[Abbreviated] We search for scaling relations between the fundamental AGN parameters and rest-frame UV/optical variability properties for a sample of $\sim$90 X-ray selected AGNs covering a wide redshift range from the XMM-COSMOS survey, with optical light curves in four bands provided by the Pan-STARRS1 (PS1) Medium Deep Field 04 survey. To estimate the variability amplitude we utilize the normalized excess variance ($\sigma_{\mathrm{rms}}^{2}$) and probe variability on rest-frame timescales of several months and years by calculating $\sigma_{\mathrm{rms}}^{2}$ from different parts of our light curves. In addition, we derive the rest-frame optical PSD for our sources using continuous-time autoregressive moving average (CARMA) models. We observe that the excess variance and the PSD amplitude are strongly anti-correlated with wavelength, bolometric luminosity and Eddington ratio. There is no evidence for a dependency of the variability amplitude on black hole mass and redshift. These results suggest that the accretion rate is the fundamental physical quantity determining the rest-frame UV/optical variability amplitude of quasars on timescales of months and years. The optical PSD of all of our sources is consistent with a broken power law showing a characteristic bend at rest-frame timescales ranging between $\sim$100 and $\sim$300 days. The break timescale exhibits no significant correlation with any of the fundamental AGN parameters. The low frequency slope of the PSD is consistent with a value of $-1$ for most of our objects, whereas the high frequency slope is characterized by a broad distribution of values between $\sim-2$ and $\sim-4$. These findings unveil significant deviations from the simple "damped random walk" model, frequently used in previous optical variability studies. We find a weak tendency for AGNs with higher black hole mass having steeper high frequency PSD slopes.
Energetic feedback from active galactic nuclei (AGN) is an important ingredient for regulating the star-formation history of galaxies in models of galaxy formation, which makes it important to study how AGN feedback actually occurs in practice. In order to catch AGNs in the act of quenching star formation we have used the interstellar NaD absorption lines to look for cold-gas outflows in a sample of 456 nearby galaxies for which we could unambigously ascertain the presence of radio AGN activity, thanks to radio imaging at milli-arcsecond scales. While compact radio emission indicating a radio AGN was found in 103 galaxies (23% of the sample), and 23 objects (5%) exhibited NaD absorption-line kinematics suggestive of cold-gas outflows, not one object showed evidence of a radio AGN and of a cold-gas outflow simultaneously. Radio AGN activity was found predominantly in early-type galaxies, while cold-gas outflows were mainly seen in spiral galaxies with central star-formation or composite star-formation/AGN activity. Optical AGNs also do not seem capable of driving galactic winds in our sample. Our work adds to a picture of the low-redshift Universe where cold-gas outflows in massive galaxies are generally driven by star formation and where radio-AGN activity occurs most often in systems in which the gas reservoir has already been significantly depleted.
Radio relics are patches of diffuse synchrotron radio emission that trace shock waves. Relics are thought to form when intra-cluster medium electrons are accelerated by cluster merger induced shock waves through the diffusive shock acceleration mechanism. In this paper, we present observations spanning 150 MHz to 30 GHz of the `Sausage' and `Toothbrush' relics from the Giant Metrewave and Westerbork telescopes, the Karl G. Jansky Very Large Array, the Effelsberg telescope, the Arcminute Microkelvin Imager and Combined Array for Research in Millimeter-wave Astronomy. We detect both relics at 30 GHz, where the previous highest frequency detection was at 16 GHz. The integrated radio spectra of both sources clearly steepen above 2 GHz, at the >6$\sigma$ significance level, supports the spectral steepening previously found in the `Sausage' and the Abell 2256 relic. Our results challenge the widely adopted simple formation mechanism of radio relics and suggest more complicated models have to be developed that, for example, involve re-acceleration of aged seed electrons.
We present high-resolution Atacama Large Millimeter Array (ALMA) 870um imaging of five z~1.5-4.5 X-ray detected AGN (with luminosities of L(X)>10^42 erg/s). The sub-millimetre emission is extended on scales of FWHM~0.2"-0.5", corresponding to physical sizes of 1-3 kpc (median value of 1.8 kpc). These sizes are comparable to the majority of z=1-5 sub-millimetre galaxies (SMGs) with equivalent ALMA measurements. In combination with spectral energy distribution analyses, we attribute this rest-frame far-infrared (FIR) emission to dust heated by star formation. The implied star-formation rate surface densities are 20-200 Msol/yr/kpc^2, which are consistent with SMGs of comparable FIR luminosities (i.e., L(IR)~ [1-5]x10^12 Lsol). Although limited by a small sample of AGN, which all have high FIR luminosities, our study suggests that the kpc-scale spatial distribution and surface density of star formation in high-redshift star-forming galaxies is the same irrespective of the presence of X-ray detected AGN.
A fast and general Bayesian inference framework to infer the physical properties of dichroic polarization using mid-infrared imaging- and spectro-polarimetric observations is presented. The Bayesian approach is based on a hierarchical regression and No-U-Turn Sampler method. This approach simultaneously infers the normalized Stokes parameters to find the full family of solutions that best describe the observations. In comparison with previous methods, the developed Bayesian approach allows the user to introduce a customized absorptive polarization component based on the dust composition, and the appropriate extinction curve of the object. This approach allows the user to obtain more precise estimations of the magnetic field strength and geometry for tomographic studies, and information about the dominant polarization components of the object. Based on this model, imaging-polarimetric observations using two or three filters located in the central 9.5-10.5 $\mu$m, and the edges 8-9 $\mu$m and/or 11-13 $\mu$m, of the wavelength range are recommended to optimally disentangle the polarization mechanisms.
We present constraints on the abundance of carbon-monoxide in the early Universe from the CO Power Spectrum Survey (COPSS). We utilize a data set collected between 2005 and 2008 using the Sunyaev-Zel'dovich Array (SZA), which were previously used to measure arcminute-scale fluctuations of the CMB. This data set features observations of 44 fields, covering an effective area of 1.7 square degrees, over a frequency range of 27 to 35 GHz. Using the technique of intensity mapping, we are able to probe the CO(1-0) transition, with sensitivity to spatial modes between $k=0.5{-}2\ h\,\textrm{Mpc}^{-1}$ over a range in redshift of $z=2.3{-}3.3$, spanning a comoving volume of $3.6\times10^{6}\ h^{-3}\,\textrm{Mpc}^{3}$. We demonstrate our ability to mitigate foregrounds, and present estimates of the impact of continuum sources on our measurement. We constrain the CO power spectrum to $P_{\textrm{CO}}<2.6\times10^{4}\ \mu\textrm{K}^{2} (h^{-1}\,\textrm{Mpc})^{3}$, or $\Delta^{2}_{\textrm{CO}}(k\! = \! 1 \ h\,\textrm{Mpc}^{-1})<1.3 \times10^{3}\ \mu\textrm{K}^{2}$, at $95\%$ confidence. This limit resides near optimistic predictions for the CO power spectrum. Under the assumption that CO emission is proportional to halo mass during bursts of active star formation, this corresponds to a limit on the ratio of $\textrm{CO}(1{-}0)$ luminosity to host halo mass of $A_{\textrm{CO}}<1.2\times10^{-5}\ L_{\odot}\ M_{\odot}^{-1}$. Further assuming a Milky Way-like conversion factor between CO luminosity and molecular gas mass ($\alpha_{\textrm{CO}}=4.3\ M_{\odot}\ (\textrm{K}\ \textrm{km}\ \textrm{s}^{-1}\ \textrm{pc}^{-2})^{-1}$), we constrain the global density of molecular gas to $\rho_{z\sim3}(M_{\textrm{H}_{2}})\leq 2.8 \times10^{8}\ M_{\odot}\ \textrm{Mpc}^{-3}$.
Determining the level of chemical homogeneity in open clusters is of fundamental importance in the study of the evolution of star-forming clouds and that of the Galactic disk. Yet limiting the initial abundance spread in clusters has been hampered by difficulties in obtaining consistent spectroscopic abundances for different stellar types. Without reference to any specific model of stellar photospheres, a model for a homogeneous cluster is that it forms a one-dimensional sequence, with any differences between members due to variations in stellar mass and observational uncertainties. I present a novel method for investigating the abundance spread in open clusters that tests this one-dimensional hypothesis at the level of observed stellar spectra, rather than constraining homogeneity using derived abundances as traditionally done. Using high-resolution APOGEE spectra for 49 giants in M67, NGC 6819, and NGC 2420 I demonstrate that these spectra form one-dimensional sequences for each cluster. With detailed forward modeling of the spectra and Approximate Bayesian Computation, I derive strong limits on the initial abundance spread of 15 elements: <0.01 (0.02) dex for C and Fe, <~0.015 (0.03) dex for N, O, Mg, Si, and Ni, <~0.02 (0.03) dex for Al, Ca, and Mn, and <~0.03 (0.05) dex for Na, S, K, Ti, and V (at 68% and 95% confidence, respectively). The strong limits on C and O imply that no pollution by massive core-collapse supernovae occurred during star formation in open clusters, which, thus, need to form within <~6 Myr. Further development of this and related techniques will bring the power of differential abundances to stars other than solar twins in large spectroscopic surveys and will help unravel the history of star formation and chemical enrichment in the Milky Way through chemical tagging.
A sample of 576 X-ray selected LINERs was constructed by combining data from the 3XMM-DR4 and SDSS-DR7 catalogues. The sample was used to investigate the fraction of galaxies hosting a LINER, finding that the fraction is a strong function of both stellar mass and black hole mass (scaling to the power of 1.6 +/- 0.2 and 0.6 +/- 0.1 respectively) and that it rises close to unity at the highest black hole masses and lowest X-ray luminosities. After obtaining radio flux densities from the FIRST survey, the sample was also used to investigate the Fundamental Plane of black hole activity - a scale-invariant relationship between black hole mass, X-ray luminosity and radio luminosity that is believed to hold across at least nine orders of magnitude of mass. There are key advantages in using only LINERs for the derivation as these are the counterparts of the "low-hard" X-ray binaries for which the relationship is tightest. The Fundamental Plane was found to be log (L_R / erg/s) = (0.65 +/- 0.07) log (L_X / 10^42 erg/s) + (0.69 +/- 0.10) log (M_BH / 10^8 M_solar) + (38.35 +/- 0.10). The scatter around the plane was 0.73 +/- 0.03 dex, too large to suggest that the Fundamental Plane can be used as a tool to estimate black hole mass from the observables of X-ray and radio luminosity. The black hole mass scaling is sensitive to the slope of the mass - velocity dispersion relation and, in order to achieve consistency with X-ray binaries, the analysis favours a steep gradient for this relationship, as found in recent research.
The late-stage evolution of very massive stars such as $\eta\,$Carinae may be dominated by poorly understood episodic mass ejections which may later lead to superluminous supernovae. However, as long as $\eta\,$Car is one of a kind, it is nearly impossible to quantitatively evaluate these possibilities. Here we announce the discovery of five objects in the nearby ($\sim4-8\,$Mpc) massive star-forming galaxies M$51$, M$83$, M$101$ and NGC$6946$ that have optical through mid-infrared photometric properties consistent with the hitherto unique $\eta\,$Car. We identified these $L_{bol}\simeq3-8\times10^{6}\,L_\odot$ objects through a systematic search of archival Spitzer and HST data. Their Spitzer mid-infrared spectral energy distributions rise steeply in the $3.6-8\,\mu$m bands, then turn over between $8$ and $24\,\mu$m, indicating the presence of warm ($\sim400-600\,$K) circumstellar dust. Their optical counterparts or flux limits from deep HST images are $\sim1.5-2\,$dex fainter than their mid-IR peaks and require the presence of $\sim5-10\,M_\odot$ of obscuring material. Our finding implies that the rate of $\eta\,$Car-like events is a fraction $f=0.094$ ($0.040 < f < 0.21$ at $90\%$ confidence) of the core-collapse supernova rate.
Since the Fermi discovery of $\gamma$-rays from novae, one of the biggest questions in the field has been how novae generate such high-energy emission. Shocks must be a fundamental ingredient. Six months of radio observations of the 2012 nova V5589 Sgr with the VLA and 15 weeks of X-ray observations with Swift/XRT show that the radio emission consisted of: 1) a shock-powered, non-thermal flare; and 2) weak thermal emission from $10^{-5}$ M$_\odot$ of freely expanding, photoionized ejecta. Absorption features in the optical spectrum and the peak optical brightness suggest that V5589 Sgr lies at 4 kpc (3.2-4.6 kpc). The shock-powered flare was the dominant component in the radio light curve at low frequencies before day 100. The spectral evolution of the flare, its high radio brightness temperature, the presence of unusually hard ($kT_x > 33$ keV) X-rays, and the ratio of radio to X-ray flux near the peak of the flare all support the conclusions that the flare is shock-powered and non-thermal. Unlike other novae with strong shock-powered radio emission, V5589 Sgr is not embedded in the wind of a red-giant companion. Based on the similar inclinations and optical line profiles of V5589 Sgr and V959 Mon, we propose that shocks in V5589 Sgr formed from collisions between a slow flow with an equatorial density enhancement and a subsequent faster flow. We speculate that the relatively high speed and low mass of the ejecta led to unusual radio emission from V5589 Sgr, and perhaps also to the non-detection of $\gamma$-rays.
Measurements of intrinsic alignments of galaxy shapes with the large-scale density field, and the inferred intrinsic alignments model parameters, are sensitive to the shape measurement methods used. In this paper we measure the intrinsic alignments of the Sloan Digital Sky Survey-III (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) LOWZ galaxies using three different shape measurement methods (re-Gaussianization, isophotal, and de Vaucouleurs), identifying a variation in the inferred intrinsic alignments amplitude at the 40% level between these methods, independent of the galaxy luminosity or other properties. We also carry out a suite of systematics tests on the shapes and their two-point correlation functions, identifying a pronounced contribution from additive PSF systematics in the de Vaucouleurs shapes. Since different methods measure galaxy shapes at different effective radii, the trends we identify in the intrinsic alignments amplitude are consistent with the interpretation that the outer regions of galaxy shapes are more responsive to tidal fields, resulting in isophote twisting and stronger alignments for isophotal shapes. We observe environment dependence of ellipticity, with brightest galaxies in groups being rounder on average compared to satellite and field galaxies. We also study the anisotropy in intrinsic alignments measurements introduced by projected shapes, finding effects consistent with predictions of the nonlinear alignment model and hydrodynamic simulations. The large variations seen using the different shape measurement methods have important implications for intrinsic alignments forecasting and mitigation with future surveys.
To solve a number of problems in solar physics related to mechanisms of energy release in solar corona parameters of hot coronal plasma are required, such as energy distribution, emission measure, differential emission measure, and their evolution with time. Of special interest is the distribution of solar plasma by energies, which can evolve from a nearly Maxwellian distribution to a distribution with a more complex structure during a solar flare. The exact form of this distribution for low-energy particles, which receive the bulk of flare energy, is still poorly known; therefore, detailed investigations are required. We present a developed method of simultaneous fitting of data from two spacecrafts Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), using a differential emission measure and a thin target model for the August 14, 2010 flare event.
Compact Symmetric Objects (CSO) are considered to be the young version of Fanaroff-Riley type I and type II radio galaxies, with typical sizes smaller than 1 kpc and ages of the order of a few thousand years. Before the launch of the Fermi satellite, young radio sources were predicted to emerge as a possible new gamma-ray emitting population detectable by the Large Area Telescope (LAT). After more than 6 years of Fermi operation the question of young radio sources as gamma-ray emitting objects still remains open. In this contribution we discuss candidate gamma-ray emitting CSO and future perspective for detecting young radio sources with Fermi-LAT.
X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm x 5 mm x 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in Chattopadhyay et al. (Exp. Astron. 35, 391-412, 2013; Astrophys. J. Suppl. 212, 12, 2014). In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.
Supernovae are important probes of the properties of stars at high redshifts because they can be detected at early epochs and their masses can be inferred from their light curves. Direct detection of the first cosmic explosions in the universe will only be possible with JWST, WFIRST and the next generation of extremely large telescopes. But strong gravitational lensing by massive clusters, like those in the Frontier Fields, could reveal supernovae at slightly lower redshifts now by magnifying their flux by factors of 10 or more. We find that Frontier Fields will likely discover dozens of core-collapse supernovae at 5 $ < z <$ 12. Future surveys of cluster lenses similar in scope to Frontier Fields by JWST might find hundreds of these events out to $z \sim$ 15 - 17. Besides revealing the masses of early stars, these ancient supernovae could also constrain cosmic star formation rates in the era of first galaxy formation.
We have mapped cold atomic gas in 21cm line HI self-absorption (HISA) at arcminute resolution over more than 90% of the Milky Way's disk. To probe the formation of H2 clouds, we have compared our HISA distribution with CO J=1-0 line emission. Few HISA features in the outer Galaxy have CO at the same position and velocity, while most inner-Galaxy HISA has overlapping CO. But many apparent inner-Galaxy HISA-CO associations can be explained as chance superpositions, so most inner-Galaxy HISA may also be CO-free. Since standard equilibrium cloud models cannot explain the very cold HI in many HISA features without molecules being present, these clouds may instead have significant CO-dark H2.
Measurement of the local dark matter density plays an important role in both Galactic dynamics and dark matter direct detection experiments. However, the estimated values from previous works are far from agreeing with each other. In this work, we provide a well-defined observed sample with 1427 G \& K type main-sequence stars from the LAMOST spectroscopic survey, taking into account selection effects, volume completeness, and the stellar populations. We apply a vertical Jeans equation method containing a single exponential stellar disk, a razor thin gas disk, and a constant dark matter density distribution to the sample, and obtain a total surface mass density of $\rm {78.7 ^{+3.9}_{-4.7}\ M_{\odot}\ pc^{-2}}$ up to 1 kpc and a local dark matter density of $0.0159^{+0.0047}_{-0.0057}\,\rm M_{\odot}\,\rm pc^{-3}$. We find that the sampling density (i.e. number of stars per unit volume) of the spectroscopic data contributes to about two-thirds of the uncertainty in the estimated values. We discuss the effect of the tilt term in the Jeans equation and find it has little impact on our measurement. Other issues, such as a non-equilibrium component due to perturbations and contamination by the thick disk population, are also discussed.
Redback millisecond pulsars (hereafter redbacks) are a sub-population of eclipsing millisecond pulsars in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between the them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period - companion mass plane. We accordingly suggest that the abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic millisecond pulsar. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow millisecond pulsars.
We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo (CASH) Project. Its spectroscopic stellar parameters are Teff = 4863 K, log g = 1.25, vmic = 2.20 km/s, and [Fe/H] = -2.24. Radial velocity measurements covering seven years indicate HE 0414-0343 to be a binary. HE 0414-0343 has [C/Fe] = 1.44 and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. Traditionally, it could be classified as "CEMP-r/s" star. Based on abundance comparisons with AGB star nucleosynthesis models, we suggest a new physically-motivated origin and classification scheme for CEMP-s stars and the still poorly-understood CEMP-r/s. The new scheme describes a continuous transition between these two so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. Possible causes for a continuous transition include the number of thermal pulses the AGB companion underwent, the effect of different AGB star masses on their nucleosynthetic yields, and physics that is not well approximated in 1-D stellar models such as proton ingestion episodes and rotation. Based on a set of detailed AGB models, we suggest the abundance signature of HE 0414-0343 to have arisen from a >1.3 Msun mass AGB star and a late-time mass transfer, that transformed HE 0414-0343 into a CEMP-sC star. We also find the [Y/Ba] ratio well parametrizes the classification and can thus be used to easily classify any future such stars.
We present the results of detailed X-ray analysis of two black-widow pulsars (BWPs), J1446-4701 and J1311-3430. PSR J1446-4701 is a BWP with orbital parameters near the median values of the sample of known BWPs. Its X-ray emission detected by $XMM-Newton$ is well characterized by a soft power-law (PL) spectrum (photon index $\Gamma \approx 3$), and it shows no significant orbital modulations. In view of a lack of radio eclipses and an optical non-detection, the system most likely has a low orbital inclination. PSR J1311-3430 is an extreme BWP with a very compact orbit and the lowest minimum mass companion. Our $Chandra$ data confirm the hard, $\Gamma \approx 1.3$, emission seen in previous observations. Through phase-restricted spectral analysis, we found a hint ($\sim 2.6 \sigma$) of spectral hardening around pulsar inferior conjunction. We also provide a uniform analysis of the 12 BWPs observed with $Chandra$ and compare their X-ray properties. Pulsars with soft, $\Gamma > 2.5$, emission seem to have lower than average X-ray and $\gamma$-ray luminosities. We do not, however, see any other prominent correlation between the pulsar's X-ray emission characteristics and any of its other properties. The contribution of the intra-binary shock to the total X-ray emission, if any, is not discernible in this sample of pulsars with shallow observations.
The stellar distribution derived from an $H$ and $K_{\mathrm S}$-band survey of the central region of our Galaxy is compared with the Fe XXV K$\alpha$ (6.7 keV) line intensity observed with the Suzaku satellite. The survey is for the Galactic coordinates $|l| \lesssim 3^{\circ}.0$ and $|b| \lesssim 1^{\circ}.0$ (equivalent to 0.8 kpc $\times$ 0.3 kpc for $R_0 = 8$ kpc), and the number-density distribution $N(K_{\mathrm S,0}; l, b)$ of stars is derived using the extinction-corrected magnitude $K_{\mathrm S,0}=10.5$. This is deep enough to probe the old red giant population and in turn to estimate the ($l$, $b$) distribution of faint X-ray point sources such as coronally active binaries and cataclysmic variables. In the Galactic plane ($b=0^{\circ}$), $N(10.5; l, b)$ increases to the Galactic center as $|l|^{-0.30 \pm 0.03}$ in the range of $-0^{\circ}.1 \geq l \geq -0^{\circ}.7$, but this increase is significantly slower than the increase ($|l|^{-0.44 \pm 0.02}$ ) of the Fe XXV K$\alpha$ line intensity. If normalized with the ratios in the outer region $1^{\circ}.5 \leq |l| \leq 2^{\circ}.8$, where faint X-ray point sources are argued to dominate the diffuse Galactic X-ray ridge emission, the excess of the Fe XXV K$\alpha$ line intensity over the stellar number density is at least a factor of two at $|l| = 0^{\circ}.1$. This indicates that a significant part of the Galactic center diffuse emission arises from a truly diffuse optically-thin thermal plasma, and not from an unresolved collection of faint X-ray point sources related to the old stellar population.
Firstly, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing an empirical formula for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamical simulations. The shallow disk gaps cannot terminate growth of giant planets. For planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, rather than their gaps. The insufficient gas supply compared with the rapid gas capture causes a depletion of the gas surface density even at the outside of the gap, which can create an inner hole in the protoplanetary disk. Our model can also predict the depleted gas surface density in the inner hole for a given planet mass. Secondly, our findings are applied to the formation of our solar system. For the formation of Jupiter, a very low-mass gas disk with a few or several Jupiter masses is required at the beginning of its gas capture because of the non-stopping capture. Such a low-mass gas disk with sufficient solid material can be formed through viscous evolution from an initially $\sim$10AU-sized compact disk with the solar composition. By the viscous evolution with a moderate viscosity of $\alpha \sim 10^{-3}$, most of disk gas accretes onto the sun and a widely spread low-mass gas disk remains when the solid core of Jupiter starts gas capture at $t \sim 10^7$ yrs. The depletion of the disk gas is suitable for explaining the high metallicity in giant planets of our solar system. A very low-mass gas disk also provides a plausible path where type I and II planetary migrations are both suppressed significantly. In particular, we also show that the type II migration of Jupiter-size planets becomes inefficient because of the additional gas depletion due to the rapid gas capture by themselves.
The Sun is replete with magnetic fields, with sunspots, pores and plage
regions being their most prominent representatives on the solar surface. But
even far away from these active regions, magnetic fields are ubiquitous. To a
large extent, their importance for the thermodynamics in the solar photosphere
is determined by the total magnetic flux. Whereas in low-flux quiet Sun
regions, magnetic structures are shuffled around by the motion of granules, the
high-flux areas like sunspots or pores effectively suppress convection, leading
to a temperature decrease of up to 3000 K. The importance of magnetic fields to
the conditions in higher atmospheric layers, the chromosphere and corona, is
indisputable. Magnetic fields in both active and quiet regions are the main
coupling agent between the outer layers of the solar atmosphere, and are
therefore not only involved in the structuring of these layers, but also for
the transport of energy from the solar surface through the corona to the
interplanetary space.
Consequently, inference of magnetic fields in the photosphere, and especially
in the chromosphere, is crucial to deepen our understanding not only for solar
phenomena such as chromospheric and coronal heating, flares or coronal mass
ejections, but also for fundamental physical topics like dynamo theory or
atomic physics. In this review, we present an overview of significant advances
during the last decades in measurement techniques, analysis methods, and the
availability of observatories, together with some selected results. We discuss
the problems of determining magnetic fields at smallest spatial scales,
connected with increasing demands on polarimetric sensitivity and temporal
resolution, and highlight some promising future developments for their
solution.
The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R=50,000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and iron-peak elements such as Ni, Cr, and Cu, alpha (O, Mg, Si, Ca, Ti), other light elements (C, N, F, Na, Al, and Sc), and some s-process elements (Y, Sr). We found average half-solar iron abundances and solar-scaled [X/Fe] abundance patterns for most of the elements, consistent with a thin-disk chemistry. We found depletion of [C/Fe] and enhancement of [N/Fe], consistent with standard CN burning, and low 12C/13C abundance ratios (between 9 and 11), which require extra-mixing processes in the stellar interiors during the post-main sequence evolution. We also found local standard of rest V(LSR)=106 km/s and heliocentric V(HEL)=90 km/s radial velocities with a dispersion of 2.3 km/s. The inferred radial velocities, abundances, and abundance patterns of RSGC3 are very similar to those previously measured in the other two young clusters of the Scutum complex, RSGC1 and RSGC2, suggesting a common kinematics and chemistry within the Scutum complex.
The Kepler spacecraft provides new opportunities to search for long term frequency and amplitude modulations of oscillation modes in pulsating stars. We ana- lyzed nearly two years of uninterrupted data obtained with this instrument on the DBV star KIC 08626021 and found clear signatures of nonlinear resonant mode coupling af- fecting several triplets. The behavior and timescales of these amplitude and frequency modulations show strong similarities with theoretical expectations. This may pave the way to new asteroseismic diagnostics, providing in particular ways to measure for the first time linear growth rates of pulsation modes in white dwarf stars.
We present deep spectroscopic (3600 - 24700 A) X-shooter observations of the bright Herbig-Haro object HH1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, HI, and He, recombination lines and H_2, ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non Local Thermal Equilibiurm codes to derive the electron temperature and density, and, for the first time, we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 - 80000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density about 10^3 cm^-3), and a more compact component (density > 10^5 cm^-3) likely associated with the hottest gas. A further neutral component is also evidenced, having temperature lass than 10000 K and density > 10^4 cm^-3. The gas fractional ionization was estimated solving the ionization equilibrium equations of atoms detected in different ionization stages. We find that neutral and fully ionized regions co-exist inside the shock. Also, indications in favor of at least partially dissociative shock as the main mechanism for molecular excitation are derived. Chemical abundances are estimated for the majority of the detected species. On average, abundances of non-refractory/refractory elements are lower than solar of about 0.15/0.5 dex. This testifies the presence of dust inside the medium, with a depletion factor of Iron of about 40%.
Aims. We use the Kepler data accumulated on the pulsating DB white dwarf KIC 08626021 to explore in detail the stability of its oscillation modes, searching in particular for evidences of nonlinear behaviors. Methods. We analyse nearly two years of uninterrupted short cadence data, concentrating in particular on identified triplets due to stellar rotation that show intriguing behaviors during the course of the observations. Results. We find clear signatures of nonlinear effects attributed to resonant mode coupling mechanisms. We find that a triplet at 4310 {\mu}Hz and this doublet at 3681 {\mu}Hz (most likely the two visible components of an incomplete triplet) have clear periodic frequency and amplitude modulations typical of the so-called intermediate regime of the resonance, with time scales consistent with theoretical expectations. Another triplet at 5073 {\mu}Hz is likely in a narrow transitory regime in which the amplitudes are modulated while the frequencies are locked. Using nonadiabatic pulsation calculations based on a model representative of KIC 08626021 to evaluate the linear growth rates of the modes in the triplets, we also provide quantitative information that could be useful for future comparisons with numerical solutions of the amplitude equations. Conclusions. The identified modulations are the first clear-cut signatures of nonlinear resonant couplings occurring in white dwarf stars. These should resonate as a warning to projects aiming at measuring the evolutionary cooling rate of KIC 08626021, and of white dwarf stars in general. Nonlinear modulations of the frequencies can potentially jeopardize any attempt to measure reliably such rates, unless they could be corrected beforehand. These results should motivate further theoretical work to develop nonlinear stellar pulsation theory.
What can we tell about exoplanet habitability if currently only the stellar
properties, planet radius, and the incoming stellar flux are known? A planet is
in the Habitable Zone (HZ) if it harbors liquid water on its surface. The HZ is
traditionally conceived as a sharp region around stars because it is calculated
for one planet with specific properties. Such an approach is limiting because
the planets' atmospheric and geophysical properties, which influence the
presence of liquid water on the surface, are currently unknown but expected to
be diverse.
A statistical HZ description is outlined which does not favor one planet
type. Instead the stellar and planet properties are treated as random variables
and a continuous range of planet scenarios are considered. Various probability
density functions are assigned to each random variable, and a combination of
Monte Carlo sampling and climate modeling is used to generate synthetic
exoplanet populations with known surface climates. Then, the properties of the
liquid water bearing subpopulation is analyzed.
Given our current observational knowledge, the HZ takes the form of a
weakly-constrained but smooth probability function. The HZ has an inner edge
but a clear outer edge is not seen. Currently only optimistic upper limits can
be derived for the potentially observable HZ occurrence rate. Finally, we
illustrate through an example how future data on exoplanet atmospheres will
help to narrow down the probability that an exoplanet harbors liquid water and
we identify the greatest observational challenge in the way of finding a
habitable exoplanet.
The interaction of Ultra High Energy Cosmic Rays (UHECRs) with the atoms of the atmosphere can occur at center-of-mass energies that surpass 100 TeV, while present human-made accelerators go up to 13 TeV. Therefore it provides a unique opportunity to explore hadronic interactions at the highest energies. However, the extraction of hadronic interaction properties from the Extensive Air Showers (EAS) characteristics, which are induced by the UHECR, is intrinsically related to the nature of the primary cosmic ray. As such, to break the degeneracy between hadronic interactions and primary mass composition, a consistent description of the shower observables must be achieved. Such detailed studies have been conducted in the last years at the Pierre Auger Observatory, the largest UHECRs detector in the world. It combines two complementary techniques to measure the EAS characteristics. In this talk, we will present the latest measurements on shower observables, both on the electromagnetic and muonic shower components, and its interpretation in terms of the primary mass composition. Its impact regarding particle physics will be discussed, in particular the measurement of the proton-air cross section. Finally, through the joint analysis of the different measurements, it will be shown that none of the post-LHC high-energy hadronic interaction models can satisfactorily describe the data.
The Sunspot Number, created by R.Wolf in 1849, provides a direct long-term record of solar activity from 1700 to the present. In spite of its central role in multiple studies of the solar dynamo and of the past Sun-Earth relations, it was never submitted to a global critical revision. However, various discrepancies with other solar indices recently motivated a full re-calibration of this series. Based on various diagnostics and corrections established in the framework of several Sunspot Number Workshops and described in Clette et al. 2014, we assembled all corrections in order to produce a new standard version of this reference time series. In this paper, we explain the three main corrections and the criteria used to choose a final optimal version of each correction factor or function, given the available information and published analyses. We then discuss the good agreement obtained with the Group sunspot Number derived from a recent reconstruction. Among the implications emerging from this re-calibrated series, we also discuss the absence of a rising secular trend in the newly-determined solar cycle amplitudes, also in relation with contradictory indications derived from cosmogenic radionuclides. As conclusion, we introduce the new version management scheme now implemented at the World Data Center - SILSO, which reflects a major conceptual transition: beyond the re-scaled numbers, this first revision of the Sunspot Number also transforms the former locked data archive into a living observational series open to future improvements.
Small galaxies are thought to be the main contributors to the ionising budget of the Universe before reionisation was complete. There have been a number of numerical studies trying to quantify their ionising efficiency through the escape fraction $f_{esc}$. While there is a clear trend that $f_{esc}$ is higher for smaller haloes, there is a large scatter in the distribution of $f_{esc}$ for a single halo mass. We propose that this is due to the intrinsic burstiness of star formation in low mass galaxies. We performed high resolution radiative hydrodynamics simulations with Ramses-RT to model the evolution of three galaxies and their ionising efficiency. We found that the variability of $f_{esc}$ follows that of the star formation rate. We then discuss the consequences of this variability on the observability of such galaxies by JWST.
The dark matter in the galaxy cluster Abell 1689 is modelled by isothermal neutrinos. New data on the $2d$ mass density allow an accurate description of its core and halo. There is no "missing baryon problem" and the baryons occur at the cosmic mass fraction beyond $2.1$ Mpc. Combining cluster and cosmic data leads to a solution of the dark matter riddle by left and right handed neutrinos with mass $(1.861 \pm 0.016) h_{70}^{-2} eV/c^2$. Absence of neutrinoless double beta decay points to Dirac neutrinos: chargeless electrons with different flavor and mass eigenbases, as for quarks. Though the cosmic microwave background spectrum is matched up to some 10\% accuracy only, the case is not ruled out because the plasma phase of the early Universe may be turbulent.
Internal stellar magnetic fields are inaccessible to direct observations and little is known about their amplitude, geometry and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, which arises from a magnetic greenhouse effect that scatters and traps oscillation mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes which we interpret as stars with strongly magnetized cores. We find field strengths larger than $\sim\! 10^5 \,{\rm G}$ may produce the observed depression, and in one case we infer a minimum core field strength of $\approx \! \! 10^7 \,{\rm G}$.
Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutronstar radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: (i) pure carbon atmospheres for relatively cool neutron stars (1--4 MK) and (ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.
We report the results of Swift and Chandra observations of an ultra-luminous X-ray source, ULX-1 in M101. We show strong observational evidence that M101 ULX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of M101 ULX-1 are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index (\Gamma) saturation level, \Gamma_{sat}=2.8 +/- 0.1, in the \Gamma vs. mass accretion rate (\dot M) correlation. This \Gamma-\dot M correlation allows us to evaluate black hole (BH) mass in M101 ULX-1 to be M_{BH}~(3.2 - 4.3)x10^4 solar masses assuming the spread in distance to M101 (from 6.4+/- 0.5 Mpc to 7.4+/-0.6 Mpc). For this BH mass estimate we use the scaling method taking Galactic BHs XTE~J1550-564, H~1743-322 and 4U~1630-472 as reference sources. The Gamma vs. \dot M correlation revealed in M101~ULX-1 is similar to that in a number of Galactic BHs and exhibits clearly the correlation along with the strong \Gamma saturation at ~2.8. This is robust observational evidence for the presence of a BH in M101 ULX-1. We also find that the seed (disk) photon temperatures are quite low, of order of 40-100 eV which is consistent with high BH mass in M101~ULX-1. Thus, we suggest that the central object in M101 ULX-1 has intermediate BH mass of order 10^{4} solar masses
We investigate the ionization state of the Extended Emission-Line Regions (EELRs) around two compact steep-spectrum (CSS) radio galaxies, 3C~268.3 and 3C~303.1, in order to identify the contribution of photoionization and shock-ionization. We perform a new spectroscopical (long-slit) analysis with GMOS/Gemini with the slit oriented in the radio-jet direction, where outflows are known to exist. The [Ne V]$\lambda 3426$ emission is the most interesting feature of the spectra and the key to breaking the degeneracy between the models: since this emission-line is more extended than HeII, it challenges the ionization structure proposed by any photoionization model, also its intensity relative to H$\beta$ does not behave as expected with respect to the ionization parameter U in the same scenario. On the contrary, when it is compared to the intensity of [OII]$\lambda3727$/H$\beta$ and all these results are joined, the whole scenario is plausible to be explained as emission coming from the hot, compressed, shocked gas in shock-ionization models. Although the model fitting is strongly sensitive to the chosen line-ratios, it argues for the presence of external and strong ionizing fields, such as the precursor field created by the shock or/and the AGN radiation field. In this paper, we show how AGN photoionization and shock-ionization triggered by jet-cloud interaction work together in these EELRs in order to explain the observed trends and line-ratio behaviours in a kinematically acceptable way.
Hot methane is found in many "cool" sub-stellar astronomical sources including brown dwarfs and exoplanets, as well as in combustion environments on Earth. We report on the first high-resolution laboratory absorption spectra of hot methane at temperatures up to 1200 K. Our observations are compared to the latest theoretical spectral predictions and recent brown dwarf spectra. The expectation that millions of weak absorption lines combine to form a continuum, not seen at room temperature, is confirmed. Our high-resolution transmittance spectra account for both the emission and absorption of methane at elevated temperatures. From these spectra, we obtain an empirical line list and continuum that is able to account for the absorption of methane in high temperature environments at both high and low resolution. Great advances have recently been made in the theoretical prediction of hot methane, and our experimental measurements highlight the progress made and the problems that still remain.
New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with HST/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructed for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher S/N than previous studies. Direct measurements of N(H I) were made using the Ly$\alpha$ absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5 to 14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from Solar to 1.5 Solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-Solar.
We investigate the frequency of high carbon-to-oxygen (C/O $= 0.9$) M dwarf stars in the solar neighbourhood. Using synthetic spectra, we find that such M dwarfs would have weaker TiO bands relative to hydride features. Similar weakening has already been detected in M-subdwarf (sdM) stars. By comparing to existing spectroscopic surveys of nearby stars, we show that less than one percent of nearby stars have high carbon-to-oxygen ratios. This limit does not include stars with C/O$=0.9$, [m/H]$>0.3$, and [C/Fe]$>0.1$, which we predict to have low-resolution optical spectra similar to solar metallicity M dwarfs.
Optical spectroscopic observations are reported for 24 and 23, nearby, proper-motion-selected M-dwarf candidate members of the Beta Pictoris and AB Doradus moving groups (BPMG and ABDMG). Using kinematic criteria, the presence of both Halpha emission and high X-ray-to-bolometric luminosity, and position in absolute colour-magnitude diagrams, 10 and 6 of these candidates are confirmed as likely members of the BPMG and ABDMG respectively. Equivalent widths or upper limits for the Li I 6708A line are reported and the lithium depletion boundary (LDB) age of the BPMG is revisited. Whilst non-magnetic evolutionary models still yield an estimated age of 21 +/- 4 Myr, models that incorporate magnetic inhibition of convection imply an older age of 24 +/- 4 Myr. A similar systematic increase would be inferred if the stars were 25 per cent covered by dark magnetic starspots. Since young, convective M-dwarfs are magnetically active and do have starspots, we suggest that the original LDB age estimate is a lower limit. The LDB age of the ABDMG is still poorly constrained -- non-magnetic evolutionary models suggest an age in the range 35-150\,Myr, which could be significantly tightened by new measurements for existing candidate members.
We re-analyse high redshift and high resolution Lyman-{\alpha} forest spectra from Viel et al. [1] seeking to constrain properties of warm dark matter particles. Compared to the previous work we consider a wider range on thermal histories of the intergalactic medium and find that both warm and cold dark matter models can explain the cut-off observed in the flux power spectra of high-resolution observations equally well. This implies, however, very different thermal histories and underlying re-ionisation models. We discuss how to remove this degeneracy.
Infrared absorption cross sections near 3.3 $\mu$m have been obtained for ethane, C$_{2}$H$_{6}$. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm$^{-1}$. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C$_{2}$H$_{6}$ cross sections at elevated temperatures.
In this paper we present and test chemical models for three-dimensional hydrodynamical simulations of galaxy evolution. The microphysics is modelled by employing the public chemistry package KROME and the chemical networks have been tested to work in a wide range of densities and temperatures. We describe a simple H/He network following the formation of H2, and a more sophisticated network which includes metals. Photochemistry, thermal processes, and different prescriptions for the H2 catalysis on dust are presented and tested within a simple one-zone framework. We explore the effect of changing some of the key parameters such as metallicity, radiation and non-equilibrium versus equilibrium metal cooling approximations on the transition between the different gas phases. We find that employing an accurate treatment of the dust-related processes induces a faster HI-H2 transition. In addition, we show when the equilibrium assumption for metal cooling holds, and how a non-equilibrium approach affects the thermal evolution of the gas and the HII-HI transition. These models can be employed in any hydrodynamical code via an interface to KROME and can be applied to different problems including isolated galaxies, cosmological simulations of galaxy formation and evolution, and supernova explosions in molecular clouds. The metal network can be used for a comparison with observational data of CII 158 {\mu}m emission both for high-redshift as well as for local galaxies.
We study the shapes and intrinsic alignments of disks and elliptical galaxies in the MassiveBlack-II (MBII) and Illustris cosmological hydrodynamic simulations, with volumes of ($100h^{-1}$Mpc)$^{3}$ and ($75h^{-1}$Mpc)$^{3}$ respectively. We find that simulated disk galaxies are more oblate in shape and more misaligned with the shape of their host dark matter subhalo when compared with ellipticals. The disk major axis is found to be oriented towards the location of nearby elliptical galaxies. We also find that the disks are thinner in MBII and misalignments with dark matter halo orientations are smaller in both disks and ellipticals when compared with Illustris. As a result, the intrinsic alignment correlation functions at fixed mass have a higher amplitude in MBII than in Illustris. Despite significant differences in the treatments of hydrodynamics and baryonic physics in the simulations, we find that the correlation functions scale similarly with transverse separation (yet both have a different scale dependence to the correlation functions of the shapes of dark matter subhalos within the same simulation). This is true for both disks and ellipticals. This result makes it likely that we should be able to use information from hydrodynamic simulations to understand intrinsic alignment two-point statistics. Finally, in scales above $\sim 0.1h^{-1}$Mpc, the intrinsic alignment two-point correlation functions for disk galaxies in both simulations are consistent with a null detection, unlike those for ellipticals.
In standard cosmology, the growth of structure becomes significant following matter-radiation equality. In non-thermal histories, where an effectively matter-dominated phase occurs due to scalar oscillations prior to Big Bang Nucleosynthesis, a new scale at smaller wavelengths appears in the matter power spectrum. Density perturbations that enter the horizon during the matter-dominated phase grow linearly with the scale factor prior to the onset of radiation domination, which leads to enhanced inhomogeneity on small scales if dark matter thermally and kinetically decouples during the matter-dominated phase. The microhalos that form from these enhanced perturbations significantly boost the self-annihilation rate for dark matter. This has important implications for indirect detection experiments: the larger annihilation rate will result in observable signals from dark matter candidates that are usually deemed untestable. As a proof of principle, we consider Binos in heavy supersymmetry with an intermediate extended Higgs sector and all other superpartners decoupled. We find that these isolated Binos, which lie under the neutrino floor, can account for the dark matter relic density while also leading to observable predictions for Fermi-LAT. Current limits on the annihilation cross section from Fermi-LAT's observations of dwarf spheroidal galaxies may already constrain Bino dark matter up to masses $\mathcal{O}(300)$ GeV, depending on the internal structure of the microhalos. More extensive constraints are possible with improved gamma-ray bounds and boost calculations from $N$-body simulations.
We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth's rotation for high signal frequencies and widely separated detectors.
We propose a dark energy model where a scalar field $\phi$ has nonlinear self-interactions in the presence of a dilatonic coupling with the Ricci scalar. This belongs to a sub-class of theories beyond Horndeski, which accommodates covariant Galileons and Brans-Dicke theories as specific cases. We derive conditions under which the scalar sound speed squared $c_{\rm s}^2$ is positive from the radiation era to today. Since $c_{\rm s}^2$ remains to be smaller than the order of 1, the deviation from Horndeski theories does not cause heavy oscillations of gauge-invariant gravitational potentials. In this case, the evolution of matter perturbations at low redshifts is similar to that in the coupled dark energy scenario with an enhanced gravitational interaction. On the spherically symmetric background with a matter source, the existence of field self-interactions suppresses the propagation of fifth force inside a Vainshtein radius. We estimate an allowed parameter space in which the model can be compatible with solar system constraints while satisfying conditions for the cosmological viability of background and perturbations.
What is the relative importance of small-scale (i.e., electron to
sub-electron scales), microphysical plasma processes to the acceleration of
particles from thermal to suprathermal or even to cosmic-ray energies?
Additionally, can these microphysical plasma processes influence or even
dominate macroscopic (i.e., greater than ion scales) processes, thus affecting
global dynamics? These are fundamental and unresolved questions in plasma and
astrophysical research. Recent observations of large amplitude electromagnetic
waves in the terrestrial radiation belts [i.e., Cattell et al., 2008; Kellogg
et al., 2010; Wilson III et al., 2011] and in collisionless shock waves [i.e.,
Wilson III et al., 2014a,b] have raised questions regarding the macrophysical
effect of these microscopic waves.
The processes thought to dominate particle acceleration and the macroscopic
dynamics in both regions have been brought into question with these recent
observations. The relative importance of wave-particle interactions has
recently gained renewed and increased attention in these regions of space. In
this commentary, we discuss some open questions pertaining to the above issues
and raise further questions about the possible impact of wave-particle
interactions on regions of space that are currently inaccessible (e.g., the
solar corona).
Theories with higher order time derivatives generically suffer from ghost-like instabilities, known as Ostrogradski instabilities. This fate can be avoided by considering "degenerate'' Lagrangians, whose kinetic matrix cannot be inverted, thus leading to constraints between canonical variables and a reduced number of physical degrees of freedom. In this work, we derive in a systematic way the degeneracy conditions for scalar-tensor theories that depend quadratically on second order derivatives of a scalar field. We thus obtain a classification of all degenerate theories within this class of scalar-tensor theories. The quartic Horndeski Lagrangian and its extension beyond Horndeski belong to these degenerate cases. We also identify new families of scalar-tensor theories with the intriguing property that they are degenerate despite the nondegeneracy of the purely scalar part of their Lagrangian.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
Deviations from the standard $\Lambda$CDM model motivate an interpretation of early universe cosmology using the Scalar-Tensor-Vector-Gravity (STVG) theory. A constraint analysis carried out by Valentino, Melchiorri and Silk, revealed deviations from the growth of structure predicted by General Relativity, and a lensing anomaly in the angular CMB power spectrum data with a $95\%$ c.l. The modified gravity (MOG) theory resolves the lensing deviation from the standard model and provides an explanation of the CMB and structure growth data.
Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies' morphological properties across cosmic time. Here we present results of a multiwavelength investigation of the morphologies of "tadpole" galaxies at intermediate redshift (0.314<z<3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies (Straughn et al. 2006). Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3<z<3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct "tadpole" shape. The average stellar mass of tadpole galaxies is lower than field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from SED fits, the average age of tadpole galaxies is younger than field galaxies in the lower redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star-formation.
The origin of cosmic rays (CRs) has puzzled scientists since the pioneering discovery by Victor Hess in 1912. In the last decade, however, modern supercomputers have opened a new window on the processes regulating astrophysical collisionless plasmas, allowing the study of CR acceleration via first-principles kinetic simulations. At the same time, a new-generation of X-ray and $\gamma$-ray telescopes has been collecting evidence that Galactic CRs are accelerated in the blast waves of supernova remnants (SNRs). I present state-of-the-art particle-in-cells simulations of non-relativistic shocks, in which ion and electron acceleration efficiency and magnetic field amplification are studied in detail as a function of the shock parameters. I then discuss the theoretical and observational counterparts of these findings, comparing them with predictions of diffusive shock acceleration theory and with multi-wavelength observations of young SNRs. I especially outline some major open questions, such as the possible causes of the steep CR spectra inferred from $\gamma$-ray observations of SNRs and the origin of the knee in the Galactic CR spectrum. Finally, I put such a theoretical understanding in relation with CR propagation in the Galaxy in order to bridge the gap between acceleration in sources and measurements of CRs at Earth.
We present a Bayesian approach to the redshift classification of emission-line galaxies when only a single emission line is detected spectroscopically. We consider the case of surveys for high-redshift ${\rm Ly{\alpha}}$-emitting galaxies (LAEs), which have traditionally been classified via an inferred rest-frame equivalent width $(W_{\rm Ly\alpha})$ greater than $20 {\rm \,\AA}$. Our Bayesian method relies on known prior probabilities in measured emission-line luminosity functions and equivalent width distributions for the galaxy populations in question, and it returns the probability that an object is an LAE given the characteristics observed. This approach will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify $\sim$$10^6$ emission-line galaxies into LAEs and low-redshift [O II] emitters. For a simulated HETDEX catalog with realistic measurement noise, our Bayesian method recovers $86\%$ of LAEs missed by the traditional $W_{\rm Ly\alpha} > 20 {\rm \,\AA}$ cutoff over $2 < z < 3$, outperforming the equivalent width (EW) cut in both contamination and incompleteness. Our method can trade off between contamination and incompleteness by adjusting the stringency of the probability requirement for classifying an observed object as an LAE in order to maximize the recovery of cosmological information. In our simulations of HETDEX, the Bayesian method reduces the uncertainty in cosmological distance measurements by $14\%$ with respect to the EW cut, equivalent to obtaining $29\%$ more data. This method enables us to use classification probabilities, rather than just object labels, in large-scale structure analyses, and can be applied to narrowband emission-line surveys as well as upcoming large spectroscopic surveys including Euclid and WFIRST.
We derive X-ray mass, luminosity, and temperature profiles for 45 galaxy clusters to explore relationships between halo mass, AGN feedback, and central cooling time. We find that radio--mechanical feedback power (referred to here as "AGN power") in central cluster galaxies correlates with halo mass, but only in halos with central atmospheric cooling times shorter than 1 Gyr. This timescale corresponds approximately to the cooling time (entropy) threshold for the onset of cooling instabilities and star formation in central galaxies (Rafferty et al. 2008). No correlation is found in systems with central cooling times greater than 1 Gyr. The trend with halo mass is consistent with self-similar scaling relations assuming cooling is regulated by feedback. The trend is also consistent with galaxy and central black hole co-evolution along the $M_{BH} - \sigma $ relation. AGN power further correlates with X-ray gas mass and the host galaxy's K-band luminosity. AGN power in clusters with central atmospheric cooling times longer than ~1 Gyr typically lies two orders of magnitude below those with shorter central cooling times. Galaxies centred in clusters with long central cooling times nevertheless experience ongoing and occasionally powerful AGN outbursts. We further investigate the impact of feedback on cluster scaling relations. We find L-T, and M-T relations, excluding regions directly affected by AGN, that are consistent with the cluster population as a whole. While the gas mass rises, the stellar mass remains nearly constant with rising total mass, consistent with earlier studies. This trend is found regardless of central cooling time, implying tight regulation of star formation in central galaxies as their halos grew, and long-term balance between AGN heating and atmospheric cooling. Our scaling relations are presented in forms that can be incorporated easily into galaxy evolution models.
In this Letter, we constrain the dust-to-gas ratio in the intergalactic medium (IGM) at high redshifts. We employ models for dust in the local Universe to contrain the dust-to-gas ratio during the epoch of reionization at redshifts z ~ 6-10. The observed level of reddening of high redshift galaxies implies that the IGM was enriched to an intergalactic dust-to-gas ratio of less than 3% of the Milky Way value by a redshift of z=10.
Aims: To investigate the extension of the very-high-energy spectral tail of the Crab pulsar at energies above 400 GeV. Methods: We analyzed $\sim$320 hours of good quality data of Crab with the MAGIC telescope, obtained from February 2007 until April 2014. Results: We report the most energetic pulsed emission ever detected from the Crab pulsar reaching up to 1.5 TeV. The pulse profile shows two narrow peaks synchronized with the ones measured in the GeV energy range. The spectra of the two peaks follow two different power-law functions from 70 GeV up to 1.5 TeV and connect smoothly with the spectra measured above 10 GeV by the Large Area Telescope (LAT) on board of the Fermi satellite. When making a joint fit of the LAT and MAGIC data, above 10 GeV, the photon indices of the spectra differ by 0.5$\pm$0.1. Conclusions: We measured with the MAGIC telescopes the most energetic pulsed photons from a pulsar to date. Such TeV pulsed photons require a parent population of electrons with a Lorentz factor of at least $5\times 10^6$. These results strongly suggest IC scattering off low energy photons as the emission mechanism and a gamma-ray production region in the vicinity of the light cylinder.
We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than $H_{F140W}<24$ with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of $0.0197\pm0.0003(1+z)$ in the Skelton et al. (2014) photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1-$\sigma$ scatter lies between $0.01-0.03$(1+z) for galaxies of all masses and colors below $z<2.5$ (for $H_{F140W}{<}24$), with the exception of a population of very red ($U-V > 2$), dusty star-forming galaxies for which the scatter increases to $\sim0.1(1+z)$. Although the overall photometric redshift accuracy for quiescent galaxies is better than for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to $\sim0.046(1+z)$ at $H_{F160W}=26$. We demonstrate that photometric redshift accuracy is strongly filter-dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of $\sim1.1-1.6$, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the LSST, DES, and combined DES and VHS surveys.
We search for environmental dependence of the HI mass function in the ALFALFA 70% catalogue. The catalogue is split into quartiles of environment density based on the projected neighbour density of neighbours found in both SDSS and 2MRS volume limited reference catalogues. We find the Schechter function 'knee' mass to be dependent on environment, with the value of $\log ({M_{*}/\mathrm{M_{\odot}}})$ shifting from $9.81 \pm 0.02$ to $10.00 \pm 0.03$ between the lowest and highest density quartiles. However, this dependence was only observed when defining environment based on the SDSS reference catalogue, not 2MRS. We interpret these results as meaning that the local environment is the dominant cause of the shift in $M_{*}$, and that the larger scales that 2MRS probes (compared to SDSS) are almost irrelevant. In addition, we also use a fixed aperture method to probe environment, and find tentative evidence that HI-deficiency depresses the value of $M_{*}$ in the highest density regions. We find no significant dependence of the low-mass slope on environment in any test, using either method. Tensions between these results and those from the literature, are discussed and alternative explanations are explored.
There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon and oxygen chemistry accurately within a temperature range between 100 K and 30000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD209458b, Jupiter and the present-day Earth using a simple 1D photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting (1993) for CO2, H2, CO and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of gravitational waves and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, LOFAR and MWA. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a $\usim 30$ second time window and $\usim 200 \mendash 500 \punits{deg}^{2}$ sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a \emph{prompt} radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of $\usim 2$. For some models, we also map the parameter space that may be constrained by non-detections.
In this paper, we study the age and spatial distributions of Cepheids in the Small Magellanic Cloud (SMC) as a function of their ages using the data from the OGLE III photometric catalogue. A period-age (PA) relation derived for the Classical Cepheids in the Large Magellanic Cloud (LMC) has been used to find the ages of Cepheids. The age distribution of the SMC Classical Cepheids is found to have a peak at log(Age) = 8.40+/-0.10 which suggests that a major star formation event might have occurred in the SMC at about 250+/-50 Myrs ago. It is believed that this star forming burst had been triggered by close interactions of the SMC with the LMC and/or the Milky Way (MW). A comparison of the observed spatial distributions of the Cepheids and open star clusters has also been carried out to study the star formation scenario in the SMC.
The success of helioseismology is due to its capability of measuring p-mode oscillations in the Sun. This allows us to extract informations on the internal structure and rotation of the Sun from the surface to the core. Similarly, asteroseismology is the study of the internal structure of the stars as derived from stellar oscillations. In this review we highlight the progress in the observational asteroseismology, including some basic theoretical aspects. In particular, we discuss our contributions to asteroseismology through the study of chemically peculiar stars under the "Nainital-Cape Survey" project being conducted at ARIES, Nainital since 1999. This survey aims to detect new rapidly-pulsating Ap (roAp) stars in the northern hemisphere. We also discuss the contribution of ARIES towards the asteroseismic study of the compact pulsating variables. We comment on the future prospects of our project in the light of the new optical 3.6-m telescope to be install at Devasthal (ARIES). Finally, we present a preliminary optical design of the high-speed imaging photometers for this telescope.
We present photometric analysis of the two W UMa type binaries identified in the field of distant open star cluster NGC6866. Although these systems, namely ID487 and ID494, were reported in the Joshi et al. (2012), but a detailed study of these stars has not been carried out earlier. The orbital periods of these stars are found to be 0.415110+/-0.000001 day and 0.366709+/-0.000004 day, respectively. Based on the photometric and infrared colours, we find their respective spectral types as K0 and K3. The photometric light variations of both the stars show O'Connell effect which could be explained by employing a dark spot on the secondary components. The V and I bands light curves are analyzed using the Wilson-Devinney (WD) code and relations given by Gazeas (2009) which yield radii and mass of the primary and secondary components of the star ID487 as R1 = 1.24+/-0.01 Rsun, R2 = 1.11+/-0.02 Rsun, and M1 = 1.24+/-0.02 Msun, M2 = 0.96+/-0.05 Msun, and for the star ID494 as R1 = 1.22+/-0.02 Rsun, R2 = 0.81+/-0.01 Rsun, and M1 = 1.20+/-0.06 Msun, M2 = 0.47+/-0.01 Msun.
Aims: We resolve the length-scales for filament formation and fragmentation
(res. <=0.1pc), in particular the Jeans length and cylinder fragmentation
scale.
Methods: We observed the prototypical high-mass star-forming filament
IRDC18223 with the Plateau de Bure Interferometer (PdBI) in the 3.2mm continuum
and N2H+(1-0) line emission in a ten field mosaic at a spatial resolution of
~4'' (~14000AU).
Results: The dust continuum emission resolves the filament into a chain of at
least 12 relatively regularly spaced cores. The mean separation between cores
is ~0.40(+-0.18)pc. While this is approximately consistent with the
fragmentation of an infinite, isothermal, gravitationally bound gas cylinder, a
high mass-to-length ratio of M/l~1000M_sun/pc requires additional turbulent
and/or magnetic support against radial collapse of the filament. The N2H+(1-0)
data reveal a velocity gradient perpendicular to the main filament. Although
rotation of the filament cannot be excluded, the data are also consistent with
the main filament being comprised of several velocity-coherent sub-filaments.
Furthermore, this velocity gradient perpendicular to the filament resembles
recent results toward Serpens south that are interpreted as signatures of
filament formation within magnetized and turbulent sheet-like structures.
Lower-density gas tracers ([CI] and C18O) reveal a similar red/blueshifted
velocity structure on scales around 60'' east and west of the IRDC18223
filament. This may tentatively be interpreted as a signature of the large-scale
cloud and the smaller-scale filament being kinematically coupled. We do not
identify a velocity gradient along the axis of the filament. This may either be
due to no significant gas flows along the filamentary axis, but it may partly
also be caused by a low inclination angle of the filament with respect to the
plane of the sky that could minimize such signature.
Most comets are volatile-rich bodies that have recently entered the inner solar system following long-term storage in the Kuiper belt and the Oort cloud reservoirs. These reservoirs feed several distinct, short-lived "small body" populations. Here, we present new measurements of the optical colors of cometary and comet-related bodies including long-period (Oort cloud) comets, Damocloids (probable inactive nuclei of long-period comets) and Centaurs (recent escapees from the Kuiper belt and precursors to the Jupiter family comets). We combine the new measurements with published data on short-period comets, Jovian Trojans and Kuiper belt objects to examine the color systematics of the comet-related populations. We find that the mean optical colors of the dust in short-period and long-period comets are identical within the uncertainties of measurement, as are the colors of the dust and of the underlying nuclei. These populations show no evidence for scattering by optically-small particles or for compositional gradients, even at the largest distances from the Sun, and no evidence for ultrared matter. Consistent with earlier work, ultrared surfaces are common in the Kuiper belt and on the Centaurs, but not in other small body populations, suggesting that this material is hidden or destroyed upon entry to the inner solar system. The onset of activity in the Centaurs and the disappearance of the ultrared matter in this population begin at about the same perihelion distance ($\sim$10 AU), suggesting that the two are related. Blanketing of primordial surface materials by the fallback of sub-orbital ejecta, for which we calculate a very short timescale, is the likely mechanism. The same process should operate on any mass-losing body, explaining the absence of ultrared surface material in the entire comet population.
We have probed the pulsating variable star content of the isolated Local Group dwarf galaxy, DDO210 (Aquarius), using archival Advanced Camera for Surveys/$Hubble$ $Space$ $Telescope$ imaging in the F475W and F814W passbands. We find a total of 32 RR Lyrae stars (24 ab-type, 8 c-type) and 75 Cepheid variables. The mean periods of the ab-type and c-type RR Lyrae stars are calculated to be $\langle$P$_{\mathrm{ab}}\rangle = 0.609\pm0.011$ and $\langle$P$_{\mathrm{c}}\rangle = 0.359\pm0.025$ days, respectively. The light curve properties of the fundamental mode RR Lyrae stars yield a mean metallicity of $\langle$[Fe/H]$\rangle$ = -1.63$\pm$0.11 dex for this ancient population, consistent with a recent synthetic colour-magnitude diagram analysis. We find this galaxy to be Oosterhoff-intermediate and lacking in high-amplitude, short-period ab-type RR Lyrae, consistent with behavior recently observed for many dwarf spheroidals and ultra-faint dwarfs in the Local Group. We find a distance modulus of $\mu = 25.07\pm 0.12$ as determined by the RR Lyrae stars, slightly larger but agreeing with recent distance estimates from the red giant branch tip. We also find a sizable population of Cepheid variables in this galaxy. We provide evidence in favor of most if not all of these stars being short-period classical Cepheids. Assuming all of these stars to be classical Cepheids, we find that most of these Cepheids are $\sim$300 Myr old, with the youngest Cepheids being offset from the older Cepheids and the centre of the galaxy. We conclude that this may have resulted from a migration of star formation in DDO210.
Keck OSIRIS/LGSAO observations of the ultraluminous galaxy IRAS 23365+3604 resolve a non-axisymmetric, circumnuclear structure of semi-major axis 0.42" (520 pc) in Paschen-alpha emission. The line-of-sight velocity of the ionized gas increases from the northeast towards the southwest; this gradient is perpendicular to the photometric major axis of the infrared emission. Two pairs of bends in the zero velocity line are detected. The inner bend provides evidence for gas inflow onto the circumnuclear structure. We interpret the gas kinematics on kiloparsec scales in relation to the molecular gas disk and multiphase outflow discovered previously. In particular, the fast component of the outflow (detected previously with lower spatial resolution) is not detected, adding support to the conjecture that the fast wind originates well-beyond the nucleus. These data directly show the dynamics of gas inflow and outflow in the central kiloparsec of a late-stage, gas-rich merger and demonstrate the potential of integral field spectroscopy to improve our understanding of the role of gas flows during the growth phase of bulges and supermassive black holes.
We searched for z > 7 Lyman-break galaxies (LBGs) in the optical-to-mid-infrared Hubble Frontier Field and associated parallel field observations of the strong-lensing cluster MACS J0416-2403. We discovered 22 candidates, of which six lie at z > 9 and one lies at z > 10. Based on the Hubble and Spitzer photometry, all have secure photometric redshifts and a negligible probability of being at lower redshifts, according to their peak probability ratios, R. This substantial increase in the number of known high-redshift galaxies allows a solid determination of the luminosity function at z > 8. The number of high-z candidates in the parallel field is considerably higher than that in the Abell 2744 parallel field. Our candidates have median stellar masses of log(M_*) ~ 8.40^{+0.55}_{-0.31}~Msun, SFRs of ~ 1.6^{+0.5}_{-0.4} Msun yr^-1, and SFR-weighted ages of < 310^{+70}_{-140} Myr. Finally, we are able to put strong constraints on the z = 7,8,9 and 10 luminosity functions. One of the objects in the cluster field is a z ~ 10 candidate, with a magnification of mu ~ 20 +- 13. This object is likely the faintest z ~ 10 object known to date, allowing a first look into the extreme faint-end (L ~ 0.04L*) of the z ~ 10 luminosity function.
The Birmingham Solar-Oscillations Network (BiSON) has been operating with a full complement of six stations since 1992. Over 20 years later, we look back on the network history. The meta-data from the sites have been analysed to assess performance in terms of site insolation, with a brief look at the challenges that have been encountered over the years. We explain how the international community can gain easy access to the ever-growing dataset produced by the network, and finally look to the future of the network and the potential impact of nearly 25 years of technology miniaturisation.
The Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft observed flare footpoint regions coincident with a surge for a M3.7 flare observed on 25 September 2011 at N12 E33 in active region 11302. The flare was observed in spectral lines of O VI, Fe X, Fe XII, Fe XIV, Fe XV, Fe XVI, Fe XVII, Fe XXIII and Fe XXIV. The EIS observations were made coincident with hard X-ray bursts observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Overlays of the RHESSI images on the EIS raster images at different wavelengths show a spatial coincidence of features in the RHESSI images with the EIS upflow and downflow regions, as well as loop-top or near-loop-top regions. A complex array of phenomena was observed including multiple evaporation regions and the surge, which was also observed by the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) telescopes. The slit of the EIS spectrometer covered several flare footpoint regions from which evaporative upflows in Fe XXIII and Fe XXIV lines were observed with Doppler speeds greater than 500 km s$^{-1}$. For ions such as Fe XV both evaporative outflows (~200 km s$^{-1}$) and downflows (~30-50 km s$^{-1}$) were observed. Non-thermal motions from 120 to 300 km s$^{-1}$ were measured in flare lines. In the surge, Doppler speeds are found from about 0 to over 250 km s$^{-1}$ in lines from ions such as Fe XIV. The non-thermal motions could be due to multiple sources slightly Doppler-shifted from each other or turbulence in the evaporating plasma. We estimate the energetics of the hard X-ray burst and obtain a total flare energy in accelerated electrons of $\geq7\times10^{28}$ ergs. This is a lower limit because only an upper limit can be determined for the low energy cutoff to the electron spectrum. We find that detailed modeling of this event would require a multi-threaded model due to its complexity.
Most molecular clouds are filamentary or elongated. Among those forming low-mass stars, their long axes tend to be either parallel or perpendicular to the large-scale (10-100 pc) magnetic field (B-field) in the surrounding inter cloud medium. This arises because, along the dynamically dominant B-fields, the competition between self-gravity and turbulent pressure will shape the cloud to be elongated either perpendicular or parallel to the fields. Recent study also suggested that, on the scales of 0.1-0.01 pc, fields are dynamically important within cloud cores forming massive stars. But whether the core field morphologies are inherited from the inter cloud medium or governed by cloud turbulence is under vigorous debate, so is the role played by B-fields in cloud fragmentation at 10 - 0.1 pc scales. Here we report B-field maps covering 100-0.01 pc scales inferred from polarimetric observations of a massive-star forming region, NGC 6334. First, the main filament also lies perpendicular to the ambient field. NGC 6334 hosts young star-forming sites where fields are not severely affected by stellar feedback, and their directions do not change significantly over the entire scale range. This means that the fields are dynamically important. At various scales, we find that the hourglass-shaped field lines are pinched where the gas column density peaks and the field strength is proportional to the 0.4-power of the density. We conclude that B-fields play a crucial role in the fragmentation of NGC 6334.
We present a detailed study of V899 Mon (a new member in the FUors/EXors family of young low-mass stars undergoing outburst), based on our long-term monitoring of the source starting from November 2009 to April 2015. Our optical and near-infrared photometric and spectroscopic monitoring recorded the source transitioning from its first outburst to a short duration quiescence phase ($<$ 1 year), and then returning to a second outburst. We report here the evolution of the outflows from inner region of the disk as the accretion rate evolved in various epochs. Our high resolution (R$\sim$37000) optical spectrum could resolve interesting clumpy structures in the outflow traced by various lines. Change in far-infrared flux was also detected between two outburst epochs. Based on our observations we constrained various stellar and envelope parameters of V899 Mon, as well as the kinematics of its accretion and outflow. The photometric and spectroscopic properties of this source fall between classical FUors and EXors. Our investigation of V899 Mon hints instability associated with magnetospheric accretion to be the physical cause of sudden short duration pause of outburst in 2011. It is also a good candidate to explain similar short duration pauses in outburst of some other FUors/EXors sources.
The field of a uniformly magnetized rotating sphere is studied with special attention to the surface where the electric and magnetic fields are orthogonal to each other. The equation of this surface, valid at arbitrary distances from the rotating magnetized sphere, is obtained. Inside the light cylinder this surface can be considered as a force-free surface, i.e. as a place where the particles with strong radiation damping can be trapped due to their energy loss. Outside the light cylinder this surface makes just a geometric locus which moves with a superlight velocity around the axis of rotation. The 2- and 3-dimensional plots of the force-free surface are constructed. Estimation of influence of the centrifugal force on the particle dynamics is made. It is shown, that in case of strong magnetic field the centrifugal force is negligible small everywhere except a narrow neighbourhood of the light cylinder.
Intermediate surface brightness (ISB) galaxies are less numerous than their counterparts at high and low surface brightness (HSB and LSB). Investigating ISB characteristics from a sample from the S4G survey, complete down to M_B=-16, we find that they have intermediate stellar, gas and baryonic masses and on average as much gas as stars. They lie on the (baryonic) Tully-Fisher relation between HSBs and LSBs, although they present a higher scatter than the latter. Their stellar to baryonic mass ratios have intermediate values unlike their condensed baryonic fractions. By comparing their environments, as classified by the eigenvalues of the velocity shear tensor of local constrained simulations, ISBs have a 5-10% probability higher (smaller) to be in sheets (filaments) with respect to HSBs and LSBs. Additionally, for galaxies in filaments (with close neighbors), the mass and mu_0 are correlated at 2.5 (2) sigma more than for those in sheets. ISBs live in regions where the divergence of the velocity field is smaller than where HSBs and LSBs live, a result at more than 50% significance. ISBs may exist as an unstable transition state between LSBs and HSBs, the low flow activity environment maximally encouraging their formation. Interaction events altering the central baryon fraction could happen at a lower rate in these less dense environment, whilst in the higher density environments the LSBs are primarily satellite galaxies, whose accretion is sufficiently constrained that it fails to promote them to HSBs.
We present basic atmospheric parameters ($T_{eff}$, $log g$, $v_{t}$ and [Fe/H]), rotation velocities and absolute radial velocities as well as luminosities, masses, ages and radii for 402 stars (including 11 single-lined spectroscopic binaries), mostly subgiants and giants. For 272 of them we present parameters for the first time. For another 53 stars we present estimates of $T_{eff}$ and $log g$ based on photometric calibrations. More than half objects were found to be subgiants, there is also a large group of giants and a few stars appeard to be dwarfs. The results show that the presented sample is composed of stars with masses ranging from 0.52 to $3.21 M_{\odot}$ of which 17 have masses $\geq$ $2.0 M_{\odot}$. The radii of stars studied in this paper range from 0.66 to $36.04 R_{\odot}$ with vast majority having radii between 2.0 and $4.0 R_{\odot}$. They are generally less metal abundant than the Sun with median [Fe/H]$=-0.07$. For 62 stars in common with other planet searches we found a very good agreement in obtained stellar atmospheric parameters. We also present basic properties of the complete list of 744 stars that form the PTPS evolved stars sample. We examined stellar masses for 1255 stars in five other planet searches and found some of them likely to be significantly overestimated. Applying our uniformly determined stellar masses we confirm the apparent increase of companions masses for evolved stars, and we explain it, as well as lack of close-in planets with limited effective radial velocity precision for those stars due to activity.
We report the discovery of a new exceptional young lithium-rich giant, KIC 9821622, in the \textit{Kepler} field exhibiting unusually large enhancement of $\alpha$, Fe-peak and \textit{r}-process elements. From high-resolution spectra obtained with GRACES at Gemini North, we derived fundamental parameters and detailed chemical abundances of 23 elements from both equivalent widths and synthesis analysis. Combining atmospheric stellar parameters with available asteroseismic data we obtained the stellar mass, radius and age. The data analysis reveals that KIC 9821622 is a Li-rich (A(Li)$_{NLTE}$ = 1.80 $\pm$ 0.2) intermediate-mass giant star ($M$ = 1.64 $M_{\odot}$) located at the RGB near the luminosity bump. We find unexpected elevated abundances of Fe-peak and \textit{r}-process elements. Also, as previously reported, we find that this is a young star (2.37 Gyr) with unusual high abundances of $\alpha$-elements ([$\alpha$/Fe] = 0.31). The evolutionary status of KIC 9821622 suggests that its Li-rich nature is result of internal freshly Li synthesized through the Cameron-Fowler mechanism near the luminosity bump. However, its peculiar enhancement of $\alpha$, Fe-peak and \textit{r}-process elements opens the possibility of external contamination by material enriched by a supernova explosion. Although less likely, planet accretion cannot be ruled out.
We present DEIMOS multi-object spectroscopy (MOS) of 22 star-forming dwarf galaxies located in four gas-rich groups, including six newly-discovered dwarfs. Two of the galaxies are strong tidal dwarf galaxy (TDG) candidates based on our luminosity-metallicity relation definition. We model the rotation curves of these galaxies. Our sample shows low mass-to-light ratios (M/L=0.73$\pm0.39M_\odot/L_\odot$) as expected for young, star-forming dwarfs. One of the galaxies in our sample has an apparently strongly-falling rotation curve, reaching zero rotational velocity outside the turnover radius of $r_{turn}=1.2r_e$. This may be 1) a polar ring galaxy, with a tilted bar within a face-on disk; 2) a kinematic warp. These scenarios are indistinguishable with our current data due to limitations of slit alignment inherent to MOS-mode observations. We consider whether TDGs can be detected based on their tidal radius, beyond which tidal stripping removes kinematic tracers such as H$\alpha$ emission. When the tidal radius is less than about twice the turnover radius, the expected falling rotation curve cannot be reliably measured. This is problematic for as much as half of our sample, and indeed more generally, galaxies in groups like these. Further to this, the H$\alpha$ light that remains must be sufficiently bright to be detected; this is only the case for three (14%) galaxies in our sample. We conclude that the falling rotation curves expected of tidal dwarf galaxies are intrinsically difficult to detect.
Coherent oscillations and the evolution of the X-ray spectrum during thermonuclear X-ray bursts in accreting neutron-star X-ray binaries have been studied intensively but separately. We analysed all the X-ray bursts of the source 4U 1728-34 with the Rossi X-ray Timing Explorer. We found that the presence of burst oscillations can be used to predict the behaviour of the blackbody radius during the cooling phase of the bursts. If a burst shows oscillations, during the cooling phase the blackbody radius remains more or less constant for ~2 - ~8s, whereas in bursts that do not show oscillations the blackbody radius either remains constant for more than ~2 - ~8s or it shows a rapid (faster than ~2s) decrease and increase. Both the presence of burst oscillations and the time-dependent spectral behaviour of the bursts are affected by accretion rate. We also found that the rise time and convexity of the bursts' light curve are different in bursts with and without oscillations in 4U 1728--34. Bursts with oscillations have a short rise time (~0.5s) and show both positive and negative convexity, whereas bursts without oscillations have a long rise time (~1s) and mostly positive convexity. This is consistent with the idea that burst oscillations are associated with off-equator ignition.
We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution scenarios and follow the evolution for the age of the Solar System, testing the present day model results against the available observational constraints. Our model shows the present configuration to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock at the center and hydrated rock in the outer part. For Enceladus, it predicts a higher rock/ice mass ratio than previously assumed and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.
We propose a new method to probe a possible time evolution of the fine structure constant $\alpha$ from X-ray and Sunyaev-Zeldovich measurements of the gas mass fraction ($f_{gas}$) in galaxy clusters. Taking into account a direct relation between variations of $\alpha$ and violations of the distance-duality relation, we discuss constraints on $\alpha$ for a class of dilaton runaway models. Although not yet competitive with bounds from high-$z$ quasar absorption systems, our constraints, considering a sample of 29 measurements of $f_{gas}$, in the redshift interval $0.14 < z < 0.89$, provide an independent estimate of $\alpha$ variation at low and intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on $\alpha$ variation obtained in the present analysis.
(abridged) The connection between black hole, accretion disk, and radio jet can be best constrained by fitting models to observations of nearby low luminosity galactic nuclei, in particular the well studied sources Sgr~A* and M87. There has been considerable progress in modeling the central engine of active galactic nuclei by an accreting supermassive black hole coupled to a relativistic plasma jet. However, can a single model be applied to a range of black hole masses and accretion rates? Here we want to compare the latest three-dimensional numerical model, originally developed for Sgr A* in the center of the Milky Way, to radio observations of the much more powerful and more massive black hole in M87. We postprocess three-dimensional GRMHD models of a jet-producing radiatively inefficient accretion flow around a spinning black hole using relativistic radiative transfer and ray-tracing to produce model spectra and images. As a key new ingredient to these models, we allow the proton-electron coupling in these simulations depend on the magnetic properties of the plasma. We find that the radio emission in M87 is well described by a combination of a two-temperature accretion flow and a hot single-temperature jet. The model fits the basic observed characteristics of the M87 radio core. The best fit model has a mass-accretion rate of Mdot approx 9x10^{-3} MSUN/YR and a total jet power of P_j \sim 10^{43} erg/s. Emission at 1.3mm is produced by the counter jet close to the event horizon. Its characteristic crescent shape surrounding the black hole shadow could be resolved by future millimeter-wave VLBI experiments. The model was successfully derived from one for the supermassive black hole in center of the Milky Way by appropriately scaling mass and accretion rate. This suggests the possibility that this model could also apply to a larger range of low-luminosity black holes.
We present the first results from the Las Cumbres Observatory Global Telescope (LCOGT) Network's Active Galactic Nuclei Key Project, a large program devoted to using the robotic resources of LCOGT to perform time domain studies of active galaxies. We monitored the Seyfert 1 galaxy Arp~151 (Mrk~40) for $\sim$200 days with robotic imagers and with the FLOYDS robotic spectrograph at Faulkes Telescope North. Arp~151 was highly variable during this campaign, with $V$-band light curve variations of $\sim$0.3 mag and H$\beta$ flux changing by a factor of $\sim$3. We measure robust time lags between the $V$-band continuum and the H$\alpha$, H$\beta$ and H$\gamma$ emission lines, with $\tau_\mathrm{cen} = 13.89^{+1.39}_{-1.41}$, 7.52$^{+1.43}_{-1.06}$ and 7.40$^{+1.50}_{-1.32}$ days, respectively. The lag for the \ion{He}{2} $\lambda4686$ emission line is unresolved. We measure a velocity-resolved lag for the H$\beta$ line, which is clearly asymmetric with higher lags on the blue wing of the line which decline to the red, possibly indicative of radial inflow, and is similar in morphology to past observations of the H$\beta$ transfer function shape. Assuming a virialization factor of $f$=5.5, we estimate a black hole mass of $M_\mathrm{BH}=6.2^{+1.4}_{-1.2}\times$10$^{6}$~$M_{\odot}$, also consistent with past measurements for this object. These results represent the first step to demonstrate the powerful robotic capabilities of LCOGT for long-term, AGN time domain campaigns that human intensive programs cannot easily accomplish. Arp 151 is now one of just a few AGN where the virial product is known to remain constant against substantial changes in H$\beta$ lag and luminosity.
The WISE Catalog of Galactic HII Regions contains $\sim2000$ HII region candidates lacking ionized gas spectroscopic observations. All candidates have the characteristic HII region mid-infrared morphology of WISE $12\,\,\mu\,m$ emission surrounding $22\,\mu\,m$ emission, and additionally have detected radio continuum emission. We here report Green Bank Telescope (GBT) hydrogen radio recombination line (RRL) and radio continuum detections at X-band (9GHz; 3cm) of 302 WISE HII region candidates (out of 324 targets observed) in the zone $225^{\circ} > l > -20^{\circ}$, $|b| \le 6^{\circ}$. Here we extend the sky coverage of our HII region Discovery Survey (HRDS), which now contains nearly 800 HII regions distributed across the entire northern sky. We provide LSR velocities for the 302 detections and kinematic distances for 131 of these. Of the 302 new detections, five have ($l, b, v$) coordinates consistent with the Outer Scutum-Centaurus Arm (OSC), the most distant molecular spiral arm of the Milky Way. Due to the Galactic warp, these nebulae are found at Galactic latitudes $>1^{\circ}$ in the first Galactic quadrant, and therefore were missed in previous surveys of the Galactic plane. One additional region has a longitude and velocity consistent with the OSC but lies at a negative Galactic latitude (G039.183$-$01.422; $-$54.9 kms). With Heliocentric distances >22 kpc and Galactocentric distances >16 kpc, the OSC HII regions are the most distant known in the Galaxy. We detect an additional three HII regions near $l \simeq 150^{\circ}$ whose LSR velocities place them at Galactocentric radii >19 kpc. If their distances are correct, these nebulae may represent the limit to Galactic massive star formation.
We present a comprehensive analysis of spatially resolved moderate spectral resolution near infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is of particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative.
Simultaneous time monitoring observations of H$_{2}$O and SiO maser lines were performed toward the D-type symbiotic binary system V407 Cyg with the Korean VLBI Network single dish radio telescope. These monitoring observations were carried out from March 2, 2010 (optical phase $\phi$ = 0.0), 8 days before the nova outburst on March 10, 2010 to June 5, 2014 ($\phi$ = 2.13). Eight days before the nova outburst, we detected the SiO $v$ = 1, 2, $J$ = 1--0 maser lines which exhibited values of 0.51 K ($\sim$ 6.70 Jy) and 0.71 K ($\sim$ 9.30 Jy), respectively, while after the outburst we could not detect them on April 2 ($\phi$ = 0.04), May 5 ($\phi$ = 0.09), May 8 ($\phi$ = 0.09), or on June 5, 2010 ($\phi$ = 0.13) within the upper limits of our KVN observations. After restarting our monitoring observations, we detected SiO $v$ = 2, $J$ = 1--0 masers starting on October 20, 2011 ($\phi$ = 0.83) and detected SiO $v$ = 1, $J$ = 1--0 masers starting on December 22, 2011 ($\phi$ = 0.92). These results provide clear evidence of the interaction between the shock from the nova outburst and the SiO maser regions of the Mira envelope. The peak emission of SiO $v$ = 1, 2, $J$ = 1--0 masers always occurred at blueshifted velocities with respect to the stellar velocity except for that of SiO $v$ = 1 at one epoch. These phenomena may be related to the redistribution of SiO maser regions after the outburst. The peak velocity variations of SiO masers associated with stellar pulsation phases show an increasing blueshifted trend during our monitoring interval after the outburst.
The radiative mechanism of the black hole X-ray transients (BHXTs) in their quiescent states (defined as the 2-10${\rm\ keV}$ X-ray luminosity $\le 10^{34}{\rm \,erg\,s^{-1}}$) remains unclear. In this work, we investigate the quasi-simultaneous quiescent state spectrum (including radio, infrared, optical, ultraviolet and X-ray) of two BHXTs, A0620--00 and XTE J1118+480. We find that, these two sources can be well described by a coupled accretion -- jet model. More specifically, most of the emission (radio up-to infrared, and the X-ray waveband) comes from the collimated relativistic jet. Emission from hot accretion flow is totally insignificant, and it can only be observed in mid-infrared (the synchrotron peak). Emission from the outer cold disc is only evident in UV band. These results are consistent with our previous investigation on the quiescent state of V404 Cyg, and confirm that the quiescent state is jet-dominated.
In order to find out capable molecular source of astronomically well observed infrared (IR) spectrum, asymmetric molecular configuration polycyclic aromatic hydrocarbon (PAH) was analyzed by the density functional theory (DFT) analysis. Starting molecules were benzene C6H6, naphthalene C10H8 and 1H-phenalene C13H9. In interstellar space, those molecules will be attacked by high energy photon and proton, which may bring cationic molecules as like C6H6n+ (n=0~3 in calculation), C10H8n+, and C13H9n+, also CH lacked molecules C5H5n+, C9H7n+, and C12H8n+. IR spectra of those molecules were analyzed based on DFT based Gaussian program. Results suggested that symmetrical configuration molecules as like benzene, naphthalene , 1H-phenalene and those cation ( +, 2+, and 3+) show little resemblance with observed IR. Contrast to such symmetrical molecules, several cases among cationic and asymmetric configuration molecules show fairly good IR tendency. One typical example was C12H83+, of which calculated harmonic IR wavelength were 3.2, 6.3, 7.5, 7.8, 8.7, 11.3, and 12.8 micro meter, which correspond well to astronomically observed wavelength of 3.3, 6.2, 7.6, 7.8, 8.6, 11.2, and 12.7 micro meter. It was amazing agreement. Also, some cases like C5H5+, C9H7+, C9H72+, C9H73+ and C12H82+ show fairly good coincidence. Such results suggest that asymmetric and cationic PAH may be capable source of interstellar dust.
Numerical simulations suggest that merging double white dwarfs (WDs) may produce a newborn neutron star surrounded by a fossil disk. We investigate the evolution of the fossil disk following the coalescence of double WDs. We demonstrate that the evolution can be mainly divided into four phases: the slim disk phase (with time $\lesssim$ 1 yr), the inner slim plus outer thin disk phase ($\sim 10-\DP{6}$ yr), the thin disk phase ($\sim \DP{2}-\DP{7}$ yr), and the inner advection-dominated accretion flow plus outer thin disk phase, given the initial disk mass $\sim 0.05-0.5\,M_{\sun}$ and the disk formation time $10^{-3}-1$ s. Considering possible wind mass loss from the disk, we present both analytic formulae and numerically calculated results for the disk evolution, which is sensitive to the condition that determines the location of the outer disk radius. The systems are shown to be very bright in X-rays in the early phase, but quickly become transient within $\lesssim$ 100 yr, with peak luminosities decreasing with time. We suggest that they might account for part of the very faint X-ray transients around the Galactic center region, which generally require a very low mass transfer rate.
We present the detection of molecular gas from galaxies located in nearby voids using the CO line emission as a tracer. The observations were done using the 45m Nobeyama Radio Telescope. Void galaxies lie in the most under dense parts of our universe and a significant fraction of them are gas rich, late type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Ha line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO line emission from four of the five galaxies in our sample and the molecular gas masses lie between 10^8 to 10^9 Msolar. We did follow-up Ha imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs). The SFR varies from 0.2 to 1 Msolar/yr, which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in under dense regions, their disks contain molecular gas and have star formation rates similar to galaxies in denser environments.
In anticipation of the Gaia astrometric mission, a sample of spectroscopic binaries is being observed since 2010 with the Sophie spectrograph at the Haute--Provence Observatory. Our aim is to derive the orbital elements of double-lined spectroscopic binaries (SB2s) with an accuracy sufficient to finally obtain the masses of the components with relative errors as small as 1 % when combined with Gaia astrometric measurements. In order to validate the masses derived from Gaia, interferometric observations are obtained for three SB2s in our sample with F-K components: HIP 14157, HIP 20601 and HIP 117186. The masses of the six stellar components are derived. Due to its edge-on orientation, HIP 14157 is probably an eclipsing binary. We note that almost all the derived masses are a few percent larger than the expectations from the standard spectral-type-mass calibration and mass-luminosity relation. Our calculation also leads to accurate parallaxes for the three binaries, and the Hipparcos parallaxes are confirmed.
We simulate an oscillating purely hydrodynamical torus with constant specific angular mo- mentum around a Schwarzschild black hole. The goal is to search for quasi-periodic oscil- lations (QPOs) in the light curve of the torus. The initial torus setup is subjected to radial, vertical and diagonal (combination of radial and vertical) velocity perturbations. The hydro- dynamical simulations are performed using the general relativistic magnetohydrodynamics code Cosmos++ and ray-traced using the GYOTO code. We found that a horizontal velocity perturbation triggers the radial and plus modes, while a vertical velocity perturbation trig- gers the vertical and X modes. The diagonal perturbation gives a combination of the modes triggered in the radial and vertical perturbations.
We investigate the evolution of super-AGB thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parameterisation), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage the interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed $10^9$ (in some cases $10^{10}$) $\mathrm{L}_\odot$. We also calculate models of dredge-out in the most massive super-AGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H-$^{12}$C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H-ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from super-AGB stars. We also simulate potential outbursts triggered by such H-ingestion events, present their light curves and briefly discuss their transient properties.
Asteroid modeling efforts in the last decade resulted in a comprehensive dataset of almost 400 convex shape models and their rotation states. This amount already provided a deep insight into physical properties of main-belt asteroids or large collisional families. We aim to increase the number of asteroid shape models and rotation states. Such results are an important input for various further studies such as analysis of asteroid physical properties in different populations, including smaller collisional families, thermophysical modeling, and scaling shape models by disk-resolved images, or stellar occultation data. This provides, in combination with known masses, bulk density estimates, but constrains also theoretical collisional and evolutional models of the Solar System. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as an input for the convex inversion method, and derive 3D shape models of asteroids, together with their rotation periods and orientations of rotation axes. The key ingredient is the support of more that one hundred observers who submit their optical data to publicly available databases. We present updated shape models for 36 asteroids, for which mass estimates are currently available in the literature or their masses will be most likely determined from their gravitational influence on smaller bodies, which orbital deflection will be observed by the ESA Gaia astrometric mission. This was achieved by using additional optical data from recent apparitions for the shape optimization. Moreover, we also present new shape model determinations for 250 asteroids, including 13 Hungarias and 3 near-Earth asteroids.
We present the first stellar density profile of the Milky Way bulge reaching
latitude $b=0^\circ$. It is derived by counting red clump stars within the
colour\--magnitude diagram constructed with the new PSF-fitting photometry from
VISTA Variables in the V\'\i a L\'actea (VVV) survey data. The new stellar
density map covers the area between $|l|\leq 10^\circ$ and $|b|\leq 4.5^\circ$
with unprecedented accuracy, allowing to establish a direct link between the
stellar kinematics from the Giraffe Inner Bulge Spectroscopic Survey (GIBS) and
the stellar mass density distribution. In particular, the location of the
central velocity dispersion peak from GIBS matches a high overdensity in the
VVV star count map. By scaling the total luminosity function (LF) obtained from
all VVV fields to the LF from Zoccali et al.(2003), we obtain the first fully
empirical estimate of the mass in stars and remnants of the Galactic bulge.
The Milky Way bulge stellar mass within ($|b|<9.5^\circ$, $|l|<10^\circ$) is
$2.0\pm0.3\times 10^{10}M_{\odot}$.
Based on early Kepler data, Ostensen et al. (2010) found that KIC 9202990 showed a 4 hr and a two-week photometric period. They suggested the 4 hr period was a signature of an orbital period; the longer period was possibly due to precession of an accretion disk and KIC 9202990 was a cataclysmic variable with an accretion disk which is always in a bright state (a nova-like system). Using the full Kepler dataset on KIC 9202990 which covers 1421 d (Quarter 2--17), and includes 1 min cadence data from the whole of Quarters 5 and 16, we find that the 4 hr period is stable and therefore a signature of the binary orbital period. In contrast, the 10--12 d period is not stable and shows an amplitude between 20--50 percent. This longer period modulation is similar to those nova-like systems which show `stunted' outbursts. We discuss the problems that a precessing disk model has in explaining the observed characteristics and indicate why we favour a stunted outburst model. Although such stunted events are considered to be related to the standard disk instability mechanism, their origin is not well understood. KIC 9202990 shows the lowest amplitude and shortest period of continuous stunted outburst systems, making it an ideal target to better understand stunted outbursts and accretion instabilities in general.
The evolution of massive stars is only partly understood. Observational constraints can be obtained from the study of massive stars located in young massive clusters. The ESO Public Survey VISTA Variables in the Via Lactea (VVV) discovered several new clusters hosting massive stars. We present an analysis of massive stars in four of these new clusters. Our aim is to provide constraints on stellar evolution and to better understand the relation between different types of massive stars. We use the radiative transfer code CMFGEN to analyse K-band spectra of twelve stars with spectral types ranging from O and B to WN and WC. We derive the stellar parameters of all targets as well as surface abundances for a subset of them. In the Hertzsprung-Russell diagram, the Wolf-Rayet stars are more luminous or hotter than the O stars. From the log(C/N) - log(C/He) diagram, we show quantitatively that WN stars are more chemically evolved than O stars, WC stars being more evolved than WN stars. Mass loss rates among Wolf-Rayet stars are a factor of 10 larger than for O stars, in agreement with previous findings.
We study the three-dimensional evolution of a viscous protoplanetary disc
which is perturbed by a passing star on a parabolic orbit. The aim is to test
whether a single stellar flyby is capable to excite significant disc
inclinations which would favour the formation of so-called misaligned planets.
We use smoothed particle hydrodynamics to study inclination, disc mass and
angular momentum changes of the disc for passing stars with different masses.
We explore different orbital configurations for the perturber's orbit to find
the parameter spaces which allow significant disc inclination generation.
Prograde inclined parabolic orbits are most destructive leading to significant
disc mass and angular momentum loss. In the remaining disc, the final disc
inclination is only below $20^\circ$. This is due to the removal of disc
particles which have experienced the strongest perturbing effects. Retrograde
inclined parabolic orbits are less destructive and can generate disc
inclinations up to $60^\circ$. The final disc orientation is determined by the
precession of the disc angular momentum vector about the perturber's orbital
angular momentum vector and by disc orbital inclination changes.
We propose a sequence of stellar flybys for the generation of misalignment
angles above $60^\circ$. The results taken together show that stellar flybys
are promising and realistic for the explanation of misaligned Hot Jupiters with
misalignment angles up to 60\degr.
The positron fraction in cosmic rays was found to be steadily increasing in function of energy, above $\sim$10 GeV. This behaviour contradicts standard astrophysical mechanisms, in which positrons are secondary particles, produced in the interactions of primary cosmic rays during the propagation in the interstellar medium. The observed anomaly in the positron fraction triggered a lot of excitement, as it could be interpreted as an indirect signature of the presence of dark matter species in the Galaxy. Alternatively, it could be produced by nearby astrophysical sources, such as pulsars. Both hypotheses are probed in this work in light of the latest AMS-02 positron fraction measurements. The transport of primary and secondary positrons in the Galaxy is described using a semi-analytic two-zone model. MicrOMEGAs is used to model the positron flux generated by dark matter species. We provide mass and annihilating cross section that best fit AMS-02 data for each single annihilating channel as well as for combinations of channels. We find that the mass of the favoured dark matter candidates is always larger than 500 GeV. The description of the positron fraction from astrophysical sources is based on the pulsar observations included in the ATNF catalogue. The region of the distance-to-age plane that best fits the positron fraction for a single source is determined and a list of five pulsars from the ATNF catalogue is given. Those results are obtained with the cosmic ray transport parameters that best fit the B/C ratio. Uncertainties in the propagation parameters turn out to be very significant.
We present revised basic stellar astrophysical parameters: masses, luminosities, ages and radii for 342 stars from PennState-Toru\'n Centre for Astronomy Planet Search. Atmospheric parameters for 327 stars are available from Zieli\'nski (2012), for the remaining 15 objects we present also spectroscopic atmospheric parameters: effective temperatures, surface gravities and iron abundances. Spectroscopic atmospheric parameters were obtained with a standard spectroscopic analysis procedure, using ARES (Sousa, 2007) and MOOG (Sneden, 1973) or TGVIT (Takeda, 2005) codes. To refine stellar masses, ages and luminosities we applied a Bayesian method based on Jorgensen (2005) formalism, modified by da Silva (2006). The revised stellar masses for 342 stars and their uncertainties are generally lower than those presented in Zieli\'nski (2012). Atmospheric parameters for 13 objects are determined here for the first time.
Antiprotons are regarded as a powerful probe for Dark Matter (DM) indirect detection and indeed current data from \PAMELA\ have been shown to lead to stringent constraints. However, in order to exploit their constraining/discovery power properly, great attention must be put into effects (linked to their propagation in the Galaxy) which may be perceived as subleading but actually prove to be quite relevant. We revisit the computation of the astrophysical background and of the DM antiproton fluxes fully including the effects of: diffusive reacceleration, energy losses including tertiary component and solar modulation (in a force field approximation). Using the updated proton and helium fluxes just released by the \AMS\ experiment we reevaluate the secondary astrophysical antiproton to proton ratio and its uncertainties, and compare it with the ratio preliminarly reported by \AMS. We find no unambiguous evidence for a significant excess with respect to expectations. Yet, some preference for a flatter energy dependence of the diffusion coefficient (with respect to the {\sc Med} benchmark often used in the literature) starts to emerge. Finally, we provide a first assessment of the room left for exotic components such as Galactic Dark Matter annihilation, deriving new stringent constraints.
In this paper, we present a unique data set of more than one year's worth of regular observations of comet C/2013 A1(Siding Spring) with TRAPPIST in Chile, along with low-resolution spectra obtained with the ESO/VLT FORS 2 instrument. The comet made a close approach to Mars on October 19, 2014 and was then observed by many space and ground-based telescopes. We followed the evolution of the OH, NH, CN, $\mathrm{C_3}$, and $\mathrm{C_2}$ production rates as well as the $Af\rho$ parameter as a proxy for the dust production. We detected an outburst two weeks after perihelion, with gas and dust production rates being multiplied by a factor five within a few days. By modelling the shape of the CN and $\mathrm{C_2}$ radial profiles, we determined that the outburst happened around on November 10 around 15:30 UT ($\pm$ 5h) and measured a gas ejection velocity of $1.1\pm0.2$ km/s. We used a thermal evolution model to reproduce the activity pattern and outburst. Our results are consistent with the progressive formation of a dust mantle explaining the shallow dependence of gas production rates, which may be partially blown off during the outburst. We studied the evolution of gas composition, using various ratios such as CN/OH, $\mathrm{C_2}$/OH, or $\mathrm{C_3}$/OH, which showed little or no variation with heliocentric distance including at the time of the outburst. This indicates a relative level of homogeneity of the nucleus composition.
We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of $1.4~\mathrm{M}_{\odot}$ neutron stars to a be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. We also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.
We present new optical spectra of the nearby, bright, planetary nebula NGC 6778. The nebula has been known to emit strong recombination lines for more than 40 years but this is the first detailed study of its abundances. Heavy element abundances derived from recombination lines are found to exceed those from collisionally excited lines by a factor of ~20 in an integrated spectrum of the nebula, which is among the largest known abundance discrepancy factors. Spatial analysis of the spectra shows that the abundance discrepancy factor is strongly, centrally peaked, reaching ~40 close to the central star. The central star of NGC 6778 is known to be a short period binary, further strengthening the link between high nebular abundance discrepancy factors and central star binarity.
Evidence for small amounts of very hot plasma has been found in active regions and might be the indication of an impulsive heating, released at spatial scales smaller than the cross section of a single loop. We investigate the heating and substructure of coronal loops in the core of one such active region by analyzing the light curves in the smallest resolution elements of solar observations in two EUV channels (94 A and 335 A) from the Atmospheric Imaging Assembly on-board the Solar Dynamics Observatory. We model the evolution of a bundle of strands heated by a storm of nanoflares by means of a hydrodynamic 0D loop model (EBTEL). The light curves obtained from the random combination of those of single strands are compared to the observed light curves either in a single pixel or in a row of pixels, simultaneously in the two channels and using two independent methods: an artificial intelligent system (Probabilistic Neural Network, PNN) and a simple cross-correlation technique. We explore the space of the parameters to constrain the distribution of the heat pulses, their duration and their spatial size, and, as a feedback on the data, their signatures on the light curves. From both methods the best agreement is obtained for a relatively large population of events (1000) with a short duration (less than 1 min) and a relatively shallow distribution (power law with index 1.5) in a limited energy range (1.5 decades). The feedback on the data indicates that bumps in the light curves, especially in the 94 A channel, are signatures of a heating excess that occurred a few minutes before.
We aim at analyzing the (sub-)millimeter emission in a nearby blazar, PKS 0521-365 , to study the synchrotron and thermal emission in the different components detected at low frequency. We analyze the archive public data of the ALMA Cycle 0 where PKS 0521-365 is used as a calibrator. A total of 13 projects with 23 dataset is analyzed in band 3, 6 and 7 and combined. The whole set of data is combined and wavelet filtered to obtain a deep image reaching a dynamic range of 47000. The individual emission flux is measured at different date over a period of 11 months in various components. Finally we analyze the Spectral Energy Distribution (SED) in each different component, including the radio jet and counter jet. The point sources detected in the field follow a similar distribution to previous studies. The blazar flux shows large variation especially in band 3. Different components are observed: core, radio jet and newly detected counter jet, Hot Spot (HS) and a disky structure roughly perpendicular to the jet. The HS emission is formed by a point source surrounded by an extended emission. The viewing angle of the jet is about 30 with a Doppler factor of 1.6$. The HS is at a distance of 19 kpc from the center. The SED analysis shows a strong variation of the core spectral index, especially in band 3. The two components in the radio jet have roughly a flat spectral index in band 6 and 7. Using these ALMA data the different weak and extended components are detected. The analysis of both jets constrains the geometrical distance of the HS to the center. The SED presents a different shape in time and frequency for each component. Finally a new structure is detected roughly perpendicular to the radio jet and a thermal emission origin is currently favoured. Further observations at higher spatial resolution are needed to confirm that hypothesis.
We report on the temporal and spatial fluctuations in the atmospheric brightness in the narrow band between Meinel emission lines at 1191.3 nm using an R=320 near-infrared instrument. We present the instrument design and implementation, followed by a detailed analysis of data taken over the course of a night from Table Mountain Observatory. The absolute sky brightness at this wavelength is found to be 5330 +/- 30 nW m^-2 sr^-1, consistent with previous measurements of the inter-band airglow at these wavelengths. This amplitude is larger than simple models of the continuum component of the airglow emission at these wavelengths, confirming that an extra emissive or scattering component is required to explain the observations. We perform a detailed investigation of the noise properties of the data and find no evidence for a noise component associated with temporal instability in the inter-line continuum. This result demonstrates that in several hours of ~100s integrations the noise performance of the instrument does not appear to significantly degrade from expectations, giving a proof of concept that near-IR line intensity mapping may be feasible from ground-based sites.
We report measurements from which we determine the spatial structure of the lunar contribution to night sky brightness, taken at the LSST site on Cerro Pachon in Chile. We use an array of six photodiodes with filters that approximate the Large Synoptic Survey Telescope's {\it u, g, r, i, z,} and {\it y} bands. We use the sun as a proxy for the moon, and measure sky brightness as a function of zenith angle of the point on sky, zenith angle of the sun, and angular distance between the sun and the point on sky. We make a correction for the difference between the illumination spectrum of the sun and the moon. Since scattered sunlight totally dominates the daytime sky brightness, this technique allows us to cleanly determine the contribution to the (cloudless) night sky from backscattered moonlight, without contamination from other sources of night sky brightness. We estimate our uncertainty in the relative lunar night sky brightness vs. zenith and lunar angle to be 10\,\%. This information is useful in planning the optimal execution of the LSST survey, and perhaps for other astronomical observations as well. Although our primary objective is to map out the angular structure and spectrum of the scattered light from the atmosphere and particulates, we also make an estimate of the expected number of scattered lunar photons per pixel per second in LSST, and find values that are in overall agreement with previous estimates.
We develop methods to calculate the curvature power spectrum in models where features in the inflaton potential nonlinearly excite modes and generate high frequency features in the spectrum. The first nontrivial effect of excitations generating further excitations arises at third order in deviations from slow roll. If these further excitations are contemporaneous, the series can be resummed, showing the exponential sensitivity of the curvature spectrum to potential features. More generally, this exponential approximation provides a power spectrum template which nonlinearly obeys relations between excitation coefficients and whose parameters may be appropriately adjusted. For a large sharp step in the potential, it greatly improves the analytic power spectrum template and its dependence on potential parameters. For axionic oscillations in the potential, it corrects the mapping between the potential and the amplitude, phase and zero point of the curvature oscillations, which might otherwise cause erroneous inferences in for example the tensor-scalar ratio, formally even when that amplitude is $10^3$ times larger than the slow roll power spectrum. It also estimates when terms that produce double frequency oscillations that are usually omitted when analyzing data should be included. These techniques should allow future studies of high frequency features in the CMB and large scale structure to extend to higher amplitude and/or higher precision.
Context. The solar chromosphere is the interface between the solar surface
and the solar corona. Modelling of this region is difficult because it
represents the transition from optically thick to thin radiation escape, from
gas-pressure domination to magnetic-pressure domination, from a neutral to an
ionised state, from MHD to plasma physics, and from near-equilibrium (LTE) to
non-equilibrium conditions.
Aims. Our aim is to provide the community with realistic simulations of the
magnetic solar outer atmosphere. This will enable detailed comparison of
existing and upcoming observations with synthetic observables from the
simulations, thereby elucidating the complex interactions of magnetic fields
and plasma that are crucial for our understanding of the dynamic outer
atmosphere.
Methods. We used the radiation magnetohydrodynamics code Bifrost to perform
simulations of a computational volume with a magnetic field topology similar to
an enhanced network area on the Sun.
Results. The full simulation cubes are made available online. The general
properties of the simulation are discussed, and limitations are discussed.
An exoplanet's structure and composition are first-order controls of the planet's habitability. We explore which aspects of bulk terrestrial planet composition and interior structure affect the chief observables of an exoplanet: its mass and radius. We apply these perturbations to the Earth, the planet we know best. Using the mineral physics toolkit BurnMan to self-consistently calculate mass-radius models, we find that core radius, presence of light elements in the core and an upper-mantle consisting of low-pressure silicates have the largest effect on the final calculated mass at a given radius, with mantle composition being secondary. We further apply this model to determine the interior composition of Kepler-36b, finding that it is likely structurally similar to the Earth with Si/Fe = 1.14 compared to Earth's Si/Fe = 1 and Sun's Si/Fe = 1.19. We expand these results provide a grid of terrestrial mass-radius models for determining whether exoplanets are indeed "Earth-like" as bound by their composition and structure.
Dynamical interactions in binary systems are thought to play a major role in the formation of extreme horizontal branch stars (EHBs) in the Galactic field. However, it is still unclear if the same mechanisms are at work in globular clusters, where EHBs are predominantly single stars. Here we report on the discovery of a unique close binary system (period ~1.61 days) in the globular cluster NGC6752, comprising an EHB and a main-sequence companion of 0.63+-0.05 Msun. Such a system has no counterpart among nearly two hundred known EHB binaries in the Galactic field. Its discovery suggests that either field studies are incomplete, missing this type of systems possibly because of selection effects, or that a particular EHB formation mechanism is active in clusters but not in the field.
The problem of a cold gas flowing past a stationary object is considered. It is shown that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The interior of the shock front is obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force and expected spectra are calculated for such shock, both in case of an optically thin and thick media. Finally, relations to astrophysical bow shocks and other analytic works on oblique shocks are discussed.
The angular power spectra of the CMB temperature anisotropies from the recently released Planck data exhibit the intriguing feature of apparently presenting too much gravitational lensing distortion with respect to expectations from a standard $\Lambda$CDM cosmology. This is quantified by the control parameter $A_L$, which is found to deviate from unity by more than $2\sigma$. This feature also shows up in a tension between low and high $\ell$ measurements of the reionization optical depth $\tau$. Using the Hillipop likelihood, built from the Planck data, the tension is reduced. By combining it with the vey high $\ell$ measurements of the ACT and SPT experiments, we obtain consistent results for $\tau$ and measure $A_L = 1.03 \pm 0.08$. After investigating the reasons for this improvement and the robustness of our results, we evaluate the impact on the $\Lambda$CDM parameters and show that regularizing $A_L$ also leads to effects on the scalar perturbations amplitude $A_\mathrm{s}$ and the baryonic energy density $\Omega_\mathrm{b}h^2$.
For any given momentum transfer, gravitational interactions have a strength set by a characteristic scale $M_*$ inferred from amplitudes calculated in an effective theory with a strong coupling scale $M_{**}$. These are in general different from each other and $M_{\rm pl}$, the macroscopic strength of gravity as determined by (laboratory scale) Cavendish experiments. During single field inflation, $M_*$ can differ from $M_{\rm pl}$ due to the presence of any number of (hidden) universally coupled species between laboratory and inflationary scales. Although this has no effect on dimensionless (i.e. observable) quantities measured at a fixed scale such as the amplitude and spectral properties of the CMB anisotropies, it complicates the inference of an absolute scale of inflation given any detection of primordial tensors. In this note we review and elaborate upon these facts and address concerns raised in a recent paper.
The center of mass (CM) energy in a collisional Penrose process - a collision taking place within the ergosphere of a Kerr black hole - can diverge under suitable extreme conditions (maximal Kerr, near horizon collision and suitable impact parameters). We present an analytic expression for the CM energy, refining expressions given in the literature. Even though the CM energy diverges, we show that the maximal energy attained by a particle that escapes the black hole's gravitational pull and reaches infinity is modest. We obtain an analytic expression for the energy of an escaping particle resulting from a collisional Penrose process, and apply it to derive the maximal energy and the maximal efficiency for several physical scenarios: pair annihilation, Compton scattering, and the elastic scattering of two massive particles. In all physically reasonable cases (in which the incident particles initially fall from infinity towards the black hole) the maximal energy (and the corresponding efficiency) are only one order of magnitude larger than the rest mass energy of the incident particles. The maximal efficiency found is $\approx 13.92$ and it is obtained for the scattering of an outgoing massless particle by a massive particle.
The most general completion of Brans-Dicke gravity is found when energy is exchanged in a uniquely defined way between the scalar field and ordinary matter. The theory contains a new parameter (integration constant from the integration procedure) and when this is switched off, Brans-Dicke theory emerges. As usually, the vacuum theory can be defined from the complete Brans-Dicke theory when the matter energy-momentum tensor vanishes. However, additionally, the complete family of vacuum theories is found, consistent with the free wave equation for the scalar field. The subclass of this family with identically covariantly conserved energy-momentum tensor is identified and, thus, can be supplemented by any equation of motion for the scalar field.
We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, independent of the nature of DM. We then consider the explicit example of a Type II two-Higgs-doublet model, identifying the h or H as the 125 GeV state while the H or h, respectively, mediates DM-nucleon interactions. Finally, we show that if a stable scalar, S, is added then it can be a viable light DM candidate with correct relic density while obeying all direct and indirect detection limits.
In this paper, we consider third order Lovelock gravity with a cosmological constant term in an n-dimensional spacetime $\mathcal{M}^{4}\times \mathcal{K}^{n-4}$, where $\mathcal{K}^{n-4} $ is a constant curvature space. We decompose the equations of motion to four and higher dimensional ones and find wormhole solutions by considering a vacuum $\mathcal{K}^{n-4} $ space. Applying the latter constraint, we determine the second and third order Lovelock coefficients and the cosmological constant in terms of specific parameters of the model, such as the size of the extra dimensions. Using the obtained Lovelock coefficients and $\Lambda$, we obtain the 4-dimensional matter distribution threading the wormhole. Furthermore, by considering the zero tidal force case and a specific equation of state, given by $\rho =(\gamma p-\tau )/[\omega (1+\gamma )]$, we find the exact solution for the shape function which represents both asymptotically flat and non-flat wormhole solutions. We show explicitly that these wormhole solutions in addition to traversibility satisfy the energy conditions for suitable choices of parameters and that the existence of a limited spherically symmetric traversable wormhole with normal matter in a 4-dimensional spacetime, implies a negative effective cosmological constant.
Though widely accepted, it is not proven that supermassive compact objects (SMCOs) residing in galactic centers are black holes. In particular, the Milky Way's SMCO can be a giant nontopological soliton, Q-ball, made of a scalar field: this fits perfectly all observational data. Similar but tiny Q-balls produced in the early Universe may constitute, partly or fully, the dark matter. This picture explains in a natural way, why our SMCO has very low accretion rate and why the observed angular size of the corresponding radio source is much smaller than expected. Interactions between dark-matter Q-balls may explain how SMCOs were seeded in galaxies and resolve well-known problems of standard (non-interacting) dark matter.
The total photoproduction cross section at ultra-high energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air-showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.
A double hybrid inflationary scenario in non-minimal supergravity which can predict values of the tensor-to-scalar ratio up to about 0.05 is presented. Larger values of this ratio would require unacceptably large running of the scalar spectral index. The underlying supersymmetric particle physics model possesses, for the chosen values of the parameters, practically two inflationary paths, the trivial and the semi-shifted one. The trivial path is stabilized by supergravity and supports a first stage of inflation with a limited number of e-foldings. The tensor-to-scalar ratio can become appreciable with the scalar spectral index remaining acceptable, as a result of the competition between the relatively mild supergravity and the strong radiative corrections to the inflationary potential. The additional number of e-foldings required for solving the puzzles of hot big bang cosmology are generated by a second stage of inflation along the semi-shifted path. This is possible only because the semi-shifted path is almost orthogonal to the trivial one and, thus, not affected by the strong radiative corrections on the trivial path and also because the supergravity effects remain mild. The model predicts the formation of an unstable network of open cosmic strings connecting monopoles to antimonopoles. This network decays to gravity waves well before recombination leading to possibly detectable signatures in future space-based laser interferometer gravitational-wave detectors.
We explore some of the the cosmological implications of the recent classical nonlocal generalization of Einstein's theory of gravitation in which nonlocality is due to the gravitational memory of past events. In the Newtonian regime of this theory, the nonlocal character of gravity simulates dark matter in spiral galaxies and clusters of galaxies. However, dark matter is considered indispensable as well for structure formation in standard models of cosmology. Can nonlocal gravity solve the problem of structure formation without recourse to dark matter? Here we make a beginning in this direction by extending nonlocal gravity in the Newtonian regime to the cosmological domain. The nonlocal analog of the Zel'dovich solution is formulated and the consequences of the resulting nonlocal Zel'dovich model are investigated in detail.
The strong CP problem of QCD is at heart a problem of naturalness: why is the F\tilde{F} term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle-- the Higgs boson-- has been discovered, one might expect its mass to reside at the axion scale f_a~ 10^{11} GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dark matter. Ultimately we would expect detection of both an axion and a WIMP while signals for light higgsinos may show up at LHC and must show up at ILC.
We point out that the gamma-ray excesses in the galactic center and in the dwarf galaxy Reticulum II can both be well explained within the simplest dark matter model. We find that the corresponding region of parameter space will be tested by direct and indirect dark matter searches in the near future.
We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and $^3$He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a $^3$He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated $^{252}$Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
CO$N$CEPT (COsmological $N$-body CodE in PyThon) is a free and open-source
code for cosmological $N$-body simulations on massively parallel computers with
distributed memory. Collisionless dark matter is the only implemented particle
species. Gravity can be computed using the PP, PM or the P$^{3}$M algorithm.
The goal of CO$N$CEPT is to make it pleasant to work with cosmological $N$-body
simulations - for the cosmologist as well as for the source code developer.
This is the user guide. The source code and additional documentation can be
found at https://github.com/jmd-dk/concept/
As part of our ongoing NTT SoFI survey for variability in young free-floating planets and low mass brown dwarfs, we detect significant variability in the young, free-floating planetary mass object PSO J318.5-22, likely due to rotational modulation of inhomogeneous cloud cover. A member of the 23$\pm$3 Myr $\beta$ Pic moving group, PSO J318.5-22 has T$_\mathrm{eff}$ = 1160$^{+30}_{-40}$ K and a mass estimate of 8.3$\pm$0.5 M$_{Jup}$ for a 23$\pm$3 Myr age. PSO J318.5-22 is intermediate in mass between 51 Eri b and $\beta$ Pic b, the two known exoplanet companions in the $\beta$ Pic moving group. With variability amplitudes from 7-10$\%$ in J$_{S}$ at two separate epochs over 3-5 hour observations, we constrain the rotational period of this object to $>$5 hours. In K$_{S}$, we marginally detect a variability trend of up to 3$\%$ over a 3 hour observation. This is the first detection of weather on an extrasolar planetary mass object. Among L dwarfs surveyed at high-photometric precision ($<$3$\%$) this is the highest amplitude variability detection. Given the low surface gravity of this object, the high amplitude preliminarily suggests that such objects may be more variable than their high mass counterparts, although observations of a larger sample is necessary to confirm this. Measuring similar variability for directly imaged planetary companions is possible with instruments such as SPHERE and GPI and will provide important constraints on formation. Measuring variability at multiple wavelengths can help constrain cloud structure.
The ability to accurately derive black hole (BH) masses at progressively higher redshifts and over a wide range of continuum luminosities has become indispensable in the era of large-area extragalactic spectroscopic surveys. In this paper we present an extension of existing comparisons between rest-frame UV and optical virial BH mass estimators to intermediate redshifts and luminosities comparable to the local H$\beta$ reverberation mapped active galactic nuclei (AGN). We focus on the MgII, CIV, and CIII] broad emission lines and compare them to both H$\alpha$ and H$\beta$. We use newly acquired near-infrared spectra from the FMOS instrument on the Subaru telescope for 89 broad-lined AGN at redshifts between 0.3 and 3.5, complemented by data from the AGES survey. We employ two different prescriptions for measuring the emission line widths and compare the results. We confirm that MgII shows a tight correlation with H$\alpha$ and H$\beta$, with a scatter of ~0.25 dex. The CIV and CIII] estimators, while showing larger scatter, are viable virial mass estimators after accounting for a trend with the UV-to-optical luminosity ratio. We find an intrinsic scatter of ~0.37 dex between Balmer and carbon virial estimators by combining our dataset with previous high redshift measurements. This updated comparison spans a total of 3 decades in BH mass. We calculate a virial factor for CIV/CIII] logf(CIV/CIII])=0.87 with an estimated systematic uncertainty of ~0.4 dex and find excellent agreement between the local reverberation mapped AGN sample and our high-z sample.
Compact groups of galaxies provide a unique environment to study the evolution of galaxies amid frequent gravitational encounters. These nearby groups have conditions similar to those in the earlier universe when galaxies were assembled and give us the opportunity to witness hierarchical formation in progress. To understand how the compact group environment affects galaxy evolution, we examine the gas and dust in these groups. We present new single-dish GBT neutral hydrogen (HI) observations of 30 compact groups and define a new way to quantify the group HI content as the HI-to-stellar mass ratio of the group as a whole. We compare the HI content with mid-IR indicators of star formation and optical [g-r] color to search for correlations between group gas content and star formation activity of individual group members. Quiescent galaxies tend to live in HI-poor groups, and galaxies with active star formation are more commonly found in HI-rich groups. Intriguingly, we also find "rogue" galaxies whose star formation does not correlate with group HI content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG 1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is discrepant with the HI. We speculate that this mismatch between mid-IR activity and HI content is a consequence of strong interactions in this environment that can strip HI from galaxies and abruptly affect star-formation. Ultimately, characterizing how and on what timescales the gas is processed in compact groups will help us understand the interstellar medium in complex, dense environments similar to the earlier Universe.
We present Hubble Space Telescope and Keck 10 meter telescope observations of active asteroid 288P/300163 (2006 VW139) taken to examine ejected dust. The nucleus is a C-type object with absolute magnitude $H_V$ = 17.0$\pm$0.1 and estimated diameter $\sim$2.6 km (for assumed visual geometric albedo $p_V$ = 0.04). Variations in the brightness of the nucleus at the 10% to 15% level are significant in both 2011 December and 2012 October but we possess too few data to distinguish variations caused by activity from those caused by rotation. The dust scattering cross-section in 2011 December is $\sim$40 km$^2$, corresponding to a dust mass $\sim$9$\times$10$^6$ kg (88 $\mu$m mean particle radius assumed). The full width at half maximum of the debris sheet varies from $\sim$100 km near the nucleus to $\sim$1000 km 30arcsec (40,000 km) east of it. Dust dynamical models indicate ejection speeds between 0.06 and 0.3 m s$^{-1}$, particle sizes between 10 and 300 $\mu$m and an inverse square-root relation between particle size and velocity. Overall, the data are most simply explained by prolonged, low velocity ejection of dust, starting in or before 2011 July and continuing until at least 2011 October. These properties are consistent with the sublimation of near-surface ice aided by centrifugal forces. The high spatial resolution of our HST images (52 km per pixel) reveals details that remained hidden in previous ground-based observations, such as the extraordinarily small vertical extent of the dust sheet, ejection speeds well below the nucleus escape speed, and the possibility of a binary nucleus.
We obtain a new determination of the metallicity distribution function (MDF) of stars within $\sim5$-$10$ kpc of the Sun, based on recently improved co-adds of $ugriz$ photometry for Stripe 82 from the Sloan Digital Sky Survey. Our new estimate uses the methodology developed previously by An et al. to study in situ halo stars, but is based on a factor of two larger sample than available before, with much-improved photometric errors and zero-points. The newly obtained MDF can be divided into multiple populations of halo stars, with peak metallicities at [Fe/H] $\approx -1.4$ and $-1.9$, which we associate with the inner-halo and outer-halo populations of the Milky Way, respectively. We find that the kinematics of these stars (based on proper-motion measurements at high Galactic latitude) supports the proposed dichotomy of the halo, as stars with retrograde motions in the rest frame of the Galaxy are generally more metal-poor than stars with prograde motions, consistent with previous claims. In addition, we generate mock catalogs of stars from a simulated Milk Way halo system, and demonstrate for the first time that the chemically- and kinematically-distinct properties of the inner- and outer-halo populations are qualitatively in agreement with our observations. The decomposition of the observed MDF and our comparison with the mock catalog results suggest that the outer-halo population contributes on the order of $\sim35\%$-$55\%$ of halo stars in the local volume.
We extend the catalogue of two-dimensional, PSF-corrected de Vacouleurs, Sersic, de Vacouleurs+Exponential, and Sersic+Exponential fits of ~7x10^5 galaxies presented in Meert, Vikram & Bernardi (2015) to include the g- and i-bands. Fits are analysed using the physically motivated flagging system presented in the original text, making adjustments for the differing signal-to-noise when necessary. We compare the fits in each of the g-, r-, and i-bands. Fixed aperture magnitudes and colours are also provided for all galaxies. The catalogues are available in electronic format.
We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Bootes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Its variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced {\alpha}-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs.
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also extraordinarily well-motivated within high energy physics, and so axion cosmology offers us a unique view onto these theories. I present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via the CMB and structure formation up to the present-day Universe. I briefly review the motivation and models for axions in particle physics and string theory. The primary focus is on the population of ultralight axions created via vacuum realignment, and its role as a dark matter (DM) candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is $m_a>10^{-24}\text{ eV}$ from linear observables, extending to $m_a\gtrsim 10^{-22}\text{ eV}$ from non-linear observables, and has the potential to reach $m_a\gtrsim 10^{-18}\text{ eV}$ in the future. I then spend some time discussing direct and indirect detection of axions, reviewing existing and future experiments. Miscellaneous additional topics covered include: axions as dark radiation, and axions as dark energy; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation.
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R=22, 500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using chi-2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization, and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.
Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v~0.1-0.3c), highly-ionized (mainly visible in FeXXV and FeXXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.
The discovery of novae as sources of ~GeV gamma-rays highlights the key role of shocks and relativistic particle acceleration in these transient systems. Although there is evidence for a spectral cut-off above energies ~1-100 GeV at particular epochs in some novae, the maximum particle energy achieved in these accelerators has remained an open question. The high densities of the nova ejecta (~10 orders of magnitude larger than in supernova remnants) render the gas far upstream of the shock neutral and shielded from ionizing radiation. The amplification of the magnetic field needed for diffusive shock acceleration requires ionized gas, thus confining the acceleration process to a narrow photo-ionized layer immediately ahead of the shock. Based on the growth rate in this layer of the hybrid non-resonant cosmic ray current-driven instability (considering also ion-neutral damping), we quantify the maximum particle energy, Emax, across the range of shock velocities and upstream densities of interest. We find values of Emax ~ 10 GeV - 10 TeV, which are broadly consistent with the inferred spectral cut-offs, but which could also in principle lead to emission extending to higher energies >100 GeV accessible to atmosphere Cherenkov telescopes, such as the planned Cherenkov Telescope Array (CTA). Detecting TeV neutrinos with IceCube in hadronic scenarios appears to be more challenging, although the prospects are improved if the shock power during the earliest, densest phases of the nova outburst is higher than is implied by the observed GeV light curves, due to downscattering of the gamma-rays by electrons within the ejecta. Novae provide ideal nearby laboratories to study magnetic field amplification and the onset of cosmic ray acceleration, because other time-dependent sources (e.g. radio supernovae) typically occur too distant to detect as gamma-ray sources.
We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.
We present results of the first ever three-dimensional (3D) magnetohydrodynamic (MHD) simulations of the accretion-ejection structure. We investigate the 3D evolution of jets launched symmetrically from single stars but also jets from warped disks in binary systems. We have applied various model setups and tested them by simulating a stable and bipolar symmetric 3D structure from a single star-disk-jet system. Our reference simulation maintains a good axial symmetry and also a bipolar symmetry for more than 600 rotations of the inner disk confirming the quality of our model setup. We have then implemented a 3D gravitational potential (Roche potential) due to a companion star and run a variety of simulations with different binary separations and mass ratios. These simulations show typical 3D deviations from axial symmetry, such as jet inclination outside the Roche lobe or spiral arms forming in the accretion disk. In order to find indication for precession effects, we have also run an exemplary parameter setup, essentially governed by a small binary separation of only $\simeq{200}$ inner disk radii. This simulation shows strong indication that we observe the onset of a jet precession caused by the wobbling of the jet launching disk. We estimate the opening angle of the precession cone defined by the lateral motion of the the jet axis of about 4 degree after about 5000 dynamical time steps.
It has recently been claimed that dark matter in form of quark nuggets cannot account for more than 20% of the dark matter density. This claim is based on constraints on the neutrino flux in 20-50 MeV range where the sensitivity of underground neutrino detectors such as Super-Kamiokande have their highest signal-to-noise ratio. We argue that this claim depends crucially on the assumption that the annihilation of visible baryons with an antiquark nugget will generate a neutrino spectrum similar to the conventional baryon-antibaryon annihilation spectrum in vacuum. However, this assumption does not hold for the nuggets in a colour superconducting phase where the lightest pseudo Goldstone mesons (the pions and Kaons) have masses in the 20 MeV range, in contrast with conventional pion mass of roughly 140 MeV. Thus, the decay of these light pseudo Goldstone bosons of the CS phase cannot produce highly energetic neutrinos in the 20-50 MeV energy range.
In this study we use multi-epoch near-infrared observations from the VISTA survey of the Magellanic Cloud system (VMC) to measure the proper motion of different stellar populations in a tile of 1.5 deg sq. in size in the direction of the Galactic globular cluster 47 Tuc. We obtain the proper motion of the cluster itself, of the Small Magellanic Cloud (SMC), and of the field Milky Way stars. Stars of the three main stellar components are selected from their spatial distribution and their distribution in colour-magnitude diagrams. Their average coordinate displacement is computed from the difference between multiple Ks-band observations for stars as faint as Ks=19 mag. Proper motions are derived from the slope of the best-fitting line among 10 VMC epochs over a time baseline of ~1 yr. Background galaxies are used to calibrate the absolute astrometric reference frame. The resulting absolute proper motion of 47 Tuc is (mu_alpha cos(delta), mu_delta)=(+7.26+/-0.03, -1.25+/-0.03) mas/yr. This measurement refers to about 35000 sources distributed between 10 and 60 arcmin from the cluster centre. For the SMC we obtain (mu_alpha cos(delta), mu_delta)=(+1.16+/-0.07, -0.81+/-0.07) mas/yr from about 5250 red clump and red giant branch stars. The absolute proper motion of the Milky Way population in the line-of-sight (l =305.9, b =-44.9) of this VISTA tile is (mu_alpha cos(delta), mu_delta)=(+10.22+/-0.14, -1.27+/-0.12) mas/yr and results from about 4000 sources. Systematic uncertainties associated to the astrometric reference system are 0.18 mas/yr. Thanks to the proper motion we detect 47 Tuc stars beyond its tidal radius.
Synthetic RGBB magnitudes are generated with the most recent theoretical stellar evolution models computed with the Dartmouth Stellar Evolution Program (DSEP) code. They are compared to the observational work of Nataf et al., who present RGBB magnitudes for 72 globular clusters. A DSEP model using a chemical composition with enhanced $\alpha$ capture [$\alpha$/Fe] $ =+0.4$ and an age of 13 Gyr shows agreement with observations over metallicities ranging from [Fe/H] = $0$ to [Fe/H] $\approx-1.5$, with discrepancy emerging at lower metallicities.
Collisions of white dwarfs (WDs) have recently been invoked as a possible mechanism for type Ia supernovae (SNIa). A pivotal feature for the viability of WD collisions as SNIa progenitors is that a significant fraction of the mass is highly compressed to the densities required for efficient $^{56}$Ni production before the ignition of the detonation wave. Previous studies have predominantly employed model WDs composed entirely of carbon-oxygen (CO), whereas WDs are expected to have a non-negligible helium envelope. Given that helium is more susceptible to explosive burning than CO under the conditions characteristic of WD collision, a legitimate concern is whether or not early time He detonation ignition can translate to early time CO detonation, thereby drastically reducing $^{56}$Ni synthesis. We investigate the role of He in determining the fate of WD collisions by performing a series of two-dimensional hydrodynamics calculations. We find that a necessary condition for non-trivial reduction of the CO ignition time is that the He detonation birthed in the contact region successfully propagates into the unshocked shell. We determine the minimal He shell mass as a function of the total WD mass that upholds this condition. Although we utilize a simplified reaction network similar to those used in previous studies, our findings are in good agreement with detailed investigations concerning the impact of network size on He shell detonations. This allows us to extend our results to the case with more realistic burning physics. Based on the comparison of these findings against evolutionary calculations of WD compositions, we conclude that most, if not all, WD collisions will not be drastically impacted by their intrinsic He components.
Monitoring of the narrow line Seyfert 1 galaxy Markarian 335 (Mrk 335) with the Swift satellite discovered an X-ray flare beginning 2014 August 29. At the peak, the 0.5-5keV count rate had increased from that in the low flux state by a factor of 10. A target of opportunity observation was triggered with NuSTAR, catching the decline of the flare on 2014 September 20. We present a joint analysis of Swift and NuSTAR observations to understand the cause of this flare. The X-ray spectrum shows an increase in directly observed continuum flux and the softening of the continuum spectrum to a photon index of 2.49 (-0.07,+0.08) compared to the previous low flux observations. The X-ray spectrum remains well-described by the relativistically blurred reflection of the continuum from the accretion disc whose emissivity profile suggests that it is illuminated by a compact X-ray source, extending at most 5.2rg over the disc. A very low reflection fraction of 0.41 (-0.15,+0.15) is measured, unexpected for such a compact corona. The X-ray flare is, hence, interpreted as arising from the vertical collimation and ejection of the X-ray emitting corona at a mildly relativistic velocity, causing the continuum emission to be beamed away from the disc. As the flare subsides, the base of this jet-like structure collapses into a compact X-ray source that provides the majority of the radiation that illuminates the disc while continuum emission is still detected from energetic particles further out, maintaining the low reflection fraction.
[Abridged] In high density environment, the gas content of galaxies is stripped, leading to a rapid quenching of their star formation activity. This dramatic environmental effect is generally not taken into account in the SFHs usually assumed to perform spectral energy distribution (SED) fitting of these galaxies, yielding to a poor fit of their stellar emission and, consequently, a biased estimate of the SFR. We aim at reproducing the SFH of galaxies that underwent a rapid star formation quenching using a truncated delayed SFH that we implemented in the SED fitting code CIGALE. We show that the ratio between the instantaneous SFR and the SFR just before the quenching ($r_{SFR}$) is well constrained as long as rest frame UV data are available. This SED modelling is applied to the Herschel Reference Survey (HRS) containing isolated galaxies and sources falling in the dense environment of the Virgo cluster. The latter are HI-deficient due to ram pressure stripping. We show that the truncated delayed SFH successfully reproduces their SED while typical SFH assumptions fail. A good correlation is found between $r_{SFR}$ and HI-def, the parameter quantifying the gas deficiency of cluster galaxies, meaning that SED fitting results can be used to provide a tentative estimate of the gas deficiency of galaxies for which HI observations are not available. The HRS galaxies are placed on the SFR-$M_*$ diagram showing that the HI-deficient sources lie in the quiescent region confirming previous studies. Using the $r_{SFR}$ parameter, we derive the SFR of these sources before quenching and show that they were previously on the main sequence relation. We show that the $r_{SFR}$ parameter is also well recovered for deeply obscured high redshift sources, as well as in absence of IR data. SED fitting is thus a powerful tool to identify galaxies that underwent a rapid star formation quenching.
We extend a machine learning (ML) framework presented previously to model galaxy formation and evolution in a hierarchical universe using N-body + hydrodynamical simulations. In this work, we show that ML is a promising technique to study galaxy formation in the backdrop of a hydrodynamical simulation. We use the Illustris Simulation to train and test various sophisticated machine learning algorithms. By using only essential dark matter halo physical properties and no merger history, our model predicts the gas mass, stellar mass, black hole mass, star formation rate, $g-r$ color, and stellar metallicity fairly robustly. Our results provide a unique and powerful phenomenological framework to explore the galaxy-halo connection that is built upon a solid hydrodynamical simulation. The promising reproduction of the listed galaxy properties demonstrably place ML as a promising and a significantly more computationally efficient tool to study small-scale structure formation. We find that ML mimics a full-blown hydrodynamical simulation surprisingly well in a computation time of mere minutes. The population of galaxies simulated by ML, while not numerically identical to Illustris, is statistically and physically robust and follows the same fundamental observational constraints. Machine learning offers an intriguing and promising technique to create quick mock galaxy catalogs in the future.
The Universe is largely transparent to $\gamma$ rays in the GeV energy range, making these high-energy photons valuable for exploring energetic processes in the cosmos. After seven years of operation, the Fermi {\it Gamma-ray Space Telescope} has produced a wealth of information about the high-energy sky. This review focuses on extragalactic $\gamma$-ray sources: what has been learned about the sources themselves and about how they can be used as cosmological probes. Active galactic nuclei (blazars, radio galaxies, Seyfert galaxies) and star-forming galaxies populate the extragalactic high-energy sky. Fermi observations have demonstrated that these powerful non-thermal sources display substantial diversity in energy spectra and temporal behavior. Coupled with contemporaneous multifrequency observations, the Fermi results are enabling detailed, time-dependent modeling of the energetic particle acceleration and interaction processes that produce the $\gamma$ rays, as well as providing indirect measurements of the extragalactic background light and intergalactic magnetic fields. Population studies of the $\gamma$-ray source classes compared to the extragalactic $\gamma$-ray background place constraints on some models of dark matter. Ongoing searches for the nature of the large number of $\gamma$-ray sources without obvious counterparts at other wavelengths remains an important challenge.
Searches for circumstellar material around Type Ia supernovae (SNe Ia) are
one of the most powerful tests of the nature of SN Ia progenitors, and radio
observations provide a particularly sensitive probe of this material. Here we
report radio observations for SNe Ia and their lower-luminosity thermonuclear
cousins. We present the largest, most sensitive, and spectroscopically diverse
study of prompt (delta t <~ 1 yr) radio observations of 85 thermonuclear SNe,
including 25 obtained by our team with the unprecedented depth of the Karl G.
Jansky Very Large Array. With these observations, SN 2012cg joins SN 2011fe and
SN 2014J as a SN Ia with remarkably deep radio limits and excellent temporal
coverage (six epochs, spanning 5--216 days after explosion, yielding Mdot/v_w
<~ 5 x 10^-9 M_sun/yr / (100 km/s), assuming epsilon_B = 0.1 and epsilon_e =
0.1).
All observations yield non-detections, placing strong constraints on the
presence of circumstellar material. We present analytical models for the
temporal and spectral evolution of prompt radio emission from thermonuclear SNe
as expected from interaction with either wind-stratified or uniform density
media. These models allow us to constrain the progenitor mass loss rates, with
limits ranging from Mdot <~ 10^-9--10^-4 M_sun/yr, assuming a wind velocity
v_w=100 km/s. We compare our radio constraints with measurements of Galactic
symbiotic binaries to conclude that <~10% of thermonuclear SNe have red giant
companions.
In 2014 the number of active cell phones worldwide for the first time surpassed the number of humans. Cell phone camera quality and onboard processing power (both CPU and GPU) continue to improve rapidly. In addition to their primary purpose of detecting photons, camera image sensors on cell phones and other ubiquitous devices such as tablets, laptops and digital cameras can detect ionizing radiation produced by cosmic rays and radioactive decays. While cosmic rays have long been understood and characterized as a nuisance in astronomical cameras, they can also be identified as a signal in idle camera image sensors. We present the Distributed Electronic Cosmic-ray Observatory (DECO), a platform for outreach and education as well as for citizen science. Consisting of an app and associated database and web site, DECO harnesses the power of distributed camera image sensors for cosmic-ray detection.
We present results from 21 cm radio synthesis imaging of 28 spiral galaxies from the DiskMass Survey obtained with the VLA, WSRT, and GMRT facilities. We detail the observations and data reduction procedures and present a brief analysis of the radio data. We construct 21 cm continuum images, global HI emission-line profiles, column-density maps, velocity fields, and position-velocity diagrams. From these we determine star formation rates (SFRs), HI line widths, total HI masses, rotation curves, and azimuthally-averaged radial HI column-density profiles. All galaxies have an HI disk that extends beyond the readily observable stellar disk, with an average ratio and scatter of R_{HI}/R_{25}=1.35+/-0.22, and a majority of the galaxies appear to have a warped HI disk. A tight correlation exists between total HI mass and HI diameter, with the largest disks having a slightly lower average column density. Galaxies with relatively large HI disks tend to exhibit an enhanced stellar velocity dispersion at larger radii, suggesting the influence of the gas disk on the stellar dynamics in the outer regions of disk galaxies. We find a striking similarity among the radial HI surface density profiles, where the average, normalized radial profile of the late-type spirals is described surprisingly well with a Gaussian profile. These results can be used to estimate HI surface density profiles in galaxies that only have a total HI flux measurement. We compare our 21 cm radio continuum luminosities with 60 micron luminosities from IRAS observations for a subsample of 15 galaxies and find that these follow a tight radio-infrared relation, with a hint of a deviation from this relation at low luminosities. We also find a strong correlation between the average SFR surface density and the K-band surface brightness of the stellar disk.
We investigate the thermal evolution of comet 67P/Churyumov-Gerasimenko's subsurface in the Seth_01 region, where active pits have been observed by the ESA/Rosetta mission. Our simulations show that clathrate destabilization and amorphous ice crystallization can occur at depths corresponding to those of the observed pits in a timescale shorter than 67P/Churyumov-Gerasimenko's lifetime in the comet's activity zone in the inner solar system. Sublimation of crystalline ice down to such depths is possible only in the absence of a dust mantle, which requires the presence of dust grains in the matrix small enough to be dragged out by gas from the pores. Our results are consistent with both pits formation via sinkholes or subsequent to outbursts, the dominant process depending on the status of the subsurface porosity. A sealed dust mantle would favor episodic and disruptive outgassing as a result of an increasing gas pressure in the pores, while a high porosity should allow the formation of large voids in the subsurface due to the continuous escape of volatiles. We finally conclude that the subsurface of 67P/Churyumov-Gerasimenko is not uniform at a spatial scale of 100-200~m.
Astronomers commonly quote the properties of celestial objects in units of parameters for the Sun, Jupiter, or the Earth. The resolution presented here was proposed by the IAU Inter-Division Working Group on Nominal Units for Stellar and Planetary Astronomy and passed by the XXIXth IAU General Assembly in Honolulu. IAU 2015 Resolution B3 adopts a set of nominal solar, terrestrial, and jovian conversion constants for stellar and (exo)planetary astronomy which are defined to be exact SI values. While the nominal constants are based on current best estimates (CBEs; which have uncertainties, are not secularly constant, and are updated regularly using new observations), they should be interpreted as standard values and not as CBEs. IAU 2015 Resolution B3 adopts five solar conversion constants (nominal solar radius, nominal total solar irradiance, nominal solar luminosity, nominal solar effective temperature, and nominal solar mass parameter) and six planetary conversion constants (nominal terrestrial equatorial radius, nominal terrestrial polar radius, nominal jovian equatorial radius, nominal jovian polar radius, nominal terrestrial mass parameter, and nominal jovian mass parameter).
Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a process that sequesters it from exposed surface reservoirs, a major constituent of its lakes and seas. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this interaction on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If interactions between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated seas or lakes.
In this review I briefly describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. A previously unknown population of HMXBs hosting supergiant stars has been revealed in the last years, with multi-wavelength campaigns including high energy (INTEGRAL, Swift, XMM, Chandra) and optical/infrared (mainly ESO) observations. This population is divided between obscured supergiant HMXBs, and supergiant fast X-ray transients (SFXTs), characterized by short and intense X-ray flares. I discuss the characteristics of these types of supergiant HMXBs, propose a scenario describing the properties of these high-energy sources, and finally show how the observations can constrain the accretion models (e.g. clumpy winds, magneto-centrifugal barrier, transitory accretion disc, etc). Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of double neutron star systems, related to short/hard gamma-ray bursts, the knowledge of the formation and evolution of this HMXB population is of prime importance.
This paper is based on the rapporteur talk given at the 34$^{th}$ International Cosmic Ray Conference (ICRC), on August 6$^{th}$, 2015. The purpose of the talk and paper is to provide a summary of the most recent results from balloon-borne and space-based experiments presented at the conference, and give an overview of the future missions and developments foreseen in this field.
The Hera Saturn entry probe mission is proposed as an M--class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera's aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.
We study water-hydrogen mixtures under planetary interior conditions using ab initio molecular dynamics simulations. We determine the thermodynamic properties of various water-hydrogen mixing ratios at temperatures of 2000 and 6000 K for pressures of a few tens of GPa. These conditions are relevant for ice giant planets and for the outer envelope of the gas giants. We find that at 2000 K the mixture is in a molecular regime, while at 6000 K the dissociation of hydrogen and water is important and affects the thermodynamic properties. We study the structure of the liquid and analyze the radial distribution function. We provide estimates for the transport properties, diffusion and viscosity, based on autocorrelation functions. We obtained viscosity estimates of the order of a few tenths of mPa.s for the conditions under consideration. These results are relevant for dynamo simulations of ice giant planets.
Quasar feedback models often predict an expanding hot gas bubble which drives a galaxy-scale outflow. In many circumstances the hot gas is predicted to radiate inefficiently, making the hot bubble hard to observe directly. We present an indirect method to detect the presence of a hot bubble using hydrostatic photoionization models of the cold (10^4 K) line-emitting gas. These models assume that the cold gas is in pressure equilibrium with either the hot gas pressure or with the radiation pressure, whichever is larger. We compare our models with observations of the broad line region (BLR), the inner face of the dusty torus, the narrow line region (NLR), and the extended NLR, and thus constrain the hot gas pressure over a dynamical range of 10^5 in radius, from 0.1 pc to 10 kpc. We find that the emission line ratios observed in the average quasar spectrum are consistent with radiation-pressure-dominated models on all scales. On scales <40 pc a dynamically significant hot gas pressure is ruled out for an average quasar spectrum, while on larger scales the hot gas pressure cannot exceed six times the local radiation pressure. In individual quasars, ~25% of the objects exhibit narrow line ratios that are inconsistent with radiation-pressure-dominated models by a factor of ~2, though in these objects the hot gas pressure is also unlikely to exceed the radiation pressure by an order of magnitude or more. The upper limits we derive on the hot gas pressure imply that the instantaneous gas pressure force acting on galaxy-scale outflows falls short of the time-averaged force needed to explain the large momentum fluxes \dot{p} >> L_AGN/c inferred for galaxy-scale outflows in luminous quasars. This apparent discrepancy can be reconciled if the optical quasars observed today previously experienced a buried, fully-obscured phase, (abridged)
We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form in the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined.
We utilize zoom-in cosmological simulations to study the nature of violent disc instability (VDI) in clumpy galaxies at high redshift, $z=1$--$5$. Our simulated galaxies are not in the ideal state assumed in Toomre instability, of linear fluctuations in an isolated, uniform, rotating disk. There, instability is characterised by a $Q$ parameter below unity, and lower when the disk is thick. Instead, the high-redshift discs are highly perturbed. Over long periods they consist of non-linear perturbations, compact massive clumps and extended structures, with new clumps forming in inter-clump regions. This is while the galaxy is subject to frequent external perturbances. We compute the local, two-component $Q$ parameter for gas and stars, smoothed on a $\sim1~{\rm kpc}$ scale to capture clumps of $10^{8-9}~{\rm M}_\odot$. The $Q<1$ regions are confined to collapsed clumps due to the high surface density there, while the inter-clump regions show $Q$ significantly higher than unity. Tracing the clumps back to their relatively smooth Lagrangian patches, we find that $Q$ prior to clump formation typically ranges from unity to a few. This is unlike the expectations from standard Toomre instability. We discuss possible mechanisms for high-$Q$ clump formation, e.g. rapid turbulence decay leading to small clumps that grow by mergers, non-axisymmetric instability, or clump formation induced by non-linear perturbations in the disk. Alternatively, the high-$Q$ non-linear VDI may be stimulated by the external perturbations, e.g. mergers and counter-rotating streams. The high $Q$ may represent excessive compressive modes of turbulence, possibly induced by tidal interactions.
We describe the luminosity function, based on Sersic fits to the light profiles, of CMASS galaxies at z ~ 0.55. Compared to previous estimates, our Sersic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sersic- rather than Petrosian or de Vaucouleur-based photometry on the Sloan Digital Sky Survey (SDSS) main galaxy sample at z ~ 0.1. This implies a significant revision of the high mass end of the correlation between stellar and halo mass. Inferences about the evolution of the luminosity and stellar mass functions depend strongly on the assumed, and uncertain, k+e corrections. In turn, these depend on the assumed age of the population. Applying k+e corrections taken from fitting the models of Maraston et al. (2009) to the colors of both SDSS and CMASS galaxies, the evolution of the luminosity and stellar mass functions appears impressively passive, provided that the fits are required to return old ages. However, when matched in comoving number- or luminosity-density, the SDSS galaxies are less strongly clustered compared to their counterparts in CMASS. This rules out the passive evolution scenario, and, indeed, any minor merger scenarios which preserve the rank ordering in stellar mass of the population. Potential incompletenesses in the CMASS sample would further enhance this mismatch. Our analysis highlights the virtue of combining clustering measurements with number counts.
The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition, its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.
Methone and Anthe are two tiny moons (with diameter $<3$ km) in the inner part of Saturn's E ring. Both moons are embedded in an arc of dust particles. To understand the amount of micron-sized dust and their spatial distribution in these arcs, we model the source, dynamical evolution, and sinks of these dust in the arc. We assume hypervelocity impacts of micrometeoroids on the moons as source of these dust (Hedman et al., 2009), the so called impact-ejecta process (Krivov et al., 2003; Spahn et al., 2006). After ejecting and escaping from the moons, these micron-sized particles are subject to several perturbing forces, including gravitational perturbation from Mimas, oblateness of Saturn, Lorentz force, solar radiation pressure, and plasma drag. Particles can be either confined in the arcs due to corotational resonance with Mimas, as their source moons (Spitale et al., 2006; Cooper et al., 2008; Hedman et al., 2009), or pushed outward by plasma drag. Particle sinks are recollisions with the source moon, collision with other moons, or migrate out of the radial zone of interest. In addition to that, the upper limit of the particle lifetimes are controlled by plasma sputtering, which decreases the particle size in a rate of order 1$\mu$m radius every 100 years (Johnson et al., 2008). Our simulation results show that ejecta from both moons can form the arcs of maximal optical depths $\tau$ in the order of $10^{-8} - 10^{-6}$, although the absolute amount of dust have uncertainties. We also find out the longitudinal extension of the arcs in our simulation are consistent with observation and the theory. Smaller particles are more likely to escape the arc because of the stronger influence of plasma drag. On the other hand, large particles can stay in arcs for longer time and therefore are more likely to collide with the source moon.
A kinky and clumpy ringlet shares orbit with the moon Pan in the center of the 320-km wide Encke gap in Saturn's rings (Porco et al., 2005). The ringlet is mainly composed of micron-sized particles (Showalter, 1991, Hedman et al., 2011), implying that these particles may be significantly perturbed by non-gravitational forces, which can limit their lifetimes. We establish a kinetic model considering the birth, evolution, and death of dust in the Encke central ringlet allowing to evaluate the ringlet optical depth. First, we investigate the generation of dust by micrometeorite impacts (the `impact-ejecta' process) on putative, yet undetected embedded moonlets. Taking into account the orbital evolution under the influence of the relevant perturbation forces, the dominant loss mechanisms are collisions with ring particles in the gap edges, the putative moonlets in the gap, or erosion by sputtering in Saturn's plasma environment. However, our results show that this impact-ejecta process alone can only sustain a ringlet of optical depth 3-4 orders of magnitude smaller than the observed values. Consequently, other processes must be taken into account. For example, mutual collisions among putative moonlets should produce dust at about the same rate, while further disruption of ejecta, as proposed by Dikarev (1999), should increase the total amount of particles. Furthermore, observations show an azimuthal asymmetry of the material in the Encke gap ringlets (Ferrari and Brahic 1997, M. Srem\v{c}evi\'c, private communication). We investigate the scenario proposed by Hedman et al. (2013) that for the Encke central ringlet, the observed asymmetry is mainly due to the combined action of plasma drag and Pan's gravity causing a focusing of dust in the region leading Pan's orbit (Hedman et al. 2013).
We present an analysis of the optical nuclear spectra from the active galactic nuclei (AGN) in a sample of low surface brightness (LSB) galaxies. Using data from the Sloan Digital Sky Survey (SDSS), we derived the virial black hole (BH) masses of 24 galaxies from their broad H$\alpha$ parameters. We find that our estimates of nuclear BH masses lie in the range $10^{5}-10^{7}~M_{\odot}$, with a median mass of 5.62 x 10$^{6}~M_{\odot}$. The bulge stellar velocity dispersion $\sigma_{e}$ was determined from the underlying stellar spectra. We compared our results with the existing BH mass - velocity dispersion ($M_{BH}-\sigma_{e}$) correlations and found that the majority of our sample lie in the low BH mass regime and below the $M_{BH}-\sigma_{e}$ correlation. We analysed the effects of any systematic bias in the M$_{BH}$ estimates, the effects of galaxy orientation in the measurement of $\sigma_e$ and the increase of $\sigma_e$ due to the presence of bars and found that these effects are insufficient to explain the observed offset in M$_{BH}$ - $\sigma_e$ correlation. Thus the LSB galaxies tend to have low mass BHs which probably are not in co-evolution with the host galaxy bulges. A detailed study of the nature of the bulges and the role of dark matter in the growth of the BHs is needed to further understand the BH-bulge co-evolution in these poorly evolved and dark matter dominated systems.
In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss on the extrapolation of the friction force away from the ultra-relativistic limit.
We study the sensitivity of the methods available for abundance determinations in H II regions to potential observational problems. We compare the dispersions they introduce around the oxygen and nitrogen abundance gradients when applied to 5 different sets of spectra of H II regions in the galaxy M81. Our sample contains 116 H II regions with galactocentric distances of 3 to 33 kpc, including 48 regions observed by us with the OSIRIS long-slit spectrograph at the 10.4-m GTC telescope. The direct method can be applied to 31 regions, where we can get estimates of the electron temperature. The different methods imply oxygen abundance gradients with slopes of -0.010 to -0.002 dex kpc-1, and dispersions in the range 0.06-0.25 dex. The direct method produces the shallowest slope and the largest dispersion, illustrating the difficulty of obtaining good estimates of the electron temperature. Three of the strong-line methods, C, ONS, and N2, are remarkably robust, with dispersions of ~ 0.06 dex, and slopes in the range -0.008 to -0.006 dex kpc-1. The robustness of each method can be directly related to its sensitivity to the line intensity ratios that are more difficult to measure properly. Since the results of the N2 method depend strongly on the N/O abundance ratio and on the ionization parameter, we recommend the use of the C and ONS methods when no temperature estimates are available or when they have poor quality, although the behaviour of these methods when confronted with regions that have different properties and different values of N/O should be explored.
A mysterious X-ray-emitting object has been detected moving away from the high-mass gamma-ray binary PSR B1259-63, which contains a non-accreting pulsar and a Be star whose winds collide forming a complex interaction structure. Given the strong eccentricity of this binary, the interaction structure should be strongly anisotropic, which together with the complex evolution of the shocked winds, could explain the origin of the observed moving X-ray feature. We propose here that a fast outflow made of a pulsar-stellar wind mixture is always present moving away from the binary in the apastron direction, with the injection of stellar wind occurring at orbital phases close to periastron passage. This outflow periodically loaded with stellar wind would move with a high speed, and likely host non-thermal activity due to shocks, on scales similar to those of the observed moving X-ray object. Such an outflow is thus a very good candidate to explain this X-ray feature. This, if confirmed, would imply pulsar-to-stellar wind thrust ratios of $\sim 0.1$, and the presence of a jet-like structure on the larger scales, up to its termination in the ISM.
We present a study of the detectability of transient events associated with galaxies for the Gaia European Space Agency astrometric mission. We simulated the on-board detections, and on-ground processing for a mock galaxy catalogue to establish the properties required for the discovery of transient events by Gaia, specifically tidal disruption events (TDEs) and supernovae (SNe). Transients may either be discovered by the on-board detection of a new source or by the brightening of a previously known source. We show that Gaia transients can be identified as new detections on-board for offsets from the host galaxy nucleus of 0.1--0.5,arcsec, depending on magnitude and scanning angle. The Gaia detection system shows no significant loss of SNe at close radial distances to the nucleus. We used the detection efficiencies to predict the number of transients events discovered by Gaia. For a limiting magnitude of 19, we expect around 1300 SNe per year: 65% SN Ia, 28% SN II and 7% SN Ibc, and ~20 TDEs per year.
To determine the frequencies of magnetic oscillations in the neutron stars with highly tangled magnetic fields, we derive the perturbation equations. We assume that the field strength of the global magnetic structure is so small that such fields are negligible compared with the tangled fields, which may still be far from a realistic configuration. Then, we systematically examine the spectra of the magnetic oscillations, as varying the magnetic field strength and stellar mass. The frequencies without crust elasticity are completely proportional to the strength of magnetic field, whose proportionality constant depends strongly on the stellar mass. On the other hand, the oscillation spectra with crust elasticity become more complicated, where the frequencies even for weak magnetic fields are different from the crustal torsional oscillations without magnetic fields. For discussing the spectra, the critical field strength can play an important role, which is determined in such a way that the shear velocity is equivalent to the Alfv\'en velocity at the crust basis. Additionally, we find that the effect of the crust elasticity can be seen strongly in the fundamental oscillations with lower harmonic index, $\ell$. Unlike the stellar models with pure dipole magnetic field, we also find that the spectra with highly tangled magnetic fields become discrete, where one can expect a lot of the eigenfrequencies. Maybe, these frequencies would be detected after the violent phenomena breaking the global magnetic field structure.
The detection of the magnetic type $B$-mode polarization is the main goal of future cosmic microwave background (CMB) experiments. In the standard model, the $B$-mode map is a strongly non-gaussian field due to the lensed component. Besides the two-point correlation function, the other statistics are also very important to dig the information of the polarization map. In this paper, we employ the Minkowski functionals to study the morphological properties of the lensed $B$-mode maps. We find that the deviations from Gaussianity are very significant for both full and partial-sky surveys. As an application of the analysis, we investigate the morphological imprints of the foreground residuals in the $B$-mode map. We find that even for very tiny foreground residuals, the effects on the map can be detected by the Minkowski functional analysis. Therefore, it provides a complementary way to investigate the foreground contaminations in the CMB studies.
We present a new technique for the statistical evaluation of the Tully-Fisher
relation (TFR) using spectral line stacking. This technique has the potential
to extend TFR observations to lower masses and higher redshifts than possible
through a galaxy-by-galaxy analysis. It further avoids the need for individual
galaxy inclination measurements.
To quantify the properties of stacked HI emission lines, we consider a
simplistic model of galactic disks with analytically expressible line profiles.
Using this model, we compare the widths of stacked profiles with those of
individual galaxies. We then follow the same procedure using more realistic
mock galaxies drawn from the S3-SAX model (a derivative of the Millennium
simulation). Remarkably, when stacking the apparent HI lines of galaxies with
similar absolute magnitude and random inclinations, the width of the stack is
very similar to the width of the deprojected (= corrected for inclination) and
dedispersed (= after removal of velocity dispersion) input lines. Therefore,
the ratio between the widths of the stack and the deprojected/dedispersed input
lines is approximately constant - about 0.93 - with very little dependence on
the gas dispersion, galaxy mass, galaxy morphology, and shape of the rotation
curve.
Finally, we apply our technique to construct a stacked TFR using HIPASS data
which already has a well defined TFR based on individual detections. We obtain
a B-band TFR with a slope of $-8.5\pm0.4$ and a K-band relation with a slope of
$-11.7\pm0.6$ for the HIPASS data set which is consistent with the existing
results.
We present the design and the preliminary on sky performance with respect to beams and pass-bands of a multichroic polarimeter array covering the 90 and 146 GHz Cosmic Microwave Background (CMB) bands and its enabling broadband optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broadband optical systems in the next generation of CMB experiments.
The origin of cosmic rays is one of the long-standing mysteries in physics and astrophysics. Simple arguments suggest that a scenario of supernova remnants (SNRs) in the Milky Way as the dominant sources for the cosmic ray population below the knee could work: in a generic calculation, it can be shown that these objects can provide the energy budget necessary to explain the observed flux of cosmic rays. However, this argument is based on the assumption that all sources behave in the same way, i.e.\ they all have the same energy budget, spectral behavior and maximum energy. In this paper, we investigate if a realistic population of SNRs is capable of producing the cosmic ray flux as it is observed below the knee. We use 21 SNRs that are well-studied from radio wavelengths up to gamma-ray energies. It could be shown previously (Mandelartz & Becker Tjus 2015) that the high-energy bump in the energy spectrum of these 21 sources can be dominated by hadronic emission. Here, gamma-rays are produced via $\pi^{0}-$decays from cosmic ray interactions in molecular clouds near the supernova remnant, which serves as the cosmic ray accelerator. The cosmic ray spectra show a large variety in their energy budget, spectral behavior and maximum energy. These sources are assumed to be representative for the total class of SNRs, where we assume that about 100 - 200 cosmic ray emitting SNRs should be present today. Finally, we use these source spectra to simulate the cosmic ray transport from individual SNRs in the Galaxy with the GALPROP code for cosmic ray propagation. We find that the cosmic ray budget can be matched well for a diffusion coefficient that is close to $D\propto E^{0.3}$. A stronger dependence on the energy, e.g. $E^{0.5}$, would lead to a spectrum at Earth that is too steep when compared to what is detected and the energy budget cannot be matched, in particular toward high energies.
We report the early discovery of the optical afterglow of gamma-ray burst (GRB) 140801A in the 137 deg$^2$ 3-$\sigma$ error-box of the Fermi Gamma-ray Burst Monitor (GBM). MASTER is the only observatory that automatically react to all Fermi alerts. GRB 140801A is one of the few GRBs whose optical counterpart was discovered solely from its GBM localization. The optical afterglow of GRB 140801A was found by MASTER Global Robotic Net 53 sec after receiving the alert, making it the fastest optical detection of a GRB from a GBM error-box. Spectroscopy obtained with the 10.4-m Gran Telescopio Canarias and the 6-m BTA of SAO RAS reveals a redshift of $z=1.32$. We performed optical and near-infrared photometry of GRB 140801A using different telescopes with apertures ranging from 0.4-m to 10.4-m. GRB 140801A is a typical burst in many ways. The rest-frame bolometric isotropic energy release and peak energy of the burst is $E_\mathrm{iso} = 5.54_{-0.24}^{+0.26} \times 10^{52}$ erg and $E_\mathrm{p, rest}\simeq280$ keV, respectively, which is consistent with the Amati relation. The absence of a jet break in the optical light curve provides a lower limit on the half-opening angle of the jet $\theta=6.1$ deg. The observed $E_\mathrm{peak}$ is consistent with the limit derived from the Ghirlanda relation. The joint Fermi GBM and Konus-Wind analysis shows that GRB 140801A could belong to the class of intermediate duration. The rapid detection of the optical counterpart of GRB 140801A is especially important regarding the upcoming experiments with large coordinate error-box areas.
We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups $R_B$ above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of $R_B$ are then re-scaled to the observed RGO group number $R_A$ using a variety of regression techniques. It is found that a very high correlation between $R_A$ and $R_B$ ($r_{AB}$ > 0.98) does not prevent large errors in the intercalibration (e.g. sunspot maximum values can be over 30% too large even for such levels of $r_{AB}$). In generating the backbone sunspot number, Svalgaard and Schatten [2015] force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (Q-Q) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.
A comprehensive abundance analysis providing rare insight into the chemical history of lead stars is still lacking. We present results from high resolution (R ~ 50000), spectral analyses of three CH stars, HD 26, HD 198269, HD 224959, and, a carbon star with a dusty envelope, HD 100764. Previous studies on these objects are limited by both resolution and wavelength regions and the results differ significantly from each other. We have undertaken to re-analyse the chemical composition of these objects based on high resolution Subaru spectra covering the wavelength regions 4020 to 6775 A,. Considering local thermodynamic equilibrium and using model atmospheres, we have derived the stellar parameters, the effective temperatures Teff, surface gravities log g, and metallicities [Fe/H] for these objects. The derived parameters for HD 26, HD 100764, HD 198269 and HD 224959 are (5000, 1.6, -1.13), (4750, 2.0 -0.86), (4500, 1.5, -2.06) and (5050, 2.1, -2.44) respectively. The stars are found to exhibit large enhancements of heavy elements relative to iron in conformity to previous studies. Large enhancement of Pb with respect to iron is also confirmed. Updates on the elemental abundances for several s-process elements (Y, Zr, La, Ce, Nd, Sm, Pb) along with the first-time estimates of abundances for a number of other heavy elements (Sr, Ba, Pr, Eu, Er, W) are reported. Our analysis suggests that neutron-capture elements in HD 26 primarily originate in s-process while the major contributions to the abundances of neutron-capture elements in the more metal-poor objects HD 224959 and HD 198269 are from r-process, possibly formed from materials that are pre-enriched with products of r-process.
A recent study of soft X-ray absorption in native and hydrogenated coronene cations, C$_{24}$H$_{12+m}^+$ $m=0-7$, led to the conclusion that additional hydrogen atoms protect (interstellar) Polycyclic Aromatic Hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C$_{16}$H$_{10+m}^+$, $m=0$, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.
(abridged) Context: Both observations and simulations of embedded protostars
have progressed rapidly in recent years. Bringing them together is an important
step in advancing our knowledge about the earliest phases of star formation.
Aims: To compare synthetic continuum images and SEDs, created from large-scale
numerical simulations, to observational studies - thereby aiding both in the
interpretation of observations and test the fidelity of the simulations.
Methods: The radiative transfer code RADMC-3D is used to create synthetic
continuum images and SEDs of protostellar systems in a large numerical
simulation of a molecular cloud. More than 13000 unique radiative transfer
models are produced of a variety of different protostellar systems.
Results: Over the course of 0.76 Myr more than 500 protostars are formed in
the simulation - primarily within two sub-clusters. Synthetic SEDs are used to
calculate evolutionary tracers Tbol and Lsmm/Lbol. It is shown that, while the
observed distributions of tracers are well matched by the simulation, they
generally do a poor job of tracking the protostellar ages. Disks form early in
the simulation, with 40 % of Class 0 objects containing one. The flux emission
from the simulated disks is found to be approximately a factor of 6 too low
when comparing to real observations; an issue that can be traced back to
numerical effects on the smallest scales in the simulation. The luminosity
distribution of the protostars in the simulation spans three order of
magnitudes similar to the observed distribution. Cores and protostars are found
to be closely associated with one-another, with the distance distribution
between them being in excellent agreement with observations.
Conclusions: The analysis and statistical comparison of synthetic
observations to real ones is established as a powerful tool in the
interpretation of observational results.
A detailed model of the tidal disruption events (TDE) has been constructed using stellar dynamical and gas dynamical inputs that include black hole mass $M_{\bullet}$, specific orbital energy $E$ and angular momentum $J$, star mass $M_{\star}$ and radius $R_{\star}$ and pericenter of the star orbit $r_{p}(E,\hspace{1mm}J,\hspace{1mm}M_{\bullet})$. We have solved the steady state Fokker- Planck equation using the standard loss cone theory for the galactic density profile $\rho (r) \propto r^{-\gamma}$ and stellar mass function $\xi(m) $ where $m=M_{\star}/M_{\odot}$ and obtained the feeding rate of stars to the black hole integrated over the phase space as $\dot{N}_{t} \propto M_{\bullet}^\beta$ where $\beta= -0.3\pm 0.01$ for $M_{\bullet}>10^7 M_{\odot}$ and $\sim 6.8 \hspace{1mm} \times 10^{-5}$ Yr$^{-1}$ for $\gamma=0.7$. Using this we model the in fall rate of the disrupted debris, $\dot{M}(E,\hspace{1mm}J,\hspace{1mm}m,\hspace{1mm}t)$ and discuss conditions for the disk formation and find that the accretion disk is formed almost always for the fiduciary range of the physical parameters. We also find the conditions under which the disk formed from the tidal debris of a given star has a super Eddington accretion phase. We have simulated the light curve profiles in relevant optical g band and soft X-rays for both super and sub Eddington accretion disks as function of $\dot{M}(E,\hspace{1mm}J,\hspace{1mm}t)$. Using this, standard cosmological parameters and mission instrument details, we predict the detectable TDE rates for various forthcoming surveys finally as a function of $\gamma$.
A view of the Galactic bulge by means of their globular clusters is necessary for a deep understanding of its formation and evolution. Connections between the globular cluster and field star properties in terms of kinematics, orbits, chemical abundances and ages should shed light on different stellar population components. Based on spatial distribution and metallicity, we define a probable best list of bulge clusters, containing 43 entries. Future work on newly discovered objects, mostly from the VVV survey, is suggested. These candidates might alleviate the issue of missing clusters on the far side of the bulge. We discuss the reddening law affecting the cluster distances towards the center of the Galaxy, and conclude that the most suitable total-to-selective absorption value appears to be R$_{\rm V}$=3.2, in agreement with recent analyses. An update of elemental abundances for bulge clusters is provided.
We present results from ${\it NuSTAR}$ and ${\it SWIFT}$/XRT joint spectral analysis of V4641 Sgr during a disk dominated or soft state as well as a powerlaw dominated or hard state. The soft state spectrum is well modeled by a relativistically blurred disk emission, a powerlaw, a broad Iron line, two narrow emission lines and two edges. The Markov Chain Monte Carlo simulation technique and the relativistic effects seen in the disk and broad Iron line allow us to self-consistently constrain the inner disk radius, disk inclination angle and distance to the source at 2.43$^{+0.39}_{-0.17}$ R$_g$ (GM/c$^2$), 69.5$^{+12.8}_{-4.2}$ degrees and 10.8$^{+1.6}_{-2.5}$ kpc respectively. For the hard state, the spectrum is a power-law with a weakly broad Iron line and an edge. The distance estimate gives a measure of the Eddington fraction, $L_{2.0 - 80.0 keV}/L_{Edd}$, to be $\sim$1.3 $\times$ 10$^{-2}$ and $\sim$1.9 $\times$ 10$^{-3}$ for the soft and hard states respectively. Unlike many other typical black hole systems which are always in a hard state at such low Eddington fraction, V4641 Sgr shows a soft, disk dominated state. The soft state spectrum shows narrow emission lines at $\sim 6.95$ and $\sim 8.31$ keV which can be identified as being due to emission from highly ionized Iron and Nickel in an X$-$ray irradiated wind respectively. If not due to instrumental effect or calibration error, this would be the first detection of a Ni fluorescent line in a black hole X$-$ray binary.
The possibility that some meteoroids in the size range 1 - 20 meters are rubble piles i.e. assembles of boulders of various sizes held together only by small van der Waals forces, is investigated. Such meteoroids are expected to start disrupting into individual pieces during the atmospheric entry at very low dynamic pressures of ~ 25 Pa, even before the onset of ablation. The heterogeneous bodies as Almahata Sitta (asteroid 2008 TC3) and Benesov are primary candidates for rubble piles. Nevertheless, by analyzing the deceleration, wake, and light curve of the Benesov bolide, we found that the meteoroid disruption started only at a height of 70 km under dynamic pressure of 50 kPa. No evidence for a very early fragmentation was found also for the Chelyabinsk event.
We performed a detailed study of the evolution of the luminosity of He-ignition stage and of the red giant branch bump luminosity during the red giant branch phase transition for various metallicities. To this purpose we calculated a grid of stellar models that sample the mass range of the transition with a fine mass step equal to ${\rm 0.01M_\odot}$. We find that for a stellar population with a given initial chemical composition, there is a critical age (of 1.1-1.2~Gyr) around which a decrease in age of just 20-30 million years causes a drastic drop in the red giant branch tip brightness. We also find a narrow age range (a few $10^7$ yr) around the transition, characterized by the luminosity of the red giant branch bump being brighter than the luminosity of He ignition. We discuss a possible link between this occurrence and observations of Li-rich core He-burning stars.
The explosion of ultra-stripped stars in close binaries may explain new discoveries of weak and fast optical transients. We have demonstrated that helium star companions to neutron stars (NSs) may evolve into naked metal cores as low as ~1.5 Msun, barely above the Chandrasekhar mass limit, by the time they explode. Here we present a new systematic investigation of the progenitor evolution leading to such ultra-stripped supernovae (SNe), in some cases yielding pre-SN envelopes of less than 0.01 Msun. We discuss the nature of these SNe (electron-capture vs iron core-collapse) and their observational light-curve properties. Ultra-stripped SNe are highly relevant for binary pulsars, as well as gravitational wave detection of merging NSs by LIGO/VIRGO, since these events are expected to produce mainly low-kick NSs in the mass range 1.10-1.80 Msun.
The evolution of close-orbit progenitor binaries of double neutron star (DNS) systems leads to supernova (SN) explosions of ultra-stripped stars. The amount of SN ejecta mass is very limited from such, more or less, naked metal cores with envelope masses of only 0.01-0.2 Msun. The combination of little SN ejecta mass and the associated possibility of small NS kicks is quite important for the characteristics of the resulting DNS systems left behind. Here, we discuss theoretical predictions for DNS systems, based on Case BB Roche-lobe overflow prior to ultra-stripped SNe, and briefly compare with observations.
We study the dynamical response of extended systems, hosts, to smaller systems, satellites, orbiting around the hosts using extremely high-resolution N-body simulations with up to one billion particles. This situation corresponds to minor mergers which are ubiquitous in the scenario of hierarchical structure formation in the universe. According to Chandrasekhar (1943), satellites create density wakes along the orbit and the wakes cause a deceleration force on satellites, i.e. dynamical friction. This study proposes an analytical model to predict the dynamical response of hosts in the density distribution and finds not only traditional wakes but also mirror images of over- and underdensities centered on the host. Controlled N-body simulations with high resolutions verify the predictions of the analytical model directly. We apply our analytical model to the expected dynamical response of nearby interacting galaxy pairs, the Milky Way - Large Magellanic Cloud system and the M31 - M33 system.
Fast magnetoacoustic waves guided along the magnetic field by plasma non-uniformities, in particular coronal loops, fibrils and plumes, are known to be highly dispersive, which leads to the formation of quasi-periodic wave trains excited by a broadband impulsive driver, e.g. a solar flare. We investigated effects of cylindrical geometry on the fast sausage wave train formation. We performed magnetohydrodynamic numerical simulations of fast magnetoacoustic perturbations of a sausage symmetry, propagating from a localised impulsive source along a field-aligned plasma cylinder with a smooth radial profile of the fast speed. The wave trains are found to have pronounced period modulation, with the longer instant period seen in the beginning of the wave train. The wave trains have also a pronounced amplitude modulation. Wavelet spectra of the wave trains have characteristic tadpole features, with the broadband large-amplitude heads preceding low-amplitude quasi-monochromatic tails. The mean period of the wave train is about the transverse fast magnetoacoustic transit time across the cylinder. The mean parallel wavelength is about the diameter of the waveguiding plasma cylinder. Instant periods are longer than the sausage wave cutoff period. The wave train characteristics depend on the fast magnetoacoustic speed in both the internal and external media, and the smoothness of the transverse profile of the equilibrium quantities, and also the spatial size of the initial perturbation. If the initial perturbation is localised at the axis of the cylinder, the wave trains contain higher radial harmonics that have shorter periods.
We present an analysis of the intrinsic (unattenuated by the extragalactic background light, EBL) power-law spectral indices of 128 extragalactic sources detected up to z~2 with the Fermi-Large Area Telescope (LAT) at very high energies (VHEs, E>50 GeV). The median of the intrinsic index distribution is 2.20 (versus 2.54 for the observed distribution). We also analyze the observed spectral breaks (i.e., the difference between the VHE and high energy, HE, 100 MeV<E<300 GeV, spectral indices). The LAT has now provided a large sample of sources detected both at VHE and HE with comparable exposure that allows us to test models of extragalactic gamma-ray photon propagation. We find that our data are compatible with simulations that include intrinsic blazar curvature and EBL attenuation. There is also no evidence of evolution with redshift of the physics that drives the photon emission in high-frequency synchrotron peak (HSP) blazars. This makes HSP blazars excellent probes of the EBL.
We identified two optical counterparts of brightest ultraluminous X-ray Sources (ULXs) in galaxies NGC5474 and NGC3627 (M66). The counterparts in Hubble Space Telescope images are very faint, their V magnitudes are 24.7 ($M_V \approx -4.5$) and 25.9 ($M_V \approx -4.2$), respectively. NGC5474 X-1 changes the X-ray flux more than two orders of magnitude, in its bright state it has $L_X \approx 1.6 \times 10^{40}$ erg/s, the spectrum is best fitted by an absorbed power-law model with a photon index $\Gamma \approx 0.94$. M66 X-1 varies in X-rays with a factor of ~2.5, its maximal luminosity being $2.0 \times 10^{40}$ erg/s with $\Gamma \approx 1.7$. Optical spectroscopy of the NGC5474 X-1 has shown a blue spectrum, which however was contaminated by a nearby star of 23 mag, but the counterpart has a redder spectrum. Among other objects captured by the slit are a background emission-line galaxy (z=0.359) and a new young cluster of NGC5474. We find that these two ULXs have largest X-ray-to-optical ratios of $L_X/L_{opt}$ ~ 7000 for NGC5474 X-1 (in its bright state) and 8000 for M66 X-1 both with the faintest optical counterparts ever measured. Probably their optical emission originates from the donor star. If they have super-Eddington accretion discs with stellar-mass black holes, they may also have the lowest mass accretion rates among ULXs such as in M81 X-6 and NGC1313 X-1.
Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP an by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole moments with one another and with the motion and geometry of the Solar System, a hemispherical power asymmetry or dipolar power modulation, a preference for odd parity modes and an unexpectedly large cold spot in the Southern hemisphere. The individual p-values of the significance of these features are in the per mille to per cent level, when compared to the expectations of the best-fit inflationary $\Lambda$CDM model. Some pairs of those features are demonstrably uncorrelated, increasing their combined statistical significance and indicating a significant detection of CMB features at angular scales larger than a few degrees on top of the standard model. Despite numerous detailed investigations, we still lack a clear understanding of these large-scale features, which seem to imply a violation of statistical isotropy and scale invariance of inflationary perturbations. In this contribution we present a critical analysis of our current understanding and discuss several ideas of how to make further progress.
The mid-IR detection rate of water lines in disks around Herbig stars disks is about 5\%, while it is around 50\% for disks around TTauri stars. The reason for this is still unclear. In this study, we want to find an explanation for the different detection rates between low mass and high mass pre-main-sequence stars (PMSs) in the mid-IR regime. We run disk models with stellar parameters adjusted to spectral types B9 through M2, using the radiation thermo-chemical disk modeling code ProDiMo. We produce convolved spectra at the resolution of Spitzer IRS, JWST MIRI and VLT VISIR spectrographs. We apply random noise derived from typical Spitzer spectra for a direct comparison with observations. The strength of the mid-IR water lines correlates directly with the luminosity of the central star. We explored a small parameter space around a standard disk model, considering dust-to-gas mass ratio, disk gas mass, mixing coefficient for dust settling, flaring index, dust maximum size and size power law distribution index. The models show that it is possible to suppress the water emission, however, current observations are not sensitive enough to detect mid-IR lines in disks for most of the explored parameters. The presence of noise in the spectra, combined with the high continuum flux (noise level is proportional to the continuum flux), is the most likely explanation for the non detections towards Herbig stars. Mid-IR spectra with resolution higher than 20000 are needed to investigate water in protoplanetary disks. Intrinsic differences in disk structure, e.g. inner gaps, gas-to-dust ratio, dust size and distribution, and inner disk scale height, between Herbig and TTauri star disks are able to explain a lower water detection rate in disks around Herbig stars.
We point out that in theories in which the gravitational couplings depend on the inflaton, the standard relation between the primordial tensor amplitude and the scale of inflation is lost. This mostly happens because the Planck mass that determines the tensor amplitude does not need to agree with the value of the Planck mass that we infer from the matter gravitational interactions. We also briefly speculate that the same mechanism may shed some light on the cosmological constant problem.
We present for the first time an explicit, complete and closed-form solution to the three-dimensional problem of two fixed centres, based on Weierstrass elliptic and related functions. With respect to previous treatments of the problem, our solution is exact, valid for all initial conditions and physical parameters of the system (including unbounded orbits and repulsive forces), and expressed via a unique set of formulae. Various properties of the three-dimensional problem of two fixed centres are investigated and analysed, with a particular emphasis on quasi-periodic and periodic orbits, regions of motion and equilibrium points.
A Gravitational Wave Background (GWB) is expected in the universe from the superposition of a large number of unresolved astrophysical sources and phenomena in the early universe. Each component of the background (e.g., from primordial metric perturbations, binary neutron stars, milli-second pulsars etc.) has its own spectral shape. Many ongoing experiments aim to probe GWB at a variety of frequency bands. In the last two decades, using data from ground-based laser interferometric gravitational wave (GW) observatories, upper limits on GWB were placed in the frequency range of ~50-1000 Hz, considering one spectral shape at a time. However, one strong component can significantly enhance the estimated strength of another component. Hence, estimation of the amplitudes of the components with different spectral shapes should be done jointly. Here we propose a method for "component separation" of a statistically isotropic background, that can, for the first time, jointly estimate the amplitudes of many components and place upper limits. The method is rather straightforward and needs negligible amount of computation. It utilises the linear relationship between the measurements and the amplitudes of the actual components, alleviating the need for a sampling based method, e.g., Markov Chain Monte Carlo (MCMC) or matched filtering, which are computationally intensive and cumbersome in a multi-dimensional parameter space. Using this formalism we could also study how many independent components can be separated using a given dataset from a network of current and upcoming ground based interferometric detectors.
I review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especially Turbulent Core Accretion, Competitive Accretion and Protostellar Mergers, leading to distinct observational predictions. These include the types of initial conditions, the structure of infall envelopes, disks and outflows, and the relation of massive star formation to star cluster formation. Even for Core Accretion models, there are several major uncertainties related to the timescale of collapse, the relative importance of different processes for preventing fragmentation in massive cores, and the nature of disks and outflows. I end by discussing some recent observational results that are helping to improve our understanding of these processes.
Using the largest spectroscopic dataset of stripped-envelope core-collapse supernovae (stripped SNe), we present a systematic investigation of spectral properties of Type IIb SNe (SNe IIb), Type Ib SNe (SNe Ib), and Type Ic SNe (SNe Ic). Prior studies have been based on individual objects or small samples. Here, we analyze 227 spectra of 14 SNe IIb, 258 spectra of 21 SNe Ib, and 207 spectra of 17 SNe Ic based on the stripped SN dataset of Modjaz et al. (2014) and other published spectra of individual SNe. Each SN in our sample has a secure spectroscopic ID, a date of $V$-band maximum light, and multiple spectra at different phases. We analyze these spectra as a function of subtype and phase in order to improve the SN identification scheme and constrain the progenitors of different kinds of stripped SNe. By comparing spectra of SNe IIb with those of SNe Ib, we find that the strength of H$\alpha$ can be used to quantitatively differentiate between these two subtypes at all epochs. Moreover, we find a continuum in observational properties between SNe IIb and Ib. We address the question of hidden He in SNe Ic by comparing our observations with predictions from various models that either include hidden He or in which He has been burnt. Our results favor the He-free progenitor models for SNe Ic. Finally, we construct continuum-divided average spectra as a function of subtype and phase to quantify the spectral diversity of the different types of stripped SNe.
While SN impostors resemble the Great Eruption of eta Car in the sense that their spectra show narrow H lines and they have typical peak absolute magnitudes of -13 to -14 mag, most extragalactic events observed so far are quite different from eta Car in duration. Their bright phases typically last for 100~d or less, rather than persisting for several years. The transient object UGC2773-OT had a similar peak absolute magnitude to other SN impostors, but with a gradual 5-yr prediscovery rise. In the 6 yr since discovery, it has faded very slowly (0.26 mag/yr). Overall, we suggest that its decade-long eruption is so far the best known analog of eta Car's 19th century eruption. We discuss extensive spectroscopy of the ongoing eruption. The spectra show interesting changes in velocity and line shape that we discuss in detail, including an asymmetric Halpha emission line that we show is consistent with the ejection of a bipolar nebula that could be very much like the Homunculus of eta Car. Moreover, changes in the line width, line profile, blue excess emission resembling that of Type IIn supernovae, and the intensity of Halpha suggest the presence of strong circumstellar interaction in the eruption at late times. This supports the hypothesis that the extended plateau of eta Car's eruption may have been powered by shock interaction as well. One interesting difference compared to eta Car, however, is that UGC2773-OT so far does not exhibit the repeated brief spikes in luminosity that have been associated with binary periastron events.
Next generation gravitational wave detectors will start taking data in the near future. Here we discuss the chances to detect the continuous emission from r-mode oscillations in compact stars and study which properties of compact stars we can infer from such novel data. In particular we show that the combination of the gravitational wave data with electromagnetic multi-messenger observations could give us detailed insight into compact star properties, ranging from precise mass-radius measurements to the determination of the equation of state and the phase structure of dense matter.
New data are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF$_3$I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 live-days, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C$_3$F$_8$ bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. These behaviors allow for analysis cuts to remove all background events while retaining $48.2\%$ of the exposure. Stringent limits on WIMPs interacting via spin-dependent proton and spin-independent processes are set, and the interpretation of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei is ruled out.
We propose a variant scenario of spontaneous baryogenesis from asymmetric inflaton based on current-current interactions between the inflaton and matter fields with a non-zero B-L charge. When the inflaton starts to oscillate around the minimum after inflation, it may lead to excitation of a CP-odd component, which induces an effective chemical potential for the B-L number through the current-current interactions. We study concrete inflation models and show that the spontaneous baryogenesis scenario can be naturally implemented in the chaotic inflation in supergravity.
The astrophysical $S$-factor for the radiative capture $d(p,\gamma)^3$He in the energy-range of interest for Big Bang Nucleosynthesis (BBN) is calculated using an {\it ab-initio} approach. The nuclear Hamiltonian retains both two- and three-nucleon interactions - the Argonne $v_{18}$ and the Urbana IX, respectively. Both one- and many-body contributions to the nuclear current operator are included. The former retain for the first time, besides the $1/m$ leading order contribution ($m$ is the nucleon mass), also the next-to-leading order term, proportional to $1/m^3$. The many-body currents are constructed in order to satisfy the current conservation relation with the adopted Hamiltonian model. The hyperspherical harmonics technique is applied to solve the $A=3$ bound and scattering states. A particular attention is used in this second case in order to obtain, in the energy range of BBN, an uncertainty on the astrophysical $S$-factor of the order or below $\sim$1 %. Then, in this energy range, the $S$-factor is found to be $\sim$10 % larger than the currently adopted values.Part of this increase (1-3 %) is due to the $1/m^3$ one-body operator, while the remaining is due to the new more accurate scattering wave functions. We have studied the implication of this new determination for the $d(p,\gamma)^3$He $S$-factor on deuterium primordial abundance. We find that the predicted theoretical value for $^2$H/H is in excellent agreement with its experimental determination, using the most recent determination of baryon density of Planck experiment, and with a standard number of relativistic degrees of freedom $N_{\rm eff}=3.046$ during primordial nucleosynthesis.
We suggest that dark matter in the universe has quantum entanglement among dark matter particles if the dark matter is a Bose-Einstein condensation of ultra-light scalar particles. In this theory any two regions of a galaxy are quantum entangled due to the quantum nature of the condensate. We calculate the entanglement entropy of a typical galactic halo, which turns out to be at least $O(ln(M/m))$ where $M$ is the mass of the halo and $m$ is the dark matter particle mass.
Dissociation of gas hydrates below 240 K leads to the formation of a metastable form of water ice, so called cubic ice (Ic). Through its defective nature and small particle size the surface film composed of such material is incapable of creating any significant diffusion barrier. Above 160 K, cubic ice gradually transforms to the stable hexagonal (Ih) form on laboratory time scales. The annealing, coupled with a parallel decomposition of gas hydrates, accelerates as temperature rises but already above 190 K the first process prevails, transforming cubic stacking sequences in-to ordinary Ih ice within a few minutes. Remaining stacking faults are removed through very slow isothermal annealing or after heating up above 240 K. The role of the proportion of cubic stacking on the decomposition rate is discussed. A better understanding of the dissociation kinetics at low temperatures is particularly im-portant for the critical evaluation of existing hypotheses that consider clathrates as a potential medium that actively participate in geological processes or is able to store gases (e.g. CH4, CO2 or Xe) in environments like comets, icy moons (i. e. Titan, Europa, Enceladus) or on Mars. Here, we present kinetics studies on the dissociation of CO2 clathrates at isothermal and isobaric conditions between 170 and 190K and mean Martian surface pressure. We place special attention to the formed ice and demonstrate its influence on the dissociation rates with a combination of neutron diffraction studies (performed on D20 at ILL/Grenoble) and cryo-SEM. More detailed crystallo-graphic information has been acquired via a flexible stacking-fault model capable of revealing the time evolution of the defect structure of ice Ic in terms of stacking probabilities and crystal size.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
Quasi-stellar object (QSO) spectral templates are important both to QSO physics and for investigations that use QSOs as probes of intervening gas and dust. However, combinations of various QSO samples obtained at different times and with different instruments so as to expand a composite and to cover a wider rest frame wavelength region may create systematic effects, and the contribution from QSO hosts may contaminate the composite. We have constructed a composite spectrum from luminous blue QSOs at 1 < z < 2.1 selected from the Sloan Digital Sky Survey (SDSS). The observations with X-shooter simultaneously cover ultraviolet (UV) to near- infrared (NIR) light, which ensures that the composite spectrum covers the full rest-frame range from Ly$\beta$ to 11350 $\AA$ without any significant host contamination. Assuming a power-law continuum for the composite we find a spectral slope of $\alpha_\lambda$ = 1.70+/-0.01, which is steeper than previously found in the literature. We attribute the differences to our broader spectral wavelength coverage, which allows us to effectively avoid fitting any regions that are affected either by strong QSO emissions lines (e.g., Balmer lines and complex [Fe II] blends) or by intrinsic host galaxy emission. Finally, we demonstrate the application of the QSO composite spectrum for evaluating the reddening in other QSOs.
We investigate the degree to which the inclusion of baryonic physics can overcome two long-standing problems of the standard cosmological model on galaxy scales: (i) the problem of satellite planes around Local Group galaxies, and (ii) the "too big to fail" problem. By comparing dissipational and dissipationless simulations, we find no indication that the addition of baryonic physics results in more flattened satellite distributions around Milky-Way-like systems. Recent claims to the contrary are shown to derive in part from a non-standard metric for the degree of flattening, which ignores the satellites' radial positions. If the full 3D positions of the satellite galaxies are considered, none of the simulations we analyse reproduce the observed flattening nor the observed degree of kinematic coherence of the Milky Way satellite system. Our results are consistent with the expectation that baryonic physics should have little or no influence on the structure of satellite systems on scales of hundreds of kiloparsecs. Claims that the "too big to fail" problem can be resolved by the addition of baryonic physics are also shown to be problematic.
Surveys of nearby field stars indicate that stellar binaries are common, yet little is known about the effects that these companions may have on planet formation and evolution. The Friends of Hot Jupiters project uses three complementary techniques to search for stellar companions to known planet-hosting stars: radial velocity monitoring, adaptive optics imaging, and near-infrared spectroscopy. In this paper, we examine high-resolution K band infrared spectra of fifty stars hosting gas giant planets on short-period orbits. We use spectral fitting to search for blended lines due to the presence of cool stellar companions in the spectra of our target stars, where we are sensitive to companions with temperatures between 3500-5000 K and projected separations less than 100 AU in most systems. We identify eight systems with candidate low-mass companions, including one companion that was independently detected in our AO imaging survey. For systems with radial velocity accelerations, a spectroscopic non-detection rules out scenarios involving a stellar companion in a high inclination orbit. We use these data to place an upper limit on the stellar binary fraction at small projected separations, and show that the observed population of candidate companions is consistent with that of field stars and also with the population of wide-separation companions detected in our previous AO survey. We find no evidence that spectroscopic stellar companions are preferentially located in systems with short-period gas giant planets on eccentric and/or misaligned orbits.
A tidal disruption event, which occurs when a star is destroyed by the gravitational field of a supermassive black hole, produces a stream of debris, the evolution of which ultimately determines the observational properties of the event. Here we show that a post-periapsis caustic -- a location where the locus of gas parcels comprising the stream would collapse into a two-dimensional surface if they evolved solely in the gravitational field of the hole -- occurs when the pericenter distance of the star is on the order of the tidal radius of the hole. It is demonstrated that this "pancake" induces significant density perturbations in the debris stream, and, for stiffer equations of state (adiabatic index $\gamma \gtrsim 5/3$), these fluctuations are sufficient to gravitationally destabilize the stream, resulting in its fragmentation into bound clumps. The results of our findings are discussed in the context of the observational properties of tidal disruption events.
We investigate correlations between different physical properties of star-forming galaxies in the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) cosmological hydrodynamical simulation suite over the redshift range $0\le z\le 4.5$. A principal component analysis reveals that neutral gas fraction ($f_{\rm gas, neutral}$), stellar mass ($M_{\rm stellar}$) and star formation rate (SFR) account for most of the variance seen in the population, with galaxies tracing a two-dimensional, nearly flat, surface in the three-dimensional space of $f_{\rm gas, neutral}-M_{\rm stellar}-\rm SFR$ with little scatter. The location of this plane varies little with redshift, whereas galaxies themselves move along the plane as their $f_{\rm gas, neutral}$ and SFR drop with redshift. The positions of galaxies along the plane are highly correlated with gas metallicity. The metallicity can therefore be robustly predicted from $f_{\rm gas, neutral}$, or from the $M_{\rm stellar}$ and SFR. We argue that the appearance of this "fundamental plane of star formation" is a consequence of self-regulation, with the plane's curvature set by the dependence of the SFR on gas density and metallicity. We analyse a large compilation of observations spanning the redshift range $0\lesssim \rm z\lesssim 2.5$, and find that such a plane is also present in the data. The properties of the observed fundamental plane of star formation are in good agreement with EAGLE's predictions.
By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straight-forward technique by which a PTA can be "phased-up" to form time series of the two polarisation modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodeled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power from any direction. For the lines of sight to several nearby massive galaxy clusters, we carry out a more detailed search for GW bursts with memory, which are distinct signatures of SMBHB mergers. In all cases, we find that the data are consistent with noise.
Supernovae Type Iax (SNe Iax) are less energetic and less luminous than typical thermonuclear explosions. A suggested explanation for the observed characteristics of this subclass is a binary progenitor system consisting of a CO white dwarf primary accreting from a helium star companion. A single-degenerate explosion channel might be expected to result in a dense circumstellar medium (CSM), although no evidence for such a CSM has yet been observed for this subclass. Here we present recent Spitzer observations of the SN Iax 2014dt obtained by the SPIRITS program nearly one year post-explosion that reveal a strong mid-IR excess over the expected fluxes of more normal SNe Ia. This excess is consistent with 1E-5 M_solar of newly formed dust, which would be the first time that newly formed dust has been observed to form in a normal Type Ia. The excess, however, is also consistent with a dusty CSM that was likely formed in pre-explosion mass-loss, thereby suggesting a single degenerate progenitor system. Compared to other SNe Ia that show significant shock interaction (SNe Ia-CSM) and interacting core-collapse events (SNe IIn), this dust shell in SN 2014dt is less massive. We consider the implications that such a pre-existing dust shell has for the progenitor system, including a binary system with a mass donor that is a red giant, a red supergiant, and an asymptotic giant branch star.
We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large numbers of galaxy spectral templates into a corrresponding collection of "fuzzy archetypes" using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission line strengths. To bypass widely seperated degeneracies in parameter space (e.g., the redshift-reddening degeneracy), we train Self-Organizing Maps (SOMs) on a large "model catalogs" generated from appropriate Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs) using the associated set of inverse mappings from the SOM to the underlying model parameters. This combined approach enables the multi-modal exploration of known variation among galaxy spectral energy distributions (SEDs) using large numbers of archetypes with minimal modeling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov Chain Monte Carlo (MCMC) sampling methods combined with SOMs constructed from model catalogs based on LSST $ugrizY$ and Euclid $YJH$ mock photometry.
We present a method to reliably select variable white dwarfs from large area time domain surveys and apply this method in a pilot study to search for pulsating white dwarfs in the Sloan Digital Sky Survey Stripe 82. From a sample 400 high-confidence white dwarf candidates, we identify 24 which show significant variability in their multi-epoch Stripe 82 data. Using colours, we further selected a sample of pulsating white dwarf (ZZ Ceti) candidates and obtained high cadence follow up for six targets. We confirm five of our candidates as cool ZZ Cetis, three of which are new discoveries. Among our 24 candidates we also identify: one eclipsing binary, two magnetic white dwarfs and one pulsating PG1159 star. Finally we discuss the possible causes for the variability detected in the remaining targets. Even with sparse multi-epoch data over the limited area of Stripe 82, we demonstrate that our selection method can successfully identify various types of variable white dwarfs and efficiently select high-confidence ZZ Ceti candidates.
We demonstrate that it is possible to measure metallicity from the SDSS five-band photometry to better than 0.1 dex using supervised machine learning algorithms. Using spectroscopic estimates of metallicity as ground truth, we build, optimize and train several estimators to predict metallicity. We use the observed photometry, as well as derived quantities such as stellar mass and photometric redshift, as features, and we build two sample data sets at median redshifts of 0.103 and 0.218 and median r-band magnitude of 17.5 and 18.3 respectively. We find that ensemble methods, such as Random Forests of Trees and Extremely Randomized Trees, and Support Vector Machines all perform comparably well and can measure metallicity with a Root Mean Square Error (RMSE) of 0.081 and 0.090 for the two data sets when all objects are included. The fraction of outliers (objects for which the difference between true and predicted metallicity is larger than 0.2 dex) is only 2.2 and 3.9% respectively, and the RMSE decreases to 0.068 and 0.069 if those objects are excluded. Because of the ability of these algorithms to capture complex relationships between data and target, our technique performs better than previously proposed methods that sought to fit metallicity using an analytic fitting formula, and has 3x more constraining power than SED fitting-based methods. Additionally, this method is extremely forgiving of contamination in the training set, thus requiring minimal data cleaning, and is very flexible, particularly in regard to combining photometric data with other constraints (for example, measurements of emission line fluxes). We find that our technique can be used with very satisfactory results for training sample sizes of just a few hundred objects. All the routines to reproduce our results and apply them to other data sets are made available.
[abridged] We present a strong-lensing analysis of MACSJ0717.5+3745, based on the full depth of the Hubble Frontier Field (HFF) observations, which brings the number of multiply imaged systems to 61, ten of which are spectroscopically confirmed. The total number of images comprised in these systems rises to 165. Our analysis uses a parametric mass reconstruction technique, as implemented in the Lenstool software, to constrain a mass distribution composed of four large-scale mass components + galaxy-scale perturbers. We find a superposition of cored isothermal mass components to provide a good fit to the observational constraints, resulting in a very shallow mass distribution for the smooth (large-scale) component. Given the implications of such a flat mass profile, we investigate whether a model composed of "peaky" non-cored mass components can also reproduce the observational constraints. We find that such a non-cored mass model reproduces the observational constraints equally well. Although the total mass distributions of both models are consistent, as well as the integrated two dimensional mass profiles, we find that the smooth and the galaxy-scale components are very different. We conclude that, even in the HFF era, the generic degeneracy between smooth and galaxy-scale components is not broken, in particular in such a complex galaxy cluster. Consequently, insights into the mass distribution of MACS J0717 remain limited, underlining the need for additional probes beyond strong lensing. Our findings also have implications for estimates of the lensing magnification: we show that the amplification difference between the two models is larger than the error associated with either model. This uncertainty decreases the area of the image plane where we can reliably study the high-redshift Universe by 50 to 70%.
In a companion paper, we proposed combining large numbers of "fuzzy archetypes" with Self-Organizing Maps (SOMs) to derive photometric redshifts in a data-driven way. In this paper, we investigate the performance of several sampling approaches that build on this general idea using a mock catalog designed to approximately simulate LSST ($ugrizY$) and Euclid ($YJH$) data from $z=0-6$ at fixed LSST $Y=24$ mag. We test eight different approaches: two brute-force methods, two Markov Chain Monte Carlo (MCMC)-based methods, two hierarchical sampling methods, and two "quick-search" methods based on quantities derived during the initial SOM training process. We find most methods perform reasonably well with small catastrophic outlier fractions and are able to robustly identify redshift probability distribution functions that are multi-modal and/or poorly constrained. Once these insecure objects are removed, the results are generally in good agreement with the strict accuracy requirements necessary to meet Euclid weak lensing goals for most redshifts above $z \sim 0.8$. These results demonstrate the utility of our data clustering-based approach and highlight its effectiveness to derive quick and accurate photo-z's using large numbers of templates.
The Magellanic Clouds provide the only laboratory to study the effect of metallicity and galaxy mass on molecular gas and star formation at high (~20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the Magellanic Clouds, avoiding the known biases of CO emission as a tracer of H2. Using our dust-based molecular gas estimates, we find molecular gas depletion times of ~0.4 Gyr in the LMC and ~0.6 SMC at 1 kpc scales. These depletion times fall within the range found for normal disk galaxies, but are shorter than the average value, which could be due to recent bursts in star formation. We find no evidence for a strong intrinsic dependence of the molecular gas depletion time on metallicity. We study the relationship between gas and star formation rate across a range in size scales from 20 pc to ~1 kpc, including how the scatter in molecular gas depletion time changes with size scale, and discuss the physical mechanisms driving the relationships. We compare the metallicity-dependent star formation models of Ostriker, McKee, and Leroy (2010) and Krumholz (2013) to our observations and find that they both predict the trend in the data, suggesting that the inclusion of a diffuse neutral medium is important at lower metallicity, but do not capture the full extent of the scatter in the relationship between gas and star formation.
We report the discovery of three low-mass double-lined eclipsing binaries in the pre-main sequence Upper Scorpius association, revealed by $K2$ photometric monitoring of the region over $\sim$ 78 days. The orbital periods of all three systems are $<$5 days. We use the $K2$ photometry plus multiple Keck/HIRES radial velocities and spectroscopic flux ratios to determine fundamental stellar parameters for both the primary and secondary components of each system, along with the orbital parameters. We present tentative evidence that EPIC 203868608 is a hierarchical triple system comprised of an eclipsing pair of $\sim$25 $M_\mathrm{Jup}$ brown dwarfs with a wide M-type companion. If confirmed, it would constitute only the second double-lined eclipsing brown dwarf binary system discovered to date. The double-lined system EPIC 203710387 is composed of nearly identical M4.5-M5 stars with fundamentally determined masses and radii measured to better than 3% precision ($M_1=0.1169\pm0.0031 M_\odot$, $M_2=0.1065\pm0.0027 M_\odot$ and $R_1=0.4338\pm0.0071 R_\odot$, $R_2=0.4377\pm0.0080 R_\odot$) from combination of the light curve and radial velocity time series. These stars have the lowest masses of any stellar mass double-lined eclipsing binary to date. Finally, EPIC 203476597 is a compact single-lined system with a G8-KO primary and a likely mid-K secondary whose line are revealed in spectral ratios. Continued measurement of radial velocities and spectroscopic flux ratios will better constrain fundamental parameters and should elevate the objects to benchmark status. We also present revised parameters for the double-lined eclipsing binary UScoCTIO 5 ($M_1=0.3336\pm0.0022 M_\odot$, $M_2=0.3200\pm0.0022 M_\odot$ and $R_1=0.862\pm0.012$, $R_2=0.852\pm0.013 R_\odot$). We discuss the implications of our results on these $\sim$0.1-1.5 $M_\odot$ stars for pre-main-sequence evolutionary models.
The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing Fourier transform spectrometers, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherent to the FTS - emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects - and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal.
We present the optical luminosity functions (LFs) of galaxies for the CLASH-VLT cluster MACS J1206.2-0847 at z=0.439, based on HST and SUBARU data, including ~600 spectroscopically confirmed member galaxies. The LFs on the wide SUBARU FoV are well described by a single Schechter function down to M~M*+3, whereas this fit is poor for HST data, due to a faint-end upturn visible down M~M*+7, suggesting a bimodal behaviour. We also investigate the effect of local environment by deriving the LFs in four different regions, according to the distance from the centre, finding an increase in the faint-end slope going from the core to the outer rings. Our results confirm and extend our previous findings on the analysis of mass functions, which showed that the galaxies with stellar mass below 10^10.5, M_sun have been significantly affected by tidal interaction effects, thus contributing to the intra cluster light.
Context. Photometric monitoring of the variability of brown dwarfs can provide useful information about the structure of clouds in their cold atmospheres. The brown-dwarf binary system Luhman 16AB is an interesting target for such a study, as its components stand at the L/T transition and show high levels of variability. Luhman 16AB is also the third closest system to the Solar system, allowing precise astrometric investigations with ground-based facilities. Aims. The aim of the work is to estimate the rotation period and study the astrometric motion of both components. Methods. We have monitored Luhman 16AB over a period of two years with the lucky-imaging camera mounted on the Danish 1.54m telescope at La Silla, through a special i+z long-pass filter, which allowed us to clearly resolve the two brown dwarfs into single objects. An intense monitoring of the target was also performed over 16 nights, in which we observed a peak-to-peak variability of 0.20 \pm 0.02 mag and 0.34 \pm 0.02 mag for Luhman 16A and 16B, respectively. Results. We used the 16-night time-series data to estimate the rotation period of the two components. We found that Luhman 16B rotates with a period of 5.1 \pm 0.1 hr, in very good agreement with previous measurements. For Luhman 16A, we report that it rotates slower than its companion and, even though we were not able to get a robust determination, our data indicate a rotation period of roughly 8 hr. This implies that the rotation axes of the two components are well aligned and suggests a scenario in which the two objects underwent the same accretion process. The 2-year complete dataset was used to study the astrometric motion of Luhman 16AB. We predict a motion of the system that is not consistent with a previous estimate based on two months of monitoring, but cannot confirm or refute the presence of additional planetary-mass bodies in the system.
We compared the time (or time limit) of onset for optical afterglow emission to the gamma-ray variability V in 76 GRBs with redshifts. In the subset (25 cases) with the rise evident in the data, we fit the shape of the onset peak as well and compared the rising and decaying indices to V. We did not find any evidence for any patterns between these properties and there is no statistical support for any correlations. This indicates a lack of connection between irregularities of the prompt gamma-ray emission and the establishment of the afterglow phase. In the ordinary prompt internal shocks interpretation, this would indicate a lack of relationship between V and the bulk Lorentz factor of the event.
Open clusters can be the key to deepen our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster's properties are applicable to all its members. However the number of open clusters with detailed analysis from high resolution spectroscopy and/or precision photometry imposes severe limitation on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaH$\beta$ photometry and high resolution spectroscopy, we derive the cluster's properties and, for the first time, present detailed abundance analysis of 10 potential cluster stars. Using radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved probable, single-star members of Tombaugh 1. The weighted photometric metallicity from $m_1$ and $hk$ is [Fe/H] = -0.10 $\pm$ 0.02, while a match to the Victoria-Regina Str\"{o}mgren isochrones leads to an age of 0.95 $\pm$ 0.10 Gyr and an apparent modulus of $(m-M)$ = 13.10 $\pm$ 0.10. Radial velocities identify 6 giants as probable cluster members and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y,Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region between 9.5 and 12 kpc. Our study also shows that Cepheid XZ CMa is not a member of Tombaugh 1, and reveals that this Cepheid presents signs of barium enrichment.
Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the Universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-ray energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude, in sources that span nine orders of magnitude in black hole mass, revealing a similarity of jet properties over a large range of black hole masses powering these jets. This correlation demonstrates that the internal properties of the jet rely most critically on the conditions of the plasma close to the black hole, rather than other parameters such as the black hole mass or spin, and will provide a benchmark that should be reproduced by the jet formation models.
We carried out spectroscopic observations with Subaru/HDS of 50 solar-type superflare stars found from Kepler data. More than half (34 stars) of the target stars show no evidence of the binary system, and we confirmed atmospheric parameters of these stars are roughly in the range of solar-type stars. We then conducted the detailed analyses for these 34 stars. First, the value of the "$v\sin i$" (projected rotational velocity) measured from spectroscopic results is consistent with the rotational velocity estimated from the brightness variation. Second, there is a correlation between the amplitude of the brightness variation and the intensity of Ca II IR triplet line. All the targets expected to have large starspots because of their large amplitude of the brightness variation show high chromospheric activities compared with the Sun. These results support that the brightness variation of superflare stars is explained by the rotation of a star with large starspots.
In a pioneering effort, Preston et al. reported that the colors of blue horizontal-branch (BHB) stars in the halo of the Galaxy shift with distance, from regions near the Galactic center to about 12 kpc away, and interpreted this as a correlated variation in the ages of halo stars, from older to younger, spanning a range of a few Gyrs. We have applied this approach to a sample of some 4700 spectroscopically confirmed BHB stars selected from the Sloan Digital Sky Survey to produce the first "chronographic map" of the halo of the Galaxy. We demonstrate that the mean de-reddened g$-$r color, <(g$-$r)o>, increases outward in the Galaxy from $-$0.22 to $-$0.08 (over a color window spanning [$-$0.3:0.0]) from regions close to the Galactic center to ~40 kpc, independent of the metallicity of the stars. Models of the expected shift in the color of the field BHB stars based on modern stellar evolutionary codes confirm that this color gradient can be associated with an age difference of roughly 2-2.5 Gyrs, with the oldest stars concentrated in the central ~15 kpc of the Galaxy. Within this central region, the age difference spans a mean color range of about 0.05 mag (~0.8 Gyrs). Furthermore, we show that chronographic maps can be used to identify individual substructures, such as the Sagittarius Stream, and overdensities in the direction of Virgo and Monoceros, based on the observed contrast in their mean BHB colors with respect to the foreground/background field population.
Active Galactic Nuclei (AGN) with bright radio jets offer the opportunity to study the structure of and physical conditions in relativistic outflows. For such studies, multi-frequency polarimetric very long baseline interferometric (VLBI) observations are important as they directly probe particle densities, magnetic field geometries, and several other parameters. We present results from first-epoch data obtained by the Korean VLBI Network (KVN) within the frame of the Plasma Physics of Active Galactic Nuclei (PAGaN) project. We observed seven radio-bright nearby AGN at frequencies of 22, 43, 86, and 129 GHz in dual polarization mode. Our observations constrain apparent brightness temperatures of jet components and radio cores in our sample to $>10^{8.01}$ K and $>10^{9.86}$ K, respectively. Degrees of linear polarization $m_{L}$ are relatively low overall: less than 10%. This indicates suppression of polarization by strong turbulence in the jets. We found an exceptionally high degree of polarization in a jet component of BL Lac at 43 GHz, with $m_{L} \sim$ 40%. Assuming a transverse shock front propagating downstream along the jet, the shock front being almost parallel to the line of sight can explain the high degree of polarization.
We report first results from KVN and VERA Array (KaVA) VLBI observations obtained in the frame of our Plasma-physics of Active Galactic Nuclei (PAGaN) project. We observed eight selected AGN at 22 and 43 GHz in single polarization (LCP) between March 2014 and April 2015. Each source was observed for 6 to 8 hours per observing run to maximize the $uv$ coverage. We obtained a total of 15 deep high-resolution images permitting the identification of individual circular Gaussian jet components and three spectral index maps of BL Lac, 3C 111 and 3C 345 from simultaneous dual-frequency observations. The spectral index maps show trends in agreement with general expectations -- flat core and steep jets -- while the actual value of the spectral index for jets shows indications for a dependence on AGN type. We analyzed the kinematics of jet components of BL Lac and 3C 111, detecting superluminal proper motions with maximum apparent speeds of about $5c$. This constrains the lower limits of the intrinsic component velocities to $\sim0.98c$ and the upper limits of the angle between jet and line of sight to $\sim$20$\deg$. In agreement with global jet expansion, jet components show systematically larger diameters $d$ at larger core distances $r$, following the global relation $d\approx0.2r$, albeit within substantial scatter.
Active galactic nuclei (AGN) are known for irregular variability on all time scales, down to intra-day variability with relative variations of a few percent within minutes to hours. On such short timescales, unexplored territory, such as the possible existence of a shortest characteristic time scale of activity and the shape of the high frequency end of AGN power spectra, still exists. We present the results of AGN single-dish fast photometry performed with the Korean VLBI Network (KVN). Observations were done in a "anti-correlated" mode using two antennas, with always at least one antenna pointing at the target. This results in an effective time resolution of less than three minutes. We used all four KVN frequencies, 22, 43, 86, and 129 GHz, in order to trace spectral variability, if any. We were able to derive high-quality light curves for 3C 111, 3C 454.3, and BL Lacertae at 22 and 43 GHz, and for 3C 279 at 86 GHz, between May 2012 and April 2013. We performed a detailed statistical analysis in order to assess the levels of variability and the corresponding upper limits. We found upper limits on flux variability ranging from $\sim$1.6% to $\sim$7.6%. The upper limits on the derived brightness temperatures exceed the inverse Compton limit by three to six orders of magnitude. From our results, plus comparison with data obtained by the University of Michigan Radio Astronomy Observatory, we conclude that we have not detected source-intrinsic variability which would have to occur at sub-per cent levels.
We present preliminary results of the spectral analysis on the radial distributions of the star formation history in both, a galaxy merger and a spiral isolated galaxy observed with MaNGA. We find that the central part of the isolated galaxy is composed by older stellar population ($\sim$2 Gyr) than in the outskirts ($\sim$7 Gyr). Also, the time-scale is gradually larger from 1 Gyr in the inner part to 3 Gyr in the outer regions of the galaxy. In the case of the merger, the stellar population in the central region is older than in the tails, presenting a longer time-scale in comparison to central part in the isolated galaxy. Our results are in agreement with a scenario where spiral galaxies are built from inside-out. In the case of the merger, we find evidence that interactions enhance star formation in the central part of the galaxy.
We explore the effect of galactic environment on properties of molecular clouds. Using clouds formed in a large-scale galactic disc simulation, we measure the observable properties from synthetic column density maps. We confirm that a significant fraction of unbound clouds forms naturally in a galactic disc environment and that a mixed population of bound and unbound clouds can match observed scaling relations and distributions for extragalactic molecular clouds. By dividing the clouds into inner and outer disc populations, we compare their distributions of properties and test whether there are statistically significant differences between them. We find that clouds in the outer disc have lower masses, sizes, and velocity dispersions as compared to those in the inner disc for reasonable choices of the inner/outer boundary. We attribute the differences to the strong impact of galactic shear on the disc stability at large galactocentric radii. In particular, our Toomre analysis of the disc shows a narrowing envelope of unstable masses as a function of radius, resulting in the formation of smaller, lower mass fragments in the outer disc. We also show that the star formation rate is affected by the environment of the parent cloud, and is particularly influenced by the underlying surface density profile of the gas throughout the disc. Our work highlights the strengths of using galaxy-scale simulations to understand the formation and evolution of cloud properties - and the star formation within them - in the context of their environment.
The "broad iron spectral features" are often seen in X-ray spectra of Active Galactic Nuclei (AGN) and black-hole binaries (BHB). These features may be explained either by the "relativistic disc reflection" scenario or the "partial covering" scenario: It is hardly possible to determine which model is valid from time-averaged spectral analysis. Thus, X-ray spectral variability has been investigated to constrain spectral models. To that end, it is crucial to study iron structure of BHBs in detail at short time-scales, which is, for the first time, made possible with the Parallel-sum clocking (P-sum) mode of XIS detectors on board Suzaku. This observational mode has a time-resolution of 7.8~ms as well as a CCD energy-resolution. We have carried out systematic calibration of the P-sum mode, and investigated spectral variability of the BHB GRS 1915+105. Consequently, we found that the spectral variability of GRS 1915+105 does not show iron features at sub-seconds. This is totally different from variability of AGN such as 1H0707--495, where the variation amplitude significantly drops at the iron K-energy band. This difference can be naturally explained in the framework of the "partial covering" scenario.
Based on CFHTLenS weak lensing observations, in this paper, we study the mass--concentration ($M$--$c$) relation for $\sim 200$ redMaPPer clusters in the fields. We extract the $M$--$c$ relation by measuring the density profiles of individual clusters instead of using stacked weak lensing signals. By performing Monte Carlo simulations, we demonstrate that although the signal-to-noise ratio for each individual cluster is low, the unbiased $M$--$c$ relation can still be reliably derived from a large sample of clusters by carefully taking into account the impacts of shape noise, cluster center offset, dilution effect from member or foreground galaxies and the projection effect. Our results show that within error bars, the derived $M$--$c$ relation for redMaPPer clusters is in agreement with simulation predictions. There is a weak deviation that the halo concentrations calibrated by Monte Carlo simulations are somewhat higher than that predicted from ${\it Planck}$ cosmology.
We present a science forecast for the eBOSS survey, part of the SDSS-IV project, which is a spectroscopic survey using multiple tracers of large-scale structure, including luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars (both as a direct probe of structure and through the Ly-$\alpha$ forest). Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the $f_{\rm NL}$ parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Ly-$\alpha$ forest to constrain the total neutrino mass. We find that eBOSS LRGs ($0.6<z<1.0$) (combined with the BOSS LRGs at $z>0.6$), ELGs ($0.6<z<1.2$) and Clustering Quasars (CQs) ($0.6<z<2.2$) can achieve a precision of 1%, 2.2% and 1.6% precisions, respectively, for spherically averaged BAO distance measurements. Using the same samples, the constraint on $f\sigma_8$ is expected to be 2.5%, 3.3% and 2.8% respectively. For primordial non-Gaussianity, eBOSS alone can reach an accuracy of $\sigma(f_{\rm NL})\sim10-15$, depending on the external measurement of the galaxy bias and our ability to model large-scale systematic errors. eBOSS can at most improve the dark energy Figure of Merit (FoM) by a factor of $3$ for the Chevallier-Polarski-Linder (CPL) parametrisation, and can well constrain three eigenmodes for the general equation-of-state parameter (Abridged).
Resolution, usually defined by the Rayleigh criterion or the Full Width at Half Maximum of a Point Spread Function, is a basic property of an image. Here, we present a new statistical definition of image resolution based on the cross-correlation properties of the pixels in an image. It is shown that the new definition of image resolution depends not only on the PSF of an imaging device, but also on the signal-to-noise ratio of the data and on the structures of an object. In an image, the resolution does not have to be uniform. Our new definition is also suitable for the interpretation of the result of a deconvolution. We illustrate this, in this paper, with a Wiener deconvolution. It is found that weak structures can be extracted from low signal-to-noise ratio data, but with low resolution; a high-resolution image was obtained from high signal-to-noise ratio data after a Wiener deconvolution. The new definition can also be used to compare various deconvolution algorithms on their processing effects, such as resolution, sensitivity and sidelobe level, etc.
The time delay experienced by a light ray as it passes through a changing gravitational potential by a non-zero mass distribution along the line of sight is usually referred to as Shapiro delay. Shapiro delay has been extensively measured in the Solar system and in binary pulsars, enabling stringent tests of general relativity as well as measurement of neutron star masses . However, Shapiro delay is ubiquitous and experienced by all astrophysical messengers on their way from the source to the Earth. We calculate the "one-way" static Shapiro delay for the first discovered millisecond pulsar PSR~B1937+21, by including the contributions from both the dark matter and baryonic matter between this pulsar and the Earth. We find a value of approximately 5 days (of which 4.74 days is from the dark matter and 0.22 days from the baryonic matter). We also calculate the modulation of Shapiro delay from the motion of a single dark matter halo, and also evaluate the cumulative effects of the motion of matter distribution on the change in pulsar's period and its derivative. The time-dependent effects are too small to be detected with the current timing noise observed for this pulsar. Finally, we would like to emphasize that although the one-way Shapiro delay is mostly of academic interest for electromagnetic astronomy, its ubiquity should not be forgotten in the era of multi-messenger astronomy.
This paper serves as a reference on how to estimate the parameters of binary stars and how to combine multiple techniques, namely astrometry, interferometry and radial velocities.
We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to 700 nm. The dependence of accretion with stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are robust to sample selection.
We produce and analyze eclipse time variation (ETV) curves for some 2600 Kepler binaries. We find good to excellent evidence for a third body in 222 systems via either the light-travel-time (LTTE) or dynamical effect delays. Approximately half of these systems have been discussed in previous work, while the rest are newly reported here. Via detailed analysis of the ETV curves using high-level analytic approximations, we are able to extract system masses and information about the three-dimensional characteristics of the triple for 62 systems which exhibit both LTTE and dynamical delays; for the remaining 160 systems we give improved LTTE solutions. New techniques of preprocessing the flux time series are applied to eliminate false positive triples and to enhance the ETV curves. The set of triples with outer orbital periods shorter than $\sim$2000 days is now sufficiently numerous for meaningful statistical analysis. We find that (i) there is a peak near i_m~40 deg in the distribution of the triple vs. inner binary mutual inclination angles that provides strong confirmation of the operation of Kozai-Lidov cycles with tidal friction; (ii) the median eccentricity of the third-body orbits is e_2=0.35; (iii) there is a deficit of triple systems with binary periods <1 day and outer periods between ~50 and 200 days which might help guide the refinement of theories of the formation and evolution of close binaries; and (iv) the substantial fraction of Kepler binaries which have third-body companions is consistent with a very large fraction of all binaries being part of triples.
Context: Effective temperature, surface gravity, and metallicity are basic spectroscopic stellar parameters necessary to characterize a star or a planetary system. Reliable atmospheric parameters for FGK stars have been obtained mostly from methods that relay on high resolution and high signal-to-noise optical spectroscopy. The advent of a new generation of high resolution near-IR spectrographs opens the possibility of using classic spectroscopic methods with high resolution and high signal-to-noise in the NIR spectral window. Aims: We aim to compile a new iron line list in the NIR from a solar spectrum to derive precise stellar atmospheric parameters, comparable to the ones already obtained from high resolution optical spectra. The spectral range covers 10 000 {\AA} to 25 000 {\AA}, which is equivalent to the Y, J, H, and K bands. Methods: Our spectroscopic analysis is based on the iron excitation and ionization balance done in LTE. We use a high resolution and high signal-to-noise ratio spectrum of the Sun from the Kitt Peak telescope as a starting point to compile the iron line list. The oscillator strengths (log gf) of the iron lines were calibrated for the Sun. The abundance analysis was done using the MOOG code after measuring equivalent widths of 357 solar iron lines. Results: We successfully derived stellar atmospheric parameters for the Sun. Furthermore, we analysed HD20010, a F8IV star, from which we derived stellar atmospheric parameters using the same line list as for the Sun. The spectrum was obtained from the CRIRES- POP database. The results are compatible with the ones found in the literature, confirming the reliability of our line list. However, due to the quality of the data we obtain large errors.
Coronal rain clumps and prominence knots are dense condensations with chromospheric to transition region temperatures that fall down in the much hotter corona. Their typical speeds are in the range 30--150~km~s$^{-1}$ and of the order of 10--30~km~s$^{-1}$, respectively, i.e., they are considerably smaller than free fall velocities. These cold blobs contain a mixture of ionized and neutral material that must be dynamically coupled in order to fall together, as observed. We investigate this coupling by means of hydrodynamic simulations in which the coupling arises from the friction between ions and neutrals. The numerical simulations presented here are an extension of those of \citet{oliver2014} to the partially ionized case. We find that, although the relative drift speed between the two species is smaller than 1~m~s$^{-1}$ at the blob center, it is sufficient to produce the forces required to strongly couple charged particles and neutrals. The ionization degree has no discernible effect on the main results of our previous work for a fully ionized plasma: the condensation has an initial acceleration phase followed by a period with roughly constant velocity and, in addition, the maximum descending speed is clearly correlated with the ratio of initial blob to environment density.
It has become common to call this the `era of precision cosmology' and hence one rarely hears about the finiteness of the amount of information that is available for constraining cosmological parameters. Under the assumption that the perturbations are purely Gaussian, then the amount of extractable information is the same (up to a small numerical factor) as an accounting of the number of observable modes. For studies of the microwave sky, we are probably within a factor of a few of the amount of accessible information. To dramatically reduce the uncertainties on parameters will require 3-dimensional probes, such as ambitious future redshifted 21-cm surveys. However, even there the available information is still finite, with the total effective signal-to-noise ratio on parameters probably not exceeding $10^7$. The amount of observable information will increase with time (but very slowly), into the extremely distant future.
High velocity stars are stars moving at velocities so high to require an acceleration mechanism involving binary systems or the presence of a massive central black hole. In the frame of a galaxy hosting a supermassive black hole binary (of total mass $10^8$ M$_\odot$), we investigated a mechanism for the production of high velocity stars due to the close interaction between a massive and orbitally decayed globular cluster and the super massive black hole binary. Some stars of the cluster acquire high velocities by conversion of gravitational energy into kinetic energy deriving from their interaction with the black hole binary. After the interaction, few stars reach a velocity sufficient to overcome the galactic gravitational well, while some of them are just stripped from the globular cluster and start orbiting around the galactic centre.
Modern radio telescopes are favoring densely packed array layouts consisting of large numbers of antennas ($N_\textrm{a}\gtrsim 1000$). Since the complexity of traditional correlators scales as $\mathcal{O}(N_\textrm{a}^2)$, there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator (EPIC), we present the first software demonstration of a generalized direct imaging algorithm known as the Modular Optimal Frequency Fourier (MOFF) imager. It takes advantage of the multiplication-convolution theorem of Fourier transforms. Not only does it bring down the cost for dense layouts to $\mathcal{O}(N_\textrm{a}\log_2 N_\textrm{a})$ but can also image from irregularly arranged heterogeneous antenna arrays. EPIC is highly modular and parallelizable, implemented in object oriented Python, and publicly available. We have verified the images produced to be equivalent to those produced using traditional techniques. We have also validated our implementation on data observed with the Long Wavelength Array (LWA). Antenna systems with a dense filling factor consisting of a large number of antennas such as LWA, the Square Kilometre Array, Hydrogen Epoch of Reionization Array, and Canadian Hydrogen Intensity Mapping Experiment will gain significant advantage by deploying EPIC. Inherent availability of calibrated time-domain images on timescales roughly equal to the writeout timescale of the digitizer and vastly lower bandwidth relative to visibility based systems will make it a prime candidate for transient searches of Fast Radio Bursts (FRB) as well as planetary and exoplanetary phenomena.
The Herschel Space Observatory was the fourth cornerstone mission in the European Space Agency (ESA) science programme with excellent broad band imaging capabilities in the sub-mm and far-infrared part of the spectrum. Although the spacecraft finished its observations in 2013, it left a large legacy dataset that is far from having been fully scrutinised and still has a large potential for new scientific discoveries. This is specifically true for the photometric observations of the PACS and SPIRE instruments. Some source catalogues have already been produced by individual observing programs, but there are many observations that risk to remain unexplored. To maximise the science return of the SPIRE and PACS data sets, we are in the process of building the Herschel Point Source Catalogue (HPSC) from all primary and parallel mode observations. Our homogeneous source extraction enables a systematic and unbiased comparison of sensitivity across the different Herschel fields that single programs will generally not be able to provide. The catalogue will be made available online through archives like the Herschel Science Archive (HSA), the Infrared Science Archive (IRSA), and the Strasbourg Astronomical Data Center (CDS).
Context. Accurate photometry with ground based solar telescopes requires characterization of straylight. Scattering in Earth's atmosphere and in the telescope optics are potentially significant sources of straylight, for which the point spread function (PSF) has wings that reach very far. This kind of straylight produces an aureola, extending several solar radii off the solar disk. Aims. Measure such straylight using the ordinary science instrumentation. Methods. We scanned the intensity on and far off the solar disk by use of the science cameras in several different wavelength bands on a day with low-dust conditions. We characterized the far wing straylight by fitting a model to the recorded intensities involving a multi-component straylight PSF and the limb darkening of the disk. Results. The measured scattered light adds an approximately constant fraction of the local granulation intensity to science images at any position on the disk. The fraction varied over the day but never exceeded a few percent. The PSFs have weak tails that extend to several solar radii but most of the scattered light originates within ~1'. Conclusions. Far wing scattered light contributes only a small amount of straylight in SST data. Other sources of straylight are primarily responsible for the reduced contrast in SST images.
We investigate the formation of hydrogen cyanide (HCN) in the inner circumstellar envelopes of thermally pulsing asymptotic giant branch (TP-AGB) stars. A dynamic model for periodically shocked atmospheres, which includes an extended chemo-kinetic network, is for the first time coupled to detailed evolutionary tracks for the TP-AGB phase computed with the COLIBRI code. We carried out a calibration of the main shock parameters (the shock formation radius and the effective adiabatic index) using the circumstellar HCN abundances recently measured for a populous sample of pulsating TP-AGB stars. Our models recover the range of the observed HCN concentrations as a function of the mass-loss rates, and successfully reproduce the systematic increase of HCN moving along the M-S-C chemical sequence of TP-AGB stars, that traces the increase of the surface C/O ratio. The chemical calibration brings along two important implications: i) the first shock should emerge very close to the photosphere, and ii) shocks are expected to have a dominant isothermal character in the denser region close to the star (within ~ 3-4 R), implying that radiative processes should be quite efficient. Our analysis also suggests that the HCN concentrations in the inner circumstellar envelopes are critically affected by the H-H2 chemistry during the post-shock relaxation stages.
We performed mapping observations of the Class I protostellar binary system L1551 NE in the C$^{18}$O ($J$=3-2), $^{13}$CO ($J$=3-2), CS ($J$=7-6), and SO ($J_N$=7$_8$-6$_7$) lines with Atacama Submillimeter Telescope Experiment (ASTE). The ASTE C$^{18}$O data are combined with our previous SMA C$^{18}$O data, which show a $r \sim$300-AU scale Keplerian disk around the protostellar binary system. The C$^{18}$O maps show a $\sim$20000-AU scale protostellar envelope surrounding the central Keplerian circumbinary disk. The envelope exhibits a northeast (blue) - southwest (red) velocity gradient along the minor axis, which can be interpreted as a dispersing gas motion with an outward velocity of 0.3 km s$^{-1}$, while no rotational motion in the envelope is seen. In addition to the envelope, two $\lesssim$4000 AU scale, high-velocity ($\gtrsim$1.3 km s$^{-1}$) redshifted $^{13}$CO and CS emission components are found to $\sim$40$^{\prime\prime}$ southwest and $\sim$20$^{\prime\prime}$ west of the protostellar binary. These redshifted components are most likely outflow components driven from the neighboring protostellar source L1551 IRS 5, and are colliding with the envelope in L1551 NE. The net momentum, kinetic and internal energies of the L1551 IRS 5 outflow components are comparable to those of the L1551 NE envelope, and the interactions between the outflows and the envelope are likely to cause the dissipation of the envelope and thus suppression of the further growth of the mass and mass ratio of the central protostellar binary in L1551 NE.
The mass-loss rate from Mira variables represents a key parameter in our understanding of their evolutionary tracks. We introduce a method for determining the mass-loss rate from the Mira component in D-type symbiotic binaries via the Raman scattering of atomic hydrogen in the wind from the giant. Using our method, we investigated Raman HeII 1025\AA\ --> 6545\AA\ conversion in the spectrum of the symbiotic Mira V1016 Cyg. We determined its efficiency to be 0.102 and 0.148, and the corresponding mass-loss rate 2.0 (+0.1/-0.2) x 1E-6 and 2.7 (+0.2/-0.1) x 1E-6 M(Sun)/year, using our spectra from 2006 April and 2007 July,respectively. Our values of the mass-loss rate that we derived from Raman scattering are comparable with those obtained independently by other methods. Applying the method to other Mira-white dwarf binary systems can provide a necessary constraint in the calculation of asymptotic giant branch evolution.
This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter, radiation and the very fabric of spacetime under the extreme conditions close to the event horizons of black holes, as well as in and around magnetars and neutron stars. The PolSTAR design is based on the technology developed for the Nuclear Spectroscopic Telescope Array (NuSTAR) mission launched in June 2012. In particular, it uses the same X-ray optics, extendable telescope boom, optical bench, and CdZnTe detectors as NuSTAR. The mission has the sensitivity to measure ~1% linear polarization fractions for X-ray sources with fluxes down to ~5 mCrab. This paper describes the PolSTAR design as well as the science drivers and the potential science return.
The cosmic evolution of a dark matter model which behaves relativistically in the early Universe is explored. Dark matter is described as a complex scalar field, whose earliest evolution is characterized by a stiff equation of state ($p \simeq \rho$). In this phase, it is the dominant component in the Universe. We present constraints from Big Bang nucleosynthesis and primordial gravity waves from inflation. Also, we study how the associated enhanced expansion rate due to the stiff phase might facilitate a first-order electroweak symmetry breaking phase transition, in light of the recently measured value of the Higgs boson mass.
With the GREAT receiver at the Stratospheric Observatory for Infrared Astronomy (SOFIA), nine massive molecular clumps have been observed in the ammonia $3_{2+}- 2_{2-}$ line at 1.8~THz in a search for signatures of infall. The sources were selected from the ATLASGAL submillimeter dust continuum survey of our Galaxy. Clumps with high masses covering a range of evolutionary stages based on their infrared properties were chosen. The ammonia line was detected in all sources, leading to five new detections and one confirmation of a previous detection of redshifted absorption in front of their strong THz continuum as a probe of infall in the clumps. These detections include two clumps embedded in infrared dark clouds. The measured velocity shifts of the absorptions compared to optically thin \CSEO\ (3--2) emission are 0.3--2.8~km/s, corresponding to fractions of 3\%\ to 30\% of the free-fall velocities of the clumps. The ammonia infall signature is compared with complementary data of different transitions of HCN, HNC, CS, and HCO$^+$, which are often used to probe infall via their blue-skewed line profiles. The best agreement with the ammonia results is found for the HCO$^+$ (4--3) transitions, but the latter is still strongly blended with emission from associated outflows. This outflow signature is far less prominent in the THz ammonia lines, which confirms it as a powerful probe of infall in molecular clumps. Infall rates in the range from 0.3 to 16~$10^{-3}\,M_\odot/$yr were derived with a tentative correlation with the virial parameters of the clumps. The new observations show that infall on clump scales is ubiquitous through a wide range of evolutionary stages, from $L/M$ covering about ten to several hundreds.
It is shown that high-energy astrophysical neutrinos observed in the IceCube experiment can be produced by protons accelerated in extragalactic Type IIn supernova remnants by shocks propagating in the dense circumstellar medium. The nonlinear diffusive shock acceleration model is used for description of particle acceleration. We calculate the neutrino spectrum produced by an individual Type IIn supernova and the spectrum of neutrino background produced by IIn supernovae in the expanding Universe. We also found that the arrival direction of one Icecube neutrino candidate (track event 47) is at 1.35$^{\circ }$ from Type IIn supernova 2005bx.
We report on deep Chandra observations of the nearby broad-line radio galaxy Pictor A, which we combine with new Australia Telescope Compact Array (ATCA) observations. The new X-ray data have a factor 4 more exposure than observations previously presented and span a 15-year time baseline, allowing a detailed study of the spatial, temporal and spectral properties of the AGN, jet, hotspot and lobes. We present evidence for further time variation of the jet, though the flare that we reported in previous work remains the most significantly detected time-varying feature. We also confirm previous tentative evidence for a faint counterjet. Based on the radio through X-ray spectrum of the jet and its detailed spatial structure, and on the properties of the counterjet, we argue that inverse-Compton models can be conclusively rejected, and propose that the X-ray emission from the jet is synchrotron emission from particles accelerated in the boundary layer of a relativistic jet. For the first time, we find evidence that the bright western hotspot is also time-varying in X-rays, and we connect this to the small-scale structure in the hotspot seen in high-resolution radio observations. The new data allow us to confirm that the spectrum of the lobes is in good agreement with the predictions of an inverse-Compton model and we show that the data favour models in which the filaments seen in the radio images are predominantly the result of spatial variation of magnetic fields in the presence of a relatively uniform electron distribution.
The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 $\mu$m ). In this paper we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (i) surface (ii) tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and (v) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities and limitations of the instrument suite, and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors - sufficient to encompass Titan, but with significantly faster read-out times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths, and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five to ten year expected lifetime for the observatory, for example monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA and next-generation ground-based telescopes (TMT, GMT, EELT).
We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found one central star of a planetary nebula, one ultra-compact helium binary (AM CVn), one oxygen line dominated white dwarf, 15 hot DO/PG1159s, 12 new cataclysmic variables, 36 magnetic white dwarf stars, 54 DQs, 115 helium dominated white dwarfs, 148 white dwarf+main sequence star binaries, 236 metal polluted white dwarfs, 300 continuum spectra DCs, 230 hot subdwarfs, 2936 new hydrogen dominated white dwarf stars, and 2675 cool hydrogen dominated subdwarf stars. We calculate the mass distribution of all 5883 DAs with S/N>15 in DR12, including the ones in DR7 and DR10, with an average S/N=26, corrected to the 3D convection scale, and also the distribution after correcting for the observed volume, using 1/Vmax.
The James Webb Space Telescope (JWST) provides the opportunity for ground-breaking observations of asteroids. It covers wavelength regions that are unavailable from the ground, and does so with unprecedented sensitivity. The main-belt and Trojan asteroids are all observable at some point in the JWST lifetime. We present an overview of the capabilities for JWST and how they apply to the asteroids as well as some short science cases that take advantage of these capabilities.
The Rotten Egg Nebula has at its core a binary composed of a Mira star and an A-type companion at a separation >10 au. It has been hypothesized to have formed by strong binary interactions between the Mira and a companion in an eccentric orbit during periastron passage ~800 years ago. We have performed hydrodynamic simulations of an asymptotic giant branch star interacting with companions with a range of masses in orbits with a range of initial eccentricities and periastron separations. For reasonable values of the eccentricity, we find that Roche lobe overflow can take place only if the periods are <<100 years. Moreover, mass transfer causes the system to enter a common envelope phase within several orbits. Since the central star of the Rotten Egg nebula is an AGB star, we conclude that such a common envelope phase must have lead to a merger, so the observed companion must have been a tertiary companion of a binary that merged at the time of nebula ejection. Based on the mass and timescale of the simulated disc formed around the companion before the common envelope phase, we analytically estimate the properties of jets that could be launched. Allowing for super-Eddington accretion rates, we find that jets similar to those observed are plausible, provided that the putative lost companion was relatively massive.
We report on the study of interstellar extinction across the Tarantula nebula (30 Doradus), in the Large Magellanic Cloud, using observations from the Hubble Tarantula Treasury Project in the 0.3 - 1.6 micron range. The considerable and patchy extinction inside the nebula causes about 3500 red clump stars to be scattered along the reddening vector in the colour-magnitude diagrams, thereby allowing an accurate determination of the reddening slope in all bands. The measured slope of the reddening vector is remarkably steeper in all bands than in the the Galactic diffuse interstellar medium. At optical wavelengths, the larger ratio of total-to-selective extinction, namely Rv = 4.5 +/- 0.2, implies the presence of a grey component in the extinction law, due to a larger fraction of large grains. The extra large grains are most likely ices from supernova ejecta and will significantly alter the extinction properties of the region until they sublimate in 50 - 100 Myr. We discuss the implications of this extinction law for the Tarantula nebula and in general for regions of massive star formation in galaxies. Our results suggest that fluxes of strongly star forming regions are likely to be underestimated by a factor of about 2 in the optical.
It is suggested that quantum entanglement emerges from the holographic principle stating that all of the information of a region (bulk bits) can be described by the bits on its boundary surface. There are redundancy and information loss in the bulk bits that lead to the nonlocal correlation among the bulk bits. Quantum field theory overestimates the independent degrees of freedom in the bulk. The maximum entanglement in the universe increases as the size of the cosmic horizon and this could be related with the arrow of time and dark energy.
In the model of holographic dark energy, there is a notorious problem of circular reasoning between the introduction of future event horizon and the accelerating expansion of the universe. We examine the problem after dividing into two parts, the causality problem of the equation of motion and the circular logic on the use of the future event horizon. We specify and isolate the root of the problem from causal equation of motion as a boundary condition, which can be determined from the initial data of the universe. We show that there is no violation of causality if it is defined appropriately and the circular logic problem can be reduced to an initial value problem.
We describe the experience of running an Astrophysics outreach initiative involving traditional mass media like radio broadcast and new digital media like blog, microblogging and internet video channel. Some very successful preliminary results are also presented. This unique experience is helping to create new science informal education environments for Spanish speaking people in Latin America.
The ${^3{\rm He}}(\alpha,\gamma){^7{\rm Be}}$ and ${^3{\rm H}}(\alpha,\gamma){^7{\rm Li}}$ astrophysical $S$ factors are calculated within the no-core shell model with continuum using a renormalized chiral nucleon-nucleon interaction. The ${^3{\rm He}}(\alpha,\gamma){^7{\rm Be}}$ astrophysical $S$ factors agree reasonably well with the experimental data while the ${^3{\rm H}}(\alpha,\gamma){^7{\rm Li}}$ ones are overestimated. The seven-nucleon bound and resonance states and the $\alpha+{^3{\rm He}}/{^3{\rm H}}$ elastic scattering are also studied and compared with experiment. The low-lying resonance properties are rather well reproduced by our approach. At low energies, the $s$-wave phase shift, which is non-resonant, is overestimated.
A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov detector is presented in this paper. The energy and azimuthal spectra of the atmospheric ${\nu}_e+{\bar{\nu}}_e$ and ${\nu}_{\mu}+{\bar{\nu}}_{\mu}$ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the ${\nu}_e$ and ${\nu}_{\mu}$ samples at 8.0 {\sigma} and 6.0 {\sigma} significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 {\sigma} level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is also performed, and a weak indication of a correlation was seen at the 1.1 {\sigma} level, using SK I-IV data spanning a 20 year period. For particularly strong solar activity periods known as Forbush decreases, no theoretical prediction is available, but a deviation below the typical neutrino event rate is seen at the 2.4 {\sigma} level.
In this work we explicitly solve the problem of the harmonic oscillator in the classical limit of a minimal-length scenario. We show that (i) the motion equation of the oscillator is not linear anymore because the presence of a minimal length introduces an anarmonic term and (ii) its motion is described by a Jacobi sine elliptic function. Therefore the motion is still periodic with the new period depending on the minimal length. This result is very important since it can be used to probe the Planck-scale physics. We show applications of our results in spectroscopy and gravity.
In this article, we have studied the cosmological and particle physics constraints on dark matter relic abundance from effective field theory of inflation using tensor-to-scalar ratio ($r$), in case of Randall-Sundrum single membrane (RSII) paradigm. Using semi-analytical approach we establish a direct connection between the dark matter relic abundance ($\Omega_{DM}h^2$) and primordial gravity waves ($r$), which establishes a precise connection between inflation and generation of dark matter within the framework of effective field theory in RSII membrane. Further assuming the UV completeness of the effective field theory perfectly holds good in the prescribed framework, we have explicitly shown that the membrane tension, $\sigma$, bulk mass scale $M_5$, and cosmological constant $\tilde{\Lambda}_{5}$, in RSII membrane plays the most significant role to establish the connection between dark matter and inflation, using which we have studied the features of various mediator mass scale suppressed effective field theory "relevant operators" induced from the localized $s$, $t$ and $u$ channel interactions. Taking a completely model independent approach, we have studied an exhaustive list of tree-level Feynman diagrams for dark matter annihilation within the prescribed setup and to check the consistency of the obtained results, further we apply the constraints as obtained from recently observed Planck 2015 data and Planck+BICEP2+Keck Array joint datasets. Using all of these derived results we have shown that to satisfy the bound on, $\Omega_{DM}h^2=0.1187\pm 0.0017$, as from Planck 2015 data, it is possible to put further stringent constraint on $r$ within, $0.01\leq r\leq 0.12$, for thermally averaged annihilation cross-section of dark matter, $\langle \sigma v\rangle\approx {\cal O}(10^{-28}-10^{-27}){\rm cm^3 /s}$, which are very useful to constrain various membrane inflationary models.
The origin of the ultra-high-energy particles we receive on the Earth from the outer space such as EeV cosmic rays and PeV neutrinos remains an enigma. All mechanisms known to us currently make use of electromagnetic interaction to accelerate charged particles. In this paper we propose a mechanism exclusively based on gravity rather than electromagnetic interaction. We show that it is possible to generate ultra-high-energy particles starting from particles with moderate energies using the collisional Penrose process in an overspinning Kerr spacetime transcending the Kerr bound only by an infinitesimal amount, i.e., with the Kerr parameter $a=M(1+\epsilon)$, where we take the limit $\epsilon \rightarrow 0^+$. We consider two massive particles starting from rest at infinity that collide at $r=M$ with divergent center-of-mass energy and produce two massless particles. We show that massless particles produced in the collision can escape to infinity with the ultra-high energies exploiting the collisional Penrose process with the divergent efficiency $\eta \sim {1}/{\sqrt{\epsilon}} \rightarrow \infty$. Assuming the isotropic emission of massless particles in the center-of-mass frame of the colliding particles, we show that half of the particles created in the collisions escape to infinity with the divergent energies. To a distant observer, ultra-high-energy particles appear to originate from a bright spot which is at the angular location $\xi \sim {2M}/{r_{obs}}$ with respect to the singularity on the side which is rotating towards the observer. We show that the anisotropy in emission in the center-of-mass frame, which is dictated by the differential cross-section of underlying particle physics process, leaves a district signature on the spectrum of ultra-high-energy massless particles. Thus, it provides a unique probe into fundamental particle physics.
We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. In the Bianchi-IX universe it acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early Universe may produce the sterile particles contributing to dark matter.
Properties of the motion of electrically charged particles in the background of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) black hole is presented in this paper. Radial and angular motion are studied analytically for different values of the fundamental parameter. Therefore, gravitational Rutherford scattering and Keplerian orbits are analysed in detail. Finally, this paper complements previous work by Fernando for null geodesics (Phys. Rev. D 85: 024033, 2012), Olivares & Villanueva (Eur. Phys. J. C 73: 2659, 2013) and Blaga (Automat. Comp. Appl. Math. 22, 41 (2013); Serb. Astron. J. 190, 41 (2015)) for time-like geodesics.
We consider the propagation of electromagnetic waves through a dilaton-Maxwell domain wall of the type introduced by Gibbons and Wells [G.W. Gibbons and C.G. Wells, Class. Quant. Grav. 11, 2499-2506 (1994)]. It is found that if such a wall exists within our observable universe, it would be absurdly thick, or else have a magnetic field in its core which is much stronger than observed intergalactic fields. We conclude that it is highly improbable that any such wall is physically realized.
We show that the well-known problem of frame dependence and violation of local Lorentz invariance in the usual formulation of $f(T)$ gravity is a consequence of neglecting the role of spin connection. We re-formulate $f(T)$ gravity starting, instead of the "pure-tetrad" teleparallel gravity, from the covariant teleparallel gravity, using both the tetrad and the spin connection as dynamical variables, resulting in the fully covariant, consistent, and frame-independent, version of $f(T)$ gravity, which does not suffer from the notorious problems of the usual, pure-tetrad, $f(T)$ theory. We present the method to extract solutions for the most physically important cases, such as the Minkowski, the FRW and the spherically-symmetric ones. We show that in the covariant $f(T)$ gravity we are allowed to use an arbitrary tetrad in an arbitrary coordinate system along with the corresponding spin connection, resulting always to the same physically relevant field equations.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
In high-resolution X-ray observations of the hot plasma in clusters of galaxies significant structures caused by AGN feedback, mergers, and turbulence can be detected. Many clusters have been observed by Chandra in great depth and at high resolution. Using archival data taken with the Chandra ACIS instrument the aim was to study thermodynamic perturbations of the X-ray emitting plasma and to apply this to better understand the thermodynamic and dynamic state of the intra cluster medium (ICM). We analysed deep observations for a sample of 33 clusters with more than 100 ks of Chandra exposure each at distances between redshift 0.025 and 0.45. The combined exposure of the sample is 8 Ms. Fitting emission models to different regions of the extended X-ray emission we searched for perturbations in density, temperature, pressure, and entropy of the hot plasma. For individual clusters we mapped the thermodynamic properties of the ICM and measured their spread in circular concentric annuli. Comparing the spread of different gas quantities to high-resolution 3D hydrodynamic simulations, we constrain the average Mach number regime of the sample to Mach1D ~ 0.16 +- 0.07. In addition we found a tight correlation between metallicity, temperature and redshift with an average metallicity of Z ~ 0.3 +- 0.1 Z(solar). This study provides detailed perturbation measurements for a large sample of clusters which can be used to study turbulence and make predictions for future X-ray observatories like eROSITA, Astro-H, and Athena.
We explore the relationship between the spectral shape of the Ly{\alpha} emission and the UV morphology of the host galaxy using a sample of 304 Ly{\alpha}-emitting BV i-dropouts at 3 < z < 7 in the GOODS and COSMOS fields. Using our extensive reservoir of high-quality Keck DEIMOS spectra combined with HST WFC3 data, we measure the Ly{\alpha} line asymmetries for individual galaxies and compare them to axial ratios measured from observed J- and H-band (restframe UV) images. We find that the Ly{\alpha} skewness exhibits a large scatter at small elongation (a/b < 2), and this scatter decreases as axial ratio increases. Comparison of this trend to radiative transfer models and various results from literature suggests that these high-redshift Ly{\alpha} emitters are not likely to be intrinsically round and symmetric disks, but they probably host galactic outflows traced by Ly{\alpha} emitting clouds. The ionizing sources are centrally located, with the optical depth a good indicator of the absorption and scattering events on the escape path of Ly{\alpha} photons from the source. Our results find no evidence for evolution in Ly{\alpha} asymmetry or axial ratio with look-back time.
Many features of the outer solar system are replicated in numerical simulations if the giant planets undergo an orbital instability that ejects one or more ice giants. During this instability, Jupiter and Saturn's orbits diverge, crossing their 2:1 mean motion resonance (MMR), and this resonance-crossing can excite the terrestrial planet orbits. Using a large ensemble of simulations of this giant planet instability, we directly model the evolution of the terrestrial planet orbits during this process, paying special attention to systems that reproduce the basic features of the outer planets. In systems that retain four giant planets and finish with Jupiter and Saturn beyond their 2:1 MMR, we find at least an 85% probability that at least one terrestrial planet is lost. Moreover, systems that manage to retain all four terrestrial planets often finish with terrestrial planet eccentricities and inclinations larger than the observed ones. There is less than a ~5% chance that the terrestrial planet orbits will have a level of excitation comparable to the observed orbits. If we factor in the probability that the outer planetary orbits are well-replicated, we find a probability of 1% or less that the orbital architectures of the inner and outer planets are simultaneously reproduced in the same system. These small probabilities raise the prospect that the giant planet instability occurred before the terrestrial planets had formed. This scenario implies that the giant planet instability is not the source of the Late Heavy Bombardment and that terrestrial planet formation finished with the giant planets in their modern configuration.
An understanding of the mass build-up in galaxies over time necessitates tracing the evolution of cold gas (molecular and atomic) in galaxies. To that end, we have conducted a pilot study called CO Observations with the LMT of the Blind Ultra-Deep H I Environment Survey (COOL BUDHIES). We have observed 23 galaxies in and around the two clusters Abell 2192 (z = 0.188) and Abell 963 (z = 0.206), where 12 are cluster members and 11 are slightly in the foreground or background, using about 28 total hours on the Redshift Search Receiver (RSR) on the Large Millimeter Telescope (LMT) to measure the $^{12}$CO J = 1 --> 0 emission line and obtain molecular gas masses. These new observations provide a unique opportunity to probe both the molecular and atomic components of galaxies as a function of environment beyond the local Universe. For our sample of 23 galaxies, nine have reliable detections (S/N$\geq$3.6) of the $^{12}$CO line, and another six have marginal detections (2.0 < S/N < 3.6). For the remaining eight targets we can place upper limits on molecular gas masses roughly between $10^9$ and $10^{10} M_\odot$. Comparing our results to other studies of molecular gas, we find that our sample is significantly more abundant in molecular gas overall, when compared to the stellar and the atomic gas component, and our median molecular gas fraction lies about $1\sigma$ above the upper limits of proposed redshift evolution in earlier studies. We discuss possible reasons for this discrepancy, with the most likely conclusion being target selection and Eddington bias.
In recent years there have been many attempts to characterize the occurrence of stellar, BD and planetary-mass companions to solar-type stars, with the aim of constraining formation mechanisms. From RV observations a dearth of companions with masses between 10-40 MJup has been noticed at close separations, suggesting the possibility of a distinct formation mechanism for objects above and below this range. We present a model for the substellar companion mass function (CMF). It consists of the superposition of the planet and BD companion mass distributions, assuming that we can extrapolate the RV measured companion mass function for planets to larger separations and the stellar companion mass-ratio distribution over all separations into the BD mass regime. By using both the results of the VLT/NaCo large program and the complementary archive datasets that probe the occurrence of planets and BDs on wide orbits around solar-type stars, we place some constraints on the planet and BD distributions. We developed a MC simulation tool to predict the outcome of a given survey, depending on the shape of the orbital parameter distributions. Comparing the predictions with the results of the observations, we calculate how likely different models are and which can be ruled out. Current observations are consistent with the proposed model for the CMF, as long as a sufficiently small outer truncation radius is introduced for the planet separation distribution. The results of the direct imaging surveys searching for substellar companions around Sun-like stars are consistent with a combined substellar mass spectrum of planets and BDs. This mass distribution has a minimum between 10 and 50 MJup, in agreement with RV measurements. The dearth of objects in this mass range would naturally arise from the shape of the mass distribution, without the introduction of any distinct formation mechanism for BDs.
Observations of luminous flares resulting from the possible tidal disruption of stars by supermassive black holes have raised a number of puzzles. Outstanding questions include the origin of the optical and ultraviolet (UV) flux, the weakness of hydrogen lines in the spectrum, and the occasional simultaneous observation of x-rays. Here we study the emission from tidal disruption events (TDEs) produced as radiation from black hole accretion propagates through an extended, optically thick envelope formed from stellar debris. We analytically describe key physics controlling spectrum formation, and present detailed radiative transfer calculations that model the spectral energy distribution (SED) and optical line strengths of TDEs near peak brightness. The steady-state transfer is coupled to a non local thermodynamic equilibrium treatment of the excitation and ionization states of hydrogen, helium and oxygen (as a representative metal). Our calculations show how an extended envelope can reprocess a fraction of soft x-rays and produce the observed optical fluxes of order 10^43 ergs per second. Variations in the mass or size of the envelope may help explain how the optical flux changes over time with roughly constant color. For high enough accretion luminosities, x-rays can highly ionize the reprocessing region and escape to be observed simultaneously with the optical flux, producing an SED not described by a single blackbody. Due to optical depth effects, hydrogen Balmer line emission is often strongly suppressed relative to helium line emission (with HeII-to-H line ratios of at least 5:1 in some cases) even in the disruption of a solar-composition star. We discuss the implications of our results to understanding the type of stars destroyed in TDEs and the physical processes responsible for producing the observed flares.
Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS) we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l~-27 deg and recently tentatively classified as classical Cepheids belonging to a, hence claimed, dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all and the third one with a period of 5.695 d and a nearly sinusoidal light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the Ks-band light curve of the fourth star indicate that very likely none of them is a Cepheid and, thus, there is no evidence for a background dwarf galaxy. Our observations show that a great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light curves, especially with a small number of measurements. We also provide a sample of high-amplitude spotted stars with periods of a few days that can mimick pulsations and even eclipses.
The role of gravitational instability-driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feedback can explain galaxy properties, remains an open question. To address it, we present high resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation, but no form of star formation feedback. After an initial transient, our galaxies reach a state of fully-nonlinear gravitational instability. In this state, gravity drives turbulence and radial inflow. Despite the lack of feedback, the gas in our galaxy models shows substantial turbulent velocity dispersions, indicating that gravitational instability alone may be able to power the velocity dispersions observed in nearby disk galaxies on 100 pc scales. Moreover, the rate of mass transport produced by this turbulence approaches $\sim 1$ $M_\odot$ yr$^{-1}$ for Milky Way-like conditions, sufficient to fully fuel star formation in the inner disks of galaxies. In a companion paper we add feedback to our models, and use the comparison between the two cases to understand what galaxy properties depend sensitively on feedback, and which can be understood as the product of gravity alone. All of the code, initial conditions, and simulation data for our model are publicly available.
We analyse the environment of the supermassive black hole (SMBH) in the centre of a massive elliptical galaxy NGC 1275 in the Perseus cluster, hosting the radio source 3C 84. We focus on the young radio lobe observed inside the estimated Bondi accretion radius. We discuss the momentum balance between the jet associated with the lobe and the surrounding gas. The results are compared with the proper motion of the radio lobe obtained with the VLBI. We find that under assumption of a high-density environment >~ 100 cm^-3), the jet power must be comparable to the Eddington luminosity --- this is clearly inconsistent with the current moderate activity of 3C 84, which indicates instead that the jet is expanding in a very low density region (<~1 cm^-3), along the rotation axis of the accretion flow. The power required for the jet to expand in the low-density environment is comparable to the past average jet power estimated from the X-ray observations. We estimate the classical Bondi accretion rate, assuming that (1) gas accretion is spherically symmetric, (2) accretion is associated with the jet environment, and (3) the medium surrounding the jet is representative of the properties of the dominant accreting gas. We find that Bondi accretion is inconsistent with the estimated jet power. This means that either accretion of the cold gas in the NGC 1275 is more efficient than that of the hot gas, or the jets are powered by the SMBH spin.
The most frequently proposed model for the origin of quasars holds that the high accretion rates seen in luminous active galactic nuclei are primarily triggered during major mergers between gas-rich galaxies. While plausible for decades, this model has only begun to be tested with statistical rigor in the past few years. Here we report on a Hubble Space Telescope study to test the merger-triggering hypothesis for $z=2$ quasars with high super-massive black hole masses ($M_\mathrm{BH}=10^9-10^{10}~M_\odot{}$), which dominate cosmic black hole growth at this redshift. We compare Wide Field Camera 3 $F160W$ (rest-frame $V$-band) imaging of 19 point source-subtracted quasar hosts to a matched sample of 84 inactive galaxies, testing whether the quasar hosts have a statistically higher fraction of strong gravitational interaction signatures. We recover strong distortion fractions of $f_\mathrm{m,qso}=0.39\pm{}0.11$ for the quasar hosts and $f_\mathrm{m,gal}=0.30\pm{}0.05$ for the inactive galaxies (distribution modes, 68\% confidence intervals), with both measurements subjected to the same observational conditions and limitations. We definitively rule out both extreme cases (all mergers, no mergers) for the quasar host population. The slight observed enhancement in merger signatures for quasar hosts over inactive galaxies is not statistically significant, with a probability that the quasar fraction is higher of $P(f_\mathrm{m,qso}>f_\mathrm{m,gal}) = 0.78$ ($0.78\,\sigma$), in line with results for lower mass and lower $z$ AGN. We thus find no evidence that major mergers are the primary triggering mechanism for the massive active galactic nuclei that dominate accretion at the peak of cosmic quasar activity.
We present an analysis of the predictions made by the Galform semi-analytic galaxy formation model for the evolution of the relationship between stellar mass and halo mass. We show that for the standard implementations of supernova feedback and gas reincorporation used in semi-analytic models, this relationship is predicted to evolve weakly over the redshift range 0<z<4. Modest evolution in the median stellar mass versus halo mass (SHM) relationship implicitly requires that, at fixed halo mass, the efficiency of stellar mass assembly must be almost constant with cosmic time. We show that in our model, this behaviour can be understood in simple terms as a result of a constant efficiency of gas reincorporation, and an efficiency of SNe feedback that is, on average, constant at fixed halo mass. We present a simple explanation of how feedback from active galactic nuclei (AGN) acts in our model to introduce a break in the SHM relation whose location is predicted to evolve only modestly. Finally, we show that if modifications are introduced into the model such that, for example, the gas reincorporation efficiency is no longer constant, the median SHM relation is predicted to evolve significantly over 0<z<4. Specifically, we consider modifications that allow the model to better reproduce either the evolution of the stellar mass function or the evolution of average star formation rates inferred from observations.
We present first results from a targeted search for brown dwarfs with unusual red colors indicative of peculiar atmospheric characteristics. These include objects with low surface gravities or with unusual dust content or cloud properties. From a positional cross-match of SDSS, 2MASS and WISE, we have identified 40 candidate peculiar early L to early T dwarfs that are either new objects or have not been identified as peculiar through prior spectroscopy. Using low resolution spectra, we confirm that 10 of the candidates are either peculiar or potential L/T binaries. With a J-Ks color of 2.62 +/- 0.15 mag, one of the new objects --- the L7 dwarf 2MASS J11193254-1137466 --- is among the reddest field dwarfs currently known. Its proper motion and photometric parallax indicate that it is a possible member of the TW Hydrae moving group. If confirmed, it would its lowest-mass (5--6 MJup) free-floating member. We also report a new T dwarf, 2MASS J22153705+2110554, that was previously overlooked in the SDSS footprint. These new discoveries demonstrate that despite the considerable scrutiny already devoted to the SDSS and 2MASS surveys, our exploration of these data sets is not yet complete.
In the last few years, it became possible to observationally resolve galaxies with two distinct nuclei in their centre. For separations smaller than 10kpc, dual and offset active galactic nuclei (AGN) are distinguished: in dual AGN, both nuclei are active, whereas in offset AGN only one nucleus is active. To theoretically study the origin of such AGN pairs, we employ a cosmological, hydrodynamic simulation with a large volume of (182 Mpc)^3 from the set of Magneticum Pathfinder Simulations. The simulation self-consistently produces 35 resolved black hole (BH) pairs at redshift z=2, with a comoving distance smaller than 10kpc. 14 of them are offset AGN and nine are dual AGN, resulting in a fraction of (1.2 \pm 0.3)% AGN pairs with respect to the total number of AGN. In this paper, we discuss fundamental differences between the BH and galaxy properties of dual AGN, offset AGN and inactive BH pairs and investigate their different triggering mechanisms. We find that in dual AGN, the corresponding BH from the less massive progenitor galaxy always accretes with a higher Eddington ratio and that dual AGN have similar BH masses. In contrast, in offset AGN, the active BH is typically more massive than its non-active counterpart. Furthermore, dual AGN in general accrete more gas from the intergalactic medium than offset AGN and non-active BH pairs. This highlights that merger events, particularly minor mergers, do not necessarily lead to strong gas inflows and thus, do not always drive strong nuclear activity.
Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent measurements of the dynamical masses $M_{\rm bh}$ of supermassive black holes in specific galaxies at known distances and leverage this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of $M_{\rm bh}$ in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves can already constrain the mass ratios of hypothetical black hole binaries in a dozen galaxies in our samples. The constraints are stronger for galaxies with larger $M_{\rm bh}$ and at smaller distances. For the black holes with $M_{\rm bh} \gtrsim 5\times 10^9 M_\odot$ at the centers of NGC 4889, NGC 4486 (M87) and NGC 4649 (M60), any binary companion in orbit within the PTA frequency bands would have to have a mass ratio of less than about 1:10.
Most star clusters at an intermediate age (1-2 Gyr) in the Large and Small Magellanic Clouds show a puzzling feature in their color-magnitude diagrams (CMD) that is not in agreement with a simple stellar population. The main sequence turn-off of these clusters is much broader than would be expected from photometric uncertainties. One interpretation of this feature is that age spreads of the order 200-500 Myr exist within individual clusters, although this interpretation is highly debated. Such large age spreads should affect other parts of the CMD, which are sensitive to age, as well. In this study, we analyze the CMDs of a sample of 12 intermediate-age clusters in the Large Magellanic Cloud that all show an extended turn-off using archival optical data taken with the Hubble Space Telescope. We fit the star formation history of the turn-off region and the red clump region independently with two different theoretical isochrone models. We find that in most of the cases, the age spreads inferred from the red clumps are smaller than the ones resulting from the turn-off region. However, the age ranges resulting from the red clump region are broader than would be expected for a single age. Only two out of 12 clusters in our sample show a red clump which seems to be consistent with a single age. As our results are not unambiguous, we can not ultimately tell if the extended main sequence turn-off feature is due to an age spread, or not, by fitting the star formation histories to the red clump regions. However, we find that the width of the extended main sequence turn-off feature is correlated with the age of the clusters in a way which would be unexplained in the "age spread" interpretation, but which may be expected if stellar rotation is the cause of the spread at the turn-off.
Sub-virial gravitational collapse is one mechanism by which star clusters may form. Here we investigate whether this mechanism can be inferred from observations of young clusters. To address this question, we have computed SPH simulations of the initial formation and evolution of a dynamically young star cluster through cold (sub-virial) collapse, starting with an ellipsoidal, turbulently seeded distribution of gas, and forming sink particles representing (proto)stars. While the initial density distributions of the clouds do not have large initial mass concentrations, gravitational focusing due to the global morphology leads to cluster formation. We use the resulting structures to extract observable morphological and kinematic signatures for the case of sub-virial collapse. We find that the signatures of the initial conditions can be erased rapidly as the gas and stars collapse, suggesting that kinematic observations need to be made either early in cluster formation and/or at larger scales, away from the growing cluster core. Our results emphasize that a dynamically young system is inherently evolving on short timescales, so that it can be highly misleading to use current-epoch conditions to study aspects such as star formation rates as a function of local density. Our simulations serve as a starting point for further studies of collapse including other factors such as magnetic fields and stellar feedback.
Quantifying the concordance between different cosmological experiments is important for testing the validity of theoretical models and systematics in the observations. In earlier work, we thus proposed the Surprise, a concordance measure derived from the relative entropy between posterior distributions. We revisit the properties of the Surprise and describe how it provides a general, versatile, and robust measure for the agreement between datasets. We also compare it to other measures of concordance that have been proposed for cosmology. As an application, we extend our earlier analysis and use the Surprise to quantify the agreement between WMAP 9, Planck 13 and Planck 15 constraints on the $\Lambda$CDM model. Using a principle component analysis in parameter space, we find that the large Surprise between WMAP 9 and Planck 13 (S = 17.6 bits, implying a deviation from consistency at 99.8% confidence) is due to a shift along a direction that is dominated by the amplitude of the power spectrum. The Surprise disappears when moving to Planck 15 (S = -5.1 bits). This means that, unlike Planck 13, Planck 15 is not in tension with WMAP 9. These results illustrate the advantages of the relative entropy and the Surprise for quantifying the disagreement between cosmological experiments and more generally as an information metric for cosmology.
Recent discoveries of circumbinary planets in Kepler data show that there is a viable channel of planet formation around binary main sequence stars. Motivated by these discoveries, we have investigated the caustic structures and detectability of circumbinary planets in microlensing events. We have produced a suite of animations of caustics as a function of the projected separation and angle of the binary host to efficiently explore caustic structures over the entire circumbinary parameter space. Aided by these animations, we have derived a semi-empirical analytic expression for the location of planetary caustics, which are displaced in circumbinary lenses relative to those of planets with a single host. We have used this expression to show that the dominant source of caustic motion will be due to the planet's orbital motion and not that of the binary star. Finally, we estimate the fraction of circumbinary microlensing events that are recognizable as such to be significant (5-50 percent) for binary projected separations in the range 0.1-0.5 in units of Einstein radii.
We present Ks-band light curves for 299 new Cepheids in the Small Magellanic Cloud (SMC) that were identified using multi-epoch near-infrared photometry obtained by the VISTA survey of the Magellanic Clouds system (VMC). The new Cepheids have periods in the range from 0.38 to 13.15 days and cover the magnitude interval 12.35 < Ks < 17.6 mag. Our method was developed using variable stars previously identified by the optical microlensing survey OGLE. We focus on searching new Cepheids in external regions of the SMC for which complete VMC Ks-band observations are available and no comprehensive identification of different types of variable stars from other surveys exists yet.
We explore a time-dependent energy dissipation of the energetic electrons in the inhomogeneous intergalactic medium (IGM) during the epoch of cosmic reionization. In addition to the atomic processes we take into account the Inverse Compton (IC) scattering of the electrons on the comic microwave background (CMB) photons, which is the dominant channel of energy loss for the electrons with energies above a few MeV. We show that: (1) the effect on the IGM has both local (atomic processes) and non-local (IC radiation) components; (2) the energy distribution between Hydrogen and Helium ionizations depends on the initial electron energy; (3) the local baryon overdensity significantly affects the fractions of energy distributed in each channel; and (4) the relativistic effect of atomic cross section become important during the epoch of cosmic reionization. We release our code as open source for further modification by the community.
We analyze the resolved stellar populations of the faint stellar system, Crater, based on deep optical imaging taken with the Hubble Space Telescope. The HST/ACS-based color-magnitude diagram (CMD) of Crater extends $\sim$4 magnitudes below the oldest main sequence turnoff, providing excellent leverage on Crater's physical properties. Structurally, Crater has a half-light radius of $\sim$20 pc and shows no evidence for tidal distortions. Crater is well-described by a simple stellar population with an age of $\sim$7.5 Gyr, [M/H]$\sim-1.65$, a M$_{\star}\sim10^4$ M$_{\odot}$, M$_{\rm V}\sim -5.3$, located at a distance of (d$_{\odot}$, d$_{\rm GC}$) $\sim$ (145, 110) kpc, with modest uncertainties in these properties due to differences in the underlying stellar evolution models. The sparse sampling of stars above the turnoff and sub-giant branch are likely to be 1.0-1.4 M$_{\odot}$ binary star systems (blue stragglers) and their evolved descendants, as opposed to intermediate age main sequence stars. Confusion of these populations highlights a substantial challenge in accurately characterizing sparsely populated stellar systems. Our analysis shows that Crater is not a dwarf galaxy, but instead is an unusually young cluster given its location in the Milky Way's very outer stellar halo. Crater is similar to SMC cluster Lindsay 38, and its position and velocity are in good agreement with observations and models of the Magellanic stream debris, suggesting it may have accreted from the Magellanic Clouds. However, its age and metallicity are also in agreement with the age-metallicity relationships of lower mass dwarf galaxies such as Leo I or Carina. Despite uncertainty over its progenitor system, Crater appears to have been incorporated into the Galaxy more recently than $z\sim1$ (8 Gyr ago), providing an important new constraint on the accretion history of the Milky Way. [abridged]
The study of supernova remnants (SNRs) is fundamental to understanding the chemical enrichment and magnetism in galaxies, including our own Milky Way. In an effort to understand the connection between the morphology of SNRs and the Galactic magnetic field (GMF), we have examined the radio images of all known SNRs in our Galaxy and compiled a large sample that have an "axisymmetric" morphology, which we define to mean SNRs with a "bilateral" or "barrel"-shaped morphology, in addition to one-sided shells. We selected the cleanest examples and model each of these at their appropriate Galactic position using two GMF models, those of Jansson & Farrar (2012a), which includes a vertical halo component, and Sun et al. (2008) that is oriented entirely parallel to the plane. Since the magnitude and relative orientation of the magnetic field changes with distance from the sun, we analyse a range of distances, from 0.5 to 10 kpc in each case. Using a physically motivated model of a SNR expanding into the ambient GMF, we find the models using Jansson & Farrar (2012a) are able to reproduce observed morphologies of many SNRs in our sample. These results strongly support the presence of an off-plane, vertical component to the GMF, and the importance of the Galactic field on SNR morphology. Our approach also provides a potential new method for determining distances to SNRs, or conversely, distances to features in the large-scale GMF if SNR distances are known.
I address uncertainties on the spatial distribution and mass of the dust formed in $\eta$ Carinae's Homunculus nebula with data being combined from several space- and ground-based facilities spanning near-infrared to sub-mm wavelengths, in terms of observational constraints and modeling. Until these aspects are better understood, the mass loss history and mechanisms responsible for $\eta$ Car's enormous eruption(s) remain poorly constrained.
We report a spin-orbit misalignment for the hot-Jupiter HATS-14b, measuring a projected orbital obliquity of |lambda|= 76 -5/+4 deg. HATS-14b orbits a high metallicity, 5400 K G dwarf in a relatively short period orbit of 2.8 days. This obliquity was measured via the Rossiter-McLaughlin effect, obtained with observations from Keck-HIRES. The velocities were extracted using a novel technique, optimised for low signal-to-noise spectra, achieving a high precision of 4 m/s point-to-point scatter. However, we caution that our uncertainties may be underestimated. Due to the low rotational velocity of the star, the detection significance is dependent on the vsini prior that is imposed in our modelling. Based on trends observed in the sample of hot Jupiters with obliquity measurements, it has been suggested that these planets modify the spin axes of their host stars, with an efficiency that depends on the stellar type and orbital period of the system. In this framework, short-period planets around stars with surface convective envelopes, like HATS-14b, are expected to have orbits that are aligned with the spin axes of their host stars. HATS-14b, however, is a significant outlier from this trend, challenging the effectiveness of the tidal realignment mechanism.
The collapse of the primordial gas in the density regime $\sim 10^{8}\hbox{--}10^{10}$ cm$^{-3}$ is controlled by the three-body $\rm H_2$ formation process, in which the gas can cool faster than free-fall time $\hbox{--}$ a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop~III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihaloes. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating ($pdV$). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because $\rm H_2$ cooling, the heating due to $\rm H_2$ formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.
Ultra luminous X-ray sources (ULXs) are usually believed to be black holes with mass about 10^{2--3}M_{sun}. However, the recent discovery of ULX NuSTAR J095551+6940.8 in M82 with the spin period P=1.37s and period derivation P_{dot}=-2*10^{-10} ss^{-1} provides a strong evidence that some ULXs are accreting neutron stars (NSs). To investigate such a particular accreting neutron star, we ascribe it as an evolved magnetar in the accretion binary system. By means of the model of accretion induced the NS magnetic evolution and standard spinup torque, we calculate the magnetic field decay and spin-up of M82 X-2, and show that its magnetic field is now 4.5*10^{12} G, which is evolved from a magnetar in a high mass Xray binary system (HMXB) with the initial values of magnetic field B~10^{14.5} G and spin period P~100 s by accreting ~10^{-3}M_{sun}, while the mass accretion rate for spin-up is set as 5.0*10^{18} gs^{-1}. The evolutionary track of magnetic field and spin period of M82 X-2 is simulated and plotted in the B-P diagram, with which we compare the observed pulsars, and find that several pulsars are consistent with the B-P track of M82 X-2. Since the birth rate of magnetar is about ten percent of the normal NSs, it is inferred that a couple of ULXs should also be the similar cases like M82 X-2. Furthermore, we argue that the existence of the local super-strong magnetic multipole structure of M82 X-2 destroys the spherical accretion condition of Eddington critical luminosity, which arises the ULX M82 X-2 to be different from the usual NS in HMXBs with the luminosity no more than the Eddington limit ......
Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss, and constitute an interesting class of objects. The origin of the magnetic field is still the subject of a hot debate. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of the progenitor of white dwarfs, or on the contrary, are the result of binary interactions or, finally, other physical mechanisms that could produce such large magnetic fields during the evolution of the white dwarf itself, remains to be elucidated. In this work we review the current status and paradigms of magnetic fields in white dwarfs, from both the theoretical and observational points of view.
Asteroseismology allows for deriving precise values of surface gravity of stars. The accurate asteroseismic determinations now available for large number of stars in the Kepler fields can be used to check and calibrate surface gravities that are currently being obtained spectroscopically for a huge numbers of stars targeted by large-scale spectroscopic surveys, such as the on-going Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Galactic survey. The LAMOST spectral surveys have obtained a large number of stellar spectra in the Kepler fields. Stellar atmospheric parameters of those stars have been determined with the LAMOST Stellar Parameter Pipeline at Peking University (LSP3), by template matching with the MILES empirical spectral library. In the current work, we compare surface gravities yielded by LSP3 with those of two asteroseismic samples - the largest sample from Huber et al. (2014) and the most accurate sample from Hekker et al. (2012, 2013). We find that LSP3 surface gravities are in good agreement with asteroseismic values of Hekker et al. (2012, 2013), with a dispersion of about 0.2 dex. Except for a few cases, asteroseismic surface gravities of Huber et al. (2014) and LSP3 spectroscopic values agree for a wide range of surface gravities. However, some patterns of differences can be identified upon close inspection. Potential ways to further improve the LSP3 spectroscopic estimation of stellar atmospheric parameters in the near future are briefly discussed. The effects of effective temperature and metallicity on asteroseismic determinations of surface gravities for giant stars are also discussed.
Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon molecular cloud chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modeling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarised as follows: 1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; 2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about ten; 3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviors too. These effects usually begin to emerge from a typical DC model age of about 10^5 yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations onto positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.
The increasing number of Very High Energy (VHE) sources discovered by the current generation of Cherenkov telescopes made particularly relevant the creation of a dedicated source catalogs as well as the cross-correlation of VHE and lower energy bands data in a multi-wavelength framework. The "TeGeV Catalog" hosted at the ASI Science Data Center (ASDC) is a catalog of VHE sources detected by ground-based Cherenkov detectors. The TeGeVcat collects all the relevant information publicly available about the observed GeV/TeV sources. The catalog contains also information about public light curves while the available spectral data are included in the ASDC SED Builder tool directly accessible from the TeGeV catalog web page. In this contribution we will report a comprehensive description of the catalog and the related tools.
We have used the Arecibo L-band Feed Array to map three regions, each of 5 square degrees, around the isolated galaxies NGC 1156, UGC 2082, and NGC 5523. In the vicinity of these galaxies we have detected two dwarf companions: one near UGC 2082, previously discovered by ALFALFA, and one near NGC 1156, discovered by this project and reported in an earlier paper. This is significantly fewer than the 15.4 $^{+1.7}_{-1.5}$ that would be expected from the field HI mass function from ALFALFA or the 8.9 $\pm$ 1.2 expected if the HI mass function from the Local Group applied in these regions. The number of dwarf companions detected is, however, consistent with a flat or declining HI mass function as seen by a previous, shallower, HI search for companions to isolated galaxies.We attribute this difference in Hi mass functions to the different environments in which they are measured. This agrees with the general observation that lower ratios of dwarf to giant galaxies are found in lower density environments.
Recently, we have shown that the propagation speed $c_T$ of the primordial gravitational waves (GWs) might be nontrivially varying during inflation, which could induce local oscillations in the power spectrum of primordial GWs. In this paper, we numerically confirm that, although with a disformal redefinition of the metric the nontrivial $c_T$ may be set as unity, the power spectrum in the frame with $c_T=1$ is completely same with that in the original disformal frame, i.e., the oscillating shape in the power spectrum is still reserved, since here the effect of $c_T$ is actually encoded in the nontrivially varying Hubble parameter. In addition, we also clarify how obtaining a blue-tilt GWs spectrum by imposing a rapidly decreasing $c_T$ during inflation.
Recent atomic physics calculations for Si II are employed within the Cloudy modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, Beta-Geminorum, Alpha-Centauri A and B, as well as previously published HST/GHRS observations of Alpha-Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s$^{2}$3p $^{2}$P$_{J}$--3s3p$^{2}$ $^{4}$P$_{J^{\prime}}$ intercombination multiplet of Si II at 2335 Angs are significantly reduced, as are those for ratios containing the 3s$^{2}$3p $^{2}$P$_{J}$--3s3p$^{2}$ $^{2}$D$_{J^{\prime}}$ transitions at 1816 Angs. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et. al. (1993) for the intercombination lines. New measurements of transition probabilities for Si II are hence urgently required to confirm (or otherwise) the accuracy of the recently calculated values. If the new calculations are confirmed, then a long-standing discrepancy between theory and observation will have finally been resolved. However, if the older measurements are found to be correct, then the agreement between theory and observation is simply a coincidence and the existing discrepancies remain.
We aim to study the influence of radiative cooling on the standing kink oscillations of a coronal loop. Using the FLASH code, we solved the 3D ideal magnetohydrodynamic equations. Our model consists of a straight, density enhanced and gravitationally stratified magnetic flux tube. We perturbed the system initially, leading to a transverse oscillation of the structure, and followed its evolution for a number of periods. A realistic radiative cooling is implemented. Results are compared to available analytical theory. We find that in the linear regime (i.e. low amplitude perturbation and slow cooling) the obtained period and damping time are in good agreement with theory. The cooling leads to an amplification of the oscillation amplitude. However, the difference between the cooling and non-cooling cases is small (around 6% after 6 oscillations). In high amplitude runs with realistic cooling, instabilities deform the loop, leading to increased damping. In this case, the difference between cooling and non-cooling is still negligible at around 12%. A set of simulations with higher density loops are also performed, to explore what happens when the cooling takes place in a very short time (tcool = 100 s). We strengthen the results of previous analytical studies that state that the amplification due to cooling is ineffective, and its influence on the oscillation characteristics is small, at least for the cases shown here. Furthermore, the presence of a relatively strong damping in the high amplitude runs even in the fast cooling case indicates that it is unlikely that cooling could alone account for the observed, flare-related undamped oscillations of coronal loops. These results may be significant in the field of coronal seismology, allowing its application to coronal loop oscillations with observed fading-out or cooling behaviour.
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations of cosmic reionization from the Cosmic Reionization On Computers (CROC) project. We find that the mean signal varies between about $\pm20\rm{mK}$. Most significantly, we find that the negative pre-reionization dip at $z\sim10-15$ only extends to $\langle\Delta T_B\rangle\sim-20\rm{mK}$, in agreement with prior simulation results and in significant contrast to Pritchard & Loeb analytical model, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE). We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be mis-estimated by 25-50\% at scales $k\sim 0.1-1h\rm{Mpc}^{-1}$. This scale range is of a particular interest, because the upcoming 21 cm experiments (MWA, PAPER, HERA) are expected to be most sensitive within it.
The simplest two-field completion of natural inflation has a regime in which both fields are active and in which its predictions are within the Planck 1-$\sigma$ confidence contour. We show this for the original model of natural inflation, in which inflation is achieved through the explicit breaking of a U(1) symmetry. We consider the case in which the mass coming from explicit breaking of this symmetry is comparable to that from spontaneous breaking, which we show is consistent with a hierarchy between the corresponding energy scales. While both masses are comparable when the observable modes left the horizon, the mass hierarchy is restored in the last e-foldings of inflation, rendering the predictions consistent with the isocurvature bounds. For completeness, we also study the predictions for the case in which there is a large hierarchy of masses and an initial period of inflation driven by the (heavy) radial field.
In recent years several small basaltic V-type asteroids have been identified all around the main belt. Most of them are members of the Vesta dynamical family, but an increasingly large number appear to have no link with it. The question that arises is whether all these basaltic objects do indeed come from Vesta. To find the answer to the above questioning, we decided to perform a statistical analysis of the spectroscopic and mineralogical properties of a large sample of V-types, with the objective to highlight similarities and differences among them, and shed light on their unique, or not, origin. The analysis was performed using 190 visible and near-infrared spectra from the literature for 117 V-type asteroids. The asteroids were grouped according to their dynamical properties and their computed spectral parameters compared. Comparison was also performed with spectral parameters of a sample of HED meteorites and data of the surface of Vesta taken by the VIR instrument on board of the Dawn spacecraft. Our analysis shows that although most of the V-type asteroids in the inner main belt do have a surface composition compatible with an origin from Vesta, this seem not to be the case for V-types in the middle and outer main belt.
We show that the Cosmic Microwave Background can be used to measure our peculiar velocity in a novel way, by looking at Doppler-induced distortions of the intensity blackbody spectrum which couple different multipoles. The frequency dependence of such a signal is called y-type, and is degenerate with the thermal SZ (tSZ) effect. Interestingly, like the kinetic Doppler quadrupole, its measurement is not limited by cosmic variance of the temperature spectrum; instead it only depends on experimental noise and on the small contamination due to the tSZ effect. Already with Planck this method yields a signal-to-noise ratio of about 9, and future experiments can increase this to somewhere around 15-40, and in principle even further if tSZ effect can be subtracted using data from clusters. Such a signal is present at all multipoles, but mostly in ell <~ 400, providing thus an independent way to measure our velocity that might also clarify the mixing between Doppler and a possible anomalous intrinsic dipolar modulation of the CMB spectrum, which seems to be present in temperature data at large scales.
We extend a general maximum likelihood foreground estimation for cosmic microwave background polarization data to include estimation of instrumental systematic effects. We focus on two particular effects: frequency band measurement uncertainty, and instrumentally induced frequency dependent polarization rotation. We assess the bias induced on the estimation of the $B$-mode polarization signal by these two systematic effects in the presence of instrumental noise and uncertainties in the polarization and spectral index of Galactic dust. Degeneracies between uncertainties in the band and polarization angle calibration measurements and in the dust spectral index and polarization increase the uncertainty in the extracted CMB $B$-mode power, and may give rise to a biased estimate. We provide a quantitative assessment of the potential bias and increased uncertainty in an example experimental configuration. For example, we find that with 10\% polarized dust, tensor to scalar ratio of $r=0.05$, and the instrumental configuration of the EBEX balloon payload, the estimated CMB $B$-mode power spectrum is recovered without bias when the frequency band measurement has 5% uncertainty or less, and the polarization angle calibration has an uncertainty of up to 4$^{\circ}$.
We study the dynamics of radiation pressure supported tori around Schwarzschild black holes, focusing on their oscillatory response to an external perturbation. Using KORAL, a general relativistic radiation hydrodynamics code capable of modeling all radiative regimes from the optically thick to the optically thin, we monitor a sample of models at different initial temperatures and opacities, evolving them in two spatial dimensions for $\sim 165$ orbital periods. The dynamics of models with high opacity is very similar to that of purely hydrodynamics models, and it is characterized by regular oscillations which are visible also in the light curves. As the opacity is decreased, the tori quickly and violently migrate towards the gas-pressure dominated regime, collapsing towards the equatorial plane. When the spectra of the $L_2$ norm of the mass density are considered, high frequency inertial-acoustic modes of oscillations are detected (with the fundamental mode at a frequency $68 M_{\rm BH}^{-1}\,\rm Hz$), in close analogy to the phenomenology of purely hydrodynamic models. An additional mode of oscillation, at a frequency $129 M_{\rm BH}^{-1}\,\rm Hz$, is also found, which can be unambiguously attributed to the radiation. The spectra extracted from the light curves are typically more noisy, indicating that in a real observation such modes would not be easily detected.
Improvements in current instruments and the advent of next-generation instruments will soon push observational 21 cm cosmology into a new era, with high significance measurements of both the power spectrum and the mean ("global") signal of the 21 cm brightness temperature. In this paper we use the recently commenced Hydrogen Epoch of Reionization Array as a worked example to provide forecasts on astrophysical and cosmological parameter constraints. In doing so we improve upon previous forecasts in a number of ways. First, we provide updated forecasts using the latest best-fit cosmological parameters from the Planck satellite, exploring the impact of different Planck datasets on 21 cm experiments. We also show that despite the exquisite constraints that other probes have placed on cosmological parameters, the remaining uncertainties are still large enough to have a non-negligible impact on upcoming 21 cm data analyses. While this complicates high-precision constraints on reionization models, it provides an avenue for 21 cm reionization measurements to constrain cosmology. We additionally forecast HERA's ability to measure the ionization history using a combination of power spectrum measurements and semi-analytic simulations. Finally, we consider ways in which 21 cm global signal and power spectrum measurements can be combined, and propose a method by which power spectrum results can be used to train a compact parameterization of the global signal. This parameterization reduces the number of parameters needed to describe the global signal, increasing the likelihood of a high significance measurement.
With high resolution (0"25 x 0"18) ALMA CO 3-2 observations of the nearby
(D=21 Mpc), extremely radio quiet galaxy NGC1377, we have discovered a high
velocity, very collimated molecular jet with a projected length of $\pm$160 pc.
Along the jet axis we find strong velocity reversals swinging from -180 to +180
km/s. A simple model of a precessing molecular jet can reproduce the
observations. The launch region is inside a radius r<10 pc and the velocity of
the outflowing gas lies between 250 and 600 km/s. The CO emission is clumpy and
the jet molecular mass ranges between 2e6 Msun (light jet) and 2e7 Msun
(massive jet).
We suggest that the driving mechanism of the molecular jet is either a
(fading) radio jet or an accretion disk-wind similar to those found towards
protostars. It seems unlikely that a massive jet could have been driven out by
the current level of nuclear activity which should then have undergone rapid
quenching. In contrast, a light jet would have expelled only 10% of the nuclear
gas and may facilitate nuclear activity instead of suppressing it. The
precession can be powered by a binary supermassive black hole (SMBH) or by gas
of misaligned angular momentum flowing onto a warped accretion disk. Large
columns of H2 in the nucleus of NGC1377 suggest a high rate of recent gas
infall. The current IR emission of NGC1377 may be powered by a SMBH accreting
at a rate of about 10% Eddington. There is tentative evidence that the
molecular gas in the jet is decelerating and that the gas in the outflow
therefore can return and fuel future nuclear growth. Further studies are
required to determine the age and mass of the molecular jet and the role it
plays in the nuclear growth of NGC1377. There is also a broad, cone-like
structure of CO emission in NGC1377 which seems to be a slower, wide-angle
molecular outflow with an estimated molecular mass of approximately 1e8 Msun.
The coupling between spin and torsion in the Einstein-Cartan-Sciama-Kibble theory of gravity generates gravitational repulsion at very high densities, which prevents a singularity in a black hole and may create there a new universe. We show that quantum particle production in such a universe near the last bounce, which represents the Big Bang gives the dynamics that solves the horizon, flatness, and homogeneity problems in cosmology. For a particular range of the particle production coefficient, we obtain a nearly constant Hubble parameter that gives an exponential expansion of the universe with more than 60 $e$-folds, which lasts about $\sim 10^{-42}$ s. This scenario can thus explain cosmic inflation without requiring a fundamental scalar field and reheating. From the obtained time dependence of the scale factor, we follow the prescription of Ellis and Madsen to reconstruct in a non-parametric way a scalar field potential which gives the same dynamics of the early universe. This potential gives the slow-roll parameters of cosmic inflation, from which we calculate the tensor-to-scalar ratio, the scalar spectral index of density perturbations, and its running as functions of the production coefficient. We find that these quantities do not significantly depend on the scale factor at the Big Bounce. Our predictions for these quantities are consistent with the Planck 2015 observations.
In this paper we address the cosmic frequency of technological species. Recent advances in exoplanet studies provide strong constraints on all astrophysical terms in the Drake Equation. Using these and modifying the form and intent of the Drake equation we show that we can set a firm lower bound on the probability that one or more additional technological species have evolved anywhere and at any time in the history of the observable Universe. We find that as long as the probability that a habitable zone planet develops a technological species is larger than ~$10^{-24}$, then humanity is not the only time technological intelligence has evolved. This constraint has important scientific and philosophical consequences.
We present the discovery of HAT-P-57b, a P = 2.4653 day transiting planet around a V = 10.465 +- 0.029 mag, Teff = 7500 +- 250 K main sequence A8V star with a projected rotation velocity of v sin i = 102.1 +- 1.3 km s^-1. We measure the radius of the planet to be R = 1.413 +- 0.054 R_J and, based on RV observations, place a 95% confidence upper limit on its mass of M < 1.85 M_J . Based on theoretical stellar evolution models, the host star has a mass and radius of 1.47 +- 0.12 M_sun, and 1.500 +- 0.050 R_sun, respectively. Spectroscopic observations made with Keck-I/HIRES during a partial transit event show the Doppler shadow of HAT-P-57b moving across the average spectral line profile of HAT-P- 57, confirming the object as a planetary system. We use these observations, together with analytic formulae that we derive for the line profile distortions, to determine the projected angle between the spin axis of HAT-P-57 and the orbital axis of HAT-P-57b. The data permit two possible solutions, with -16.7 deg < lambda < 3.3 deg or 27.6 deg < lambda < 57.4 deg at 95% confidence, and with relative probabilities for the two modes of 26% and 74%, respectively. Adaptive optics imaging with MMT/Clio2 reveals an object located 2.7" from HAT-P-57 consisting of two point sources separated in turn from each other by 0.22". The H and L -band magnitudes of the companion stars are consistent with their being physically associated with HAT-P-57, in which case they are stars of mass 0.61 +- 0.10 M_sun and 0.53 +- 0.08 M_sun. HAT-P-57 is the most rapidly rotating star, and only the fourth main sequence A star, known to host a transiting planet.
We investigate the impact of modified theories of gravity on the kinetic Sunyaev-Zeldovich (kSZ) effect of the cosmic microwave background. We focus on a specific class of $f(R)$ models of gravity and compare their predictions for the kSZ power spectrum to that of the $\Lambda$CDM model. We use a publicly available modified version of Halofit to properly include the nonlinear matter power spectrum of $f(R)$ in the modeling of the kSZ signal. We find that the well known modifications of the growth rate of structure in $f(R)$ can indeed induce sizable changes in the kSZ signal, which are more significant than the changes induced by modifications of the expansion history. We discuss prospects of using the kSZ signal as a complementary probe of modified gravity, giving an overview of assumptions and possible caveats in the modeling.
We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is $3\%$ - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretion rates, and returned to the interstellar medium. Accretion on to rotating black holes is more efficient because of the additional extraction of rotational energy. However, the jet component is collimated and likely to interact only weakly with the environment, whereas the outflow and radiation components cover a wide solid angle.
We investigate the backreaction of the Affleck-Dine leptogenesis to inflaton dynamics in the F-term hybrid and chaotic inflation models in supergravity. We determine the lightest neutrino mass in both models so that the predictions of spectral index, tensor-to-scalar ratio, and baryon abundance are consistent with observations.
Neutrino masses and light (keV-GeV) sterile neutrinos can arise naturally via a modified, low energy seesaw mechanism if the right-handed neutrinos are charged under a new symmetry broken by a PeV scale vacuum expectation value, presumably tied to supersymmetry breaking. The additional field content also allows for freeze-in production of sterile neutrino dark matter. This framework can accommodate the recently observed 3.5 keV X-ray line, while a straightforward extension of the framework, using the new symmetry and the PeV energy scale, can explain the PeV energy neutrino events at IceCube. Together, these can therefore be taken as hints of the existence of a PeV scale supersymmetric neutrino sector.
We study the preheating phase for multifield models of inflation involving nonminimal couplings. The strong single-field attractor behavior during inflation in these models generically persists after the end of inflation, thereby avoiding the "de-phasing" that is typical in multifield models with minimally coupled scalar fields. Hence we find efficient transfer of energy from the oscillating inflation field(s) to coupled fluctuations. We develop a doubly-covariant formalism for studying such resonances and identify several features of preheating specific to the nonminimal couplings, including effects that arise from the nontrivial field-space manifold. In particular, whereas long-wavelength fluctuations in both the adiabatic and isocurvature directions may be resonantly amplified for small or modest values of the dimensionless couplings, $\xi_I \leq 1$, we find suppression of the growth of long-wavelength isocurvature modes in the limit of strong coupling, $\xi_I \gg 1$.
The description of physical processes in accelerated frames opens a window to numerous new phenomena. One can encounter these effects both in the subatomic world and on a macroscale. In the present work we review our recent results on the study of the electroweak interaction of particles with an accelerated background matter. In our analysis we choose the noninertial comoving frame, where matter is at rest. Our study is based on the solution of the Dirac equation, which exactly takes into account both the interaction with matter and the nonintertial effects. First, we study the interaction of ultrarelativistic neutrinos, electrons and quarks with the rotating matter. We consider the influence of the matter rotation on the resonance in neutrino oscillations and the generation of anomalous electric current of charged particles along the rotation axis. Then, we study the creation of neutrino-antineutrino pairs in a linearly accelerated matter. The applications of the obtained results for elementary particle physics and astrophysics are discussed.
The laser-tracked geodetic satellites LAGEOS, LAGEOS II and LARES are currently employed, among other things, to measure the general relativistic Lense-Thirring effect in the gravitomagnetic field of the spinning Earth with the hope of providing a more accurate test of such a prediction of the Einstein's theory of gravitation than the existing ones. The secular decay $\dot a$ of the semimajor axes $a$ of such spacecrafts, recently measured in an independent way to a $\sigma_{\dot a}\approx 0.1-0.01$ m yr$^{-1}$ accuracy level, may indirectly impact the proposed relativistic experiment through its connection with the classical orbital precessions induced by the Earth's oblateness $J_2$. \textcolor{black}{Indeed,} the systematic bias due to the current measurement errors $\sigma_{\dot a}$ is of the same order of magnitude of, or even larger than, the expected relativistic signal itself; moreover, it grows linearly with the time span $T$ of the analysis. \textcolor{black}{Therefore, the parameter-fitting algorithms must be properly updated in order to suitably cope with such a new source of systematic uncertainty. Otherwise,} an improvement of one-two orders of magnitude in measuring the orbital decay of the satellites of the LAGEOS family would be required to reduce this source of systematic uncertainty to a percent fraction of the Lense-Thirring signature.
We propose a new type of axion inflation with complex structure moduli in the framework of type IIB superstring theory compactified on Calabi-Yau manifold. The inflaton is identified as the axion for the complex structure moduli whose potential is originating from instantonic corrections appearing through the period vector of mirror Calabi-Yau manifold. The axionic shift symmetry is broken down to the discrete one by the inclusion of instantonic correction and certain three-from fluxes. Our proposed inflation scenario is compatible with K\"ahler moduli stabilization. We also study a typical reheating temperature in the case of complex structure moduli inflation.
We present here the general expressions for the acceleration of massive test particles along the symmetry axis of the Kerr metric, and then study the main properties of this acceleration in different regions of the spacetime. In particular, we show that there exists a region near the black hole in which the gravitational field is repulsive. We provide possible physical interpretations about the role of this effect in terms of the different conserved parameters. The studies of these geodesics are important not only to understand better the structure of the Kerr spacetime but also to its use as a possible mechanism for the production of extragalactic jets. Our results are obtained with the help of expressing the geodesics of the Kerr spacetime in terms of the Weyl coordinates.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)