The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed "mass discrepancy--acceleration" relation, which reflects the distribution of the main components of the galaxies throughout their disks. This implies that the simulations, which span the range 52 < V$_{\rm flat}$ < 222 km/s where V$_{\rm flat}$ is the circular velocity at the flat part of the rotation curve, and match galaxy scaling relations, are able to recover the observed relations between the distributions of stars, gas and dark matter over the radial range for which we have observational rotation curve data. Furthermore, we explicitly match the observed baryonic to halo mass relation for the first time with simulated galaxies. We discuss our results in the context of the baryon cycle that is inherent in these simulations, and with regards to the effect of baryonic processes on the distribution of dark matter.
We report the discovery of 158 previously undetected dwarf galaxies in the Fornax cluster central regions using a deep coadded $u, g$ and $i$-band image obtained with the DECam wide-field camera mounted on the 4-meter Blanco telescope at the Cerro Tololo Interamerican Observatory as part of the {\it Next Generation Fornax Survey} (NGFS). The new dwarf galaxies have quasi-exponential light profiles, effective radii $0.1\!<\!r_e\!<\!2.8$ kpc and average effective surface brightness values $22.0\!<\!\mu_i\!<\!28.0$ mag arcsec$^{-2}$. We confirm the existence of ultra-diffuse galaxies (UDGs) in the Fornax core regions that resemble counterparts recently discovered in the Virgo and Coma galaxy clusters.~We also find extremely low surface brightness NGFS dwarfs, which are several magnitudes fainter than the classical UDGs. The faintest dwarf candidate in our NGFS sample has an absolute magnitude of $M_i\!=\!-8.0$\,mag. The nucleation fraction of the NGFS dwarf galaxy sample appears to decrease as a function of their total luminosity, reaching from a nucleation fraction of $>\!75\%$ at luminosities brighter than $M_i\!\simeq\!-15.0$ mag to $0\%$ at luminosities fainter than $M_i\!\simeq\!-10.0$ mag. The two-point correlation function analysis of the NGFS dwarf sample shows an excess on length scales below $\sim\!100$ kpc, pointing to the clustering of dwarf galaxies in the Fornax cluster core.
We develop and apply methods to extract planet masses and eccentricities from observed transit time variations (TTVs). First, we derive simple analytic expressions for the TTV that include the effects of both first- and second-order resonances. Second, we use N-body Markov chain Monte Carlo (MCMC) simulations, as well as the analytic formulae, to measure the masses and eccentricities of ten planets discovered by Kepler that have not previously been analyzed. Most of the ten planets have low densities. Using the analytic expressions to partially circumvent degeneracies, we measure small eccentricities of a few percent or less.
We study the behavior of large dust grains in turbulent molecular clouds (MCs). In primarily neutral regions, dust grains move as aerodynamic particles, not necessarily with the gas. We therefore directly simulate, for the first time, the behavior of aerodynamic grains in highly supersonic, magnetohydrodynamic turbulence typical of MCs. We show that, under these conditions, grains with sizes a>0.01 micron exhibit dramatic (exceeding factor ~1000) fluctuations in the local dust-to-gas ratio (implying large small-scale variations in abundances, dust cooling rates, and dynamics). The dust can form highly filamentary structures (which would be observed in both dust emission and extinction), which can be much thinner than the characteristic width of gas filaments. Sometimes, the dust and gas filaments are not even in the same location. The 'clumping factor' of the dust (critical for dust evolution) can reach ~100, for grains in the ideal size range. The dust clustering is maximized around scales ~0.2pc*(a/micron)*(100cm^-3/n_gas) and is 'averaged out' on larger scales. However, because the density varies widely in supersonic turbulence, the dynamic range of scales (and interesting grain sizes) for these fluctuations is much broader than in the subsonic case. Our results are applicable to MCs of essentially all sizes and densities, but we note how Lorentz forces and other physics (neglected here) may change them in some regimes. We discuss the potentially dramatic consequences for star formation, dust growth and destruction, and dust-based observations of MCs.
Current post-processing techniques in high contrast imaging depend on some source of diversity between the exoplanet signal and the residual star light at that location. The two main techniques are angular differential imaging (ADI), which makes use of parallactic sky rotation to separate planet from star light, and spectral differential imaging (SDI), which makes use of differences in the spectrum of planet and star light and the wavelength dependence of the point spread function (PSF). Here we introduce our technique for exploiting another source of diversity: orbital motion. Given repeated observations of an exoplanetary system with sufficiently short orbital periods, the motion of the planets allows us to discriminate them from the PSF. In addition to using powerful PSF subtraction algorithms, such an observing strategy enables temporal filtering. Once an orbit is determined, the planet can be ``de-orbited'' to further increase the signal-to-noise ratio. We call this collection of techniques Orbital Differential Imaging (ODI). Here we present the motivation for this technique, present a noise model, and present results from simulations. We believe ODI will be an enabling technique for imaging Earth-like planets in the habitable zones of Sun-like stars with dedicated space missions.
Several mission concepts are being studied to directly image planets around nearby stars. It is commonly thought that directly imaging a potentially habitable exoplanet around a Sun-like star requires space telescopes with apertures of at least 1m. A notable exception to this is Alpha Centauri (A and B), which is an extreme outlier among FGKM stars in terms of apparent habitable zone size: the habitable zones are ~3x wider in apparent size than around any other FGKM star. This enables a ~30-45cm visible light space telescope equipped with a modern high performance coronagraph or starshade to resolve the habitable zone at high contrast and directly image any potentially habitable planet that may exist in the system. We presents a brief analysis of the astrophysical and technical challenges involved with direct imaging of Alpha Centauri with a small telescope and describe two new technologies that address some of the key technical challenges. In particular, the raw contrast requirements for such an instrument can be relaxed to 1e-8 if the mission spends 2 years collecting tens of thousands of images on the same target, enabling a factor of 500-1000 speckle suppression in post processing using a new technique called Orbital Difference Imaging (ODI). The raw light leak from both stars is controllable with a special wavefront control algorithm known as Multi-Star Wavefront Control (MSWC), which independently suppresses diffraction and aberrations from both stars using independent modes on the deformable mirror. We also show an example of a small coronagraphic mission concept to take advantage of this opportunity.
Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0-2.8 R_Earth) than main-sequence FGK stars, but two times fewer Neptune-sized and larger planets (>2.8 R_Earth). We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass-radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4 M_Earth in F stars to 5 M_Earth in G and K stars to 7 M_Earth in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease towards lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully-formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks --- either through type-I migration or radial drift of dust grains --- that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets.
NGC 2419 is a peculiar Galactic globular cluster in terms of size/luminosity, and chemical abundance anomalies. Here, we present Str\"omgren $uvby$ photometry of the cluster. Using the gravity- and metallicity-sensitive $c_1$ and $m_1$ indices, we identify a sample of likely cluster members extending well beyond the formal tidal radius with an estimated contamination by non-members of only 1%. We derive photometric [Fe/H] of red giants, and depending on which literature metallicity relation we use, find reasonable to excellent agreement with spectroscopic [Fe/H]. We demonstrate explicitly that the photometric errors are not Gaussian, and using a realistic model for the photometric uncertainties, find a formal internal [Fe/H] spread of $\sigma=0.11^{+0.02}_{-0.01}$ dex. This is an upper limit to the cluster's true [Fe/H] spread and may partially/entirely reflect the limited precision of the photometric metallicity estimation and systematic effects. The lack of correlation between spectroscopic and photometric [Fe/H] of individual stars is further evidence against a [Fe/H] spread on the 0.1 dex level. Finally, the CN-sensitive $\delta_4$ anti-correlates strongly with Mg abundance, indicating that the 2nd generation stars are N-enriched. Absence of similar correlations in some other CN-sensitive indices supports the second generation being He-rich, which in these indices approximately compensates the shift due to CN. Compared to a single continuous distribution with finite dispersion, the observed $\delta_4$ distribution is slightly better fit by two discrete populations, with the N-enhanced stars accounting for 53$\pm$5%. NGC 2419 appears to be very similar to other metal-poor Galactic globular clusters with a similarly N-enhanced second generation and little or no variation in [Fe/H], which sets it apart from other suspected accreted nuclei such as {\omega}Cen. (abridged)
We perform smoothed-particle hydrodynamical simulations of the explosion of a helium star in a close binary system, and study the effects of the explosion on the companion star as well as the effect of the presence of the companion on the supernova remnant. By simulating the mechanism of the supernova from just after core bounce until the remnant shell passes the stellar companion, we are able to separate the various effects leading to the final system parameters. In the final system, we measure the mass stripping and ablation from, and the velocity kick imparted to, the companion star, as well as the structure of the supernova shell. The presence of the companion star produces a conical cavity in the expanding supernova remnant, and loss of material from the companion causes the supernova remnant to be more metal-rich on one side and more hydrogen-rich (from the companion material) around the cavity. Following the removal of mass from the companion, we study its subsequent evolution and compare it with a single star not subjected to a supernova impact.
Distant BL Lacertae objects emit $\gamma$ rays which interact with the extragalactic background light (EBL), creating electron-positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a $\gamma$-ray signature at slightly lower energies observable by the \fermi\ Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength ($B$) and its coherence length ($L_B$). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects, and combine it with LAT spectra for these sources to constrain these IGMF parameters. Low $B$ values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of $B$ can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low $B$ values ($B< 10^{-19}$ G for $L_B\ge1$\ Mpc) at $>5\sigma$ in all trials with different EBL models and data selection, except when using $>1$ GeV spectra and the lowest EBL models. We were not able to constrain high values of $B$.
Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the details of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.
The scientific interest in directly image and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging mission such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A and B Habitable Zone is found at exceptionally large angular separations of 0.7 and 0.4 arcseconds respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios in the order of 1e-10 are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets, will allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope, that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induce Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a high-precision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to 2e-11 levels, enabling high confidence and at least 90 percent completeness detections of Earth-like planets.
Direct imaging of extra-solar planets is now a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the Gemini Planet Imager and SPHERE. These systems will allow detection of Jupiter-like planets $10^7$ times fainter than their host star. Obtaining this contrast level and beyond requires the combination of a coronagraph to suppress light coming from the host star and a wavefront control system including a deformable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around single host stars, while several targets or planet candidates are located around nearby binary stars such as our neighboring star Alpha Centauri. Here, we present a method to simultaneously correct aberrations and diffraction of light coming from the target star as well as its companion star in order to reveal planets orbiting the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects.
We present six epochs of spectropolarimetric observations and one epoch of spectroscopy of the Type Ib SN iPTF 13bvn. The epochs of these observations correspond to $-$10 to $+$61 days with respect to the {\it r}-band light curve maximum. The continuum is intrinsically polarised to the $0.2-0.4\%$ level throughout the observations, implying asphericities of $\sim10\%$ in the shape of the photosphere. We observe significant line polarisation associated with the spectral features of Ca II IR3, He I/Na I D, He I {\lambda}{\lambda}6678, 7065, Fe II {\lambda}4924 and O I {\lambda}7774. We propose that an absorption feature at $\sim 6200\mathrm{\AA}$, usually identified as Si II $\lambda 6355$, is most likely to be high velocity $\mathrm{H\alpha}$ at $-16,400$ $\mathrm{km \; s^{-1}}$. Two distinctly polarised components, separated in velocity, are detected for both He I/Na I D and Ca II IR3, indicating the presence of two discrete line forming regions in the ejecta in both radial velocity space and in the plane of the sky. We use the polarisation of He I $\lambda 5876$ as a tracer of sources of non-thermal excitation in the ejecta; finding that the bulk of the radioactive nickel was constrained to lie interior to $\sim 50-65\%$ of the ejecta radius. The observed polarisation is also discussed in the context of the possible progenitor system of iPTF 13bvn, with our observations favouring the explosion of a star with an extended, distorted envelope rather than a compact Wolf-Rayet star.
We investigate resolved kpc-scale stellar and nebular dust distribution in eight star-forming galaxies at z~0.4 in the GOODS fields. Constructing the observed Spectral Energy Distributions (SEDs) per pixel, based on seven bands photometric data from HST/ACS and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated small-scale distribution of stellar dust extinction. We use Halpha / Hbeta nebular emission line ratios from Keck/DEIMOS high resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the center of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate. We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of star formation rate surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust to gas ratio in regions with high gas mass surface densities, over the scales probed in this study.
Type Ia supernovae luminosities can be corrected to render them useful as standard candles able to probe the expansion history of the universe. This technique was successful applied to discover the present acceleration of the universe. As the number of SNe Ia observed at high redshift increases and analysis techniques are perfected, people aim to use this technique to probe the equation of state of the dark energy. Nevertheless, the nature of SNe Ia progenitors remains controversial and concerns persist about possible evolution effects that may be larger and harder to characterize than the more obvious statistical uncertainties.
HD~106906AB is so far the only young binary system around which a planet has been imaged and a debris disk evidenced thanks to a strong IR excess. As such, it represents a unique opportunity to study the dynamics of young planetary systems. We aim at further investigating the close (tens of au scales) environment of the HD~106906AB system. We used the extreme AO fed, high contrast imager SPHERE recently installed on the VLT to observe HD~106906. Both the IRDIS imager and the Integral Field Spectrometer were used. We discovered a very inclined, ring-like disk at a distance of 65~au from the star. The disk shows a strong brightness asymmetry with respect to its semi-major axis. It shows a smooth outer edge, compatible with ejection of small grains by the stellar radiation pressure. We show furthermore that the planet's projected position is significantly above the disk's PA. Given the determined disk inclination, it is not excluded though that the planet could still orbit within the disk plane if at a large separation (2000--3000 au). We identified several additional point sources in the SPHERE/IRDIS field-of-view, that appear to be background objects. We compare this system with other debris disks sharing similarities, and we briefly discuss the present results in the framework of dynamical evolution.
The abundance of clusters of galaxies is known to be a potential source of cosmological constraints through their mass function. In the present work, we examine the information that can be obtained from the temperature distribution function of X-ray clusters. For this purpose, the mass-temperature ($M$-$T$) relation and its statistical properties are critical ingredients. Using a combination of cosmic microwave background (CMB) data from Planck and our estimations of X-ray cluster abundances, we use Markov chain Monte Carlo (MCMC) techniques to estimate the $\Lambda$CDM cosmological parameters and the mass to X-ray temperature scaling relation simultaneously. We determine the integrated X-ray temperature function of local clusters using flux-limited surveys. A local comprehensive sample was build from the BAX X-ray cluster database, allowing us to estimate the local temperature distribution function above $\sim$1 keV. We model the expected temperature function from the mass function and the $M$-$T$ scaling relation. We then estimate the cosmological parameters and the parameters of the $M$-$T$ relation (calibration and slope) simultaneously. The measured temperature function of local clusters in the range $\sim\!\!1$-$10$ keV is well reproduced once the calibration of the $M$-$T$ relation is treated as a free parameter, and therefore is self-consistent with respect to the $\Lambda$CDM cosmology. The best-fit values of the standard cosmological parameters as well as their uncertainties are unchanged by the addition of clusters data. The calibration of the mass temperature relation, as well as its slope, are determined with $\sim10\%$ statistical uncertainties. This calibration leads to masses that are $\sim\!\!75\%$ larger than X-ray masses used in Planck.
We present the results of new infrared spectroscopic observations of 37 quasars at z~3, selected based on the optical r'-band magnitude and the availability of nearby bright stars for future imaging follow-up with Adaptive Optics system. The supermassive black hole (SMBH) masses (M_BH) were successfully estimated in 28 out of 37 observed objects from the combination of the H_beta emission linewidth and continuum luminosity at rest-frame 5100A. Comparing these results with those from previous studies of quasars with similar redshift, our sample exhibited slightly lower (~ -0.11 dex in median) Eddington ratios; and, the SMBH masses are slightly (~ 0.38 dex in median) higher. The SMBH growth time, t_grow, was calculated by dividing the estimated SMBH mass by the mass accretion rate measured using optical luminosity. We found, given reasonable assumptions, that t_grow was smaller than the age of the universe at the redshift of individual quasars for a large fraction of observed sources, suggesting that the SMBHs in many of our observed quasars are in growing phase with high accretion rates. A comparison of the SMBH masses derived from our H_beta data and archived CIV data indicated considerable scattering, as indicated in previous studies. All quasars with measured SMBH masses have at least one nearby bright star, such that they are suitable targets for adaptive optics observations to study the mass relationship between SMBHs and host galaxies' stellar component at high redshift.
We show that cosmological quantum relaxation predicts an anisotropic primordial power spectrum with a specific dependence on wavenumber k. We explore some of the consequences for precision measurements of the cosmic microwave background (CMB). Quantum relaxation is a feature of the de Broglie-Bohm pilot-wave formulation of quantum theory, which allows the existence of more general physical states that violate the Born probability rule. Recent work has shown that relaxation to the Born rule is suppressed for long-wavelength field modes on expanding space, resulting in a large-scale power deficit with a characteristic inverse-tangent dependence on k. Because the quantum relaxation dynamics is independent of the direction of the wave vector for the relaxing field mode, in the limit of weak anisotropy we are able to derive an expression for the anisotropic power spectrum that is determined by the power deficit function. As a result, the off-diagonal terms in the CMB covariance matrix are also determined by the power deficit. We show that the lowest-order l-(l+1) inter-multipole correlations have a characteristic scaling with multipole moment l. Our derived spectrum also predicts a residual statistical anisotropy at small scales, with an approximate consistency relation between the scaling of the l-(l+1) correlations and the scaling of the angular power spectrum at high l. We also predict a relationship between the l-(l+1) correlations at large and small scales. Cosmological quantum relaxation appears to provide a single physical mechanism that predicts both a large-scale power deficit and a range of statistical anisotropies, together with potentially testable relationships between them.
There have been numerous reports of quasiperiodicities in solar activity in the intermediate period range. However, no accepted explanation for the episodic occurrence of quasiperiodicities has emerged. This paper examines the possibility that the periodicities are associated with a Mercury Sun interaction of base period 88 days. To test this idea we band pass filter the 140 year long daily sunspot area data to obtain the 88 day period and 176 day sub harmonic period components of the data and compare the time variation of the components with the time variation of the orbital radius of Mercury, or more specifically with the time variation of the tidal effect of Mercury. We were able to show that, when successive episodes of the occurrence of the 88 day period component were discrete and not overlapping in time, the time variation of this component of sunspot area was either exactly in-phase or exactly in anti-phase with the time variation of tidal effect. A similar result was obtained for the 176 day period component. When several discrete episodes of the components occurred during a solar cycle the spectrum of the sunspot area data exhibited strong sidebands with periods dependent on the duration of the episodes. A simple model based on episode modulation and solar cycle modulation of 88 day and sub harmonic period sinusoids reproduced most of the spectral peaks observed in the intermediate range of sunspot area periodicity. This is compelling evidence of a link between the motion of Mercury and the periodic emergence of sunspots. It is proposed that the link involves magnetic surface waves with mode periods close to the sub harmonic periods associated with Mercury and the triggering of sunspot emergence by the waves.
We demonstrate the importance of general relativistic apsidal precession in warped black hole accretion discs by comparing three - dimensional smoothed particle hydrodynamic simulations in which this effect is first neglected, and then included. If apsidal precession is neglected, we confirm the results of an earlier magnetohydrodynamic simulation which made this assumption, showing that at least in this case the $\alpha$ viscosity model produces very similar results to those of simulations where angular momentum transport is due to the magnetorotational instability. Including apsidal precession significantly changes the predicted disc evolution. For moderately inclined discs thick enough that tilt is transported by bending waves, we find a disc tilt which is nonzero at the inner disc edge and oscillates with radius, consistent with published analytic results. For larger inclinations we find disc breaking.
We present an analysis of 23 absorption systems along the lines of sight towards 18 quasars in the redshift range of $0.4 \leq z_{abs} \leq 2.3$ observed on the Very Large Telescope (VLT) using the Ultraviolet and Visual Echelle Spectrograph (UVES). Considering both statistical and systematic error contributions we find a robust estimate of the weighted mean deviation of the fine-structure constant from its current, laboratory value of $\Delta\alpha/\alpha=\left(0.22\pm0.23\right)\times10^{-5}$, consistent with the dipole variation reported in Webb et al. and King et al. This paper also examines modelling methodologies and systematic effects. In particular we focus on the consequences of fitting quasar absorption systems with too few absorbing components and of selectively fitting only the stronger components in an absorption complex. We show that using insufficient continuum regions around an absorption complex causes a significant increase in the scatter of a sample of $\Delta\alpha/\alpha$ measurements, thus unnecessarily reducing the overall precision. We further show that fitting absorption systems with too few velocity components also results in a significant increase in the scatter of $\Delta\alpha/\alpha$ measurements, and in addition causes $\Delta\alpha/\alpha$ error estimates to be systematically underestimated. These results thus identify some of the potential pitfalls in analysis techniques and provide a guide for future analyses.
Arm-locking is a technique for stabilizing the frequency of a laser in an inter-spacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA), arm-locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the Laser Ranging Interferometer instrument flying aboard the upcoming Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly two orders of magnitude around a Fourier frequency of 1Hz with conservative margins on the system's stability. We further demonstrate that `pulling' of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than $100\,$MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.
Context The ESO Public Survey VISTA Variables in the V\'ia L\'actea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims We present the fourth article in a series of papers focussed on young and massive clusters discovered in the VVV survey. This article is dedicated to the cluster VVV CL041, which contains a new very massive star candidate, WR 62-2. Methods Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters (distance, reddening, mass, age) of VVV CL041. Results We confirm that the cluster VVV CL041 is a young (less than 4 Myrs) and massive (3 +/- 2 x 10^3 Msol) cluster, and not a simple asterism. It is located at a distance of 4.2 +/- 0.9 kpc, and its reddening is A_V = 8.0 +/- 0.2 mag, which is slightly lower than the average for the young clusters towards the centre of the Galaxy. Spectral analysis shows that the most luminous star of the cluster, of the WN8h spectral type, is a candidate to have an initial mass larger than 100 Msol.
We measure C III] 1907,1909 A emission lines in eleven gravitationally--lensed star-forming galaxies at z~1.6--3, finding much lower equivalent widths than previously reported for fainter lensed galaxies (Stark et al. 2014). While it is not yet clear what causes some galaxies to be strong C III] emitters, CIII] emission is not a universal property of distant star-forming galaxies. We also examine C III] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST, and IUE. Twenty percent of these local galaxies show strong C III] emission, with equivalent widths <-5 A. Three nearby galaxies show C III] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf-Rayet galaxies. At all redshifts, strong C III] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C III] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.
This paper considers a nonlinear coupling between a radial and a nonradial mode of nearly the same frequency. The results may be of general interest, but in particular have application to the beating-modes model of the Blazhko effect which was recently shown to accurately reproduce the light curve of RR Lyr. For weak coupling, the two modes do not phase-lock and they retain separate frequencies, but the coupling nevertheless has important consequences. Upon increasing the coupling strength from zero, an additional side-peak emerges in the spectrum forming an asymmetric triplet centered on the fundamental. As the coupling is further increased, the amplitude of this side-peak increases and the three peaks are also pulled towards each other, decreasing the Blazhko frequency. Beyond a critical coupling strength, phase-locking occurs between the modes. With appropriate choice of coupling strength, this interactive beating-modes model can match the side-peak amplitude ratio of any star. The effects of nonlinear damping are also explored and found to generate additional side-peaks of odd order. Consistent with this, the odd side-peaks are found to be favored in V808 Cyg. It is also shown that the Blazhko effect generates a fluctuating environment that can have a modulatory effect on other excited modes of the star. An example is found in V808 Cyg where the modulation is at double the Blazhko frequency. An explanation is found for this mysterious doubling, providing additional evidence in favor of the model.
G22.0+0.0 and G23.5+0.1 are diffuse hard X-ray sources discovered in the ASCA Galactic Plane Survey. We present Suzaku results of spectral analysis for these sources. G22.0+0.0 is confirmed to be a largely extended emission. The spectra were represented by a highly absorbed power-law model with a photon index of 1.7+/-0.3 and a moderately absorbed thermal emission with a temperature of 0.34^{+0.11}_{-0.08} keV. The difference in the N_{H} values between the two components suggests that the thermal component is unrelated with the power-law component and is a foreground emission located in the same line-of-sight. G23.5+0.1 is an extended source with a size of 3'.5. The spectra were fitted with an absorbed power-law model with a photon index of 2.4^{+0.5}_{-0.4}. The spatial and spectral properties show that both are candidates of old pulsar wind nebulae (PWNe). In addition to the extended sources, we analyzed spectra of three point sources found in the observed fields. Based on the spectral features, we discuss origin of the sources.
M54 is the central cluster of the Sagittarius dwarf galaxy. This stellar system is now in process of being disrupted by the tidal interaction with the Milky Way and represents one of the building blocks of the Galactic Halo. Recent discoveries, based on the synergy of photometry and spectroscopy have revealed that the color-magnitude diagram of some massive, anomalous, Globular Clusters (GCs) host stellar populations with different content of heavy elements.In this paper, I use multi-wavelength Hubble Space Telescope photometry to detect and characterize multiple stellar populations in M54. I provide empirical evidence that this GC shares photometric and spectroscopic similarities with the class of anomalous GCs. These findings make it tempting to speculate that, similarly to Sagittarius nuclear cluster M54, other anomalous GCs were born in an extra-Galactic environment.
We present results obtained from our newly developed Galactic cosmic-ray transport code PICARD, that solves the cosmic-ray transport equation. This code allows for the computation of cosmic-ray spectra and the resulting gamma-ray emission. Relying on contemporary numerical solvers allows for efficient computation of models with deca-parsec resolution. PICARD can handle locally anisotropic spatial diffusion acknowledging a full diffusion tensor. We used this framework to investigate the transition from axisymmetric to spiral-arm cosmic-ray source distributions. Wherever possible we compare model predictions with constraining observables in cosmic-ray astrophysics.
The near- and mid-IR spectrum of many astronomical objects is dominated by emission bands due to UV-excited polycyclic aromatic hydrocarbons (PAH) and evaporating very small grains (eVSG). Previous studies with the ISO, Spitzer and AKARI space telescopes have shown that the spectral variations of these features are directly related to the local physical conditions that induce a photo-chemical evolution of the band carriers. Because of the limited sensitivity and spatial resolution, these studies have focused mainly on galactic star-forming regions. We discuss how the advent of JWST will allow to extend these studies to previously unresolved sources such as near-by galaxies, and how the analysis of the infrared signatures of PAHs and eVSGs can be used to determine their physical conditions and chemical composition.
The orientations of the red galaxies in a filament are aligned with the orientation of the filament. We thus develop a location-alignment-method (LAM) of detecting filaments around clusters of galaxies, which uses both the alignments of red galaxies and their distributions in two-dimensional images. For the first time, the orientations of red galaxies are used as probes of filaments. We apply LAM to the environment of Coma cluster, and find four filaments (two filaments are located in sheets) in two selected regions, which are compared with the filaments detected with the method of \cite{Falco14}. We find that LAM can effectively detect the filaments around a cluster, even with $3\sigma$ confidence level, and clearly reveal the number and overall orientations of the detected filaments. LAM is independent of the redshifts of galaxies, and thus can be applied at relatively high redshifts and to the samples of red galaxies without the information of redshifts. We also find that the images of background galaxies (interlopers) which are lensed by the gravity of foreground filaments are amplifiers to probe the filaments.
Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for galaxies at the redshifts typically used in cosmic shear analyses. For spiral galaxies, it is thought that tidal torquing is significant in determining alignments resulting in zero correlation between the intrinsic ellipticity and the gravitational potential in linear theory. Here, we calculate the leading-order correction to this result in the tidal-torque model from non-linear evolution, using second-order perturbation theory, and relate this to the contamination from intrinsic alignments to the recently-measured cross-correlation between galaxy ellipticities and the CMB lensing potential. We find that the angular cross-correlation from tidal torquing has a very similar scale dependence as in the linear alignment model (believed to be appropriate for elliptical galaxies), but the opposite sign and so increases the observable correlation between CMB lensing and spiral galaxies. The amplitude of the cross-correlation is predicted to depend strongly on the formation redshift, being smaller for galaxies that formed at higher redshift when the bispectrum of the gravitational potential was smaller. Finally, we make simple forecasts for constraints on intrinsic alignments from the correlation of forthcoming cosmic shear measurements with current CMB lensing measurements.
We investigated the possibility of producing helium enhanced stars in
globular clusters by accreting polluted matter during the pre-main sequence
phase. We followed the evolution of two different classes of pre-main sequence
accreting models, one which neglects and the other that takes into account the
protostellar evolution.
We analysed the dependence of the final central helium abundance, of the
tracks position in the HR diagram and of the surface lithium abundance
evolution on the age at which the accretion of polluted material begins and on
the main physical parameters that govern the protostellar evolution. The later
is the beginning of the late accretion and the lower are both the central
helium and the surface lithium abundances at the end of the accretion phase and
in ZAMS (Zero Age Main Sequence). In order to produce a relevant increase of
the central helium content the accretion of polluted matter should start at
ages lower than 1 Myr. The inclusion of the protostellar evolution has a strong
impact on the ZAMS models too. The adoption of a very low seed mass (i.e. 0.001
M$_{\odot}$) results in models with the lowest central helium and surface
lithium abundances. The higher is the accretion rate and the lower is the final
helium content in the core and the residual surface lithium. In the worst case
-- i.e. seed mass 0.001 M$_\odot$ and accretion rate $\ge 10^{-5}$ M$_\odot$
yr$^{-1}$ -- the central helium is not increased at all and the surface lithium
is fully depleted in the first few million years.
The structure, formation, and evolution of the Milky Way bulge is a matter of debate. Important diagnostics for discriminating between bulge models include alpha-abundance trends with metallicity, and spatial abundance and metallicity gradients. Due to the severe optical extinction in the inner Bulge region, only a few detailed investigations have been performed of this region. Here we aim at investigating the inner 2 degrees by observing the [alpha/Fe] element trends versus metallicity, and by trying to derive the metallicity gradient. [alpha/Fe] and metallicities have been determined by spectral synthesis of 2 micron spectra observed with VLT/CRIRES of 28 M-giants, lying along the Southern minor axis at (l,b)=(0,0), (0,-1), and (0,-2). VLT/ISAAC spectra are used to determine the effective temperature of the stars. We present the first connection between the Galactic Center and the Bulge using similar stars, high spectral resolution, and analysis techniques. The [alpha/Fe] trends in all our 3 fields show a large similarity among each other and with trends further out in the Bulge, with a lack of an [\alpha/Fe] gradient all the way into the centre. This suggests a homogeneous Bulge when it comes to the enrichment process and star-formation history. We find a large range of metallicities (-1.2<[Fe/H]<+0.3), with a lower dispersion in the Galactic center: -0.2<[Fe/H]<+0.3. The derived metallicities get in the mean, progressively higher the closer to the Galactic plane they lie. We could interpret this as a continuation of the metallicity gradient established further out in the Bulge, but due to the low number of stars and possible selection effects, more data of the same sort as presented here is necessary to conclude on the inner metallicity gradient from our data alone. Our results firmly argues for the center being in the context of the Bulge rather than very distinct.
Correlations of polarisation components in the coordinate frame are a natural basis for searches of parity-violating modes in the Cosmic Microwave Background (CMB). This fact can be exploited to build estimators of parity-violating modes that are local and robust with respect to partial-sky coverage or inhomogeneous weighting. As an example application of a method based on these ideas we develop a peak stacking tool that isolates the signature of parity-violating modes. We apply the tool to Planck maps and obtain a constraint on the monopole of the polarisation rotation angle $\alpha=0.31\pm 0.23$. We also demonstrate how the tool can be used as a local method for reconstructing maps of direction dependent rotation $\alpha (\hat n)$.
We present an atlas of mid-infrared (mid-IR) ~7.5-13micron spectra of 45 local active galactic nuclei (AGN) obtained with CanariCam on the 10.4m Gran Telescopio CANARIAS (GTC) as part of an ESO/GTC large program. The sample includes Seyferts and other low luminosity AGN (LLAGN) at a median distance of 35Mpc and luminous AGN, namely PG quasars, (U)LIRGs, and radio galaxies (RG) at a median distance of 254Mpc. To date, this is the largest mid-IR spectroscopic catalog of local AGN at sub-arcsecond resolution (median 0.3arcsec). The goal of this work is to give an overview of the spectroscopic properties of the sample. The nuclear 12micron luminosities of the AGN span more than four orders of magnitude, nu*Lnu(12micron)~ 3e41-1e46erg/s. In a simple mid-IR spectral index vs. strength of the 9.7micron silicate feature diagram most LLAGN, Seyfert nuclei, PG quasars, and RGs lie in the region occupied by clumpy torus model tracks. However, the mid-IR spectra of some might include contributions from other mechanisms. Most (U)LIRG nuclei in our sample have deeper silicate features and flatter spectral indices than predicted by these models suggesting deeply embedded dust heating sources and/or contribution from star formation. The 11.3micron PAH feature is clearly detected in approximately half of the Seyfert nuclei, LLAGN, and (U)LIRGs. While the RG, PG quasars, and (U)LIRGs in our sample have similar nuclear 12micron luminosities, we do not detect nuclear PAH emission in the RGs and PG quasars.
Novae undergo a supersoft X-ray phase of varying duration after the optical
outburst. Such transient post-nova supersoft X-ray sources (SSSs) are the
majority of the observed SSSs in M31. In this paper, we use the post-nova
evolutionary models of Wolf et al. to compute the expected population of
post-nova SSSs in M31. We predict that depending on the assumptions about the
WD mass distribution in novae, at any instant there are about 250-600 post-nova
SSSs in M31 with (unabsorbed) 0.2-1.0 keV luminosity L_x>10^36 erg/s. Their
combined unabsorbed luminosity is of the order of ~10^39 erg/s. Their
luminosity distribution shows significant steepening around log(L_x)~37.7-38
and becomes zero at L_x~2x10^38 erg/s, the maximum L_x achieved in the
post-nova evolutionary tracks. Their effective temperature distribution has a
roughly power law shape with differential slope of ~4-6 up to the maximum
temperature of T_eff~1.5x10^6 K.
We compare our predictions with the results of the XMM-Newton monitoring of
the central field of M31 between 2006 and 2009. The predicted number of
post-nova SSSs exceed the observed number by a factor of ~2-5, depending on the
assumed WD mass distribution in novae. This is good agreement, considering the
number and magnitude of uncertainties involved in calculations of the post-nova
evolutionary models and their X-ray output. Furthermore, only a moderate
circumstellar absorption, with hydrogen column density of the order of ~10^21
cm^-2, will remove the discrepancy.
As said by Sir A. Eddington in 1925: Our telescopes may probe farther and farther into the depths of space. At first sight it would seem that the deep interior of the sun and stars is less accessible to scientific investigation than any other region of the universe. What appliance can pierce through the outer layers of a star and test the conditions within? Eddington (1926). Nowadays, asteroseismology has proven its ability to pierce below stellar pho- tospheres and allow us to see inside the interior of thousands of stars down to the stellar cores, answering the question asked by Eddington ninety years ago. In this chapter we review the general properties of the spectral analysis which is the base of any asteroseismic investigation. After describing the stellar power spectrum, we will describe in details the characterization of the modal spec- trum. This chapter will end by a brief description of the instrumentation in both helio and asteroseismology.
Context: Stars on the asymptotic giant branch (AGB) show broad evidence of inhomogeneous atmospheres and circumstellar envelopes. These have been studied by a variety of methods on various angular scales. In this paper we explore the envelope of the well-studied carbon star TX Psc by the technique of spectro-astrometry. Aims: We explore the potential of this method for detecting asymmetries around AGB stars. Methods:We obtained CRIRES observations of several CO $\Delta$v=1 lines near 4.6 $\mu$m and HCN lines near 3 $\mu$m in 2010 and 2013. These were then searched for spectro-astrometric signatures. For the interpretation of the results, we used simple simulated observations. Results: Several lines show significant photocentre shifts with a clear dependence on position angle. In all cases, tilde-shaped signatures are found where the positive and negative shifts (at PA 0deg) are associated with blue and weaker red components of the lines. The shifts can be modelled with a bright blob 70 mas to 210 mas south of the star with a flux of several percent of the photospheric flux. We estimate a lower limit of the blob temperature of 1000 K. The blob may be related to a mass ejection as found for AGB stars or red supergiants. We also consider the scenario of a companion object. Conclusions: Although there is clear spectro-astrometric evidence of a rather prominent structure near TX Psc, it does not seem to relate to the other evidence of asymmetries, so no definite explanation can be given. Our data thus underline the very complex structure of the environment of this star, but further observations that sample the angular scales out to a few hundred milli-arcseconds are needed to get a clearer picture.
The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST) and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme {\alpha}_ox gradient ({\alpha}_ox =-2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-ray data taken in 2005. At that time, it was fainter by a factor of 3.8 +- 0.9 with {\alpha}_ox=-2.55. The X-ray spectrum is compatible with a normal quasar power-law spectrum ({\Gamma}=1.70_-0.45^+0.57) with moderate intrinsic absorption (N_H=5.5_-3.9^+6.9 +- 10^21cm^-2) and reflection. The UV/optical flux of PG 0043+039 has increased by a factor of 1.8 compared to spectra taken in the years 1990-1991. The FUV spectrum is highly peculiar and dominated by broad bumps besides Ly{\alpha}. There is no detectable Lyman edge associated with the BAL absorbing gas seen in the CIV line. PG 0043+039 shows a maximum in the overall continuum flux at around {\lambda} 2500{\AA} in contrast to most other AGN where the maximum is found at shorter wavelengths. All the above is compatible with an intrinsically X-ray weak quasar, rather than an absorbed X-ray emission.
If very massive stars (M >~ 100 Msun) can form and avoid too strong mass loss during their evolution, they are predicted to explode as pair-instability supernovae (PISNe). One critical test for candidate events is whether their nucleosynthesis yields and internal ejecta structure, being revealed through nebular-phase spectra at t >~ 1 yr, match those of model predictions. Here we compute theoretical spectra based on model PISN ejecta at 1-3 years post-explosion to allow quantitative comparison with observations. The high column densities of PISNe lead to complete gamma-ray trapping for t >~ 2 years which, combined with fulfilled conditions of steady state, leads to bolometric supernova luminosities matching the 56Co decay. Most of the gamma-rays are absorbed by the deep-lying iron and silicon/sulphur layers. The ionization balance shows a predominantly neutral gas state, which leads to emission lines of Fe I, Si I, and S I. For low-mass PISNe the metal core expands slowly enough to produce a forest of distinct lines, whereas high-mass PISNe expand faster and produce more featureless spectra. Line blocking is complete below ~5000 A for several years, and the model spectra are red. The strongest line is typically [Ca II] 7291,7323, one of few lines from ionized species. We compare our models with proposed PISN candidates SN 2007bi and PTF12dam, finding discrepancies for several key observables and thus no support for a PISN interpretation. We discuss distinct spectral features predicted by the models, and the possibility of detecting pair-instability explosions among non-superluminous supernovae.
For all exoplanet candidates, the reliability of a claimed detection needs to be assessed through a careful study of systematic errors in the data to minimize the false positives rate. We present a method to investigate such systematics in microlensing datasets using the microlensing event OGLE-2013-BLG-0446 as a case study. The event was observed from multiple sites around the world and its high magnification (A_{max} \sim 3000) allowed us to investigate the effects of terrestrial and annual parallax. Real-time modeling of the event while it was still ongoing suggested the presence of an extremely low-mass companion (\sim 3M_\oplus ) to the lensing star, leading to substantial follow-up coverage of the light curve. We test and compare different models for the light curve and conclude that the data do not favour the planetary interpretation when systematic errors are taken into account.
We conduct a comprehensive axisymmetric, local linear mode analysis of a stratified, differentially rotating disk permeated by a toroidal magnetic field which could provide significant pressure support. In the adiabatic limit, we derive a new stability criteria that differs from the one obtained for weak magnetic fields with a poloidal component and reduces continuously to the hydrodynamic Solberg-H{\o}iland criteria. Three fundamental unstable modes are found in the locally isothermal limit. They comprise of overstable: (i) acoustic oscillations, (ii) radial epicyclic (acoustic-inertial) oscillations and (iii) vertical epicyclic (or vertical shear) oscillations. All three modes are present for finite ranges of cooling times but they are each quickly quenched past respective cut-off times. The acoustic and acoustic-inertial overstable modes are driven by the background temperature gradient. When vertical structure is excluded, we find that the radial epicyclic modes appear as a nearly degenerate pair. One of these is the aforementioned acoustic-inertial mode and the other has been previously identified in a slightly different guise as the convective overstability. Inclusion of vertical structure leads to the development of overstable oscillations destabilized by vertical shear but also has the effect of suppressing the radial epicyclic modes. Although our study does not explicitly account for non-ideal effects, we argue that it may still shed light into the dynamics of protoplanetary disk regions where a strong toroidal field generates as a result of the Hall-shear instability.
We present a simultaneous single-dish survey of 22 GHz water maser and 44 GHz and 95 GHz class I methanol masers toward 77 6.7 GHz class II methanol maser sources, which were selected from the Arecibo methanol maser Galactic plane survey (AMGPS) catalog.Water maser emission is detected in 39 (51%) sources, of which 15 are new detections. Methanol maser emission at 44 GHz and 95 GHz is found in 25 (32%) and 19 (25%) sources, of which 21 and 13 sources are newly detected, respectively. We find 4 high-velocity (> 30 km/s) water maser sources, including 3 dominant blue- or redshifted outflows.The 95 GHz masers always appear with the 44 GHz maser emission. They are strongly correlated with 44 GHz masers in velocity, flux density, and luminosity, while they are not correlated with either water or 6.7 GHz class II methanol masers. The average peak flux density ratio of 95 GHz to 44 GHz masers is close to unity, which is two times higher than previous estimates. The flux densities of class I methanol masers are more closely correlated with the associated BGPS core mass than those of water or class II methanol masers. Using the large velocity gradient (LVG) model and assuming unsaturated class I methanol maser emission, we derive the fractional abundance of methanol to be in a range of 4.2*10^-8 to 2.3*10^-6, with a median value of 3.3\pm2.7*10^-7.
Exoplanet science often involves using the system parameters of real
exoplanets for tasks such as simulations, fitting routines, and target
selection for proposals. Software that bridges the barrier between the
catalogues and code enables users to improve the specific repeatability of
results by facilitating the retrieval of exact system parameters used in an
articles results along with unifying the equations and software used. As
exoplanet science moves towards large data, gone are the days where researchers
can recall the current population from memory. An interface able to query the
population now becomes invaluable for target selection and population analysis.
ExoData is a python interface and exploratory analysis tool for the Open
Exoplanet Catalogue. It allows the loading of exoplanet systems into python as
objects (Planet, Star, Binary etc) from which common orbital and system
equations can be calculated and measured parameters retrieved. This allows
researchers to use tested code of the common equations they require (with
units) and provides a large science input catalogue of planets for easy
plotting and use in research. Advanced querying of targets are possible using
the database and Python programming language. ExoData is also able to parse
spectral types and fill in missing parameters according to programmable
specifications and equations. Examples of use cases are integration of
equations into data reduction pipelines, selecting planets for observing
proposals and as an input catalogue to large scale simulation and analysis of
planets.
ExoData is a python package freely available on GitHub
(https://github.com/ryanvarley/exodata). It is open source and community
contributions are encouraged. The package can be easily installed using "pip
install exodata", detailed setup information is provided within.
We present the first scattered light detections of the HD 106906 debris disk using Gemini/GPI in the infrared and HST/ACS in the optical. HD 106906 is a 13 Myr old F5V star in the Sco-Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius $\sim$50 AU, and an outer extent $>$500 AU. The HST data show the outer regions are highly asymmetric, resembling the ''needle'' morphology seen for the HD 15115 debris disk. The planet candidate is oriented $\sim$21$\deg$ away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.
Slow magnetoacoustic waves were first detected in hot ($>$6 MK) flare loops by the SOHO/SUMER spectrometer as Doppler shift oscillations in Fe XIX and Fe XXI lines. Recently, such longitudinal waves have been found by SDO/AIA in the 94 and 131 \AA\ channels. Wang et al. (2015) reported the first AIA event revealing signatures in agreement with a fundamental standing slow-mode wave, and found quantitative evidence for thermal conduction suppression from the temperature and density perturbations in the hot loop plasma of $\gtrsim$ 9 MK. The present study extends the work of Wang et al. (2015) by using an alternative approach. We determine the polytropic index directly based on the polytropic assumption instead of invoking the linear approximation. The same results are obtained as in the linear approximation, indicating that the nonlinearity effect is negligible. We find that the flare loop cools slower (by a factor of 2-4) than expected from the classical Spitzer conductive cooling, approximately consistent with the result of conduction suppression obtained from the wave analysis. The modified Spitzer cooling timescales based on the nonlocal conduction approximation are consistent with the observed, suggesting that nonlocal conduction may account for the observed conduction suppression in this event. In addition, the conduction suppression mechanism predicts that larger flares may tend to be hotter than expected by the EM-$T$ relation derived by Shibata & Yokoyama (2002)
We investigate the dynamical stability of the Kepler-60 planetary system with three super-Earths. We first determine their orbital elements and masses by Transit Timing Variation (TTV) data spanning quarters Q1-Q16 of the KEPLER mission. The system is dynamically active but the TTV data constrain masses to ~4 Earth masses and orbits in safely wide stable zones. The observations prefer two types of solutions. The true three-body Laplace MMR exhibits the critical angle librating around 45 degrees and aligned apsides of the inner and outer pair of planets. In the Laplace MMR formed through a chain of two-planet 5:4 and 4:3 MMRs, all critical angles librate with small amplitudes of ~30 degrees and apsidal lines in planet's pairs are anti-aligned. The system is simultaneously locked in a three-body MMR with librations amplitude of ~10 degrees. The true Laplace MMR can evolve towards a chain of two-body MMRs in the presence of planetary migration. Therefore the three-body MMR formed in this way seems to be more likely state of the system. However, the true three-body MMR cannot be disregarded a priori and it remains a puzzling configuration that may challenge the planet formation theory.
Low-mass, pre-main sequence stars possess intense high-energy radiation fields as a result of their strong stellar magnetic activity. This stellar UV and X-ray radiation may have a profound impact on the lifetimes of protoplanetary disks. We aim to constrain the X-ray-induced photoevaporation rates of protoplanetary disks orbiting low-mass stars by analyzing serendipitous XMM-Newton and Chandra X-ray observations of candidate nearby (D $<$ 100 pc), young (age $<$ 100 Myr) M stars identified in the GALEX Nearby Young-Star Survey (GALNYSS).
The detection of $\rm z>6$ quasars reveals the existence of supermassive black holes of a few $\rm 10^9~M_{\odot}$. One of the potential pathways to explain their formation in the infant universe is the so-called direct collapse model which provides massive seeds of $\rm 10^5-10^6~M_{\odot}$. An isothermal direct collapse mandates that halos should be of a primordial composition and the formation of molecular hydrogen remains suppressed in the presence of a strong Lyman Werner flux. In this study, we perform high resolution cosmological simulations for two massive primordial halos employing a detailed chemical model which includes $\rm H^-$ cooling as well as realistic opacities for both the bound-free $\rm H^-$ emission and the Rayleigh scattering of hydrogen atoms. We are able to resolve the collapse up to unprecedentedly high densities of $\rm \sim 10^{-3}~g/cm^3$ and to scales of about $\rm 10^{-4}$ AU. Our results show that the gas cools down to $\rm \sim $ 5000 K in the presence of $\rm H^-$ cooling, and induces fragmentation at scales of about 8000 AU in one of the two simulated halos, which may lead to the formation of a binary. In addition, fragmentation also occurs on the AU scale in one of the halos but the clumps are expected to merge on short time scales. Our results confirm that $\rm H^-$ cooling does not prevent the formation of a supermassive star and the trapping of cooling radiation stabilises the collapse on small scales.
We study how the coupling with gravity of theories with non-linearly realized space-time symmetries is modified when one changes the parametrization of the coset. As an example, we focus on the so-called Galileon duality: a reparametrization which maps a Galilean invariant action into another one which enjoys the same symmetry. Starting with a standard coupling with gravity, with a parametric separation between the Planck scale and the typical scale of the coset, one ends up with a theory without such a separation. In particular an infinite set of higher-dimension operators are relevant when the superluminality of the Galileon is measurable in the effective theory. This addresses an apparent paradox since superluminality arises in the dual theory even when absent in the original one.
In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters.
In a wide class of new physics models, there exist scalar fields which obtain vacuum expectation values of high energy scales. We study the possibility that the standard model Higgs field has experienced first-order phase transition at the high energy scale due to the couplings with these scalar fields.We estimate the amount of gravitational waves produced by the phase transition, and discuss observational consequences.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
Most modern astrophysical datasets are multi-dimensional; a characteristic that can nowadays generally be conserved and exploited scientifically during the data reduction/simulation and analysis cascades. Yet, the same multi-dimensional datasets are systematically cropped, sliced and/or projected to printable two-dimensional (2-D) diagrams at the publication stage. In this article, we introduce the concept of the "X3D pathway" as a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3-D) diagrams. The X3D pathway exploits the facts that 1) the X3D 3-D file format lies at the center of a product tree that includes interactive HTML documents, 3-D printing, and high-end animations, and 2) all high-impact-factor & peer-reviewed journals in Astrophysics are now published (some exclusively) online. We argue that the X3D standard is an ideal vector for sharing multi-dimensional datasets, as it provides direct access to a range of different data visualization techniques, is fully-open source, and is a well defined ISO standard. Unlike other earlier propositions to publish multi-dimensional datasets via 3-D diagrams, the X3D pathway is not tied to specific software (prone to rapid and unexpected evolution), but instead compatible with a range of open-source software already in use by our community. The interactive HTML branch of the X3D pathway is also actively supported by leading peer-reviewed journals in the field of Astrophysics. Finally, this article provides interested readers with a detailed set of practical astrophysical examples designed to act as a stepping stone towards the implementation of the X3D pathway for any other dataset.
We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous RXTE observations to obtain broad-band energy coverage of both the disc and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability signal-to-noise ratio (e.g. typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (~0.05-9 Hz) we observe the hard lags intrinsic to the power law component, already well-known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disc variability. At low-frequencies (long time scales) the disc component always leads the power law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high-frequencies (short time scales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disc-fraction increase. This suggests that the distance between the X-ray source and the region of the optically-thick disc where reprocessing occurs, gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disc truncation.
The conventional approach to search for departures from the standard model of physics during Big Bang Nucleosynthesis involves a careful, and subtle measurement of the mass fraction of baryons consisting of helium. Recent measurements of this quantity tentatively support new physics beyond the standard model but, historically, this method has suffered from hidden systematic uncertainties. In this letter, I show that a combined measurement of the primordial deuterium abundance and the primordial helium isotope ratio has the potential to provide a complementary and reliable probe of new physics beyond the standard model. Using the recent determination of the primordial deuterium abundance and assuming that the measured pre-solar 3He/4He meteoritic abundance reflects the primordial value, a bound can be placed on the effective number of neutrino species, Neff(BBN) = 3.01 (+0.95 -0.76, with 95 per cent confidence). Although this value of Neff supports the standard model, it is presently unclear if the pre-solar 3He/4He ratio reflects the primordial value. New astrophysical measurements of the helium isotope ratio in near-pristine environments, together with updated calculations and experimental values of several important nuclear reactions (some of which are already being attempted), will lead to much improved limits on possible departures from the standard model. To this end, I describe an analysis strategy to measure the 3He I flux emitted from nearby low metallicity H II regions. The proposed technique can be attempted with the next generation of large telescopes, and will be easier to realize in metal-poor H II regions with quiescent kinematics.
Reverberation mapping (RM) measurements of broad-line region (BLR) lags in z>0.3 quasars are important for directly measuring black hole masses in these distant objects, but so far there have been limited attempts and success given the practical difficulties of RM in this regime. Here we report preliminary results of 15 BLR lag measurements from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project, a dedicated RM program with multi-object spectroscopy designed for RM over a wide redshift range. The lags are based on the 2014 spectroscopic light curves alone (32 epochs over 6 months) and focus on the Hbeta and MgII broad lines in the 100 lowest-redshift (z<0.8) quasars included in SDSS-RM; they represent a small subset of the lags that SDSS-RM (including 849 quasars to z~4.5) is expected to deliver. The reported preliminary lag measurements are for intermediate-luminosity quasars at 0.3<~z<0.8, including 9 Hbeta lags and 6 MgII lags, for the first time extending RM results to this redshift-luminosity regime and providing direct quasar black hole mass estimates over ~ half of cosmic time. The MgII lags also increase the number of known MgII lags by several-fold, and start to explore the utility of MgII for RM at high redshift. The location of these new lags at higher redshifts on the observed BLR size-luminosity relationship is statistically consistent with the location of the current calibration sample for Hbeta at z<0.3. However, an independent constraint on the relationship slope at z>0.3 is not yet possible due to the limitations in our current lag sample and selection biases inherent to our program. Our results demonstrate the general feasibility and potential of multi-object RM for z>0.3 quasars, and motivate more intensive spectroscopic and photometric monitoring to derive high-quality lag measurements for these objects in future programs.
The spin of a number of black holes (BHs) in binary systems has been measured. In the case of BHs found in low-mass X-ray binaries (LMXBs) the observed values are in agreement with some theoretical predictions based on binary stellar evolution. However, using the same evolutionary models, the calculated spins of BHs in high-mass X-ray binaries (HMXBs) fall short compared to the observations. A possible solution to this conundrum is the accretion of high-specific-angular-momentum material after the formation of the BH, although this requires accretion above the Eddington limit. Another suggestion is that the observed high values of the BHs spin could be the result of an asymmetry during Core Collapse (CC). The only available energy to spin up the compact object during CC is its binding energy. A way to convert it to rotational kinetic energy is by using a Standing Accretion Shock Instability (SASI), which can develop during CC and push angular momentum into the central compact object through a spiral mode ($m = 1$). Here we study the CC-SASI scenario and discuss, in the case of LMXBs and HMXBs, the limits for the spin of a stellar-mass BHs. Our results predict a strong dichotomy in the maximum spin of low-mass compact objects and massive BHs found in HMXBs. The maximum spin value ($|a_\star|$) for a compact object near the mass boundary between BHs and NSs is found to be somewhere between 0.27 and 0.38, depending on whether secular or dynamical instabilities limit the efficiency of the spin up process. For more massive BHs, such as those found in HMXBs, the natal spin is substantially smaller and for $M_{\rm BH}\!>\!8~M_\odot$ spin is limited to values $|a_\star|\!\lesssim\!0.05$. Therefore we conclude that the observed high spins of BHs in HMXBs cannot be the result of a CC-SASI spin up.
We characterize infrared spectral energy distributions of 343 (Ultra) Luminous Infrared Galaxies from $z=0.3-2.8$. We diagnose the presence of an AGN by decomposing individual Spitzer mid-IR spectroscopy into emission from star-formation and an AGN-powered continuum; we classify sources as star-forming galaxies (SFGs), AGN, or composites. Composites comprise 30% of our sample and are prevalent at faint and bright $S_{24}$, making them an important source of IR AGN emission. We combine spectroscopy with multiwavelength photometry, including Herschel imaging, to create three libraries of publicly available templates (2-1000 $\mu$m). We fit the far-IR emission using a two temperature modified blackbody to measure cold and warm dust temperatures ($T_c$ and $T_w$). We find that $T_c$ does not depend on mid-IR classification, while $T_w$ shows a notable increase as the AGN grows more luminous. We measure a quadratic relationship between mid-IR AGN emission and total AGN contribution to $L_{\rm IR}$. AGN, composites, and SFGs separate in $S_8/S_{3.6}$ and $S_{250}/S_{24}$, providing a useful diagnostic for estimating relative amounts of these sources. We estimate that >40% of IR selected samples host an AGN, even at faint selection thresholds ($S_{24}$>100 $\mu$Jy). Our decomposition technique and color diagnostics are relevant given upcoming observations with the James Webb Space Telescope.
Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope (ACT), adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background (CMB) anisotropies -- imaged in intensity and polarization at few arcminute-scale resolution -- will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor (TES) polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices (SQUIDs) and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.
In this paper the anomalous intense pulse of the PSR J0953+0755 was studied in decametre wavelength range. For this pulse two scales of fine structure were discovered. The long-scale structure consists of four components, where the visible dispersion measures of even and odd components are different. The obtained time-scale of the short fine structure is 1 ms. The difference in visible dispersion measure can be caused by propagation of two normal modes of the pulsar radiation and irregularities of electron concentration in the space near the neutron star like upper layers of magnetosphere and pulsar wind.
We analyzed the multi-band optical behaviour of the BL Lacertae object, S5 0716+714, during its outburst state from 2014 November - 2015 March. We took data on 23 nights at three observatories, one in India and two in Bulgaria, making quasi-simultaneous observations in B, V, R, and I bands. We measured multi-band optical fluxes, colour and spectral variations for this blazar on intraday and short timescales. The source was in a flaring state during the period analyzed and displayed intense variability in all wavelengths. R band magnitude of 11.6 was attained by the target on 18 Jan 2015, which is the brightest value ever recorded for S5 0716+714. The discrete correlation function method yielded good correlation between the bands with no measurable time lags, implying that radiation in these bands originate from the same region and by the same mechanism. We also used the structure function technique to look for characteristic timescales in the light curves. During the times of rapid variability, no evidence for the source to display spectral changes with magnitude was found on either of the timescales. The amplitude of variations tends to increase with increasing frequency with a maximum of $\sim$ 22% seen during flaring states in B band. A mild trend of larger variability amplitude as the source brightens was also found. We found the duty cycle of our source during the analyzed period to be $\sim$ 90%. We also investigated the optical spectral energy distribution of S5 0716+714 using B, V, R, and I data points for 21 nights. We briefly discuss physical mechanisms most likely responsible for its flux and spectral variations.
We have analyzed XMM-Newton observations of the high energy peaked blazar, PKS 2155-304, made on 24 May 2002 in the 0.3 - 10 keV X-ray band. These observations display a mini-flare, a nearly constant flux period and a strong flux increase. We performed a time-resolved spectral study of the data, by dividing the data into eight segments. We fitted the data with a power-law and a broken power-law model, and in some of the segments we found a noticeable spectral flattening of the source's spectrum below 10 keV. We also performed time-resolved cross-correlation analyses and detected significant hard and soft lags (for the first time in a single observation of this source) during the first and last parts of the observation, respectively. Our analysis of the spectra, the variations of photon-index with flux as well as the correlation and lags between the harder and softer X-ray bands indicate that both the particle acceleration and synchrotron cooling processes make an important contribution to the emission from this blazar. The hard lags indicate a variable acceleration process. We also estimated the magnetic field value using the soft lags. The value of the magnetic field is consistent with the values derived from the broad-band SED modeling of this source.
We present a multi-wavelength study of the young stellar population in the Cygnus-X DR15 region. We studied young stars forming or recently formed at and around the tip of a prominent molecular pillar and an infrared dark cloud. Using a combination of ground based near-infrared, space based infrared and X-ray data, we constructed a point source catalog from which we identified 226 young stellar sources, which we classified into evolutionary classes. We studied their spatial distribution across the molecular gas structures and identified several groups possibly belonging to distinct young star clusters. We obtained samples of these groups and constructed K-band luminosity functions that we compared with those of artificial clusters, allowing us to make first order estimates of the mean ages and age spreads of the groups. We used a $^{13}$CO(1-0) map to investigate the gas kinematics at the prominent gaseous envelope of the central cluster in DR15, and we infer that the removal of this envelope is relatively slow compared to other cluster regions, in which gas dispersal timescale could be similar or shorter than the circumstellar disk dissipation timescale. The presence of other groups with slightly older ages, associated with much less prominent gaseous structures may imply that the evolution of young clusters in this part of the complex proceeds in periods that last 3 to 5 Myr, perhaps after a slow dissipation of their dense molecular cloud birthplaces.
We present in this paper the new study of variable star AM Cnc, a short period RRab star, in orther to determine, through the light curve and the physical parameters. The Star were observed for a total of 293 sessions shooting, and exhibits light curve modulation, the so called Blazhko effect with the shortest modulation Period=0d.559233 ever observed. We observed this star with the 0,6 mt telescope of the Astronomical Observatory of Andrate (OAA) - To and the result detect small but definite modification in temperature and mean radius of the star itself. All results are compared with previously published literature values and discussed.
Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms that lead to dissipation of the turbulent energy remain to be definitively identified. This work addresses the fundamental physics of turbulent dissipation by examining the velocity-space structure that develops as a result of the collisionless interaction between the turbulent electromagnetic fluctuations and the particles in a low beta plasma. Both two- and three-dimensional (2D and 3D) nonlinear gyrokinetic simulations show an electron velocity-space signature qualitatively similar to that of the linear Landau damping of Alfv\'en waves in a 3D linear simulation. This evidence strongly suggests that the turbulent energy is transferred by Landau damping to electrons in low beta plasmas in both 2D and 3D, making possible the ultimate irreversible heating of the plasma. Although, in the 2D case with no variation along the equilibrium magnetic field, it may be expected that Landau damping is not possible, a common trigonometric correction factor appears in both the resonant denominator and the linear wave frequency, leading to an essentially unchanged resonance condition from the 3D case. Nonetheless, though the qualitative evolution of the 2D and 3D cases is similar, quantitatively the nonlinear energy transfer and subsequent dissipation is substantially slower in the 2D case.
Motivated by recent inferred form of the halo occupation distribution (HOD) of X-ray selected AGNs, in the COSMOS field by Allevato et al. (2012), we investigate the HOD properties of moderate X-ray luminosity Active Galactic Nuclei (mXAGNs) using a simple model based on merging activity between dark matter halos (DMHs) in a $\Lambda$-CDM cosmology. The HODs and number densities of the simulated mXAGNs at $z=0.5$, under the above scenarios to compare with Allevato et al. (2012) results. We find that the simulated HODs of major and minor mergers, and the observed for mXAGNs are consistent among them. Our main result is that minor mergers, contrary to what one might expect, can play an important role in activity mAGNs.
We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin-Helmholtz, Rayleigh-Taylor or Richtmyer-Meshkov instabilities, and plasma particles are continuously accelerated by the interaction with the turbulence. The turbulence gradually decays as it goes away from the shock fronts. Adopting a phenomenological model for the stochastic acceleration, we explicitly solve the temporal evolution of the particle energy distribution in the turbulence. Our results show that the spatial distribution of high-energy particles is different from those for a steady solution. We also show that the contribution of electrons escaped from the acceleration regions significantly softens the photon spectrum. The photon spectrum and surface brightness profile are reproduced by our models. If the escape efficiency is very high, the radio flux from the escaped low-energy electrons can be comparable to that of the WMAP haze. We also demonstrate hadronic models with the stochastic acceleration, but they are unlikely in the viewpoint of the energy budget.
The circumnuclear disk (CND) of the Galactic Center is exposed to many energetic phenomena coming from the supermassive black hole Sgr A* and stellar activities. These energetic activities can affect the chemical composition in the CND by the interaction with UV-photons, cosmic-rays, X-rays, and shock waves. We aim to constrain the physical conditions present in the CND by chemical modeling of observed molecular species detected towards it. We analyzed a selected set of molecular line data taken toward a position in the southwest lobe of the CND with the IRAM 30m and APEX 12-meter telescopes and derived the column density of each molecule using a large velocity gradient (LVG) analysis. The determined chemical composition is compared with a time-dependent gas-grain chemical model based on the UCL\_CHEM code that includes the effects of shock waves with varying physical parameters. Molecules such as CO, HCN, HCO$^+$, HNC, CS, SO, SiO, NO, CN, H$_2$CO, HC$_3$N, N$_2$H$^+$ and H$_3$O$^+$ are detected and their column densities are obtained. Total hydrogen densities obtained from LVG analysis range between $2 \times 10^4$ and $1 \times 10^6\,$cm$^{-3}$ and most species indicate values around several $\times 10^5\,$cm$^{-3}$, which are lower than values corresponding to the Roche limit, which shows that the CND is tidally unstable. The chemical models show good agreement with the observations in cases where the density is $\sim10^4\,$cm$^{-3}$, the cosmic-ray ionization rate is high, $>10^{-15} \,$s$^{-1}$, or shocks with velocities $> 40\,$km s$^{-1}$ have occurred. Comparison of models and observations favors a scenario where the cosmic-ray ionization rate in the CND is high, but precise effects of other factors such as shocks, density structures, UV-photons and X-rays from the Sgr A* must be examined with higher spatial resolution data.
We study in detail how neutrino perturbations can be followed in linear theory by using only terms up to $l=2$ in the Boltzmann hierarchy. We provide a new approximation to the third moment and demonstrate that the neutrino power spectrum can be calculated to a precision of better than $\sim$ 5% for masses up to $\sim$ 1 eV. The matter and CMB power spectra can be calculated far more precisely and typically at least a factor of a few better than with existing approximations. We then proceed to study how the neutrino power spectrum can be reliably calculated even in the presence of non-linear gravitational clustering by using the full non-linear gravitational potential derived from semi-analytic methods based on $N$-body simulations in the Boltzmann evolution hierarchy. Our results agree extremely well with results derived from $N$-body simulations.
We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a scale-invariant spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations, of the kind observed in great detail on large scales today, it also leads to the production of shock waves in the radiation fluid of the very early universe. At very early epochs, $1$ GeV$<T<10^{7}$ GeV, assuming standard model physics, viscous damping is negligible and nonlinear effects turn acoustic waves into shocks after $\sim 10^4$ oscillations. The resulting scale-invariant network of shocks provides a natural mechanism for creating significant departures from local thermal equilibrium as well as primordial vorticity and gravitational waves.
To analyze the SACY (Search for Associations Containing Young stars) survey we developed a method to find young associations and to define their high probability members. These bona fide members enable to obtain the kinematical and the physical properties of each association in a proper way. Recently we noted a concentration in the UV plane and we found a new association we are calling ASYA (All Sky Young Association) for its overall distribution in the sky with a total of 38 bonafide members and an estimated age of 110 Myr, the oldest young association found in the SACY survey. We present here its kinematical, space and Li distributions and its HR diagram.
Spatially resolving the inner dust cavity of the transitional disks is a key to understanding the connection between planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap, in the dust, that was spatially resolved by mid-IR interferometry. Using new NIR interferometric observations, we aim to characterize the 0.1-10~au region of the HD~139614 disk further and identify viable mechanisms for the inner disk clearing. We report the first multiwavelength radiative transfer modeling of the interferometric data acquired on HD~139614 with PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometries. We confirm a gap structure in the um-sized dust, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing surface density profile, and a depletion of 10^3 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD~139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the gaseous disk structure. Indeed, a narrow au-sized gap is expected when a single giant planet interacts with the disk. Assuming that small dust grains are well coupled to the gas, we found that a ~ 3~Mjup planet located at 4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion in gas occurred in the inner disk, in contrast to the dust. However, the dust-depleted inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD~139614 disk.
The 27 Myr periodicity in the fossil extinction record has been confirmed in modern data bases dating back 500 Myr, which is twice the time interval of the original analysis from thirty years ago. The surprising regularity of this period has been used to reject the Nemesis model. A second model based on the sun's vertical galactic oscillations has been challenged on the basis of an inconsistency in period and phasing. The third astronomical model originally proposed to explain the periodicity is the Planet X model in which the period is associated with the perihelion precession of the inclined orbit of a trans-Neptunian planet. Recently, and unrelated to mass extinctions, a trans-Neptunian super-Earth planet has been proposed to explain the observation that the inner Oort cloud objects Sedna and 2012VP113 have perihelia that lie near the ecliptic plane. In this Letter we reconsider the Planet X model in light of the confluence of the modern palaeontological and outer solar system dynamical evidence.
Galactic transients, X-ray and gamma-ray binaries provide a proper environment for particle acceleration. This leads to the production of gamma rays with energies reaching the GeV-TeV regime. MAGIC has carried out deep observations of different transient and variable stellar objects of which we highlight 4 of them here: LSI+61 303, MWC 656, Cygnus X-1 and SN 2014J. We present the results of those observations, including long-term monitoring of Cygnus X-1 and LSI+61 303 (7 and 8 years, respectively). The former is one of the brightest X-ray sources and best studied microquasars across a broad range of wavelengths, whose steady and variable signal was studied by MAGIC within a multiwavelength scenario. The latest results of an unique object, MWC 656, are also shown in this presentation. This source is the first high-mass X-ray binary system detected that is composed of a black hole and a Be star. Finally, we report on the observations of SN 2014J, the nearest Type Ia SN of the last 40 years. Its proximity and early observation gave a remarkable opportunity to study important features of these powerful events.
The direct evaluation of manifestly optimal, cut-sky CMB power spectrum and bispectrum estimators is numerically very costly, due to the presence of inverse-covariance filtering operations. This justifies the investigation of alternative approaches. In this work, we mostly focus on an inpainting algorithm that was introduced in recent CMB analyses to cure cut-sky suboptimalities of bispectrum estimators. First, we show that inpainting can equally be applied to the problem of unbiased estimation of power spectra. We then compare the performance of a novel inpainted CMB temperature power spectrum estimator to the popular apodised pseudo-$C_l$ (PCL) method and demonstrate, both numerically and with analytic arguments, that inpainted power spectrum estimates significantly outperform PCL estimates. Finally, we study the case of cut-sky bispectrum estimators, comparing the performance of three different approaches: inpainting, apodisation and a novel low-l leaning scheme. Providing an analytic argument why the local shape is typically most affected we mainly focus on local type non-Gaussianity. Our results show that inpainting allows to achieve optimality also for bispectrum estimation, but interestingly also demonstrate that appropriate apodisation, in conjunction with low-l cleaning, can lead to comparable accuracy.
The scientific apparatus "Gamma-400" designed for study of hadron and electromagnetic components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the "Gamma-400" apparatus. Due to high granularity of the sensor (pixel size is 55 $mu$m) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.
Double Neutron Stars (DNS) have to survive two supernovae and still remain bound. This sets strong limits on the nature of the second collapse in these systems. We consider the masses and orbital parameters of the DNS population and constrain the two distributions of mass ejection and kick velocities directly from observations with no a-priori assumptions regarding evolutionary models and/or the types of the supernovae involved. We show that there is strong evidence for two distinct types of supernovae in these systems, where the second collapse in the majority of the observed systems involved small mass ejection ($\Delta M\lesssim 0.5M_{\odot}$) and a corresponding low-kick velocity ($v_{k}\lesssim 30 km/sec$). This formation scenario is compatible, for example, with an electron capture supernova. Only a minority of the systems have formed via the standard SN scenario involving larger mass ejection of $\sim 2.2 M_{\odot}$ and kick velocities of up to $400$km/sec. Due to the typically small kicks in most DNS (which are reflected by rather low proper motion), we predict that most of these systems reside close to the galactic disc. In particular, this implies that more NS-NS mergers occur close to the galactic plane. This may have non-trivial implications to the estimated merger rates of DNS and to the rate of LIGO detections.
We report new observations of multiple transitions of the CS molecular lines in the SgrA region of the Galactic center, at an angular resolution of 40" (=1.5 pc). The objective of this paper is to study the polar arc, which is a molecular ridge near the SgrA region, with apparent non-coplanar motions, and a velocity gradient perpendicular to the Galactic plane. With our high resolution dense-gas maps, we search for the base and the origin of the polar arc, which is expected to be embedded in the Galactic disk. We find that the polar arc is connected to a continuous structure from one of the disk ring/arm in both the spatial and velocity domains. This structure near SgrA* has high CS(J=4-3)/CS(J=2-1) ratios >1. That this structure has eluded detection in previous observations, is likely due to the combination of high excitation and low surface brightness temperature. We call this new structure the connecting ridge. We discuss the possible mechanism to form this structure and to lift the gas above the Galactic plane.
We study the dynamic changes of electron energy distribution (EED) through systematically analysing the quasi-simultaneous spectral energy distributions (SEDs) of the flat spectrum radio quasar 3C 279 in different states. With Markov chain Monte Carlo (MCMC) technique we model fourteen SEDs of 3C 279 using a leptonic model with a three-parameter log-parabola electron energy distribution (EED). The 14 SEDs can be satisfactorily fitted with the one-zone leptonic model. The observed $\gamma$ rays in 13 states are attributed to Compton scattering of external infrared photons from a surrounding dusty torus. The curved $\gamma$-ray spectrum observed during 2-8 April 2014 is well explained by the external Compton of dust radiation. It is found that there is a clear positive correlation between the curvature parameter $b$ of the EED and the electron peak energy $\gamma'_{\rm pk}$. No clear correlation between $b$ and the synchrotron peak frequency $\nu_{\rm s}$ is found, due to the varied product of Doppler factor and fluid magnetic field from state to state. We interpret the correlation of $b-\gamma'_{\rm pk}$ in a stochastic acceleration scenario. This positive correlation is in agreement with the prediction in the stage when the balance between acceleration and radiative cooling of the electrons is nearly established in the case of the turbulence spectral index $q=2$.
The cold disk/torus gas surrounding AGN emits fluorescent lines when irradiated by hard X-ray photons. The fluorescent lines of elements other than Fe and Ni are rarely detected due to their relative faintness. We report the detection of K$\alpha$ lines of neutral Si, S, Ar, Ca, Cr, and Mn, along with the prominent Fe K$\alpha$, Fe K$\beta$, and Ni K$\alpha$ lines, from the deep Chandra observation of the low-luminosity Compton-thick AGN in M51. The Si K$\alpha$ line at 1.74 keV is detected at $\sim3\sigma$, the other fluorescent lines have a significance between 2 and 2.5 $\sigma$, while the Cr line has a significance of $\sim1.5\sigma$. These faint fluorescent lines are made observable due to the heavy obscuration of the intrinsic spectrum of M51, which is revealed by Nustar observation above 10 keV. The hard X-ray continuum of M51 from Chandra and Nustar can be fitted with a power-law spectrum with an index of 1.8, reprocessed by a torus with an equatorial column density of $N_{\rm H}\sim7\times10^{24}$ cm$^{-2}$ and an inclination angle of $74$ degrees. This confirms the Compton-thick nature of the nucleus of M51. The relative element abundances inferred from the fluxes of the fluorescent lines are similar to their solar values, except for Mn, which is about 10 times overabundant. It indicates that Mn is likely enhanced by the nuclear spallation of Fe.
In previous works, it has been shown that strong winds exist in hot accretion flows around black holes. Those works focus only on the region close to the black hole thus it is unknown whether or where the wind production stops at large radii. In this paper, we investigate this problem based on hydrodynamical numerical simulations. For this aim, we have taken into account the gravity of both the central black hole and the nuclear star clusters. When calculating the latter, we assume that the velocity dispersion of stars is a constant and the gravitational potential of the nuclear star cluster $\propto \sigma^2 \ln (r)$, where $\sigma$ is the velocity dispersion of stars and $r$ is the distance from the center of the galaxy. Different from previous works, we focus on the region where the gravitational potential is dominated by the star cluster. We find that, same as the accretion flow at small radii, the mass inflow rate decreases inward and the flow is convectively unstable. However, trajectory analysis has shown that there is very few wind launched from the accretion flow. Our result, combined with the results of Yuan et al. (2015), indicates that the mass flux of wind launched from hot accretion flow is described by $\dot{M}_{\rm wind}=\dot{M}_{\rm BH}(r/20r_s)$, with $r\la R_A\equiv GM_{\rm BH}/\sigma^2$. Here $\dot{M}_{\rm BH}$ is the mass accretion rate at the black hole horizon. The value of $R_A$ is similar to the Bondi radius. We argue that the inward decrease of inflow rate is not because of the mass loss via strong wind, but because of the convective motion. The disappearance of wind outside of $R_A$ must be because of the change of the gravitational potential, but the exact reason remains to be probed.
The motion of superfluid vortices in a neutron star crust is at the heart of most theories of pulsar glitches. Pinning of vortices to ions can decouple the superfluid from the crust and create a reservoir of angular momentum. Sudden large scale unpinning can lead to an observable glitch. In this paper we investigate the scattering of a free vortex off a pinning potential and calculate its mean free path, in order to assess whether unpinned vortices can skip multiple pinning sites and come close enough to their neighbours to trigger avalanches, or whether they simply hop from one pinning site to another giving rise to a more gradual creep. We find that there is a significant range of parameter space in which avalanches can be triggered, thus supporting the hypothesis that they may lie at the origin of pulsar glitches. For realistic values of the pinning force and superfluid drag parameters we find that avalanches are more likely in the higher density regions of the crust where pinning is stronger. Physical differences in stellar parameters, such as mass and temperature, may lead to a switch between creep-like motion and avalanches, explaining the different characteristics of glitching pulsars.
We present an analysis of survey observations targeting the leading L4 Jupiter Trojan cloud near opposition using the wide-field Suprime-Cam CCD camera on the 8.2 m Subaru Telescope. The survey covered about 38 deg$^2$ of sky and imaged 147 fields spread across a wide region of the L4 cloud. Each field was imaged in both the $g'$ and the $i'$ band, allowing for the measurement of $g-i$ color. We detected 557 Trojans in the observed fields, ranging in absolute magnitude from $H=10.0$ to $H = 20.3$. We fit the total magnitude distribution to a broken power law and show that the power-law slope rolls over from $0.45\pm 0.05$ to $0.36^{+0.05}_{-0.09}$ at a break magnitude of $H_{b}=14.93^{+0.73}_{-0.88}$. Combining the best-fit magnitude distribution of faint objects from our survey with an analysis of the magnitude distribution of bright objects listed in the Minor Planet Center catalog, we obtain the absolute magnitude distribution of Trojans over the entire range from $H=7.2$ to $H=16.4$. We show that the $g-i$ color of Trojans decreases with increasing magnitude. In the context of the less-red and red color populations, as classified in Wong et al. 2014 using photometric and spectroscopic data, we demonstrate that the observed trend in color for the faint Trojans is consistent with the expected trend derived from extrapolation of the best-fit color population magnitude distributions for bright catalogued Trojans. This indicates a steady increase in the relative number of less-red objects with decreasing size. Finally, we interpret our results using collisional modeling and propose several hypotheses for the color evolution of the Jupiter Trojan population.
We study the correlation between the [O III]$\lambda 5007$ and X-ray luminosities of local Active Galactic Nuclei (AGNs), using a complete, hard X-ray ($>10$ keV) selected sample in the Swift/BAT 9-month catalog. From our optical spectroscopic observations at the South African Astronomical Observatory and the literature, a catalog of [O III]$\lambda 5007$ line flux for all 103 AGNs at Galactic latitudes of $|b|>15^\circ$ is complied. Significant correlations with intrinsic X-ray luminosity ($L_{\rm X}$) are found both for observed ($L_{\rm [O~III]}$) and extinction-corrected ($L_{\rm [O~III]}^{\rm cor}$) luminosities, separately for X-ray unabsorbed and absorbed AGNs. We obtain the regression form of $L_{\rm [O~III]}$ $\propto L_{\rm 2-10\; keV}^{1.18\pm0.07}$ and $L_{\rm [O~III]}^{\rm cor}$ $\propto L_{\rm 2-10\; keV}^{1.16\pm0.09}$ from the whole sample. The absorbed AGNs with low ($<$0.5\%) scattering fractions in soft X-rays show on average smaller $L_{\rm [O~III]}/L_{\rm X}$ and $L_{\rm [O~III]}^{\rm cor}/L_{\rm X}$ ratios than the other absorbed AGNs, while those in edge-on host galaxies do not. These results suggest that a significant fraction of this population are buried in tori with small opening angles. By using these $L_{\rm [O~III]}$ vs. $L_{\rm X}$ correlations, the X-ray luminosity function of local AGNs (including Compton thick AGNs) in a standard population synthesis model gives much better agreement with the [O III]$\lambda 5007$ luminosity function derived from the Sloan Digital Sky Survey than previously reported. This confirms that hard X-ray observations are a very powerful tool to find AGNs with high completeness.
We introduce the Lee Sang Gak Telescope (LSGT), a remotely operated, robotic 0.43-meter telescope. The telescope was installed at the Siding Spring Observatory, Australia, in 2014 October, to secure regular and exclusive access to the dark sky and excellent atmospheric conditions in the southern hemisphere from the Seoul National University (SNU) campus. Here, we describe the LSGT system and its performance, present example images from early observations, and discuss a future plan to upgrade the system. The use of the telescope includes (i) long-term monitoring observations of nearby galaxies, active galactic nuclei, and supernovae; (ii) rapid follow-up observations of transients such as gamma-ray bursts and gravitational wave sources; and (iii) observations for educational activities at SNU. Based on observations performed so far, we find that the telescope is capable of providing images to a depth of R=21.5 mag (point source detection) at 5-sigma with 15 min total integration time under good observing conditions.
CALET (Calorimetric Electron Telescope), installed on the ISS in August 2015, directly measures the electron+positron cosmic rays flux up to 20 TeV. With its proton rejection capability of 1:10^5 and an aperture of 1200 cm^2 sr, it will provide good statistics even well above one TeV, while also featuring an energy resolution of 2%, which allows it to detect fine structures in the spectrum. Such structures may originate from Dark Matter annihilation or decay, making indirect Dark Matter search one of CALET's main science objectives among others such as identification of signatures from nearby supernova remnants, study of the heavy nuclei spectra and gamma astronomy. The latest results from AMS-02 on positron fraction and total electron+positron flux can be fitted with a parametrization including a single pulsar as an extra power law source with exponential cut-off, which emits an equal amount of electrons and positrons. This single pulsar scenario for the positron excess is extrapolated into the TeV region and the expected CALET data for this case are simulated. Based on this prediction for CALET data, the sensitivity of CALET to Dark Matter annihilation in the galactic halo has been calculated. It is shown that CALET could significantly improve the limits compared to current data, especially for those Dark Matter candidates that feature a large fraction of annihilation directly into electron+positron, such as the LKP (Lightest Kaluza-Klein Particle).
We develop a new approach to extracting model-independent information from observations of strong gravitational lenses. The approach is based on the generic properties of images near the fold and cusp catastrophes in caustics and critical curves. Observables used are the relative image positions, the magnification ratios and ellipticities of extended images, and time delays between images with temporally varying intensity. We show how these observables constrain derivatives and ratios of derivatives of the lensing potential near a critical curve. Based on these measured properties of the lensing potential, classes of parametric lens models can then easily be restricted to such parameter values compatible with the measurements, thus allowing fast scans of large varieties of models. Applying our approach to a representative galaxy (JVAS B1422+231) and a galaxy-cluster lens (MACS J1149.5+2223), we show which model-independent information can be extracted in those cases and demonstrate that the parameters obtained by our approach for known parametric lens models agree well with those found by detailed model fitting.
Stellar halos around galaxies retain fundamental evidence of the processes which lead to their build up. Sophisticated models of galaxy formation in a cosmological context yield quantitative predictions about various observable characteristics, including the amount of substructure, the slope of radial mass profiles and three dimensional shapes, and the properties of the stellar populations in the halos. The comparison of such models with the observations provides constraints on the general picture of galaxy formation in the hierarchical Universe, as well as on the physical processes taking place in the halos formation. With the current observing facilities, stellar halos can be effectively probed only for a limited number of nearby galaxies. In this paper we illustrate the progress that we expect in this field with the future ground based large aperture telescopes (E-ELT) and with space based facilities as JWST.
We have developed a full numerical method to study the gas dynamics of cometary ultra-compact (UC) H II regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a $40.9/21.9 M_\odot$ star are simulated. In the bow-shock models, the massive star is assumed to move through dense ($n=8000~cm^{-3}$) molecular material with a stellar velocity of $15~km~s^{-1}$. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne II] 12.81\mum and $H_2~S(2)$ lines from the ionized regions and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell is mainly due to the expansion of the H II region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion. The kinematics of the molecular gas inside the dense shell simply reflects the motion of the dense shell with respect to the star. These differences can be used to distinguish two sets of models.
The black hole binary GS 2023+338 exhibited an unprecedently bright outburst on June 2015. Since June 17th, the high energy instruments on board INTEGRAL detected an extremely variable emission during both bright and low luminosity phases, with dramatic variations of the hardness ratio on time scales of ~seconds. The analysis of the IBIS and SPI data reveals the presence of hard spectra in the brightest phases, compatible with thermal Comptonization with temperature kTe ~ 40 keV. The seed photons temperature is best fit by kT0 ~ 7 keV, that is too high to be compatible with blackbody emission from the disk. This result is consistent with the seed photons being provided by a different source, that we hypothesize to be a synchrotron driven component in the jet. During the brightest phase of flares, the hardness shows a complex pattern of correlation with flux, with a maximum energy released in the range 40-100 keV. The hard X-ray variability for E > 50 keV is correlated with flux variations in the softer band, showing that the overall source variability cannot originate entirely from absorption, but at least part of it is due to the central accreting source.
We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them, the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than convection. Finally we turn to neutron stars with a discussion of the possible origins for their magnetic fields.
Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV and CR induced photons do not account for such processes. Aims. The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included into astrochemical models. Methods. We present a collection of experimental results of more than 10 reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice are used. We derive a formula to reproduce the efficiencies of the chemical desorption process, which considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II we extend these results to astrophysical conditions. Results. The equipartition of energy describes correctly the chemical desorption process on bare surfaces. On icy surfaces, the chemical desorption process is much less efficient and a better description of the interaction with the surface is still needed. Conclusions. We show that the mechanism that directly transforms solid species to gas phase species is efficient for many reactions.
Broad absorption line quasars are among the objects presenting the fastest outflows. The launching mechanism itself is not completely understood. Models in which they could be launched from the accretion disk, and then curved and accelerated by the effect of the radiation pressure, have been presented. We conducted an extensive observational campaign, from radio to optical band, to collect information about their nature and test the models present in the literature, the main dichotomy being between a young scenario and an orientation one. We found a variety of possible orientations, morphologies, and radio ages, not converging to a particular explanation for the BAL phenomenon. From our latest observations in the m- and mm-band, we obtained an indication of a lower dust abundance with respect to normal quasars, thus suggesting a possible feedback process on the host galaxy. Also, in the low-frequency regime we confirmed the presence of CSS components, sometime in conjunction with a GPS one already detected at higher frequencies. Following this, about 70% of our sample turns out to be in a GPS or CSS+GPS phase. We conclude that fast outflows, responsible for the BAL features, can be more easily present among objects going through a restarting or just-started radio phase, where radiation pressure can substantially contribute to their acceleration.
We analyze the angular momenta of massive star forming galaxies (SFGs) at the peak of the cosmic star formation epoch (z~0.8-2.6). Our sample of ~360 log(M*/Msun) ~ 9.3-11.8 SFGs is mainly based on the KMOS^3D and SINS/zC-SINF surveys of H\alpha\ kinematics, and collectively provides a representative subset of the massive star forming population. The inferred halo scale, angular momentum distribution is broadly consistent with that theoretically predicted for their dark matter halos, in terms of mean spin parameter <\lambda> ~ 0.037 and its dispersion ($\sigma_{log(\lambda)}$~0.2). Spin parameters correlate with the disk radial scale, and with their stellar surface density, but do not depend significantly on halo mass, stellar mass, or redshift. Our data thus support the long-standing assumption that on average the specific angular momentum of early disks reflects that of their dark matter halos (jd = jDM), despite the fact that gas enters the virial radius with substantially higher angular momentum, requiring subsequent angular momentum redistribution. The lack of correlation between \lambda x (jd/jDM) and the nuclear stellar density $\Sigma_{*}$(1kpc) favors that disk-internal angular momentum redistribution leads to "compaction" inside massive high-z disks. The average disk to dark halo mass ratio is ~5%, consistent with recent abundance matching results and implying that our high-z disks are strongly baryon dominated.
Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.
Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in-situ. We address this question by using observations of propagating slow magneto-acoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitudes with distance, the observed wave amplitudes are also found to be modulated with time, with similar variations observed throughout the propagation path of the wavetrain. Employing multi-wavelength and multi-instrument data we study the amplitude variations with time as the waves propagate through different layers of the solar atmosphere. By comparing the amplitude-modulation period in different layers, we find that slow magneto-acoustic waves observed in sunspots are externally driven by photospheric p-modes, which propagate upwards into the corona before becoming dissipated.
Transit timing variations (TTVs) of exoplanets are normally interpreted as the consequence of gravitational interaction with additional bodies in the system. However, TTVs can also be caused by deformations of the system transits by starspots, which might thus pose a serious complication in their interpretation. We therefore simulate transit light curves deformed by spot-crossing events for different properties of the stellar surface and the planet, such as starspot position, limb darkening, planetary period, and impact parameter. Mid-transit times determined from these simulations can be significantly shifted with respect to the input values; these shifts cannot be larger than ~1% of the transit duration and depend most strongly on the longitudinal position of the spot during the transit and the transit duration. Consequently, TTVs with amplitudes larger than the above limit are very unlikely to be caused by starspots. We also investigate whether TTVs from sequences of consecutive transits with spot-crossing anomalies can be misinterpreted as the result of an additional body in the system. We use the Generalized Lomb-Scargle periodogram to search for periods in TTVs and conclude that low amplitude TTVs with statistically significant periods around active stars are the most problematic cases. In those cases where the photometric precision is high enough to inspect the transit shapes for deformations, it should be possible to identify TTVs caused by starspots, however, especially for cases with low transit signal to noise light curves (TSNR $\lesssim$ 15) it becomes quite difficult to reliably decide whether these periods come from starspots, physical companions in the system or if they are random noise artifacts.
We employ remote observations of coronal mass ejections (CMEs) and the associated solar flares to forecast the CME-related Forbush decreases, i.e., short-term depressions in the galactic cosmic-ray flux. The relationship between the Forbush effect at the Earth and remote observations of CMEs and associated solar flares is studied via a statistical analysis. Relationships between Forbush decrease magnitude and several CME/flare parameters was found, namely the initial CME speed, apparent width, source position, associated solar-flare class and the effect of successive-CME occurrence. Based on the statistical analysis, remote solar observations are employed for a Forbush-decrease forecast. For that purpose, an empirical probabilistic model is constructed that uses selected remote solar observations of CME and associated solar flare as an input, and gives expected Forbush-decrease magnitude range as an output. The forecast method is evaluated using several verification measures, indicating that as the forecast tends to be more specific it is less reliable, which is its main drawback. However, the advantages of the method are that it provides early prediction, and that the input is not necessarily spacecraft-dependent.
We report periods and JHKL observations for 648 oxygen-rich Mira variables found in two outer bulge fields at b=-7 degrees and l=+/-8 degrees and combine these with data on 8057 inner bulge Miras from the OGLE, Macho and 2MASS surveys, which are concentrated closer to the Galactic centre. Distance moduli are estimated for all these stars. Evidence is given showing that the bulge structure is a function of age. The longer period Miras (log P > 2.6, age about 5 Gyr and younger) show clear evidence of a bar structure inclined to the line of sight in both the inner and outer regions. The distribution of the shorter period (metal-rich globular cluster age) Miras, appears spheroidal in the outer bulge. In the inner region these old stars are also distributed differently from the younger ones and possibly suggest a more complex structure. These data suggest a distance to the Galactic centre, R0, of 8.9 kpc with an estimated uncertainty of 0.4 kpc. The possible effect of helium enrichment on our conclusions is discussed.
We reconstruct the power spectrum of primordial curvature perturbations by applying a well-validated non-parametric technique employing Tikhonov regularisation to the first data release from the Planck satellite, as well as data from the ground-based ACT and SPT experiments, the WiggleZ galaxy redshift survey, the CFHTLenS tomographic weak lensing survey, and spectral analysis of the 'Lyman-alpha forest'. Inclusion of the additional data sets improves the reconstruction on small spatial scales. The reconstructed scalar spectrum (assuming the standard LCDM cosmology) is not scale-free but has an infrared cutoff at k < 5 x 10^-4 Mpc^-1 and several ~2-3 sigma features, of which two at wavenumber k/Mpc^-1 ~ 0.0018 and 0.057 had been seen already in WMAP data. A higher significance ~4 sigma feature at k ~ 0.12 Mpc^-1 is indicated by Planck data, but may be sensitive to the systematic uncertainty around multipole l ~ 1800 in the 217x217 GHz cross-spectrum. In any case accounting for the 'look elsewhere' effect drops its global significance to ~2 sigma. Adding the preliminary detection of a primordial B-mode polarisation signal by BICEP2 allows reconstruction of the tensor power spectrum as well, however its spectral index has a slope opposite to that expected from slow-roll inflation, thus further implicating its likely origin as Galactic dust emission.
Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-art Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are unstable, to different kinds of instabilities depending on the magnetic field orientation, at all radii. The fastest growing modes are usually related to generalizations of the Magnetothermal Instability (MTI) and the Heat-flux-driven Buoyancy Instability (HBI) which operate in heterogeneous media. We find that the effect of sedimentation is to increase (decrease) the predicted growth rates in the inner (outer) cluster region. The unstable modes grow fast compared to the sedimentation timescale. This suggests that the composition gradients as inferred from sedimentation models, which do not fully account for the anisotropic character of the weakly collisional environment, might not be very robust. Our results emphasize the subtleties involved in understanding the gas dynamics of the ICM and argue for the need of a comprehensive approach to address the issue of Helium sedimentation beyond current models.
We have discovered a new, rare triple-mode RR Lyr star, EPIC 201585823, in the Kepler K2 mission Campaign 1 data. This star pulsates primarily in the fundamental and first-overtone radial modes, and, in addition, a third nonradial mode. The ratio of the period of the nonradial mode to that of the first-overtone radial mode, 0.616285, is remarkably similar to that seen in 11 other triple-mode RR Lyr stars, and in 260 RRc stars observed in the Galactic Bulge. This systematic character promises new constraints on RR Lyr star models. We detected subharmonics of the nonradial mode frequency, which are a signature of period doubling of this oscillation; we note that this phenomenon is ubiquitous in RRc and RRd stars observed from space, and from ground with sufficient precision. The nonradial mode and subharmonic frequencies are not constant in frequency or in amplitude. The amplitude spectrum of EPIC 201585823 is dominated by many combination frequencies among the three interacting pulsation mode frequencies. Inspection of the phase relationships of the combination frequencies in a phasor plot explains the `upward' shape of the light curve. We also found that raw data with custom masks encompassing all pixels with significant signal for the star, but without correction for pointing changes, is best for frequency analysis of this star, and, by implication, other RR Lyr stars observed by the K2 mission. We compare several pipeline reductions of the K2 mission data for this star.
After more than half a century of community support related to the science of "solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.
Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to-date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling we have examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and find that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.
Determining when and how the first galaxies reionized the intergalactic medium (IGM) promises to shed light on both the nature of the first objects and the cosmic history of baryons. Towards this goal, quasar absorption lines play a unique role by probing the properties of diffuse gas on galactic and intergalactic scales. In this review we examine the multiple ways in which absorption lines trace the connection between galaxies and the IGM near the reionization epoch. We first describe how the Ly$\alpha$ forest is used to determine the intensity of the ionizing ultraviolet background and the global ionizing emissivity budget. Critically, these measurements reflect the escaping ionizing radiation from all galaxies, including those too faint to detect directly. We then discuss insights from metal absorption lines into reionization-era galaxies and their surroundings. Current observations suggest a buildup of metals in the circumgalactic environments of galaxies over $z \sim 6$ to 5, although changes in ionization will also affect the evolution of metal line properties. A substantial fraction of metal absorbers at these redshifts may trace relatively low-mass galaxies. Finally, we review constraints from the Ly$\alpha$ forest and quasar near zones on the timing of reionization. Along with other probes of the high-redshift Universe, absorption line data are consistent with a relatively late end to reionization ($5.5 \lesssim z \lesssim 7$); however the constraints are still fairly week. Significant progress is expected to come through improved analysis techniques, increases in the number of known high-redshift quasars from optical and infrared sky surveys, large gains in sensitivity from next-generation observing facilities, and synergies with other probes of the reionization era.
Three decades of searches have revealed 154 Wolf-Rayet (WR) stars in M31, with 62 of WC type, 92 of WN type and zero of transition type WN/C or WC/N. In apparent contrast, about two percent of the WR stars in the Galaxy, the LMC and M33 simultaneously display strong lines of carbon and nitrogen, i.e. they are transition type WN/C or WC/N stars. We report here the serendipitous discovery of M31 WR 84-1, the first transition star in M31, located at RA = 00:43:43.61 DEC = +41:45:27.95 (J2000). We present its spectrum, classify it as WN5/WC6, and compare it with other known transition stars. The star is unresolved in Hubble Space Telescope narrowband and broadband images, while its spectrum displays strong, narrow emission lines of hydrogen, [NII], [SII] and [OIII]; this indicates a nebula surrounding the star. The radial velocity of the nebular lines is consistent with that of gas at the same position in the disc of M31. The metallicity at the 11.8 kpc galactocentric distance of M31 84-1 is approximately solar, consistent with other known transition stars. We suggest that modest numbers of reddened WR stars remain to be found in M31.
To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of 3C 454.3, 3C 279 and S5 0716+714. CCD magnitudes in B, V, R and I pass-bands were determined for $\sim$ 7000 new optical observations from 114 nights made during 2011 - 2014, with an average length of $\sim$ 4 h each, at seven optical telescopes. We measured multiband optical flux and colour variations on diverse timescales. We also investigated its spectral energy distribution using B, V, R, I, J and K pass-band data. We discuss possible physical causes of the observed spectral variability.
Observational data, especially astrophysical data, is often limited by gaps in data that arises due to lack of observations for a variety of reasons. Such inadvertent gaps are usually smoothed over using interpolation techniques. However the smoothing techniques can introduce artificial effects, especially when non-linear analysis is undertaken. We investigate how gaps can affect the computed values of correlation dimension of the system, without using any interpolation. For this we introduce gaps artificially in synthetic data derived from standard chaotic systems, like the R{\"o}ssler and Lorenz, with frequency of occurrence and size of missing data drawn from two Gaussian distributions. Then we study the changes in correlation dimension with change in the distributions of position and size of gaps. We find that for a considerable range of mean gap frequency and size, the value of correlation dimension is not significantly affected, indicating that in such specific cases, the calculated values can still be reliable and acceptable. Thus our study introduces a method of checking the reliability of computed correlation dimension values by calculating the distribution of gaps with respect to its size and position. This is illustrated for the data from light curves of three variable stars, R Scuti, U Monocerotis and SU Tauri. We also demonstrate how a cubic spline interpolation can cause a time series of Gaussian noise with missing data to be misinterpreted as being chaotic in origin. This is demonstrated for the non chaotic light curve of variable star SS Cygni, which gives a saturated D$_{2}$ value, when interpolated using a cubic spline. In addition we also find that a careful choice of binning, in addition to reducing noise, can help in shifting the gap distribution to the reliable range for D$_2$ values.
We develop, in the context of general relativity, the notion of a geoid -- a surface of constant "gravitational potential". In particular, we show how this idea naturally emerges as a specific choice of a previously proposed, more general and operationally useful construction called a quasilocal frame -- that is, a choice of a two-parameter family of timelike worldlines comprising the worldtube boundary of the history of a finite spatial volume. We study the geometric properties of these geoid quasilocal frames, and construct solutions for them in some simple spacetimes. We then compare these results -- focusing on the computationally tractable scenario of a non-rotating body with a quadrupole perturbation -- against their counterparts in Newtonian gravity (the setting for current applications of the geoid), and we compute general-relativistic corrections to some measurable geometric quantities.
We study the motion of test particles in the metric of a localized and slowly rotating astronomical source, within the framework of linear gravitoelectromagnetism, grounded on a Post-Minkowskian approximation of general relativity. Special attention is paid to gravitational inductive effects due to time-varying gravitomagnetic fields. We show that, within the limits of the approximation mentioned above, there are cumulative effects on the orbit of the particles either for planetary sources or for binary systems. They turn out to be negligible.
We use $\delta N$ formalism to study the non-Gaussianity of the primordial curvature perturbation on an uniform density hypersurfaces generated by warm inflation for the first time. After introducing the framework of warm inflation and $\delta N$ formalism, we obtain an analytic expression for the nonlinear parameter $f_{NL}$ that describes the non-Gaussianity in slow roll approximation. We analyse the magnitude of $f_{NL}$ and compare our result with those of standard inflation. Then we discuss two concrete examples: quartic chaotic model and hilltop model. The quartic potential model can again be in very good agreement with the Planck results in warm inflationary scenario, and we give out the concrete results of how nonlinear parameter depend on the dissipation strength of warm inflation and the amounts of expansion. We find the range of nonlinear parameters in the two cases are both well inside the allowed region of Planck.
In this talk, we present the package GravitinoPack that calculates decays of unstable supersymmetric particles, involving gravitinos in the final or initial state. If the gravitino is the dark matter particle and therefore stable, the package calculates the decays of the lightest neutralino, and the lighter stau or stop NLSP into the gravitino LSP and one or two Standard Model particles. On the other hand, assuming that the gravitino is unstable, GravitinoPack calculates all its two-body and the three-body decay widths to the neutralino LSP and Standard Model particles. Since all these decays, involving the gravitino, are of gravitational nature, the lifetime of the decaying particle can be of the order of seconds are more, hence called "late decays". The precise knowledge of all these partial decay widths enables the user to apply accurately the relevant cosmological constraints.
The opacity of the Earth to incident ultra high energy neutrinos is directly connected with the behaviour of the neutrino - nucleon ($\sigma^{\nu N}$) cross sections in a kinematic range utterly unexplored. In this work we investigate how the uncertainties in $\sigma^{\nu N}$ due the different QCD dynamic models modify the neutrino absorption while they travel across the Earth. In particular, we compare the predictions of two extreme scenarios for the high energy behaviour of the cross section, which are consistent with the current experimental data. The first scenario considered is based on the solution of the linear DGLAP equations at small-$x$ and large-$Q^2$, while the second one take into account the unitarity effects in the neutrino - nucleon cross section by the imposition of the Froissart bound behaviour in the nucleon structure functions at large energies. Our results indicate that probability of absorption and the angular distribution of neutrino events are sensitive to the the QCD dynamics at ultra high energies.
We consider cosmological dynamics in the theory of gravity with the scalar field possessing the nonminimal kinetic coupling to curvature given as $\kappa G^{\mu\nu}\phi_{,\mu}\phi_{,\nu}$, and the Higgs-like potential $V(\phi)=\frac{\lambda}{4}(\phi^2-\phi_0^2)^2$. Using the dynamical system method, we analyze stationary points, their stability, and all possible asymptotical regimes of the model under consideration. We show that the Higgs field with the kinetic coupling provides an existence of accelerated regimes of the Universe evolution. There are three possible cosmological scenarios with acceleration: (i) {\em The late-time inflation} when the Hubble parameter tends to the constant value, $H(t)\to H_\infty=(\frac23 \pi G\lambda\phi_0^4)^{1/2}$ as $t\to\infty$, while the scalar field tends to zero, $\phi(t)\to 0$, so that the Higgs potential reaches its local maximum $V(0)=\frac14 \lambda\phi_0^4$. (ii) {\em The Big Rip} when $H(t)\sim(t_*-t)^{-1}\to\infty$ and $\phi(t)\sim(t_*-t)^{-2}\to\infty$ as $t\to t_*$. (iii) {\em The Little Rip} when $H(t)\sim t^{1/2}\to\infty$ and $\phi(t)\sim t^{1/4}\to\infty$ as $t\to\infty$. Also, we derive modified slow-roll conditions for the Higgs field and demonstrate that they lead to the Little Rip scenario.
This article looks at philosophical aspects and questions that modern astrophysical research gives rise to. Other than cosmology, astrophysics particularly deals with understanding phenomena and processes operating at "intermediate" cosmic scales, which has rarely aroused philosophical interest so far. Being confronted with the attribution of antirealism by Ian Hacking because of its observational nature, astrophysics is equipped with a characteristic methodology that can cope with the missing possibility of direct interaction with most objects of research. In its attempt to understand the causal history of singular phenomena it resembles the historical sciences, while the search for general causal relations with respect to classes of processes or objects can rely on the "cosmic laboratory": the multitude of different phenomena and environments, naturally provided by the universe. Furthermore, the epistemology of astrophysics is strongly based on the use of models and simulations and a complex treatment of large amounts of data.
We employ the graviton self-energy induced by a massless, minimally coupled (MMC) scalar on de Sitter background to compute the quantum corrections to the gravitational potentials of a static point particle with a mass $M$. The Schwinger-Keldysh formalism is used to derive real and causal effective field equations. When evaluated at the one-loop order, the gravitational potentials exhibit a secular decrease in the observed gravitational coupling $G$. This can also be interpreted as a (time dependent) anti-screening of the mass $M$.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
We develop a formalism for modelling the impact of dark matter subhaloes on cold thin streams. Our formalism models the formation of a gap in a stream in angle-frequency space and is able to handle general stream and impact geometry. We analyse an N-body simulation of a cold stream formed from a progenitor on an eccentric orbit in an axisymmetric potential, which is perturbed by a direct impact from a $10^8 M_\odot$ subhalo, and produce a complete generative model of the perturbed stream that matches the simulation well at a range of times. We show how the results in angle-frequency space can be related to physical properties of the gaps and that previous results for more constrained simulations are recovered. We demonstrate how our results are dependent upon the mass of the subhalo and the location of the impact along the stream. We find that gaps formed far downstream grow more rapidly than those closer to the progenitor due to the more ordered nature of the stream members far from the progenitor. Additionally, we show that the minimum gap density plateaus in time at a value that decreases with increasing subhalo mass.
We derive expressions for the photophoretic force on opaque spherical particles in a dilute gas in the optically thick regime where the radiation field is in local thermal equilibrium. Under those conditions, the radiation field has a simple form, leading to well defined analytical approximations for the photophoretic force that also consider both the internal thermal conduction within the particle, and the effects of heat conduction and radiation to the surrounding gas. We derive these results for homogeneous spherical particles; and for the double layered spheres appropriate for modeling solid grains with porous aggregate mantles. Then, as a specific astrophysical application of these general physical results, we explore the parameter space relevant to the photophoresis driven drift of dust in protoplanetary disks. We show that highly porous silicate grains have sufficiently low thermal conductivities that photophoretic effects, such as significant relative velocities between particles with differing porosity or levitation above the midplane, are expected to occur.
We use solar occultations observed by the Visual and Infrared Mapping Spectrometer aboard the Cassini Spacecraft to extract the 1 to 5 micron transmission spectrum of Saturn, as if it were a transiting exoplanet. We detect absorption from methane, ethane, acetylene, aliphatic hydrocarbons, and possibly carbon monoxide with peak-to-peak features of up to 90 parts-per-million despite the presence of ammonia clouds. We also find that atmospheric refraction, as opposed to clouds or haze, determines the minimum altitude that could be probed during mid-transit. Self-consistent exoplanet atmosphere models show good agreement with Saturn's transmission spectrum but fail to reproduce a large absorption feature near 3.4 microns likely caused by gaseous ethane and a C-H stretching mode of an unknown aliphatic hydrocarbon. This large feature is located in one of the Spitzer Space Telescope bandpasses and could alter interpretations of transmission spectra if not properly modeled. The large signal in Saturn's transmission spectrum suggests that transmission spectroscopy of cold, long-period gaseous exoplanets should be possible with current and future observatories. Motivated by these results, we briefly consider the feasibility of a survey to search for and characterize cold exoplanets analogous to Jupiter and Saturn using a target-of-opportunity approach.
We discuss an idealized model of halo formation, in which a collapsing halo node is tetrahedral, with a filament extruding from each of its four faces, and with a wall connecting each pair of filaments. In the model, filaments generally spin when they form, and the halo spins if and only if there is some rotation in filaments. This is the simplest-possible fully three-dimensional halo collapse in the 'origami approximation,' in which voids are irrotational, and the dark-matter sheet out of which dark-matter structures form is allowed to fold in position-velocity phase space, but not stretch (i.e., it cannot vary in density along a stream). Up to an overall scaling, the four filament directions, and only three other quantities, such as filament spins, suffice to determine all of the collapse's properties: the shape, mass, and spin of the halo; the densities per unit length and spins of all filaments; and masses per unit area of the walls. If the filaments are arranged regular-tetrahedrally, filament properties obey simple laws, reminiscent of angular-momentum conservation. The model may be most useful in understanding spin correlations between neighboring galaxies joined by filaments; these correlations would give intrinsic alignments between galaxies, essential to understand for accurate cosmological weak-lensing measurements.
Using general-relativistic hydrodynamical simulations, we show that merging binary neutron stars can form hypermassive neutrons stars that undergo the one-arm spiral instability. We study the particular case of a dynamical capture merger where the stars have a small spin, as may arise in globular clusters, and focus on an equal-mass scenario where the spins are aligned with the orbital angular momentum. We find that this instability develops when post-merger fluid vortices lead to the generation of a toroidal remnant - a configuration whose maximum density occurs in a ring around the center-of-mass - with high vorticity along its rotation axis. The instability quickly saturates on a timescale of $\sim 10$ ms, with the $m=1$ azimuthal density multipole mode dominating over higher modes. The instability also leaves a characteristic imprint on the post-merger gravitational wave signal that could be detectable if the instability persists in long-lived remnants.
We present the calculation of the Lyman-alpha (Lyman-$\alpha$) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range ($z = 2 - 5$). Furthermore, we show a comprehensive application of our calculations to the Quasar- Lyman-$\alpha$ cross-correlation function. Our results indicate that the signal of relativistic effects can be as large as 30% at Baryonic Acoustic Oscillation (BAO) scale, which is much larger than anticipated and mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross- correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considering cross-correlations between tracers with very different biases, and should be included in the data analysis of the current and future surveys. Moreover, the idea presented in this paper is highly complementary to other techniques and observables trying to isolate the effect of the relativistic corrections and thus test the validity of the theory of gravity beyond the Newtonian regime.
The transport of gas towards the centre of galaxies is critical for black hole feeding and, indirectly, it can control active galactic nucleus (AGN) feedback. We have quantified the molecular gas inflow in the central R<1kpc of M51 to be 1 Msun/yr, using a new gravitational torque map and the molecular gas traced by the PdBI Arcsecond Whirlpool Survey (PAWS). The nuclear stellar bar is responsible for this gas inflow. We have also used torque profiles to estimate the location of dynamical resonances, suggesting a corotation for the bar at R~20", and a corotation for the spiral at R~100". We demonstrate how important it is to correct 3.6um images for dust emission in order to compute gravitational torques, and we carefully examine further sources of uncertainty. Our observational measurement of gas inflow can be compared with nuclear molecular outflow rates and provide useful constraints for numerical simulations.
We present a pilot study of the z=2.923 radio galaxy MRC0943-242, where we for the first time combine information from ALMA and MUSE data cubes. Even with modest integration times, we disentangle an AGN and a starburst dominated set of components. These data reveal a highly complex morphology, as the AGN, starburst, and molecular gas components show up as widely separated sources in dust continuum, optical continuum and CO line emission observations. CO(1-0) and CO(8-7) line emission suggest that there is a molecular gas reservoir offset from both the dust and the optical continuum that is located ~90kpc from the AGN. The UV line emission has a complex structure in emission and absorption. The line emission is mostly due to i) a large scale ionisation cone energised by the AGN, ii) a Ly-alpha emitting bridge of gas between the radio galaxy and a heavily star-forming set of components. Strangely, the ionisation cone has no Ly-alpha emission. We find this is due to an optically thick layer of neutral gas with unity covering fraction spread out over a region of at least ~100kpc from the AGN. Other, less thick absorption components are associated with Ly-alpha emitting gas within a few tens of kpc from the radio galaxy and are connected by a bridge of emission. We speculate that this linear structure of dust, Ly-alpha and CO emission, and the redshifted absorption seen in the circum-nuclear region may represent an accretion flow feeding gas into this massive AGN host galaxy.
We have spent 50 years in heated discussion over which populations of solar energetic particles (SEPs) are accelerated at flares and which by shock waves driven out from the Sun by coronal mass ejections (CMEs). The association of the large "gradual" SEP events with shock acceleration is supported by the extensive spatial distribution of SEPs and by the delayed acceleration of the particles. The relative abundances of the elements in these gradual events are a measure of those in the ambient solar corona, differing from those in the photosphere by a widely-observed function of the first ionization potential (FIP) of the elements. SEP events we call "impulsive", the traditional "3He-rich" events with enhanced heavy-element abundances, are associated with type III radio bursts, flares, and narrow CMEs; they selectively populate flux tubes that thread a localized source, and they are fit to new particle-in-cell models of magnetic reconnection on open field lines as found in solar jets. These models help explain the strong enhancements seen in heavy elements as a power (of 2 - 8) in the mass-to-charge ratio A/Q throughout the periodic table from He to Pb. A study of the temperature dependence of A/Q shows that the source plasma in impulsive SEP events must lie in the range of 2-4 MK to explain the pattern of abundances. This is much lower than the temperatures of >10 MK seen on closed loops in solar flares. Recent studies of A/Q-dependent enhancements or suppressions from scattering during transport show source plasma temperatures in gradual SEP events to be 0.8-1.6 MK in 69% of the events, i.e. coronal plasma; 24% of the events show reaccelerated impulsive-event material.
The seven-dish KAT-7 array was built as an engineering test-bed for the 64-dish Karoo Array Telescope, known as MeerKAT, which is the South African precursor of the Square Kilometre Array (SKA). KAT-7 and MeerKAT are located close to the South African SKA core site in the Northern Cape's Karoo desert region. Construction of the KAT-7 array was completed in December 2010. The short baselines (26 to 185 m) and low system temperature (T$_{\rm sys} \sim$ 26 K) of the telescope make it very sensitive to large-scale, low-surface-brightness emission, which is one of the HI science driver for MeerKAT and one of the future strength of FAST. While the main purpose of KAT-7 was to test technical solutions for MeerKAT and the SKA, scientific targets were also observed during commissioning to test the HI line mode and the first results obtained are presented. A description of MeerKAT and an update on its construction is also given. Early science should start in mid-2016 with a partial array and the full array should be completed at the end of 2017. For cosmic-web research (detection of low column density HI), a future combination of data from FAST and MeerKAT should allow to explore the unknown territory of $< 10^{18}$ cm$^{-2}$ surface densities and the possible connection between spiral galaxies and the surrounding cosmic web.
Observations of the isolated globule B335 with ALMA have yielded absorption features against the continuum that are redshifted from the systemic velocity in both HCN and HCO$^+$ lines. These features provide unambiguous evidence for infall toward a central luminosity source. Previously developed models of inside-out collapse can match the observed line profiles of HCN and HCO$^+$ averaged over the central 50 AU. At the new distance of 100 pc, the inferred infall radius is 0.012 pc, the mass infall rate is $3 \times 10^{-6}$ solar masses per year, the age is 50,000 years, and the accumulated mass in the central zone is 0.15 solar masses, most of which must be in the star or in parts of a disk that are opaque at 0.8 mm. The continuum detection indicates an optically thin mass (gas and dust) of only $7.5\times 10^{-4}$ solar masses in the central region, consistent with only a very small disk mass.
Foreground subtraction in global redshifted 21 cm measurements is limited by frequency-dependent (chromatic) structure in antenna beam patterns. Chromatic beams couple angular structures in Galactic foreground emission to spectral structures that may not be removed by smooth functional forms. We report results for simulations based on two dipole antennas used by the Experiment to Detect the Global EoR Signature (EDGES). The residual levels in simulated foreground-subtracted spectra are found to differ substantially between the two antennas, suggesting that antenna design must be carefully considered. Residuals are also highly dependent on the right ascension and declination of the antenna pointing, with RMS values differing by as much as a factor of 20 across pointings. For EDGES and other ground-based experiments with zenith pointing antennas, right ascension and declination correspond directly to the local sidereal time and the latitude of the deployment site, hence chromatic beam effects should be taken into account when selecting sites. We introduce the "blade" dipole antenna and show, via simulations, that it has better chromatic performance than the "fourpoint" antenna previously used for EDGES. The blade antenna yields 1-5~mK residuals across the entire sky after a 5-term polynomial is removed from simulated spectra, whereas the fourpoint antenna typically requires a 6-term polynomial for comparable residuals. For both antennas, the signal-to-noise ratio of recovered 21 cm input signals peaks for a 5-term polynomial foreground fit given realistic thermal noise levels.
We review the latest findings on extra-solar planets and their potential to support Earth-like life. Focusing on planets orbiting Red Dwarf (RD) stars, the most abundant stellar type, we show that including RDs as potential host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbor by up to 10. We argue that binary and multiple star systems need to be taken into account when discussing exoplanet habitability. Early considerations indicated that conditions on RD planets would be inimical to life, as their Habitable Zones (where liquid water could exist) would be so close as to make planets tidally locked to their star. This was thought to cause an erratic climate and expose life forms to flares of ionizing radiation. Recent calculations show that these negative factors are less severe than originally thought. It has been argued that the lesser photon energy of the radiation of the relatively cool RDs would not suffice for Oxygenic Photosynthesis (OP) and other related energy expending reactions. Numerous authors suggest that OP on RD planets may evolve to utilize photons in the infrared. We however argue, by analogy to the evolution of OP and the environmental physiology and distribution of land-based vegetation on Earth, that the evolutionary pressure to utilize infrared radiation would be small. This is because vegetation on RD planets could enjoy continuous illumination of moderate intensity, containing a significant component of photosynthetic 400-700 nm radiation. We conclude that conditions for OP could exist on RD planets and consequently the evolution of complex life might be possible. Furthermore, the huge number and the long lifetime of RDs make it more likely to find planets with photosynthesis and life around RDs than around solar type stars.
Supernovae of type Ia (SNe Ia) are believed to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs). However, the mass accretion process onto CO WDs is still not completely understood. In this paper, we study the accretion of He-rich matter onto CO WDs and explore a scenario in which a strong wind forms on the surface of the WD if the total luminosity exceeds the Eddington limit. Using a stellar evolution code called modules for experiments in stellar astrophysics (MESA), we simulated the He accretion process onto CO WDs for WDs with masses of 0.6-1.35Msun and various accretion rates of 10^{-8}-10^{-5}Msun/yr. If the contribution of the total luminosity is included when determining the Eddington accretion rate, then a super-Eddington wind could be triggered at relatively lower accretion rates than those of previous studies based on steady-state models. The super-Eddington wind can prevent the WDs with high accretion rates from evolving into red-giant-like He stars. We found that the contributions from thermal energy of the WD are non-negligible, judging by our simulations, even though the nuclear burning energy is the dominating source of luminosity. We also provide the limits of the steady He-burning regime in which the WDs do not lose any accreted matter and increase their mass steadily, and calculated the mass retention efficiency during He layer flashes for various WD masses and accretion rates. These obtained results can be used in future binary population synthesis computations.
The galaxy cluster RX J0603.3+4214 at z=0.225 is one of the rarest clusters boasting an extremely large (~2 Mpc) radio-relic. Because of the remarkable morphology of the relic, the cluster is nicknamed "Toothbrush Cluster". Although the cluster's underlying mass distribution is one of the critical pieces of information needed to reconstruct the merger scenario responsible for the puzzling radio-relic morphology, its proximity to the Galactic plane b~10 deg has imposed significant observational challenges. We present a high-resolution weak-lensing study of the cluster with Subaru/Suprime Cam and Hubble Space Telescope imaging data. Our mass reconstruction reveals that the cluster is comprised of complicated dark matter substructures closely tracing the galaxy distribution, however in contrast with the relatively simple binary X-ray morphology. Nevertheless, we find that the cluster mass is still dominated by the two most massive clumps aligned north-south with a ~3:1 mass ratio (M_{200}=6.29_{-1.62}^{+2.24} x 10^{14} Msun and 1.98_{-0.74}^{+1.24} x 10^{14} Msun for the northern and southern clumps, respectively). The southern mass peak is ~2' offset toward the south with respect to the corresponding X-ray peak, which has a "bullet"-like morphology pointing south. Comparison of the current weak-lensing result with the X-ray, galaxy, and radio-relic suggests that perhaps the dominant mechanism responsible for the observed relic may be a high-speed collision of the two most massive subclusters, although the peculiarity of the morphology necessitates involvement of additional sub-clusters. Careful numerical simulations should follow in order to obtain more complete understanding of the merger scenario utilizing all existing observations.
In the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), we investigate the resolved stellar halos of two nearby galaxies (the elliptical Centaurus A and the spiral Sculptor, D $\sim3.7$ Mpc) out to a projected galactocentric radius of 150 kpc with Magellan/Megacam. The survey has led to the discovery of $\sim$20 faint satellites to date, plus prominent streams and substructures in two environments that are substantially different from the Local Group, i.e. the Centaurus A group dominated by an elliptical and the loose Sculptor group of galaxies. These discoveries clearly attest to the importance of past and ongoing accretion processes in shaping the halos of these nearby galaxies, and provide the first census of their satellite systems down to an unprecedented $M_V<-8$. The detailed characterization of the stellar content, shape and gradients in the extended halos of Sculptor, Centaurus A, and their dwarf satellites provides key constraints on theoretical models of galaxy formation and evolution.
The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with $a/b>1.8$ and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60\%, and clusters of BMI type with dominant cD galaxy, ~ 35%. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have merging with other clusters and groups of galaxies, in the result of which the rotation has been prevented.
In this paper, we used standard rulers and standard candles (separately and jointly) to explore five popular dark energy models under assumption of spatial flatness of the Universe. As standard rulers, we used a data set comprising 118 galactic-scale strong lensing systems (individual standard rulers if properly calibrated for the mass density profile) combined with BAO diagnostics (statistical standard ruler). Supernovae Ia served asstandard candles. Unlike in the most of previous statistical studies involving strong lensing systems, we relaxed the assumption of singular isothermal sphere (SIS) in favor of its generalization: the power-law mass density profile. Therefore, along with cosmological model parameters we fitted the power law index and its first derivative with respect to the redshift (thus allowing for mass density profile evolution). It turned out that the best fitted $\gamma$ parameters are in agreement with each other irrespective of the cosmological model considered. This demonstrates that galactic strong lensing systems may provide a complementary probe to test the properties of dark energy. Fits for cosmological model parameters which we obtained are in agreement with alternative studies performed by the others. Because standard rulers and standard candles have different parameter degeneracies, combination of standard rulers and standard candles gives much more restrictive results for cosmological parameters. At last, we attempted at model selection based on information theoretic criteria (AIC and BIC). Our results support the claim, that cosmological constant model is still the best one and there is no (at least statistical) reason to prefer any other more complex model.
We present ATCA continuum observations at a wavelength of 6.8 mm of five debris disks: $\beta$ Pictoris, q$^1$ Eridani, HD 107146, HD 181327, and HD 95086. These observations provide the detection at the longest wavelengths obtained to date for all these debris disks. By combining our 6.8 mm data with previous detections at shorter sub-millimeter/millimeter wavelengths we measure the long wavelength spectral index of these sources. We then use previous estimates for the temperature of the emitting dust to derive the spectral index of the dust emissivity. Under the assumption that all the detected flux comes from dust only, we constrain the slope of the solid size distribution, assumed to be a power-law. The values that we infer for the slope of the size distribution range between about 3.36 and 3.50. We compare our findings with the case of the Fomalhaut debris disk and use these results to test the predictions of collisional cascades of planetesimal belts.
We present sensitive CO (J = 1 - 0) emission line observations of three metal-poor dwarf irregular galaxies Leo P (Z ~ 3% Z_Solar), Sextans A (Z ~ 7.5% Z_Solar), and Sextans B (Z ~ 7.5% Z_Solar), all obtained with the Combined Array for Millimeter-wave Astronomy (CARMA) interferometer. While no CO emission was detected, the proximity of the three systems allows us to place very stringent (4 sigma) upper limits on the CO luminosity (L_CO) in these metal-poor galaxies. We find the CO luminosities to be L_CO < 2900 K km/s pc^2 for Leo P, L_CO < 12400 K km/s pc^2 for Sextans A, and L_CO < 9700 K km/s pc^2 for Sextans B. Comparison of our results with recent observational estimates of the factor for converting between L_CO and the mass of molecular hydrogen, as well as theoretical models, provides further evidence that either the CO-to-H_2 conversion factor increases sharply as metallicity decreases, or that stars are forming in these three galaxies very efficiently, requiring little molecular hydrogen.
A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3-D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a 'moist greenhouse' explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing 'inverse' climate calculations to determine habitable zone boundaries using 1-D models.
We present observations of HDCO and H2CO emission toward a sample of 15 Class 0 protostars in the Orion A and B clouds. Of these, eleven protostars are Herschel-identified PACS Bright Red Sources (PBRS) and four are previously identified protostars. Our observations revealed the chemical properties of the PBRS envelope for the first time. The column densities of HDCO and H2CO are derived from single dish observations at an angular resolution of ~20 arcsec (~8400 AU). The degree of deuteration in H2CO ([HDCO]/[H2CO]) was estimated to range from 0.03 to 0.31. The deuterium fractionation of most PBRS (70%) is similar to that of the non-PBRS sources. Three PBRS (30%) exhibit high deuterium fractionation, larger than 0.15. The large variation of the deuterium fractionation of H2CO in the whole PBRS sample may reflect the diversity in the initial conditions of star forming cores. There is no clear correlation between the [HDCO]/[H2CO] ratio and the evolutionary sequence of protostars.
Powered by a supermassive black hole with an accretion disk, the spectra of active galactic nuclei (AGNs) are characterized by prominent emission lines including Balmer lines. The unification schemes of AGNs require the existence of a thick molecular torus that may hide the broad emission line region from the view of observers near the equatorial direction. In this configuration, one may expect that the far UV radiation from the central engine can be Raman scattered by neutral hydrogen to reappear around Balmer and Paschen emission lines which can be identified with broad wings. We produce H$\alpha$, H$\beta$ and Pa$\alpha$ wings using a Monte Carlo technique to investigate their properties. The neutral scattering region is assumed to be a cylindrical torus specified by the inner and outer radii and the height. While the covering factor of the scattering region affects the overall strengths of the wings, the wing widths are primarily dependent on the neutral hydrogen column density $N_{\rm HI}$ being roughly proportional to $N_{\rm HI}^{1/2}$. In particular, with $N_{\rm HI}=10^{23}{\rm\ cm^{-2}}$ the H$\alpha$ wings typically show a width $\sim 2\times 10^4{\rm\ km\ s^{-1}}$. We also find that H$\alpha$ and Pa$\alpha$ wing profiles are asymmetric with the red part stronger than the blue part and an opposite behavior is seen for H$\beta$ wings.
For the period July 2003 to August 2010, the interplanetary coronal mass ejection (ICME) catalogue maintained by Richardson and Cane lists 106 Earth-directed events, which have been measured in-situ by plasma and field instruments onboard the ACE satellite. We present a statistical investigation of the Earth's thermospheric neutral density response by means of accelerometer measurements collected by the GRACE satellites, which are available for 104 ICMEs in the data set, and its relation to various geomagnetic indices and characteristic ICME parameters such as the impact speed, southward magnetic field strength (Bz). The majority of ICMEs causes a distinct density enhancement in the thermosphere, with up to a factor of eight compared to the pre-event level. We find high correlations between ICME Bz and thermospheric density enhancements (~0.9), while the correlation with the ICME impact speed is somewhat smaller (~0.7). The geomagnetic indices revealing the highest correlations are Dst and SYM-H (~0.9), the lowest correlations are obtained for kp and AE (~0.7), which show a nonlinear relation with the thermospheric density enhancements. Separating the response for the shock sheath region and the magnetic structure of the ICME, we find that the Dst and SYM-H reveal a tighter relation to the Bz minimum in the magnetic structure of the ICME, whereas the polar cap indices show higher correlations with the Bz minimum in the shock sheath region. Since the strength of the Bz component - either in the sheath or the magnetic structure of the ICME - is highly correlated (~0.9) with the neutral density enhancement, we discuss the possibility of satellite orbital decay estimates based on magnetic field measurements at L1, i.e. before the ICME hits the Earth's magnetosphere. This will further stimulate progress in space weather understanding and applications regarding satellite operations.
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the BAO peak is dramatically enhanced (by a factor of ~5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.
The latest observation of HL Tau by ALMA revealed spectacular concentric dust rings in its circumstellar disk. We attempt to explain the multiple ring structure as a consequence of aggregate sintering. Sintering is a process that reduces the sticking efficiency of dust aggregates, and takes place where the temperature is slightly below the sublimation point of some constituent material. We here present a dust growth model that incorporates sintering, and use it to simulate global dust evolution in a modeled HL Tau disk taking into account coagulation, fragmentation, and radial inward drift. We show that the aggregates collisionally disrupt and pile up at multiple locations where different volatiles cause sintering. At wavelengths of 0.87--1.3 mm, these "sintering zones" appear as bright, optically thick rings with spectral slope $\approx$ 2, whereas the non-sintering zones as darker, optically thinner rings of spectral slope $\approx$ 2.3--2.5, consistent with major bright and dark rings found in the HL Tau disk, respectively. Radial pileup and vertical settling occur simultaneously if disk turbulence is weak and if the monomers constituting the aggregates are $\sim 1~{\rm \mu m}$ in radius. For the radial gas temperature profile of $T = 310(r/1~{\rm AU})^{-0.57}~{\rm K}$, our model perfectly reproduces the brightness temperatures of the optically thick bright rings, and reproduces their orbital distances to an accuracy of $\lesssim$ 30%. The ring patterns diminish with time as dust is depleted from the disk, consistent with the idea that HL Tau is a young object.
In the last decade, X-ray spectroscopy has enabled a wealth of discoveries of photoionised absorbers in X-ray binaries. Studies of such accretion disc atmospheres and winds are of fundamental importance to understand accretion processes and possible feedback mechanisms to the environment. In this work, we review the current observational state and theoretical understanding of accretion disc atmospheres and winds in low-mass X-ray binaries, focusing on the wind launching mechanisms and on the dependence on accretion state. We conclude with issues that deserve particular attention.
We build a framework using tools from Bayesian data analysis to evaluate models explaining the periodic variations in spin-down and beam-width of PSR B1828-11. The available data consists of the time averaged spin-down rate, which displays a distinctive double-peaked modulation, and measurements of the beam-width. Two concepts exist in the literature that are capable of explaining these variations; we will formulate predictive models from these and quantitatively compare them. The first concept is phenomenological and stipulates that the magnetosphere undergoes periodic switching between two meta-stable states as first suggested by Lyne et al. (2010). The second concept, precession, was first considered as a candidate for the modulation of B1828-11 by Stairs et al. (2000). We quantitatively compare models built from these concepts using a Bayesian odds-ratio. Because the phenomenological switching model itself was informed by this data in the first place, it is difficult to specify appropriate parameter- space priors that can be trusted for an unbiased model comparison. Therefore we first perform a parameter estimation using the spin-down data, and then use the resulting posterior distributions as priors for model comparison on the beam-width data. We find that a precession model with a simple circular Gaussian beam geometry fails to appropriately describe the data, while allowing for a more general beam geometry results in a model that seems strongly preferred by the data over a switching model.
I present a new FITS viewer designed to explore 3D spectral line data (in particular HI) and assist with visual source extraction and analysis. Using the artistic software Blender, FRELLED can visualise even large (~600^3 voxels) data sets at high frame rates (10 f.p.s.) in 3D. Blender's interface enables easy navigation within the 3D environment, and the FRELLED scripts support world coordinate systems. A variety of tools are included to aid source extraction and analysis, including interactively masking data (using 3D polyhedra of arbitrary complexity), querying NED, calculating the flux in specified volumes, generating contour plots and overlaying optical data. It includes tools to overlay n-body particle data, and multi-volume rendering is supported. The interface is designed to make cataloguing sources as easy as possible and I show that this can be as much as a factor of 50 times faster than using other viewers.
Powerful relativistic jets in radio galaxies are capable of driving strong outflows but also inducing star-formation by pressure-triggering collapse of dense clouds. We review theoretical work on negative and positive active galactic nuclei feedback, discussing insights gained from recent hydrodynamical simulations of jet-driven feedback on galaxy scales that are applicable to compact radio sources. The simulations show that the efficiency of feedback and the relative importance of negative and positive feedback depends strongly on interstellar medium properties, especially the column depth and spatial distribution of clouds. Negative feedback is most effective if clouds are distributed spherically and individual clouds have small column depths, while positive feedback is most effective if clouds are predominantly in a disc-like configuration.
We present multi-epoch spectroscopic observations of the massive binary system WR21a, which include the January 2011 periastron passage. Our spectra reveal multiple SB2 lines and facilitate an accurate determination of the orbit and the spectral types of the components. We obtain minimum masses of $64.4\pm4.8 \ M_{\odot}$ and $36.3\pm1.7 \ M_{\odot}$ for the two components of WR21a. Using disentangled spectra of the individual components, we derive spectral types of O3/WN5ha and O3Vz~((f*)) for the primary and secondary, respectively. Using the spectral type of the secondary as an indication for its mass, we estimate an orbital inclination of $i=58.8\pm2.5^{\mathrm{o}}$ and absolute masses of $103.6\pm10.2 \ M_{\odot}$ and $58.3\pm3.7 \ M_{\odot}$, in agreement with the luminosity of the system. The spectral types of the WR21a components indicate that the stars are very young (1$-$2 Myr), similar to the age of the nearby Westerlund 2 cluster. We use evolutionary tracks to determine the mass-luminosity relation for the total system mass. We find that for a distance of 8 kpc and an age of 1.5 Myr, the derived absolute masses are in good agreement with those from evolutionary predictions.
Flares that are orders of magnitude larger than the most energetic solar flares are routinely observed on Sun-like stars, raising the question of whether the same physical processes are responsible for both solar and stellar flares. In this letter we present a white-light stellar superflare on the star KIC9655129, observed by NASA's Kepler mission, with a rare multi-period quasi-periodic pulsation (QPP) pattern. Two significant periodic processes were detected using the wavelet and autocorrelation techniques, with periods of 78 +/- 12 min and 32 +/- 2 min. By comparing the phases and decay times of the two periodicities, the QPP signal was found to most likely be linear, suggesting that the two periodicities are independent, possibly corresponding either to different magnetohydrodynamic modes of the flaring region, or different spatial harmonics of the same mode. The presence of multiple periodicities is a good indication that the QPPs were caused by magnetohydrodynamic oscillations, and suggests that the physical processes in operation during stellar flares could be the same as those in solar flares.
Many members of nearby young moving groups exhibit infrared excess attributed to circumstellar debris dust, formed via erosion of planetesimals. With their proximity and well-dated ages, these groups are excellent laboratories for studying the early evolution of debris dust and of planetesimal belts. ALMA can spatially resolve the disk emission, revealing the location and extent of these belts, putting constraints on planetesimal evolution models, and allowing us to study planet-disk interactions. While the main trends of dust evolution in debris disks are well-known, there is almost no information on the evolution of gas. During the transition from protoplanetary to debris state, even the origin of gas is dubious. Here we review the exciting new results ALMA provided by observing young debris disks, and discuss possible future research directions.
In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 Hz and 128 Hz with a range of spin-down between $-1.0 \times 10^{-10}$ Hz/s and $+1.5 \times 10^{-11}$ Hz/s, and was based on a hierarchical approach. The starting point was a set of short Fast Fourier Transforms (FFT), of length 8192 seconds, built from the calibrated strain data. Aggressive data cleaning, both in the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each dataset a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer FFTs followed by a further incoherent analysis. No evidence for continuous gravitational wave signals was found, therefore we have set a population-based joint VSR2-VSR4 90$\%$ confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 Hz and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted at frequencies below 50 Hz. We set upper limits in the range between about $10^{-24}$ and $2\times 10^{-23}$ at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of $\sim$2 with respect to the results of previous all-sky searches at frequencies below $80~\mathrm{Hz}$.
We present detailed EUV spectra of 4 large solar flares: M5.6, X1.3, X3.4, and X17 classes in the spectral ranges 176-207 \AA\ and 280-330 \AA. These spectra were obtained {by the slitless} spectroheliograph SPIRIT aboard the CORONAS-F satellite. To our knowledge these are the first detailed EUV spectra of large flares obtained with spectral resolution of $\sim 0.1$ \AA. We performed a comprehensive analysis of the obtained spectra and provide identification of the observed spectral lines. The identification was performed based {on the calculation} of synthetic spectra (CHIANTI database was used), with simultaneous {calculations of DEM} and density of the emitting plasma. More than 50 intense lines are present in the spectra that correspond to a temperature range of $T=0.5-16$ MK; most of the lines belong to Fe, Ni, Ca, Mg, Si ions. In all the considered flares intense hot lines from Ca XVII, Ca XVIII, Fe XX, Fe XXII, and Fe XXIV are observed. The calculated DEMs have a peak at $T \sim 10$ MK. The densities were determined using Fe XI - Fe XIII lines and averaged $6.5 \times 10^9$ cm$^{-3}$. We also discuss the identification, accuracy and major discrepancies of the spectral line intensity prediction.
Tidal interactions between disc galaxies depend on galaxy structure, but the details of this relationship are incompletely understood. I have constructed a three-parameter grid of bulge/disc/halo models broadly consistent with $\Lambda$CDM, and simulated an extensive series of encounters using these models. Halo mass and extent strongly influence the dynamics of orbit evolution. In close encounters, the transfer of angular momentum mediated by the dynamical response of massive, extended haloes can reverse the direction of orbital motion of the central galaxies after their first passage. Tidal response is strongly correlated with the ratio $v_\mathrm{e} / v_\mathrm{c}$ of escape to circular velocity within the participating discs. Moreover, the same ratio also correlates with the rate at which tidal tails are reaccreted by their galaxies of origin; consequently, merger remnants with `twin tails', such as NGC 7252, may prove hard to reproduce unless $(v_\mathrm{e} / v_\mathrm{c})^2 \lesssim 5.5$. The tidal morphology of an interacting system can provide useful constraints on progenitor structure. In particular, encounters in which halo dynamics reverses orbital motion exhibit a distinctive morphology which may be recognized observationally. Detailed models attempting to reproduce observations of interacting galaxies should explore the likely range of progenitor structures along with other encounter parameters.
Some stationary lines in the emission spectra of SS 433 are eclipsed, but most are not. Lines attributed to a circumbinary disk are not eclipsed, but double in relative intensity during primary eclipse. A C II doublet is eclipsed and Doppler shifts over two periods yield an orbital speed of 176 +/- 13 km/s.
We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high energy phenomena demonstrated in active galactic nuclei.
We present a systematic study of the non-thermal electron-proton plasma and its emission processes in starburst galaxies in order to explain the correlation between the luminosity in the radio band and the recently observed gamma luminosity. In doing so, a steady state description of the non-thermal electrons and protons within the spatially homogeneous starburst is considered where continuous momentum losses are included as well as catastrophic losses due to diffusion and advection. The primary source of the relativistic electron-proton plasma, e.g. supernova remnants, provides a quasi-neutral plasma with a power law spectrum in momentum where we account for rigidity dependent differences between the electron and proton spectrum. We examine the resulting leptonic and hadronic radiation processes by synchrotron radiation, inverse Compton scattering, Bremsstrahlung and hadronic pion production. Finally, the observations of NGC 253, M 82, NGC 4945 and NGC 1068 in the radio and gamma-ray band are used to constrain a best-fit model, that is subsequently used to determine the corresponding supernova rate, the calorimetric behavior as well as the expected neutrino flux. It is shown that the primary electron source spectrum at high energies needs to be steepened by inverse Compton (or synchrotron) losses. Furthermore, secondary electrons are important to model the radio flux, especially in the case of M 82. Another important result is that supernovae can not be the dominant source of relativistic particles in NGC 4945 and NGC 1068 and the relativistic particle outflow in all considered starburst galaxies consists of protons that are driven by the diffusion.
In June 2015, the source V404 Cygni (= GS2023+38) underwent an extraordinary outburst. We present the results obtained during the first revolution dedicated to this target by the INTEGRAL mission, and focus on the spectral behavior in the hard X-ray domain, using both SPI and IBIS instruments. The source exhibits extreme variability, and reaches fluxes of several tens of Crab. However, the emission between 20 and 650 keV can be understood in terms of two main components, varying on all the observable timescales, similar to what is observed in the persistent black hole system Cyg X-1. The low energy component (up to ~ 200 keV) presents a rather unusual shape, probably due to the intrinsic source variability. Nonetheless, a satisfactory description is obtained with a Comptonization model, if an unusually hot population of seed photons ($kT_0$ ~ 7 keV) is introduced. Above this first component, a clear excess extending up to 400-600 keV leads us to investigate a scenario where an additional (cutoff) power law could correspond to the contribution of the jet synchrotron emission, as proposed in Cyg X-1. A search for an annihilation feature did not provide any firm detection, with an upper limit of 2 x $10^{-4} ph/cm^2 s$ (2 \sigma) for a narrow line centered at 511 keV, on the averaged obtained spectrum.
We present new near-infrared Cepheid Period-Wesenheit relations in the LMC using time-series observations from the Large Magellanic Cloud Near-Infrared Synoptic Survey. We also derive optical$+$near-infrared P-W relations using $V$ and $I$~magnitudes from OGLE-III. We employ our new $JHK_s$ data to determine an independent distance to the LMC of $\mu_{\rm LMC} = 18.47\pm0.07 {\textit{(statistical)}}$~mag, using an absolute calibration of the Galactic relations based on several distance determination methods and accounting for the intrinsic scatter of each technique. We also derive new near-infrared Period-Luminosity and Wesenheit relations for Cepheids in M31 using observations from the PHAT survey. We use the absolute calibrations of the Galactic and LMC $W_{J,H}$ relations to determine the distance modulus of M31, $\mu_{\rm M31} = 24.46\pm0.20$~mag. We apply a simultaneous fit to Cepheids in several Local Group galaxies covering a range of metallicities ($7.7<12+\log[O/H]<8.6$~dex) to determine a global slope of -$3.244\pm0.016$~mag/dex for the $W_{J,K_s}$ relation and obtain robust distance estimates. Our distances are in good agreement with recent TRGB based distance estimates and we do not find any evidence for a metallicity dependence in the near-infrared P-W relations.
In order to understand the star formation process under the influence of HII regions, we have carried out extensive investigations to well selected star-forming regions which all have been profoundly affected by existing massive O type stars. On the basis of multi-wavelength data from mid-infrared to millimeter collected using $Spitzer$, $Herschel$, and ground based radio telescopes, the physical status of interstellar medium and star formation in these regions have been revealed. In a relatively large infrared dust bubble, active star formation is undergoing and the shell is still expanding. Signs of compressed gas and triggered star formation have been tentatively detected in a relatively small bubble. The dense cores in the Rosette Molecular Complex detected at 1.1 mm using SMA have been speculated to have a likely triggered origin according to their spatial distribution. Although some observational results have been obtained, more efforts are necessary to reach trustworthy conclusions.
The interaction processes in galaxy clusters between the hot ionized gas (ICM) and the member galaxies are of crucial importance in order to understand the dynamics in galaxy clusters, the chemical enrichment processes and the validity of their hydrostatic mass estimates. Recently, several X-ray tails associated to gas which was partly stripped of galaxies have been discovered. Here we report on the X-ray tail in the 3 keV galaxy cluster Zwicky 8338, which might be the longest ever observed. We derive the properties of the galaxy cluster environment and give hints on the substructure present in this X-ray tail, which is very likely associated to the galaxy CGCG254-021. The X-ray tail is extraordinarily luminous ($2\times10^{42}$ erg/s), the thermal emission has a temperature of 0.8 keV and the X-ray luminous gas might be stripped off completely from the galaxy. From the assumptions on the 3D geometry we estimate the gas mass fraction (< 0.1%) and conclude that the gas has been compressed and/or heated.
Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around an axis. The torus instability model predicts that a magnetic flux rope of major radius $R$ undergoes an eruption when its axis reaches a location where the decay index $-d(\ln B_{ex})/d(\ln R)$ of the ambient magnetic field $B_{ex}$ is larger than a critical value. In the current-wire model, the critical value depends on the thickness and time-evolution of the current channel. We use magneto-hydrodynamic (MHD) simulations to investigate if the critical value of the decay index at the onset of the eruption is affected by the magnetic flux rope's internal current profile and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at the onset of the eruption is not significantly affected by either the pre-eruptive photospheric evolution of the active region or by the resulting different magnetic flux ropes. As in the case of the current-wire model, we find that there is a `critical range' $ [1.3-1.5]$, rather than a `critical value' for the onset of the torus instability. This range is in good agreement with the predictions of the current-wire model, despite the inclusion of line-tying effects and the occurrence of tether-cutting magnetic reconnection.
We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.
In this review we present an overview of observing facilities for solar research, which are planned or will come to operation in near future. We concentrate on facilities, which harbor specific potential for solar magnetometry. We describe the challenges and science goals of future magnetic measurements, the status of magnetic field measurements at different major solar observatories, and provide an outlook on possible upgrades of future instrumentation.
Debris disks are considered to be gas-poor, but recent observations revealed molecular or atomic gas in several 10-40 Myr old systems. We used the APEX and IRAM 30m radiotelescopes to search for CO gas in 20 bright debris disks. In one case, around the 16 Myr old A-type star HD 131835, we discovered a new gas-bearing debris disk, where the CO 3-2 transition was successfully detected. No other individual system exhibited a measurable CO signal. Our Herschel Space Observatory far-infrared images of HD 131835 marginally resolved the disk both at 70 and 100$\mu$m, with a characteristic radius of ~170 au. While in stellar properties HD 131835 resembles $\beta$ Pic, its dust disk properties are similar to those of the most massive young debris disks. With the detection of gas in HD 131835 the number of known debris disks with CO content has increased to four, all of them encircling young ($\leq$40 Myr) A-type stars. Based on statistics within 125 pc, we suggest that the presence of detectable amount of gas in the most massive debris disks around young A-type stars is a common phenomenon. Our current data cannot conclude on the origin of gas in HD 131835. If the gas is secondary, arising from the disruption of planetesimals, then HD 131835 is a comparably young and in terms of its disk more massive analogue of the $\beta$ Pic system. However, it is also possible that this system similarly to HD 21997 possesses a hybrid disk, where the gas material is predominantly primordial, while the dust grains are mostly derived from planetesimals.
The star HD144548 (=HIP~78977; TYP~6212-1273-1) has been known as a detached eclipsing binary and a bona-fide member of the Upper Scorpius OB association. Continuous photometry from the K2 mission on Campaign Two has revealed the presence of additional eclipses due to the presence of a third star in the system. These are explained by a system composed of the two previously known members of the eclipsing system (Ba and Bb) with a period of 1.63 d, orbiting around an F7-F8V star with a period of 33.945 +/- 0.002 d in an eccentric orbit (e_A = 0.2652 +/- 0.0003). The timing of the eclipses of Ba and Bb reveals the same 33.9 d periodicity, which we interpret as the combination of a light time effect combined with dynamical perturbations on the close system. Here we combine radial velocities and analytical approximations for the timing of the eclipses to derive masses and radii for the three components of the system. We obtain a mass of 1.44 +/- 0.04 M_sun and radius of 2.41 +/- 0.03 R_sun for the A component, and almost identical masses and radii of about 0.96 M_sun and 1.33 R_sun for each of the two components of the close binary. HD144548 is the first triply eclipsing system for which radial velocities of all components could be measured.
In the context of the TraMoS project we present nine new transit observations of the exoplanet OGLE-TR-113b observed with the Gemini South, Magellan Baade, Danish-1.54m and SOAR telescopes. We perform a homogeneous analysis of these new transits together with ten literature transits to probe into the potential detection of an orbital decay for this planet reported by \citet{adams2010}. Our new observations extend the transit monitoring baseline for this system by 6 years, to a total of more than 13 years. With our timing analysis we obtained a $\dot{P}=-1.0 \pm 6.0$ ms~yr$^{-1}$, which rejects previous hints of a larger orbital decay for OGLE-TR-113b. With our updated value of $\dot{P}$ we can discard tidal quality factors of $Q_{\star} < 10^{5}$ for its host star. Additionally, we calculate a 1$\sigma$ dispersion of the Transit Timing Variations (TTVs) of 42 seconds over the 13 years baseline, which discards additional planets in the system more massive than $0.5-3.0~M_{\oplus}$ in 1:2, 5:3, 2:1 and 3:1 Mean Motion Resonances with OGLE-TR-113b. Finally, with the joint analysis of the 19 light curves we update transit parameters, such as the relative semi-major axis $a / R_s = 6.44^{+0.04}_{-0.05}$, the planet-to-star radius ratio $R_p / R_s =0.14436^{+0.00096}_{-0.00088}$, and constrains its orbital inclination to $i =89.27^{+0.51}_{-0.68}$~degrees.
High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star. A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system. We derive an algorithm for the wave-front measurement directly from 3 focal plane images. The 3 images are achieved through a deformable mirror to provide specific phases for the optics system. We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front, which is a critical procedure for wave-front sensing. The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically, which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging.
We propose a transmission-filter coronagraph for direct imaging of Jupiter-like exoplanets with ground-based telescopes. The coronagraph is based on a transmission filter that consists of finite number of transmission steps. A discrete optimization algorithm is proposed for the design of the transmission filter that is optimized for ground-based telescopes with central obstructions and spider structures.We discussed the algorithm that is applied for our coronagraph design. To demonstrate the performance of the coronagraph, a filter was manufactured and laboratory tests were conducted. The test results show that the coronagraph can achieve a high contrast of 10 to -6.5 at an inner working angle of 5{\lambda}/D, which indicates that our coronagraph can be immediately used for the direct imaging of Jupiter-like exoplanets with ground-based telescopes.
Observations of the 21 cm line radiation coming from the epoch of reionization have a great capacity to study the cosmological growth of the Universe. Also, CMB polarization produced by gravitational lensing has a large amount of information about the growth of matter fluctuations at late time. In this paper, we investigate their sensitivities to the impact of neutrino property on the growth of density fluctuations, such as the total neutrino mass, the effective number of neutrino species (extra radiation), and the neutrino mass hierarchy. We will show that by combining a precise CMB polarization observations such as Simons Array with a 21 cm line observation such as Square kilometer Array (SKA) phase 1 and a baryon acoustic oscillation observation (Dark Energy Spectroscopic Instrument:DESI) we can measure effects of non-zero neutrino mass on the growth of density fluctuation if the total neutrino mass is larger than 0.1eV. Additionally, the combinations can strongly improve errors of the bounds on the effective number of neutrino species sigma(N_nu) ~ 0.06-0.09 at 95 % C.L.. Finally, by using SKA phase 2, we can determine the neutrino mass hierarchy at 95 % C.L. if the total neutrino mass is similar to or smaller than 0.1 eV.
We present precise Doppler observations of WASP-47, a transiting planetary system featuring a hot Jupiter with both inner and outer planetary companions. This system has an unusual architecture and also provides a rare opportunity to measure planet masses in two different ways: the Doppler method, and the analysis of transit-timing variations (TTV). Based on the new Doppler data, obtained with the Planet Finder Spectrograph on the Magellan/Clay 6.5m telescope, the mass of the hot Jupiter is $370 \pm 29~M_{\oplus}$. This is consistent with the previous Doppler determination as well as the TTV determination. For the inner planet WASP-47e, the Doppler data lead to a mass of $12.2\pm 3.7~ M_{\oplus}$, in agreement with the TTV-based upper limit of $<$22~$M_{\oplus}$ ($95\%$ confidence). For the outer planet WASP-47d, the Doppler mass constraint of $10.4\pm 8.4~M_{\oplus}$ is consistent with the TTV-based measurement of $15.2^{+6.7}_{-7.6}~ M_{\oplus}$.
We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. Our H, K$_s$, and L'-band observations resolve the system at angular separations <0.09". The components exhibit significant orbital motion over a span of ~7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0$\pm$0.5 primary and K6.5$\pm$0.5 secondary are 0.83$\pm$0.02 M$_{\odot}$ and 0.64$\pm$0.02 M$_{\odot}$, respectively. We also derive a system distance of d = 25.87$\pm$0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ~500 Myr old Ursa Major moving group and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits.
The abundance of oxygen in galaxies is widely used in furthering our understanding of galaxy formation and evolution. Unfortunately, direct measurements of O/H in the neutral gas are extremely difficult to obtain due to the fact that the only OI line available within the HST UV wavelength range (1150-3200A) is often saturated. As such, proxies for oxygen are needed to indirectly derive an O/H via the assumption that solar ratios based on local Milky Way sight lines hold in different environments. In this paper, we assess the validity of using two such proxies, PII and SII, within more typical star-forming environments. Using HST-COS FUV spectra of a sample of nearby star-forming galaxies, we find that P and S follow a trend, log(PII/SII)=1.73+/-0.18, which is in excellent agreement with the solar ratio of log(P/S)_sol=-1.71+/-0.04 over a large range of galaxy properties, i.e., metallicities in the range 0.03-3.2 Z_sol and HI column densities of log[N(HI)/cm^-2]=18.44-21.28. We additionally show evidence from literature data that both elements are individually found to trace oxygen according to their respective solar ratios across a wide-range of environments, such as stars, ionized gas in nearby galaxies, and neutral gas in DLAs and along Milky Way sight lines. Our findings demonstrate that the solar ratios of log(P/O)_sol=-3.28+/-0.06 and log(S/O)_sol=-1.57+/-0.06 can both be used to derive reliable O/H abundances in the neutral gas of local and high-redshift star-forming galaxies.
Fomalhaut b was long thought to shape the eccentric debris belt in the Fomalhaut system, but its orbit was found to be too eccentric for it to be the dominant belt-shaping perturber. This indicates that Fomalhaut b is Earth-sized at most and that the belt-shaping perturber, hereafter named Fomalhaut c, remains to be discovered. In addition, since its orbit more or less crosses that of Fomalhaut b, it also indicates that the current configuration of the system is transient and was reached recently. In this talk, we show that this current configuration can be explained if Fomalhaut c is Saturn- to Neptune-sized, and Fomalhaut b originates from a mean-motion resonance with Fomalhaut c.
We present a direct confirmation of the validity of the equivalence principle for unstructured test bodies in scalar tensor gravity. Our analysis is complementary to previous approaches and valid for a large class of scalar-tensor theories of gravitation. A covariant approach is used to derive the equations of motion in a systematic way and allows for the experimental test of scalar-tensor theories by means of extended test bodies.
Wide parameter space searches for long lived continuous gravitational wave signals are computationally limited. It is therefore critically important that available computational resources are used rationally. In this paper we consider directed searches, i.e. targets for which the sky position is known accurately but the frequency and spindown parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spindown should we search? Finally, what is the optimal search set-up that we should use? In this paper we present a general framework that allows to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.
We discuss the possibility that a Stueckelberg portal connects both Standard Model and Dark Matter sectors. The particle responsible of this portal is the lightest Z' boson that induces isospin-violating interactions. This property leads to a rich phenomenology for the direct detection and collider experiments that can constraint the parameter space of this kind of models and can be tested in the future.
Employing the covariant formalism, we derive the evolution equations for two scalar fields with non-canonical field space metric up to third order in perturbation theory. These equations can be used to derive predictions for local bi- and trispectra of multi-field cosmological models. Our main application is to ekpyrotic models in which the primordial curvature perturbations are generated via the non-minimal entropic mechanism. In these models, nearly scale-invariant entropy perturbations are generated first due to a non-minimal kinetic coupling between two scalar fields, and subsequently these perturbations are converted into curvature perturbations. Remarkably, the entropy perturbations have vanishing bi- and trispectra during the ekpyrotic phase. However, as we show, the conversion process to curvature perturbations induces local non-Gaussianity parameters $f_{NL}$ and $g_{NL}$ at levels that should be detectable by near-future observations. In fact, in order to obtain a large enough amplitude and small enough bispectrum of the curvature perturbations, as seen in current measurements, the conversion process must be very efficient. Interestingly, for such efficient conversions the trispectrum parameter $g_{NL}$ remains negative and typically of a magnitude ${\cal O}(10^2) - {\cal O}(10^3),$ resulting in a distinguishing feature of non-minimally coupled ekpyrotic models.
We report results of a wideband search for periodic gravitational waves from
isolated neutron stars within the Orion spur towards both the inner and outer
regions of our Galaxy. As gravitational waves interact very weakly with matter,
the search is unimpeded by dust and concentrations of stars. One search disk
(A) is $6.87^\circ$ in diameter and centered on
$20^\textrm{h}10^\textrm{m}54.71^\textrm{s}+33^\circ33'25.29"$, and the other
(B) is $7.45^\circ$ in diameter and centered on
$8^\textrm{h}35^\textrm{m}20.61^\textrm{s}-46^\circ49'25.151"$. We explored the
frequency range of 50-1500 Hz and frequency derivative from $0$ to $-5\times
10^{-9}$ Hz/s. A multi-stage, loosely coherent search program allowed probing
more deeply than before in these two regions, while increasing coherence length
with every stage.
Rigorous followup parameters have winnowed initial coincidence set to only 70
candidates, to be examined manually. None of those 70 candidates proved to be
consistent with an isolated gravitational wave emitter, and 95% confidence
level upper limits were placed on continuous-wave strain amplitudes. Near $169$
Hz we achieve our lowest 95% CL upper limit on worst-case linearly polarized
strain amplitude $h_0$ of $6.3\times 10^{-25}$, while at the high end of our
frequency range we achieve a worst-case upper limit of $3.4\times 10^{-24}$ for
all polarizations and sky locations.
The de Broglie-Bohm pilot-wave formulation of quantum theory allows the existence of physical states that violate the Born probability rule. Recent work has shown that in pilot-wave field theory on expanding space relaxation to the Born rule is suppressed for long-wavelength field modes, resulting in a large-scale power deficit {\xi}(k) which for a radiation-dominated expansion is found to have a characteristic (approximate) inverse-tangent dependence on k. In this paper we show that the functional form of {\xi}(k) is robust under changes in the initial nonequilibrium distribution as well as under the addition of an inflationary era at the end of the radiation-dominated phase. In both cases the predicted deficit {\xi}(k) remains an inverse-tangent function of k. Furthermore, with the inflationary phase the dependence of the fitting parameters on the number of superposed pre-inflationary energy states is comparable to that found previously. Our results indicate that an inverse-tangent power deficit is likely to be a fairly general and robust signature of quantum relaxation in the early universe.
A great possible achievement for the MMS mission would be crossing electron diffusion regions (EDR). EDR are regions in proximity of reconnection sites where electrons decouple from field lines, breaking the frozen in condition. Decades of research on reconnection have produced a widely shared map of where EDRs are. We expect reconnection to take place around a so called x-point formed by the intersection of the separatrices dividing inflowing from outflowing plasma. The EDR forms around this x-point as a small electron scale box nested inside a larger ion diffusion region. But this point of view is based on a 2D mentality. We have recently proposed that once the problem is considered in full 3D, secondary reconnection events can form [Lapenta et al., Nature Physics, 11, 690, 2015] in the outflow regions even far downstream from the primary reconnection site. We revisit here this new idea confirming that even using additional indicators of reconnection and even considering longer periods and wider distances the conclusion remains true: secondary reconnection sites form downstream of a reconnection outflow causing a sort of chain reaction of cascading reconnection sites. If we are right, MMS will have an interesting journey even when not crossing necessarily the primary site. The chances are greatly increased that even if missing a primary site during an orbit, MMS could stumble instead on one of these secondary sites.
We consider domain walls in the $Z_3$ symmetric NMSSM. The spontaneous $Z_3$ discrete symmetry breaking produces domain walls, and the stable domain walls are problematic. Thus, we assume the $Z_3$ symmetry is slightly but explicitly broken and the domain walls decay. Such a decay causes a large late-time entropy production. We study its cosmological implications on unwanted relics such as moduli, gravitino, LSP and axion.
We discuss the introduction of a non minimal coupling between the inflaton and gravity in terms of the recently proposed $\beta$-function formalism for inflation\cite{Binetruy:2014zya}. Via a field redefinition we reduce to the case of minimally coupled theories. The universal attractor at strong coupling has a simple explanation in terms of the new field. Generalizations are discussed and the possibility of evading the universal attractor is shown.
We analyse the speed of gravitational waves in coupled Galileon models with an equation of state $\omega_\phi=-1$ now and a ghost-free Minkowski limit. We find that the gravitational waves propagate much faster than the speed of light unless these models are small perturbations of cubic Galileons and the Galileon energy density is sub-dominant to a dominant cosmological constant. In this case, the binary pulsar bounds on the speed of gravitational waves can be satisfied and the equation of state can be close to -1 when the coupling to matter and the coefficient of the cubic term of the Galileon Lagrangian are related. This severely restricts the allowed cosmological behaviour of Galileon models and we are forced to conclude that Galileons with a stable Minkowski limit cannot account for the observed acceleration of the expansion of the universe on their own. Moreover any sub-dominant Galileon component of our universe must be dominated by the cubic term. For such models with gravitons propagating faster than the speed of light, the gravitons become potentially unstable and could decay into photon pairs. They could also emit photons by Cerenkov radiation. We show that the decay rate of such speedy gravitons into photons and the Cerenkov radiation are in fact negligible. Moreover the time delay between the gravitational signal and light emitted by explosive astrophysical events could serve as a confirmation that a modification of gravity acts on the largest scales of the Universe.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
NELIOTA is a new ESA activity launched at the National Observatory of Athens in February 2015 aiming to determine the distribution and frequency of small near-earth objects (NEOs) via lunar monitoring. The project involves upgrading the 1.2m Kryoneri telescope at the National Observatory of Athens, procuring two fast-frame cameras, and developing a software system, which will control the telescope and the cameras, process the images and automatically detect NEO impacts. NELIOTA will provide a web-based user interface, where the impact events will be reported and made available to the scientific community and the general public. The objective of this 3.5 year activity is to design, develop and implement a highly automated lunar monitoring system, which will conduct an observing campaign for 2 years in search of NEO impact flashes on the Moon. The impact events will be verified, characterised and reported. The 1.2m telescope will be capable of detecting flashes much fainter than current, small-aperture, lunar monitoring telescopes. NELIOTA is therefore expected to characterise the frequency and distribution of NEOs weighing as little as a few grams.
If ultraluminous X-ray sources (ULXs) are powered by accretion onto stellar remnant black holes, then many must be accreting at super-Eddington rates. It is predicted that such high accretion rates should give rise to massive, radiatively-driven winds. However, observational evidence of a wind, in the form of absorption or emission features, has remained elusive. As such, the reported detection of X-ray spectral residuals in XMM-Newton spectra of NGC 5408 X-1, which could be related to absorption in a wind is potentially very exciting. However, it has previously been assumed by several authors that these features simply originate from background diffuse plasma emission related to star-formation in the ULX's host galaxy. In this work we utilise the spatial resolving power of Chandra to test whether we can rule out this latter interpretation. We demonstrate that the majority of the luminosity in these spectral features is emitted from a highly localised region close to the ULX, and appears point-like even with Chandra. It is therefore highly likely that the spectral features are associated with the ULX itself, and little of the flux in this spectral component originates from spatially extended emission in the host galaxy. This may be consistent with the suggestion of absorption in an optically thin phase of a super-Eddington wind. Alternatively, we could be seeing emission from collisionally ionised material close to the black hole, but critically this would be difficult to reconcile with models where the source inclination largely determines the observed X-ray spectral and timing properties.
We present an analytic model to predict the HI mass contributed by confused sources to a stacked spectrum in a generic HI survey. Based on the ALFALFA correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest SKA-precursor HI surveys. Stacking with LADUMA and DINGO UDEEP data will only be mildly impacted by confusion if their target synthesised beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES' 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST will be the most impeded by confusion, with HI surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the redshift evolution of the HI density of the Universe and the HI correlation function. However, we argue that the two idealised cases we adopt should bracket the true evolution, and the qualitative conclusions are unchanged regardless of the model choice. The profile shape of the signal due to confusion (in the absence of any detection) was also modelled, revealing that it can take the form of a double Gaussian with a narrow and wide component.
Laevens et al. recently discovered Triangulum II, a satellite of the Milky Way. Its Galactocentric distance is 36 kpc, and its luminosity is only 450 L_sun. We measured the radial velocities of six members stars with Keck/DEIMOS, and we found a velocity dispersion of sigma_v = 5.1 -1.4 +4.0 km/s. We also measured the metallicities of three stars and found a range of 0.8 dex in [Fe/H]. The velocity and metallicity dispersions identify Triangulum II as a dark matter-dominated galaxy. The galaxy is moving very quickly toward the Galactic center (v_GSR = -262 km/s). Although it might be in the process of being tidally disrupted as it approaches pericenter, there is no strong evidence for disruption. The ellipticity is low, and the mean velocity, <v_helio> = -382.1 +/- 2.9 km/s, rules out an association with the Triangulum-Andromeda substructure or the Pan-Andromeda Archaeological Survey (PAndAS) stellar stream. If Triangulum II is in dynamical equilibrium, then it would have a mass-to-light ratio of 3600 -2100 +3500 M_sun/L_sun, the highest of any non-disrupting galaxy (those for which dynamical mass estimates are reliable). The density within the 3-D half-light radius would be 4.8 -3.5 +8.1 M_sun/pc^3, even higher than Segue 1. Hence, Triangulum II is an excellent candidate for the indirect detection of dark matter annihilation.
We report deep optical integral-field spectroscopy with the MUSE of the luminous radio-quiet QSO PG1307+085 (z=0.154) obtained during the commissioning of the instrument. Given the high sensitivity and spatial resolution delivered by MUSE, we are able to resolve the compact ($r_e$~1.3") elliptical host galaxy. After careful spectroscopic deblending of the QSO and host galaxy emission, we infer a stellar velocity dispersion of $155\pm19$km/s. This places PG1307+085 local $M_{BH}-\sigma_*$ relation within the intrinsic scatter but offset towards a higher black hole mass with respect to the mean relation. The observations with MUSE also reveal a large extended ENLR around PG1307+085 reaching out to 30kpc. In addition, we detect a faint bridge of ionized gas towards the most massive galaxy of the galaxy group being just 20" (50kpc) away. Previous long-slit spectroscopic observations missed most of these extended features due to a miss-aligned slit. The ionized gas kinematics does not show any evidence for gas outflows on kpc scales despite the high QSO luminosity of $L_\mathrm{bol}>10^{46}$ erg/s. Based on the ionized gas distribution, kinematics and metallicity we discuss the origin of the ENLR with respect to its group environments including minor mergers, ram-pressure stripping or filamentary gas accretion as the most likely scenarios. We conclude that PG1307+085 is a normal elliptical host in terms of the scaling relations, but that the gas is most likely affected by the environment through gravity or ambient pressure. It is possible that the ongoing interaction with the environment, mainly seen in the ionized gas, is also be responsible for driving sufficient gas to feed the black hole at the centre of the galaxy.
We determine the relative ionization of deuterium and hydrogen in low metallicity damped Lyman-alpha (DLA) and sub-DLA systems using a detailed suite of photoionization simulations. We model metal-poor DLAs as clouds of gas in pressure equilibrium with a host dark matter halo, exposed to the Haardt & Madau (2012) background radiation of galaxies and quasars at redshift z~3. Our results indicate that the deuterium ionization correction correlates with the H I column density and the ratio of successive ion stages of the most commonly observed metals. The N(N II) / N(N I) column density ratio provides the most reliable correction factor, being essentially independent of the gas geometry, H I column density, and the radiation field. We provide a series of convenient fitting formulae to calculate the deuterium ionization correction based on observable quantities. The ionization correction typically does not exceed 0.1 per cent for metal-poor DLAs, which is comfortably below the current measurement precision (2 per cent). However, the deuterium ionization correction may need to be applied when a larger sample of D/H measurements becomes available.
The smallest dark matter haloes are the first objects to form in the hierarchical structure formation of cold dark matter (CDM) cosmology and are expected to be the densest and most fundamental building blocks of CDM structures in our universe. Nevertheless, the physical characteristics of these haloes have stayed illusive, as they remain well beyond the current resolution of N-body simulations (at redshift zero). However, they dominate the predictions (and uncertainty) in expected dark matter annihilation signal, amongst other astrophysical observables. Using the conservation of total energy and the ellipsoidal collapse framework, we can analytically find the mean and scatter of concentration $c$ and 1-D velocity dispersion $\sigma_{\rm 1d}$ for haloes of different virial mass $M_{200}$. Both $c$ and $\sigma_{\rm 1d}/M_{200}^{1/3}$ are in good agreement with numerical results within the regime probed by simulations -- slowly decreasing functions of mass that approach constant values at large masses. In particular, the predictions for the 1-D velocity dispersion of cluster mass haloes are surprisingly robust as the inverse heat capacity of cosmological haloes crosses zero at $M_{200} \sim 10^{14} M_\odot$. However, we find that current extrapolations from simulations to smallest CDM haloes dramatically depend on the assumed profile (e.g. NFW vs. Einasto) and fitting function, which is why theoretical considerations, such as the one presented here, can significantly constrain the range of feasible predictions.
Galaxy formation models exhibit remarkable success in reproducing observed relations such as the relation between galaxies' star formation rates (SFRs) and stellar masses and the stellar mass--halo mass relation. We demonstrate that comparisons of the short-timescale variability in galaxy SFRs with observational data provide an additional useful constraint on the physics of galaxy formation feedback. We apply SFR indicators with different sensitivity timescales to galaxies from the Feedback in Realistic Environments (FIRE) simulations. We find that the SFR--stellar mass relation has a significantly greater scatter when the Halpha-derived SFR is considered compared with when the far-ultraviolet (FUV)-based SFR is used. This difference is a direct consequence of bursty star formation because the FIRE galaxies exhibit order-of-magnitude SFR variations over timescales of a few Myr. Consequently, low-mass galaxies can go through both quenched (in terms of the 10-Myr averaged SFR) and starburst phases within a 200-Myr period. We also find that the Halpha/FUV ratios are very similar to those observed for local galaxies, although there is a population of simulated galaxies with lower Halpha/FUV ratios than observed at stellar masses smaller than 10^9.5 solar masses. The interpretation is that our sample of FIRE galaxies is slightly more bursty than the observed sample of galaxies in the vicinity of the Galaxy. A possible explanation is that despite the very high resolution of the simulations, the SFR variability and thus Halpha/FUV ratios may not be fully converged. We suggest that future cosmological simulations should compare the Halpha/FUV ratios of their galaxies with observations to constrain the feedback models employed.
We present the results from a study of the morphologies of moderate luminosity X-ray selected AGN host galaxies in comparison to a carefully mass-matched control sample at 0.5 < z < 3 in the CANDELS GOODS-S field. We apply a multi-wavelength morphological decomposition analysis to these two samples and report on the differences between the morphologies as fitted from single Sersic and multiple Sersic models, and models which include an additional nuclear point-source component. Thus, we are able to compare the widely adopted single Sersic fits from previous studies to the results from a full morphological decomposition, and address the issue of how biased the inferred properties of AGN hosts are by a potential nuclear contribution from the AGN itself. We find that the AGN hosts are mixed systems which have higher bulge fractions than the control sample in our highest redshift bins at the >99.7% confidence level, according to all model fits even those which adopt a point-source component. This serves to alleviate concerns that previous, purely single Sersic, analyses of AGN hosts could have been spuriously biased towards higher bulge fractions. This dataset allows us to further probe the physical nature of these point-source components; we find no strong correlation between the point-source component and AGN activity, and that these point-source components are best modelled physically by nuclear starbursts. Our analysis of the bulge and disk fractions of these AGN hosts in comparison to a mass-matched control sample reveals a similar morphological evolutionary track for both the active and non-active populations, providing further evidence in favour of a model where AGN activity is triggered by secular processes.
The birth kicks of black holes, arising from asymmetric mass ejection or neutrino emission during core-collapse supernovae, are of great interest for both observationally constraining supernova models and population-synthesis studies of binary evolution. Recently, several efforts were undertaken to estimate black hole birth kicks from observations of black-hole low-mass X-ray binaries. We follow up on this work, specifically focussing on the highest estimated black-hole kick velocities. We find that existing observations do not require black hole birth kicks in excess of approximately 100 km/s, although higher kicks are not ruled out.
Observations of X-ray flares from Gamma Ray Bursts (GRBs) imply strong constraints on possible physical models. We provide a general discussion of these. In particular, we show that in order to account for the relatively flat and weak optical flux during the X-ray flares, the size of the emitting region should be $\lesssim 3\times 10^{14}$cm. The bolometric luminosity of flares also strongly constrain the energy budget, and are inconsistent with late time activity of a central engine powered by the spin-down of a magnetar. We provide a simple toy model according to which flares are produced by an outflow of modest Lorentz factor (a few tens instead of hundreds) that is launched more or less simultaneously with the highly relativistic jet which produced the prompt gamma-ray emission. The "slower" moving outflow produces the flare as it reaches its photosphere. The existence of such a component would naturally resolve the observational challenges imposed by flares, outlined in this work.
We present the first fast and detailed computation of the cosmological recombination radiation released during the hydrogen (redshift z ~ 1300) and helium (z ~ 2500 and z ~ 6000) recombination epochs, introducing the code CosmoSpec. Our computations include important radiative transfer effects, 500-shell bound-bound and free-bound emission for all three species, the effects of electron scattering and free-free absorption as well as interspecies (HeII --> HeI --> HI) photon feedback. The latter effect modifies the shape and amplitude of the recombination radiation and CosmoSpec improves significantly over previous treatments of it. Utilizing effective multilevel atom and conductance approaches, one calculation takes only ~ 15 seconds on a standard laptop as opposed to days for previous computations. This is an important step towards detailed forecasts and feasibility studies considering the detection of the cosmological recombination lines and what one may hope to learn from the ~ 6.1 photons emitted per hydrogen atom in the three recombination eras. We briefly illustrate some of the parameter dependencies and discuss remaining uncertainties in particular related to collisional processes and the neutral helium atom model.
The globular cluster H4, located in the center of the Fornax dwarf spheroidal galaxy, is crucial for understanding the formation and chemical evolution of star clusters in low-mass galactic environments. H4 is peculiar because the cluster is significantly more metal-rich than the galaxy's other clusters, is located near the galaxy center, and may also be the youngest cluster in the galaxy. In this study, we present detailed chemical abundances derived from high-resolution (R~28000) spectroscopy of an isolated H4 member star for comparison with a sample of 22 nearby Fornax field stars. We find the H4 member to be depleted in the alpha-elements Si, Ca, and Ti with [Si/Fe]=-0.35+-0.34, [Ca/Fe]=+0.05+-0.08, and [Ti/Fe]=-0.27+-0.23, resulting in an average [alpha/Fe]=-0.19+-0.14. If this result is representative of the average cluster properties, H4 is the only known system with a low [alpha/Fe] ratio and a moderately low metallicity embedded in an intact birth environment. For the field stars we find a clear sequence, seen as an early depletion in [alpha/Fe] at low metallicities, in good agreement with previous measurements. H4 falls on top of the observed field star [alpha/Fe] sequence and clearly disagrees with the properties of Milky Way halo stars. We therefore conclude that within a galaxy, the chemical enrichment of globular clusters may be closely linked to the enrichment pattern of the field star population. The low [alpha/Fe] ratios of H4 and similar metallicity field stars in Fornax give evidence that slow chemical enrichment environments, such as dwarf galaxies, may be the original hosts of alpha-depleted clusters in the halos of the Milky Way and M31.
Colliding wind binaries (CWBs) have been considered as a possible high energy $\gamma$-ray sources for some time, however no system other than $\eta$ Car has been detected. In the paper a sample of seven CWBs (WR 11, WR 70, WR 137, WR 140, WR 146, WR 147) which were deemed most favourable candidates by a theoretic modelling was analyzed and almost 7 years of the Fermi-LAT data was used. WR 11 ($\gamma^2$ Vel) was detected at 6.1$\sigma$ significance level with a photon flux in 0.1-100 GeV range $(1.8\pm0.6)\times10^{-9}~\mathrm{ph~cm^{-2}~s^{-1}}$, the energy flux $(2.7\pm0.5)\times10^{-12}~~\mathrm{erg~cm^{-2}~s^{-1}}$. At the adopted distance $d=340$ pc that corresponds to luminosity $L=(3.7\pm0.7)\times10^{31}~\mathrm{erg~s^{-1}}$. This luminosity amounts to $\sim2\times10^{-6}$ fraction of total wind kinetic power and $\sim2\times10^{-4}$ fraction of power injected into the wind-wind interaction region of this system. Upper limits were set on the high-energy flux from the WR 70 and WR 140 systems.
Red quasars are thought to be an intermediate population between merger-driven star-forming galaxies in dust-enshrouded phase and normal quasars. If so, they are expected to have high accretion ratios, but their intrinsic dust extinction hampers reliable determination of Eddington ratios. Here, we compare the accretion rates of 16 red quasars at $z \sim 0.7$ to those of normal type 1 quasars at the same redshift range. The red quasars are selected by their red colors in optical through near-infrared (NIR) and radio detection. The accretion rates of the red quasars are derived from the P$\beta$ line in NIR spectra, which is obtained by the SpeX on the Infrared Telescope Facility (IRTF) in order to avoid the effects of dust extinction. We find that the measured Eddington ratios ($L_{\rm bol}$/$L_{\rm Edd} \simeq 0.69$) of red quasars are significantly higher than those of normal type 1 quasars, which is consistent with a scenario in which red quasars are the intermediate population and the black holes of red quasars grow very rapidly during such a stage.
In this thesis, I explore two topics in exoplanet science. The first is the
prevalence of Earth-size planets in the Milky Way Galaxy. To determine the
occurrence of planets having different sizes, orbital periods, and other
properties, I conducted a survey of extrasolar planets using data collected by
NASA's Kepler Space Telescope. This project involved writing new algorithms to
analyze Kepler data, finding planets, and conducting follow-up work using
ground-based telescopes. I found that most stars have at least one planet at or
within Earth's orbit and that 26% of Sun-like stars have an Earth-size planet
with an orbital period of 100 days or less.
The second topic is the connection between the properties of planets and
their host stars. The precise characterization of exoplanet hosts helps to
bring planet properties like mass, size, and equilibrium temperature into
sharper focus and probes the physical processes that form planets. I studied
the abundance of carbon and oxygen in over 1000 nearby stars using optical
spectra taken by the California Planet Search. I found a large range in the
relative abundance of carbon and oxygen in this sample, including a handful of
carbon-rich stars. I also developed a new technique called SpecMatch for
extracting fundamental stellar parameters from optical spectra. SpecMatch is
particularly applicable to the relatively faint planet-hosting stars discovered
by Kepler.
CIT 6 is a carbon star in the transitional phase from the asymptotic giant branch (AGB) to the protoplanetary nebulae (pPN). Observational evidences of two point sources in the optical, circumstellar arc segments in an HC$_3$N line emission, and a bipolar nebula in near-infrared provide strong support for the presence of a binary companion. Hence, CIT 6 is very attractive for studying the role of companions in the AGB-pPN transition. We have carried out high resolution $^{12}$CO $J=2-1$ and $^{13}$CO $J=2-1$ observations of CIT 6 with the Submillimeter Array combined with the Submillimeter Telescope (single-dish) data. The $^{12}$CO channel maps reveal a spiral-shell pattern connecting the HC$_3$N segments in a continuous form, and an asymmetric outflow corresponding to the near-infrared bipolar nebula. Rotation of the $^{12}$CO channel peak position may be related to the inner spiral winding and/or the bipolar outflow. An eccentric orbit binary is suggested for the presences of an anisotropic mass loss to the west and a double spiral pattern. The lack of interarm emission to the west may indicate a feature corresponding to the periastron passage of a highly eccentric orbit of the binary. Spatially-averaged radial and spectral profiles of $^{12}$CO $J=2-1$ and $^{13}$CO $J=2-1$ are compared with simple spherical radiative transfer models, suggesting a change of $^{12}$CO/$^{13}$CO abundance ratio from $\sim30$ to $\sim50$ inward in the CSE of CIT 6. The millimeter continuum emission is decomposed into extended dust thermal emission (spectral index $\sim-2.4$) and compact emission from radio photosphere (spectral index $\sim-2.0$).
The photospheric temperature minimum in the Sun and solar-like stars is very weakly ionized, with ionization fraction $f$ as low as $10^{-4}$. In galactic star forming regions, $f$ can be $10^{-10}$ or lower. Under these circumstances, the Hall current can couple low frequency Alfv\'en and magneto\-acoustic waves via the dimensionless Hall parameter $\epsilon=\omega/\Omega_\text{i}f$, where $\omega$ is the wave frequency and $\Omega_\text{i}$ is the mean ion gyrofrequency. This is analysed in the context of a cold (zero-$\beta$) plasma, and in less detail for a warm plasma. It is found that Hall coupling preferentially occurs where the wave vector is nearly field-aligned. In these circumstances, Hall coupling in theory produces a continual oscillation between fast and Alfv\'en modes as the wave passes through the weakly ionized region. At low frequencies (mHz), characteristic of solar and stellar normal modes, $\epsilon$ is probably too small for more than a fraction of one oscillation to occur. On the other hand, the effect may be significant at the far higher frequencies (Hz) associated with magnetic reconnection events. In another context, characteristic parameters for star forming gas clouds suggest that $\mathcal{O}(1)$ or more full oscillations may occur in one cloud crossing. This mechanism is not expected to be effective in sunspots, due to their high ion gyrofrequencies and Alfv\'en speeds, since the net effect depends inversely on both and therefore inverse quadratically on field strength.
There are many inflationary models that allow the formation of the large-scale structure of the observable universe. The non-gaussianity parameter $f_{NL}$ is a useful tool to discriminate among these cosmological models when comparing the theoretical predictions with the satellite survey results like those from WMAP and Planck. The goal of this proceeding contribution is to review the moment transport equations methodology and the subsequent calculation of the $f_{NL}$ parameter.
We present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing >10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011}, H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for LCDM, we obtain the curvature constraint Omega_k=-0.010_{-0.015}^{+0.013} from the DLS+WMAP9 combination, which however is not well constrained when WMAP9 is used alone. The dark energy equation of state parameter w is tightly constrained when Baryonic Acoustic Oscillation (BAO) data are added, yielding w=-1.02_{-0.09}^{+0.10} with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to w=-1.03+-0.03. Our joint constraints are fully consistent with the final Planck results and also the predictions of a LCDM universe.
The cosmic star formation rate density first increases with time towards a
pronounced peak 10 Gyrs ago (or z=1-2) and then slows down, dropping by more
than a factor 10 since z=1. The processes at the origin of the star formation
quenching are not yet well identified, either the gas is expelled by supernovae
and AGN feedback, or prevented to inflow. Morphological transformation or
environment effects are also invoked. Recent IRAM/NOEMA and ALMA results are
reviewed about the molecular content of galaxies and its dynamics, as a
function of redshift. Along the main sequence of massive star forming galaxies,
the gas fraction was higher in the past (up to 80\%), and galaxy disks were
more unstable and more turbulent.
The star formation efficiency increases with redshift, or equivalently the
depletion time decreases, whatever the position of galaxies, either on the main
sequence or above. Attempts have been made to determine the cosmic evolution of
the H_2 density, but deeper ALMA observations are needed to effectively compare
with models.
We investigate the growth of matter fluctuations in holographic dark energy cosmologies. First we use an overall statistical analysis involving the latest observational data in order to place constraints on the cosmological parameters. Then we test the range of validity of the holographic dark energy models at the perturbation level and its variants from the concordance $\Lambda$ cosmology. Specifically, we provide a new analytical approach in order to derive, for the first time, the growth index of matter perturbations. Considering a homogeneous holographic dark energy we find that the growth index is $\gamma \approx \frac{4}{7}$ which is somewhat larger ($\sim 4.8\%$) than that of the usual $\Lambda$ cosmology, $\gamma^{(\Lambda)}\approx \frac{6}{11}$. Finally, if we allow clustering in the holographic dark energy models then the asymptotic value of the growth index is given in terms of the effective sound speed $c_{\rm e}$, namely $\gamma \approx \frac{3(1-c_{\rm e})}{7}$.
The Multicolor Simultaneous Camera for studying Atmospheres of Transiting exoplanets (MuSCAT) is an optical three-band (g'_2-, r'_2-, and z_{s,2}-band) imager, recently developed for the 188cm telescope at Okayama Astrophysical Observatory with the aim of validating and characterizing transiting planets. In a pilot observation with MuSCAT, we observed a primary transit of HAT-P-14b, a high-surface gravity (g_p=38 ms^{-2}) hot Jupiter around a bright (V=10) F-type star. From a 2.9-hour observation, we achieve the 5-min binned photometric precisions of 0.028%, 0.022%, and 0.024% in the g'_2, r'_2, and z_{s,2} bands, respectively, providing the highest-quality photometric data for this planet. Combining these results with those of previous observations, we search for variations of transit timing and duration over five years, as well as variations of planet-star radius ratio (R_p/R_s) with wavelength, but find no considerable variation in any parameters. On the other hand, using the transit-subtracted light curves, we simulate achievable measurement error of R_p/R_s with MuSCAT for various planetary sizes, assuming three types of host stars, namely, HAT-P-14, the nearby K dwarf HAT-P-11, and the nearby M dwarf GJ1214. Comparing our results with the expected atmospheric scale heights of planets with the lowest surface gravity, we find that MuSCAT is capable of probing the atmospheres of planets as small as a sub-Jupiter (R_p ~6 R_Earth) around HAT-P-14 in all bands, a Neptune (~4R_Earth) around HAT-P-11 in all bands, and a super-Earth (~2.5R_Earth) around GJ1214 in r'_2 and z_{s,2} bands. These results promise that MuSCAT will produce fruitful scientific outcomes in the K2 and TESS era.
We consider particle acceleration in vacuum gaps in magnetospheres of black holes powered through Blandford-Znajek mechanism and embedded into radiatively-inefficient accretion flow (RIAF) environment. In such situation the gap height is limited by the onset of gamma-gamma pair production on the infrared photons originating from the RIAF. We numerically calculate acceleration and propagation of charged particles taking into account the detailed structure of electric and magnetic field in the gap and in the entire black hole magnetosphere, radiative energy losses and interactions of gamma rays produced by the propagated charged particles with the background radiation field of RIAF. We show that the presence of the vacuum gap has clear observational signatures. The spectra of emission from gaps embedded into a relatively high luminosity RIAF are dominated by the inverse Compton emission with a sharp, super-exponential cut-off in the very-high-energy gamma-ray band. The cut-off energy is determined by the properties of the RIAF and is largely independent of the structure of magnetosphere and geometry of the gap.The spectra of the gap residing in low-luminosity RIAFs are dominated by synchrotron / curvature emission with the spectra extending into 1-100 GeV energy range. We also consider the effect of possible acceleration of protons in the gap and find that proton energies could reach the ultra-high-energy cosmic ray (UHECR) range only in extremely low luminosity RIAFs.
We report the first detection of thermal X-ray line emission from the supernova remnant (SNR) RX J1713.7-3946, the prototype of the small class of synchrotron dominated SNRs. A softness-ratio map generated using XMM-Newton data shows that faint interior regions are softer than bright shell regions. Using Suzaku and deep XMM-Newton observations, we have extracted X-ray spectra from the softest area, finding clear line features at 1 keV and 1.35 keV. These lines can be best explained as Ne Ly-alpha and Mg He-alpha from a thermal emission component. Since the abundance ratios of metals to Fe are much higher than solar values in the thermal component, we attribute the thermal emission to reverse-shocked SN ejecta. The measured Mg/Ne, Si/Ne, and Fe/Ne ratios of 2.0-2.6, 1.5-2.0, and <0.05 solar suggest that the progenitor star of RX J1713.7-3946 was a relatively low-mass star (<~20 M_sun), consistent with a previous inference based on the effect of stellar winds of the progenitor star on the surrounding medium. Since the mean blastwave speed of ~6000 km/s (the radius of 9.6 pc divided by the age of 1600 yr) is relatively fast compared with other core-collapse SNRs, we propose that RX J1713.7-3946 is a result of a Type Ib/c supernova whose progenitor was a member of an interacting binary. While our analysis provides strong evidence for X-ray line emission, our interpretation of its nature as thermal emission from SN ejecta requires further confirmation especially through future precision spectroscopic measurements using ASTRO-H.
We derive limits on the dark matter annihilation cross section and lifetime using measurements of the AMS-02 antiproton ratio and positron fraction data. In deriving the limits, we consider the scenario of secondary particles accelerated in supernova remnants (SNRs) which has been argued to be able to reasonably account for the AMS-02 high energy positron/antiproton fraction data. We parameterize the contribution of secondary particles accelerated in SNRs and then fit the observational data within the conventional cosmic ray propagation model by adopting the GALPROP code. We use the likelihood ratio test to determine the 95$\%$ confidence level upper limits of the possible dark matter (DM) contribution to the antiproton/positron fractions measured by AMS-02. Our limits are stronger than that set by the Fermi-LAT gamma-ray Pass 8 data of the dwarf spheroidal satellite galaxies. We also show that the solar modulation (cosmic ray propagation) parameters can play a non-negligible role in modifying the constraints on the dark matter annihilation cross section and lifetime for $m_\chi<100$ GeV ($m_\chi>100$ GeV), where $m_\chi$ is the rest mass of the dark matter particles. Using this results, we also put limits on the effective field theory of dark matter.
We investigate the quantumness of primordial cosmological fluctuations and its detectability. The quantum discord of inflationary perturbations is calculated for an arbitrary splitting of the system, and shown to be very large on super-Hubble scales. This entails the presence of large quantum correlations, due to the entangled production of particles with opposite momentums during inflation. To determine how this is reflected at the observational level, we study whether quantum correlators can be reproduced by a non-discordant state, i.e. a state with vanishing discord that contains classical correlations only. We demonstrate that this can be done for the power spectrum, the price to pay being twofold: first, large errors in other two-point correlation functions, that cannot however be detected since hidden in the decaying mode; second, the presence of intrinsic non-Gaussianity the detectability of which remains to be determined but which could possibly rule out a non-discordant description of the Cosmic Microwave Background. If one abandons the idea that perturbations should be modeled by Quantum Mechanics and wants to use a classical stochastic formalism instead, we show that any two-point correlators on super-Hubble scales can exactly be reproduced regardless of the squeezing of the system. The later becomes important only for higher order correlation functions, that can be accurately reproduced only in the strong squeezing regime.
Astrophysical direct $N$-body methods have been one of the first production algorithms to be implemented using NVIDIA's CUDA architecture. Now, almost seven years later, the GPU is the most used accelerator device in astronomy for simulating stellar systems. In this paper we present the implementation of the Sapporo2 $N$-body library, which allows researchers to use the GPU for $N$-body simulations with little to no effort. The first version, released five years ago, is actively used, but lacks advanced features and versatility in numerical precision and support for higher order integrators. In this updated version we have rebuilt the code from scratch and added support for OpenCL, multi-precision and higher order integrators. We show how to tune these codes for different GPU architectures and present how to continue utilizing the GPU optimal even when only a small number of particles ($N < 100$) is integrated. This careful tuning allows Sapporo2 to be faster than Sapporo1 even with the added options and double precision data loads. The code runs on a range of NVIDIA and AMD GPUs in single and double precision accuracy. With the addition of OpenCL support the library is also able to run on CPUs and other accelerators that support OpenCL.
We study the matter bispectrum of the large-scale structure by comparing different perturbative and phenomenological models with measurements from $N$-body simulations obtained with a modal bispectrum estimator. Using shape and amplitude correlators, we directly compare simulated data with theoretical models over the full three-dimensional domain of the bispectrum, for different redshifts and scales. We review and investigate the main perturbative methods in the literature that predict the one-loop bispectrum: standard perturbation theory, effective field theory, resummed Lagrangian and renormalised perturbation theory, calculating the latter also at two loops for some triangle configurations. We find that effective field theory succeeds in extending the range of validity furthest into the mildly non-linear regime, albeit at the price of free extra parameters requiring calibration on simulations. For the more phenomenological halo model, we confirm that despite its validity in the deeply non-linear regime it has a deficit of power on intermediate scales, which worsens at higher redshifts; this issue is ameliorated, but not solved, by combined halo-perturbative models. We show from simulations that in this transition region there is a strong squeezed bispectrum component that is significantly underestimated in the halo model at earlier redshifts. We thus propose a phenomenological method for alleviating this deficit, which we develop into a simple phenomenological `three-shape' benchmark model based on the three fundamental shapes we have obtained from studying the halo model. When calibrated on the simulations, this three-shape benchmark model accurately describes the bispectrum on all scales and redshifts considered, providing a prototype bispectrum HALOFIT-like methodology that could be used to describe and test parameter dependencies.
The modeling of the heliosphere requires continuous three-dimensional solar wind data. The in-situ out-of-ecliptic measurements are very rare, so that other methods of solar wind detection are needed. We use the remote sensing data of the solar wind speed from observations of interplanetary scintillation (IPS) to reconstruct spatial and temporal structures of the solar wind proton speed from 1985 to 2013. We developed a method of filling the data gaps in the IPS observations to obtain continuous and homogeneous solar wind speed records. We also present a method to retrieve the solar wind density from the solar wind speed, utilizing the invariance of the solar wind dynamic pressure and energy flux with latitude. To construct the synoptic maps of solar wind speed we use the decomposition into spherical harmonics of each of the Carrington rotation map. To fill the gaps in time we apply the singular spectrum analysis to the time series of the coefficients of spherical harmonics. We obtained helio-latitudinal profiles of the solar wind proton speed and density over almost three recent solar cycles. The accuracy in the reconstruction is, due to computational limitations, about $20\%$. The proposed methods allow us to improve the spatial and temporal resolution of the model of the solar wind parameters presented in our previous paper (Sok\'o{\l} et al. 2013) and give a better insight into the time variations of the solar wind structure. Additionally, the solar wind density is reconstructed more accurately and it fits better to the in-situ measurements from \textit{Ulysses}.
Context: The SW Sex stars are assumed to represent a distinguished stage in CV evolution, making it especially important to study them. Aims: We discovered a new cataclysmic star and carried out prolonged and precise photometric observations, as well as medium-resolution spectral observations. Modelling these data allowed us to determine the psysical parameters and to establish its peculiarities. Results: The newly discovered vataclysmic variable 2MASSJ22560844+5954299 shows the deepest eclipse amongst the known nova-like stars. It was reproduced by totally covering a very luminous accretion disk by a red secondary component. The temperature distribution of the disk is flatter than that of steady-state disk. The target is unusual with the combination of a low mass ratio q~1.0 (considerably below the limit q=1.2 of stable mass transfer of CVs) and an M-star secondary. The intensity of the observed three emission lines, H_alpha, He 5875, and He 6678, sharply increases around phase 0.0, accompanied by a Doppler jump to the shorter wavelength. The absence of eclipses of the emission lines and their single-peaked profiles means that they originate mainly in a vertically extended hot-spot halo. The emission H_alpha line reveals S-wave wavelength shifts with semi-amplitude of around 210 km/s and phase lag of 0.03. Conclusions: The non-steady-state emission of the luminous accretion disk of 2MASSJ22560844+5954299 was attributed to the low viscosity of the disk matter caused by its unusually high temperature. The star shows all spectral properties of an SW Sex variable apart from the 0.5 central absorption.
The detailed knowledge of plasma heating and acceleration region properties presents a major observational challenge in solar flare physics. Using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the high temperature differential emission measure, DEM(T), and the energy-dependent spatial structure of solar flare coronal sources are studied quantitatively. The altitude of the coronal X-ray source is observed to increase with energy by ~+0.2 arcsec/keV between 10 and 25 keV. Although an isothermal model can fit the thermal X-ray spectrum observed by RHESSI, such a model cannot account for the changes in altitude, and multi-thermal coronal sources are required where the temperature increases with altitude. For the first time, we show how RHESSI imaging information can be used to constrain the DEM(T) of a flaring plasma. We develop a thermal bremsstrahlung X-ray emission model with inhomogeneous temperature and density distributions to simultaneously reproduce: i) DEM(T), ii) altitude as a function of energy, and iii) vertical extent of the flaring coronal source versus energy. We find that the temperature-altitude gradient in the region is ~+0.08 keV/arcsec (~1.3 MK/Mm). Similar altitude-energy trends in other flares suggest that the majority of coronal X-ray sources are multi-thermal and have strong vertical temperature and density gradients with a broad DEM(T).
The violent merger of two carbon-oxygen white dwarfs has been proposed as a viable progenitor for some Type Ia supernovae. However, it has been argued that the strong ejecta asymmetries produced by this model might be inconsistent with the low degree of polarisation typically observed in Type Ia supernova explosions. Here, we test this claim by carrying out a spectropolarimetric analysis for the model proposed by Pakmor et al. (2012) for an explosion triggered during the merger of a 1.1 M$_{\odot}$ and 0.9 M$_{\odot}$ carbon-oxygen white dwarf binary system. Owing to the asymmetries of the ejecta, the polarisation signal varies significantly with viewing angle. We find that polarisation levels for observers in the equatorial plane are modest ($\lesssim$ 1 per cent) and show clear evidence for a dominant axis, as a consequence of the ejecta symmetry about the orbital plane. In contrast, orientations out of the plane are associated with higher degrees of polarisation and departures from a dominant axis. While the particular model studied here gives a good match to highly-polarised events such as SN 2004dt, it has difficulties in reproducing the low polarisation levels commonly observed in normal Type Ia supernovae. Specifically, we find that significant asymmetries in the element distribution result in a wealth of strong polarisation features that are not observed in the majority of currently available spectropolarimetric data of Type Ia supernovae. Future studies will map out the parameter space of the merger scenario to investigate if alternative models can provide better agreement with observations.
During the past two decades, experiments in both the Northern and Southern hemispheres have observed a small but measurable energy-dependent sidereal anisotropy in the arrival direction distribution of galactic cosmic rays. The relative amplitude of the anisotropy is $10^{-4} - 10^{-3}$. However, each of these individual measurements is restricted by limited sky coverage, and so the pseudo-power spectrum of the anisotropy obtained from any one measurement displays a systematic correlation between different multipole modes $C_\ell$. To address this issue, we present the preliminary status of a joint analysis of the anisotropy on all angular scales using cosmic-ray data from the IceCube Neutrino Observatory located at the South Pole ($90^\circ$ S) and the High-Altitude Water Cherenkov (HAWC) Observatory located at Sierra Negra, Mexico ($19^\circ$ N). We describe the methods used to combine the IceCube and HAWC data, address the individual detector systematics and study the region of overlapping field of view between the two observatories.
We present dynamic spectra from the LWA1 telescope of two large meteors (fireballs) observed to emit between 37 and 54 MHz. These spectra show the first ever recorded broadband measurements of this newly discovered VHF emission. The spectra show that the emission is smooth and steep, getting very bright at lower frequencies. We suggest that this signal is possibly emission of Langmuir waves and that these waves could be excited by a weak electron beam within the trail. The spectra of one fireball displays broadband temporal frequency sweeps. We suggest that these sweeps are evidence of individual expanding clumps of emitting plasma. While some of these proposed clumps may have formed at the very beginning of the fireball event, others must have formed seconds after the initial event.
Thanks to the high sensitivity of the instruments on board the XMM-Newton and Chandra satellites, it has become possible to explore the properties of the X-ray emission from hot subdwarfs. The small but growing sample of hot subdwarfs detected in X-rays includes binary systems, in which the X-rays result from wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low mass stars provide information which can be useful also for our understanding of the winds of more luminous and massive early-type stars and can lead to the discovery of particularly interesting binary systems.
Uranus is fainter when the Sun and Earth are near its equatorial plane than when they are near the projection of its poles. The average of the absolute values of the sub-Earth and sub-Sun latitudes (referred to as the sub-latitude here) is used to quantify this dependency. The rates of change of magnitude with sub-latitude for four of the Johnson-Cousins band-passes are B-band, -0.48 +/- 0.11 milli-magnitudes per degree; V-band, -0.84 +/- 0.04 ; R-band, -5.33 +/- 0.30; and I-band -2.79 +/- 0.41. Evaluated over the range of observed sub-latitudes, the blue flux changes by a modest 3% while the red flux varies by a much more substantial 30%. These disk-integrated variations are consistent with the published brightness characteristics of the North and South Polar Regions, with the latitudinal distribution of methane and with a planetary hemispheric asymmetry. Reference magnitudes and colors are also reported along with geometric albedos for the seven Johnson-Cousins band-passes.
The ordered magnetic field observed via polarized synchrotron emission in nearby disc galaxies can be explained by a mean-field dynamo operating in the diffuse interstellar medium (ISM). Additionally, vertical-flux initial conditions are potentially able to influence this dynamo via the occurrence of the magneto-rotational instability (MRI). We aim to study the influence of various initial field configurations on the saturated state of the mean-field dynamo. This is motivated by the observation that different saturation behavior was previously obtained for different supernova rates. We perform direct numerical simulations (DNS) of three-dimensional local boxes of the vertically stratified, turbulent interstellar medium, employing shearing-periodic boundary conditions horizontally. Unlike in our previous work, we also impose a vertical seed magnetic field. We run the simulations until the growth of the magnetic energy becomes negligible. We furthermore perform simulations of equivalent 1D dynamo models, with an algebraic quenching mechanism for the dynamo coefficients. We compare the saturation of the magnetic field in the DNS with the algebraic quenching of a mean-field dynamo. The final magnetic field strength found in the direct simulation is in excellent agreement with a quenched $\alpha\Omega$~dynamo. For supernova rates representative of the Milky Way, field losses via a Galactic wind are likely responsible for saturation. We conclude that the relative strength of the turbulent and regular magnetic fields in spiral galaxies may depend on the galaxy's star formation rate. We propose that a mean field approach with algebraic quenching may serve as a simple sub-grid scale model for galaxy evolution simulations including a prescribed feedback from magnetic fields.
Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them is at high redshifts (z~2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7-GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ~70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1-kpc double structure, reminiscent of hot spots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.
Accretion disks play an important role in the evolution of their relativistic inner compact objects. The emergence of a new generation of interferometers will allow to resolve these accretion disks and provide more information about the properties of the central gravitating object. Due to this instrumental leap forward it is crucial to investigate the accretion disk physics near various types of inner compact objects now to deduce later constraints on the central objects from observations. A possible candidate for the inner object is the boson star. Here, we will try to analyze the differences between accretion structures surrounding boson stars and black holes. We aim at analysing the physics of circular geodesics around boson stars and study simple thick accretion tori (so-called Polish doughnuts) in the vicinity of these stars. We realize a detailed study of the properties of circular geodesics around boson stars. We then perform a parameter study of thick tori with constant angular momentum surrounding boson stars. This is done using the boson star models computed by a code constructed with the spectral solver library KADATH. We demonstrate that all the circular stable orbits are bound. In the case of a constant angular momentum torus, a cusp in the torus surface exists only for boson stars with a strong gravitational scalar field. Moreover, for each inner radius of the disk, the allowed specific angular momentum values lie within a constrained range which depends on the boson star considered. We show that the accretion tori around boson stars have different characteristics than in the vicinity of a black hole. With future instruments it could be possible to use these differences to constrain the nature of compact objects.
Starting from the relativistic galaxy number counts to second order in cosmological perturbation theory which we have determined in a previous paper, we discuss the dominant terms on sub-Hubble scales and on intermediate to large redshifts. In particular, we determine their contribution to the bispectrum. In addition to the terms already known from Newtonian second order perturbation theory, we find that there are a series of additional `lensing-like' terms which contribute to the bispectrum. We derive analytical expressions for the full leading order bispectrum and we evaluate it numerically for different configurations, indicating how they can be measured with upcoming surveys. In particular, the new `lensing-like' terms are not negligible within large window functions and even dominate the bispectrum at well separated redshifts. This offers us the possibility to measure them in future surveys.
We describe HEROIC, an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in the short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic MHD simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multi-dimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. The multi-dimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than ten times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.
The aim of this work is to investigate and characterise particle behaviour in a (observationally-driven) 3D MHD model of the solar atmosphere above a slowly evolving, non-flaring active region. We use a relativistic guiding-centre particle code to investigate particle acceleration in a single snapshot of the 3D MHD simulation. Despite the lack of flare-like behaviour in the active region, direct acceleration of electrons and protons to non-thermal energies ($\lesssim420$MeV) was found, yielding spectra with high-energy tails which conform to a power law. Examples of particle dynamics, including particle trapping caused by local electric rather than magnetic field effects, are observed and discussed, together with implications for future experiments which simulate non-flaring active region heating and reconnection.
The aim of this work is to investigate and characterise particle behaviour in a 3D MHD model of a reconnecting magnetic separator. We use a relativistic guiding-centre test-particle code to investigate electron and proton acceleration in snapshots from 3D MHD separator reconnection experiments, and compare the results with findings from an analytical separator reconnection model studied in a previous investigation. The behaviour (and acceleration) of large distributions of particles are examined in detail for both analytical and numerical separator reconnection models. Differences in acceleration sites are recovered and discussed, together with the dependence of final particle energy ranges upon the dimensions of the models and the stage of the (time-dependent) MHD reconnection event. We discuss the implications of these results for observed magnetic separators in the solar corona.
Deducing the cloud cover and its temporal evolution from the observed planetary spectra and phase curves can give us major insight into the atmospheric dynamics. In this paper, we present Aeolus, a Markov-Chain Monte Carlo code that maps the structure of brown dwarf and other ultracool atmospheres. We validated Aeolus on a set of unique Jupiter Hubble Space Telescope (HST) light curves. Aeolus accurately retrieves the properties of the major features of the jovian atmosphere such as the Great Red Spot and a major 5um hot spot. Aeolus is the first mapping code validated on actual observations of a giant planet over a full rotational period. For this study, we applied Aeolus to J and H-bands HST light curves of 2MASSJ21392676+0220226 and 2MASSJ0136565+093347. Aeolus retrieves three spots at the top-of-the-atmosphere (per observational wavelength) of these two brown dwarfs, with a surface coverage of 21+-3% and 20.3+-1.5% respectively. The Jupiter HST light curves will be publicly available via ADS/VIZIR.
We present a generalization of the Giant Molecular Cloud (GMC) identification problem based on cluster analysis. The method we designed, SCIMES (Spectral Clustering for Interstellar Molecular Emission Segmentation) considers the dendrogram of emission in the broader framework of graph theory and utilizes spectral clustering to find discrete regions with similar emission properties. For Galactic molecular cloud structures, we show that the characteristic volume and/or integrated CO luminosity are useful criteria to define the clustering, yielding emission structures that closely reproduce "by-eye" identification results. SCIMES performs best on well-resolved, high-resolution data, making it complementary to other available algorithms. Using 12CO(1-0) data for the Orion-Monoceros complex, we demonstrate that SCIMES provides robust results against changes of the dendrogram-construction parameters, noise realizations and degraded resolution. By comparing SCIMES with other cloud decomposition approaches, we show that our method is able to identify all canonical clouds of the Orion-Monoceros region, avoiding the over-division within high resolution survey data that represents a common limitation of several decomposition algorithms. The Orion-Monoceros objects exhibit hierarchies and size-line width relationships typical to the turbulent gas in molecular clouds, although "the Scissors" region deviates from this common description. SCIMES represents a significant step forward in moving away from pixel-based cloud segmentation towards a more physical-oriented approach, where virtually all properties of the ISM can be used for the segmentation of discrete objects.
We consider the inner $\sim$ AU of a protoplanetary disk (PPD), at a stage where angular momentum transport is driven by the mixing of a radial magnetic field into the disk from a T-Tauri wind. Because the radial profile of the imposed magnetic field is well constrained, a deterministic calculation of the disk mass flow becomes possible. The vertical disk profiles obtained in Paper I imply a stronger magnetization in the inner disk, faster accretion, and a secular depletion of the disk material. Inward transport of solids allows the disk to maintain a broad optical absorption layer even when the grain abundance becomes too small to suppress its ionization. Thus a PPD may show a strong middle-to-near infrared spectral excess even while its mass profile departs radically from the minimum-mass solar nebula. The disk surface density is buffered at $\sim 30$ g cm$^{-2}$: below this, X-rays trigger strong enough magnetorotational turbulence at the midplane to loft mm-cm sized particles high in the disk, followed by catastrophic fragmentation. A sharp density gradient bounds the inner depleted disk, and propagates outward to $\sim 1$-2 AU over a few Myr. Earth-mass planets migrate through the inner disk over a similar timescale, whereas the migration of Jupiters is limited by the supply of gas. Gas-mediated migration must stall outside 0.04 AU, where silicates are sublimated and the disk shifts to a much lower column. A transition disk emerges when the dust/gas ratio in the MRI-active layer falls below $X_d \sim 10^{-6}(a_d/\mu{\rm m})$, where $a_d$ is the grain size.
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, is wound up by the disk shear, and is pushed downward by a combination of turbulent mixing and ambipolar and Ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field $B_r \sim (10^{-4}$-$10^{-2})(r/{\rm AU})^{-2}$ G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner $\sim 1$ AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around $10^{-8}\,M_\odot$ yr$^{-1}$ are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk, and the implications for planet migration, are investigated in the accompanying paper.
We have numerically explored the Scalar Field Condensate baryogenesis model for numerous sets of model's parameters, within their natural range of values. We have investigated the evolution of the baryon charge carrying field, the evolution of the baryon charge contained in the scalar field condensate and the final value of the generated baryon charge on the model's parameters: the gauge coupling constant $\alpha$, the Hubble constant at the inflationary stage $H_I$, the mass $m$, the self-coupling constants $\lambda_i$.
The annihilation of non-relativistic dark matter particles at tree level can be strongly enhanced by the radiation of an additional gauge boson. This is particularly true for the helicity-suppressed annihilation of Majorana particles, like neutralinos, into fermion pairs. Surprisingly, and despite the potentially large effect due to the strong coupling, this has so far been studied in much less detail for the internal bremsstrahlung of gluons than for photons or electroweak gauge bosons. Here, we aim at bridging that gap by presenting a general analysis of neutralino annihilation into quark anti-quark pairs and a gluon, allowing e.g. for arbitrary neutralino compositions and keeping the leading quark mass dependence at all stages in the calculation. We find in some cases largely enhanced annihilation rates, especially for scenarios with squarks being close to degenerate in mass with the lightest neutralino, but also notable distortions in the associated antiproton and gamma-ray spectra. Both effects significantly impact limits from indirect searches for dark matter and are thus important to be taken into account in, e.g., global scans. For extensive scans, on the other hand, full calculations of QCD corrections are numerically typically too expensive to perform for each point in parameter space. We present here for the first time an efficient, numerically fast implementation of QCD corrections, extendable in a straight-forward way to non-supersymmetric models, which avoids computationally demanding full one-loop calculations or event generator runs and yet fully captures the leading effects relevant for indirect dark matter searches. In this context, we also present updated constraints on dark matter annihilation from cosmic-ray antiproton data. Finally, we comment on the impact of our results on relic density calculations.
We derive the primordial power spectra, spectral indices and runnings of both cosmological scalar perturbations and gravitational waves in the framework of loop quantum cosmology with the inverse-volume quantum corrections. This represents an extension of our previous treatment for $\sigma$ being integers to the case with any given value of $\sigma$. For this purpose, we adopt a new calculational strategy in the uniform asymptotic approximation, by expanding the involved integrals first in terms of the inverse-volume correction parameter to its first-order, a consistent requirement of the approximation of the inverse-volume corrections. In this way, we calculate explicitly the quantum gravitational corrections to the standard inflationary spectra and spectral indices to the second-order of the slow-roll parameters, and obtain the observational constraints on the inverse-volume corrections from Planck 2015 data for various values of $\sigma$. Using these constraints we discuss whether these quantum gravitational corrections lead to measurable signatures in the cosmological observations. We show that the scale-dependent contributions to inflationary spectra from the inverse-volume corrections could be well within the range of the detectability of the forthcoming generation of experiments.
We show how the Higgs boson mass is protected from the potentially large corrections due to the introduction of minimal dark matter if the new physics sector is made supersymmetric. The fermionic dark matter candidate (a 5-plet of $SU(2)_L$) is accompanied by a scalar state. The weak gauge sector is made supersymmetric and the Higgs boson is embedded in a supersymmetric multiplet. The remaining standard model states are non-supersymmetric. Non vanishing corrections to the Higgs boson mass only appear at three-loop level and the model is natural for dark matter masses up to 15 TeV--a value larger than the one required by the cosmological relic density. The construction presented stands as an example of a general approach to naturalness that solves the little hierarchy problem which arises when new physics is added beyond the standard model at an energy scale around 10 TeV.
We use the spherical collapse method to investigate the non-linear density perturbations of pressureless matter in the cosmological models with the extended quintessence as dark energy in the metric and Palatini formalisms. We find that for both formalisms, when the coupling constant is negative, the deviation from the $\Lambda$CDM model is the least according to the evolutionary curves of the linear density contrast $\delta_{c}$ and virial overdensity $\Delta_{v}$, and it is less than one percent. And this indicates that, in the extended quintessence cosmological models in which the coupling constant is negative, all quantities dependent on $\delta_{c}$ or $\Delta_{v}$ are essentially unaffected if the linear density contrast or the virial overdensity of the $\Lambda$CDM model is used as an approximation. Moreover, we find that the differences between different formalisms are very small in terms of structure formation, and thus can not be used to distinguish the metric and Palatini formalisms.
We consider the problem for the classification of static and asymptotically flat Einstein-Maxwell-dilaton spacetimes with a photon sphere. It is first proven that the photon spheres in Einstein-Maxwell-dilaton gravity have constant mean and constant scalar curvature. Then we derive some relations between the mean curvature and the physical characteristics of the photon spheres. Using further the symmetries of the dimensionally reduced Einstein-Maxwell-dilaton field equations we show that the lapse function, the electrostatic potential and the dilaton field are functionally dependent in the presence of a photon sphere. Using all this we prove the main classification theorem by explicitly constructing all Einstein-Maxwell-dilaton solutions possessing a non-extremal photon sphere.
Direct detection of dark matter with directional sensitivity is a promising concept for improving the search for weakly interacting massive particles. With information on the direction of WIMP induced nuclear recoils one has access to the full 3-dimensional velocity distribution of the local dark matter halo and thus a potential avenue for studying WIMP astrophysics. Furthermore the unique angular signature of the WIMP recoil distribution provides a crucial discriminant from neutrinos which currently represent the ultimate background to direct detection experiments.
Millimeter very long baseline interferometry will soon produce accurate images of the closest surroundings of the supermassive compact object at the center of the Galaxy, Sgr A*. These images may reveal the existence of a central faint region, the so-called shadow, which is often interpreted as the observable consequence of the event horizon of a black hole. In this paper, we compute images of an accretion torus around Sgr A* assuming this compact object is a boson star, i.e. an alternative to black holes within general relativity, with no event horizon and no hard surface. We show that very relativistic rotating boson stars produce images extremely similar to Kerr black holes, showing in particular shadow-like and photon-ring-like structures. This result highlights the extreme difficulty of unambiguously telling the existence of an event horizon from strong-field images.
The direct search for dark matter WIMP particles through their interaction with nuclei at the "neutrino floor" sensitivity, where neutrino-induced coherent scattering on nuclei starts contributing to the background, requires detectors capable of collecting exposures of the order of 1~ktonne yr free of background resulting from beta and gamma decays and cosmogenic and radiogenic neutrons. The same constraints are required for precision measurements of solar neutrinos elastically scattering on electrons. Two-phase liquid argon time projection chambers (LAr TPCs) are prime candidates for the ambitious program to explore the nature of dark matter. The large target, high scintillation light yield and good spatial resolution in all three cartesian directions concurrently allows a high precision measurement of solar neutrino fluxes. We studied the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). Such a detector could measure the CNO neutrino rate with 5 sigma sensitivity, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector. Measurements with ~2%, ~10% and ~15% precision for 7Be, pep, and CNO neutrinos, respectively, are possible.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)
We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute-Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line-by-line analysis. Chromospheric emission-line fluxes from CaII are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested.
We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15$\le$z$\le$0.3 observed with Chandra. We present the calibration of the Mass-Temperature (MT) relation using hydrostatic mass estimates for the most dynamically relaxed clusters, and use this relation as a mass proxy for the full cluster sample. We find that the slope of the MT relation follows the self-similar expectation, and is consistent with previously published relations. We investigate the luminosity-Mass (LM) relation for the cluster sample, utilising a method to fully account for selection biases. We find that the difference in normalisation of the LM relation with and without accounting for selection effects is $\approx$2. For a cluster of luminosity 10$^{45}$ erg s$^{-1}$, we find that the mass estimated from the LM relation when we account for selection effects is $\approx$40% higher compared to the sample LM relation (not accounting for selection effects).
Dessart et al., demonstrated that type II supernova (SN II) model spectra present increasing metal line strength with increasing progenitor metallicity. To confront these models with observations, we obtained a large sample of SN II host HII region emission line spectroscopy. We show that inferred SN II host HII region metallicities have a statistically significant correlation with the strength of SN II metal lines, specifically FeII 5018A.
Are the FRI and FRII radio galaxies representative of the radio-loud (RL) AGN population in the local Universe? Recent studies on the local low-luminosity radio sources cast lights on an emerging population of compact radio galaxies which lack extended radio emission. In a pilot JVLA project, we study the high-resolution images of a small but representative sample of this population. The radio maps reveal compact unresolved or slightly resolved radio structures on a scale of 1-3 kpc. We find that these RL AGN live in red massive early-type galaxies, with large black hole masses ($\gtrsim$10$^{8}$ M$_{\odot}$), and spectroscopically classified as Low Excitation Galaxies, all characteristics typical of FRI radio galaxies which they also share the same nuclear luminosity with. However, they are more core dominated (by a factor of $\sim$30) than FRIs and show a clear deficit of extended radio emission. We call these sources 'FR0' to emphasize their lack of prominent extended radio emission. A posteriori, other compact radio sources found in the literature fulfill the requirements for a FR0 classification. Hence, the emerging FR0 population appears to be the dominant radio class of the local Universe. Considering their properties we speculate on their possible origins and the possible cosmological scenarios they imply.
The present literature does not give a satisfactory answer to the question about the nature of the "Antlia galaxy cluster". The radial velocities of galaxies found in the region around the giant ellipticals NGC 3258/3268 range from about 1000 km/s to 4000 km/s. We characterise this region and its possible kinematical and population substructure. We have obtained VLT--VIMOS multi-object spectra of the galaxy population in the inner part of the Antlia cluster and measure radial velocities for 45 potential members. We supplement our galaxy sample with literature data, ending up with 105 galaxy velocities. We find a large radial velocity dispersion for the entire sample as reported in previous papers. However, we find three groups at about 1900 km/s, 2800 km/s, and 3700 km/s, which we interpret as differences in the recession velocities rather than peculiar velocities. The high radial velocity dispersion of galaxies in the Antlia region reflects a considerable extension along the line of sight.
We propose that two of the most surprising results so far among exoplanet discoveries are related: the existences of both hot Jupiters and the high frequency of systems of tightly-packed inner planets (STIPs) with periods $P<200$ days. In this paradigm, the vast majority of stars rapidly form along with multiple close-in planets in the mass range of Mars to super-Earths/mini-Neptunes. Such systems are metastable, with the time scale of the dynamical instability having a major influence on final planet types. In most cases, the planets consolidate into a system of fewer, more massive planets, but long after the circumstellar gas disk has dissipated. This can yield planets with masses above the traditional critical core of $\sim$10$M_\oplus$, yielding short-period giants that lack abundant gas. A rich variety of physical states are also possible given the range of collisional outcomes and formation time of the close-in planets. However, when dynamical consolidation occurs before gas dispersal, a critical core can form that then grows via gas capture into a short-period gas giant. In this picture the majority of Hot and Warm Jupiters formed locally, rather than migrating down from larger distances.
By means of zoom-in hydrodynamic simulations we quantify the amount of neutral hydrogen (HI) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics (SPH), include radiative cooling, star formation, metal enrichment and supernova feedback, and can be split in two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analyzed to account for HI self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter halos monotonically increases with the halo mass and can be well described by a power-law of the form $M_{\rm HI}(M,z)\propto M^{3/4}$. Our results point out that AGN feedback reduces both the total halo mass and its HI mass, although it is more efficient in removing HI. We conclude that AGN feedback reduces the neutral hydrogen mass of a given halo by $\sim50\%$, with a weak dependence on halo mass and redshift. The spatial distribution of neutral hydrogen within halos is also affected by AGN feedback, whose effect is to decrease the fraction of HI that resides in the halo inner regions. By extrapolating our results to halos not resolved in our simulations we derive astrophysical implications from the measurements of $\Omega_{\rm HI}(z)$: halos with circular velocities larger than $\sim25~{\rm km/s}$ are needed to host HI in order to reproduce observations. We find that only the model with AGN feedback is capable of reproducing the value of $\Omega_{\rm HI}b_{\rm HI}$ derived from available 21cm intensity mapping observations.
We explore the impact of incorporating physically motivated ionisation and recombination rates on the history and topology of cosmic reionisation, by incorporating inputs from small-volume hydrodynamic simulations into a semi-numerical code, SimFast21, that evolves reionisation on large scales. We employ radiative hydrodynamic simulations to parameterize the ionisation rate Rion and recombination rate Rrec as functions of halo mass, overdensity and redshift. We find that Rion is super-linearly dependent on halo mass (Rion ~ Mh^1.41), in contrast to previous assumptions. We implement these scalings into SimFast21 to identify the ionized regions. We tune our models to be consistent with recent observations of the optical depth, ionizing emissivity, and neutral fraction by the end of reionisation. We require an average photon escape fraction fesc=0.04 within ~ 0.5 cMpc cells, independent of halo mass or redshift, to simultaneously match these data. We present predictions for the 21cm power spectrum, and show that it is converged with respect to simulation volume. We find that introducing superlinearly mass-dependent ionisations increases the duration of reionisation and boosts the small-scale 21cm power by ~ 2-3 at intermediate phases of reionisation. Introducing inhomogeneous recombinations reduces ionised bubble sizes and suppresses large-scale 21cm power by ~ 2-3. Moreover, gas clumping on sub-cell scales has a minimal effect on the 21cm power, indicating that robust predictions do not depend on the behaviour of kpc-scale structures. The superlinear ionisations significantly increase the median halo mass scale for ionising photon output to >10^10 Mo, giving greater hope for detecting most of ionising sources with next-generation facilities. These results highlight the importance of more accurately treating ionising sources and recombinations for modeling reionisation and its 21cm signal.
We present a study of the physical properties of the disc and tail of ESO137-001, a galaxy suffering from extreme ram-pressure stripping during its infall into the Norma cluster. With sensitive and spatially-resolved MUSE spectroscopy, we analyse the emission line diagnostics in the tail of ESO137-001, finding high values of [NII]/H$\alpha$ and [OI]/H$\alpha$ that are suggestive of the presence of shocks in turbulent gas. However, the observed line ratios are not as strong as commonly seen in pure shock heating models, suggesting that other emission mechanisms may contribute to the observed emission. Indeed, part of the observed emission, particularly at close separations from the galaxy disc, may originate from recombination of photoionised gas stripped from the main body of ESO137-001. We also identify a large number of bright compact knots within in the tail, with line ratios characteristic of HII regions. These HII regions, despite residing in a stripped gas tail, have quite typical line ratios, densities, temperatures, and metallicity ($\sim0.7$ solar). The majority of these HII regions are embedded within diffuse gas from the tail, which is dynamically cool ($\sigma \sim 25-50\ \rm{km\ s^{-1}}$ ). This fact, together with a lack of appreciable gradients in age and metallicity, suggests that these HII regions formed in situ. While our analysis represents a first attempt to characterise the rich physics of the ESO137-001 tail, future work is needed to address the importance of other mechanisms, such as thermal conduction and magneto hydrodynamic waves, in powering the emission in the tail.
Double-degenerate (DD) mergers of carbon-oxygen (CO) white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). However, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers, and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. Here, we utilize the \supernu\ radiative transfer software to calculate 3D synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1 $M_\odot$ of Kashyap et al. 2015. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly-declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and spectra of violent DD mergers demonstrate a strong dependence on viewing angle, in conflict with observations. We demonstrate here that light curves and spectra of the spiral merger are less sensitive to the viewing angle than violent mergers, in closer agreement with observation. We find that the spatial distribution of $^{56}$Ni and intermediate-mass elements follows a characteristic hourglass shape. We discuss the implications of the asymmetric distribution of $^{56}$Ni for the early-time gamma-ray observations of $^{56}$Ni from SN 2014J. We suggest that DD mergers that agree with light curves and spectra of normal SNe Ia will likely require a lower system mass.
We present a complete derivation of the observationally motivated definition of the modified gravity statistic $E_G$. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of $E_G$. We forecast errors on $E_G$ for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of $E_G$ under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using $E_G$ to test gravity with future surveys.
We present the first relativistic hydrodynamic simulations of black hole-torus systems as remnants of binary-neutron star (NS-NS) and neutron star-black hole (NS-BH) mergers, in which the viscously driven evolution of the accretion torus is followed with a self-consistent treatment of the energy-dependent neutrino transport and of neutrino-antineutrino annihilation, which initiates relativistic, collimated outflows above the poles of the BH. Moreover, we include the interaction of these polar outflows with the dynamical ejecta that are expelled during the NS-NS merging. The modeled torus masses, BH masses and spins, and the ejecta masses, velocities, and spatial distributions are adopted from relativistic merger simulations. We find that energy deposition by neutrino annihilation can accelerate outflows with initially high Lorentz factors along polar low-density funnels, but only in mergers with extremely low baryon pollution in the polar regions. NS-BH mergers, where polar mass ejection during the merging phase is absent, provide sufficiently baryon-poor environments to enable neutrino-powered, ultrarelativistic jets with terminal Lorentz factors above 100 and considerable dynamical collimation, favoring short gamma-ray bursts (sGRBs), although their typical energies might be too low to explain the majority of events. In the case of NS-NS mergers, however, neutrino emission of the accreting and viscously spreading torus is too short and too weak to yield enough energy for the outflows to break out from the surrounding ejecta shell as highly relativistic jets. We conclude that neutrino annihilation cannot power sGRBs from NS-NS mergers, but magnetohydrodynamic processes are indispensable.
The metal-poor gas continuously accreting onto the discs of spiral galaxies is unlikely to arrive from the intergalactic medium (IGM) with exactly the same rotation velocity as the galaxy itself and even a small angular momentum mismatch inevitably drives radial gas flows within the disc, with significant consequences to galaxy evolution. Here we provide some general analytic tools to compute accretion profiles, radial gas flows and abundance gradients in spiral galaxies as a function of the angular momentum of accreting material. We generalize existing solutions for the decomposition of the gas flows, required to reproduce the structural properties of galaxy discs, into direct accretion from the IGM and a radial mass flux within the disc. We then solve the equation of metallicity evolution in the presence of radial gas flows with a novel method, based on characteristic lines, which greatly reduces the numerical demand on the computation and sheds light on the crucial role of boundary conditions on the abundance profiles predicted by theoretical models. We also discuss how structural and chemical constraints can be combined to disentangle the contributions of inside-out growth and radial flows in the development of abundance gradients in spiral galaxies. Illustrative examples are provided throughout with parameters plausible for the Milky Way.
We present results of a Hubble Space Telescope far-ultraviolet (FUV) survey searching for white dwarf (WD) companions to blue straggler stars (BSSs) in open cluster NGC 188. The majority of NGC 188 BSSs (15 of 21) are single-lined binaries with properties suggestive of mass-transfer formation via Roche lobe overflow, specifically through an asymptotic giant branch star transferring mass to a main sequence secondary, yielding a BSS binary with a WD companion. In NGC 188, a BSS formed by this mechanism within the past 400 Myr will have a WD companion hot and luminous enough to be directly detected as a FUV photometric excess with HST. Comparing expected BSS FUV emission to observed photometry reveals four BSSs with WD companions above 12,000 K (younger than 250 Myr) and three WD companions with temperatures between 11,000-12,000 K. These BSS+WD binaries all formed through recent mass transfer. The location of the young BSSs in an optical color-magnitude diagram (CMD) indicates that distance from the zero-age main sequence does not necessarily correlate with BSS age. There is no clear CMD separation between mass transfer-formed BSSs and those likely formed through other mechanisms, such as collisions. The seven detected WD companions place a lower limit on the mass-transfer formation frequency of 33%. We consider other possible formation mechanisms by comparing properties of the BSS population to theoretical predictions. We conclude that 14 BSS binaries likely formed from mass transfer, resulting in an inferred mass-transfer formation frequency of approximately 67%.
The classic question that how young massive star clusters attain their shapes and sizes, as we find them today, remains to be a challenge. Both observational and computational studies of star-forming massive molecular gas clouds infer that massive cluster formation is primarily triggered along the small-scale ($\lesssim0.3$ pc) filamentary substructures within the clouds. The present study is intended to investigate the possible ways in which a filament-like-compact, massive star cluster (effective radius 0.1-0.3 pc) can expand $\gtrsim10$ times, still remaining massive enough ($\gtrsim10^4 M_\odot$), to become a young massive star cluster, as we observe today. To that end, model massive clusters (of initially $10^4 M_\odot-10^5 M_\odot$) are evolved using Sverre Aarseth's state-of-the-art N-body code NBODY7. All the computed clusters expand with time, whose sizes (effective radii) are compared with those observed for young massive clusters, of age $\lesssim100$ Myr, in the Milky Way and other nearby galaxies. It is found that beginning from the above compact sizes, a star cluster cannot expand by its own, i.e., due to two-body relaxation, stellar-evolutionary mass loss, dynamical heating by primordial binaries and stellar-mass black holes, up to the observed sizes of young massive clusters; they always remain much more compact compared to the observed ones. This calls for additional mechanisms that can boost the expansion of a massive cluster after its assembly. Using further N-body calculations, it is shown that a substantial residual gas expulsion, with $\approx30$% star formation efficiency, can indeed swell the newborn embedded cluster adequately. The limitations of the present calculations and their consequences are discussed.
The average white dwarf (WD) masses in cataclysmic variables (CVs) have been measured to significantly exceed those of single WDs, which is the opposite of what is theoretically expected. We present the results of binary population synthesis models taking into account consequential angular momentum loss (CAML) that is assumed to increase with decreasing WD mass. This approach can not only solve the WD mass problem, but also brings in agreement theoretical predictions and observations of the orbital period distribution and the space density of CVs. We speculate that frictional angular momentum loss following nova eruptions might cause such CAML and could thus be the missing ingredient of CV evolution.
We present a statistical analysis of the first four seasons from a "second-generation" microlensing survey for extrasolar planets, consisting of near-continuous time coverage of 8 deg$^2$ of the Galactic bulge by the OGLE, MOA, and Wise microlensing surveys. During this period, 224 microlensing events were observed by all three groups. Over 12% of the events showed a deviation from single-lens microlensing, and for $\sim$1/3 of those the anomaly is likely caused by a planetary companion. For each of the 224 events we have performed numerical ray-tracing simulations to calculate the detection efficiency of possible companions as a function of companion-to-host mass ratio and separation. Accounting for the detection efficiency, we find that $55^{+34}_{-22}\%$ of microlensed stars host a snowline planet. Moreover, we find that Neptunes-mass planets are $\sim10$ times more common than Jupiter-mass planets. The companion-to-host mass ratio distribution shows a deficit at $q\sim10^{-2}$, separating the distribution into two companion populations, analogous to the stellar-companion and planet populations, seen in radial-velocity surveys around solar-like stars. Our survey, however, which probes mainly lower-mass stars, suggests a minimum in the distribution in the super-Jupiter mass range, and a relatively high occurrence of brown-dwarf companions.
(abridged) We present multi-sightline absorption spectroscopy of the inner gaseous halo around three lensing galaxies at z=0.4-0.7. Their spectral and photometric properties are characteristic of nearby passive elliptical galaxies with half-light radii of r_e=2.6-8 kpc and estimated total stellar masses of log M*/Ms=10.6-11.2. The lensed QSO sightlines pass through the gaseous halo of the lensing galaxy at projected distances d=3-15 kpc or (1-2) r_e. Our absorption-line search reveals a diverse range of cool (temperature T~10^4 K) halo gas properties among the three lensing galaxies. Specifically, while the quadruple lens for HE0435-1223 shows no trace of associated Mg II or other ionic absorption features to very sensitive limits in all four sightlines, strong MgII absorbers are found along both sightlines at the redshift of the double lens for HE0047-1756, and in one of the two sightlines at the redshift of the lens for HE1104-1805. In addition to Mg II, associated FeII, MgI, and CaII absorption transitions are detected. The absorbers are resolved into 8-15 individual components with a line-of-sight velocity spread of dv~300-600 km/s. The large ionic column densities observed in a few of the components suggest a significant neutral gas fraction comparable to what is expected for Lyman limit or damped Lya absorbers. The majority of the absorbing components exhibit a super solar Fe/Mg ratio, whose pattern is remarkably uniform with a scatter of <0.1 dex across the full dv. Given a predominantly old stellar population in these lensing galaxies, we argue that the Fe-rich gas (which dominates the total absorption width) originates in the SNe Ia enriched inner regions at radius r~d. Our study demonstrates that combining spatially resolved gas kinematics and relative (Fe/Mg) abundance pattern provides a powerful tool to resolve the origin of chemically-enriched cool gas in massive halos.
In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two $\Lambda$CDM simulations with different values of $\sigma_8$. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of $\sigma_8$ in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.
The average tilt angle of sunspot groups emerging throughout the solar cycle determines the net magnetic flux crossing the equator, which is correlated with the strength of the subsequent cycle. I suggest that a deep-seated, non-local process can account for the observed cycle-dependent changes in the average tilt angle. Motivated by helioseismic observations indicating cycle-scale variations in the sound speed near the base of the convection zone, I determined the effect of a thermally perturbed overshoot region on the stability of flux tubes and on the tilt angles of emerging flux loops. I found that 5-20 K of cooling is sufficient for emerging flux loops to reproduce the reported amplitude of cycle-averaged tilt angle variations, suggesting that it is a plausible effect responsible for the nonlinearity of the solar activity cycle.
We present GRAPHIC, an new angular differential imaging (ADI) reduction pipeline where all geometric image operations are based on Fourier transforms. To achieve this goal the entire pipeline is parallelised making it possible to reduce large amounts of observation data without the need to bin the data. The specific rotation and shift algorithms based on Fourier transforms are described and performance comparison with conventional interpolation algorithm are given. Tests using fake companions injected in real science frames demonstrate the significant gain obtained by using geometric operations based on Fourier transforms compared to conventional interpolation. This also translates in a better point spread function and speckle subtraction with respect to conventional reduction pipelines, achieving detection limits comparable to current best performing pipelines. Flux conservation of the companions is also demonstrated. This pipeline is currently able to reduce science data produced by VLT/NACO, Gemini/NICI, VLT/SPHERE, and Subaru/SCExAO.
We report a new giant planet orbiting the K giant HD 155233, as well as four stellar-mass companions from the Pan-Pacific Planet Search, a southern hemisphere radial velocity survey for planets orbiting nearby giants and subgiants. We also present updated velocities and a refined orbit for HD 47205b (7 CMa b), the first planet discovered by this survey. HD 155233b has a period of 885$\pm$63 days, eccentricity e=0.03$\pm$0.20, and m sin i=2.0$\pm$0.5 M_jup. The stellar-mass companions range in m sin i from 0.066 M_sun to 0.33 M_sun. Whilst HD 104358B falls slightly below the traditional 0.08 M_sun hydrogen-burning mass limit, and is hence a brown dwarf candidate, we estimate only a 50% a priori probability of a truly substellar mass.
We present mid-IR (19 - 37 microns) imaging observations of S106 from SOFIA/FORCAST, complemented with IR observations from Spitzer/IRAC (3.6 - 8.0 microns), IRTF/MIRLIN (11.3 and 12.5 microns), and Herschel/PACS (70 and 160 microns). We use these observations, observations in the literature, and radiation transfer modeling to study the heating and composition of the warm (~ 100 K) dust in the region. The dust is heated radiatively by the source S106 IR, with little contributions from grain-electron collisions and Ly-alpha radiation. The dust luminosity is >~ (9.02 +/- 1.01) x 10^4 L_sun, consistent with heating by a mid- to late-type O star. We find a temperature gradient (~ 75 - 107 K) in the lobes, which is consistent with a dusty equatorial geometry around S106 IR. Furthermore, the SOFIA observations resolve several cool (~ 65 - 70 K) lanes and pockets of warmer (~ 75 - 90 K) dust in the ionization shadow, indicating that the environment is fragmented. We model the dust mass as a composition of amorphous silicates, amorphous carbon, big grains, very small grains, and PAHs. We present the relative abundances of each grain component for several locations in S106.
It is now firmly established that at a significant fraction of hydrogen-rich type II supernovae (SNe II) arise from red supergiant progenitors. However, a large diversity of SN properties exist, and it is presently unclear how this can be understood in terms of progenitor differences and pre-SN stellar evolution. In this contribution, I present the diversity of SN II V-band light-curves for a large sample of SNe II, and compare these to photometry of SNe II which have progenitor mass constraints from pre-explosion imaging.
State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments, are constantly improving the contrast detection limit for companions at ever closer separations to the host star. In order to constrain their properties and ultimately compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system in SCExAO to generate a field of speckles for the purposes of calibration. Speckles can be placed up to $22.5~\lambda/D$ from the star, with any position angle, brightness and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between $0$ and $\pi$, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence in turn, increases the robustness and stability of the adaptive speckles which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike.
Many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to $10^5$ solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. The final moments of this evaporation phase should be explosive and its description dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation using the Standard Model of particle physics incorporating the most recent LHC results and calculate energy dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures relevant to very high energy gamma-ray observatories.
We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf-dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf-dwarf mergers. We find that the remnants of dwarf-dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z~[0.2-1]Z_sun). We also find that the remnants of these mergers can have rather high mass-densities (10^4 M_sun pc^-3) within the central 10 pc and small half-light radii (40-100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R<100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after fading of young stars. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs (UCDs) and SGNs.
The X-ray source RX J2015.6+3711 was discovered by ROSAT in 1996 and recently proposed to be a cataclysmic variable. Here we report on an XMM-Newton observation of RX J2015.6+3711 performed in 2014, where we detected a coherent X-ray modulation at a period of 7196+/-11 s, and discovered other significant (>6sigma) small-amplitude periodicities. The 0.3-10 keV spectrum can be described by a power law (Gamma = 1.15+/-0.04) with a complex absorption pattern, a broad emission feature at 6.60+/-0.01 keV, and having an unabsorbed flux of (3.16+/-0.05)x10^{-12} erg/s/cm^2. We observed a significant spectral variability along the modulation phase, which can be ascribed mainly to changes in the density of a partial absorber and the power law normalization. Data analysis of two archival X-ray observations carried out by the Chandra satellite, and two simultaneous X-ray and UV/optical pointings with Swift, revealed a gradual fading of the source in the soft X-rays over the last 13 years, and a rather stable X-ray-to-optical flux ratio (F_X/F_V ~1.4-1.7). Based on all these properties, we identify this source with a magnetic cataclysmic variable of the intermediate polar type and we interpret the 2-hr modulation as the white dwarf spin period. Accretion is likely occurring over the two polar caps of the white dwarf predominantly through a disk. The phase-variable X-ray emission can be satisfactorily explained within the standard accretion curtain scenario, and both the X-ray and optical emission are likely tracing changes in the mass accretion rate. The value for the spin period pins down the white dwarf in RX J2015.6+3711 as the second slowest rotator in this type of systems known to date.
We present the first spectroscopic study of the recently discovered compact stellar system Triangulum II. From observations conducted with the DEIMOS spectrograph on Keck II, we obtained spectra for 13 member stars that follow the CMD features of this very faint stellar system and include two bright red giant branch stars. Tri II has a very negative radial velocity (<v_r>=-383.7^{+3.0}_{-3.3} km/s) that translates to <v_{r,gsr}> ~ -264 km/s and confirms it is a Milky Way satellite. We show that, despite the small data set, there is evidence that Tri II has complex internal kinematics. Its radial velocity dispersion increases from 4.4^{+2.8}_{-2.0} km/s in the central 2' to 14.1^{+5.8}_{-4.2} km/s outwards. The velocity dispersion of the full sample is inferred to be \sigma_{vr}=9.9^{+3.2}_{-2.2} km/s. From the two bright RGB member stars we measure an average metallicity <[Fe/H]>=-2.6 +/- 0.2, placing Tri II among the most metal-poor Milky Way dwarf galaxies. In addition, the spectra of the fainter member stars exhibit differences in their line-widths that could be the indication of a metallicity dispersion in the system. All these properties paint a complex picture for Tri II, whose nature and current state are largely speculative. The inferred metallicity properties of the system however lead us to favor a scenario in which Tri II is a dwarf galaxy that is either disrupting or embedded in a stellar stream.
We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The precision of the parameter measurements in these models has been improved over earlier results by using longer data sets and modelling the non-stationary noise. We describe a new noise modelling procedure and demonstrate its effectiveness using simulated data. Our methodology includes the addition of annual dispersion measure (DM) variations to the timing models of some pulsars. We present the first significant parallax measurements for PSRs J1024-0719, J1045-4509, J1600-3053, J1603-7202, and J1730-2304, as well as the first significant measurements of some post-Keplerian orbital parameters in six binary pulsars, caused by kinematic effects. Improved Shapiro delay measurements have resulted in much improved pulsar mass measurements, particularly for PSRs J0437-4715 and J1909-3744 with $M_p=1.44\pm0.07$ $M_\odot$ and $M_p=1.47\pm0.03$ $M_\odot$ respectively. The improved orbital period-derivative measurement for PSR J0437-4715 results in a derived distance measurement at the 0.16% level of precision, $D=156.79\pm0.25$ pc, one of the most fractionally precise distance measurements of any star to date.
In this work, we updated the catalog of Galactic Cepheids with $24\mu\mathrm{m}$ photometry by cross-matching the positions of known Galactic Cepheids to the recently released MIPSGAL point source catalog. We have added 36 new sources featuring MIPSGAL photometry in our analysis, thus increasing the existing sample to 65. Six different sources of compiled Cepheid distances were used to establish a $24\mu\mathrm{m}$ period-luminosity (P-L) relation. Our recommended $24\mu\mathrm{m}$ P-L relation is $M_{24\mu\mathrm{m}}=-3.18(\pm0.10)\log P - 2.46(\pm0.10)$, with an estimated intrinsic dispersion of 0.20 mag, and is derived from 58 Cepheids exhibiting distances based on a calibrated Wesenheit function. The slopes of the P-L relations were steepest when tied solely to the 10 Cepheids exhibiting trigonometric parallaxes from the Hubble Space Telescope and Hipparcos. Statistical tests suggest that these P-L relations are significantly different from those associated with other methods of distance determination, and simulations indicate that difference may arise from the small sample size.
We present a NuSTAR, Chandra, and XMM--Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120--5453) has a spectrum consistent with a Compton--thick AGN, but we cannot rule out that a second source (Arp 220) harbors an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189--2524 and Mrk 273, altering the classification of these border-line sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2--10 keV to bolometric luminosity, and unabsorbed 2--10 keV to mid-IR [O IV] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths.
We report here the study, in the radio band, of a sample of candidates of high Rotation Measure (RM). The point-like objects (at kpc scale) were selected by choosing unpolarised sources from the NVSS which show significant linear polarisation at 10.45 GHz. Assuming in-band depolarisation, this feature suggests the presence of a very dense medium surrounding them in a combination of a strong magnetic field. Further single-dish observations were performed with the 100-m Effelsberg telescope to characterise the SEDs of the sample and to well determine their RM in the 11 to 2 cm wavelength range. Besides, a wideband (L, S, C and X band ) full polarisation observational campaign was performed at the JVLA facility. It allows us to analyse the in-band RM for the most extreme objects. Some Effelsberg results and analysis, and preliminary JVLA results are presented. The observations reveal that sources with young, newly growing, radio components at high frequency (i.e. GPS and HFP sources) are characterised by a really dense and/or a magnetised medium that strongly rotates the polarisation angle at the different frequencies, leading to a high-RM.
We present a broad-band (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240, combined with archival Chandra, XMM-Newton and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1."5. Previous Chandra observations have resolved the two nuclei, showing that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, thanks to the unprecedented quality of the NuSTAR data at energies >10 keV, we clearly detect, for the first time, both the primary and the reflection continuum components. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau ~ 1.2, N_H ~ 1.5 x 10^(24) cm^-2). We detect moderate hard X-ray (> 10 keV) flux variability up to 20% on short (15-20 ksec) timescales. The amplitude of the variability is maximum at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability of the material along the line of sight with column densities N_H <~ 2 x 10^(23) cm-2 over long (~3-15 years) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.
We study the spin-down changes of PSR B1859$+$07 over a period of more than 28 years of radio observation. We identify that the time derivative of the rotational frequency ($\nu$) varies quasi-periodically with a period of $\sim$350 days, switching mainly between two spin-down states. The profile shape of the pulsar is correlated with the $\dot \nu$ variation, producing two slightly different profile shapes corresponding to high- and low-$\dot \nu$ states. In addition to these two normal emission states, we confirm the occasional flare-state of the pulsar, in which the emission appears early in spin phase compared to that of the common normal emission. The profile of the flare-state is significantly different from that of the two normal emission states. The correlation analysis further shows that the flare-state is not directly linked with the $\dot \nu$ changes. With a simple emission beam model, we estimate the emission altitude of the normal emission to be 240~km, and explain the origin of the flare-state as an emission height variation from the leading edge of the beam. We also argue that the emission of these states can be explained with a partially active beam model. In this scenario, the trailing portion of the radio beam is usually active and the normal emission is produced. The flare-state occurs when the leading edge of the beam becomes active while the trailing part is being blocked. This model estimates a fixed emission altitude of 360~km. However, the cause of the flare-state (i.e. the emission height variation, or the time-dependent activity across the radio beam) is not easily explained.
The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics.
The very high energy emission from the Galactic Center Ridge was revealed by the High Energy Stereoscopic System (H.E.S.S.) in 2006, after subtraction of the point sources HESS J1745-290, possibly associated with Sgr A$^\star$, and HESS J1747$-$281, associated with the composite supernova remnant G0.9$+$0.1. The hard spectrum of the Ridge emission and its spatial correlation with the local gas density suggest that the emission is due to collisions of multi-TeV cosmic rays with the dense clouds of interstellar gas present in this region. The much larger H.E.S.S. dataset (250 hrs) that is now available from this region and the improved analysis method dedicated to the detection of faint emission allow us to reconsider the characterization of this gamma-ray emission in the central 200 pc of our Galaxy through a detailed morphology study. To test the various contributions to the total gamma-ray emission, we use a 2D maximum likelihood approach that allows to constrain a phenomenological model of the signal. We discuss the nature of the various components, and their implication on the cosmic-ray distribution in the central region of our Galaxy. Finally, we will reveal an additional source in this region and will discuss its potential nature.
We present near-infrared (NIR) observations of Nova V5668 Sgr, discovered in outburst on 2015 March 15.634 UT, between 2d to 107d after outburst. NIR spectral features are used to classify it as a FeII class of nova. The spectra follow the evolution of the spectral lines from a P Cygni stage to a pure emission phase where the shape of the profiles suggests the presence of a bipolar flow. A notable feature is the presence of carbon monoxide first overtone bands which are seen in emission. The CO emission is modeled to make estimates of the mass, temperature and column density to be (0.5--2.0)$\times$ 10$^{-8}$ M$_\odot$, 4000 $\pm$ 300K and (0.36--1.94)$\times$ 10$^{19}$ cm$^{-2}$ respectively. The $^{12}$C/$^{13}$C ratio is estimated to be $\sim$ 1.5. V5668 Sgr was a strong dust producer exhibiting the classical deep dip in its optical light curve during dust formation. Analysis of the dust SED yields a dust mass of 2.7 $\times$ 10${^{\rm -7}}$ $M_\odot $, a blackbody angular diameter of the dust shell of 42 mas and a distance estimate to the nova of 1.54 kpc which agrees with estimates made from MMRD relations.
The use of Immersed Gratings offers advantages for both space- and
ground-based spectrographs. As diffraction takes place inside the high-index
medium, the optical path difference and angular dispersion are boosted
proportionally, thereby allowing a smaller grating area and a smaller
spectrometer size. Short-wave infrared (SWIR) spectroscopy is used in
space-based monitoring of greenhouse and pollution gases in the Earth
atmosphere. On the extremely large telescopes currently under development,
mid-infrared high-resolution spectrographs will, among other things, be used to
characterize exo-planet atmospheres. At infrared wavelengths, Silicon is
transparent. This means that production methods used in the semiconductor
industry can be applied to the fabrication of immersed gratings. Using such
methods, we have designed and built immersed gratings for both space- and
ground-based instruments, examples being the TROPOMI instrument for the
European Space Agency Sentinel-5 precursor mission, Sentinel-5 (ESA) and the
METIS (Mid-infrared E-ELT Imager and Spectrograph) instrument for the European
Extremely Large Telescope.
Three key parameters govern the performance of such gratings: The efficiency,
the level of scattered light and the wavefront error induced. In this paper we
describe how we can optimize these parameters during the design and
manufacturing phase. We focus on the tools and methods used to measure the
actual performance realized and present the results. In this paper, the
bread-board model (BBM) immersed grating developed for the SWIR-1 channel of
Sentinel-5 is used to illustrate this process. Stringent requirements were
specified for this grating for the three performance criteria. We will show
that -with some margin- the performance requirements have all been met.
Common methods for calculating a planet's annual insolation by latitude have relied on computationally heavy or complex computer algorithms. In this paper, we show that mean annual insolation by latitude of a planet with obliquity angle $\beta$ can be found by taking the definite integral of a function of longitude. This leads to faster computations and more accurate results. We discuss differences between our method and selected computational results for insolation found in the literature.
We present the results of the uniform analysis of 46 XMM-Newton observations of six BAL and seven mini-BAL QSOs belonging to the Palomar-Green Quasar catalogue. Moderate-quality X-ray spectroscopy was performed with the EPIC-pn, and allowed to characterise the general source spectral shape to be complex, significantly deviating from a power law emission. A simple power law analysis in different energy bands strongly suggests absorption to be more significant than reflection in shaping the spectra. If allowing for the absorbing gas to be either partially covering the continuum emission source or to be ionised, large column densities of the order of $10^{22-24}$ cm$^{-2}$ are inferred. When the statistics was high enough, virtually every source was found to vary in spectral shape on various time scales, from years to hours. All in all these observational results are compatible with radiation driven accretion disk winds shaping the spectra of these intriguing cosmic sources.
Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in H$\alpha$ chromospheric images. We found that the most of the filament material is enclosed between two polarity inversion lines (PILs), one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the {\it STEREO} spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disk observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.
The chemical content of the planetary nebula NGC 3918 is investigated through deep, high-resolution (R~40000) UVES at VLT spectrophotometric data. We identify and measure more than 750 emission lines, making ours one of the deepest spectra ever taken for a planetary nebula. Among these lines we detect very faint lines of several neutron-capture elements (Se, Kr, Rb, and Xe), which enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up in the progenitor star of NGC 3918.
This paper describes version 2 of the OI Exchange Format (OIFITS), the standard for exchanging calibrated data from optical (visible/infrared) interferometers. This IAU-endorsed standard has been in use for 10 years at most of the past and current optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI and the Keck interferometer. Software is available for reading, writing and merging OI Exchange Format files. This version 2 provides definitions of additional data tables (e.g. for polarisation measurements), addressing the needs of future interferometric instruments. Also included are data columns for a more rigorous description of measurement errors and their correlations. In that, this document is a step towards the design of a common data model for optical interferometry. Finally, the main OIFITS header is expanded with several new keywords summarising the content to allow data base searches.
We suggest the existence of a correlation between the planetary radius and orbital period for planets with radii smaller than 4 R_Earth. Using the Kepler data, we find a correlation coefficient of 0.5120, and suggest that the correlation is not caused solely by survey incompleteness. While the correlation coefficient could change depending on the statistical analysis, the statistical significance of the correlation is robust. Further analysis shows that the correlation originates from two contributing factors. One seems to be a power-law dependence between the two quantities for intermediate periods (3-100 days), and the other is a dearth of planets with radii larger than 2 R_Earth in short periods. This correlation may provide important constraints for small-planet formation theories and for understanding the dynamical evolution of planetary systems.
The James Webb Space Telescope (JWST) is optimized for observations in the near and mid infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state of the art science instruments, along with the telescopes moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object, Mars and beyond, in the solar system. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing for JWST, and highlights for the complementary nature with other missions and observatories are described in this paper.
Arnold (2005), Forgan (2013), and Korpela et al. (2015) noted that
planet-sized artificial structures could be discovered with Kepler as they
transit their host star. We present a general discussion of transiting
megastructures, and enumerate ten potential ways their anomalous silhouettes,
orbits, and transmission properties would distinguish them from exoplanets. We
also enumerate the natural sources of such signatures.
Several anomalous objects, such as KIC 12557548 and CoRoT-29, have
variability in depth consistent with Arnold's prediction and/or an asymmetric
shape consistent with Forgan's model. Since well motivated physical models have
so far provided natural explanations for these signals, the ETI hypothesis is
not warranted for these objects, but they still serve as useful examples of how
nonstandard transit signatures might be identified and interpreted in a SETI
context. Boyajian et al. 2015 recently announced KIC 8462852, an object with a
bizarre light curve consistent with a "swarm" of megastructures. We suggest
this is an outstanding SETI target.
We develop the normalized information content statistic $M$ to quantify the
information content in a signal embedded in a discrete series of bounded
measurements, such as variable transit depths, and show that it can be used to
distinguish among constant sources, interstellar beacons, and naturally
stochastic or artificial, information-rich signals. We apply this formalism to
KIC 12557548 and a specific form of beacon suggested by Arnold to illustrate
its utility.
We compare evolutionary predictions of double compact object merger rate densities with initial and forthcoming LIGO/Virgo upper limits. We find that: (i) Due to the cosmological reach of advanced detectors, current conversion methods of population synthesis predictions into merger rate densities are insufficient. (ii) Our optimistic models are a factor of 18 below the initial LIGO/Virgo upper limits for BH-BH systems, indicating that a modest increase in observational sensitivity (by a factor of 2.5) may bring the first detections or first gravitational wave constraints on binary evolution. (iii) Stellar-origin massive BH-BH mergers should dominate event rates in advanced LIGO/Virgo and can be detected out to redshift z=2 with templates including inspiral, merger, and ringdown. Normal stars (<150 Msun) can produce such mergers with total redshifted mass up to 400 Msun. (iv) High black hole natal kicks can severely limit the formation of massive BH-BH systems (both in isolated binary and in dynamical dense cluster evolution), and thus would eliminate detection of these systems even at full advanced LIGO/Virgo sensitivity. We find that low and high black hole natal kicks are allowed by current observational electromagnetic constraints. (v) The majority of our models yield detections of all types of mergers with advanced detectors. Numerous massive BH-BH merger detections will indicate small (if any) natal kicks for massive BHs. These systems would also shed light on the merger origin, possibly distinguishing mergers arising from field binary evolution (aligned spins) and dense clusters (misaligned spins).
We investigate the continuum emission of viscous decretion discs around Be stars in this paper. The results obtained from non-LTE (local thermodynamic equilibrium) radiative transfer models show two regimes in the disc surface brightness profile: an inner optically thick region, which behaves as a pseudo-photosphere with a wavelength-dependent size, and an optically thin tenuous outer part, which contributes with about a third of the total flux. The isophotal shape of the surface brightness is well described by elliptical contours with an axial ratio $b/a=\cos i$ for inclinations $i<75^{\circ}$. Based on these properties, a semi-analytical model was developed to describe the continuum emission of gaseous discs. It provides fluxes and spectral slopes at the infrared within an accuracy of $10\%$ and $5\%$, respectively, when compared to the numerical results. The model indicates that the infrared spectral slope is mainly determined by both the density radial slope and the disc flaring exponent, being practically independent of disc inclination and base density. As a first application, the density structure of 15 Be stars was investigated, based on the infrared flux excess, and the results compared to previous determinations in the literature. Our results indicate that the decretion rates are in the range of $10^{-12}$ to $10^{-9}\,{\rm M_{\odot}\,yr^{-1}}$, which is at least two orders of magnitude smaller than the previous outflowing disc model predictions.
In this document, we summarize the main capabilities of the James Webb Space Telescope (JWST) for performing observations of Mars. The distinctive vantage point of JWST at the Sun-Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the East-West axis) and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.07 arcsec at 2 {\mu}m). Spectroscopic observations will be achievable in the 0.7-5 {\mu}m spectral region with NIRSpec at a maximum resolving power of 2700, and with 8000 in the 1-1.25 {\mu}m range. Imaging will be attainable with NIRCam at 4.3 {\mu}m and with two narrow filters near 2 {\mu}m, while the nightside will be accessible with several filters in the 0.5 to 2 {\mu}m. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars. Some science cases include the mapping of the water D/H ratio, investigations of the Martian mesosphere via the characterization of the non-LTE CO$_2$ emission at 4.3 {\mu}m, studies of chemical transport via observations of the O$_2$ nightglow at 1.27 {\mu}m, high cadence mapping of the variability dust and water ice clouds, and sensitive searches for trace species and hydrated features on the Martian surface. In-flight characterization of the instruments may allow for additional science opportunities.
The measured fluxes of secondary particles produced by the interactions of Cosmic Rays (CRs) with the astronomical environment play a crucial role in understanding the physics of CR transport. In this work we present a comprehensive calculation of the secondary hadron, lepton, gamma-ray and neutrino yields produced by the inelastic interactions between several species of stable or long-lived cosmic rays projectiles (p, D, T, 3He, 4He, 6Li, 7Li, 9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O, 20Ne, 24Mg and 28Si) and different target gas nuclei (p, 4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si and 40Ar). The yields are calculated using FLUKA, a simulation package designed to compute the energy distributions of secondary products with large accuracy in a wide energy range. The present results provide, for the first time, a complete and self-consistent set of all the relevant inclusive cross sections regarding the whole spectrum of secondary products in nuclear collisions. We cover, for the projectiles, a kinetic energy range extending from $0.1~GeV/n$ up to $100~TeV/n$ in the lab frame. In order to show the importance of our results for multi-messenger studies about the physics of CR propagation, we evaluate the propagated spectra of Galactic secondary nuclei, leptons, and gamma rays produced by the interactions of CRs with the insterstellar gas, exploiting the numerical codes DRAGON and GammaSky. We show that, adopting our cross section database, we are able to provide a good fit of a complete sample of CR observables, including: leptonic and hadronic spectra measured at Earth, the local interstellar spectra measured by Voyager, and the gamma-ray emissivities from Fermi-LAT collaboration. We also show a set of gamma-ray and neutrino full-sky maps and spectra.
We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with $\Gamma\sim1.3$-$2.3$ up to ~50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe K$\alpha$ fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broad-band X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density ($\sim10^{23}$ cm$^{-2}$), primary X-ray spectra (power-laws with $\Gamma\sim2$) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to $L_X \stackrel{>}{\sim} 10^{38}$ erg s$^{-1}$. Above ~20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses $M_{\rm WD} \sim 0.9 M_{\odot}$. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.
Force-free extrapolations are widely used to study the magnetic field in the solar corona based on surface measurements. The extrapolations assume that the ratio of internal energy of the plasma to magnetic energy, the plasma-beta is negligible. Despite the widespread use of this assumption observations, models, and theoretical considerations show that beta is of the order of a few percent to more than 10%, and thus not small. We investigate what consequences this has for the reliability of extrapolation results. We use basic concepts starting with the force and the energy balance to infer relations between plasma-beta and free magnetic energy, to study the direction of currents in the corona with respect to the magnetic field, and to estimate the errors in the free magnetic energy by neglecting effects of the plasma (beta<<1). A comparison with a 3D MHD model supports our basic considerations. If plasma-beta is of the order of the relative free energy (the ratio of the free magnetic energy to the total magnetic energy) then the pressure gradient can balance the Lorentz force. This is the case in the solar corona, and therefore the currents are not properly described. In particular the error in terms of magnetic energy by neglecting the plasma is of the order of the free magnetic energy, so that the latter can not be reliably determined by an extrapolation. While a force-free extrapolation might capture the magnetic structure and connectivity of the coronal magnetic field, the derived currents and free magnetic energy are not reliable. Thus quantitative results of extrapolations on the location and amount of heating in the corona (through current dissipation) and on the energy storage of the magnetic field (e.g. for eruptive events) are limited.
Nucleosynthesis, light curves, explosion energies, and remnant masses are calculated for a grid of supernovae resulting from massive stars with solar metallicity and masses from 9.0 to 120 solar masses. The full evolution is followed using an adaptive reaction network of up to 2000 nuclei. A novel aspect of the survey is the use of a one-dimensional neutrino transport model for the explosion. This explosion model has been calibrated to give the observed energy for SN 1987A, using several standard progenitors, and for the Crab supernova using a 9.6 solar mass progenitor. As a result of using a calibrated central engine, the final kinetic energy of the supernova is variable and sensitive to the structure of the presupernova star. Many progenitors with extended core structures do not explode, but become black holes, and the masses of exploding stars do not form a simply connected set. The resulting nucleosynthesis agrees reasonably well with the sun provided that a reasonable contribution from Type Ia supernovae is also allowed, but with a deficiency of light s-process isotopes. The resulting neutron star IMF has a mean gravitational mass near 1.4 solar masses. The average black hole mass is about 9 solar masses if only the helium core implodes, and 14 solar masses if the entire presupernova star collapses. Only ~10% of supernovae come from stars over 20 solar masses and some of these are Type Ib or Ic. Some useful systematics of Type IIp light curves are explored.
We review the results of HI line surveys of extragalactic sources in the local Universe. In the last two decades major efforts have been made in establishing on firm statistical grounds the properties of the HI source population, the two most prominent being the HI Parkes All Sky Survey (HIPASS) and the Arecibo Legacy Fast ALFA survey (ALFALFA). We review the choices of technical parameters in the design and optimization of spectro-photometric "blind" HI surveys, which for the first time produced extensive HI-selected data sets. Particular attention is given to the relationship between optical and HI populations, the differences in their clustering properties and the importance of HI-selected samples in contributing to the understanding of apparent conflicts between observation and theory on the abundance of low mass halos. The last section of this paper provides an overview of currently ongoing and planned surveys which will explore the cosmic evolution of properties of the HI population.
Unexpected structure in images of astronomical sources often presents itself upon visual inspection of the image, but such apparent structure may either correspond to true features in the source or be due to noise in the data. This paper presents a method for testing whether inferred structure in an image with Poisson noise represents a significant departure from a baseline (null) model of the image. To infer image structure, we conduct a Bayesian analysis of a full model that uses a multiscale component to allow flexible departures from the posited null model. As a test statistic, we use a tail probability of the posterior distribution under the full model. This choice of test statistic allows us to estimate a computationally efficient upper bound on a p-value that enables us to draw strong conclusions even when there are limited computational resources that can be devoted to simulations under the null model. We demonstrate the statistical performance of our method on simulated images. Applying our method to an X-ray image of the quasar 0730+257, we find significant evidence against the null model of a single point source and uniform background, lending support to the claim of an X-ray jet.
We report Faraday rotation measurements of 11 extragalactic radio sources with lines of sight through the Rosette Nebula, a prominent HII region associated with the star cluster NGC 2244. It is also a prototypical example of a "stellar bubble" produced by the winds of the stars in NGC 2244. The goal of these measurements is to better determine the strength and structure of the magnetic field in the nebula. We calculate the rotation measure (RM) through two methods, a least-squares fit to $\chi$( $\lambda^2$) and Rotation Measure Synthesis. In conjunction with our results from Savage et al. (2013), we find an excess RM due to the shell of the nebula of +40 to +1200 rad m$^{-2}$ above a background RM of +147 rad m$^{-2}$. We discuss two forms of a simple shell model intended to reproduce the magnitude of the observed RM as a function of distance from the center of the Rosette Nebula. The models represent different physical situations for the magnetic field within the shell of the nebula. The first assumes that there is an increase in the magnetic field strength and plasma density at the outer radius of the HII region, such as would be produced by a strong magnetohydrodynamic shock wave. The second model assumes that any increase in the RM is due solely to an increase in the density, and the Galactic magnetic field is unaffected in the shell. We employ a Bayesian analysis to distinguish between the two forms of the model.
The interstellar magnetic field (ISMF) near the heliosphere is a basic part of the solar neighborhood that can only be studied using polarized starlight. Results of an ongoing survey of polarized starlight are analyzed with the goal of linking the interstellar magnetic field that shapes the heliosphere to the nearby field in interstellar space. New results for the direction of the nearby ISMF, based on a merit function that utilizes polarization position angles, identify several magnetic components. The dominant interstellar field, B_pol, is aligned with the direction L,B= 36.2,49.0 (+/-16.0) degrees and is within 8 degrees of the IBEX Ribbon ISMF direction. Stars tracing B_pol have the same mean distance as stars that do not trace B_pol, but show weaker polarizations consistent with lower column densities of polarizing grains. The variations in the polarization position angle directions indicate a low level of magnetic turbulence. B_pol is found after excluding polarizations that trace a separate magnetic structure that apparently is due to interstellar dust deflected around the heliosphere. Local interstellar cloud velocities relative to the LSR increase with the angles between the LSR velocities and ISMF, indicating that the kinematics of local interstellar material is ordered by the ISMF. Polarization and color excess data are consistent with an extension of Loop I to the solar vicinity. Polarizations are consistent with previous findings of more efficient grain alignment in low column density sightlines. Optical polarization and color excess data indicate the presence of nearby interstellar dust in the BICEP2 field. Color excess E(B-V) indicates an optical extinction of A_V about 0.59 mag in the BICEP2 field, while the polarization data indicate that A_V is larger than 0.09 mag. The IBEX Ribbon ISMF extends to the boundaries of the BICEP2 region.
We investigate the collapse of clusters of weakly interacting massive particles (WIMPs) in the core of a Sun-like star and the possible formation of mini-black holes and the emission of gravity waves. When the number of WIMPs is small, thermal pressure balances the WIMP cluster's self gravity. If the number of WIMPs is larger than a critical number, thermal pressure cannot balance gravity and the cluster contracts. If WIMPs are collisionless and bosonic, the cluster collapses directly to form a mini-black hole. For fermionic WIMPs, the cluster contracts until it is sustained by Fermi pressure, forming a small compact object. If the fermionic WIMP mass is smaller than $4\times 10^2$ GeV, the radius of the compact object is larger than its Schwarzschild radius and Fermi pressure temporally sustains its self gravity, halting the formation of a black hole. If the fermionic WIMP mass is larger than $4\times 10^2$ GeV, the radius is smaller than its Schwarzschild radius and the compact object becomes a mini-black hole. If the WIMP mass is 1 TeV, the size of the black hole will be approximately 2.5 cm and ultra high frequency gravitational waves will be emitted during black hole formation. The central frequency $f_c$ of ringdown gravitational waves emitted from the black hole will be approximately 2 GHz. To detect the ringdown gravitational waves, the detector's noise must be below $\sqrt{S_h(f_c)}\approx 10^{-30}/\sqrt{\rm Hz}$.
A thorough understanding of properties of neutron stars requires both a reliable knowledge of the equation of state (EOS) of super-dense nuclear matter and the strong-field gravity theories simultaneously. To provide information that may help break this EOS-gravity degeneracy, we investigate effects of nuclear symmetry energy on the gravitational binding energy of neutron stars within GR and the scalar-tensor subset of alternative gravity models. We focus on effects of the slope $L$ of nuclear symmetry energy at saturation density and the high-density behavior of nuclear symmetry energy. We find that the variation of either the density slope $L$ or the high-density behavior of nuclear symmetry energy leads to large changes in the binding energy of neutron stars. The difference in predictions using the GR and the scalar-tensor theory appears only for massive neutron stars, and even then is significantly smaller than the difference resulting from variations in the symmetry energy.
It was recently proposed that weakly interacting massive particles (WIMP) may provide new ways of generating the observed baryon asymmetry in the early universe, as well as addressing the cosmic coincidence between dark matter and baryon abundances. This suggests a new possible connection between weak scale new particle physics and modern cosmology. This review summarizes the general ideas and simple model examples of the two recently proposed WIMP baryogenesis mechanisms: baryogenesis from WIMP dark matter annihilation during thermal freezeout, and baryogenesis from metastable WIMP decay after thermal freezeout. This letter also discusses the interesting phenomenology of these models, in particular the experimental signals that can be probed in the intensity frontier experiments and the Large Hadron Collider (LHC) experiments.
The Voyager probes are the furthest, still active, spacecraft ever launched from Earth. During their 38-year trip, they have collected data regarding solar wind properties (such as the plasma velocity and magnetic field intensity). Unfortunately, a complete time evolution of the measured physical quantities is not available. The time series contains many gaps which increase in frequency and duration at larger distances. The aim of this work is to perform a spectral and statistical analysis of the solar wind plasma velocity and magnetic field using Voyager 2 data measured in 1979, when the gaps/signal ratio is of order of unity. This analysis is achieved using four different data reconstruction techniques: averages on linearly interpolated subsets, correlation of linearly interpolated data, compressed sensing spectral estimation, and maximum likelihood data reconstruction. With five frequency decades, the spectra we obtained have the largest frequency range ever computed at 5 astronomical units from the Sun; spectral exponents have been determined for all the components of the velocity and magnetic field fluctuations. Void analysis is also useful in recovering other spectral properties such as integral scales (see for instance Table 4) and, if the confidence level of the measurements is sufficiently high, the decay variation in the small scale range due, for instance, to dissipative effects.
Unlike crushing singularities, the so-called Type IV finite-time singularity offers the possibility that the Universe passes smoothly through it, without any catastrophic effects. Then the question is if the effects of a Type IV singularity can be detected in the process of cosmic evolution. In this paper we address this question in the context of $F(R)$ gravity. As we demonstrate, the effects of a Type IV singularity appear in the Hubble flow parameters, which determine the dynamical evolution of the cosmological system. So we study various inflation models incorporating a Type IV singularity, with the singularity occurring at the end of inflation. Particularly we study a toy model and a singular version of the $R^2$ gravity Hubble rate. As we evince, some of the Hubble flow parameters become singular at the singularity, an effect which indicates that at that point a dynamical instability occurs. This dynamical instability eventually indicates the graceful exit from inflation. We demonstrate that the toy model has an unstable de Sitter point at the singularity, so indeed graceful exit could be triggered. In the case of the singular inflation model, graceful exit proceeds in the standard way. In the case of the singular inflation model, we found various scenarios for singular evolution, most of which are compatible with observations, and only one leads to severe instabilities. We also compare the ordinary Starobinsky with the singular inflation model, and we point out the qualitative and quantitative differences. Finally, we study the late-time dynamics of the toy model and of the singular inflation model and we demonstrate that the unification of early and late-time acceleration can be achieved. We also show that it is possible to achieve late-time acceleration similar to the $\Lambda$-Cold Dark Matter model.
We consider non-supersymmetric GUT inflation models in which intermediate mass monopoles may survive inflation because of the restricted number of e-foldings experienced by the accompanying symmetry breaking. Thus, an observable flux of primordial magnetic monopoles, comparable to or a few orders below the Parker limit, may be present in the galaxy. The mass scale associated with the intermediate symmetry breaking is $10^{13}$ GeV for an observable flux level, with the corresponding monopoles an order of magnitude or so heavier. Examples based on $SO(10)$ and $E_6$ yield such intermediate mass monopoles carrying respectively two and three units of Dirac magnetic charge. For GUT inflation driven by a gauge singlet scalar field with a Coleman-Weinberg or Higgs potential, compatibility with the Planck measurement of the scalar spectral index yields a Hubble constant (during horizon exit of cosmological scales) $H \sim 7$--$9\times10^{13}$ GeV, with the tensor to scalar ratio $r$ predicted to be $\gtrsim0.02$. Proton lifetime estimates for decays mediated by the superheavy gauge bosons are also provided.
The Korea Invisible Mass Search (KIMS) collaboration has developed low-background NaI(Tl) crystals that are suitable for the direct detection of WIMP dark matter. With experience built on the KIMS-CsI programs, the KIMS-NaI experiment will consist of a 200~kg NaI(Tl) crystal array surrounded by layers of shielding structures and will be operated at the Yangyang underground laboratory. The goal is to provide an unambiguous test of the DAMA/LIBRA's annual modulation signature. Measurements of six prototype crystals show progress in the reduction of internal contaminations of radioisotopes. Based on our understanding of these measurements, we expect to achieve a background level in the final detector configuration that is less than 1~count/day/keV/kg for recoil energies around 2~keV. The annual modulation sensitivity for the KIMS-NaI experiment shows that an unambiguous 7$\sigma$ test of the DAMA/LIBRA signature would be possible with a 600~kg$\cdot$year exposure with this system.
We resume a long-standing, yet not forgotten, debate on whether a Chern-Simons birefringence can be generated by a local term $b_\mu\bar\psi\gamma^\mu \gamma_5\psi$ in the Lagrangian (where $b_\mu$ are constants). In the present paper we implement a new way of managing $\gamma_5$ in dimensional regularization. Gauge invariance in the underlying theory (QED) is enforced by this choice of defining divergent amplitudes. We investigate the singular behavior of the vector meson two-point-function around the $m^2=0$ and $p^2=0$ point. We find that the coefficient of the effective Chern-Simons can be finite or zero. It depends on how one takes the limits: they cannot be interchanged due to the associate change of symmetry. For $m^2=0$ we evaluate also the self-mass of the photon at the second orderin $b_\mu$. We find zero.
Constrained flavor violation is a recent proposal for predicting the down-quark Yukawa matrix in terms of those for up quarks and charged leptons. We study the viability of CFV with respect to its predictions for the lepton mass ratios, showing that this remains a challenge, and suggest some possible means for improving this shortcoming. We then extend CFV to include neutrinos, and show that it leads to interesting predictions for hierachical heavy neutrinos, and leptogenesis dominated by decays of the second heaviest one ("N2 leptogenesis"), as well as the possibility of low-scale leptoquark-mediated exotic decays.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)