We describe a accurate and fast pixel-based statistical method to interpolate fields of arbitrary spin on the sphere. We call this method the Fast and Lean Interpolation on the Sphere (FLINTS). We find that this method works as expected from the Gaussian random field theory and is able to predict lensed Cosmic Microwave Background (CMB) maps precisely and quickly. We achieve a precision of 2x10^(-8) at a HEALPix resolution of N_side=4,096, limiting the CMB to l_max=4,096 in 50 minutes, serial time. The method is suitable for efficient, distributed memory parallelization. The power spectra of our lensed maps are accurate to better than 0.5% at l=3,000 for the temperature and the E-mode of the polarization, and better than 0.1% for the B-mode.
We have discovered recent star formation in the outermost portion (1-4x R_25) of the nearby lenticular (S0) galaxy NGC 404 using GALEX UV imaging. FUV-bright sources are strongly concentrated within the galaxy's HI ring (formed by a merger event according to del Rio et al.), even though the average gas density is dynamically subcritical. Archival HST imaging reveals resolved upper main sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles and integrated magnitudes for NGC 404. Within the ring, the average star formation rate surface density (Sigma_{SFR}) is 2.2x10^-5 Msun/yr/kpc^2. Of the total FUV flux, 70% comes from the HI ring which is forming stars at a rate of 2.5x10^-3 Msun/yr. The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the Universe. In the context of the UV-optical galaxy CMD, the presence of the SF HI ring places NGC 404 in the green valley separating the red and blue sequences. The rejuvenated lenticular galaxy has experienced a merger-induced, disk-building excursion away from the red sequence toward bluer colors, where it may evolve quiescently or (if appropriately triggered) experience a burst capable of placing it on the blue/star-forming sequence for up to ~1 Gyr. The green valley galaxy population is heterogeneous, with most systems transitioning from blue to red but others evolving in the opposite sense due to acquisition of fresh gas through various channels.
Data products from the Advanced Camera for Surveys Virgo Cluster Survey are used to understand the bulge star formation history in early-type galaxies at redshifts z > 2. A new technique is developed whereby observed high-redshift age-metallicity relationships are utilized to constrain the typical formation epochs of metal-rich or "bulge" globular clusters. This analysis supports a model where massive Virgo galaxies underwent an extremely intense mode of bulge globular cluster formation at z ~ 3.5 that was followed by an era of significant bulge growth and little globular cluster production. Intermediate-mass galaxies showed a less-intense period of globular cluster formation at z ~ 2.5 that was synchronized with the bulk of bulge star growth. The transition between the massive and intermediate-mass galaxy star formation modes occurs at a galaxy stellar mass of M_stellar ~ 3 x 10^10 M_sun, the mass where many other galaxy properties are observed to change. Dwarf early-type galaxies in Virgo may have experienced no significant period of bulge globular cluster formation, thus the intense star bursts associated with globular cluster formation may be difficult to directly observe at redshifts z < 4. Though the above conclusions are preliminary because they are based upon uncertain relationships between age and metallicity, the technique employed will yield more stringent constraints as high-redshift galaxy observations and theoretical models improve.
We study the clustering properties of z~5.7 Lyman-alpha emitters (LAEs) in a cosmological reionization simulation with a full Lya radiative transfer calculation. Lya radiative transfer substantially modifies the intrinsic Lya emission properties, compared to observed ones, depending on the density and velocity structure environment around the Lya emitting galaxy. This environment-dependent Lya selection introduces new features in LAE clustering, suppressing (enhancing) the line-of-sight (transverse) density fluctuations and giving rise to scale-dependent galaxy bias. In real space, the contours of the three-dimensional two-point correlation function of LAEs appear to be prominently elongated along the line-of sight on large scales, an effect that is opposite to and much stronger than the linear redshift-space distortion effect. The projected two-point correlation function is greatly enhanced in amplitude by a factor of up to a few, compared to the case without the environment dependent selection effect. The new features in LAE clustering can be understood with a simple, physically motivated model, where Lya selection depends on matter density, velocity, and their gradients. We discuss the implications and consequences of the effects on galaxy clustering from Lya selection in interpreting clustering measurements and in constraining cosmology and reionization from LAEs.
We present results from the first cosmological simulations which study the onset of primordial, metal-free (population III), cosmic star formation and the transition to the present-day, metal-rich star formation (population II-I), including molecular (H$_2$, HD, etc.) evolution, tracing the injection of metals by supernov{\ae} into the surrounding intergalactic medium and following the change in the initial stellar mass function (IMF) according to the metallicity of the corresponding stellar population. Our investigation addresses the role of a wide variety of parameters (critical metallicity for the transition, IMF slope and range, SN/pair-instability SN metal yields, star formation threshold, resolution, etc.) on the metal-enrichment history and the associated transition in the star formation mode. All simulations present common trends. Metal enrichment is very patchy, with rare, unpolluted regions surviving at all redshifts, inducing the simultaneous presence of metal-free and metal-rich star formation regimes. As a result of the rapid pollution within high-density regions due to the first SN/pair-instability SN, local metallicity is quickly boosted above the critical metallicity for the transition. The population III regime lasts for a very short period during the first stages of star formation ($\sim 10^7\,\rm yr$), and its average contribution to the total star formation rate density drops rapidly below $\sim 10^{-3}-10^{-2}$.
Numerical-relativity simulations indicate that the black hole produced in a binary merger can recoil with a velocity up to v_max ~ 4,000 km/s with respect to the center of mass of the initial binary. This challenges the paradigm that most galaxies form through hierarchical mergers, yet retain supermassive black holes at their centers despite having escape velocities much less than v_max. Interaction with a circumbinary disk can align the binary black hole spins with their orbital angular momentum, reducing the recoil velocity of the final black hole produced in the subsequent merger. However, the effectiveness of this alignment depends on highly uncertain accretion flows near the binary black holes. In this Letter, we show that if the spin S_1 of the more massive binary black hole is even partially aligned with the orbital angular momentum L, relativistic spin precession on sub-parsec scales can align the binary black hole spins with each other. This alignment significantly reduces the recoil velocity even in the absence of gas. For example, if the angle between S_1 and L at large separations is 10 degrees while the second spin S_2 is isotropically distributed, the spin alignment discussed in this paper reduces the median recoil from 864 km/s to 273 km/s for maximally spinning black holes with a mass ratio of 9/11. This reduction will greatly increase the fraction of galaxies retaining their supermassive black holes.
We present the results of a deep spectral analysis of all Swift observations of Mrk 421 between April 2006 and July 2006, when it reached its highest X-ray flux recorded until the end of 2006. We completed this data set with other historical X-ray observations. We used the full data set to investigate the correlation between the spectral parameters. We found a signature of stochastic acceleration in the anticorrelation between the peak energy (Ep) of the spectral energy distribution (SED) and the spectral curvature parameter (b). We found signature of energetic budget of the jet in the correlation between the peak flux of the SED (S p) and Ep. Moreover, using simultaneous Swift UVOT/XRT/BAT data, we demonstrated, that during the strongest flares, the UV-to-X-ray emission from Mrk 421 requires that the curved electron distribution develops a low energy power-law tail. The observed spectral curvature and its anticorrelation with Ep is consistent with both stochastic acceleration or energy-dependent acceleration probability mechanisms, whereas the power-law slope of XRT-UVOT data is close to that inferred from the GRBs X-ray afterglow and in agreement with the universal first-order relativistic shock acceleration models. This scenario implies that magnetic turbulence may play a twofold role: spatial diffusion relevant to the first order process and momentum diffusion relevant to the second order process.
Owing to their more extensive sky coverage and tighter control on systematic errors, future deep weak lensing surveys should provide a better statistical picture of the dark matter clustering beyond the level of the power spectrum. In this context, the study of non-Gaussianity induced by gravity can help tighten constraints on the background cosmology by breaking parameter degeneracies, as well as throwing light on the nature of dark matter, dark energy or alternative gravity theories. Analysis of the shear or flexion properties of such maps is more complicated than the simpler case of the convergence due to the spinorial nature of the fields involved. Here we develop analytical tools for the study of higher-order statistics such as the bispectrum (or trispectrum) directly using such maps at different source redshift. The statistics we introduce can be constructed from cumulants of the shear or flexions, involving the cross-correlation of squared and cubic maps at different redshifts. Typically, the low signal-to-noise ratio prevents recovery of the bispectrum or trispectrum mode by mode. We define power spectra associated with each multi- spectra which compresses some of the available information of higher order multispectra. We show how these can be recovered from a noisy observational data even in the presence of arbitrary mask, which introduces mixing between Electric (E-type) and Magnetic (B-type) polarization, in an unbiased way. We also introduce higher order cross-correlators which can cross-correlate lensing shear with different tracers of large scale structures.
Primordial non-Gaussianity is a potentially powerful discriminant of the physical mechanisms that generated the cosmological fluctuations observed today. Any detection of non-Gaussianity would have profound implications for our understanding of cosmic structure formation. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large scale structure of the Universe.
The correlation between distant Gamma-Ray Bursts (GRBs) and foreground galaxy clusters is re-examined by using the well localized (with an accuracy down to a few arcseconds) Swift/XRT GRBs. The galaxy clusters are compiled from both X-ray selected ROSAT brightest cluster sample (BCS) and BCS extension by requiring $\delta \geq0\degr$ and $b\geq20\degr$. The Swift/XRT GRBs fulfilling the above selection criteria are cross-correlated with the clusters. Both Nearest-Neighbor Analysis and angular two-point cross-correlation function show that there is no enough evidence supporting the correlation between the GRBs and foreground clusters. We suggest that the non-correlation is probably related to the GRB number-flux relation slope.
We discuss generation of non-Gaussianity in density perturbation through the super-horizon evolution during inflation by using the so-called $\delta N$ formalism. We first provide a general formula for the non-linearity parameter generated during inflation. We find that it is proportional to the slow-roll parameters, multiplied by the model dependent factors that may enhance the non-gaussianity to the observable ranges. Then we discuss three typical examples to illustrate how difficult to generate sizable non-Gaussianity through the super-horizon evolution. First example is the double inflation model, which shows that temporal violation of slow roll conditions is not enough for the generation of non-Gaussianity. Second example is the ordinary hybrid inflation model, which illustrates the importance of taking into account perturbations on small scales. Finally, we discuss Kadota-Stewart model. This model gives an example in which we have to choose rather unnatural initial conditions even if large non-Gaussianity can be generated.
Using cosmological MHD simulations of the magnetic field in galaxy clusters and filaments we evaluate the possibility to infer the magnetic field strength in filaments by measuring cross-correlation functions between Faraday Rotation Measures (RM) and the galaxy density field. We also test the reliability of recent estimates considering the problem of data quality and Galactic foreground (GF) removal in current datasets. Besides the two self-consistent simulations of cosmological magnetic fields based on primordial seed fields and galactic outflows analyzed here, we also explore a larger range of models scaling up the resulting magnetic fields of one of the simulations. We find that, if an unnormalized estimator for the cross-correlation functions and a GF removal procedure is used, the detectability of the cosmological signal is only possible for future instruments (e.g. SKA and ASKAP). However, mapping of the observed RM signal to the underlying magnetization of the Universe (both in space and time) is an extremely challenging task which is limited by the ambiguities of our model parameters, as well as to the weak response of the RM signal in low density environments. Therefore, we conclude that current data cannot constrain the amplitude and distribution of magnetic fields within the large scale structure and a detailed theoretical understanding of the build up and distribution of magnetic fields within the Universe will be needed for the interpretation of future observations.
The universe has evolved to be a filamentary web of galaxies and large inter-galactic zones of space without matter. The Euclidian nature of the universe indicates that it is not a 3D manifold within space with an extra spatial dimension. This justifies our assumption that the FRW space-time evolves in the inter-galactic zones like separate FRW universes. Thus we do not necessarily have to consider the entirety of the universe. Our assumption enables us to prove that: -In the current epoch, space in the intergalactic zones expands at a constant rate. -In and around galaxies, space expansion is inhibited. With these results, and an extended Gauss Theorem for a deformed space, we show that there is no need for the hypothetical Dark Energy (DE) and Dark Matter (DM) to explain phenomena attributed to them.
(Abridged) Precision cosmology with Type Ia supernovae (SNe Ia) makes use of the fact that SN Ia luminosities depend on their light-curve shapes and colours. Using Supernova Legacy Survey (SNLS) and other data, we show that there is an additional dependence on the global characteristics of their host galaxies: events of the same light-curve shape and colour are, on average, 0.08mag (~4.0sigma) brighter in massive host galaxies (presumably metal-rich) and galaxies with low specific star-formation rates (sSFR). SNe Ia in galaxies with a low sSFR also have a smaller slope ("beta") between their luminosities and colours with ~2.7sigma significance, and a smaller scatter on SN Ia Hubble diagrams (at 95% confidence), though the significance of these effects is dependent on the reddest SNe. SN Ia colours are similar between low-mass and high-mass hosts, leading us to interpret their luminosity differences as an intrinsic property of the SNe and not of some external factor such as dust. If the host stellar mass is interpreted as a metallicity indicator, the luminosity trends are in qualitative agreement with theoretical predictions. We show that the average stellar mass, and therefore the average metallicity, of our SN Ia host galaxies decreases with redshift. The SN Ia luminosity differences consequently introduce a systematic error in cosmological analyses, comparable to the current statistical uncertainties on parameters such as w. We show that the use of two SN Ia absolute magnitudes, one for events in high-mass (metal-rich) galaxies, and one for events in low-mass (metal-poor) galaxies, adequately corrects for the differences. Cosmological fits incorporating these terms give a significant reduction in chi^2 (3.8-4.5sigma). We conclude that future SN Ia cosmological analyses should use a correction of this (or similar) form to control demographic shifts in the galaxy population.
In a recent paper \cite{novello} we have presented a mechanism to generate mass from gravitational interaction, based on the Mach principle, according to which the inertia of a body is a property of matter as well as of the background provided by the rest-of-the-universe. In \cite{novello} we realized such an idea for a scalar field treating the rest-of-the-universe in its vacuum state. In the present paper we describe a similar mechanism for fermions.
We present a detailed study of the effect of internal bremsstrahlung photons in the context of the minimal supersymmetric standard models and their impact on gamma-ray dark matter annihilation searches. We find that although this effect has to be included for the correct evaluation of fluxes of high energy photons from neutralino annihilation, its contribution is relevant only in models and at energies where the lines contribution is dominant over the secondary photons. Therefore, we find that the most optimistic supersymmetric scenarios for dark matter detection do not change significantly when including the internal bremsstrahlung. As an example, we review the gamma-ray dark matter detection prospects of the Draco dwarf spheroidal galaxy for the MAGIC stereoscopic system and the CTA project. Though the flux of high energy photons is enhanced by an order of magnitude in some regions of the parameter space, the expected fluxes are still much below the sensitivity of the instruments.
We use the first systematic data sets of CO molecular line emission in z~1-3 normal star forming galaxies (SFGs) for a comparison of the dependence of galaxy-averaged star formation rates on molecular gas masses at low and high redshift. Although the current high-z samples are still small and biased toward the luminous and massive tail of the actively star-forming 'main-sequence', a fairly clear picture is emerging. Independent of whether galaxy integrated quantities or surface densities are considered, low- and high-z SFG galaxy populations appear to follow a molecular gas-star formation relation with slope 1.1 to 1.2, over three orders of magnitude in gas mass or surface density. The gas-depletion time scale in these SFGs grows from 0.5 Gyrs at z~2 to 1.5 Gyrs at z~0. The average corresponds to a fairly low star formation efficiency of 2% per dynamical time. Because star formation depletion times are significantly smaller than the Hubble time at all redshifts sampled, star formation rates and gas fractions are set by the balance between gas accretion from the halo and stellar feedback. In contrast, very luminous and ultra-luminous, gas rich major mergers at both low-z and high-z produce on average 4 to10 times more far-infrared luminosity per gas mass. We show that only some fraction of this difference can be explained by uncertainties in gas or luminosity estimators; much of it must be intrinsic. A possible explanation is a top-heavy stellar mass function in the merging systems but the most likely interpretation is that the star formation relation is driven by global dynamical effects. The more compact merger systems produce stars more efficiently because they churn more quickly through the available gas reservoir than the typical SFGs in our sample.
In these proceedings we report on HiZELS, the High-z Emission Line Survey, our successful panoramic narrow-band Campaign Survey using WFCAM on UKIRT to detect and study emission line galaxies at z~1-9. HiZELS employs the H2(S1) narrow-band filter together with custom-made narrow-band filters in the J and H-bands, with the primary aim of delivering large, identically-selected samples of H-alpha emitting galaxies at redshifts of 0.84, 1.47 and 2.23. Comparisons between the luminosity function, the host galaxy properties, the clustering, and the variation with environment of these H-alpha-selected samples are yielding unique constraints on the nature and evolution of star-forming galaxies, across the peak epoch of star-formation activity in the Universe. We provide a summary of the project status, and detail the main scientific results obtained so far: the measurement of the evolution of the cosmic star-formation rate density out to z > 2 using a single star-formation indicator, determination of the morphologies, environments and dust-content of the star-forming galaxies, and a detailed investigation of the evolution of their clustering properties. We also summarise the on-going work and future goals of the project.
It is shown that a first-order cosmological perturbation theory for the open, flat and closed Friedmann-Lemaitre-Robertson-Walker universes admits one, and only one, gauge-invariant variable which describes the perturbation to the energy density and which becomes equal to the usual Newtonian energy density in the non-relativistic limit. The same holds true for the perturbation to the particle number density. Using these two new variables, a new manifestly gauge-invariant cosmological perturbation theory has been developed. Density perturbations evolve diabatically. Perturbations in the total energy density are gravitationally coupled to perturbations in the particle number density, irrespective of the nature of the particles. There is, in first-order, no back-reaction of perturbations to the global expansion of the universe. Small-scale perturbations in the radiation-dominated era oscillate with an increasing amplitude, whereas in older, less precise treatments, oscillating perturbations are found with a decreasing amplitude. This is a completely new and, obviously, important result, since it makes it possible to explain and understand the formation of massive stars after decoupling of matter and radiation.
We discuss new exact solutions of a three-parameter nonminimal Einstein-Maxwell model. The solutions describe static spherically symmetric objects with and without center, supported by an electric field nonminimally coupled to gravity. We focus on a unique one-parameter model, which admits an exact solution for a traversable electrically charged wormhole connecting two universes, one asymptotically flat the other asymptotically de Sitter ones. The relation between the asymptotic mass and charge of the wormhole and its throat radius is analyzed. The wormhole solution found is thus a nonminimal realization of the idea of Wheeler about charge without charge and shows that, if the world is somehow nonminimal in the coupling of gravity to electromagnetism, then wormhole appearance, or perhaps construction, is possible.
In this brief report, we summarize our recent studies in brane cosmology in both string theory and M-Theory on $S^{1}/Z_{2}$. In such setups, we find that the radion is stable and its mass, with a very conservative estimation, can be of the order of $0. 1 \sim 0.01$ GeV. The hierarchy problem can be addressed by combining the large extra dimension, warped factor, and tension coupling mechanisms. Gravity is localized on the visible brane, and the spectrum of the gravitational Kaluza-Klein (KK) modes is discrete and can have a mass gap of TeV. The corrections to the 4D Newtonian potential from the higher order gravitational KK modes are exponentially suppressed. Applying such setups to cosmology, we find that a late transient acceleration of the universe seems to be the generic feature of the theory, due to the interaction between branes and bulk. A bouncing early universe is also rather easily realized.
$f(R)$ theory in the framework of Horava-Lifshitz quantum gravity with projectability but without detailed balance condition is investigated, and conditions for the spin-0 graviton to be free of ghosts and instability are studied. The requirement that the theory reduce to general relativity in IR makes the scalar mode unstable in the Minkowski background but stable in the de Sitter. It is remarkable that the dark sector, dark matter and dark energy, of the universe has a naturally geometric origin in such a setup. Bouncing universes can also be constructed. Scalar perturbations in FRW backgrounds with non-zero curvature are given.
Links to: arXiv, form interface, find, astro-ph, recent, 1003, contact, help (Access key information)
Stellar population models of absorption line indices are an important tool for the analysis of stellar population spectra. They are most accurately modelled through empirical calibrations of absorption line indices with the stellar parameters effective temperature, metallicity, and surface gravity, the so-called fitting functions. Here we present new empirical fitting functions for the 25 optical Lick absorption line indices based on the new stellar library MILES. The major improvements with respect to the Lick/IDS library are the better sampling of stellar parameter space, a generally higher signal- to-noise, and a careful flux calibration. In fact we find that errors on individual index measurements in MILES are considerably smaller than in Lick/IDS. Instead we find the rms of the residuals between the final fitting functions and the data to be dominated by errors in the stellar parameters. We provide fitting functions for both Lick/IDS and MILES spectral resolutions, and compare our results with other fitting functions in the literature. A Fortran 90 code is available online in order to simplify the implementation in stellar population models. We further calculate the offsets in index measurements between the Lick/IDS system to a flux calibrated system. For this purpose we use the three libraries MILES, ELODIE, and STELIB. We find that offsets are negligible in some cases, most notably for the widely used indices Hbeta, Mgb, Fe5270, and Fe5335. In a number of cases, however, the difference between flux calibrated library and Lick/IDS is significant with the offsets depending on index strengths. Interestingly, there is no general agreement between the three libraries for a large number of indices, which hampers the derivation of a universal offset between the Lick/IDS and flux calibrated systems.
The galaxy intrinsic alignment causes the galaxy ellipticity-ellipticity power spectrum between two photometric redshifts to decrease faster with respect to the redshift separation $\Delta z^P$, for fixed mean redshift. This offers an valuable diagnosis on the intrinsic alignment. We show that the distinctive dependences of the GG, II and GI correlations on $\Delta z^P$ over the range $|\Delta z^P|\la 0.2$ can be understood robustly without strong assumptions on the intrinsic alignment. This allows us to measure the intrinsic alignment within each conventional photo-z bin of typical size $\ga 0.2$, through lensing tomography of photo-z bin size $\sim 0.01$. Both the statistical and systematical errors in the lensing cosmology can be reduced by this self-calibration technique.
We present results from a new Keck spectroscopic survey of UV-faint LBGs in the redshift range 3<z<7. Combined with earlier Keck and published ESO VLT data, our sample contains more than 600 dropouts, offering new insight into the nature of sub-L* sources typical of those likely to dominate the cosmic reionisation process. Here we use this sample to characterise the fraction of strong Lya emitters within the continuum-selected dropouts. By quantifying how the "Lya fraction" varies with redshift, we seek to constrain changes in Lya transmission associated with reionisation. In order to distinguish the effects of reionisation from other factors which affect the Lya fraction (e.g. dust, ISM kinematics), we study the luminosity and redshift-dependence of the Lya fraction over 3<z<6, when the IGM is known to be ionised. These results reveal that low luminosity galaxies show strong Lya emission much more frequently than luminous systems, and that at fixed luminosity, the prevalence of strong Lya emission increases moderately with redshift over 3 < z < 6. Based on the correlation between blue UV slopes and strong Lya emitting galaxies in our dataset, we argue that the Lya fraction trends are governed by redshift and luminosity-dependent variations in the dust obscuration, with likely additional contributions from trends in the kinematics and covering fraction of neutral hydrogen. We find a tentative decrease in the Lya fraction at z~7 based on the limited IR spectra for candidate z~7 lensed LBGs, a result which, if confirmed with future surveys, would suggest an increase in the neutral fraction by this epoch. Given the supply of z and Y-drops now available from Hubble WFC3/IR surveys, we show it will soon be possible to significantly improve estimates of the Lya fraction using optical and near-IR spectrographs, thereby extending the study conducted in this paper to 7<z<8.
The standard model of cosmology is based on the hot Big Bang theory and the inflationary paradigm. Recent precise observations of the temperature and polarization anisotropies in the cosmic microwave background and the matter distribution in large scale structures like galaxies and clusters confirm the general paradigm and put severe constrains on variations of this simple idea. In this essay I will discuss the epistemological foundations of such a paradigm and speculate on its possible realization within a more fundamental theory.
We employ the metric of Schwarzschild space surrounded by quintessential matter to study the trajectories of test masses on the motion of a binary system. The results, which are obtained through the gradually approximate approach, can be used to search for dark energy via the difference of the azimuth angle of the pericenter. The classification of the motion is discussed.
Detection of the radiation emitted from some of the earliest galaxies will be made possible in the next decade, with the launch of the James Webb Space Telescope (JWST). A significant fraction of these galaxies may host Population (Pop) III star clusters. The detection of the recombination radiation emitted by such clusters would provide an important new constraint on the initial mass function (IMF) of primordial stars. Here I review the expected recombination line signature of Pop III stars, and present the results of cosmological radiation hydrodynamics simulations of the initial stages of Pop III starbursts in a first galaxy at z ~ 12, from which the time-dependent luminosities and equivalent widths of IMF-sensitive recombination lines are calculated. While it may be unfeasible to detect the emission from Pop III star clusters in the first galaxies at z > 10, even with next generation telescopes, Pop III star clusters which form at lower redshifts (i.e. at z < 6) may be detectable in deep surveys by the JWST.
The relation connecting the emitted isotropic energy and the rest-frame peak
energy of the \nuF\nu spectra of Gamma-Ray Bursts (the Amati relation),
strictly depends on the cosmological model, so we need a method to obtain an
independent calibration of it. Using the Union Supernovae Ia catalog, we obtain
a cosmographic luminosity distance in the y-redshift and demonstrate that this
parametrization approximates very well the fiducial standard comsomlogical
model \LambdaCDM. Furthermore, by this cosmographic luminosity distance dl, it
is possible to achieve the Amati relation independent on the cosmological
model. The cosmographic Amati relation that we obtain agrees, in the errors,
with other cosmological-independent calibrations proposed in the literature.
This could be considered a good indication in view to obtain standard candles
by Gamma-Ray Bursts
Key words. Gamma rays : bursts - Cosmology
ABRIDGED: A detailed 2D study of the central region of NGC5253 has been performed to characterize the stellar and ionized gas structure as well as the extinction distribution, physical properties and kinematics of the ionized gas in the central ~210pc x 130pc. We utilized optical integral field spectroscopy (IFS) data obtained with FLAMES. A detailed extinction map for the ionized gas in NGC5253 shows that the largest extinction is associated with the prominent Giant HII region. There is an offset of ~0.5" between the peak of the optical continuum and the extinction peak in agreement with findings in the infrared. We found that stars suffer less extinction than gas by a factor of 0.33. The [SII]l6717/[SII]l6731 map shows an electron density (N_e) gradient declining from the peak of emission in Ha (790cm^-3) outwards, while the argon line ratio traces areas with $N_e~4200 - 6200cm^(-3). The area polluted with extra nitrogen, as deduced from the excess [NII]/Ha, extends up to distances of 3.3" (~60pc) from the maximum pollution, which is offset by ~1.5" from the peak of continuum emission. Wolf-Rayet features are distributed in an irregular pattern over a larger area (~100pc x 100pc) and associated with young stellar clusters. We measured He^+ abundances over most of the field of view and values of He^++/H^+<~0.0005 in localized areas which do not coincide, in general, with the areas presenting W-R emission or extra nitrogen. The line profiles are complex. Up to three emission components were needed to reproduce them. One of them, associated with the giant HII region, presents supersonic widths and [NII] and [SII] emission lines shifted up to 40km/s with respect to Ha. Similarly, one of the narrow components presents offsets in the [NII] line of <~20km/s. This is the first time that maps with such velocity offsets for a starburst galaxy have been presented.
Using a combination of deep 574ks Chandra data, XMM-Newton high-resolution spectra, and optical Halpha+NII images, we study the nature and spatial distribution of the multiphase plasma in M87. Our results provide direct observational evidence of `radio mode' AGN feedback in action, stripping the central galaxy of its lowest entropy gas and preventing star-formation. This low entropy gas was entrained with and uplifted by the buoyantly rising relativistic plasma, forming long "arms". These arms are likely oriented within 15-30 degrees of our line-of-sight. The mass of the uplifted gas in the arms is comparable to the gas mass in the approximately spherically symmetric 3.8 kpc core, demonstrating that the AGN has a profound effect on its immediate surroundings. The coolest X-ray emitting gas in M87 has a temperature of ~0.5 keV and is spatially coincident with Halpha+NII nebulae, forming a multiphase medium where the cooler gas phases are arranged in magnetized filaments. We place strong upper limits of 0.06 Msun/yr on the amount of plasma cooling radiatively from 0.5 keV and show that a uniform, volume-averaged heating mechanism could not be preventing the cool gas from further cooling. All of the bright Halpha filaments appear in the downstream region of the <3 Myr old shock front, at smaller radii than ~0.6'. We suggest that shocks induce shearing around the filaments, thereby promoting mixing of the cold gas with the ambient hot ICM via instabilities. By bringing hot thermal particles into contact with the cool, line-emitting gas, mixing can supply the power and ionizing particles needed to explain the observed optical spectra. Mixing of the coolest X-ray emitting plasma with the cold optical line emitting filamentary gas promotes efficient conduction between the two phases, allowing non-radiative cooling which could explain the lack of X-ray gas with temperatures under 0.5 keV.
To understand the formation and evolution of galaxies, it is important to have a full comprehension of the role played by the metallicity, star formation rate (SFR), morphology, and color. The interplay of these parameters at different redshifts will substantially affect the evolution of galaxies and, as a consequence, the evolution of them will provide important clues and constraints on the galaxy evolution models. In this work we focus on the evolution of the SFR, metallicity of the gas, and morphology of galaxies at low redshift in search of signs of evolution. We use the S2N2 diagnostic diagram as a tool to classify star--forming, composite, and AGN galaxies. We analyzed the evolution of the three principal BPT diagrams, estimating the SFR and specific SFR (SSFR) for our samples of galaxies, studying the luminosity and mass-metallicity relations, and analyzing the morphology of our sample of galaxies through the g-r color, concentration index, and SSFR. We found that the S2N2 is a reliable diagram to classify star--forming, composite, and AGNs galaxies. We demonstrate that the three principal BPT diagrams show an evolution toward higher values of [OIII]5007/Hb due to a metallicity decrement. We found an evolution in the mass-metallicity relation of ~ 0.2 dex for the redshift range 0.3 < z < 0.4 compared to our local one. From the analysis of the evolution of the SFR and SSFR as a function of the stellar mass and metallicity, we discovered a group of galaxies with higher SFR and SSFR at all redshift samples, whose morphology is consistent with those of late-type galaxies. Finally, the comparison of our local (0.04<z<0.1) with our higher redshift sample (0.3<z<0.4), show that the metallicity, the SFR and morphology, evolve toward lower values of metallicity, higher SFRs, and late--type morphologies for the redshift range 0.3<z<0.4
Fifty-nine quasars in the background of the Magellanic Clouds had brightness records monitored by the MACHO project during the years 1992 - 99. Because the circumpolar fields of these quasars had no seasonal sampling defects, their observation produced data sets well suited to further careful analysis. Following a preliminary report wherein we showed the existence of reverberation in the data for one of the radio-quiet quasars in this group, we now show that similar reverberations have been seen in all of the 55 radio-quiet quasars with adequate data, making possible the determination of the quasar inclination to the observer's line of sight. The reverberation signatures indicate the presence of large-scale elliptical outflow structures similar to that predicted by the Elvis (2000) and "dusty torus" models of quasars, whose characteristic sizes vary within a surprisingly narrow range of scales. More importantly the observed opening angle relative to the polar axis of the universal elliptical outflow structure present was consistently found to be on the order of 78 degrees.
Several anomalies appear to be present in the large-angle cosmic microwave background (CMB) anisotropy maps of WMAP, including the alignment of large-scale multipoles and a hemispheric asymmetry. Models in which isotropy is spontaneously broken (e.g., by a scalar field) have been proposed as explanations for these anomalies, as have models in which a preferred direction is imposed during inflation. We examine models inspired by these, in which isotropy is broken by a multiplicative factor with dipole and/or quadrupole terms. We evaluate the evidence provided by these anomalies using a Bayesian framework, finding that the evidence in favor of the model is generally weak. We also compute approximate changes in estimated cosmological parameters in the broken-isotropy models. Only the overall normalization of the power spectrum is modified significantly.
GW Notes was born from the need for a journal where the distinct communities involved in gravitation wave research might gather. While these three communities - Astrophysics, General Relativity and Data Analysis - have made significant collaborative progress over recent years, we believe that it is indispensable to future advancement that they draw closer, and that they speak a common idiom. For this GW Notes issue we have approached Nicol\'as Yunes (Princeton University) to extend in high detail his recent work on EMRI waveforms for our highlight article.
Using a high resolution N-body simulation of a two-component dwarf galaxy orbiting in the potential of the Milky Way, we study two effects that lead to significant biases in mass estimates of dwarf spheroidal galaxies. Both are due to the strong tidal interaction of initially disky dwarfs with their host. The tidal stripping of dwarf stars leads to the formation of strong tidal tails that are typically aligned with the line of sight of an observer positioned close to the host center. The stars from the tails contaminate the kinematic samples leading to a velocity dispersion profile increasing with the projected radius and resulting in an overestimate of mass. The tidal stirring of the dwarf leads to the morphological transformation of the initial stellar disk into a bar and then a spheroid. The distribution of stars in the dwarf remains non-spherical for a long time leading to an overestimate of its mass if it is observed along the major axis and an underestimate if it seen in the perpendicular direction.
We combine near-to-mid-IR Spitzer data with shorter wavelength observations (optical to X-rays) to get insights on the properties of a sample of luminous, obscured Active Galactic Nuclei (AGN). We aim at modeling their broad-band Spectral Energy Distributions (SEDs) in order to estimate the main parameters related to the dusty torus. The sample comprises 16 obscured high-redshift (0.9<z<2.1) xray luminous quasars (L_2-10 ~ 10^44 erg s-1) selected from the HELLAS2XMM survey. The SEDs are described by a multi-component model including a stellar component, an AGN component and a starburst. The majority (~80%) of the sources show moderate optical depth (tau_9.7um<3) and the derived column densities N_H are consistent with the xray inferred values (10^22 <N_H< 3x10^23 cm-2) for most of the objects, confirming that the sources are moderately obscured Compton-thin AGN. Accretion luminosities in the range 5x10^44 < Lbol < 4x10^46 erg s-1 are inferred. We compare model luminosities with those obtained by integrating the observed SED, finding that the latter are lower by a factor of ~2 in the median. The discrepancy can be as high as an order of magnitude for models with high optical depth (tau_9.7um=10). The ratio between the luminosities obtained by the fitting procedure and from the observed SED suggest that, at least for Type~2 AGN, observed bolometric luminosities are likely to underestimate intrinsic ones and the effect is more severe for highly obscured sources. Bolometric corrections from the hard X-ray band are computed and have a median value of k_2-10kev ~ 20. The obscured AGN in our sample are characterized by relatively low Eddington ratios (median lambda_Edd~0.08). On average, they are consistent with the Eddington ratio increasing at increasing bolometric correction (e.g. Vasudevan & Fabiam 2009).
Strong lensing is a powerful tool to address three major astrophysical issues: understanding the spatial distribution of mass at kpc and sub-kpc scale, where baryons and dark matter interact to shape galaxies as we see them; determining the overall geometry, content, and kinematics of the universe; studying distant galaxies, black holes, and active nuclei that are too small or too faint to be resolved or detected with current instrumentation. After summarizing strong gravitational lensing fundamentals, I present a selection of recent important results. I conclude by discussing the exciting prospects of strong gravitational lensing in the next decade.
Centaurus A (NGC5128) is a fantastic object, ideal for investigating the characteristics and the role of the gas in an early-type galaxy in the presence of a radio-loud active nucleus. The different phases of the gas - hot (X-ray), warm (ionised) and cold (HI and molecular) - are all detected in this object and can be studied, due to its proximity, at very high spatial resolution. This richness makes Centaurus A truly unique. Spatially, these gas structures span from the pc to the tens of kpc scale. Thus, they allow us to trace very different phenomena, from the formation and evolution of the host galaxy, to the interplay between nuclear activity and ISM and the feeding mechanism of the central black hole. A lot of work has been done to study and understand the characteristics of the gas in this complex object and here I summarise what has been achieved so far.
We investigate the variability of CIV 1549A broad absorption line (BAL) troughs over rest-frame time scales of up to ~7 yr in 14 quasars at redshifts z>2.1. For 9 sources at sufficiently high redshift, we also compare CIV and SiIV 1400A absorption variation. We compare shorter- and longer-term variability using spectra from up to four different epochs per source and find complex patterns of variation in the sample overall. The scatter in the change of absorption equivalent width (EW), Delta EW, increases with the time between observations. BALs do not, in general, strengthen or weaken monotonically, and variation observed over shorter (<months) time scales is not predictive of multi-year variation. We find no evidence for asymmetry in the distribution of Delta EW that would indicate that BALs form and decay on different time scales, and we constrain the typical BAL lifetime to be >~30 yr. The BAL absorption for one source, LBQS 0022+0150, has weakened and may now be classified as a mini-BAL. Another source, 1235+1453, shows evidence of variable, blue continuum emission that is relatively unabsorbed by the BAL outflow. CIV and SiIV BAL shape changes are related in at least some sources. Given their high velocities, BAL outflows apparently traverse large spatial regions and may interact with parsec-scale structures such as an obscuring torus. Assuming BAL outflows are launched from a rotating accretion disk, notable azimuthal symmetry is required in the outflow to explain the relatively small changes observed in velocity structure over times up to 7 yr.
We present measurements of carbon monoxide emission in the central region of the nearby starburst NGC 6000 taken with the Submillimeter Array. The J=2-1 transition of 12CO, 13CO, and C18O were imaged at a resolution of ~3''x2'' (450x300 pc). We accurately determine the dynamical center of NGC 6000 at R.A(J2000.0)=15h49m49.5s and dec(J2000.0)=-29d23'13'' which agrees with the peak of molecular emission position. The observed CO dynamics could be explained in the context of the presence of a bar potential affecting the molecular material, likely responsible for the strong nuclear concentration where more than 85% of the gas is located. We detect a kinematically detached component of dense molecular gas at relatively high velocity which might be fueling the star formation. A total nuclear dynamical mass of 7x10^9 Msun is derived and a total mass of gas of 4.6x10^8 Msun, yielding a Mgas/Mdyn~6%, similar to other previously studied barred galaxies with central starbursts. We determined the mass of molecular gas with the optically thin isotopologue C18O and we estimate a CO-to-H2 conversion factor X(CO)=0.4x10^20 cm-2/(K km s-1) in agreement with that determined in other starburst galaxies.
In this article we study an intermediate inflationary universe models using the Gauss-Bonnet brane. General conditions required for these models to be realizable are derived and discussed. We use recent astronomical observations to constraint the parameters appearing in the model.
We explore the cosmic evolution of massive black hole (MBH) seeds forming within 'quasistars' (QSs), accreting black holes embedded within massive hydrostatic gaseous envelopes. These structures could form if the infall of gas into the center of a halo exceeds about 1 solar mass per year. We use a merger-tree approach to estimate the rate at which QSs might form as a function of redshift, and the statistical properties of the resulting QS and seed black hole populations. We relate the triggering of runaway infall to major mergers of gas-rich galaxies, and to a threshold for global gravitational instability, which we link to the angular momentum of the host. This is the main parameter of our models. Once infall is triggered, its rate is determined by the halo potential; the properties of the resulting QS and seed black hole depend on this rate. After the epoch of QSs, we model the growth of MBHs within their hosts in a merger-driven accretion scenario. We compare MBH seeds grown inside quasistars to a seed model that derives from the remnants of the first metal-free stars, and also study the case in which both channels of MBH formation operate simultaneously. We find that a limited range of QS/MBH formation efficiencies exists that allows one to reproduce observational constraints. Our models match the density of z = 6 quasars, the cumulative mass density accreted onto MBHs (according to Soltan's argument), and the current mass density of MBHs. The mass function of QSs peaks at mass ~ 1e6 solar masses, and we calculate the number counts for the JWST in the 2-10 micron band. We find that JWST could detect up to several QSs per field at z \simeq 5 - 10.
We show, considering a specific f(R)-gravity model, that the Jordan frame and the Einstein frame are physically non-equivalent, although they are connected by a conformal transformation which yields a mathematical equivalence. Since all the calculations are performed analytically, this non-equivalence is shown in an unambiguous way.
In this paper we take the reported measurements of black hole spin for black hole X-ray binaries, and compare them against measurements of jet power and speed across all accretion states in these systems. We find no evidence for any correlation between the properties of the jets and the reported spin measurements. These constraints are strongest in the hard X-ray state, which is associated with a continuous powerful jet. We are led to conclude that one or more of the following is correct: (i) the calculated jet power and speed measurements are wrong, (ii) the reported spin measurements are wrong, (iii) there is no strong dependence of the jet properties on black hole spin. In addition to this lack of observational evidence for a relation between black hole spin and jet properties in stellar mass black holes, we highlight the fact that there appear to be at least three different ways in which the jet power and/or radiative efficiency from a black hole X-ray binary may vary, two of which are certainly independent of spin because they occur in the same source on relatively short timescales, and the third which does not correlate with any reported measurements of black hole spin. We briefly discuss how these findings may impact upon interpretations of populations of active galactic nuclei in the context of black hole spin and merger history.
We investigate the new agegraphic dark energy scenario in a universe governed by Horava-Lifshitz gravity. We consider both the detailed and non-detailed balanced version of the theory, we impose an arbitrary curvature, and we allow for an interaction between the matter and dark energy sectors. Extracting the differential equation for the evolution of the dark energy density parameter and performing an expansion of the dark energy equation-of-state parameter, we calculate its present and its low-redshift value as functions of the dark energy and curvature density parameters at present, of the Horava-Lifshitz running parameter $\lambda$, of the new agegraphic dark energy parameter $n$, and of the interaction coupling $b$. We find that $w_0=-0.82^{+0.08}_{-0.08}$ and $w_1=0.08^{+0.09}_{-0.07}$. Although this analysis indicates that the scenario can be compatible with observations, it does not enlighten the discussion about the possible conceptual and theoretical problems of Horava-Lifshitz gravity.
Links to: arXiv, form interface, find, astro-ph, recent, 1003, contact, help (Access key information)
We present a sample of 20 massive galaxy clusters with total virial masses in
the range of 6 10^14 M_sol< M_vir<2 10^15 M_sol, re-simulated with a customized
version of the 1.5. ENZO code employing Adaptive Mesh Refinement. This
technique allowed us to obtain unprecedented high spatial resolution (=25kpc/h)
up to the distance of 3 virial radii from the clusters center, and makes it
possible to focus with the same level of detail on the physical properties of
the innermost and of the outermost cluster regions, providing new clues on the
role of shock waves and turbulent motions in the ICM, across a wide range of
scales.
In this paper, a first exploratory study of this data set is presented. We
report on the thermal properties of galaxy clusters at z=0. Integrated and
morphological properties of gas density, gas temperature, gas entropy and
baryon fraction distributions are discussed, and compared with existing
outcomes both from the observational and from the numerical literature.
Our cluster sample shows an overall good consistency with the results
obtained adopting other numerical techniques (e.g. Smoothed Particles
Hydrodynamics), yet it provides a more accurate representation of the accretion
patterns far outside the cluster cores. We also reconstruct the properties of
shock waves within the sample by means of a velocity-based approach, and we
study Mach numbers and energy distributions for the various dynamical states in
clusters, giving estimates for the injection of Cosmic Rays particles at
shocks. The present sample is rather unique in the panorama of cosmological
simulations of massive galaxy clusters, due to its dynamical range, statistics
of objects and number of time outputs. For this reason, we deploy a public
repository of the available data, accessible via web portal at
this http URL
An increasing number of Active Galactic Nuclei (AGNs) exhibit broad, double-peaked Balmer emission lines,which represent some of the best evidence for the existence of relatively large-scale accretion disks in AGNs. A set of 20 double-peaked emitters have been monitored for nearly a decade in order to observe long-term variations in the profiles of the double-peaked Balmer lines. Variations generally occur on timescales of years, and are attributed to physical changes in the accretion disk. Here we characterize the variability of a subset of seven double-peaked emitters in a model independent way. We find that variability is caused primarily by the presence of one or more discrete "lumps" of excess emission; over a timescale of a year (and sometimes less) these lumps change in amplitude and shape, but the projected velocity of these lumps changes over much longer timescales (several years). We also find that all of the objects exhibit red peaks that are stronger than the blue peak at some epochs and/or blueshifts in the overall profile, contrary to the expectations for a simple, circular accretion disk model, thus emphasizing the need for asymmetries in the accretion disk. Comparisons with two simple models, an elliptical accretion disk and a circular disk with a spiral arm, are unable to reproduce all aspects of the observed variability, although both account for some of the observed behaviors. Three of the seven objects have robust estimates of the black hole masses. For these objects the observed variability timescale is consistent with the expected precession timescale for a spiral arm, but incompatible with that of an elliptical accretion disk. We suggest that with the simple modification of allowing the spiral arm to be fragmented, many of the observed variability patterns could be reproduced.
We report one of the most accurate measurements of the three-dimensional large-scale galaxy power spectrum achieved to date, using 56,159 redshifts of bright emission-line galaxies at effective redshift z=0.6 from the WiggleZ Dark Energy Survey at the Anglo-Australian Telescope. We describe in detail how we construct the survey selection function allowing for the varying target completeness and redshift completeness. We measure the total power with an accuracy of approximately 5% in wavenumber bands of dk=0.01 h/Mpc. A model power spectrum including non-linear corrections, combined with a linear galaxy bias factor and a simple model for redshift-space distortions, provides a good fit to our data for scales k < 0.4 h/Mpc. The large-scale shape of the power spectrum is consistent with the best-fitting matter and baryon densities determined by observations of the Cosmic Microwave Background radiation. By splitting the power spectrum measurement as a function of tangential and radial wavenumbers we delineate the characteristic imprint of peculiar velocities. We use these to determine the growth rate of structure as a function of redshift in the range 0.4 < z < 0.8, including a data point at z=0.78 with an accuracy of 20%. Our growth rate measurements are a close match to the self-consistent prediction of the LCDM model. The WiggleZ Survey data will allow a wide range of investigations into the cosmological model, cosmic expansion and growth history, topology of cosmic structure, and Gaussianity of the initial conditions. Our calculation of the survey selection function will be released at a future date via our website wigglez.swin.edu.au.
The spatial distribution of galaxies we observed is subject to the given condition that we, human beings are sitting right in a galaxy -- the Milky Way. Thus the ergodicity assumption is questionable in interpretation of the observed galaxy distribution. The difference between observed statistics (volume average) and the true cosmic value (ensemble average), which we term as the ergodicity bias, is not a trivia quantity and may become significant systematics to statistical analysis of large scale structure and precision cosmology. We numerically evaluate the effect for a set of survey depth and near-end distance cut and find that the ergodicity bias in observed two- and three-point correlation functions can indeed become non-negligible in some cases, especially for the three-point correlation function. One has to take extra care in galaxy sample construction and interpretation of the statistics of the sample, especially when the characteristic redshift is low.
Wide field surveys will soon be discovering Type Ia supernovae (SNe) at rates of several thousand per year. Spectroscopic follow-up can only scratch the surface for such enormous samples, so these extensive data sets will only be useful to the extent that they can be characterized by the survey photometry alone. In a companion paper (Rodney and Tonry, 2009) we introduced the SOFT method for analyzing SNe using direct comparison to template light curves, and demonstrated its application for photometric SN classification. In this work we extend the SOFT method to derive estimates of redshift and luminosity distance for Type Ia SNe, using light curves from the SDSS and SNLS surveys as a validation set. Redshifts determined by SOFT using light curves alone are consistent with spectroscopic redshifts, showing a root-mean-square scatter in the residuals of RMS_z=0.051. SOFT can also derive simultaneous redshift and distance estimates, yielding results that are consistent with the currently favored Lambda-CDM cosmological model. When SOFT is given spectroscopic information for SN classification and redshift priors, the RMS scatter in Hubble diagram residuals is 0.18 mags for the SDSS data and 0.28 mags for the SNLS objects. Without access to any spectroscopic information, and even without any redshift priors from host galaxy photometry, SOFT can still measure reliable redshifts and distances, with an increase in the Hubble residuals to 0.37 mags for the combined SDSS and SNLS data set. Using Monte Carlo simulations we predict that SOFT will be able to improve constraints on time-variable dark energy models by a factor of 2-3 with each new generation of large-scale SN surveys.
We introduce a novel class of field theories where energy always flows along timelike geodesics, mimicking in that respect dust, yet which possess non-zero pressure. This theory comprises two scalar fields, one of which is a Lagrange multiplier enforcing a constraint between the other's field value and derivative. We show that this system possesses no wave-like modes but retains a single dynamical degree of freedom. Thus, the sound speed is always identically zero on all backgrounds. In particular, cosmological perturbations reproduce the standard behaviour for hydrodynamics with vanishing sound speed. Using all these properties we propose a model unifying Dark Matter and Dark Energy in a single degree of freedom. In a certain limit this model is able to exactly reproduce the evolution history of Lambda-CDM, while deviations away from the standard expansion history produce a potentially measurable difference in the evolution of structure.
We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles ($\Omega_{m}=1$). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving BAO + CMB + SNe Ia data yields ${\tilde{\Omega}}_{m}= 0.28\pm 0.01$ ($1\sigma$) where $\tilde{{\Omega}}_{m}$ is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from large scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual $\Lambda$CDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with $\Lambda$CDM scenarios trough a more detailed analysis involving CMB, weak lensing, as well as the large scale structure.
For the use of Gamma-Ray Bursts (GRBs) to probe cosmology in a cosmology-independent way, a new method has been proposed to obtain luminosity distances of GRBs by interpolating directly from the Hubble diagram of SNe Ia, and then calibrating GRB relations at high redshift. In this paper, following the basic assumption in the interpolation method that objects at the same redshift should have the same luminosity distance, we propose another approach to calibrate GRB luminosity relations with cosmographic fitting directly from SN Ia data. In cosmography, there is a well-known fitting formula which can reflect the Hubble relation between luminosity distance and redshift with cosmographic parameters which can be fitted from observation data. Using the Cosmographic fitting results from the Union set of SNe Ia, we calibrate five GRB relations using GRB sample at $z\leq1.4$ and deduce distance moduli of GRBs at $1.4< z \leq 6.6$ by generalizing above calibrated relations at high redshift. Finally, we constrain the dark energy parameterization models of the Chevallier-Polarski-Linder (CPL) model and the Jassal-Bagla-Padmanabhan (JBP) model with GRB data at high redshift, as well as with the Cosmic Microwave Background radiation (CMB) and the baryonic acoustic oscillation (BAO) observations, and we find the $\Lambda$CDM model is consistent with the current data in 1-$\sigma$ confidence region.
We present a multi-wavelength, UV-to-radio analysis for a sample of massive (M$_{\ast}$ $\sim$ 10$^{10}$ M$_\odot$) IRAC- and MIPS 24$\mu$m-detected Lyman Break Galaxies (LBGs) with spectroscopic redshifts z$\sim$3 in the GOODS-North field (L$_{\rm UV}$$>1.8\times$L$^{\ast}_{z=3}$). For LBGs without individual 24$\mu$m detections, we employ stacking techniques at 24$\mu$m, 1.1mm and 1.4GHz, to construct the average UV-to-radio spectral energy distribution and find it to be consistent with that of a Luminous Infrared Galaxy (LIRG) with L$\rm_{IR}$=4.5$^{+1.1}_{-2.3}$$\times 10^{11}$ L$_{\odot}$ and a specific star formation rate (SSFR) of 4.3 Gyr$^{-1}$ that corresponds to a mass doubling time $\sim$230 Myrs. On the other hand, when considering the 24$\mu$m-detected LBGs we find among them galaxies with L$\rm_{IR}> 10^{12}$ L$_{\odot}$, indicating that the space density of $z\sim$3 UV-selected Ultra-luminous Infrared Galaxies (ULIRGs) is $\sim$(1.5$\pm$0.5)$\times 10^{-5}$ Mpc$^{-3}$. We compare measurements of star formation rates (SFRs) from data at different wavelengths and find that there is tight correlation (Kendall's $\tau >$ 99.7%) and excellent agreement between the values derived from dust-corrected UV, mid-IR, mm and radio data for the whole range of L$\rm_{IR}$ up to L$\rm_{IR}$ $\sim$ 10$^{13}$ L$_{\odot}$. This range is greater than that for which the correlation is known to hold at z$\sim$2, possibly due to the lack of significant contribution from PAHs to the 24$\mu$m flux at $z\sim$3. The fact that this agreement is observed for galaxies with L$\rm_{IR}$ $>$ 10$^{12}$ L$_{\odot}$ suggests that star-formation in UV-selected ULIRGs, as well as the bulk of star-formation activity at this redshift, is not embedded in optically thick regions as seen in local ULIRGs and submillimeter-selected galaxies at $z=2$.
We have studied the implications of high sensitivity polarization measurements of objects from the WMAP point source catalogue made using the VLA at 8.4, 22 and 43 GHz. The fractional polarization of sources is almost independent of frequency with a median of ~2 per cent and an average, for detected sources, of ~3.5 per cent. These values are also independent of the total intensity over the narrow range of intensity we sample. Using a contemporaneous sample of 105 sources detected at all 3 VLA frequencies, we have investigated the spectral behaviour as a function of frequency by means of a 2-colour diagram. Most sources have power-law spectra in total intensity, as expected. On the other hand they appear to be almost randomly distributed in the polarized intensity 2-colour diagram. This is compatible with the polarized spectra being much less smooth than those in intensity and we speculate on the physical origins of this. We have performed an analysis of the correlations between the fractional polarization and spectral indices including computation of the principal components. We find that there is little correlation between the fractional polarization and the intensity spectral indices. This is also the case when we include polarization measurements at 1.4 GHz from the NVSS. In addition we compute 45 rotation measures from polarization position angles which are compatible with a \lambda^2 law. We use our results to predict the level of point source confusion noise that contaminates CMB polarization measurements aimed at detecting primordial gravitational waves from inflation. We conclude that some level of source subtraction will be necessary to detect r~0.1 below 100 GHz and at all frequencies to detect r~0.01. We present estimates of the level of contamination expected and the number of sources which need to be subtracted as a function of the imposed cut flux density and frequency.
We report on new sensitive CO J=6-5 line observations of several luminous infrared Galaxies (LIRGs: L$_{\rm IR}$(8-1000$\mu $m$)\ga 10^{11}$ L$_{\odot}$), 36% (8/22) of them ULIRGs (L$_{\rm IR}$$>10^{12}$ L$_{\odot}$), and two powerful local AGN: the optically luminous QSO PG 1119+120, and the powerful radio galaxy 3C 293 using the James Clerk Maxwell Telescope (JCMT) on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission Spectral Energy Distributions (SEDs) in the far-infrared - submillimetre from the literature to constrain the properties of the star-forming ISM in these systems. We then build the first {\it local} CO Spectral Line Energy Distributions (SLEDs) for the {\it global} molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: ...
A primordial degree of circular polarization of the Cosmic Microwave Background is not observationally excluded. The hypothesis of primordial dichroism can be quantitatively falsified if the plasma is magnetized prior to photon decoupling since the initial V-mode polarization affects the evolution of the temperature fluctuations as well as the equations for the linear polarization. The observed values of the temperature and polarization angular power spectra are used to infer constraints on the amplitude and on the spectral slope of the primordial V-mode. Prior to photon decoupling magnetic fields play the role of polarimeters insofar as they unveil the circular dichroism by coupling the V-mode power spectrum to the remaining brightness perturbations. Conversely, for angular scales ranging between 4 deg and 10 deg the joined bounds on the magnitude of circular polarization and on the magnetic field intensity suggest that direct limits on the V-mode power spectrum in the range of 0.01 mK could directly rule out pre-decoupling magnetic fields in the range of 10-100 nG. The frequency dependence of the signal is located, for the present purposes, in the GHz range.
Observations in the cosmological domain are heavily dependent on the validity of distance duality relation, $\eta=D_{L}(L)(1+z)^{-2}/D_{A}(z)=1$, an exact result required by the Etherington reciprocity theorem, where $D_{A}(z)$ and $D_{L}(z)$ are the angular and luminosity distances, respectively. In the limit of very small redshifts, $D_{A}(z) \approx D_{L}(z)$, and this ratio is trivially satisfied. In this letter we investigate some consequences of such a relation by assuming that $\eta$ is a function of the redshift parameterized by two different relations: $\eta(z) = 1 + \eta_{0}z$ and $\eta(z) = 1 + \eta_{0}z/(1+z)$, where $\eta_0$ is a constant parameter quantifying a possible departing from the strict validity of the reciprocity relation. In order to determine the pdf of $\eta_{0}$ we consider the angular diameter distances from galaxy clusters recently studied by two different groups assuming elliptical and spherical $\beta$ models. It is found that the elliptical geometry is in good agreement with no violation of the distance duality relation for both cases (the pdf is peaked close to $\eta_0=0$, $1\sigma$), while the spherical one is only marginally compatible at $3\sigma$. These results, obtained by combining Sunyaev-Zeldovich effect (SZE) and X-ray surface brightness data from clusters with the latest WMAP results (7-years), favors the elliptical geometry for clusters as advocated by De Filippis et al. [ApJ 2005, 625, 108].
In this second paper we define a Post-Minkowskian weak field approximation
leading to a linearization of the Hamilton equations of ADM tetrad gravity in
the York canonical basis in a family of non-harmonic 3-orthogonal Schwinger
time gauges. The York time ${}^3K$ (the relativistic inertial gauge variable,
not existing in Newtonian gravity, parametrizing the family and connected to
the freedom in clock synchronization, i.e. to the definition of the
instantaneous 3-spaces) is put equal to an arbitrary numerical function. The
matter are point particles, with a Grassmann regularization of self-energies,
and the electro-magnetic field in the radiation gauge: a ultraviolet cutoff
allows a consistent linearization, which is shown to be the lowest order of a
Hamiltonian Post-Minkowskian (HPM) expansion. We solve the constraints and the
Hamilton equations for the tidal variables and we find Post-Minkowskian
gravitational waves with asymptotic background (and the correct quadrupole
emission formula) propagating on dynamically determined non-Euclidean 3-spaces.
The conserved ADM energy and the Grassmann regularizzation of self-energies
imply the correct energy balance. Then a Post-Newtonian (PN) expansion at all
orders of HPM can be done by adding suitable slow motion conditions.
The dependence on the York time of the equations of motion of the particles
and of quantities like the redshift and the luminosity distance is explicitly
given. As a consequence of a discussion on the {\it gauge problem in general
relativity}, it turns out that there is the possibility that at least part of
dark matter could be explained as a relativistic inertial effect at the 0.5PN
order induced by the York time.
We discuss possible signatures of Asymmetric Dark Matter (ADM) through dark matter decays to neutrinos. We specifically focus on scenarios in which the Standard Model (SM) baryon asymmetry is transferred to the dark sector (DS) through higher dimensional operators in chemical equilibrium. In such cases, the dark matter (DM) carries lepton and/or baryon number, and we point out that for a wide range of quantum number assignments, by far the strongest constraints on dark matter decays come from decays to neutrinos through the "neutrino portal" operator HL. Together with the facts that ADM favors lighter DM masses ~ a few GeV and that the decays would lead only to anti-neutrinos and no neutrinos (or vice versa), the detection of such decays at neutrino telescopes would provide compelling evidence for ADM. We discuss current and future bounds on models where the DM decays to neutrinos through operators of dimension <= 6. For dimension 6 operators, the scale suppressing the decay is bounded to be >~ 10^12 - 10^13 GeV.
I show that the principle of equipartition, applied to area elements of a surface which are in equilibrium at the local Davies-Unruh temperature, allows one to determine the surface number density of the microscopic spacetime degrees of freedom in any diffeomorphism invariant theory of gravity. The entropy associated with these degrees of freedom matches with the Wald entropy for the theory. This result also allows one to attribute an entropy density to the spacetime in a natural manner. The field equations of the theory can then be obtained by extremising this entropy. Moreover, when the microscopic degrees of freedom are in local thermal equilibrium, the spacetime entropy of a bulk region resides on its boundary.
We present the first successful application of the method of Matched Expansions for the calculation of the self-force on a point particle in a curved spacetime. We investigate the case of a scalar charge in the Nariai spacetime, which serves as a toy model for a point mass moving in the Schwarzschild black hole background. We discuss the singularity structure of the Green function beyond the normal neighbourhood and the interesting effect of caustics on null wave propagation.
We reconsider thermal production of axinos in the early universe, adding: a) missed terms in the axino interaction; b) production via gluon decays kinematically allowed by thermal masses; c) a precise modeling of reheating. We find an axino abunance a few times larger than previous computations.
Links to: arXiv, form interface, find, astro-ph, recent, 1003, contact, help (Access key information)
In cosmic inflation driven by a scalar gauge singlet field with a tree level Higgs potential, the scalar to tensor ratio r is estimated to be larger than 0.036, provided the scalar spectral index n_s >= 0.96. We discuss quantum smearing of these predictions arising from the inflaton couplings to other particles such as GUT scalars, and show that these corrections can significantly decrease r. However, for n_s >= 0.96, we obtain r >= 0.02 which can be tested by the Planck satellite.
Cosmological probes are steadily reducing the total neutrino mass window, resulting in constraints on the neutrino-mass degeneracy as the most significant outcome. In this work we explore the discovery potential of cosmological probes to constrain the neutrino hierarchy, and point out some subtleties that could yield spurious claims of detection. This has an important implication for next generation of double beta decay experiments, that will be able to achieve a positive signal in the case of degenerate or inverted hierarchy of Majorana neutrinos. We find that cosmological experiments that nearly cover the whole sky could in principle distinguish the neutrino hierarchy by yielding 'substantial' evidence for one scenario over the another, via precise measurements of the shape of the matter power spectrum from large scale structure and weak gravitational lensing.
We introduce a new figure of merit for comparison of proposed dark energy experiments. The new figure of merit is objective and has several distinct advantages over the Dark Energy Task Force Figure of Merit, which we discuss in the text.
Extremely metal-deficient (XMD) galaxies, by definition, have oxygen abundances \le 1/10 solar, and form a very small fraction of the local gas-rich, star-forming dwarf galaxy population. We examine their positions in the luminousity-metallicity (L-Z) and mass-metallicity (M-Z) planes, with respect to the L-Z and M-Z relations of other gas-rich, star-forming dwarf galaxies, viz., blue compact galaxies (BCGs) and dwarf irregular (dI) galaxies. We find that while the metallicities of some low-luminousity XMD galaxies are consistent with those expected from the L-Z relation, other XMD galaxies are deviant. We determine the 95 per cent confidence interval around the L-Z relation for BCGs, and find that its lower boundary is given by 12 + log(O/H) = -0.177 M_{B} + 4.87. We suggest that a galaxy should be regarded as XMD, in a statistically significant manner, only if it lies below this boundary in the L-Z plane. Of our sample of XMD galaxies, we find that more than half are XMD by this criterion. We also determine the gas mass fractions and chemical yields of galaxies in all three samples. We find that the effective chemical yield increases with increasing baryonic mass, consistent with what is expected if outflows of metal-enriched gas are important in determining the effective yield. XMD galaxies have lower effective yield than BCG/dI galaxies of similar baryonic mass. Motivated by the fact that interactions are common in XMD galaxies, we suggest that improved (tidally-driven) mixing of the interstellar media (ISM) in XMD galaxies leads to a lowering of both, the measured metallicity and the calculated effective yield. We suggest that XMD galaxies are deviant from the L-Z relation because of a combination of being gas-rich (i.e., having processed less gas into stars) and having more uniform mixing of metals in their ISM.
We first consider the Einstein-aether theory with a \emph{gravitational coupling} and a Lagrange multiplier field, and then consider the non-minimally coupled quintessence field theory with Lagrange multiplier field. We study the influence of the Lagrange multiplier field on these models. We show that the energy density evolution of the Einstein-aether field and the quintessence field are significantly modified. The energy density of the Einstein-aether is nearly a constant during the entire history of the Universe. The energy density of the quintessence field can also be kept nearly constant in the matter dominated Universe, or even exhibit a phantom-like behavior for some models. This suggests a possible dynamical origin of the cosmological constant or dark energy. Further more, for the canonical quintessence in the absence of gravitational coupling, we find that the quintessence scalar field can play the role of cold dark matter with the introduction of a Lagrange multiplier field. We conclude that the Lagrange multiplier field could play a very interesting and important role in the construction of cosmological models.
A study of two dE/dSph members of the nearby M 81 group of galaxies, KDG 61 and UGC 5442 = KDG 64, has been made. Direct Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) images and integrated-light spectra of 6 m telescope of Special Astrophysical Observatory of Russian Academy of Sciences have been used for quantitative star formation history analysis. The spectroscopic and colour-magnitude diagrams analysis gives consistent results. These galaxies appear to be dominated by an old population (12-14 Gyr) of low metallicity ([Fe/H]~-1.5). Stars of ages about 1 to 4 Gyr have been detected in both galaxies. The later population shows marginal metal enrichment. We do not detect any significant radial gradients in age or metallicity in these galaxies. Our radial velocity measurement suggests that the HII knot on the line-of-sight of KDG 61 is not gravitationally attached to the galaxy.
We analyze correlations between the first letter of the name of an author and the number of citations their papers receive. We look at simple mean counts, numbers of highly-cited papers, and normalized h-indices, by letter. To our surprise, we conclude that orthographically senior authors produce a better body of work than their colleagues, despite some evidence of discrimination against them.
Astronomical observations have shown that the expansion of the universe is at present accelerating, consistently with a constant negative pressure or tension. This is a major puzzle because we do not understand why this tension is so small compared to the Planck density; why, being so small, it is not exactly zero; and why it has precisely the required value to make the expansion start accelerating just at the epoch when we are observing the universe. The recently proposed conjecture by Afshordi that black holes create a gravitational aether owing to quantum gravity effects, which may be identified with this invisible tension, can solve this coincidence problem. The fact that the expansion of the universe is starting to accelerate at the epoch when we observe it is a necessity that is implied by our origin in a planet orbiting a star that formed when the age of the universe was of the same order as the lifetime of the star. This argument is unrelated to any anthropic reasoning.
We study the possibility of detecting oscillating patterns in the equation of state (EoS) of the dark energy using different cosmological datasets. We follow a phenomenological approach and study three different oscillating models for the EoS, one of them periodic and the other two damped (proposed here for the first time). All the models are characterised by the amplitude value, the centre and the frequency of oscillations. In contrast to previous works in the literature, we do not fix the value of the frequency to a fiducial value related to the time extension of chosen datasets, but consider a discrete set of values, so to avoid arbitrariness and try and detect any possible time period in the EoS. We test the models using a recent collection of SNeIa, direct Hubble data and Gamma Ray Bursts data. Main results are: I. even if constraints on the amplitude are not too strong, we detect a trend of it versus the frequency, i.e. decreasing (and even negatives) amplitudes for higher frequencies; II. the centre of oscillation (which corresponds to the present value of the EoS parameter) is very well constrained, phantom behaviour is excluded at $1\sigma$ level and trend which is in agreement with the one for the amplitude appears; III. the frequency is hard to constrain, showing similar statistical validity for all the values of the discrete set chosen, but the best fit of all the scenarios considered is associated with a period which is in the redshift range depicted by our cosmological data. The "best" oscillating models are compared with $\Lambda$CDM using dimensionally consistent a Bayesian approach based information criterion and the conclusion reached is the non existence of significant evidence against dark energy oscillations.
Since the first limit on the (local) primordial non-Gaussianity parameter, fNL, was obtained from COBE data in 2002, observations of the CMB have been playing a central role in constraining the amplitudes of various forms of non-Gaussianity in primordial fluctuations. The current 68% limit from the 7-year WMAP data is fNL=32+/-21, and the Planck satellite is expected to reduce the uncertainty by a factor of four in a few years from now. If fNL>>1 is found by Planck with high statistical significance, all single-field models of inflation would be ruled out. Moreover, if the Planck satellite finds fNL=30, then it would be able to test a broad class of multi-field models using the four-point function (trispectrum) test of tauNL>=(6fNL/5)^2. In this article, we review the methods (optimal estimator), results (WMAP 7-year), and challenges (secondary anisotropy, second-order effect, and foreground) of measuring primordial non-Gaussianity from the CMB data, present a science case for the trispectrum, and conclude with future prospects.
The Planck satellite is right now measuring with unprecedented accuracy the primary Background CMB anisotropies. The Standard Model of the Universe (including inflation) provides the context to analyze the CMB and other data. The Planck performance for r, the tensor to scalar ratio related to primordial B mode polarization, will depend on the quality of the data analysis. The Ginsburg Landau approach to inflation allows to take high benefit of the CMB data. The fourth degree double well inflaton potential gives an excellent fit to the current CMB+LSS data. We evaluate the Planck precision to the recovery of cosmological parameters within a reasonable toy model for residuals of systematic effects of instrumental and astrophysical origin based on publicly available information.We use and test two relevant models: the LambdaCDMr model, i.e. the standard LambdaCDM model augmented by r, and the LambdaCDMrT model, where the scalar spectral index, n_s, and r are related through the theoretical `banana-shaped' curve r = r(n_s) coming from the double-well inflaton potential. In the latter case, r = r(n_s) is imposed as a hard constraint in the MCMC data analysis. We take into account the white noise sensitivity of Planck in the 70, 100 and 143 GHz channels as well as the residuals from systematics errors and foregrounds. Foreground residuals turn to affect only the cosmological parameters sensitive to the B modes. The best value for r in the presence of residuals turns to be about r simeq 0.04 for both the LambdaCDMr and the LambdaCDMrT models. We compute the B mode detection probability by the most sensitive HFI-143 channel. At the level of foreground residual equal to 30% of our toy model only a 68% CL detection of r is very likely. For a 95% CL detection the level of foreground residual should be reduced to 10% or lower of the adopted toy model (ABRIDGED).
Marginal likelihoods for the cosmic expansion rates are evaluated using the `Constitution' data of 397 supernovas, thereby updating the results in some previous works. Even when beginning with a very strong prior probability that favors an accelerated expansion, we obtain a marginal likelihood for the deceleration parameter $q_0$ peaked around zero in the spatially flat case. It is also found that the new data significantly constrains the cosmographic expansion rates, when compared to the previous analyses. These results may strongly depend on the Gaussian prior probability distribution chosen for the Hubble parameter represented by $h$, with $h=0.68\pm 0.06$. This and similar priors for other expansion rates were deduced from previous data. Here again we perform the Bayesian model-independent analysis in which the scale factor is expanded into a Taylor series in time about the present epoch. Unlike such Taylor expansions in terms of redshift, this approach has no convergence problem.
We consider the effect of lensing magnification on high redshift sources in the case that magnification varies on the sky, as expected in wide fields of view or within observed galaxy clusters. We give expressions for number counts, flux and flux variance as integrals over the probability distribution of the magnification. We obtain these through a simple mapping between averages over the observed sky and over the magnification probability distribution in the source plane. Our results clarify conflicting expressions in the literature and can be used to calculate a variety of magnification effects. We highlight two applications: 1. Lensing of high-z galaxies by galaxy clusters can provide the dominant source of scatter in SZ observations at frequencies larger than the SZ null. 2. The number counts of high-z galaxies with a Schechter-like luminosity function will be changed at high luminosities to a power law, with significant enhancement of the observed counts at L > 10 L*.
We model the evolution of the mean galaxy occupation of dark-matter halos over the range $0.1<z<1.3$, using the data from the VIMOS-VLT Deep Survey (VVDS). The galaxy projected correlation function $w_p(r_p)$ was computed for a set of luminosity-limited subsamples and fits to its shape were obtained using two variants of Halo Occupation Distribution models. These provide us with a set of best-fitting parameters, from which we obtain the average mass of a halo and average number of galaxies per halo. We find that after accounting for the evolution in luminosity and assuming that we are largely following the same population, the underlying dark matter halo shows a growth in mass with decreasing redshift as expected in a hierarchical structure formation scenario. Using two different HOD models, we see that the halo mass grows by 90% over the redshift interval z=[0.5,1.0]. This is the first time the evolution in halo mass at high redshifts has been obtained from a single data survey and it follows the simple form seen in N-body simulations with $M(z) = M_0 e^{-\beta z}$, and $\beta = 1.3 \pm 0.30$. This provides evidence for a rapid accretion phase of massive halos having a present-day mass $M_0 \sim 10^{13.5} h^{-1} M_\odot$, with a $m > 0.1 M_0$ merger event occuring between redshifts of 0.5 and 1.0. Futhermore, we find that more luminous galaxies are found to occupy more massive halos irrespectively of the redshift. Finally, the average number of galaxies per halo shows little increase from redshift z$\sim$ 1.0 to z$\sim$ 0.5, with a sharp increase by a factor $\sim$3 from z$\sim$ 0.5 to z$\sim$ 0.1, likely due to the dynamical friction of subhalos within their host halos.
We use large-scale simulations to investigate the morphology of reionization, with a focus on the final, overlap phase. We resolve all scales for which we can make accurate predictions, between ~1 Mpc and several Gpc. Our results indicate a strong dependence of percolation morphology on a large and uncertain region of model parameter space. The single most important parameter is the mean free path to absorption systems, which serve as opaque barriers to hydrogen ionizing radiation. If these absorption systems were as abundant as some realistic estimates would indicate, the spatial structure of the overlap phase could be considerably more complex than previously predicted, increasing the number of ionizing photons required to reionize the universe by a factor of ~4. In view of the lack of constraints on the mean free path at high redshift, current theories that do not include its effect, and in particular three-dimensional simulations, may be substantially underestimating the time between the middle and the end of reionization. This affects the prospects for observing the 21 cm signal associated with reionization, interpretation of absorption features in quasar spectra at z~5-6, and the connection between reionization and the local universe.
We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for 200 ks. A significant ACIS pileup is present, resulting in a non-linear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6E-11 and 1E-10 erg s^{-1} cm^{-2}. Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are \Gamma~0.7-0.9. However, we show that \Gamma is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives \Gamma~1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with \Gamma~1.7, typical for Seyfert 1 AGNs. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short time scale, or variations of partially covering absorber in the line of sight towards the nucleus. An ionized absorber model with ionization parameter \log\xi ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH} ~ 4.6E+7 Msun we constrain the distance of the obscuring cloud from the central black hole to be r<~9 light-days, consistent with the size of broad emission line region of NGC 4151 from optical reverberation mapping.
In this thesis, we study throats in the early, hot universe. Throats are a common feature of the landscape of type IIB string theory. If a throat is heated during cosmological evolution, energy is subsequently transferred to other throats and to the standard model. We calculate the heat transfer rate and the decay rate of throat-localized Kaluza-Klein states in a ten-dimensional model. For the calculation, we employ the dual description of the throats in terms of gauge theories. We discuss modifications of the decay rate which arise in flux compactifications and for Klebanov-Strassler throats and emphasize the role of tachyonic scalars in such throats in mediating decays of Kaluza-Klein modes. Our results are also applicable to the energy transfer from the heated standard model to throats. We determine the resulting energy density in throats at our epoch in dependence of their infrared scales and of the reheating temperature. The Kaluza-Klein modes in the throats decay to other sectors with a highly suppressed rate. If their lifetime is longer than the age of the universe, they are an interesting dark matter candidate. We show that, if the reheating temperature was 10^10 - 10^11 GeV, throats with infrared scales in the range of 10^5 GeV to 10^10 GeV can account for the observed dark matter. We identify several scenarios where this type of dark matter is sufficiently stable but where decays to the standard model can be discovered via gamma-ray observations.
We show that the thermal relic abundance of dark matter can be affected by a new type of reaction: semi-annihilation. Semi-annihilation takes the schematic form X_i X_j -> X_k phi, where X_i are stable dark matter particles and phi is an unstable state. Such reactions are generically present when dark matter is composed of more than one species with "flavor" and/or "baryon" symmetries. We give a complete set of coupled Boltzmann equations in the presence of semi-annihilations, and study two toy models featuring this process. Semi-annihilation leads to non-trivial dark matter dynamics in the early universe, often dominating over ordinary annihilation in determining the relic abundance. This process also has important implications for indirect detection experiments, by enriching the final state spectrum from dark matter (semi-)annihilation in the Milky Way.
We derive the relativistic generalization of the Galileon, by studying the
brane position modulus of a relativistic probe brane embedded in a
five-dimensional bulk. In the appropriate Galilean contraction limit, we
recover the complete Galileon generalization of the DGP decoupling theory and
its conformal extension. All higher order interactions for the Galileon and its
relativistic generalization naturally follow from the brane tension, induced
curvature, and the Gibbons-Hawking-York boundary terms associated with all bulk
Lovelock invariants.
Our approach makes the coupling to gravity straightforward, in particular
allowing a simple rederivation of the nonminimal couplings required by the
Covariant Galileon. The connection with the Lovelock invariants makes the
well-defined Cauchy problem manifest, and gives a natural unification of four
dimensional effective field theories of the DBI type and the Galileon type.
Gravity is a macroscopic manifestation of a microscopic quantum theory of space-time, just as the theories of elasticity and hydrodynamics are the macroscopic manifestation of the underlying quantum theory of atoms. The connection of gravitation and thermodynamics is long and deep. The observation that space-time has a temperature for accelerating observers and horizons is direct evidence that there are underlying microscopic degrees of freedom. The equipartition of energy, meaning of temperature, in these modes leads one to anticipate that there is also an entropy associated. When this entropy is maximized on a volume of space-time, then one retrieves the metric of space-time (i.e. the equations of gravity, e.g. GR). Since the metric satisfies the extremum in entropy on the volume, then the volume integral of the entropy can readily be converted to surface integral, via Gauss's Theorem. This surface integral is simply an integral of the macroscopic entropy flow producing the mean entropy holographic principle. This approach also has the added value that it naturally dispenses with the cosmological constant/vacuum energy problem in gravity except perhaps for second order quantum effects on the mean surface entropy.
Links to: arXiv, form interface, find, astro-ph, recent, 1003, contact, help (Access key information)
As some of the first known objects to exist in the Universe, Lyman alpha emitting galaxies (LAEs) naturally draw a lot of interest. First discovered over a decade ago, they have allowed us to probe the early Universe, as their strong emission line compensates for their faint continuum light. While initially thought to be indicative of the first galaxies forming in the Universe, recent studies have shown them to be increasingly complex, as some fraction appear evolved, and many LAEs appear to be dusty, which one would not expect from primordial galaxies. Presently, much interest resides in discovering not only the highest redshift galaxies to constrain theories of reionization, but also pushing closer to home, as previous ground-based studies have only found LAEs at z > 3 due to observational limitations. In this review talk I will cover everything from the first theoretical predictions of LAEs, to their future prospects for study, including the HETDEX survey here in Texas.
We present a detailed description of a phenomenological H2 formation model and local star formation prescription based on the density of molecular (rather than total) gas. Such approach allows us to avoid the arbitrary density and temperature thresholds typically used in star formation recipes. We present results of the model based on realistic cosmological simulations of high-z galaxy formation for a grid of numerical models with varied dust-to-gas ratios and interstellar far UV (FUV) fluxes. Our results show that both the atomic-to-molecular transition on small, ~10 pc scales and the Kennicutt-Schmidt (KS) relation on ~kpc scales are sensititive to the dust-to-gas ratio and the FUV flux. The atomic-to-molecular transition as a function of gas density or column density has a large scatter but is rather sharp and shifts to higher densities with decreasing dust-to-gas ratio and/or increasing FUV flux. Consequently, star formation is concentrated to higher gas surface density regions, resulting in steeper slope and lower amplitude of the KS relation at a given gas surface density, in less dusty and/or higher FUV flux environments. These trends should have a particularly strong effect on the evolution of low-mass, low surface brightness galaxies which typically have low dust content and anemic star formation, but are also likely to be important for evolution of the Milky Way-sized systems. We parameterize the dependencies observed in our simulations in convenient fitting formulae, which can be used to model the dependence of the KS relation on the dust-to-gas ratio and FUV flux in semi-analytic models and in cosmological simulations that do not include radiative transfer and H2 formation.
We study the formation of disk galaxies in a fully cosmological framework using adaptive mesh refinement simulations. We perform an extensive parameter study of the main sub-grid processes that control how gas is converted into stars and the coupled effect of supernovae feedback. We argue that previous attempts to form disk galaxies have been unsuccessful because of the universal adoption of strong feedback combined with high star formation efficiencies. Unless extreme amounts of energy are injected into the interstellar medium during supernovae events, these star formation parameters result in bulge dominated S0/Sa galaxies as star formation is too efficient at z~3. We show that a low efficiency of star-formation more closely models the sub-parsec physical processes, especially at high redshift. We highlight the successful formation of extended disk galaxies with scale lengths r_d=4-5 kpc, flat rotation curves and bulge to disk ratios of B/D~1/4. Not only do we resolve the formation of a Milky Way-like spiral galaxy, we also observe the secular evolution of the disk as it forms a pseudo-bulge. The disk properties agree well with observations and are compatible with the photometric and baryonic Tully-Fisher relations, the Kennicutt-Schmidt relation and the observed angular momentum content of spiral galaxies. We conclude that underlying small-scale star formation physics plays a larger role than previously considered in simulations of galaxy formation.
We present continent-scale VLBI - obtained with the European VLBI Network (EVN) at 1.4GHz - of six distant, luminous submm-selected galaxies. Radio VLBI probes well-understood emission mechanisms and benefits from low intrinsic opacity - even in the most extreme environments - and thus represents a promising new method for identifying AGN in SMGs. Our images have a synthesized beam width of ~30 milliarcsec FWHM - three orders of magnitude smaller in area than the highest resolution VLA imaging at this frequency - and are capable of separating radio emission from ultra-compact radio cores (associated with active super-massive black holes - SMBHs) from that due to starburst activity. Despite targeting compact sources - as judged by earlier observations with the VLA and MERLIN - we identify ultra-compact cores in only two of our targets. This suggests that the radio emission from SMGs is produced primarily on larger scales than those probed by the EVN, and therefore is generated by star formation rather than an AGN - a result consistent with other methods used to identify the presence of SMBHs in these systems.
We propose a method for setting upper limits to the extragalactic background light (EBL). Our method uses simultaneous {\em Fermi}-LAT and ground-based TeV observations of blazars and is based on the assumption that the intrinsic spectral energy distribution (SED) of TeV blazars lies below the extrapolation of the {\em Fermi}-LAT SED from GeV to TeV energies. By extrapolating the {\em Fermi}-LAT spectrum, which for TeV blazars is practically unattenuated by photon-photon pair production with EBL photons, a firm upper limit on the intrinsic SED at TeV energies is provided. The ratio of the extrapolated spectrum to the observed TeV spectrum provides upper limits to the optical depth for the propagation of the TeV photons due to pair production on the EBL, which in turn sets firm upper limits to EBL models. We demonstrate our method using simultaneous observations from {\em Fermi}-LAT and ground-based TeV telescopes of the blazars \object{PKS 2155-304} and \object{1ES 1218+304}, and show that high EBL density models are disfavored. We also discuss how our method can be optimized and how {\em Fermi} and X-ray monitoring observations of TeV blazars can guide future TeV campaigns, leading to potentially much stronger constraints on EBL models.
We present uniform CFHT Megacam g and r photometry for 34 X-ray selected galaxy clusters drawn from the X-ray Multi-Mirror (XMM) Large Scale Structure (LSS) survey and the Canadian Cluster Comparison Project (CCCP). The clusters possess well determined X-ray temperatures spanning the range 1<kT(keV)<12. In addition, the clusters occupy a relatively narrow redshift interval (0.15<z<0.41) in order to minimize any redshift dependent photometric effects. We investigate the colour bimodality of the cluster galaxy populations and compute blue fractions using criteria derived from Butcher and Oemler (1984). We identify a trend to observe increasing blue fraction versus redshift in common with numerous previous studies of cluster galaxy populations. However, in addition we identify an environmental dependence of cluster blue fraction in that cool (low mass) clusters display higher blue fractions than hotter (higher mass) clusters. Finally, we tentatively identify a small excess population of extremely blue galaxies in the coolest X-ray clusters (essentially massive groups) and note that these may be the signature of actively star bursting galaxies driven by galaxy-galaxy interactions in the group environment.
(Abridged) We perform a comprehensive multiwavelength analysis of a sample of 20 starburst galaxies that show the presence of a substantial population of Wolf-Rayet (WR) stars. In this paper we present the analysis of the O and WR star populations. We study the spatial localization of the WR-rich clusters via the detection of the blue WR bump (broad He II 4686) and the red WR bump (broad C IV 5808). We perform a detailed fitting of the nebular and broad emission lines within these broad features and derive the numbers of WN, WC and O stars using (i) the standard assumption of constant WR luminosities and (ii) considering metallicity-dependent WR luminosities. We then compare our results with the predictions given by evolutionary synthesis models and with previous empirical results. Aperture effects and the exact positioning of the slit onto the WR-rich bursts play a fundamental role in their detection. As expected, the total number of WR stars increases with increasing metallicity, but objects with 12+log(O/H)<8.2 show a rather constant WR/(WR+O) ratio. The computed WCE/WNL ratios are different than those empirically found in nearby star-forming galaxies, indicating that the observed galaxies are experiencing a strong and very short burst. Considering metallicity-dependent WR luminosities, our data agree with a Salpeter-like IMF in all regimes. We consider that the contribution of the WCE stars is not negligible at low metallicities. Although available models reproduce fairly well the WR properties at high metallicities, new evolutionary synthesis models for young starbursts including all involved parameters (age, metallicity, star-formation history, IMF and WR stars properties such as metallicity-dependent WR luminosities, stellar rotation and the WR binnary channel) are absolutely needed to perform an appropriate comparison with the observational data.
We report on the discovery of the X-ray luminous cluster XMMU J100750.5+125818 at redshift 1.082 based on 19 spectroscopic members, which displays several strong lensing features. SED modeling of the lensed arc features from multicolor imaging with the VLT and the LBT reveals likely redshifts ~2.7 for the most prominent of the lensed background galaxies. Mass estimates are derived for different radii from the velocity dispersion of the cluster members, M_200 ~ 1.8 10^{14} Msun, from the X-ray spectral parameters, M_500 ~ 1.0 10^{14} Msun, and the largest lensing arc, M_SL ~ 2.3 10^{13} Msun. The projected spatial distribution of cluster galaxies appears to be elongated, and the brightest galaxy lies off center with respect to the X-ray emission indicating a not yet relaxed structure. XMMU J100750.5+125818 offers excellent diagnostics of the inner mass distribution of a distant cluster with a combination of strong and weak lensing, optical and X-ray spectroscopy.
Herschel and Planck are surveying the sky at unprecedented angular scales and sensitivities over large areas. But both experiments are limited by source confusion in the submillimeter. The high confusion noise in particular restricts the study of the clustering properties of the sources that dominate the cosmic infrared background. At these wavelengths, it is more appropriate to consider the statistics of the unresolved component. In particular, high clustering will contribute in excess of Poisson noise in the power spectra of CIB anisotropies. These power spectra contain contributions from sources at all redshift. We show how the stacking technique can be used to separate the different redshift contributions to the power spectra. We use simulations of CIB representative of realistic Spitzer, Herschel, Planck, and SCUBA-2 observations. We stack the 24um sources in longer wavelengths maps to measure mean colors per redshift and flux bins. The information retrieved on the mean spectral energy distribution obtained with the stacking technique is then used to clean the maps, in particular to remove the contribution of low-redshift undetected sources to the anisotropies. Using the stacking, we measure the mean flux of populations 4 to 6 times fainter than the total noise at 350um at redshifts z=1 and z=2, respectively, and as faint as 6 to 10 times fainter than the total noise at 850um at the same redshifts. In the deep Spitzer fields, the detected 24um sources up to z~2 contribute significantly to the submillimeter anisotropies. We show that the method provides excellent (using COSMOS 24um data) to good (using SWIRE 24um data) removal of the z<2 (COSMOS) and z<1 (SWIRE) anisotropies. Using this cleaning method, we then hope to have a set of large maps dominated by high redshift galaxies for galaxy evolution study (e.g., clustering, luminosity density).
Elliptical, lenticular, and early-type spiral galaxies show a remarkably tight power-law correlation between the mass M_BH of their central supermassive black hole (SMBH) and the number N_GC of globular clusters: M_BH=m*N_GC^(1.11+/-0.04) with m=1.3*10^5 solar masses. Thus, to a good approximation the SMBH mass is the same as the total mass of the globular clusters. Based on a limited sample of 13 galaxies, this relation appears to be a better predictor of SMBH mass (rms scatter 0.2 dex) than the M_BH-sigma relation between SMBH mass and velocity dispersion sigma. The small scatter reflects the fact that galaxies with high globular cluster specific frequency S_N tend to harbor SMBHs that are more massive than expected from the M_BH-sigma relation. A possible explanation is that both large black-hole masses and large globular cluster populations are associated with recent major mergers.
The detection of non-Gaussianity in the CMB data would rule out a number of inflationary models. A null detection of non-Gaussianity, instead, would exclude alternative models for the early universe. Thus, a detection or non-detection of primordial non-Gaussianity in the CMB data is crucial to discriminate among inflationary models, and to test alternative scenarios. However, there are various non-cosmological sources of non-Gaussianity. This makes important to employ different indicators in order to detect distinct forms of non-Gaussianity in CMB data. Recently, we proposed two new indicators to measure deviation from Gaussianity on large angular scales, and used them to study the Gaussianity of the raw band WMAP maps with and without the KQ75 mask. Here we extend this work by using these indicators to perform similar analyses of deviation from Gaussianity of the foreground-reduced Q, V, and W band maps. We show that there is a significant deviation from Gaussianity in the considered full-sky maps, which is reduced to a level consistent with Gaussianity when the KQ75 mask is employed.
We study the three-dimensional distribution of matter at z~2 using high resolution spectra of QSO pairs and simulated spectra drawn from cosmological hydro-dynamical simulations. We present a sample of 15 QSOs, corresponding to 21 baselines of angular separations evenly distributed between ~1 and 14 arcmin, observed with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the European Southern Observatory-Very Large Telescope (ESO-VLT). The observed correlation functions of the transmitted flux in the HI Lya forest transverse to and along the line of sight are in agreement, implying that the distortions in redshift space due to peculiar velocities are relatively small and - within the relatively large error bars - not significant. The clustering signal is significant up to velocity separations of ~300 km/s, corresponding to about 5 h^{-1} comoving Mpc. Compatibility at the 2 sigma level has been found both for the Auto- and Cross-correlation functions and for the set of the Cross correlation coefficients. The analysis focuses in particular on two QSO groups of the sample. Searching for alignments in the redshift space between Lya absorption lines belonging to different lines of sight, it has been possible to discover the presence of a wide HI structures extending over about ten Mpc in comoving space, and give constraints on the sizes of two cosmic under-dense regions in the intergalactic medium.
The theoretical maximum time variation in the electronic charge permitted by the Generalized Second Law of Thermodynamics applied to black holes radiating and accreting in the cosmic microwave background matches the measured cosmological variation in the fine structure constant claimed by Webb et al.. Such black holes cannot respond adiabatically to a varying fine structure constant.
The work presented here examines populations of double compact binary systems and tidally enhanced collapsars. We make use of BINPOP and BINKIN, two components of a recently developed population synthesis package. Results focus on correlations of both binary and spatial evolutionary population characteristics. Pulsar and long duration gamma-ray burst observations are used in concert with our models to draw the conclusions that: double neutron star binaries can merge rapidly on timescales of a few million years (much less than that found for the observed double neutron star population), common envelope evolution within these models is a very important phase in double neutron star formation, and observations of long gamma-ray burst projected distances are more centrally concentrated than our simulated coalescing double neutron star and collapsar Galactic populations. Better agreement is found with dwarf galaxy models although the outcome is strongly linked to the assumed birth radial distribution. The birth rate of the double neutron star population in our models range from 4-160 Myr^-1 and the merger rate ranges from 3-150 Myr^-1. The upper and lower limits of the rates results from including electron capture supernova kicks to neutron stars and decreasing the common envelope efficiency respectively. Our double black hole merger rates suggest that black holes should receive an asymmetric kick at birth.
Links to: arXiv, form interface, find, astro-ph, recent, 1004, contact, help (Access key information)