for $10^7$ to $10^8$ years to the total star formation to be $\Gamma\sim0.03$. We suggest that this relatively low $\Gamma$ value is caused by the low star formation rate of NGC 4395.
We present observations of the recently discovered supernova 2008iz in M82 with the VLBI High Sensitivity Array at 22 GHz, the Very Large Array at frequencies of 1.4, 4.8, 8.4, 22 and 43 GHz, and the Chandra X-ray observatory. The supernova was clearly detected on two VLBI images, separated by 11 months. The source shows a ring-like morphology and expands with a velocity of ~23000 km/s. The most likely explosion date is in mid February 2008. The measured expansion speed is a factor of ~2 higher than expected under the assumption that synchrotron self-absorption dominates the light curve at the peak, indicating that this absorption mechanism may not be important for the radio emission. We find no evidence for an asymmetric explosion. The VLA spectrum shows a broken power law, indicating that the source was still optically thick at 1.4 GHz in April 2009. Finally, we report upper limits on the X-ray emission from SN 2008iz and a second radio transient recently discovered by MERLIN observations.
Compared with ordinary spirals, the ISM in ring galaxies experiences markedly different physical conditions and evolution. As a result, ring galaxies provide interesting perspectives on the triggering/quenching of large scale star formation and the destructive effects of massive stars on molecular cloud complexes. We use high resolution radio, sub-millimeter, infrared, and optical data to investigate the role of gravitational stability in star formation regulation, factors influencing the ISM's molecular fraction, and evidence of peculiar star formation laws and efficiencies in two highly evolved ring galaxies: Cartwheel and the Lindsay-Shapley ring.
The Feburary 2010 edition of the AAO newsletter contains articles on Helium-rich subluminous B stars, the discovery of large-scale gravitationall infall in a massive proto-stellar cluster, HERMES: the new multi-object high-resolution spectrograph for the AAT, future fibre positioning technology and a number of regular features.
A nonabelian generalization of the neutral Witten current-carrying string model is discussed in which the bosonic current-carrier belongs to a two dimensional representation of SU(2). We find that the current-carrying solutions can be of three different kinds: either the current spans a U(1) subgroup, and in which case one is left with an abelian current-carrying string, or the three currents are all lightlike, travelling in the same direction (only left or right movers). The third, genuinely nonabelian situation, cannot be handled within a cylindrically symmetric framework, but can be shown to depend on all possible string Lorentz invariant quantities that can be constructed out of the phase gradients.
Loop quantum cosmology provides an efficient framework to study the evolution of the Universe beyond the classical Big Bang paradigm. Due to holonomy corrections, the singularity is replaced by a "bounce". The dynamics of the background is investigated into the details, as a function of the parameters of the model. In particular, the conditions required for inflation to occur are carefully considered and are shown to be generically met. The propagation of gravitational waves is then investigated in this framework. By both numerical and analytical approaches, the primordial tensor power spectrum is computed for a wide range of parameters. Several interesting features could be observationally probed.
Links to: arXiv, form interface, find, astro-ph, recent, 1003, contact, help (Access key information)
X-ray images of galaxy clusters often display underdense bubbles which are apparently inflated by AGN outflow. I consider the evolution of the magnetic field inside such a bubble, using a mixture of analytic and numerical methods. It is found that the field relaxes into an equilibrium filling the entire volume of the bubble. The timescale on which this happens depends critically on the magnetisation and helicity of the outflow as well as on properties of the surrounding ICM. If the outflow is strongly magnetised, the magnetic field undergoes reconnection on a short timescale, magnetic energy being converted into heat whilst the characteristic length scale of the field rises; this process stops when a global equilibrium is reached. The strength of the equilibrium field is determined by the magnetic helicity injected into the bubble by the AGN: if the outflow has a consistent net flux and consequently a large helicity then a global equilibrium will be reached on a short timescale, whereas a low-helicity outflow results in no global equilibrium being reached and at the time of observation reconnection will be ongoing. However, localised flux-tube equilibria will form. If, on the other hand, the outflow is very weakly magnetised, no reconnection occurs and the magnetic field inside the bubble remains small-scale and passive. These results have implications for the internal composition of the bubbles, their interaction with ICM -- in particular to explain how bubbles could move a large distance through the ICM without breaking up -- as well as for the cooling flow problem in general. In addition, reconnection sites in a bubble could be a convenient source of energetic particles, circumventing the problem of synchrotron emitters having a shorter lifetime than the age of the bubble they inhabit.
We present a physical model for origin of the cosmic diffuse infrared background (CDIRB). By utilizing the observed stellar mass function and its evolution as input to a semi-empirical model of galaxy formation, we isolate the physics driving diffuse IR emission. The model includes contributions from three primary sources of IR emission: steady-state star formation owing to isolated disk galaxies, interaction-driven bursts of star formation owing to close encounters and mergers, and obscured active galactic nuclei (AGN). We find that most of the CDIRB is produced by equal contributions from objects at z=0.5-1 and z>1, as suggested by recent observations. Of those sources, the vast majority of the emission originates in systems with low to moderate IR luminosities (L_{IR}<10^{12} $L_sun); the most luminous objects contribute significant flux only at high-redshifts (z>2). All star formation in ongoing mergers accounts for <10% of the total at all wavelengths and redshifts, while emission directly attributable to the interaction-driven burst itself accounts for <5%. We furthermore find that obscured AGN contribute <1-2% of the CDIRB at all wavelengths and redshifts, with a strong upper limit of less than 4% of the total emission. Finally, since electron-positron pair production interactions with the CDIRB represent the primary source of opacity to very high energy (VHE: E_\gamma > 1 TeV) \gamma-rays, the model provides predictions for the optical depth of the Universe to the most energetic photons. We find that these predictions agree with observations of high-energy cutoffs at TeV energies in nearby blazars, and suggest that while the Universe is extremely optically thick at >10 TeV, the next generation of VHE \gamma-ray telescopes can reasonably expect detections from out to 50-150 Mpc.
We present a study of a 20cm selected sample in the Deep SWIRE VLA Field, reaching a limiting flux density of ~13.5 uJy at the image center. In a 0.6x0.6 square degrees field, we are able to assign an optical/IR counterpart to 97% of the radio sources. Up to 11 passbands from the NUV to 4.5um are then used to sample the spectral energy distribution (SED) of these counterparts in order to investigate the nature of the host galaxies. By means of an SED template library and stellar population synthesis models we estimate photometric redshifts, stellar masses, and stellar population properties, dividing the sample in three sub-classes of quiescent, intermediate and star-forming galaxies. We focus on the radio sample in the redshift range 0.3<z<1.3 where we estimate to have a redshift completeness higher than 90%, and study the properties and redshift evolution of these sub-populations. We find that, as expected, the relative contributions of AGN and star-forming galaxies to the uJy population depend on the flux density limit of the sample. At all flux levels a significant population of "green-valley" galaxies is observed. While the actual nature of these sources is not definitely understood, the results of this work may suggest that a significant fraction of faint radio sources might be composite (and possibly transition) objects, thus a simple "AGN vs star-forming" classification might not be appropriate to fully understand what faint radio populations really are.
Despite observed strong correlations between central supermassive black holes (SMBHs) and star-formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily-obscured to unobscured quasars as a function of cosmic epoch up to z~3, and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represent two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily-obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH and coeval star formation.
Accurate knowledge of the non-linear dark-matter power spectrum is important for understanding the large-scale structure of the Universe, the statistics of dark-matter haloes and their evolution, and cosmological gravitational lensing. We analytically model the dark-matter power spectrum and its cross-power spectrum with dark-matter haloes. Our model extends the halo-model formalism, including realistic substructure population within individual dark-matter haloes and the scatter of the concentration parameter at fixed halo mass. We consider three prescriptions for the mass-concentration relation and two for the substructure distribution in dark-matter haloes. We show that this extension of the halo model mainly increases the predicted power on the small scales, and is crucial for proper modeling the cosmological weak-lensing signal due to low-mass haloes. Our extended formalism shows how the halo model approach can be improved in accuracy as one increases the number of ingredients that are calibrated from n-body simulations.
We use 1 kpc resolution cosmological AMR simulations of a Virgo-like galaxy cluster to investigate the effect of feedback from supermassive black holes (SMBH) on the mass distribution of dark matter, gas and stars. We compared three different models: (i) a standard galaxy formation model featuring gas cooling, star formation and supernovae feedback, (ii) a "quenching" model for which star formation is artificially suppressed in massive halos and finally (iii) the recently proposed AGN feedback model of Booth & Schaye (2009). Without AGN feedback (even in the quenching case), our simulated cluster suffers from a strong overcooling problem, with a stellar mass fraction significantly above observed values in M87. The baryon distribution is highly concentrated, resulting in a strong adiabatic contraction (AC) of dark matter. With AGN feedback, on the contrary, the stellar mass in the bright central galaxy (BCG) lies below observational estimates and the overcooling problem disappears. The stellar mass of the BCG is seen to increase with increasing mass resolution, suggesting that our stellar masses converges to the correct value from below. The gas and total mass distributions are in striking agreement with observations. We also find a slight deficit (~10%) of baryons at the virial radius, due to the effect of AGN-driven shock waves pushing gas to Mpc scales and beyond. This baryon deficit results in a slight adiabatic expansion of the dark matter distribution, that can be explained quantitatively by AC theory.
We explore the inter-relationships between mass, star-formation rate and environment in the SDSS, zCOSMOS and other surveys. The differential effects of mass and environment are completely separable to z ~ 1, indicating that two distinct processes are operating, "mass-quenching" and "environment-quenching". Environment-quenching, at fixed over-density, evidently does not change with epoch to z ~ 1, suggesting that it occurs as large-scale structure develops in the Universe. The observed constancy of the mass-function shape for star-forming galaxies, demands that the mass-quenching of galaxies around and above M*, must be proportional to their star-formation rates at all z < 2. We postulate that this simple mass-quenching law also holds over a much broader range of stellar mass and epoch. These two simple quenching processes, plus some additional quenching due to merging, then naturally produce (a) a quasi-static Schechter mass function for star-forming galaxies with a value of M* that is set by the proportionality between the star-formation and mass-quenching rates, (b) a double Schechter function for passive galaxies with two components: the dominant one is produced by mass-quenching and has exactly the same M* as the star-forming galaxies but an alpha shallower by +1, while the other is produced by environment effects and has the same M* and alpha as the star-forming galaxies, and is larger in high density environments. Subsequent merging of quenched galaxies modifies these predictions somewhat in the denser environments, slightly increasing M* and making alpha more negative. All of these detailed quantitative relationships between the Schechter parameters are indeed seen in the SDSS, lending strong support to our simple empirically-based model. The model naturally produces for passive galaxies the "anti-hierarchical" run of mean ages and alpha-element abundances with mass.
There exists several modified gravity theories designed to reproduce the empirical Milgrom's formula (MOND). Here we derive analytical results in the context of the static weak-field limit of two of them (BIMOND, leading for a given set of parameters to QUMOND, and TeVeS). In this limit, these theories are constructed to give the same force field for spherical symmetry, but their predictions generally differ out of it. However, for certain realizations of these theories (characterized by specific choices for their free functions), the binding potential-energy of a system is increased, compared to its Newtonian counterpart, by a constant amount independent of the shape and size of the system. In that case, the virial theorem is exactly the same in these two theories, for the whole gravity regime and even outside of spherical symmetry, although the exact force fields are different. We explicitly show this for the force field generated by the two theories inside an elliptical shell. For more general free functions, the virial theorems are however not identical in these two theories. We finally explore the consequences of these analytical results for the two-body force.
After recent sensitivity upgrades at the Keck Interferometer (KI), systematic interferometric 2um studies of the innermost dust in nearby Seyfert nuclei are within observational reach. Here, we present the analysis of new interferometric data of NGC 4151, discussed in context of the results from recent dust reverberation, spectro-photometric and interferometric campaigns. The complete data set gives a complex picture, in particular the measured visibilities from now three different nights appear to be rather insensitive to the variation of the nuclear luminosity. KI data alone indicate two scenarios: the K-band emission is either dominated to ~90% by size scales smaller than 30mpc, which falls short of any dust reverberation measurement in NGC 4151 and of theoretical models of circum-nuclear dust distributions. Or contrary, and more likely, the K-band continuum emission is dominated by hot dust (>= 1300K) at linear scales of about 50mpc. The linear size estimate varies by a few tens of percent depending on the exact morphology observed. Our interferometric, deprojected centro-nuclear dust radius estimate of 55+-5mpc is roughly consistent with the earlier published expectations from circum-nuclear, dusty radiative transfer models, and spectro-photometric modeling. However, our data do not support the notion that the dust emission size scale follows the nuclear variability of NGC 4151 as a R_dust \propto L_nuc^0.5 scaling relation. Instead variable nuclear activity, lagging, and variable dust response to illumination changes need to be combined to explain the observations.
Inflation predicts primordial scalar perturbations with a nearly scale-invariant spectrum and a spectral index approximately unity (the Harrison--Zel'dovich (HZ) spectrum). The first important step for inflationary cosmology is to check the consistency of the HZ primordial spectrum with current observations. Recent analyses have claimed that a HZ primordial spectrum is excluded at more than 99% c.l. Here we show that the HZ spectrum is only marginally disfavored if one considers a more general reionization scenario. Data from the Planck mission will settle the issue.
We report on an update of the test on the rotation of the plane of linear polarization for light traveling over cosmological distances, using a comparison between the measured direction of the UV polarization in 8 radio galaxies at z>2 and the direction predicted by the model of scattering of anisotropic nuclear radiation, which explains the polarization. No rotation is detected within a few degrees for each galaxy and, if the rotation does not depend on direction, then the all-sky-average rotation is constrained to be \theta = -0.8 +/- 4.2. We discuss the relevance of this result for constraining cosmological birefringence, when this is caused by the interaction with a cosmological pseudo-scalar field or by the presence of a Cherns-Simons term.
We present first pc-scale radio imaging of the radio-quiet candidate binary black hole system SDSS J1536+0441. The observations were carried out by the European VLBI Network at the frequency of 5 GHz and allowed to image SDSS J1536+0441 with a resolution of about 10 mas (50 pc). Two compact radio cores are detected at the position of the kpc-scale components VLA-A and VLA-B, proving the presence of two compact active nuclei with radio luminosity about 10^{40} erg/s, thus ruling out the possibility that the two radio sources are both powered by one 0.1 pc binary black hole. From a comparison with published 8.5 GHz flux densities we derived an estimate of the radio spectral index of the two pc-scale cores. Both cores have flat or inverted spectral index and, at least for the case of VLA-A, we can rule out the possibility that synchrotron self-absorption is responsible for the inverted radio spectrum. We suggest that thermal free-free emission from an X-ray heated disk wind may be powering the radio emission in VLA-A.
[Abridged] Within the hierarchical framework for galaxy formation, minor
merging and tidal interactions are expected to shape large galaxies to the
present day. As part of a pilot survey, we have carried out ultra deep, wide
field imaging of several isolated spiral galaxies in the Local Volume with data
taken at small (D= 0.1-0.5m) robotic telescopes that provide exquisite surface
brightness sensitivity.
Our observational effort has led to the discovery of six previously
undetected giant stellar structures in the halos of these galaxies that are
likely associated with debris from tidally disrupted satellites. In addition,
we confirm and clarify several enormous stellar over-densities previously
reported in the literature, but never before interpreted as tidal streams. Our
collection of galaxies presents an assortment of tidal phenomena exhibiting
strikingly diverse morphological characteristics. In addition to identifying
great circle-like features that resemble the Sagittarius stream surrounding the
Milky Way, our observations have uncovered enormous structures that extend tens
of kiloparsecs into the halos of the central spiral. We have also found remote
shells, giant clouds of debris extending out into the galactic halos, jet-like
features emerging from galactic disks and large-scale,diffuse structures that
are almost certainly related to the remnants of ancient, already thoroughly
disrupted satellites.
A comparison with available stellar halo evolution simulations set in a
Lambda-Cold Dark Matter cosmology suggests that the extraordinary variety of
stellar morphologies detected in our survey matches that seen in those
simulations. This morphological similarity constitutes new, qualitative
evidence that the hierarchical merging predicted by these theoretical models
applies generally to normal, Milky Way-like disk galaxies in the Local Volume.
We present a catalogue of 179 hyperluminous infrared galaxies (HLIRGs) from the Imperial IRAS-FSS Redshift (IIFSCz) Catalogue. Of the 92 with detections in at least two far infrared bands, 62 are dominated by an M82-like starburst, 22 by an Arp220-like starburst and 8 by an AGN dust torus. On the basis of previous gravitational lensing studies and an examination of HST archive images for a further 5 objects, we estimate the fraction of HLIRGs that are significantly lensed to be 10-30%. We show simple infrared template fits to the SEDs of 23 HLIRGs with spectroscopic redshifts and at least 5 photometric bands. Most can be fitted with a combination of two simple templates: an AGN dust torus and an M82-like starburst. In the optical, 17 of the objects are fitted with QSO templates, 6 are fitted with galaxy templates. 20 of the 23 objects (87%) show evidence of an AGN either from the optical continuum or from the signature of an AGN dust torus, but the starburst component is the dominant contribution to bolometric luminosity in 14 out of 23 objects (61%). The implied star-formation rates, even after correcting for lensing magnification, are in excess of 1000 Mo /yr. We use infrared template-fitting models to predict fluxes for all HLIRGs at submillimetre wavelengths, and show predictions at 350 and 850 mu. Most would have 850 mu fluxes brighter than 5 mJy so should be easily detectable with current submillimetre telescopes. At least 15% should be detectable in the Planck all-sky survey at 350 mu and all Planck all-sky survey sources with z < 0.9 should be IIFSCz sources. From the luminosity-volume test we find that HLIRGs show strong evolution. A simple exponential luminosity evolution applied to all HLIRGs would be consistent with the luminosity functions found in redshift bins 0.3-0.5, 0.5-1 and 1-2.
The surface brightness profile of H-alpha emission in galaxies is generally thought to be confined by a sharp truncation, sometimes speculated to coincide with a star formation threshold. Over the past years, observational evidence for both old and young stellar populations, as well as individual H II regions, has demonstrated that the outer disk is an actively evolving part of a galaxy. To provide constraints on the origin of the aforementioned H-alpha truncation and the relation of H-alpha emission in the outer disk to the underlying stellar population, we measure the shape of the outer H-alpha surface brightness profile of 15 isolated, edge-on late-type disk galaxies using deep, long-slit spectroscopy. Tracing H-alpha emission up to 50% beyond the optical radius, R_25, we find a composite H-alpha surface brightness profile, well described by a broken-exponential law, that drops more steeply in the outer disk, but which is not truncated. The stellar continuum and H-alpha surface brightness both exhibit a break at ~0.7 R_25, but the H-alpha emission drops more steeply than the stellar continuum beyond that break. Although profiles with truncations or single exponential laws correctly describe the H-alpha surface brightness profiles of some individual galaxies, flexible broken-exponentials are required in most cases and are therefore the more appropriate generic description. The common existence of a significant second surface brightness component beyond the H-alpha break radius disfavors the hypothesis that this break is a purely stochastic effect.
In this paper we discuss the effect of recombinations to highly excited states (n > 100) in hydrogen during the cosmological recombination epoch. For this purpose, we developed a new ODE solver for the recombination problem, based on an implicit Gear's method. This solver allows us to include up to 350 l-resolved shells or ~61 000 separate levels in the hydrogen model and to solve the recombination problem for one cosmology in ~27 hours. This is a huge improvement in performance over our previous recombination code, for which a 100-shell computation (5050 separate states) already required ~150 hours on a single processor. We show that for 350 shells down to redshift z ~200 the results for the free electron fraction have practically converged. The final modification in the free electron fraction at z ~200 decreases from about \DeltaNe/Ne ~2.8% for 100 shells to \DeltaNe/Ne ~1.6% for 350 shells. However, the associated changes in the CMB power spectra at large multipoles l are rather small, so that for accurate computations in connection with the analysis of Planck data already ~100 shells are expected to be sufficient. Nevertheless, the total value of \tau could still be affected at a significant level. We also briefly investigate the effect of collisions on the recombination dynamics. With our current estimates for the collisional rates we find a correction of \DeltaNe/Ne ~ -0.074% at z ~ 700, which is mainly caused by l-changing collisions with protons. Furthermore, we present results on the cosmological recombination spectrum, showing that at low frequencies collisional processes are important. However, the current accuracy of collisional rates is insufficient for precise computations of templates for the recombination spectrum at \nu<~1 GHz, and also the effect of collisions on the recombination dynamics suffers from the uncertainty in these rates. (abridged)
We study gravity mediated supersymmetry breaking in ${\cal F}$-SU(5) and its low-energy supersymmetric phenomenology. The gaugino masses are not unified at the traditional grand unification scale, but we nonetheless have the same one-loop gaugino mass relation at the electroweak scale as minimal supergravity (mSUGRA). We introduce parameters testable at the colliders to measure the small second loop deviation from the mSUGRA gaugino mass relation at the electroweak scale. In the minimal SU(5) model with gravity mediated supersymmetry breaking, we show that the deviations from the mSUGRA gaugino mass relations are within 5%. However, in ${\cal F}$-SU(5), we predict the deviations from the mSUGRA gaugino mass relations to be larger due to the presence of vector-like particles, which can be tested at the colliders. We determine the viable parameter space that satisfies all the latest experimental constraints and find it is consistent with the CDMS II experiment. Further, we compute the cross-sections of neutralino annihilations into gamma-rays and compare to the first published Fermi-LAT measurement. Finally, the corresponding range of proton lifetime predictions is calculated and found to be within reach of the future Hyper-Kamiokande and DUSEL experiments.
Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark mesons and baryons results in several qualitatively different configurations of the resulting dark matter hadrons depending on the relative mass scales in the system.
We prove that a class of solutions to Einstein's equations---originally discovered by G. C. McVittie in 1933---includes regular black holes embedded in Friedman-Robertson-Walker cosmologies. If the cosmology is dominated at late times by a positive cosmological constant, the metric is regular everywhere on and outside the black hole horizon and away from the big bang singularity, and the solutions asymptote in the future and near the horizon to the Schwarzschild-de Sitter geometry. For solutions without a positive cosmological constant the would-be horizon is a weak null singularity.
The two apparently distinct phenomena of dark energy (or late-time cosmic acceleration) and quantum gravity dominate physics on extremely low, and extremely high energies, but do not seem to have any apparent empirical connection. Nevertheless, the two have a theoretical connection, through the cosmological constant problem. I argue that the finite temperature quantum gravitational corrections to black hole entropy yields a pressure for the gravitational vacuum (or gravitational aether). Assuming that the relative corrections are linear in horizon temperature (i.e. are suppressed by one power of Planck energy), the pressure is comparable to that of dark energy for astrophysical black holes. This implies that the observation of late-time cosmic acceleration may have provided us with the first precision measurement of quantum gravity, i.e. that of black hole entropy.
Perfect porcupines are specially-configured networks of gravitational wave detectors, in the limit that the individual detectors and the distances between them are short relative to the gravitational wavelengths of interest. They have beautiful properties which make them ideal gravitational wave telescopes. I present the most important cases explicitly. For a network of one-arm detectors (like "AGIS" \cite{Dimopoulos:2008sv}), the minimal perfect porcupine has 6 detectors, oriented along the 6 diameters of a regular icosahedron. For a network of two-arm detectors (like the equal-arm Michelson interferometers LIGO/VIRGO) the minimal perfect porcupine is a certain 5 detector configuration.
Motivated by Pierre Auger Observatory results favoring a heavy nuclear composition for ultrahigh-energy (UHE) cosmic rays, we investigate implications for the cumulative neutrino background. The requirement that nuclei not be photodisintegrated constrains their interactions in sources, therefore limiting neutrino production via photomeson interactions. Assuming a $dN_{\rm CR}/dE_{\rm CR} \propto E_{\rm CR}^{-2}$ injection spectrum and photodisintegration via the giant dipole resonance, the background flux of neutrinos is lower than $E_\nu^2 \Phi_\nu \sim {10}^{-9} {\rm GeV} {\rm cm}^{-2} {\rm s}^{-1} {\rm sr}^{-1}$ if UHE nuclei ubiquitously survive in their sources. This is smaller than the analogous Waxman-Bahcall flux for UHE protons by about one order of magnitude, and is below the projected IceCube sensitivity. If IceCube detects a neutrino background, it could be due to other sources, e.g., hadronuclear interactions of lower-energy cosmic rays; if it does not, this supports our strong restrictions on the properties of sources of UHE nuclei.
Links to: arXiv, form interface, find, astro-ph, recent, 1003, contact, help (Access key information)