We study the orientation and density profiles of the cosmological voids with SDSS10 data. Using voids to test Alcock-Paczynski effect has been proposed and tested in both simulations and actual SDSS data. Previous observations imply that there exist an empirical stretching factor which plays an important role in the voids' orientation. Simulations indicate that this empirical stretching factor is caused by the void galaxies' peculiar velocities. Recently Hamaus et al. found that voids' density profiles are universal and their average velocities satisfy linear theory very well. In this article we first confirm that the stretching effect exists using independent analysis. We then apply the universal density profile to measure the cosmological parameters. We find that the void density profile can be a tool to measure the cosmological parameters.
The recent measurements of Cosmic Microwave Background temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the $\Lambda$CDM cosmological model. However interesting hints of slight deviations from $\Lambda$CDM have been found, including a $95 \%$ c.l. preference for a "modified gravity" structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called $A_{lens}$ anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to $\sigma_8=0.815_{-0.048}^{+0.032}$, in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of $\tau=0.059\pm0.020$ (to be compared with the value of $\tau= 0.079 \pm 0.017$ obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneracies with other parameters, including the neutrino effective number, the running of the spectral index and the amount of primordial helium. The indication for modified gravity is still present at about $95\%$ c.l., and could become more significant if lower values of $\tau$ were to be further confirmed by future cosmological and astrophysical data.
Using a shallow, two-color survey carried out with the Dark Energy Camera, we detect the southern, possibly trailing arm of the Orphan Stream. The stream is reliably detected to a declination of $-38^\circ$, bringing the total known length of the Orphan stream to $108^\circ$. We find a slight offset or "S" shape in the stream at $\delta \simeq -14^\circ$ that would be consistent with the transition from leading to trailing arms. This coincides with a moderate concentration of $137 \pm 25$ stars (to $g = 21.6$) that we consider a possible remnant of the Orphan progenitor. The position of this feature is in agreement with previous predictions.
The Earth appears non-chondritic in its abundances of refractory lithophile elements, posing a significant problem for our understanding of its formation and evolution. It has been suggested that this non-chondritic composition may be explained by collisional erosion of differentiated planetesimals of originally chondritic composition. In this work, we present N-body simulations of terrestrial planet formation that track the growth of planetary embryos from planetesimals. We simulate evolution through the runaway and oligarchic growth phases under the Grand Tack model and in the absence of giant planets. These simulations include a state-of-the-art collision model which allows multiple collision outcomes, such as accretion, erosion, and bouncing events, that enables tracking of the evolving core mass fraction of accreting planetesimals. We show that the embryos grown during this intermediate stage of planet formation exhibit a range of core mass fractions, and that with significant dynamical excitation, enough mantle can be stripped from growing embryos to account for the Earth's non-chondritic Fe/Mg ratio. We also find that there is a large diversity in the composition of remnant planetesimals, with both iron-rich and silicate-rich fragments produced via collisions.
We extend the recently introduced Bayesian framework `Generative Pulsar Timing Analysis' to incorporate both pulse jitter (high frequency variation in the arrival time of the pulse) and epoch to epoch stochasticity in the shape of the pulse profile. This framework allows for a full timing analysis to be performed on the folded profile data, rather than the site arrival times as is typical in most timing studies. We apply this extended framework both to simulations, and to an 11 yr, 10 cm data set for PSR J1909$-$3744. Using simulations, we show that temporal profile variation can induce timing noise in the residuals that when performing a standard timing analysis is highly covariant with the signal expected from a gravitational wave (GW) background. When working in the profile domain, these variations are de-correlated from the expected GW signal, resulting in significant improvement in the obtained upper limits. Using the PSR J1909$-$3744 data set from the Parkes Pulsar Timing Array project, we find significant evidence for systematic high-frequency profile variation resulting from non-Gaussian noise in the oldest observing system, but no evidence for either detectable pulse jitter, or low-frequency profile shape variation. Using our profile domain framework we therefore obtain upper limits on a red noise process with a spectral index of $\gamma = 13/3$ of $1\times10^{-15}$, consistent with previously published limits.
Recent simulations have indicated that the dark matter halos of galaxy clusters should feature steep density jumps near the virial radius. Since the member galaxies are expected to follow similar collisionless dynamics as the dark matter, the galaxy density profile should show such a feature as well. We examine the potential of current datasets to test this prediction by selecting cluster members for a sample of 56 low-redshift (0.1<z<0.3) galaxy clusters, constructing their projected number density profiles, and fitting them with two profiles, one with a steep density jump and one without. Additionally, we investigate the presence of a jump using a non-parametric spline approach. We find that some of these clusters show strong evidence for a model with a density jump. We discuss avenues for further analysis of the density jump with future datasets.
The census of the solar neighborhood is almost complete for stars and becoming more complete in the brown dwarf regime. Spectroscopic, photometric and kinematic characterization of nearby objects helps us to understand the local mass function, the binary fraction, and provides new targets for sensitive planet searches. We aim to derive spectral types and spectro-photometric distances of a sample of new high proper motion sources found with the WISE satellite, and obtain parallaxes for those objects that fall within the area observed by the Vista Variables in the V\'ia L\'actea survey (VVV). We used low resolution spectroscopy and template fitting to derive spectral types, multiwavelength photometry to characterize the companion candidates and obtain photometric distances. Multi-epoch imaging from the VVV survey was used to measure the parallaxes and proper motions for three sources. We confirm a new T2 brown dwarf within $\sim$15 pc. We derived optical spectral types for twenty four sources, mostly M dwarfs within 50 pc. We addressed the wide binary nature of sixteen objects found by the WISE mission and previously known high proper motion sources. Six of these are probably members of wide binaries, two of those are new, and present evidence against the physical binary nature of two candidate binary stars found in the literature, and eight that we selected as possible binary systems. We discuss a likely microlensing event produced by a nearby low mass star and a galaxy, that is to occur in the following five years.
The formation of supermassive black holes is still an outstanding question. In the quasi-star scenario, black hole seeds experience an initial super-Eddington growth, that in less than a million years may leave a $10^4-10^5$ M$_{\odot}$ black hole at the centre of a protogalaxy at $z \sim 20-10$. Super-Eddington accretion, however, may be accompanied by vigorous mass loss that can limit the amount of mass that reaches the black hole. In this paper, we critically assess the impact of radiative driven winds, launched from the surface of the massive envelopes from which the black hole accretes. Solving the full wind equations coupled with the hydrostatic structure of the envelope, we find mass outflows with rates between a few tens and $10^4$ M$_{\odot}$ yr$^{-1}$, mainly powered by advection luminosity within the outflow. We therefore confirm the claim by Dotan, Rossi & Shaviv (2011) that mass losses can severely affect the black hole seed early growth within a quasi-star. In particular, seeds with mass $>10^4$ M$_{\odot}$ can only form within mass reservoirs $ \gtrsim 10^7$ M$_{\odot}$, unless they are refilled at huge rates ($ \gtrsim 100$ M$_{\odot}$ yr$^{-1}$). This may imply that only very massive halos ($>10^9$ M$_{\odot}$) at those redshifts can harbour massive seeds. Contrary to previous claims, these winds are expected to be relatively bright ($10^{44}-10^{47}$ erg s$^{-1}$), blue ($T_{\rm eff} \sim 8000$ K) objects, that while eluding the Hubble Space Telescope, could be observed by the James Webb Space Telescope.
We present new IRAM 30m spectroscopic observations of the $\sim88$ GHz band, including emission from the CCH (n=1-0) multiplet, HCN (1-0), HCO+ (1-0), and HNC (1-0), for a sample of 58 local luminous and ultraluminous infrared galaxies from the Great Observatories All-sky LIRG Survey (GOALS). By combining our new IRAM data with literature data and Spitzer/IRS spectroscopy, we study the correspondence between these putative tracers of dense gas and the relative contribution of active galactic nuclei (AGN) and star formation to the mid-infrared luminosity of each system. We find the HCN (1-0) emission to be enhanced in AGN-dominated systems ($\langle$L'$_{HCN (1-0)}$/L'$_{HCO^+ (1-0)}\rangle=1.84$), compared to composite and starburst-dominated systems ($\langle$L'$_{HCN (1-0)}$/L'$_{HCO^+ (1-0)}\rangle=1.14$, and 0.88, respectively). However, some composite and starburst systems have L'$_{HCN (1-0)}$/L'$_{HCO^+ (1-0)}$ ratios comparable to those of AGN, indicating that enhanced HCN emission is not uniquely associated with energetically dominant AGN. After removing AGN-dominated systems from the sample, we find a linear relationship (within the uncertainties) between $\log_{10}$(L'$_{HCN (1-0)}$) and $\log_{10}$(L$_{IR}$), consistent with most previous findings. L'$_{HCN (1-0)}$/L$_{IR}$, typically interpreted as the dense gas depletion time, appears to have no systematic trend with L$_{IR}$ for our sample of luminous and ultraluminous infrared galaxies, and has significant scatter. The galaxy-integrated HCN (1-0) and HCO+ (1-0) emission do not appear to have a simple interpretation, in terms of the AGN dominance or the star formation rate, and are likely determined by multiple processes, including density and radiative effects.
We present new GPI observations of the young exoplanet 51 Eridani b which provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to $2\times10^{-7}$, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semi-major axis of $14^{+7}_{-3}$ AU, corresponding to a period of $41^{+35}_{-12}$ yr (assuming a mass of $1.75$ M$_{\odot}$ for the central star), and an inclination of $138^{+15}_{-13}$ deg. The remaining orbital elements are only marginally constrained by the current measurements. These preliminary values suggest an orbit which does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.
Supernova (SN) Refsdal is the first multiply-imaged, highly-magnified, and spatially-resolved SN ever observed. The SN exploded in a highly-magnified spiral galaxy at z=1.49 behind the Frontier Fields Cluster MACS1149, and provides a unique opportunity to study the environment of SNe at high z. We exploit the time delay between multiple images to determine the properties of the SN and its environment, before, during, and after the SN exploded. We use the integral-field spectrograph MUSE on the VLT to simultaneously target all observed and model-predicted positions of SN Refsdal. We find MgII emission at all positions of SN Refsdal, accompanied by weak FeII* emission at two positions. The measured ratios of [OII] to MgII emission of 10-20 indicate a high degree of ionization with low metallicity. Because the same high degree of ionization is found in all images, it cannot be caused by SN Refsdal, but rather by previous SNe or a young and hot stellar population. We find no variability of the [OII] line over a period of 57 days. This suggests that there is no variation in the [OII] luminosity of the SN over this period, or that the SN contribution to the [OII] emission is too small to distinguish with our observations.
The observed 21-cm signal from the epoch of reionization will be distorted along the line-of-sight by the peculiar velocities of matter particles. These redshift-space distortions will affect the contrast in the signal and will also make it anisotropic. This anisotropy contains information about the cross-correlation between the matter density field and the neutral hydrogen field, and could thus potentially be used to extract information about the sources of reionization. In this paper, we study a collection of simulated reionization scenarios assuming different models for the sources of reionization. We show that the 21-cm anisotropy is best measured by the quadrupole moment of the power spectrum. We find that, unless the properties of the reionization sources are extreme in some way, the quadrupole moment evolves very predictably as a function of global neutral fraction. This predictability implies that redshift-space distortions are not a very sensitive tool for distinguishing between reionization sources. However, the quadrupole moment can be used as a model-independent probe for constraining the reionization history. We show that such measurements can be done to some extent by first-generation instruments such as LOFAR, while the SKA should be able to measure the reionization history using the quadrupole moment of the power spectrum to great accuracy.
We present new results from the Disks@EVLA program for two young stars: CY Tau and DoAr 25. We trace continuum emission arising from their circusmtellar disks from spatially resolved observations, down to tens of AU scales, at {\lambda} = 0.9, 2.8, 8.0, and 9.8 mm for DoAr25 and at {\lambda} = 1.3, 2.8, and 7.1 mm for CY Tau. Additionally, we constrain the amount of emission whose origin is different from thermal dust emission from 5 cm observations. Directly from interferometric data, we find that observations at 7 mm and 1 cm trace emission from a compact disk while millimeter-wave observations trace an extended disk structure. From a physical disk model, where we characterize the disk structure of CY Tau and DoAr 25 at wavelengths shorter than 5 cm, we find that (1) dust continuum emission is optically thin at the observed wavelengths and over the spatial scales studied, (2) a constant value of the dust opacity is not warranted by our observations, and (3) a high-significance radial gradient of the dust opacity spectral index, {\beta}, is consistent with the observed dust emission in both disks, with low-{\beta} in the inner disk and high-{\beta} in the outer disk. Assuming that changes in dust properties arise solely due to changes in the maximum particle size (amax), we constrain radial variations of amax in both disks, from cm-sized particles in the inner disk (R < 40 AU) to millimeter sizes in the outer disk (R > 80 AU). These observational constraints agree with theoretical predictions of the radial-drift barrier, however, fragmentation of dust grains could explain our amax(R) constraints if these disks have lower turbulence and/or if dust can survive high-velocity collisions.
We consider a model in which a pseudo-scalar field $\sigma$ rolls for some e-folds during inflation, sourcing one helicity of a gauge field. These fields are only gravitationally coupled to the inflaton, and therefore produce scalar and tensor primordial perturbations only through gravitational interactions. These sourced signals are localized on modes that exit the horizon while the roll of $\sigma$ is significant. We focus our study on cases in which the model can simultaneously produce (i) a large gravitational wave signal, resulting in observable B-modes of the CMB polarizations, and (ii) sufficiently small scalar perturbations, so to be in agreement with the current limits from temperature anisotropies. Different choice of parameters can instead lead to a localized and visible departure from gaussianity in the scalar sector, either at CMB or LSS scales.
Many parameters constraining the spectral appearance of exoplanets are still poorly understood. We therefore study the properties of irradiated exoplanet atmospheres over a wide parameter range including metallicity, C/O ratio and host spectral type. We calculate a grid of 1-d radiative-convective atmospheres and emission spectra. We perform the calculations with our new Pressure-Temperature Iterator and Spectral Emission Calculator for Planetary Atmospheres (PETIT) code, assuming chemical equilibrium. The atmospheric structures and spectra are made available online. We find that atmospheres of planets with C/O ratios $\sim$ 1 and $T_{\rm eff}$ $\gtrsim$ 1500 K can exhibit inversions due to heating by the alkalis because the main coolants CH$_4$, H$_2$O and HCN are depleted. Therefore, temperature inversions possibly occur without the presence of additional absorbers like TiO and VO. At low temperatures we find that the pressure level of the photosphere strongly influences whether the atmospheric opacity is dominated by either water (for low C/O) or methane (for high C/O), or both (regardless of the C/O). For hot, carbon-rich objects this pressure level governs whether the atmosphere is dominated by methane or HCN. Further we find that host stars of late spectral type lead to planetary atmospheres which have shallower, more isothermal temperature profiles. In agreement with prior work we find that for planets with $T_{\rm eff}$ $<$ 1750 K the transition between water or methane dominated spectra occurs at C/O $\sim$ 0.7, instead of $\sim$ 1, because condensation preferentially removes oxygen.
Recent discoveries of circumbinary planets by Kepler mission provide motivation for understanding their birthplaces - protoplanetary disks around stellar binaries with separations <1 AU. We explore properties and evolution of such circumbinary disks focusing on modification of their structure caused by tidal coupling to the binary. We develop a set of analytical scaling relations describing viscous evolution of the disk properties, which are verified and calibrated using 1D numerical calculations with realistic inputs. Injection of angular momentum by the central binary suppresses mass accretion onto the binary and causes radial distribution of the viscous angular momentum flux F_J to be different from that in a standard accretion disk around a single star with no torque at the center. Disks with no mass accretion at the center develop F_J profile which is flat in radius. Radial profiles of temperature and surface density are also quite different from those in disks around single stars. Damping of the density waves driven by the binary and viscous dissipation dominate heating of the inner disk (within 1-2 AU), pushing the iceline beyond 3-5 AU, depending on disk mass and age. Irradiation by the binary governs disk thermodynamics beyond ~10 AU. However, self-shadowing by the hot inner disk may render central illumination irrelevant out to ~20 AU. Spectral energy distribution of a circumbinary disk exhibits a distinctive bump around 10 micron, which may facilitate identification of such disks around unresolved binaries. Efficient tidal coupling to the disk drives orbital inspiral of the binary and may cause low-mass and compact binaries to merge into a single star within the disk lifetime. We generally find that circumbinary disks present favorable sites for planet formation (despite wider zone of volatile depletion), in agreement with the statistics of Kepler circumbinary planets.
We review the radio very long baseline interferometry (VLBI) observations of the guide star, IM Peg, and three compact extragalactic reference sources, 3C 454.3, B2250+194, and B2252+172, made in support of the NASA/Stanford gyroscope relativity mission, GP-B. The main goal of the observations was the determination of the proper motion of IM Peg relative to the distant universe. VLBI observations made between 1997 and 2005 yield a proper motion of IM Peg of -20.83 $\pm$ 0.09 mas yr$^{-1}$ in RA and -27.27 $\pm$ 0.09 mas yr$^{-1}$ in dec, in a celestial reference frame of extragalactic radio galaxies and quasars virtually identical to the International Celestial Reference Frame 2 (ICRF2). They also yield a parallax for IM Peg of 10.37 $\pm$ 0.07 mas, corresponding to a distance of 96.4 $\pm$ 0.7 pc. The uncertainties are standard errors with statistical and estimated systematic contributions added in quadrature. These results met the pre-launch requirements of the GP-B mission to not discernibly degrade the estimates of the geodetic and frame-dragging effects. The paper also reports on a 1$\sigma$ upper limit on the magnitude of the components of the proper motion of the 'core' of 3C 454.3 relative to the ICRF2 of 46 and 56 $\mu$as yr$^{-1}$ in RA and dec, respectively, and presents densely sampled ellipses of the parallax and the orbit of the giant of the binary system. It further gives a sequence of images of the flickering radio emission relative to the disk of the giant. For a 'movie of a star,' see this http URL .
The analysis of meteor spectra (photographic, CCD or video recording) is complicated by the fact that spectra obtained with objective gratings are curved and have a nonlinear dispersion. In this paper it is shown that with a simple image transformation the spectra can be linearized in such a way that individual spectra over the whole image plane are parallel and have a constant, linear dispersion. This simplifies the identification and measurement of meteor spectral lines. A practical method is given to determine the required image transformation.
We present the leading order nonlinear density and velocity power spectra in the complete form; previous studies have omitted the vector- and tensor-type perturbations simultaneously excited by the scalar-type perturbation in nonlinear order. These additional contributions are comparable to the scalar-type purely relativistic perturbations, and thus negligible in the current paradigm of concordance cosmology: concerning density and velocity perturbations of the pressureless matter in perturbation regime well inside of matter-dominated epoch, we show that pure Einstein's gravity contributions appearing from the third order are entirely negligible (five orders of magnitude smaller than the Newtonian contributions) in all scales. We thus prove that Newtonian perturbation theory is quite reliable in calculating the amplitude of matter fluctuations even in the precision era of cosmology. Therefore, the only relativistic effect relevant for interpreting observational data must be the projection effects that occurs when mapping galaxies onto the observed coordinate.
We compare the ability of 11 Differential Emission Measure (DEM) forward-fitting and inversion methods to constrain the properties of active regions and solar flares by simulating synthetic data using the instrumental response functions of SDO/AIA, SDO/EVE, RHESSI, and GOES/XRS. The codes include the single-Gaussian DEM, a bi-Gaussian DEM, a fixed-Gaussian DEM, a linear spline DEM, the spatial synthesis DEM, the Monte-Carlo Markov chain DEM, the regularized DEM inversion, the Hinode/XRT method, a polynomial spline DEM, an EVE+GOES, and an EVE+RHESSI method. Averaging the results from all 11 DEM methods, we find the following accuracies in the inversion of physical parameters: the EM-weighted temperature $T_w^{fit}/T_w^{sim}=0.9\pm0.1$, the peak emission measure $EM_p^{fit}/EM_p^{sim}=0.6\pm0.2$, the total emission measure $EM_t^{fit}/EM_t^{sim}=0.8\pm0.3$, and the multi-thermal energies $E_{th}^{fit}/EM_{th}^{sim}=1.2\pm0.4$. We find that the AIA spatial synthesis, the EVE+GOES, and the EVE+RHESSI method yield the most accurate results.
Several planetary satellites apparently have subsurface seas that are of great interest for, among other reasons, their possible habitability. The geologically diverse Saturnian satellite Enceladus vigorously vents liquid water and vapor from fractures within a south polar depression and thus must have a liquid reservoir or active melting. However, the extent and location of any subsurface liquid region is not directly observable. We use measurements of control points across the surface of Enceladus accumulated over seven years of spacecraft observations to determine the satellite's precise rotation state, finding a forced physical libration of 0.120 $\pm$ 0.014{\deg} (2{\sigma}). This value is too large to be consistent with Enceladus's core being rigidly connected to its surface, and thus implies the presence of a global ocean rather than a localized polar sea. The maintenance of a global ocean within Enceladus is problematic according to many thermal models and so may constrain satellite properties or require a surprisingly dissipative Saturn.
The High altitude Water Cherenkov (HAWC) Observatory has been completed and began full operation in early 2015. Located at an elevation of 4,100 m near the Sierra Negra volcano in the state of Puebla, Mexico, HAWC consists of 300 water tanks instrumented with 4 PMTs each. The array is optimized for detecting air showers produced by gamma rays with energies between 100 GeV and 100 TeV and can also be used to measure charged cosmic rays. A wide instantaneous field of view of ~2 steradians and a duty cycle >95% allow HAWC to survey two-thirds of the sky every day. These unique capabilities make it possible to monitor variable gamma-ray fluxes and search for gamma-ray bursts and other transient events, providing new insights into particle acceleration in galactic and extra-galactic sources. In this contribution, we will present first results from more than one year of observations with a partial array configuration. We will discuss how HAWC can map the gamma-ray sky as well as probe other physics including cosmic ray anisotropies and the search for signatures of dark matter annihilation.
Tests of general relativity (GR) are still in their infancy on cosmological scales, but forthcoming experiments promise to greatly improve their precision over a wide range of distance scales and redshifts. One such experiment, the Square Kilometre Array (SKA), will carry out several wide and deep surveys of resolved and unresolved neutral hydrogen (HI) 21cm line-emitting galaxies, mapping a significant fraction of the sky from $0 \le z \lesssim 6$. I present forecasts for the ability of a suite of possible SKA HI surveys to detect deviations from GR by reconstructing the cosmic expansion and growth history. SKA Phase 1 intensity mapping surveys can achieve sub-1% measurements of $f\sigma_8$ out to $z\approx 1$, with an SKA1-MID Band 2 survey out to $z \lesssim 0.6$ able to surpass contemporary spectroscopic galaxy surveys such as DESI and Euclid in terms of constraints on modified gravity parameters if challenges such as foreground contamination can be tackled effectively. A more futuristic Phase 2 HI survey of $\sim 10^9$ spectroscopic galaxy redshifts would be capable of detecting a $\sim 2\%$ modification of the Poisson equation out to $z\approx 2$.
With a radio continuum galaxy survey by Square Kilometre Array (SKA), a photometric galaxy survey by Euclid and their combination, we forecast future constraints on primordial non-Gaussianity. We focus on the potential impact of local-type higher-order nonlinear parameters on the parameter estimation and particularly the confirmation of the inflationary consistency inequality. Non-standard inflationary models, such as multi-field models, introduce the scale-dependent stochastic clustering of galaxies on large scales, which is a unique probe of mechanism for generating primordial density fluctuations. Our Fisher matrix analysis indicates that a deep and wide survey provided by SKA is more advantageous to constrain $\tau_{\rm NL}$, while Euclid has a strong constraining power for $f_{\rm NL}$ due to the redshift information, suggesting that the joint analysis between them are quite essential to break the degeneracy between $f_{\rm NL}$ and $\tau_{\rm NL}$. The combination of full SKA and Euclid will achieve the precision level needed to confirm the consistency inequality even for $f_{\rm NL}\approx 0.9$ and $\tau_{\rm NL}\approx 8$, though it is still hard for a single survey to confirm it when $f_{\rm NL}\lesssim 1.5$.
We present a photometrical and morphological multicolor study of the properties of low redshift (z<0.3) quasar hosts based on a large and homogeneous dataset of quasars derived from the Sloan Digital Sky Survey (DR7). We used quasars that were imaged in the SDSS Stripe82 that is up to 2 mag deeper than standard Sloan images. This sample is part of a larger dataset of ~400 quasars at z<0.5 for which both the host galaxies and their galaxy environments were studied (Falomo et al. 2014,Karhunen et al. 2014). For 52 quasars we undertake a study of the color of the host galaxies and of their close environments in u,g,r,i and z bands. We are able to resolve almost all the quasars in the sample in the filters g,r,i and z and also in $u$ for about 50% of the targets. We found that the mean colors of the QSO host galaxy (g-i=0.82+-0.26; r-i=0.26+-0.16 and u-g=1.32+-0.25) are very similar to the values of a sample of inactive galaxies matched in terms of redshift and galaxy luminosity with the quasar sample. There is a suggestion that the most massive QSO hosts have bluer colors.Both quasar hosts and the comparison sample of inactive galaxies have candidates of close ($<$ 50 kpc) companion galaxies for ~30% of the sources with no significant difference between active and inactive galaxies. We do not find significant correlation between the central black hole (BH) mass and the quasar host luminosity that appears to be extra luminous at a given BH mass with respect to the local relation (M_BH -- M_host) for inactive galaxies. This confirms previous suggestion that a substantial disc component, not correlated to the BH mass, is present in the galaxies hosting low z quasars. These results support a scenario where the activation of the nucleus has negligible effects on the global structural and photometrical properties of the hosting galaxies.
We present studies of C/2015 D1 (SOHO), the first sunskirting comet ever seen from ground stations over the past half century. The Solar and Heliospheric Observatory (SOHO) witnessed its peculiar light curve with a huge dip followed by a flareup around perihelion: the dip was likely caused by sublimation of olivines, directly evidenced by a coincident temporary disappearance of the tail. The flareup likely reflects a disintegration event, which we suggest was triggered by intense thermal stress established within the nucleus interior. Photometric data reveal an increasingly dusty coma, indicative of volatile depletion. A catastrophic mass loss rate of $\sim$10$^{5}$ kg s$^{-1}$ around perihelion was seen. Ground-based Xingming Observatory spotted the post-perihelion debris cloud. Our morphological simulations of post-perihelion images find newly released dust grains of size $a \gtrsim 10$ $\mu$m in radius, however, a temporal increase in $a_{\min}$ was also witnessed, possibly due to swift dispersions of smaller grains swept away by radiation forces without replenishment. Together with the fading profile of the light curve, a power law dust size distribution with index $\gamma = 3.2 \pm 0.1$ is derived. We detected no active remaining cometary nuclei over $\sim$0.1 km in radius in post-perihelion images acquired at Lowell Observatory. Applying radial non-gravitational parameter, $\mathcal{A}_{1} = \left(1.209 \pm 0.118 \right) \times 10^{-6}$ AU day$^{-2}$, from an isothermal water-ice sublimation model to the SOHO astrometry significantly reduces residuals and sinusoidal trends in the orbit determination. The nucleus mass $\sim$10$^{8}$--10$^{9}$ kg, and the radius $\sim$50--150 m (bulk density $\rho_{\mathrm{d}} = 0.4$ g cm$^{-3}$ assumed) before the disintegration are deduced from the photometric data; consistent results were determined from the non-gravitational effects.
We model the synthesis of molecules and dust in the inner wind of the oxygen-rich Mira-type star IK Tau, by considering the effects of periodic shocks induced by the stellar pulsation on the gas, and by following the non-equilibrium chemistry in the shocked gas layers between 1 and 10 Rstar. We consider a complete set of molecules and dust clusters, and combine the nucleation phase of dust formation with the condensation of these clusters into dust grains. Our derived molecular abundances and dust shells are compared to the most recent observational data. The chemistry is described by using a chemical kinetic network of reactions and the condensation mechanism is described by a Brownian formalism. The shocks drive an active non-equilibrium chemistry in the dust formation zone of IK Tau where the collision destruction of CO in the post-shock gas triggers the formation of C-bearing species such as HCN and CS. Most of the modelled molecular abundances agree well with the latest values derived from Herschel data. Clusters of alumina are produced within 2 Rstar and lead to a population of alumina grains close to the stellar surface. Clusters of silicates form at larger radii (r > 3 Rstar), where their nucleation is triggered by the formation of HSiO and H2SiO. They efficiently condense and reach their final grain size distribution between ~ 6 and 8 Rstar, with a major population of medium size grains peaking at~ 0.02 microns. This two dust-shell configuration agrees with recent interferometric observations. The derived dust-to-gas mass ratio for IK Tau is in the range 1-6x10^-3 and agrees with values derived from observations of O-rich Mira-type stars. Our results confirm the importance of periodic shocks in chemically shaping the inner wind of AGB stars and providing gas conditions conducive to the efficient synthesis of molecules and dust by non-equilibrium processes.
We have constrained the charge-mass ($\varepsilon-m$) phase space of millicharged particles through the simulation of the rotational evolution of neutron stars, where an extra slow-down effect due to the accretions of millicharged dark matter particles is considered. For a canonical neutron star of $M=1.4~M_{\odot}$ and $R=10~{\rm km}$ with typical magnetic field strength $B_{0}=10^{12}$ G, we have shown an upper limit of millicharged particles, which is compatible with recently experimental and observational bounds. Meanwhile, we have also explored the influences on the $\varepsilon-m$ phase space of millicharged particles for different magnetic fields $B_{0}$ and dark matter density $\rho_{\rm{DM}}$ in the vicinity of the neutron star.
Neutrino-driven winds that follow core-collapse supernovae are an exciting astrophysical site for the production of heavy elements. Although hydrodynamical simulations show that the conditions in the wind are not extreme enough for a r-process up to uranium, neutrino-driven winds may be the astrophysical site where lighter heavy elements between Sr an Ag are produced, either by the weak r-process or by the $\nu \!p$-process. However, it is still not clear if the conditions in the wind are slightly neutron-rich or proton-rich. Therefore, we investigate the nucleosynthesis in the wind for neutron- and proton-rich conditions and systematically explore the impact of wind parameters on abundances. Here we focus on molybdenum that has raised attention because several astrophysical scenarios failed to reproduce the solar system (SoS) abundance ratio of $^{92}\mathrm{Mo}$ and $^{94}\mathrm{Mo}$. Moreover, available data of SiC X grains exhibit different isotopic ratios of $^{95}\mathrm{Mo}$ and $^{97}\mathrm{Mo}$ than in the SoS. We have investigated if neutrino-driven winds can reproduce the SoS $Y(^{92}\mathrm{Mo})/Y(^{94}\mathrm{Mo})$ and can explain the origin of the $Y(^{95}\mathrm{Mo})/Y(^{97}\mathrm{Mo})$ found in SiC X.
Interstellar dust is still the dominant uncertainty in Astronomy, limiting
precision in e.g., cosmological distance estimates and models of how light is
re-processed within a galaxy. When a foreground galaxy serendipitously overlaps
a more distant one, the latter backlights the dusty structures in the nearer
foreground galaxy. Such an overlapping or occulting galaxy pair can be used to
measure the distribution of dust in the closest galaxy with great accuracy. The
STARSMOG program uses HST observation of occulting galaxy pairs to accurately
map the distribution of dust in foreground galaxies in fine ($<$100 pc) detail.
Furthermore, Integral Field Unit observations of such pairs will map the
effective extinction curve in these occulting galaxies, disentangling the role
of fine-scale geometry and grain composition on the path of light through a
galaxy.
The overlapping galaxy technique promises to deliver a clear understanding of
the dust in galaxies: the dust geometry, a probability function of the amount
of dimming as a function of galaxy type, its dependence on wavelength, and
evolution of all these properties with cosmic time using distant, high-redshift
pairs.
Heavy elements like gold, platinum or uranium are produced in the r-process, which needs neutron-rich and explosive environments. Neutron star mergers are a promising candidate for an r-process site. They exhibit three different channels for matter ejection fulfilling these conditions: dynamic ejecta due to tidal torques, neutrino-driven winds and evaporating matter from the accretion disk. We present a first study of the integrated nucleosynthesis for a neutrino-driven wind from a neutron star merger with a hyper-massive neutron star. Trajectories from a recent hydrodynamical simulation are divided into four different angle regions and post-processed with a reaction network. We find that the electron fraction varies around $Y_e \approx 0.1 - 0.4$, but its distribution differs for every angle of ejection. Hence, the wind ejecta do not undergo a robust r-process, but rather possess distinct nucleosynthesis yields depending on the angle range. Compared to the dynamic ejecta, a smaller amount of neutron-rich matter gets unbound, but the production of lighter heavy elements with $A \lesssim 130$ in the neutrino-driven wind can complement the strong r-process of the dynamic ejecta.
We study the dynamical chaos and integrable motion in the planar circular restricted three-body problem and determine the fractal dimension of the spiral strange repeller set of non-escaping orbits at different values of mass ratio of binary bodies and of Jacobi integral of motion. We find that the spiral fractal structure of the Poincar\'e section leads to a spiral density distribution of particles remaining in the system. We also show that the initial exponential drop of survival probability with time is followed by the algebraic decay related to the universal algebraic statistics of Poincar\'e recurrences in generic symplectic maps.
In this paper, we assemble a catalog of 118 strong gravitational lensing systems from SLACS, BELLS, LSD and SL2S surveys and use them to constrain the cosmic equation of state. In particular we consider two cases of dark energy phenomenology: $XCDM$ model where dark energy is modeled by a fluid with constant $w$ equation of state parameter and in Chevalier - Polarski - Linder (CPL) parametrization where $w$ is allowed to evolve with redshift: $w(z) = w_0 + w_1 \frac{z}{1+z}$. We assume spherically symmetric mass distribution in lensing galaxies, but relax the rigid assumption of SIS model in favor to more general power-law index $\gamma$, also allowing it to evolve with redshifts $\gamma(z)$. Our results for the $XCDM$ cosmology show the agreement with values (concerning both $w$ and $\gamma$ parameters) obtained by other authors. We go further and constrain the CPL parameters jointly with $\gamma(z)$. The resulting confidence regions for the parameters are much better than those obtained with a similar method in the past. They are also showing a trend of being complementary to the supernova Ia data. Our analysis demonstrates that strong gravitational lensing systems can be used to probe cosmological parameters like the cosmic equation of state for dark energy. Moreover, they have a potential to judge whether the cosmic equation of state evolved with time or not.
Newly born magnetars are promising sources for gravitational wave (GW) detection due to their ultra-strong magnetic fields and high spin frequencies. Within the scenario of a growing tilt angle between the star's spin and magnetic axis, due to the effect of internal viscosity, we obtain improved estimates of the stochastic gravitational wave backgrounds (SGWBs) from magnetic deformation of newly born magnetars. We find that the GW background spectra contributed by the magnetars with ultra-strong toroidal magnetic fields of 10^{17} G could roughly be divided into four segments. Most notably, in contrast to the background spectra calculated by assuming constant tilt angles \chi=\pi/2, the background radiation above 1000 Hz are seriously suppressed. However, the background radiation at the frequency band \sim100-1000 Hz are moderately enhanced, depending on the strengths of the dipole magnetic fields. We suggest that if all newly born magnetars indeed have toroidal magnetic fields of 10^{17} G, the produced SGWBs should show sharp variations with the observed frequency at several tens to about 100 hertz. If these features could be observed through sophisticated detection of the SGWB using the proposed Einstein Telescope, it will provide us a direct evidence of the tilt angle evolutions and further some deep understandings about the properties of newly born magnetars.
Treatments of the radio scattering due to density turbulence in the solar wind typically employ asymptotic approximations to the phase structure function. We use a general structure function (GSF) that straddles the asymptotic limits and quantify the relative error introduced by the approximations. We show that the regimes where GSF predictions are accurate than those of its asymptotic approximations is not only of practical relevance, but are where inner scale effects influence the estimate of the scatter-broadening. Thus we propose that GSF should henceforth be used for scatter broadening calculations and estimates of quantities characterizing density turbulence in the solar corona and solar wind. In the next part of this thesis we use measurements of density turbulence in the solar wind from previously publish observations of radio wave scattering and interplanetary scintillations. Density fluctuations are inferred using the GSF for radio scattering data and existing analysis methods for IPS. Assuming that the density fluctuations below proton scales are due to kinetic Alfv`en waves, we constrain the rate at which the extended solar wind is heated due to turbulent dissipation. These results provide the first estimates of the density modulation index and the solar wind heating rate all the way from the Sun to the Earth.
The Soft Gamma-ray Detector (SGD), to be deployed onboard the {\it ASTRO-H} satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600~keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10\% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75\% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8~cm$^2$ meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.
Observations of edge-on galaxies allow us to investigate the vertical extent and properties of dust, gas and stellar distributions. NGC 891 has been studied for decades and represents one of the best studied cases of an edge-on galaxy. We use deep PACS data together with IRAC, MIPS and SPIRE data to study the vertical extent of dust emission around NGC 891. We also test the presence of a more extended, thick dust component. By performing a convolution of an intrinsic vertical profile emission with each instrument PSF and comparing it with observations we derived the scaleheight of a thin and thick dust disc component. For all wavelengths considered the emission is best fit with the sum of a thin and a thick dust component. The scaleheight of both dust components shows a gradient passing from 70 $\mu$m to 250 $\mu$m. This could be due to a drop in dust heating (and thus dust temperature) with the distance from the plane, or to a sizable contribution ($\sim 15 - 80%$) of an unresolved thin disc of hotter dust to the observed surface brightness at shorter wavelengths. The scaleheight of the thick dust component, using observations from 70 $\mu$m to 250 $\mu$m has been estimated to be $(1.44\pm 0.12)$ kpc, consistent with previous estimates (extinction and scattering in optical bands and MIR emission). The amount of dust mass at distances larger than $\sim 2$ kpc from the midplane represents $2 - 3.3$ % of the total galactic dust mass and the relative abundance of small grains with respect to large grains is almost halved comparing to that in the midplane. The paucity of small grains high above the midplane might indicate that dust is hit by interstellar shocks or galactic fountains and entrained together with gas. The halo dust component is likely to be embedded in an atomic / molecular gas and heated by a thick stellar disc.
The hydrostatic equilibrium and the stability against radial perturbation of charged strange quark stars composed of a charged perfect fluid are studied. For this purpose, it is considered that the perfect fluid follows the MIT bag model equation of state and the radial charge distribution follows a power-law. The hydrostatic equilibrium and the stability of charged strange stars are investigated through the numerical solutions of the Tolman-Oppenheimer-Volkoff equation and the Chandrasekhar's pulsation equation, being these equations modified from their original form to include the electrical charge. In order to appreciably affect the stellar structure, it is found that the total charge should be of order $10^{20}[\rm C]$, implying an electric field of around $10^{22}[\rm V/m]$. We found the electric charge that produces considerable effect on the structure and stability of the object is close to the star's surface. We obtain that for a range of central energy density the stability of the star decreases with the increment of the total charge and for a range of total mass the electric charge helps to grow the stability of the stars under study. We show that the central energy density used to reach the maximum mass value is the same used to determine the zero eigenfrequency of the fundamental mode when the total charge is fixed, thus indicating that the maximum mass point marks the onset of instability. In other words, when fixing the total charge, the conditions $\frac{dM}{d\rho_c}>0$ and $\frac{dM}{d\rho_c}<0$ are necessary and sufficient to determine the stable and unstable equilibrium configurations regions against radial oscillations.
Bondi-Hoyle accretion configurations occur as soon as a gravitating body is immersed in an ambient medium with a supersonic relative velocity. From wind-accreting X-ray binaries to runaway neutron stars, such a regime has been witnessed many times and is believed to account for shock formation, the properties of which can be only marginally derived analytically. In this paper, we present the first results of the numerical characterization of the stationary flow structure of Bondi-Hoyle accretion onto a compact object, from the large scale accretion radius down to the vicinity of the compact body. For different Mach numbers, we study the associated bow shock. It turns out that those simulations confirm the analytical prediction by Foglizzo & Ruffert (1996) concerning the topology of the inner sonic surface with an adiabatic index of 5/3. They also enable us to derive the related mass accretion rates, the position and the temperature of the bow shock, as function of the flow parameters, along with the transverse density and temperature profiles in the wake.
We report turbulence effects on magnetic reconnection in relativistic plasmas using 3-dimensional relativistic resistive magnetohydrodynamics simulations. We found reconnection rate became independent of the plasma resistivity due to turbulence effects similarly to non-relativistic cases. We also found compressible turbulence effects modified the turbulent reconnection rate predicted in non-relativistic incompressible plasmas; The reconnection rate saturates and even decays as the injected velocity approaches to the Alfv\'en velocity. Our results indicate the compressibility cannot be neglected when compressible component becomes about half of incompressible mode occurring when the Alfv\'en Mach number reaches about $0.3$. The obtained maximum reconnection rate is around $0.05$ to $0.1$, which will be able to reach around $0.1$ to $0.2$ if injection scales are comparable to the sheet length.
We present the results of the observations of a coronal mass ejection (CME), which occurred on May 13, 2009. The most important feature of these observations is that the CME was observed from the very early stage (the solar surface) up to a distance of 15 solar radii ($R_\odot$). Below 2 $R_\odot$, we used the data from the TESIS EUV telescopes obtained in the Fe 171 A and He 304 A lines, and above 2 $R_\odot$, we used the observations of the LASCO C2 and C3 coronagraphs. The CME was formed at a distance of 0.2-0.5 $R_\odot$from the Sun's surface as a U-shaped structure, which was observed both in the 171 A images and in white-light. Observations in the He 304 A line showed that the CME was associated with an erupting prominence, which was located not above-as predicts the standard model-but in the lowest part of the U-shaped structure close to the magnetic X-point. The prominence location can be explained with the CME breakout model. Estimates showed that CME mass increased with time. The CME trajectory was curved-its helio-latitude decreased with time. The CME started at latitude of 50$^{\circ}$ and reached the ecliptic plane at distances of 2.5 $R_\odot$. The CME kinematics can be divided into three phases: initial acceleration, main acceleration, and propagation with constant velocity. After the CME onset GOES registered a sub-A-class flare.
In several instances chemical abundances of dwarf and giant stars are used simultaneously under the assumption that they share the same abundance scale. This assumption might have implications in different astrophysical contexts. We aim to ascertain a methodology capable of producing a consistent metallicity scale for giants and dwarfs. To achieve that, we analyzed giants and dwarfs in the Hyades open cluster. All these stars have archival high-resolution spectroscopic data obtained with HARPS and UVES. In addition, the giants have interferometric measurements of the angular diameters. We analyzed the sample with two methods. The first method constrains the atmospheric parameters independently from spectroscopy. For that we present a novel calibration of microturbulence based on 3D model atmospheres. The second method is the classical spectroscopic based on Fe lines. We also tested two line lists in an attempt to minimize possible non-LTE effects and to optimize the treatment of the giants. We show that it is possible to obtain a consistent metallicity scale between dwarfs and giants. The preferred method should constrain the three parameters $T_{\rm eff}$, $\log~g$, and $\xi$ independent of spectroscopy. In particular, the lines should be chosen to be free of blends in the spectra of giants. When attention is paid to the line list, the classical spectroscopic method can also produce consistent results. The metallicities derived with the well-constrained set of stellar parameters are consistent independent of the line list used. Therefore, for this cluster we favor the metallicity of +0.18$\pm$0.03 dex obtained with this method. The classical spectroscopic analysis, using the line list optimized for the giants, provides a metallicity of +0.14$\pm$0.03 dex, in agreement with previous works.
Recent observational evidence indicates that the center of our Milky Way
harbours a super-massive object with ultra-strong radial magnetic field
(Eatough et al., 2013). Here we demonstrate that the radiations observed in the
vicinity of the Galactic Center (GC) (Falcke and Marko 2013) cannot be emitted
by the gas of the accretion disk since the accreting plasma is prevented from
approaching to the GC by the abnormally strong radial magnetic field. These
fields obstruct the infalling accretion flow from the inner region of the disk
and the central massive black hole in the standard model. It is expected that
the observed radiations near the Galactic Center cannot be generated by the
central black hole.
We also demonstrate that the observed ultra-strong radial magnetic field near
the Galactic Center ( Eatough et al., 2013) cannot be generated by the -
turbulence dynamo mechanism of Parker since preliminary qualitative estimate in
terms of this mechanism gives a magnetic field strength six orders of magnitude
smaller than the observed field strength at . However, both these difficulties
or the dilemma of the standard model can be overcome if the central black hole
in the standard model is replaced by a supper-massive stellar object containing
magnetic monopoles ( SMSOMM, Peng and Chou, 2001). The observed power peaking
of the thermal radiation is essentially the same as our theoretical prediction.
In addition, the discovery of the ultra-strong radial magnetic field near the
Galactic Center can be naturally explained and is consistent with the
prediction of our model( Peng and Chou 2001). Furthermore, the observed
ultra-strong radial magnetic field in the vicinity of the Galactic Center may
be considered as the astronomical evidence for the existence of magnetic
monopoles as predicted by the Grand Unified Theory of particle physics.
V1180 Cas is a young variable that has shown strong photometric fluctuations (Delta_I~6mag) in the recent past, which have been attributed to events of enhanced accretion. The source has entered a new high-brightness state in Sept.2013, which we have previously analyzed through optical and near-IR spectroscopy. To investigate the current active phase of V1180 Cas, we performed observations with the Chandra satellite to study the X-ray emission from the object and its connection to accretion episodes. Chandra observations were performed in early Aug.2014. Complementary JHK photometry and J-band spectra were taken at our Campo Imperatore facility to relate the X-ray and near-IR emission from the target. We observe a peak of X-ray emission at the nominal position of V1180 Cas. This signal corresponds to an X-ray luminosity L_X(0.5-7 kev) in the range 0.8-2.2e30 erg/s. Based on the relatively short duration of the dim states in the light curve and on stellar luminosity considerations, we explored the possibility that the brightness minima of V1180 Cas are driven by extinction variations. From the analysis of the spectral energy distribution of the high state we infer a stellar luminosity of 0.8-0.9 Lsun and find that the derived L_X is comparable to the average X-ray luminosities of T Tauri stars. Moreover, the X-ray luminosity is lower than the X-ray emission levels of 5e30 -1e31 erg/s detected at outbursts in similar low-mass objects. Our analysis suggests that at least part of the photometric fluctuations of V1180 Cas might be extinction effects rather than the result of accretion excess emission. However, as the source displays spectral features indicative of active accretion, we speculate that its photometric variations might be the result of a combination of accretion-induced and extinction-driven effects, as suggested for other young variables, such as V1184 Tau and V2492 Cyg.
We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 $\pm$ 0.20 M$_{\rm Jup}$, eccentricity 0.29 $\pm$ 0.02 and orbiting in 421 $\pm$ 2 days. WASP-47 c is a planet of minimum mass 1.24 $\pm$ 0.22 M$_{\rm Jup}$, eccentricity 0.13 $\pm$ 0.10 and orbiting in 572 $\pm$ 7 days. Unlike most of the planetary systems including a hot Jupiter, these two systems with a hot Jupiter have a long period planet located at only $\sim$1 AU from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect due the second planet, we use the emission in the H$\alpha$ line and find this indicator well suited to detect the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41 b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host two additional transiting super Earths. With such an unprecedented architecture, the WASP-47 system will be very important for the understanding of planetary migration.
Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. A follow-up paper to this one will take a more in-depth look at the specific techniques and algorithms used to produce press-quality imagery.
We present new mid-infrared N-band spectroscopy and Q-band photometry of the local luminous infrared galaxy NGC1614, one of the most extreme nearby starbursts. We analyze the mid-IR properties of the nucleus (central 150 pc) and four regions of the bright circumnuclear (diameter~600 pc) star-forming (SF) ring of this object. The nucleus differs from the circumnuclear SF ring by having a strong 8-12 micron continuum (low 11.3 micron PAH equivalent width). These characteristics, together with the nuclear X-ray and sub-mm properties, can be explained by an X-ray weak active galactic nucleus (AGN), or by peculiar SF with a short molecular gas depletion time and producing an enhanced radiation field density. In either case, the nuclear luminosity (L(IR) < 6e43 erg/s) is only <5% of the total bolometric luminosity of NGC1614. So this possible AGN does not dominate the energy output in this object. We also compare three star-formation rate (SFR) tracers (Pa$\alpha$, 11.3 micron PAH, and 24 micron emissions) at 150 pc scales in the circumnuclear ring. In general, we find that the SFR is underestimated (overestimated) by a factor of 2-4 (2-3) using the 11.3 micron PAH (24 micron) emission with respect to the extinction corrected Pa$\alpha$ SFR. The former can be explained because we do not include diffuse PAH emission in our measurements, while the latter might indicate that the dust temperature is particularly warmer in the central regions of NGC1614.
Based on high-resolution (R=60000) spectra taken with the NES spectrograph (the 6-m BTA telescope, the Special Astrophysical Observatory of the Russian Academy of Science), we have determined the abundances of 26 elements, from lithium to europium, in the atmosphere of the active red giant PZ Mon, which belongs to the class of RS CVn variable stars, by the method of model stellar atmospheres. We have taken into account the hyperfine splitting, the isotopic shift, and the departure from local thermodynamic equilibrium. Analysis of our data has revealed an overabundance of lithium and neutron-capture elements compared to normal red giants. For lithium, this is explained by the activity of the star, while the overabundance of s-elements is presumably similar in nature to that in moderate barium stars.
"From Cosmic Birth to Living Earths" advocates a 12-meter optical/near-IR space telescope for launch ~2035. The goal that sets this large size is the detection of biosignatures from Earth-like planets in their habitable zones around G-stars. The discovery of a single instance of life elsewhere in the universe would be a profound event for humanity. But not at any cost. At 8-9B USD this High Definition Space Telescope (HDST) would take all the NASA astrophysics budget for nearly 20 years, unless new funds are found. For a generation NASA could build no "Greater Observatories" matching JWST in the rest of the spectrum. This opportunity cost prompted me to study the driving exobiosphere detection case for HDST. I find that: (1) the focus on G-stars is not well justified; (2) only G-stars require the use of direct imaging; (3) in the chosen 0.5 - 2.5 micron band, the available biosignatures are ambiguous and a larger sample does not help; (4) the expected number of exobiospheres is 1, with a 5% chance of zero; (5) the accessible sample size is too small to show that exobiospheres are rare; (6) a sufficiently large sample would require a much larger telescope; (7) the great progress in M-star planet spectroscopy - both now and with new techniques, instruments and telescopes already planned - means that a biosignature will likely be found before HDST could complete its search in ~2045. For all these reasons I regretfully conclude that HDST, while commendably ambitious, is not the right choice for NASA Astrophysics at this time. The first exobiosphere discovery is likely to be such a major event that scientific and public pressure will produce new funding across a range of disciplines, not just astrophysics, to study the nature of Life in the Universe. Then will be the time when a broader science community can advocate for a mission that will make definitive exobiosphere measurements.
The lithium abundance in turnoff stars of the old population of our Galaxy is remarkably constant in the metallicity interval -2.8\textless{}[Fe/H] \textless{}-2.0, defining a plateau. The Li abundance of these turnoff stars is clearly lower than the abundance predicted by the primordial nucleosynthesis in the frame of the standard Big Bang nucleosynthesis. Different scenarios have been proposed for explaining this discrepancy, along with the very low scatter of the lithium abundance around the plateau. The recently identified very high velocity star, WISE J072543.88-235119.7 appears to belong to the old Galactic population, and appears to be an extreme halo star on a bound, retrograde Galactic orbit. In this paper, we study the abundance ratios and, in particular the lithium abundance, in this star. The available spectra (ESO-Very Large Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined.The abundance ratios in WISE J072543.88-235119.7 are those typical of old turnoff stars. The lithium abundance in this star ~is in close agreement with the lithium abundance found in the metal-poor turnoff stars located at moderate distance from the Sun. This high velocity star confirms, in an extreme case, that the very small scatter of the lithium plateau persists independent of the dynamic and kinematic properties of the stars.
Recent anomalies found in cosmological datasets such as the low multipoles of the Cosmic Microwave Background or the low redshift amplitude and growth of clustering measured by e.g., abundance of galaxy clusters and redshift space distortions in galaxy surveys, have motivated explorations of models beyond standard {\Lambda}CDM. Of particular interest are models where general relativity (GR) is modified on large cosmological scales. Here we consider deviations from {\Lambda}CDM+GR within the context of Horndeski gravity, which is the most general theory of gravity with second derivatives in the equations of motion. We adopt a parametrization in which the four additional Horndeski functions of time {\alpha}_i(t) are proportional to the cosmological density of dark energy {\Omega}_DE(t). Constraints on this extended parameter space using a suite of state-of-the art cosmological observations are presented for the first time. Although the theory is able to accommodate the low multipoles of the Cosmic Microwave Background and the low amplitude of fluctuations from redshift space distortions, we find no significant tension with {\Lambda}CDM+GR when performing a global fit to recent cosmological data and thus there is no evidence against {\Lambda}CDM+GR from an analysis of the value of the Bayesian evidence ratio of the modified gravity models with respect to {\Lambda}CDM, despite introducing extra parameters. The posterior distribution of these extra parameters that we derive return strong constraints on any possible deviations from {\Lambda}CDM+GR in the context of Horndeski gravity. We illustrate how our results can be applied to a more general frameworks of modified gravity models.
Time-domain astronomy (TDA) is facing a paradigm shift caused by the exponential growth of the sample size, data complexity and data generation rates of new astronomical sky surveys. For example, the Large Synoptic Survey Telescope (LSST), which will begin operations in northern Chile in 2022, will generate a nearly 150 Petabyte imaging dataset of the southern hemisphere sky. The LSST will stream data at rates of 2 Terabytes per hour, effectively capturing an unprecedented movie of the sky. The LSST is expected not only to improve our understanding of time-varying astrophysical objects, but also to reveal a plethora of yet unknown faint and fast-varying phenomena. To cope with a change of paradigm to data-driven astronomy, the fields of astroinformatics and astrostatistics have been created recently. The new data-oriented paradigms for astronomy combine statistics, data mining, knowledge discovery, machine learning and computational intelligence, in order to provide the automated and robust methods needed for the rapid detection and classification of known astrophysical objects as well as the unsupervised characterization of novel phenomena. In this article we present an overview of machine learning and computational intelligence applications to TDA. Future big data challenges and new lines of research in TDA, focusing on the LSST, are identified and discussed from the viewpoint of computational intelligence/machine learning. Interdisciplinary collaboration will be required to cope with the challenges posed by the deluge of astronomical data coming from the LSST.
We have identified an optical/X-ray binary with orbital period P_b=5.47h as the likely counterpart of the Fermi source 2FGL J2039.6-5620. GROND, SOAR and DES observations provide an accurate orbital period and allow us to compare with the light curve of an archival XMM exposure. Like many short-period optical X-ray binaries associated with LAT sources this may be a interacting (black widow/redback) millisecond pulsar binary. The X-ray light curve is consistent with the emission associated with an intrabinary shock. The optical light curve shows evidence of companion heating, but has a peculiar asymmetric double peak. The nature of this optical structure is not yet clear; additional optical studies and, especially, detection of an orbital modulation in a gamma-ray pulsar are needed to elucidate the nature of this peculiar source.
We report on the first detection of extreme-ultraviolet (EUV) absorption variability in the NeVIII 770,780 mini-broad absorption line (mini-BAL) in the spectrum of the quasar (QSO) PG 1206+459. The observed equivalent width (EW) of the NeVIII doublet show a ~4 sigma variation over a timescale of 2.8 months in the QSO's rest-frame. Both members of the NeVIII doublet exhibit non-black saturation, indicating partial coverage of the continuum source. An increase in the NeVIII covering fraction from f_c = 0.59\pm0.05 to 0.72\pm0.03 is observed over the same period. The NeVIII profiles are too highly saturated to be susceptible to changes in the ionization state of the absorbing gas. In fact, we do not observe any significant variation in the EW and/or column density after correcting the spectra for partial coverage. We, thus, propose transverse motions of the absorbing gas being the cause of the observed variability. Using a simple model of a transiting cloud we estimate a transverse speed of ~1800 km/s. For Keplerian motion, this corresponds to a distance between the absorber and the central engine of ~1.3 pc, which places the absorber just outside the BLR region. We further estimate a density of ~5\times10^6 cm^(-3) and a kinetic luminosity of ~10^43 - 10^44 erg/s. Such large kinetic powers suggest that outflows detected via EUV lines are potentially major contributors to AGN feedback.
The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 TeV gamma rays from the hadronic cosmic-ray background. HAWC is uniquely suited to study extremely high energy cosmic-ray sources, search for regions of extended gamma-ray emission, and to identify transient gamma-ray phenomena. HAWC will play a key role in triggering multi-wavelength and multi-messenger studies of active galaxies, gamma-ray bursts, supernova remnants and pulsar wind nebulae. Observation of TeV photons also provide unique tests for a number of fundamental physics phenomena including dark matter annihilation and primordial black hole evaporation. Operation began mid-2013 with the partially-completed detector. Multi-TeV emission from the Galactic Plane is clearly seen in the first year of operation, confirming a number of known TeV sources, and a number of AGN have been observed. We discuss the science of HAWC, summarize the status of the experiment, and highlight first results from analysis of the data.
We discuss the effect that small fluctuations of local anisotropy of pressure, and energy density, may have on the occurrence of cracking in spherical compact objects, satisfying a polytropic equation of state. Two different kind of polytropes are considered. For both, it is shown that departures from equilibrium may lead to the appearance of cracking, for a wide range of values of the parameters defining the polytrope. Prospective applications of the obtained results, to some astrophysical scenarios, are pointed out.
We consider the superpotential formalism to describe the evolution of scalar fields during inflation, generalizing it to include the case with non-canonical kinetic terms. We provide a characterization of the attractor behaviour of the background evolution in terms of first and second slow-roll parameters (which need not be small). We find that the superpotential is useful in justifying the separate universe approximation from the gradient expansion, and also in computing the spectra of primordial perturbations around attractor solutions in the $\delta N$ formalism. As an application, we consider a class of models where the background trajectories for the inflaton fields are derived from a product separable superpotential. In the perspective of the holographic inflation scenario, such models are dual to a deformed CFT boundary theory, with $D$ mutually uncorrelated deformation operators. We compute the bulk power spectra of primordial adiabatic and entropy cosmological perturbations, and show that the results agree with the ones obtained by using conformal perturbation theory in the dual picture.
Dark matter may be charged under dark electromagnetism with a dark photon that kinetically mixes with the Standard Model photon. In this framework, dark matter will collect at the center of the Earth and annihilate into dark photons, which may reach the surface of the Earth and decay into observable particles. We determine the resulting signal rates, including Sommerfeld enhancements, which play an important role in bringing the Earth's dark matter population to their maximal, equilibrium value. For dark matter masses $m_X \sim$ 100 GeV - 10 TeV, dark photon masses $m_{A'} \sim$ MeV - GeV, and kinetic mixing parameters $\varepsilon \sim 10^{-9} - 10^{-7}$, the resulting electrons, muons, photons, and hadrons that point back to the center of the Earth are a smoking-gun signal of dark matter that may be detected by a variety of experiments, including neutrino telescopes, such as IceCube, and space-based cosmic ray detectors, such as Fermi-LAT and AMS. We determine the signal rates and characteristics, and show that large and striking signals---such as parallel muon tracks---are possible in regions of the $(m_{A'}, \varepsilon)$ plane that are not probed by direct detection, accelerator experiments, or astrophysical observations.
Warm inflation includes inflaton interactions with other fields throughout the inflationary epoch instead of confining such interactions to a distinct reheating era. Previous investigations have shown that, when certain constraints on the dynamics of these interactions and the resultant radiation bath are satisfied, a low-momentum-dominated dissipation coefficient $\propto T^3/m_\chi^2$ can sustain an era of inflation compatible with CMB observations. In this work, we extend these analyses by including the pole-dominated dissipation term $\propto \sqrt{m_\chi T} \exp(-m_\chi/T)$. We find that, with this enhanced dissipation, certain models, notably the quadratic hilltop potential, perform significantly better. Specifically, we can achieve 50 e-folds of inflation and a spectral index compatible with Planck data while requiring fewer mediator field ($O(10^4)$ for the quadratic hilltop potential) and smaller coupling constants, opening up interesting model-building possibilities. We also highlight the significance of the specific parametric dependence of the dissipative coefficient which could prove useful in even greater reduction in field content.
Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r=0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.
Analytical solutions to force-free electrodynamics around black holes are fundamental to build simple models of accretion disk and jet dynamics. We present a (non-exhaustive) classification of complex highest weight solutions to the force-free equations in the near-horizon region of the extremal Kerr black hole. Bounds on the weights of solutions are derived from the finiteness of energy and the existence of a variational principle. Two classes of real magnetically dominated solutions, respectively axisymmetric and non-axisymmetric, are described which admit finite energy with respect to the asymptotically flat observer. Subtleties related to the velocity of light surface in the near-horizon region are discussed.
We report calculations of energy levels and radiative rates ($A$-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3\%. The $A$-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.
Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincar\'e invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli (1993) generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a "warm" dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.
Magnetic separators, which lie on the boundary between four topologically-distinct flux domains, are prime locations in three-dimensional magnetic fields for reconnection. Little is known about the details of separator reconnection and so the aim of this paper, which is the first of two, is to study the properties of magnetic reconnection at a single separator. Three-dimensional, resistive magnetohydrodynamic numerical experiments are run to study separator reconnection starting from a magnetohydrostatic equilibrium which contains a twisted current layer along a single separator linking a pair of opposite-polarity null points. The resulting reconnection occurs in two phases. The first is short involving rapid-reconnection in which the current at the separator is reduced by a factor of around 2.3. Most ($75\%$) of the magnetic energy is converted during this phase, via Ohmic dissipation, directly into internal energy, with just $0.1\%$ going into kinetic energy. During this phase the reconnection occurs along most of the separator away from its ends (the nulls), but in an asymmetric manner which changes both spatially and temporally over time.The second phase is much longer and involves slow impulsive-bursty reconnection. Again Ohmic heating dominates over viscous damping. Here the reconnection occurs in small localised bursts at random anywhere along the separator.
Sudden destabilisations of the magnetic field, such as those caused by spontaneous reconnection, will produce waves and/or flows. Here, we investigate the nature of the plasma motions resulting from spontaneous reconnection at a 3D separator. In order to clearly see the perturbations generated by the reconnection, we start from a magnetohydrostatic equilibrium containing two oppositely-signed null points joined by a generic separator along which lies a twisted current layer. The nature of the magnetic reconnection initiated in this equilibrium as a result of an anomalous resistivity is discussed in detail in \cite{Stevenson15_jgra}. The resulting sudden loss of force balance inevitably generates waves that propagate away from the diffusion region carrying the dissipated current. In their wake a twisting stagnation-flow, in planes perpendicular to the separator, feeds flux back into the original diffusion site (the separator) in order to try to regain equilibrium. This flow drives a phase of slow weak impulsive-bursty reconnection that follows on after the initial fast-reconnection phase.
High-scale string inflationary models are in well-known tension with low-energy supersymmetry. A promising solution involves models where the inflaton is the volume of the extra dimensions so that the gravitino mass relaxes from large values during inflation to smaller values today. We describe a possible microscopic origin of the scalar potential of volume modulus inflation by exploiting non-perturbative effects, string loop and higher derivative perturbative corrections to the supergravity effective action together with contributions from anti-branes and charged hidden matter fields. We also analyse the relation between the size of the flux superpotential and the position of the late-time minimum and the inflection point around which inflation takes place. We perform a detailed study of the inflationary dynamics for a single modulus and a two moduli case where we also analyse the sensitivity of the cosmological observables on the choice of initial conditions.
We show that supercritically charged black holes with NUT provide a new setting for traversable wormholes. This does not require exotic matter, a price being the Misner string singularities. Without assuming time periodicity to make Misner strings unobservable, we show that, contrary to expectations, geodesics do not stop there. Moreover, since there is no central singularity the space-time turns out to be geodesically complete. Another unpleasant feature of spacetimes with NUTs is the presence of regions where the azimuthal angle $\varphi$ becomes timelike, signalling the appearance of closed timelike curves (CTCs). We show that among them there are no closed timelike or null geodesics, so the freely falling observers should not encounter causality violations. Considering worldlines of charged particles, we find that, although these can become closed in the vicinity of the wormhole throat for large enough charge-to-mass ratio, the non-causal orbits are still disconnected from the distant zones. All these findings support our feeling that wormholes with NUTs deserve to be taken seriously. Integrating the geodesic equations completely, we demonstrate the existence of timelike and null geodesics connecting two asymptotic regions of the wormhole, such that the tidal forces in the throat are reasonably small. We discuss bounds on the NUT charge which follow from the Schwinger pair creation and ionization thresholds and speculate that such NUT wormholes could be present in some galactic centers.
Links to: arXiv, form interface, find, astro-ph, recent, 1509, contact, help (Access key information)
In the search for life on Earth-like planets around other stars, the first (and likely only) information will come from the spectroscopic characterization of the planet's atmosphere. Of the countless number of chemical species terrestrial life produces, only a few have the distinct spectral features and the necessary atmospheric abundance to be detectable. The easiest of these species to observe in Earth's atmosphere is O$_{2}$ (and its photochemical byproduct, O$_{3}$). But O$_{2}$ can also be produced abiotically by photolysis of CO$_{2}$, followed by recombination of O atoms with each other. CO is produced in stoichiometric proportions. Whether O$_{2}$ and CO can accumulate to appreciable concentrations depends on the ratio of far-UV to near-UV radiation coming from the planet's parent star and on what happens to these gases when they dissolve in a planet's oceans. Using a one-dimensional photochemical model, we demonstrate that O$_{2}$ derived from CO$_{2}$ photolysis should not accumulate to measurable concentrations on planets around F- and G-type stars. K-star, and especially M-star planets, however, may build up O$_{2}$ because of the low near-UV flux from their parent stars, in agreement with some previous studies. On such planets, a 'false positive' for life is possible if recombination of dissolved CO and O$_{2}$ in the oceans is slow and if other O$_{2}$ sinks (e.g., reduced volcanic gases or dissolved ferrous iron) are small. O$_{3}$, on the other hand, could be detectable at UV wavelengths ($\lambda$ < 300 nm) for a much broader range of boundary conditions and stellar types.
[Abridged] We present the results of an extensive Hubble Space Telescope (HST) imaging study of ~100 Swift long-duration gamma-ray bursts (LGRBs) spanning 0.03 < z < 9.4 using relative astrometry from afterglow observations to locate the bursts within their host galaxies. We measure the distribution of LGRB offsets from their host centers, as well as their relation to the underlying host light distribution. We find that the host-normalized offsets (R/R_h) of LGRBs are more centrally concentrated than expected for an exponential disk profile, with a median of 0.67, and in particular they are more concentrated than the underlying surface brightness profiles of their host galaxies. The distribution of offsets is inconsistent with the distribution for Type II supernovae (SNe) but consistent with the distribution for Type Ib/c SNe. The fractional flux distribution, with a median of 0.75, indicates that LGRBs prefer some of the brightest locations in their host galaxies but are not as strongly correlated as previous studies indicated. More importantly, we find a clear correlation between the offset and fractional flux, where bursts at R/R_h < 0.5 exclusively occur at fractional fluxes > 0.6 while bursts at R/R_h > 0.5 uniformly trace the light of their hosts. This indicates that the spatial correlation of LGRB locations with bright star forming regions seen in the full sample is dominated by the contribution from bursts at small offset and that LGRBs in the outer parts of galaxies show no preference for unusually bright star forming regions. We conclude that LGRBs strongly prefer the bright, inner regions of their hosts indicating that the star formation taking place there is more favorable for LGRB progenitor production. This indicates that another environmental factor beyond metallicity, such as binary interactions or IMF differences, may be operating in the central regions of LGRB hosts.
Following our previous work, which related generic features in the sky-averaged (global) 21-cm signal to properties of the intergalactic medium, we now investigate the prospects for constraining a simple galaxy formation model with current and near-future experiments. Markov-Chain Monte Carlo fits to our synthetic dataset, which includes a realistic galactic foreground, a plausible model for the signal, and noise consistent with 100 hours of integration by an ideal instrument, suggest that a simple four-parameter model that links the production rate of Lyman-$\alpha$, Lyman-continuum, and X-ray photons to the growth rate of dark matter halos can be well-constrained (to $\sim 0.1$ dex in each dimension) so long as all three spectral features expected to occur between $40 \lesssim \nu / \mathrm{MHz} \lesssim 120$ are detected. Several important conclusions follow naturally from this basic numerical result, namely that measurements of the global 21-cm signal can in principle (i) identify the characteristic halo mass threshold for star formation at all redshifts $z \gtrsim 15$, (ii) extend $z \lesssim 4$ upper limits on the normalization of the X-ray luminosity star-formation rate ($L_X$-SFR) relation out to $z \sim 20$, and (iii) provide joint constraints on stellar spectra and the escape fraction of ionizing radiation at $z \sim 12$. Though our approach is general, the importance of a broad-band measurement renders our findings most relevant to the proposed Dark Ages Radio Explorer, which will have a clean view of the global 21-cm signal from $\sim 40-120$ MHz from its vantage point above the radio-quiet, ionosphere-free lunar far-side.
We characterize the luminosity functions of galaxies residing in $z\sim0$ groups and clusters over the broadest ranges of luminosity and mass reachable by the Sloan Digital Sky Survey. Our measurements cover four orders of magnitude in luminosity, down to about $M_r=-12$ mag or $L=10^7\,L_\odot$, and three orders of magnitude in halo mass, from $10^{12}$ to $10^{15} \, {\rm M}_\odot$. We find a characteristic scale, $M_r\sim-18$ mag or $L\sim10^9\, L_\odot$, below which the slope of the luminosity function becomes systematically steeper. This trend is present for all halo masses and originates mostly from red satellite galaxies. The ubiquitous presence of this faint-end upturn suggests that it is formation, rather than halo-specific environmental effect, that plays a major role in regulating the stellar masses of faint satellites. We show that the observed luminosity functions of satellite galaxies can be described in a simple manner by a double Schechter function with amplitudes scaling with halo mass over the entire range of observables. Combining these conditional luminosity functions with the dark matter halo mass function, we can accurately recover the entire field luminosity function measured over 10 visual magnitudes. This decomposition reveals that the field luminosity function is dominated by satellite galaxies at magnitudes fainter than $-18$ mag or $L<10^{9}\,L_\odot$ and central galaxies above. We find that the luminosity functions of blue and red satellite galaxies show distinct shapes and we present estimates of the stellar mass fraction as a function of halo mass and galaxy type. Finally, using a simple model, we show that the average number and the faint-end slopes of blue and red satellite galaxies can be interpreted in terms of their formation history, with two distinct modes separated by some characteristic time.
We present a new semi-analytic model for dynamical friction based on Chandrasekhar's formalism. The key novelty is the introduction of physically motivated, radially varying, maximum and minimum impact parameters. With these, our model gives an excellent match to full N-body simulations for isotropic background density distributions, both cuspy and shallow, without any fine-tuning of the model parameters. In particular, we are able to reproduce the dramatic core-stalling effect that occurs in shallow/constant density cores, for the first time. This gives us new physical insight into the core-stalling phenomenon. We show that core stalling occurs in the limit in which the product of the Coulomb logarithm and the local fraction of stars with velocity lower than the infalling body tends to zero. For cuspy backgrounds, this occurs when the infalling mass approaches the enclosed background mass. For cored backgrounds, it occurs at larger distances from the centre, due to a combination of a rapidly increasing minimum impact parameter and a lack of slow moving stars in the core. This demonstrates that the physics of core-stalling is likely the same for both massive infalling objects and low-mass objects moving in shallow density backgrounds. We implement our prescription for dynamical friction in the direct summation code NBODY6 as an analytic correction for stars that remain within the Roche volume of the infalling object. This approach is computationally efficient, since only stars in the inspiralling system need to be evolved with direct summation. Our method can be applied to study a variety of astrophysical systems, including young star clusters orbiting near the Galactic Centre; globular clusters moving within the Galaxy; and dwarf galaxies orbiting within dark matter halos.
We report extensive high-resolution spectroscopic observations and V-band differential photometry of the slightly eccentric 7.02-day detached eclipsing binary V501 Mon (A6m+F0), which we use to determine its absolute dimensions to high precision (0.3% for the masses and 1.8% for the radii, or better). The absolute masses, radii, and temperatures are M(A) = 1.6455 +/- 0.0043 M(Sun), R(A) = 1.888 +/- 0.029 R(Sun), and T(A) = 7510 +/- 100 K for the primary, and M(B) = 1.4588 +/- 0.0025 M(Sun), R(B) = 1.592 +/- 0.028 R(Sun), and T(B) = 7000 +/- 90 K for the secondary. Apsidal motion has been detected, to which General Relativity contributes approximately 70%. The primary star is found to be a metallic-line A star. A detailed chemical analysis of the disentangled spectra yields abundances for more than a dozen elements in each star. Based on the secondary, the system metallicity is near solar: [Fe/H] = +0.01 +/- 0.06. Lithium is detected in the secondary but not in the primary. A comparison with current stellar evolution models shows a good match to the measured properties at an age of about 1.1 Gyr.
Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density ($b_\delta$) and velocity gradient ($b_\eta$) biases of the Lyman-$\alpha$ forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamicaly simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit of no thermal broadening and linear redshift-space distortions. We also show that his $b_\eta$ formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of $b_\eta$ and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. We find that large-scale biases derived from the smoothed total matter field are within 10-20\% to those based on hydrodynamical quantities, in line with other measurements in the literature.
In numerical magnetohydrodynamics (MHD), a major challenge is maintaining zero magnetic field-divergence (div-B). Constrained transport (CT) schemes can achieve this at high accuracy, but have generally been restricted to very specific methods. For more general (meshless, moving-mesh, or ALE) methods, 'divergence-cleaning' schemes reduce the div-B errors, however they can still be significant, especially at discontinuities, and can lead to systematic deviations from correct solutions which converge away very slowly. Here we propose a new constrained gradient (CG) scheme which augments these with a hybrid projection step, and can be applied to any numerical scheme with a reconstruction. This iteratively approximates the least-squares minimizing, globally divergence-free reconstruction of the fluid. We emphasize that, unlike 'locally divergence free' methods, this actually minimizes the numerically unstable div-B terms, without affecting the convergence order of the method. We implement this in the mesh-free code GIZMO and compare a wide range of test problems. Compared to state-of-the-art cleaning schemes, our CG method reduces the maximum div-B errors in each problem by 1-3 orders of magnitude (2-5 dex below the typical errors if no div-B cleaning is used). By preventing large div-B even at unresolved discontinuities, the method eliminates systematic errors at jumps. In every problem, the accuracy of our CG results is comparable to CT methods. The cost is modest, ~30% of the hydro algorithm, and the CG correction can be easily implemented in a wide range of different numerical MHD methods. While for many problems, we find Dedner-type cleaning schemes are sufficient for good results, we identify a wide range of problems where using only the simplest Powell or '8-wave' cleaning can produce systematic, order-of-magnitude errors.
We study, for the first time in a statistically significant and well-defined sample, the relation between the outer-disk ionized-gas metallicity gradients and the presence of breaks in the surface brightness profiles of disk galaxies. SDSS g'- and r'-band surface brightness, (g'- r') color, and ionized-gas oxygen abundance profiles for 324 galaxies within the CALIFA survey are used for this purpose. We perform a detailed light-profile classification finding that 84% of our disks show down- or up-bending profiles (Type II and Type III, respectively) while the remaining 16% are well fitted by one single exponential (Type I). The analysis of the color gradients at both sides of this break shows a U-shaped profile for most Type II galaxies with an average minimum (g'- r') color of ~0.5 mag and a ionized-gas metallicity flattening associated to it only in the case of low-mass galaxies. More massive systems show a rather uniform negative metallicity gradient. The correlation between metallicity flattening and stellar mass results in p-values as low as 0.01. Independently of the mechanism having shaped the outer light profiles of these galaxies, stellar migration or a previous episode of star formation in a shrinking star-forming disk, it is clear that the imprint in their ionized-gas metallicity was different for low- and high-mass Type II galaxies. In the case of Type III disks, a positive correlation between the change in color and abundance gradient is found (the null hypothesis is ruled out with a p-value of 0.02), with the outer disks of Type III galaxies with masses $\leq$10$^{10}$ M$_{\odot}$ showing a weak color reddening or even a bluing. This is interpreted as primarily due to a mass down-sizing effect on the population of Type III galaxies having recently experienced an enhanced inside-out growth.
The ALICE program, for Archival Legacy Investigation of Circumstellar Environment, is currently conducting a virtual survey of about 400 stars, by re-analyzing the HST-NICMOS coronagraphic archive with advanced post-processing techniques. We present here the strategy that we adopted to identify detections and potential candidates for follow-up observations, and we give a preliminary overview of our detections. We present a statistical analysis conducted to evaluate the confidence level on these detection and the completeness of our candidate search.
Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that the jet characteristics are highly sensitive to the ratio L/N, in both the conditions for initiation and the subsequent dynamics. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviours and show that our model replicates key qualitative and quantitative aspects of both quiet-Sun and active-region loop jets. We also find that the reconnection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.
We study nonlinear waves in a prominence foot using 2.5D MHD model motivated by recent high-resolution observations with Hinode/SOT in Ca~II emission of a prominence on October 10, 2012 showing highly dynamic small-scale motions in the prominence material. Observations of H$\alpha$ intensities and of Doppler shifts show similar propagating fluctuations. However the optically thick nature of the emission lines inhibits unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity ($\delta I/I\sim \delta n/n$). The waves are evident as significant density fluctuations that vary with height, and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with typical period in the range of 5-11 minutes, and wavelengths $\sim <$2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is $\sim$20 km s$^{-1}$, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope, and 101 velocities obtained with the Levy Spectrograph at the Automated Planet Finder Telescope (APF) at Lick Observatory. Our observations reveal six new planetary candidates, with orbital periods of P=3.1, 6.8, 22.8, 46.7, 94.2 and 2247 days, spanning masses of msini=3.8, 3.5, 8.9, 21.3, 10.8 and 108 M_earth respectively. Our analysis indicates that the outermost signal is unlikely to be an artifact induced by stellar activity. In addition, several years of precision photometry with the T10 0.8~m automatic photometric telescope (APT) at Fairborn Observatory demonstrated a lack of brightness variability to a limit of ~0.0002 mag, providing strong support for planetary-reflex motion as the source of the radial velocity variations. The HD 219134 system, with its bright (V=5.6) primary provides an excellent opportunity to obtain detailed orbital characterization (and potentially follow-up observations) of a planetary system that resembles many of the multiple-planet systems detected by Kepler, and which are expected to be detected by NASA's forthcoming TESS Mission and by ESA's forthcoming PLATO Mission.
We report the discovery of 13 confirmed two-image quasar lenses from a systematic search for gravitationally lensed quasars in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We adopted a methodology similar to that used in the SDSS Quasar Lens Search (SQLS). In addition to the confirmed lenses, we report 11 quasar pairs with small angular separations ($\lesssim$2") confirmed from our spectroscopy, which are either projected pairs, physical binaries, or possibly quasar lens systems whose lens galaxies have not yet been detected. The newly discovered quasar lens system, SDSS J1452+4224 at zs$\approx$4.8 is one of the highest redshift multiply imaged quasars found to date. Furthermore, we have over 50 good lens candidates yet to be followed up. Owing to the heterogeneous selection of BOSS quasars, the lens sample presented here does not have a well-defined selection function.
We constrain the true spin-orbit alignment of the KOI-89 system by numerically fitting the two \emph{Kepler} photometric lightcurves produced by transiting planets KOI-89.01 and KOI-89.02. The two planets have periods of 84.69 days and 207.58 days, respectively. We find that the two bodies are low-density giant planets with radii $0.45 \pm 0.03~\mathrm{R_{jup}}$ and $0.43 \pm 0.05~\mathrm{R_{jup}}$ and spin-orbit misalignments $72^{\circ} \pm 3^\circ$ and $73^{\circ+11}_{-5}$, respectively. Via dynamic stability tests we demonstrate the general trend of higher system stability with the two planets close to mutual alignment and estimate their coalignment angle to $20^\circ \pm 20^\circ$ -- i.e. the planets are misaligned with the star but may be aligned with each other. From these results, we limit KOI-89's misalignment mechanisms to star-disk-binary interactions, disk warping via planet-disk interactions, planet-planet scattering, Kozai resonance, or internal gravity waves.
Observations show that there is a proton spectral "break" with E$_{break}$ at 1-10MeV in some large CME-driven shocks. Theoretical model usually attribute this phenomenon to a diffusive shock acceleration. However, the underlying physics of the shock acceleration still remains uncertain. Although previous numerical models can hardly predict this "break" due to either high computational expense or shortcomings of current models, the present paper focuses on simulating this energy spectrum in converged two shocks by Monte Carlo numerical method. Considering the Dec 13 2006 CME-driven shock interaction with an Earth bow shock, we examine whether the energy spectral "break" could occur on an interaction between two shocks. As result, we indeed obtain the maximum proton energy up to 10MeV, which is the premise to investigate the existence of the energy spectral "break". Unexpectedly, we further find a proton spectral "break" appears distinctly at the energy $\sim$5MeV.
We use kinetic particle-in-cell and magnetohydrodynamic simulations supported by an observational dataset to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of `intermittent turbulence' within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5\---10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as Magnetospheric Multiscale Mission (MMS).
We present a determination of the distributions of gamma-ray photon flux -- the so called LogN-LogS relation -- and photon spectral index for blazars, based on the third extragalactic source catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, and considering the photon energy range from 100 MeV to 100 GeV. The dataset consists of the 774 blazars in the so-called "Clean" sample detected with a greater than approximately seven sigma detection threshold and located above $\pm$20 deg Galactic latitude. We use non-parametric methods verified in previous works to reconstruct the intrinsic distributions from the observed ones which account for the data truncations introduced by observational bias and includes the effects of the possible correlation between the flux and photon index. The intrinsic flux distribution can be represented by a broken power law with a high flux power-law index of -2.43$\pm$0.08 and a low flux power-law index of -1.87$\pm$0.10. The intrinsic photon index distribution can be represented by a Gaussian with mean of 2.62$\pm$0.05 and width of 0.17$\pm$0.02. We also report the intrinsic distributions for the sub-populations of BL Lac and FSRQ type blazars separately and these differ substantially. We then estimate the contribution of FSRQs and BL Lacs to the diffuse extragalactic gamma-ray background radiation. Under the simplistic assumption that the flux distributions probed in this analysis continue to arbitrary low flux, we calculate that the best fit contribution of FSRQs is 35% and BL Lacs 17% of the total gamma-ray output of the Universe in this energy range.
Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be able to provide limits which rule out a range of string tensions between $G \mu \sim 10^{-15}$ and $G \mu \sim 10^{-12}$, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.
We apply an axially symmetric pseudo-3D photoionization model, pyCloudy, to
derive the structures of 6 bipolar nebulae and 2 suggested post-bipolars in a
quest to constrain the bipolar planetary nebulae evolution. HST images and
VLT/UVES spectroscopy are used for the modelling. The targets are located in
the direction of the Galactic bulge. A 3D model structure is used as input to
the photoionization code, so as to fit the HST images. Line profiles of
different ions constrain the velocity field. The model and associated velocity
fields allow us to derive masses, velocities, and ages.
The 3D models find much lower ionized masses than required in 1D models:
ionized masses are reduced by factors of 2-7. The selected bi-lobed planetary
nebulae show a narrow range of ages: the averaged radii and velocities result
in values between 1300 and 2000 yr. The lobes are fitted well with velocities
linearly increasing with radius. These Hubble-type flows have been found
before, and suggest that the lobes form at a defined point in time. The lobes
appear to be slightly younger than the main (host) nebulae, by ~500 yr, they
seem to form at an early phase of PN evolution, and fade after 1-2 kyr. We find
that 30-35% of bulge PNe pass through a bipolar phase.
The Galactic Cold Cores project has made Herschel observations of 116 fields where the Planck survey has found signs of cold dust emission. The fields contain sources in different environments and different phases of star formation. The dust opacity spectral index beta and the dust colour temperature T are derived using Herschel and Planck data. The relation between beta and T is examined for the whole sample and inside individual fields. Based on IRAS and Planck data, the fields are characterised by a median colour temperature of 16.1 K and a median opacity spectral index of beta=1.84. We observe a clear T-beta anti-correlation. In Herschel observations, constrained at lower resolution by Planck data, the variations follow the column density structure and beta(FIR) can rise to ~2.2 in individual clumps. The Planck 217 GHz band shows a systematic excess that is consistent with a general flattening of the dust emission spectrum at millimetre wavelengths. When fitted separately below and above 700 um, the median spectral index values are beta(FIR) ~ 1.91 and beta(mm) ~ 1.66. The spectral index changes as a function of column density and wavelength. Beta variations are partly masked by temperature gradients and the changes in the intrinsic grain properties may be even greater.
We have conducted a high signal-to-noise spectroscopic survey of 670 nearby early-type stars, to map Diffuse Interstellar Band (DIB) absorption in and around the Local Bubble. The project started with a Southern hemisphere survey conducted at the European Southern Observatory's New Technology Telescope and has since been extended to an all-sky survey using the Isaac Newton Telescope. In this first paper in the series, we introduce the overall project and present the results from the Southern hemisphere survey. We make available a catalogue of equivalent-width measurements of the DIBs at 5780, 5797, 5850, 6196, 6203, 6270, 6283 \& 6614 \AA, the interstellar Na\,{\sc i} D lines at 5890 \& 5896 \AA, and the stellar He\,{\sc i} line at 5876 \AA. We find that the 5780 \AA\ DIB is relatively strong throughout, as compared to the 5797 \AA\ DIB, but especially within the Local Bubble and at the interface with more neutral medium. The 6203 \AA\ DIB shows a similar behaviour, but with respect to the 6196 \AA\ DIB. Some nearby stars show surprisingly strong DIBs whereas some distant stars show very weak DIBs, indicating small-scale structure within as well as outside the Local Bubble. The sight-lines with non-detections trace the extent of the Local Bubble especially clearly, and show it opening out into the Halo. The Local Bubble has a wall which is in contact with hot gas and/or a harsh interstellar radiation field. That wall is perforated though, causing leakage of radiation and possibly hot gas. On the other hand, compact self-shielded cloudlets are present much closer to the Sun, probably within the Local Bubble itself. As for the carriers of the DIBs, our observations confirm the notion that these are large molecules, whose differences in behaviour are mainly governed by their differing resilience and/or electrical charge, with more subtle differences possibly related to varying excitation.
Massive luminous red galaxies (LRGs) are believed to be evolving passively and can be used as cosmic chronometers to estimate the Hubble constant. However, different LRGs may locate in different environments. The environmental effects may limit the use of the LRGs as cosmic chronometers. We aim to investigate the environmental and mass dependence of the formation of "quiescent" LRGs selected from the Sloan Digital Sky Survey Date Release 8 and to pave the way for using the LRGs as cosmic chronometers. Using the population synthesis software STARLIGHT, we derive the stellar populations in each LRG through the full spectrum fitting and obtain the mean age distribution and the mean star formation history (SFH) of those LRGs. We find that there is no apparent dependence of the mean age and the SFH of quiescent LRGs on their environment, while the ages of those quiescent LRGs weakly depend on their mass. We compare the SFHs of the SDSS LRGs with those obtained from a semi-analytical galaxy formation model, and find that they are roughly consistent with each other if considering the errors in the STARLIGHT-derived ages. We find that a small fraction of later star formation in LRGs leads to a systematical overestimation (~28 %) of the Hubble constant by the differential age method, and the systematical errors in the STARLIGHT-derived ages may lead to a underestimation (~ 16 %) of the Hubble constant. However, these errors can be corrected by a detailed study of the mean SFH of those LRGs and by calibrating the STARLIGHT-derived ages with those obtained independently by other methods. The environmental effects are not significant on the age estimates of `quiescent' LRGs, and the `quiescent' LRGs as a population can be securely used as cosmic chronometers.
Half of the heavy elements including all actinides are produced in r-process nucleosynthesis whose sites and history still remain a mystery. If continuously produced, the Interstellar Medium (ISM) is expected to build up a quasi-steady state of abundances of short-lived nuclides (with half-lives <100My), including actinides produced in r-process nucleosynthesis. Their existence in today's ISM would serve as a radioactive clock and would establish that their production was recent. In particular $^{244}$Pu, a radioactive actinide nuclide (81 My half-life), can place strong constraints on recent r-process frequency and production yield. Here we report on the detection of live interstellar $^{244}$Pu, archived in Earth's deep-sea floor during the last 25 My, at abundances lower by about two orders of magnitude than expected from continuous production in the Galaxy. This large discrepancy may signal a rarity of actinide r-process nucleosynthesis sites, compatible with neutron-star mergers or with a small subset of actinide-producing supernovae.
This lecture on adiabatic oscillations is intended to present the basis of asteroseismology and to serve as an introduction for other lectures of the EES 2014. It also exposes the state-of-the-art of solar-like oscillation analysis, as revealed by the space missions CoRoT and Kepler. A large part of the lecture is devoted to the interpretation of the modes with a mixed character that reveal the properties of the radiative cores of subgiants and red giants.
We describe the details of the binned bispectrum estimator as used for the official 2013 and 2015 analyses of the temperature and polarization CMB maps from the ESA Planck satellite. The defining aspect of this estimator is the determination of a map bispectrum (3-point correlator) that has been binned in harmonic space. For a parametric determination of the non-Gaussianity in the map (the so-called fNL parameters), one takes the inner product of this binned bispectrum with theoretically motivated templates. However, as a complementary approach one can also smooth the binned bispectrum using a variable smoothing scale in order to suppress noise and make coherent features stand out above the noise. This allows one to look in a model-independent way for any statistically significant bispectral signal. This approach is useful for characterizing the bispectral shape of the galactic foreground emission, for which a theoretical prediction of the bispectral anisotropy is lacking, and for detecting a serendipitous primordial signal, for which a theoretical template has not yet been put forth. Both the template-based and the non-parametric approaches are described in this paper.
We report on simultaneous NuSTAR and XMM-Newton observations of the magnetar 1E 1048.1$-$5937 obtained in July 2013, along with Rossi X-ray Timing Explorer (RXTE) data for the same source obtained from December 2002 through March 2012. The NuSTAR data provide a clear detection of this magnetar's persistent emission up to 20 keV. We detect a previously unreported small secondary peak in the average pulse profile in the 7--10 keV band, which grows to an amplitude comparable to that of the main peak in the 10--20 keV band. We show using RXTE data that this secondary peak is likely transient. We find that the pulsed fraction increases with energy from a value of $\sim$0.55 at $\sim$2 keV to a value of $\sim$0.75 near 8 keV but shows evidence for decreasing at higher energies. After filtering out multiple bright X-ray bursts during the observation, we find that the phase-averaged spectrum from combined NuSTAR and XMM data is well described by an absorbed double blackbody plus power-law model, with no evidence for the spectral turn-up near $\sim$10 keV as has been seen in some other magnetars. Our data allow us to rule out a spectral turn-up similar to those seen in magnetars 4U 0142+61 and 1E 2259+586 of $\Delta\Gamma \gapp 2$, where $\Delta\Gamma$ is the difference between the soft-band and hard-band photon indexes. The absence of a significant spectral turn-up is consistent with what has been observed from a particularly active subset of magnetars having high spin-inferred magnetic fields, and with previously reported trends suggesting the degree of spectral turn-up is correlated with spin-down rate and/or spin-inferred magnetic field strength.
In this paper we constrain four alternative models to the late cosmic acceleration in the Universe: Chevallier-Polarski-Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell $1689$ are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SNIa), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained of the SL data are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak but they are similar to the BAO, SNIa and CMB estimations. We also compute the figure-of-merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modelling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters.
In linear perturbation theory, all information about the growth of structure is contained in the Green's function, or equivalently, transfer function. These functions are generally computed using numerical codes or by phenomenological fitting formula anchored in accurate analytic results in the limits of large and small scale. Here we present a framework for analytically solving all scales, in particular the intermediate scales relevant for the baryon acoustic oscillations (BAO). We solve for the Green's function and transfer function using spherically-averaged overdensities and the approximation that the density of the coupled baryon-photon fluid is constant interior to the sound horizon.
Models of inflation are instructive playgrounds for supersymmetry breaking in Supergravity and String Theory. In particular, combinations of branes and orientifolds that are not mutually BPS can lead to \emph{brane supersymmetry breaking}, a phenomenon where non--linear realizations are accompanied, in tachyon--free vacua, by the emergence of steep exponential potentials. When combined with milder terms, these exponentials can lead to slow--roll after a fast ascent and a turning point. This leaves behind distinctive patterns of scalar perturbations, where pre--inflationary peaks can lie well apart from an almost scale invariant profile. I review recent attempts to connect these power spectra to the low--$\ell$ CMB, and a corresponding one--parameter extension of $\Lambda$CDM with a low--frequency cut $\Delta$. A detailed likelihood analysis led to $\Delta = (0.351 \pm 0.114) \times 10^{-3} \, \mbox{Mpc}^{-1}$, at $99.4\%$ confidence level, in an extended Galactic mask with $f_{sky}=39\%$, to be compared with a nearby value at $88.5\%$ in the standard Planck 2015 mask with $f_{sky}=94\%$. In these scenarios one would be confronted, in the CMB, with relics of an epoch of deceleration that preceded the onset of slow--roll.
The 2011 outburst of Swift J1822.3--1606 was extraordinary; periodic modulations at the spin period of the underlying neutron star were clearly visible, remarkably similar to what is observed during the decaying tail of magnetar giant flares. We investigated the temporal characteristics of X-ray emission during the early phases of the outburst. We performed a periodicity search with the spectral hardness ratio (HR), and found a coherent signal near the spin period of the neutron star, but with a lag of about 3 radians. Therefore, the HR is strongly anti-correlated with the X-ray intensity, which is also seen in the giant flares. We studied time evolution of the pulse profile and found that it evolves from a complex morphology to a much simpler shape within about a month. Pulse profile simplification also takes place during the giant flares, but on a much shorter timescale of about few minutes. We found that the amount of energy emitted during the first 25 days of the outburst is comparable to what was detected in minutes during the decaying tail of giant flares. Based on these similarities, we suggest that the triggering mechanisms of the giant flares and the magnetar outbursts are likely the same. We propose that the trapped fireball that develops in the magnetosphere at the onset of the outburst radiates away efficiently in minutes in magnetars exhibiting giant flares, while in other magnetars, such as Swift J1822.3--1606, the efficiency of radiation of the fireball is not as high and, therefore, lasts much longer.
Recent precise measurements of cosmic ray spectral revealed an anomalous hardening at ~200 GV for nuclei from PAMELA, CREAM, ATIC, AMS02 experiments and at tens of GeV for primary electron derived from AMS02 experiment. Particularly, the latest observation of pbar/p ratio by AMS02 demonstrated a flat distribution, which further validated the spectrum anomalies of secondary particles. All those new phenomena indicated that the conventional propagation model of cosmic rays meet challenge. In this work, the spatial-dependent propagation coefficient D(r,z,\rho) is employed by tracing the source distribution under the physical picture of two-halo model in DRAGON package. Under such scenario, the model calculation will result in a two-component spectral for primary nuclei and electron. Simultaneously, due to the smaller rigidity dependence of D(r,z,\rho) in galactic disk, the ratio of secondary-to-primary will be inevitablly flatter than the calculation in the conventional propagation model. As a result, we can reproduce the spectral hardening of proton, electron and the flat ratio of pbar/p and B/C by only adopting the spatial-dependent propagation coefficient D(r,z,\rho) in galactic disk.
The absence of a neutrino flux from self-annihilating dark matter captured in the Sun has tightly constrained some leading particle dark matter scenarios. The impact of astrophysical uncertainties on the capture process of dark matter in the Sun and hence also the derived constraints by neutrino telescopes need to be taken into account. In this review we have explored relevant uncertainties in solar WIMP searches, summarized results from leading experiments, and provided an outlook into upcoming searches and future experiments. We have created an interactive plotting tool that allows the user to view current limits and projected sensitivities of major experiments under changing astrophysical conditions.
Observations of the kinetic Sunyaev-Zel'dovich (kSZ) effect measure the density-weighted velocity field, a potentially powerful cosmological probe. This paper presents an analytical method to predict the power spectrum and two-point correlation function of the density-weighted velocity in redshift space, the direct observables in kSZ surveys. We show a simple relation between the density power spectrum and the density-weighted velocity power spectrum that holds for both dark matter and halos. Using this relation, we can then extend familiar perturbation expansion techniques to the kSZ power spectrum. One of the most important features of the density-weighted velocity is the change of the sign of infall velocity at small scales due to the nonlinear redshift space distortion. Our model can explain this characteristic feature without any free parameters. As a result, our results can precisely predict the non-linear behavior of the density-weighted velocity field in redshift space up to $\sim10\ h^{-1} {\rm Mpc}$ for dark matter particles at the redshift of $z=0.5$.
Alfv\'{e}nic turbulent cascade perpendicular and parallel to the background magnetic field is studied accounting for anisotropic dispersive effects and turbulent intermittency. The perpendicular dispersion and intermittency make the perpendicular-wavenumber magnetic spectra steeper and speed up production of high ion-cyclotron frequencies by the turbulent cascade. On the contrary, the parallel dispersion makes the spectra flatter and decelerate the frequency cascade above the ion-cyclotron frequency. Competition of the above factors results in spectral indices distributed in the interval [-2,-3], where -2 is the index of high-frequency space-filling turbulence, and -3 is the index of low-frequency intermittent turbulence formed by tube-like fluctuations. Spectra of fully intermittent turbulence fill a narrower range of spectral indices [-7/3,-3], which almost coincides with the range of indexes measured in the solar wind. This suggests that the kinetic-scale turbulent spectra are shaped mainly by dispersion and intermittency. A small mismatch with measured indexes of about 0.1 can be associated with damping effects not studied here.
White dwarfs with helium-dominated atmospheres comprise approximately 20% of all white dwarfs. Among the open questions are the total masses and the origin of the hydrogen traces observed in a large number and the nature of the deficit of DBs in the range from 30000 - 45000K. We use the largest-ever sample (by a factor of 10) provided by the Sloan Digital Sky Survey (SDSS) to study these questions. The photometric and spectroscopic data of 1107 helium-rich objects from the SDSS are analyzed using theoretical model atmospheres. Along with the effective temperature and surface gravity, we also determine hydrogen and calcium abundances or upper limits for all objects. The atmosphere models are extended with envelope calculations to determine the extent of the helium convection zones and thus the total amount of hydrogen and calcium present. When accounting for problems in determining surface gravities at low Teff, we find an average mass for helium-dominated white dwarfs of 0.606+-0.004 Msun, which is very similar to the latest determinations for DAs. There are 32% of the sample with detected hydrogen, but this increases to 75% if only the objects with the highest signal-to-noise ratios are considered. In addition, 10-12% show traces of calcium, which must come from an external source. The interstellar medium (ISM) is ruled out by the fact that all polluted objects show a Ca/H ratio that is much larger than solar. We also present arguments that demonstrate that the hydrogen is very likely not accreted from the ISM but is the result of convective mixing of a residual thin hydrogen layer with the developing helium convection zone. It is very important to carefully consider the bias from observational selection effects when drawing these conclusions.
At present, the main challenge to the interpretation of variations in gravity-sensitive line strengths as driven by a non-universal initial mass function (IMF), lies in understanding the effect of other parameters describing unresolved stellar populations, such as elemental abundance ratios. We combine various TiO-based, IMF-sensitive indicators in the optical and NIR spectral windows, along with the FeH-based Wing-Ford band to break this degeneracy. We obtain a significant radial trend of the IMF slope in XSG1, a massive early-type galaxy (ETG), with velocity dispersion sigma~300km/s, observed with the VLT/X-SHOOTER instrument. In addition, we constrain both the shape and normalization of the IMF based only on a stellar population analysis. We robustly rule out a single power-law to describe the IMF, whereas a power law tapered off to a constant value at low masses (defined as a bimodal IMF) is consistent with all the observational spectroscopic data and with the stellar M/L constraints based on the Jeans Anisotropic Modelling method. The IMF in XSG1 is bottom-heavy in the central regions (corresponding to a bimodal IMF slope Gb~3, or a mass normalization mismatch parameter alpha~2), changing towards a standard Milky-Way like IMF (Gb~1.3; alpha~1) around half of the effective radius. This result, combined with previous observations of local IMF variations in massive ETGs, reflects the varying processes underlying the formation of this type of galaxies, between the central core and the outer regions.
We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform $512^3$ lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.
AERA, the Auger Engineering Radio Array, located at the Pierre Auger Observatory in Malarg\"ue, Argentina measures the radio emission of extensive air showers in the 30-80 MHz frequency range and is optimized for the detection of air showers up to 60$^{\circ}$ zenith angle. In this contribution the motivation, the status, and first results of the analysis of horizontal air showers with AERA will be presented.
This document discusses the definition of the Parameter Description Language (PDL). In this language parameters are described in a rigorous data model. With no loss of generality, we will represent this data model using XML. It intends to be a expressive language for self-descriptive web services exposing the semantic nature of input and output parameters, as well as all necessary complex constraints. PDL is a step forward towards true web services interoperability.
HESS J1641-463 is a unique source discovered by the High Energy Stereoscopic System (H.E.S.S.) telescope array in the multi-TeV domain. The source had been previously hidden in the extended tail of emission from the bright nearby source HESS J1640-465. However, the analysis of the very-high-energy (VHE) data from the region at energies above 4 TeV revealed this new source at a significance level of 8.5$\sigma$. HESS J1641-463 showed a moderate flux level F(E > 1 TeV) = (3.64 +/- 0.44_stat +/- 0.73_sys) 10^-13 cm^-2s^-1, corresponding to 1.8% of the Crab Nebula flux above the same energy, and a hard spectrum with a photon index Gamma = 2.07 +/- 0.1_stat +/- 0.20_sys. The light curve was investigated for evidence of variability, but none was found on both short (28-min observation) and long (yearly) timescales. HESS J1641-463 is positionally coincident with the radio supernova remnant (SNR) G338.5+0.1. There is no clear X-ray counterpart of the SNR, although Chandra and XMM-Newton data reveal some weak emission that may be associated. If the emission from HESS J1641-463 is produced by cosmic ray protons colliding with the ambient gas, then the proton spectrum extends up to 0.1 PeV (99% confidence level) and likely to higher energies, > 0.27 PeV (90% confidence level). If this is the case, then HESS J1641-463 may be a member of a larger source population contributing to the Galactic cosmic-ray flux around the knee.
In the context of high-quality asteroseismic data provided by the NASA Kepler mission, we developed a new code, termed Diamonds (high-DImensional And multi-MOdal NesteD Sampling), for fast Bayesian parameter estimation and model comparison by means of the Nested Sampling Monte Carlo (NSMC) algorithm, an efficient and powerful method very suitable for high-dimensional problems (like the peak bagging analysis of solar-like oscillations) and multi-modal problems (i.e. problems that show multiple solutions). We applied the code to the peak bagging analysis of solar-like oscillations observed in a challenging F-type star. By means of Diamonds one is able to detect the different backgrounds in the power spectrum of the star (e.g. stellar granulation and faculae activity) and to understand whether one or two oscillation peaks can be identified or not. In addition, we demonstrate a novel approach to peak bagging based on multimodality, which is able to reduce significantly the number of free parameters involved in the peak bagging model. This novel approach is therefore of great interest for possible future automatization of the entire analysis technique.
We study the possibility that the long term red timing-noise in pulsars originates from the evolution of the magnetic inclination angle $\chi$. The braking torque under consideration is a combination of the dipole radiation and the current loss. We find that the evolution of $\chi$ can give rise to extra cubic and fourth-order polynomial terms in the timing residuals. These two terms are determined by the efficiency of the dipole radiation, the relative electric-current density in the pulsar tube and $\chi$. The following observation facts can be explained with this model: a) young pulsars have positive $\ddot{\nu}$; b) old pulsars can have both positive and negative $\ddot{\nu}$; c) the absolute values of $\ddot{\nu}$ are proportional to $-\dot{\nu}$; d) the absolute values of the braking indices are proportional to the characteristic ages of pulsars. If the evolution of $\chi$ is purely due to rotation kinematics, then it can not explain the pulsars with braking index less than 3, and thus the intrinsic change of the magnetic field is needed in this case. Comparing the model with observations, we conclude that the drift direction of $\chi$ might oscillate many times during the lifetime of a pulsar. The evolution of $\chi$ is not sufficient to explain the rotation behavior of the Crab pulsar, because the observed $\chi$ and $\dot{\chi}$ are inconsistent with the values indicated from the timing residuals using this model.
An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.
(abridged) Extreme adaptive optics (XAO) encounters severe difficulties to cope with the high speed (>1kHz), high accuracy and high order requirements for future extremely large telescopes. An innovative high order adaptive optics system using a self-referenced Mach-Zehnder wavefront sensor (MZWFS) allows counteracting these limitations. This sensor estimates very accurately the wavefront phase at small spatial scale by measuring intensity differences between two outputs, with a $\lambda /4$ path length difference between its two legs, but is limited in dynamic range due to phase ambiguity. During the past few years, such an XAO system has been studied by our team in the framework of 8-meter class telescopes. In this work, we report on our latest results with the XAO testbed recently installed in our lab, and dedicated to high contrast imaging with 30m-class telescopes (such as the E-ELT or the TMT). After reminding the principle of a MZWFS and describing the optical layout of our experiment, we will show the results of the assessment of the woofer-tweeter phase correctors, i.e., a Boston Micromachine continuous membrane deformable mirror (DM) and a Boulder Nonlinear Systems liquid crystal spatial light modulator (SLM). In particular, we will detail the calibration of the DM using Zygo interferometer metrology. Our method consists in the precise measurement of the membrane deformation while applying a constant deformation to 9 out of 140 actuators at the same time. By varying the poke voltage across the DM operating range, we propose a simple but efficient way of modeling the DM influence function using a Gaussian model. Finally, we show the DM flattening on the MZWFS allowing to compensate for low order aberrations.
OH is a key molecule in H2O chemistry, a valuable tool for probing physical conditions, and an important contributor to the cooling of shock regions. OH participates in the re-distribution of energy from the protostar towards the surrounding ISM. Our aim is to assess the origin of the OH emission from the Cepheus A massive star-forming region and to constrain the physical conditions prevailing in the emitting gas. We thus want to probe the processes at work during the formation of massive stars. We present spectrally resolved observations of OH towards the outflows of Cepheus A with the GREAT spectrometer onboard the SOFIA telescope. Three triplets were observed at 1834.7 GHz, 1837.8 GHz, and 2514.3 GHz (163.4, 163.1, and 119.2 microns), at angular resolutions of 16.3", 16.3", and 11.9", respectively. We present the CO (16-15) spectrum at the same position. We compared the integrated intensities in the redshifted wings to shock models. The two triplets near 163 microns are detected in emission with blending hyperfine structure unresolved. Their profiles and that of CO can be fitted by a combination of 2 or 3 Gaussians. The observed 119.2 microns triplet is seen in absorption, since its blending hyperfine structure is unresolved, but with three line-of-sight components and a blueshifted emission wing consistent with that of the other lines. The OH line wings are similar to those of CO, suggesting that they emanate from the same shocked structure. Under this common origin assumption, the observations fall within the model predictions and within the range of use of our model only if we consider that four shock structures are caught in our beam. Our comparisons suggest that the observations might be consistently fitted by a J-type model with nH > 1e5 cm-3, v > 20 km/s, and with a filling factor of ~1. Such a high density is generally found in shocks associated to high-mass protostars.
We present an improved version of the Loren-Aguilar & Bate (2014) method to integrate the two-fluid dust/gas equations that correctly captures the limiting velocity of small grains in the presence of net differences (excluding the drag force) between the accelerations of the dust and the gas. A series of accelerated DUSTYBOX tests and a simulation of dust-settling in a protoplanetary disc are performed comparing the performance of the new and old methods. The modified method can accurately capture the correct limiting velocity while preserving all the conservation properties of the original method.
PKS 1424+240 is a BL-Lac blazar with unknown redshift detected at high-energy gamma rays by Fermi-LAT with a hard spectrum. It was first detected at very-high-energy by VERITAS and latter confirmed by MAGIC. Attempts to find limits on its redshift include three estimations by modeling gamma-ray observations, and one obtained by analyzing Lyb and Lyg absorption lines observed in the far-UV spectra (from HST/COS) caused by absorbing gas along the line of sight. They allowed to constrain the redshift range to 0:6<z<1:19, which places PKS 1424+240 in the very interesting condition to be one of the few candidates to be the most distant blazars detected at very-high-energy gamma rays. Redshift determination of BL-Lac objects are difficult to achieve. We have found that redshift of blazars can be determined by its association to a galaxy group or cluster. To explore this possibility for PKS 1424+240, we have carried out spectroscopic measurements with the Gemini North telescope of galaxies in its field of view. In this work we present the optical spectrum of PKS 1424+240 and show preliminary results of the blazar environment characterization. Spectroscopic redshift using the optical spectrum of PKS 1424+240 could not be determined in this work.
Using isophotal radius correlations for a sample of 2MASS ellipticals, we have constructed a series of template surface brightness profiles to describe the profile shapes of ellipticals as a function of luminosity. The templates are a smooth function of luminosity, yet are not adequately matched to any fitting function supporting the view that ellipticals are weakly non-homologous with respect to structure. Through comparison to the templates, it is discovered that ellipticals are divided into two families; those well matched to the templates and a second class of ellipticals with distinctly shallower profile slopes. We refer to these second type of ellipticals as D class, an old morphological designation acknowledging diffuse appearance on photographic material. D ellipticals cover the same range of luminosity, size and kinematics as normal ellipticals, but maintain a signature of recent equal mass dry mergers. We propose that normal ellipticals grow after an initial dissipation formation era by accretion of low mass companions as outlined in hierarchical formation scenarios, while D ellipticals are the result of later equal mass mergers producing shallow luminosity profiles.
We present a systematic search for changing-look quasars based on repeat photometry from SDSS and Pan-STARRS1, along with repeat spectra from SDSS and SDSS-III BOSS. Objects with large, $|\Delta g|>1$~mag photometric variations in their light curves are selected as candidates to look for changes in broad emission line (BEL) features. Out of a sample of 1011 objects that satisfy our selection criteria and have more than one epoch of spectroscopy, we find 10 examples of quasars that have variable and/or "changing-look'' BEL features. Four of our objects have emerging BELs; five have disappearing BELs, and one object shows tentative evidence for having both emerging and disappearing BELs. With redshifts in the range 0.20<z<0.63, this sample includes the highest-redshift changing-look quasars discovered to date. We highlight the quasar J102152.34+464515.6 at z=0.204. Here, not only have the Balmer emisson lines strongly diminished in prominence, including H\beta all but disappearing, but the blue continuum f_{\nu}\propto \nu^{1/3} typical of an AGN is also significantly diminished in the second epoch of spectroscopy. We test a simple dust-reddening toy model, and find that this is inadequate to explain the change in spectral properties of this object. Using our selection criteria, we estimate that >12% of luminous quasars that vary by |\Delta g|>1 mag display changing-look BEL features on rest-frame timescales of 8 to 10 years. We discuss the possibilities for the origin of such BEL changes, such as a change in obscuration or in the central engine.
Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy's evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the last 100 million years.
The 21-cm signal from the cosmic reionization epoch can shed light on the history of heating of the primordial intergalactic medium (IGM) at z~30-10. It has been suggested that X-rays from the first accreting black holes could significantly heat the Universe at these early epochs. Here we propose another IGM heating mechanism associated with the first stars. As known from previous work, the remnants of powerful supernovae (SNe) ending the lives of massive Population III stars could readily expand out of their host dark matter minihalos into the surrounding IGM, aided by the preceeding photoevaporation of the halo's gas by the UV radiation from the progenitor star. We argue that during the evolution of such a remnant a significant fraction of the SN kinetic energy can be put into low-energy (E<30 MeV) cosmic rays that will eventually escape into the IGM. These subrelativistic cosmic rays could propagate through the Universe and heat the IGM by ~10-100 K by z~15, before more powerful reionization/heating mechanisms associated with the first galaxies and quasars came into play. Future 21-cm observations could thus constrain the energetics of the first supernovae and provide information on the magnetic fields in the primordial IGM.
The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward and then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.
The progenitors of stripped-envelope supernovae (SNe Ibc) remain to be conclsuively identified, but correlations between SN rates and host-galaxy properties can constrain progenitor models. Here, we present one result from a re-analysis of the rates from the Lick Observatory Supernova Search. Galaxies with stellar masses less than $\sim 10^{10}~{\rm M_\odot}$ are less efficient at producing SNe Ibc than more massive galaxies. Any progenitor scenario must seek to explain this new observation.
Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined plasma, the D-alpha-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures, and flow patterns. Fusion plasma Doppler tomography has lead to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography, and what can be learned by comparison of these applications.
The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus sizes, and CO+CO2 production. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 $\mu$m band excess. We find a possible relation between dust and CO+CO2 production, as well as possible differences in the sizes of long and short period comet nuclei.
We consider a simplified model for Majorana fermion dark matter and explore constraints from direct, indirect and LHC collider searches. The dark matter is assumed to couple to the Standard Model through a vector mediator with axial-vector interactions. We provide detailed analyses of LHC mono-jet searches and IceCube limits on dark matter annihilation in the Sun. We demonstrate that LHC and IceCube searches for Majorana dark matter are complementary and derive new limits on the dark matter and mediator masses, including in addition constraints from LHC di-jet searches, direct detection and the dark matter relic density.
A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast $\delta$ and momentum density $\mathbf\pi(\mathbf k)$ scale as $k^2$ and $k$, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of $ \delta$ is indeed valid to all orders.
In this work, we have done a completely microscopic calculation using a many-body variational method based on the cluster expansion of energy to compute the asymmetry energy of nuclear matter. In our calculations, we have employed the $AV_{18}$ nuclear potential. We have also investigated the temperature and density dependence of asymmetry energy. Our results show that the asymmetry energy of nuclear matter depends on both density and temperature. We have also studied the effects of different terms in the asymmetry energy of nuclear matter. These investigations indicate that at different densities and temperatures, the contribution of parabolic term is very substantial with respect to the other terms. Therefore, we can conclude that the parabolic approximation is a relatively good estimation, and our calculated binding energy of asymmetric nuclear matter is in a relatively good agreement with that of semi-empirical mass formula. However, for the accurate calculations, it is better to consider the effects of other terms.
In this paper, we investigate the liquid gas phase transition for the spin polarized nuclear matter. Applying the lowest order constrained variational (LOCV) method, and using two microscopic potentials, $AV_{18}$ and $UV_{14}$+TNI, we calculate the free energy, equation of state, order parameter, entropy, heat capacity and compressibility to derive the critical properties of spin polarized nuclear matter. Our results indicate that for the spin polarized nuclear matter, the second order phase transition takes place at lower temperatures with respect to the unpolarized one. It is also shown that the critical temperature of our spin polarized nuclear matter with a specific value of spin polarization parameter is in good agreement with the experimental result.
A widely accepted scenario of magnetic reconnection in collisionless space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is commonly studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present initially, and Z-pinches are formed during the simulation along the lines of spiral null-points. The non-spiral null-points are more stable than spiral ones, and no substantial energy dissipation is associated with them. On the contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of ~1.5% per ion gyro period. Dissipation in similar structures is a likely scenario in space plasmas with large fraction of spiral null-points.
We performed three-dimensional Particle-in-Cell simulations of magnetic reconnection with multiple magnetic null points. Magnetic field energy conversion into kinetic energy was about five times higher than in traditional Harris sheet configuration. More than 85% of initial magnetic field energy was transferred to particle energy during 25 reversed ion cyclofrequencies. Magnetic reconnection in the cluster of null points evolved in three phases. During the first phase, ion beams were excited, that then gave part of their energy back to magnetic field in the second phase. In the third phase, magnetic reconnection occurs in many small patches around the current channels formed along the stripes of low magnetic field. Magnetic reconnection in null points presents essentially three-dimensional features, with no two dimensional symmetries or current sheets.
Estimates are presented of exotic, purely rotational correlations that arise in large systems if directions in space-time emerge from Planck scale quantum elements with no fixed classical background space. In the time domain, directions to world lines at finite separation $R$ from any world line coherently fluctuate in the classical (that is, $R\rightarrow \infty$) inertial frame, on a timescale $R/c$, by an angle of order $R^{-1/2}$ in Planck units. The exact exotic correlation function is computed for the signal in a Sagnac type interferometer of arbitrary shape. The signal variance is equal to twice the enclosed area divided by the perimeter, in Planck units. It is conjectured that exotic Planck scale rotational correlations, entangled with the strong interactions, determine the value of the cosmological constant. Cosmic acceleration may be viewed heuristically as centrifugal acceleration by rotational fluctuations of the matter vacuum. An experiment concept is sketched, based on a reconfiguration of the Fermilab Holometer.
Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been developed using discrete exterior calculus. Its built-in frozen-in equation makes it optimal for studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D plasma magnetized by a sheared field under mirrored sinusoidal boundary forcing. We obtain an equilibrium solution that preserves the topology of the initial field exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the current density output, we identify a singular current sheet from the fluid mapping. The results are benchmarked with an unconventional Grad-Shafranov solver.
Cosmic-ray-muon spallation-induced radioactive isotopes with $\beta$ decays are one of the major backgrounds for solar, reactor, and supernova relic neutrino experiments. Unlike in scintillator, production yields for cosmogenic backgrounds in water have not been exclusively measured before, yet they are becoming more and more important in next generation neutrino experiments designed to search for rare signals. We have analyzed the low-energy trigger data collected at Super-Kamiokande-IV in order to determine the production rates of $^{12}$B, $^{12}$N, $^{16}$N, $^{11}$Be, $^9$Li, $^8$He, $^9$C, $^8$Li, $^8$B and $^{15}$C. These rates were extracted from fits to time differences between parent muons and subsequent daughter $\beta$'s by fixing the known isotope lifetimes. Since $^9$Li can fake an inverse-beta-decay reaction chain via a $\beta + n$ cascade decay, producing an irreducible background with detected energy up to a dozen MeV, a dedicated study is needed for evaluating its impact on future measurements, the application of a neutron tagging technique using correlated triggers was found to improve this $^9$Li measurement. The measured yields were generally found to be comparable with theoretical calculations based on the simulation code FLUKA.
After constructing a self-consistent first-order perturbation scheme, being suitable for all (sub-horizon and super-horizon) scales, for the concordance cosmological model and discrete presentation of matter sources in the recent paper arXiv:1509.03835, the next natural step consists in generalizing its approach to the case of extended models with extra perfect fluids and continuous presentation. In the given paper this suggesting itself generalization is made. Namely, we derive a single equation determining the scalar perturbation and covering the whole space as well as define the corresponding universal Yukawa interaction range.
We present a study of the fully relativistic spherical collapse in presence of quintessence using on Numerical Relativity, following the method proposed by the authors in a previous article [arXiv:1409.3476]. We ascertain the validity of the method by studying the evolution of a spherically symmetric quintessence inhomogeneity on a de Sitter background and we find that it has an impact on the local expansion around the centre of coordinates. We then proceed to compare the results of our method to those of the more largely adopted top-hat model. We find that quintessence inhomogeneities do build up under the effect that matter inhomogeneities have on the local space-time yet remain very small due to the presence of momentum transfer from the over-dense to the background regions. We expect that these might have an even more important role in modified theories of gravitation.
Recently cosmic ray electrons and positrons, i.e. cosmic ray charged leptons, have been observed. To understand the distances from our solar system to the sources of such lepton cosmic rays, it is important to understand energy losses from cosmic electrodynamic fields. Energy losses for ultra-relativistic electrons and/or positrons due to classical electrodynamic bremsstrahlung are computed. The energy losses considered are (i) due to Thompson scattering from fluctuating electromagnetic fields in the background cosmic thermal black body radiation and (ii) due to the synchrotron radiation losses from quasi-static domains of cosmic magnetic fields. For distances to sources of galactic length proportions, the lepton cosmic ray energy must be lass than about a TeV.
"The self-induced collapse hypothesis'' has been introduced by D. Sudarsky and collaborators to explain the origin of cosmic structure from a perfect isotropic and homogeneous universe during the inflationary regime. In this paper, we calculate the power spectrum for the tensor modes, within the semiclassical gravity approximation, with the additional hypothesis of a generic self-induced collapse of the inflaton's wave function; we also compute an estimate for the tensor-to-scalar ratio. Based on this calculation, we show that the considered proposal exhibits a strong suppression of the tensor modes amplitude; nevertheless, the corresponding amplitude is still consistent with the joint BICEP/KECK and Planck collaborations limit on the tensor-to-scalar ratio.
Links to: arXiv, form interface, find, astro-ph, recent, 1509, contact, help (Access key information)
The standard $\Lambda$CDM paradigm seems to describe cosmology and large
scale structure formation very well. However, a number of puzzling observations
remain on galactic scales. An example is the anisotropic distribution of
satellite galaxies in the Local Group. This has led to suggestions that a
modified gravity theory might provide a better explanation than Newtonian
gravity supplemented by dark matter. One of the leading modified gravity
theories is Modified Newtonian Dynamics (MOND). For an isolated point mass, it
boosts gravity by an acceleration-dependent factor of $\nu$.
Recently, a much more computer-friendly quasi-linear formulation of MOND
(QUMOND) has become available. We investigate analytically the solution for a
point mass embedded in a constant external field of $\mathbf{g}_{ext}$. We find
that the potential is $\Phi = - ~ \frac{GM \nu_{ext}}{r}\left(1 + \frac{K_0}{2}
\sin^2 \theta \right)$, where $r$ is distance from the mass $M$ which is in an
external field that `saturates' the $\nu$ function at the value $\nu_{ext}$,
leading to a fixed value of $K_0 \equiv \frac{\partial Ln ~ \nu}{\partial Ln ~
g_{ext}}$. In a very weak gravitational field $\left(\left| \mathbf{g}_{ext}
\right| \ll a_0 \right)$, $K_0 = -\frac{1}{2}$. The angle $\theta$ is that
between the external field direction and the direction towards the mass.
Our results are quite close to the more traditional aquadratic Lagrangian
(AQUAL) formulation of MOND. We apply both theories to a simple model of the
Sagittarius tidal stream. We find that they give very similar results, with the
tidal stream seeming to spread slightly further in AQUAL.
We identify a scalar-tensor model embedded in the Horndeski action whose cosmological background and linear scalar fluctuations are degenerate with the concordance cosmology. The model admits a self-accelerated background expansion at late times that is stable against perturbations with a sound speed attributed to the new field that is equal to the speed of light. While degenerate in scalar fluctuations, self acceleration of the model implies a present cosmological tensor mode propagation at < 95% of the speed of light with a damping of the wave amplitude that is > 5% less efficient than in general relativity. These discrepancies will be testable with future measurements of gravitational waves emitted by events at cosmological distances. Hence, they can be used to break the dark degeneracy in our current observations between two fundamentally different explanations of cosmic acceleration - a cosmological constant and a scalar-tensor modification of gravity.
We study the vertical structure of a stellar disk obtained from a fully cosmological high-resolution hydrodynamical simulation of the formation of a Milky Way-like galaxy. At the present day, the disk's mean vertical height shows a well-defined and strong pattern, with amplitudes as large as 3 kpc in its outer regions. This pattern is the result of a satellite - host halo - disk interaction and reproduces, qualitatively, many of the observable properties of the Monoceros Ring. In particular we find disk material at the distance of Monoceros extending far above the mid plane (30$^{\circ}$) in both hemispheres, as well as well-defined arcs of disk material at heliocentric distances $\gtrsim 5$ kpc. The pattern was first excited $\approx 3$ Gyr ago as an $m=1$ mode that later winds up into a leading spiral pattern. Interestingly, the main driver behind this perturbation is a low-mass low-velocity fly-by encounter. The satellite has total mass, pericentre distance and pericentric velocity of $\sim 5\%$ of the host, $\sim 80$ kpc, and 215 km/s, respectively. The satellite is not massive enough to directly perturb the galactic disk but we show that the density field of the host dark matter halo responds to this interaction resulting in a strong amplification of the perturbative effects. This subsequently causes the onset and development of the Monoceros-like feature.
We present a derivation of the transit timing variations (TTVs) of a pair of planets near the j:j-2 second order resonance on nearly circular and nearly coplanar orbits. We show that the TTVs of each planet are given by sinusoids with a frequency of j n_2-(j-2)n_1, where n_2 and n_1 are the mean motions of the outer and inner planets, respectively. The amplitude of the TTV depends on the mass of the perturbing planet, relative to the mass of the star, and on a function of the eccentricities and longitudes of pericenter of each planet. The phase of each sinusoid is approximately phi and phi+pi, where the phase phi also depends on the eccentricities and longitudes of pericenter. Therefore, the situation for second order resonances is analogous to the case of TTVs induced by two planets near a first order mean motion resonance. Degeneracies between planet masses and eccentricities/longitudes of pericenter occur when the small phase offset from pi cannot be resolved, and even when it can be, degeneracies persist between the two planet's eccentricities and longitudes of pericenter. In order to break degeneracies one must measure another, independent signal of the TTVs such as the short period "chopping" TTV. Alternatively, we show how the second order terms can be used to break degeneracies near first order resonances (e.g. 4:2 resonant terms near the 2:1 resonance). Lastly, we derive an approximate formulae for the TTVs of a pair of planets near any order eccentricity-type mean motion resonance, this shows that the same basic TTV structure holds for all eccentricity-type resonances. Our general formula reduces to previously derived results (Lithwick et al. 2012) near first order mean motion resonances.
In this work we analyze the dark matter (DM) fraction, \fdm, and mass-to-light ratio mismatch parameter, \dimf\ (computed with respect to a Milky-Way-like IMF), for a sample of 39 dwarf early-type galaxies (dEs) in the Virgo cluster. Both \fdm\ and \dimf\ are estimated within the central (one effective radius) galaxy regions, with a Jeans dynamical analysis that relies on galaxy velocity dispersions, structural parameters, and stellar mass-to-light ratios from the SMAKCED survey. In this first attempt to constrain, simultaneously, the IMF normalization and the dark matter content, we explore the impact of different assumptions on the DM model profile. On average, for a NFW profile, the \dimf\ is consistent with a Chabrier-like normalization ($\dimf \sim 1$), with $\fdm \sim 0.35$. One of the main results of the present work is that for at least a few systems the \dimf\ is heavier than the Milky-Way-like value (i.e. either top- or bottom-heavy). When introducing tangential anisotropy, larger \dimf\ and smaller \fdm\ are derived. Adopting a steeper concentration--mass relation than that from simulations, we find lower \dimf\ ($\lsim 1$) and larger \fdm . A constant \ML\ profile with null \fdm\ gives the heaviest \dimf\ ($\sim 2$). In the MONDian framework, we find consistent results to those for our reference NFW model. If confirmed, the large scatter of \dimf\ for dEs would provide (further) evidence for a non-universal IMF in early-type systems. On average, our reference \fdm\ estimates are consistent with those found for low-\sige\ ($\rm \sim 100 \, \rm km s^{-1}$) early-type galaxies (ETGs). Furthermore, we find \fdm\ consistent with values from the SMAKCED survey, and find a double-value behavior of \fdm\ with stellar mass, which mirrors the trend of dynamical \ML\ and global star formation efficiency (from abundance matching estimates) with mass.
Amongst standard model parameters that are constrained by cosmic microwave background (CMB) observations, the optical depth $\tau$ stands out as a nuisance parameter. While $\tau$ provides some crude limits on reionization, it also degrades constraints on other cosmological parameters. Here we explore how 21 cm cosmology---as a direct probe of reionization---can be used to independently predict $\tau$ in an effort to improve CMB parameter constraints. We develop two complementary schemes for doing so. The first uses 21 cm power spectrum observations in conjunction with semi-analytic simulations to predict $\tau$. The other uses global 21 cm measurements to directly constrain low redshift (post-reheating) contributions to $\tau$ in a relatively model-independent way. Forecasting the performance of the upcoming Hydrogen Epoch of Reionization Array, we find that the marginalized $68\%$ confidence limit on $\tau$ can be reduced to $\pm 0.0015$ for a reionization scenario tuned to fit Planck's TT+lowP dataset, and to $\pm 0.00083$ for Planck's TT,TE,EE+lowP+lensing+ext dataset, assuming early 21 cm data confirm and refine astrophysical models of reionization. These results are particularly effective at breaking the CMB degeneracy between $\tau$ and the amplitude of the primordial fluctuation spectrum $A_s$, with errors on $\ln (10^{10} A_s)$ reduced by a factor of four for both datasets. Stage 4 CMB constraints on the neutrino mass sum are also improved, with errors reduced to $12\,\textrm{meV}$ regardless of whether CMB experiments can precisely measure the reionization bump in polarization power spectra. Observations of the 21 cm line are therefore capable of improving not only our understanding of reionization astrophysics, but also of cosmology in general.
We present the third-order analytic solution of the matter density fluctuation in the proper-time hypersurface of nonrelativistic matter flows by solving the nonlinear general relativistic equations. The proper-time hypersurface provides a coordinate system that a local observer can set up without knowledge beyond its neighborhood, along with physical connections to the local Newtonian descriptions in the relativistic context. The initial condition of our analytic solution is set up by the curvature perturbation in the comoving gauge, clarifying its impact on the nonlinear evolution. We compute the effective non-Gaussian parameters due to the nonlinearity in the relativistic equations. With proper coordinate rescaling, we show that the equivalence principle is respected and the relativistic effect vanishes in the large-scale limit.
We present an integral field spectroscopic study of radiative shocks in 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-sky LIRG Survey, a subset of the Revised Bright Galaxy Sample. Our analysis of the resolved spectroscopic data from the Wide Field Spectrograph (WiFeS) focuses on determining the detailed properties of the emission line gas, including a careful treatment of multi- component emission line profiles. The resulting information obtained from the spectral fits are used to map the kinematics of the gas, sources of ionizing radiation and feedback present in each system. The resulting properties are tracked as a function of merger stage. Using emission line flux ratios and velocity dispersions, we find evidence for widespread, extended shock excitation in many local U/LIRGs. These low-velocity shocks become an increasingly important component of the optical emission lines as a merger progresses. We find that shocks may account for as much as half of the H{\alpha} luminosity in the latest-stage mergers in our sample. We discuss some possible implications of our result and consider the presence and effects of AGN on the spectra in our sample.
We present Atacama Large Millimeter/submillimeter Array (ALMA) line and continuum observations at 1.2mm with ~0.3" resolution that uncover a Keplerian-like disk around the forming O-type star AFGL 4176. The continuum emission from the disk at 1.21 mm (source mm1) has a deconvolved size of 870+/-110 AU x 330+/-300 AU and arises from a structure ~8 M_sun in mass, calculated assuming a dust temperature of 190 K. The first-moment maps, pixel-to-pixel line modeling, assuming local thermodynamic equilibrium (LTE), and position-velocity diagrams of the CH3CN J=13-12 K-line emission all show a velocity gradient along the major axis of the source, coupled with an increase in velocity at small radii, consistent with Keplerian-like rotation. The LTE line modeling shows that where CH3CN J=13-12 is excited, the temperatures in the disk range from ~70 to at least 300 K and that the H2 column density peaks at 2.8x10^24 cm^-2. In addition, we present Atacama Pathfinder Experiment (APEX) 12CO observations which show a large-scale outflow from AFGL 4176 perpendicular to the major axis of mm1, supporting the disk interpretation. Finally, we present a radiative transfer model of a Keplerian disk surrounding an O7 star, with a disk mass and radius of 12 M_sun and 2000 AU, that reproduces the line and continuum data, further supporting our conclusion that our observations have uncovered a Keplerian disk around an O-type star.
We study the transient (i.e. emerging or disappearing) C IV broad absorption line (BAL) components in 50 radio detected QSOs using multi-epoch spectra available in Sloan Digital Sky Survey DR10. We report the detectionof 6 BALQSOs having at least one distinct transient C IV absorption component. Based on the structure function analysis of optical light curves, we suggest that the transient absorption is unlikely to be triggered by continuum variations. Transient absorption components usually have low C IV equivalent widths (< 8 \AA), high ejection velocities (> 10000 \kms) and typically occur over rest-frame timescales > 800 days. The detection rate of transient C IV absorption seen in our sample is higher than that reported in the literature. Using a control sample of QSOs, we show that this difference is most likely due to the longer monitoring time-scale of sources in our sample while the effect of small number statistics cannot be ignored. Thus, in order to establish the role played by radio jets in driving the BAL outflows, we need a larger sample of radio detected BALs monitored over more than 3 years in the QSO's rest frame. We also find that the transient phenomenon in radio detected and radio quiet BALs does not depend on any of the QSO properties i.e. the Eddington ratio, black hole mass, bolometric luminosity and optical-to-IR colours. All this suggests that transient BAL phenomenon is simply the extreme case of BAL variability.
We present a new version of the GALFORM semi-analytical model of galaxy formation. This brings together several previous developments of GALFORM into a single unified model, including a different initial mass function (IMF) in quiescent star formation and in starbursts, feedback from active galactic nuclei supressing gas cooling in massive halos, and a new empirical star formation law in galaxy disks based on their molecular gas content. In addition, we have updated the cosmology, introduced a more accurate treatment of dynamical friction acting on satellite galaxies, and updated the stellar population model. The new model is able to simultaneously explain both the observed evolution of the K-band luminosity function and stellar mass function, and the number counts and redshift distribution of sub-mm galaxies selected at 850 mu. This was not previously achieved by a single physical model within the LambdaCDM framework, but requires having an IMF in starbursts that is somewhat top-heavy. The new model is tested against a wide variety of observational data covering wavelengths from the far-UV to sub-mm, and redshifts from z=0 to z=6, and is found to be generally successful. These observations include the optical and near-IR luminosity functions, HI mass function, Tully-Fisher relation, fraction of early type galaxies, metallicity-luminosity relation and size-luminosity relation at z=0, as well as far-IR number counts, and far-UV luminosity functions at z ~ 3-6. [abridged]
Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central super-massive black hole. By means of high resolution numerical simulations we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within 1 Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low density region is carved between the bar co-rotational and inner Lindblad resonance radii. The development of such "dead zone" inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas toward galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.
Suzaku observations of the Wolf-Rayet binary WR 140 (WC7pd+O5.5fc) were made at four different times around periastron passage in 2009 January. The spectra changed in shape and flux with the phase. As periastron approached, the column density of the low-energy absorption increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense W-R wind. The spectra can be mostly fitted with two different components: a warm component with kT=0.3--0.6 keV and a dominant hot component with kT~3 keV. The emission measure of the dominant, hot component is not inversely proportional to the distance between the two stars. This can be explained by the O star wind colliding before it has reached its terminal velocity, leading to a reduction in its wind momentum flux. At phases closer to periastron, we discovered a cool plasma component in a recombining phase, which is less absorbed. This component may be a relic of the wind-wind collision plasma, which was cooled down by radiation, and may represent a transitional stage in dust formation.
We investigated AGN activity in low-mass galaxies, an important regime that can shed light onto BH formation and evolution, and their interaction with their host galaxies. We identified 336 AGN candidates from a parent sample of $\sim 48,000$ nearby low-mass galaxies ($M_{\rm \star} \leq 10^{9.5}M_\odot$, $z < 0.1$) in the SDSS. We selected the AGN using the classical BPT diagram, a similar optical emission line diagnostic based on the HeII$\lambda$4686 line, and mid-IR color cuts. Different criteria select host galaxies with different physical properties such as stellar mass and optical color, and only 3 out of 336 sources fulfill all three criteria. This could be in part due to selection biases. The resulting AGN fraction of $\sim 0.7 \%$ is at least one order of magnitude below the one estimated for more massive galaxies. At optical wavelengths, the HeII-based AGN selection appears to be more sensitive to AGN hosted in star-forming galaxies than the classical BPT diagram, at least in the low-mass regime. The archival X-ray and radio data available for some of the optically selected AGN candidates seem to confirm their AGN nature, but follow-up observations are needed to confirm the AGN nature of the rest of the sample, especially in the case of mid-IR selection. Our sample will be important for future follow-up studies aiming to understand the relation between BHs and host galaxies in the low-mass regime.
The temperature at the end of reheating and the length of this cosmological phase can be bound to the inflationary observables if one considers the cosmological evolution from the time of Hubble crossing until today. There are many examples in the literature where it is made for single-field inflationary models and a constant equation of state during reheating. We adopt two simple varying equation of state parameters during reheating, combine the allowed range of the reheating parameters with the observational limits of the scalar perturbations spectral index and compare the constraints of some inflationary models with the case of a constant equation of state parameter during reheating.
We calculate the flux received from a binary system obscured by a circumbinary disc. The disc is modelled using two dimensional hydrodynamical simulations, and the vertical structure is derived by assuming it is isothermal. The gravitational torque from the binary creates a cavity in the disc's inner parts. If the line of sight along which the system is observed has a high inclination $I$, it intersects the disc and some absorption is produced. As the system is not axisymmetric, the resulting light curve displays variability. We calculate the absorption and produce light curves for different values of the dust disc aspect ratio $H/r$ and mass of dust in the cavity $M_{\rm dust}$. This model is applied to the high inclination ($I=85^{\circ}$) eclipsing binary CoRoT 223992193, which shows 5-10% residual photometric variability after the eclipses and a spot model are subtracted. We find that such variations for $I \sim 85^{\circ}$ can be obtained for $H/r=10^{-3}$ and $M_{\rm dust} \ge 10^{-12}$ M$_{\odot}$. For higher $H/r$, $M_{\rm dust}$ would have to be close to this lower value and $I$ somewhat less than $85^{\circ}$. Our results show that such variability in a system where the stars are at least 90% visible at all phases can be obtained only if absorption is produced by dust located inside the cavity. If absorption is dominated by the parts of the disc located close to or beyond the edge of the cavity, the stars are significantly obscured.
Cygnus X-1 is a well observed microquasar. Broadband observations at all wavelengths have been collected over the years. The origin of the MeV tail observed with COMPTEL and INTEGRAL is still under debate and it has mostly been attributed to the corona, although its high degree of polarization suggests it is synchrotron radiation from a jet. The origin of the transient emission above $\sim 100$ GeV is also unclear. We aim to disentangle the origin of the broadband spectral energy distribution (SED) of Cygnus X-1, focusing particularly on the gamma-ray emission, and to gain information on the physical conditions inside the jets. We develop and apply a lepto-hadronic, inhomogeneous jet model to the non-thermal SED of Cygnus X-1. We calculate the contributions to the SED of both protons and electrons accelerated in an extended region of the jet. We also estimate the radiation of charged secondaries produced in hadronic interactions, through several radiative processes. Absorption effects are considered. We produce synthetic maps of the jets at radio wavelengths. We find two sets of model parameters that lead to good fits of the SED. One of the models fits all the observations, including the MeV tail. This model also predicts hadronic gamma-ray emission slightly below the current upper limits. The flux predicted at 8.4 GHz is in agreement with the observations available in the literature, although the synthetic source is more compact than the imaged radio jet. Our results show that the MeV emission in Cygnus X-1 may be jet synchrotron radiation. This depends mainly on the strength of the jet magnetic field and the location of the injection region of the relativistic particles. Our calculations show that there must be energetic electrons in the jets quite far from the black hole.
The detection of an excess of emission at microwave frequencies with respect to the predicted free-free emission has been reported for several Galactic HII regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (~ 3 sigma) detected Anomalous Microwave Emission at 31 GHz on angular scales of 7'. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5 GHz, 19 GHz and 34 GHz) continuum study of the region, complemented by observations of the H109$\alpha$ radio recombination line. The analysis shows that: 1) the spatial correlation between the microwave and IR emission persists on angular scales from 3.4' to 0.4", although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales, 2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free-free emission, however, ~ 30% of these are positive and much greater than -0.1, consistently with a stellar wind scenario, 3) no major evidence for inverted free-free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of Anomalous Microwave emission in RCW 49, they emphasize the complexity of astronomical sources very well known and studied such as HII regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks.
We present an effective, low-dimensionality frequency-domain template for the gravitational wave signal from the stellar remnants from binary neutron star coalescence. A principal component decomposition of a suite of numerical simulations of binary neutron star mergers is used to construct orthogonal basis functions for the amplitude and phase spectra of the waveforms for a variety of neutron star equations of state and binary mass configurations. We review the phenomenology of late merger / post-merger gravitational wave emission in binary neutron star coalescence and demonstrate how an understanding of the dynamics during and after the merger leads to the construction of a universal spectrum. We also provide a discussion of the prospects for detecting the post-merger signal in future gravitational wave detectors as a potential contribution to the science case for third generation instruments. The template derived in our analysis achieves $>90\%$ match across a wide variety of merger waveforms and strain sensitivity spectra for current and potential gravitational wave detectors. A Fisher matrix analysis yields a preliminary estimate of the typical uncertainty in the determination of the dominant post-merger oscillation frequency $f_{\mathrm{peak}}$ as $\delta f_{\mathrm{peak}} \sim 50$Hz. Using recently derived correlations between $f_{\mathrm{peak}}$ and the neutron star radii, this suggests potential constraints on the radius of a fiducial neutron star of $\sim 220$\,m. Such measurements would only be possible for nearby ($\sim 30$Mpc) sources with advanced LIGO but become more feasible for planned upgrades to advanced LIGO and other future instruments, leading to constraints on the high density neutron star equation of state which are independent and complementary to those inferred from the pre-merger inspiral gravitational wave signal.
A giant molecular cloud has been detected surrounding the supernebula in NGC 5253, revealing details of the formation and feedback process in a very massive star cluster. "Cloud D" was recently mapped in CO J=3-2 with the Submillimeter Array. The cloud surrounds a currently forming massive cluster of mass ~10$^6$ $\rm M_\odot$ and luminosity ~10$^9$ $\rm L_\odot$. Cloud D is hot, clearly associated with the cluster, yet kinematically relatively quiescent. The dust mass is ~15,000 $\rm M_\odot$, giving a gas-to-dust ratio of ~50, nearly an order of magnitude lower than expected for this low metallicity galaxy. We posit that enrichment by the cluster, leading to a stalled cluster wind, has created the unusual conditions in Cloud D. The absence of current mechanical impact of the young cluster on the cloud, in spite of the presence of thousands of O stars, may permit future generations of stars to form near the massive cluster.
While the chemical abudances observed in bright planetary nebulae in local spiral galaxies are less varied than their counterparts in dwarfs, they provide new insight. Their helium abundances are typically enriched by less than 50\% compared to the primordial abundance. Nitrogen abundances always show some level of secondary enrichment, but the absolute enrichment is not extreme. In particular, type I PNe are rare among the bright PNe in local spirals. The oxygen and neon abundances are very well correlated and follow the relation between these abundances observed in star-forming galaxies, implying that either the progenitor stars of these PNe modify neither abundance substantially or that they modify both to maintain the ratio (not predicted by theory). According to theory, these results imply that the progenitor stars of bright PNe in local spirals have masses of about $2\,\mathrm M_{\odot}$ or less. If so, the progenitors of these PNe have substantial lifetimes that allow us to use them to study the recent history of their host galaxies, including gravitational interactions with their neighbours. Areas that require further study include the systematic differences observed between spectroscopy obtained through slits and fibres, the uncertainties assigned to chemical abundances, including effects due to ionization correction factors, and the physics that gives rise to the PN luminosity function. Indeed, so long as we lack an understanding of how the last arises, our ability to use bright PNe as probes to understand the evolution of their host galaxies will remain limited.
The populations of bright planetary nebulae in the discs of spirals appear to differ in their spectral properties from those in ellipticals and the bulges of spirals. The bright planetary nebulae from the bulge of the Milky Way are entirely compatible with those observed in the discs of spiral galaxies. The similarity might be explained if the bulge of the Milky Way evolved secularly from the disc, in which case the bulge should be regarded as a pseudo-bulge.
The alignment of interstellar dust grains with magnetic fields provides a key method for measuring the strength and morphology of the fields. In turn, this provides a means to study the role of magnetic fields from diffuse gas to dense star-forming regions. The physical mechanism for aligning the grains has been a long-term subject of study and debate. The theory of radiative torques, in which an anisotropic radiation field imparts sufficient torques to align the grains while simultaneously spinning them to high rotational velocities, has passed a number of observational tests. Here we use archival polarization data in dense regions of the Orion molecular cloud (OMC-1) at 100, 350, and $850\,\mu$m to test the prediction that the alignment efficiency is dependent upon the relative orientations of the magnetic field and radiation anisotropy. We find that the expected polarization signal, with a 180-degree period, exists at all wavelengths out to radii of 1.5 arcminutes centered on the BNKL object in OMC-1. The probabilities that these signals would occur due to random noise are low ($\lesssim$1\%), and are lowest towards BNKL compared to the rest of the cloud. Additionally, the relative magnetic field to radiation anisotropy directions accord with theoretical predictions in that they agree to better than 15 degrees at $100\,\mu$m and 4 degrees at $350\,\mu$m.
Supernova remnants (SNRs) are the most attractive candidates for the acceleration sites of Galactic cosmic rays. We report the detection of GeV $\gamma$-ray emission with the Pass 8 events recorded by Fermi Large Area Telescope (Fermi-LAT) in the vicinity of the shell type SNR CTB 37B that is likely associated with the TeV $\gamma-$ray source HESS J1713-381. The energy spectrum of CTB 37B is consistent with a power-law with an index of $1.89\pm0.08$ in the energy range of $0.5-500$ GeV, and the measured flux connects smoothly with that of HESS J1713-381 at a few hundred GeV. No significant spatial extension and time variation are detected. The multi-wavelength data can be well fitted with either a leptonic model or a hadronic one. However, parameters of both models suggest more efficient particle acceleration than typical SNRs.
We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. FIT3D is a tool developed to analyze Integral Field Spectroscopy data and it is the basis of Pipe3D, a pipeline already used in the analysis of datasets like CALIFA, MaNGA, and SAMI. We describe the philosophy behind the fitting procedure, and in detail each of the different steps in the analysis. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations. In summary, we find that using different stellar population templates we reproduce the mean properties of the stellar population (age, metallicity, and dust attenuation) within ~0.1 dex. A similar approach is adopted for the ionized gas, where a set of simulated emission- line systems was created. Finally, we compare the results of the analysis using FIT3D with those provided by other widely used packages for the analysis of the stellar population (Starlight, Steckmap, and analysis based on stellar indices) using real high S/N data. In general we find that the parameters for the stellar populations derived by FIT3D are fully compatible with those derived using these other tools.
In this paper, we use two model-independent methods to standardize long gamma-ray bursts (GRBs) using the $E_{\rm iso}-E_{\rm p}$ correlation, where $E_{\rm iso}$ is the isotropic-equivalent gamma-ray energy and $E_{\rm p}$ is the spectral peak energy. We update 42 long GRBs and try to make constraint on cosmological parameters. The full sample contains 151 long GRBs with redshifts from 0.0331 to 8.2. The first method is the simultaneous fitting method. The extrinsic scatter $\sigma_{\rm ext}$ is taken into account and assigned to the parameter $E_{\rm iso}$. The best-fitting values are $a=49.15\pm0.26$, $b=1.42\pm0.11$, $\sigma_{\rm ext}=0.34\pm0.03$ and $\Omega_m=0.79$ in the flat $\Lambda$CDM model. The constraint on $\Omega_m$ is $0.55<\Omega_m<1$ at the 1$\sigma$ confidence level. If reduced $\chi^2$ method is used, the best-fit results are $a=48.96\pm0.18$, $b=1.52\pm0.08$ and $\Omega_m=0.50\pm0.12$. The second method is using type Ia supernovae (SNe Ia) to calibrate the $E_{\rm iso}-E_{\rm p}$ correlation. We calibrate 90 high-redshift GRBs in the redshift range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are $\Omega_m=0.23^{+0.06}_{-0.04}$ for flat $\Lambda$CDM, and $\Omega_m=0.18\pm0.11$ and $\Omega_{\Lambda}=0.46\pm0.51$ for non-flat $\Lambda$CDM. For the combination of GRB and SNe Ia sample, we obtain $\Omega_m=0.271\pm0.019$ and $h=0.701\pm0.002$ for the flat $\Lambda$CDM, and for the non-flat $\Lambda$CDM, the results are $\Omega_m=0.225\pm0.044$, $\Omega_{\Lambda}=0.640\pm0.082$ and $h=0.698\pm0.004$. These results from calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined data can improve cosmological constraints significantly, comparing to SNe Ia alone. Our results show that the $E_{\rm iso}-E_{\rm p}$ correlation is promising to probe the high-redshift universe.
Numerical simulations are a crucial tool to understand the relationship between debris discs and planetary companions. However, simulations throughout the literature have been conducted with various initial conditions often with little or no justification. In this paper, we aim to study the dependence on the initial conditions of N-body simulations modelling the interaction between a massive and eccentric planet on an exterior debris disc. To achieve this, we first classify three broad approaches used in the literature and provide some physical context for when each category should be used. We then run a series of N-body simulations, that include radiation forces acting on small grains, with varying initial conditions across the three categories. We test the influence of the initial parent body belt width, eccentricity, and alignment with the planet on the resulting debris disc structure and compare the final peak emission location, disc width and offset of synthetic disc images produced with a radiative transfer code. We also track the evolution of the forced eccentricity of the dust grains induced by the planet, as well as resonance dust trapping. We find that an initially broad parent body belt always results in a broader debris disc than an initially narrow parent body belt. While simulations with a parent body belt with low initial eccentricity (e ~ 0) and high initial eccentricity (0 < e < 0.3) resulted in similar broad discs, we find that purely secular forced initial conditions, where the initial disc eccentricity is set to the forced value and the disc is aligned with the planet, always result in a narrower disc. We conclude that broad debris discs can be modelled by using either a dynamically cold or dynamically warm parent belt, while in contrast eccentric narrow debris rings are reproduced using a secularly forced parent body belt.
We present the analysis of the stellar content of NGC~2282, a young cluster in the Monoceros constellation, using deep optical $BVI$ and IPHAS photometry along with infrared (IR) data from UKIDSS and $Spitzer$-IRAC. Based on the stellar surface density analysis using nearest neighborhood method, the radius of the cluster is estimated as $\sim$ 3.15$\arcmin$. From optical spectroscopic analysis of 8 bright sources, we have classified three early B-type members in the cluster, which includes, HD 289120, a previously known B2V type star, a Herbig Ae/Be star (B0.5 Ve) and a B5 V star. From spectrophotometric analyses, the distance to the cluster has been estimated as $\sim$ 1.65 kpc. The $K$-band extinction map is estimated using nearest neighborhood technique, and the mean extinction within the cluster area is found to be A$_V$ $\sim$ 3.9 mag. Using IR colour-colour criteria and H$_\alpha$-emission properties, we have identified a total of 152 candidate young stellar objects (YSOs) in the region, of which, 75 are classified as Class II, 9 are Class I YSOs. Our YSO catalog also includes 50 H$_\alpha$-emission line sources, identified using slitless spectroscopy and IPHAS photometry data. Based on the optical and near-IR colour-magnitude diagram analyses, the cluster age has been estimated to be in the range of 2 $-$ 5 Myr, which is in agreement with the estimated age from disc fraction ($\sim$ 58\%). Masses of these YSOs are found to be $\sim$ 0.1$-$2.0 M$_\odot$. Spatial distribution of the candidate YSOs shows spherical morphology, more or less similar to the surface density map.
In this talk I present the latest results of the ESTER project that has taken up the challenge of building two dimensional (axisymmetric) models of stars rotating at any rotation rate. In particular, I focus on main sequence massive and intermediate mass stars. I show what should be expected in such stars as far as the differential rotation and the associated meridional circulation are concerned, notably the emergence of a Stewartson layer along the tangent cylinder of the core. I also indicate what may be inferred about the evolution of an intermediate-mass star at constant angular momentum and how Be stars may form. I finally give some comparisons between models and observations of the gravity darkening on some nearby fast rotators as it has been derived from interferometric observations. In passing, I also discuss how 2D models can help to recover the fundamental parameters of a star.
Tunka-Rex is a radio detector for cosmic-ray air showers in Siberia, triggered by Tunka-133, a co-located air-Cherenkov detector. The main goal of Tunka-Rex is the cross-calibration of the two detectors by measuring the air-Cherenkov light and the radio signal emitted by the same air showers. This way we can explore the precision of the radio-detection technique, especially for the reconstruction of the primary energy and the depth of the shower maximum. The latter is sensitive to the mass of the primary cosmic-ray particles. In this paper we describe the detector setup and explain how electronics and antennas have been calibrated. The analysis of data of the first season proves the detection of cosmic-ray air showers and therefore, the functionality of the detector. We confirm the expected dependence of the detection threshold on the geomagnetic angle and the correlation between the energy of the primary cosmic-ray particle and the radio amplitude. Furthermore, we compare reconstructed amplitudes of radio pulses with predictions from CoREAS simulations, finding agreement within the uncertainties.
We have observed the HC3N (J=10-9) and N2H+ (J=1-0) lines toward the Vela C molecular clouds with the Mopra 22 m telescope to study chemical characteristics of dense cores. The intensity distributions of these molecules are similar to each other at an angular resolution of 53", corresponding to 0.19 pc suggesting that these molecules trace the same dense cores. We identified 25 local peaks in the velocity-integrated intensity maps of the HC3N and/or N2H+ emission. Assuming LTE conditions, we calculated the column densities of these molecules and found a tendency that N2H+/HC3N abundance ratio seems to be low in starless regions while it seems to be high in star-forming regions, similar to the tendencies in the NH3/CCS, NH3/HC3N, and N2H+/CCS abundance ratios found in previous studies of dark clouds and the Orion A GMC. We suggest that carbon chain molecules, including HC3N, may trace chemically young molecular gas and N-bearing molecules, such as N2H+, may trace later stages of chemical evolution in the Vela C molecular clouds. It may be possible that the N2H+/HC3N abundance ratio of ~ 1.4 divides the star-forming and starless peaks in the Vela C, although it is not as clear as those in NH3/CCS, NH3/HC3N, and N2H+/CCS for the Orion A GMC. This less clear separation may be caused by our lower spatial resolution or the misclassification of star-forming and starless peaks due to the larger distance of the Vela C. It might be also possible that the HC3N (J=10-9) transition is not a good chemical evolution tracer compared with CCS (J=4-3 and 7-6) transitions.
Recently, Bailey et al. (2015) made a direct measurement of the Iron opacity
at the physical conditions of the solar tachocline. They found that the
wavelength-integrated Iron opacity is roughly 75% higher that what the OP and
OPAL models predict. Here, we compute new opacity tables with enhanced Iron and
Nickel contributions to the Rosseland mean opacity by 75% each, and compute
three dense MESA grids of evolutionary models for Galactic O- and B-type stars
covering from 2.5 to 25 M$_\odot$ from ZAMS until $T_{\rm eff}=10\,000$ K after
the core hydrogen exhaustion. We carry out non-adiabatic mode stability
analysis with GYRE, and update the extension of the instability strips of
heat-driven p- and g-mode pulsators, and the hybrid pulsating SPB - $\beta$ Cep
stars. We compare the position of two confirmed late O-type $\beta$ Cep and
eight confirmed hybrid B-type pulsators with the new instability domains, and
justify that $\sim$75% enhancement, only in Iron opacity, is sufficient to
consistently reproduce the observed position of these stars on the $\log T_{\rm
eff}$ versus $\log g$ plane. We propose that this improvement in opacities be
incorporated in the input physics of new stellar models.
To reproduce the results, all software, opacity tables and the new
instability strips are freely available for download at the following URL:
https://fys.kuleuven.be/ster/Projects/ASAMBA.
We present deep optical images of the historical X-ray Transient KY TrA in quiescence from which we confirm the identification of the counterpart reported by Murdin (1977) and derive an improved position of alpha=15:28:16.97 and delta=-61:52:57.8. In 2007 June we obtained I, R and V images, where the counterpart seems to be double indicating the presence of an interloper at ~1.4 arcsec NW. After separating the contribution of KY TrA we calculate I=21.47+-0.09, R=22.3+-0.1 and V=23.6+-0.1. Similar brightness in the I band was measured in May 2004 and June 2010. Variability was analyzed from series of images taken in 2004, spanning 0.6 h, and in two blocks of 6 h during 2007. We find that the target is not variable in any dataset above the error levels ~0.07 mags. The presence of the interloper might explain the non-detection of the classic ellipsoidal modulation; our data indicates that it contributes around half of the total flux, which would make a variation <0.15 mags not detectable. A single spectrum obtained in 2004 May shows the H-alpha emission characteristic of X-ray transients in quiescence with a full-width-half-maximum FWHM=27000+-280 km s/s. If the system follows the FWHM -- K_2 correlation found by Casares (2015), this would correspond to a velocity semi-amplitude of the donor star of K_2=630+-74 km/s. Based on the outburst amplitude and colours of the optical counterpart in quiescence we derive a crude estimate of the orbital period of 8 h and an upper limit of 15 h which would lead to mass function estimates of ~9 M_solar and <16 M_solar respectively.
The prediction of stellar occultations by Transneptunian objects and Centaurs is a difficult challenge that requires accuracy both in the occulted star position as for the object ephemeris. Until now, the most used method of prediction involving tens of TNOs/Centaurs was to consider a constant offset for the right ascension and for the declination with respect to a reference ephemeris. This offset is determined as the difference between the most recent observations of the TNO and the reference ephemeris. This method can be successfully applied when the offset remains constant with time. This paper presents an alternative method of prediction based on a new accurate orbit determination procedure, which uses all the available positions of the TNO from the Minor Planet Center database plus sets of new astrometric positions from unpublished observations. The orbit determination is performed through a numerical integration procedure (NIMA), in which we develop a specific weighting scheme. The NIMA method was applied for 51 selected TNOs/Centaurs. For this purpose, we have performed about 2900 new observations during 2007-2014. Using NIMA, we succeed in predicting the stellar occultations of 10 TNOs and 3 Centaurs between 2013 and 2015. By comparing the NIMA and JPL ephemerides, we highlighted the variation of the offset between them with time. Giving examples, we show that the constant offset method could not accurately predict 6 out of the 13 observed positive occultations successfully predicted by NIMA. The results indicate that NIMA is capable of efficiently refine the orbits of these bodies. Finally, we show that the astrometric positions given by positive occultations can help to further refine the orbit of the TNO and consequently the future predictions. We also provide the unpublished observations of the 51 selected TNOs and their ephemeris in a usable format by the SPICE library.
Recently published empirical abundance maps, obtained through (Zeeman) Doppler mapping (ZDM), do not currently agree with the abundance structures predicted by means of numerical models of atomic diffusion in magnetic atmospheres of ApBp stars. In a first step towards the resolution of these discrepancies, we present a state of the art grid of equilibrium abundance stratifications in the atmosphere of a magnetic Ap star with T_eff = 10000 K and log g = 4.0. A description of the behaviour of 16 chemical elements including predictions concerning the over- and/or under-abundances over the stellar surface is followed by a discussion of the possible influence of presently neglected physical processes.
The presence of magneto-acoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magneto-acoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope (DOT) and Rapid Oscillations in the Solar Atmosphere (ROSA) instruments, we captured two series of high-resolution intensity images with short cadence of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Further, we determined several key properties of these oscillations such as the radial velocity perturbation, magnetic field perturbation and vertical wavenumber using solar magnetoseismology. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and, this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4-12.
We study deuterium fractionation in two massive starless cores C1-N and C1-S in Infrared Dark Cloud (IRDC) G028.37+00.07, first identified by Tan et al. (2013) with ALMA. Line emission from multiple transitions of $\rm N_2H^+$ and $\rm N_2D^+$ were observed with the ALMA, CARMA, SMA, JCMT, NRO 45m and IRAM 30m telescopes. By simultaneously fitting the spectra, we estimate the excitation conditions and deuterium fraction, $D_{\rm frac}^{\rm N_2H^+} \equiv [\rm N_2D^+]/[N_2H^+]$, with values of $D_{\rm frac}^{\rm N_2H^+} \simeq 0.2$--$0.7$, several orders of magnitude above the cosmic [D]/[H] ratio. Additional observations of o-H$_2$D$^+$ are also presented that help constrain the ortho-to-para ratio of $\rm H_2$, which is a key quantity affecting the degree of deuteration. We then present chemodynamical modeling of the two cores, exploring especially the implications for the collapse rate relative to free-fall, $\alpha_{\rm ff}$. In order to reach the high level of observed deuteration of $\rm N_2H^+$, we find that the most likely evolutionary history of the cores involves collapse at a relatively slow rate, $\lesssim1/10$th of free-fall.
This paper provides a detailed description of the latest version of our model of the solar wind (SW) interaction with the local interstellar medium (LISM). This model has already been applied to the analysis of Lyman-alpha absorption spectra toward nearby stars and for analyses of Solar and Heliospheric Observatory/SWAN data. Katushkina et al. (this issue) used the model results to analyze IBEX-Lo data. At the same time, the details of this model have not yet been published. This is a three-dimensional (3D) kinetic-magnetohydrodynamical (MHD) model that takes into account SW and interstellar plasmas (including $\alpha$ particles in SW and helium ions in LISM), the solar and interstellar magnetic fields, and the interstellar hydrogen atoms. The latitudinal dependence of SW and the actual flow direction of the interstellar gas with respect to the Sun are also taken into account in the model. It was very essential that our numerical code had been developed in such a way that any numerical diffusion or reconnection across the heliopause had not been allowed in the model. The heliospheric current sheet is a rotational discontinuity in the ideal MHD and can be treated kinematically. In the paper, we focus in particular on the effects of the heliospheric magnetic field and on the heliolatitudinal dependence of SW.
We present PPMAP, a Bayesian procedure that uses images of dust continuum emission at multiple wavelengths to produce resolution-enhanced image cubes of differential column-density as a function of dust temperature and position. PPMAP is based on the generic 'point process' formalism, whereby the system of interest (in this case, a dusty astrophysical structure such as a filament or prestellar core) is represented by a collection of points in a suitably defined state space. It can be applied to a variety of observational data, such as Herschel images, provided only that the image intensity is delivered by optically thin dust in thermal equilibrium. PPMAP takes full account of the instrumental point spread functions and does not require all images to be degraded to the same resolution. We present the results of testing using simulated data for a prestellar core and a fractal turbulent cloud, and demonstrate its performance with real data from the Hi-GAL survey. Specifically, we analyse observations of a large filamentary structure in the CMa OB1 giant molecular cloud. Histograms of differential column-density indicate that the warm material (T > 13 K) is distributed log-normally, consistent with turbulence, but the column-densities of the cooler material are distributed as a high density tail, consistent with the effects of self-gravity. The results illustrate the potential of PPMAP to aid in distinguishing between different physical components along the line of sight in star-forming clouds, and aid the interpretation of the associated PDFs of column density.
We present the pulsation and spectral characteristics of the HMXB 4U 0114+65 during a \emph{Suzaku} observation covering the part of the orbit that included the previously known low intensity emission of the source (dip) and the egress from this state. This dip has been interpreted in previous works as an X-ray eclipse. Notably, in this Suzaku observation, the count rate during and outside the dip vary by a factor of only 2-4 at odds with the eclipses of other HMXBs, where the intensity drops upto two orders of magnitude. The orbital intensity profile of 4U 0114+65 is characterized by a narrow dip in the RXTE-ASM (2-12 \rm{keV}) light curve and a shallower one in the Swift-BAT (15-50 \rm{keV}), which is different from eclipse ingress/egress behaviour of other HMXBs. The time-resolved spectral analysis reveal moderate absorption column density (N$_{H}$ - 2-20 $\times$ $10^{22}$ atoms $cm^{-2}$) and a relatively low equivalent width ($\sim$ 30 \rm{eV} \& 12 \rm{eV} of the iron K$_\alpha$ and K$_\beta$ lines respectively) as opposed to the typical X-ray spectra of HMXBs during eclipse where the equivalent width is $\sim$ 1 \rm{keV}. Both XIS and PIN data show clear pulsations during the dip, which we have further confirmed using the entire archival data of the IBIS/ISGRI and JEM-X instruments onboard \emph{INTEGRAL}. The results we presented question the previous interpretation of the dip in the light curve of 4U 0114+65 as an X-ray eclipse. We thus discuss alternative interpretations of the periodic dip in the light curve of 4U 0114+65.
The current paradigm foresees that relativistic jets are launched as magnetically dominated flows, whose magnetic power is progressively converted to kinetic power of of the matter of the jet, until equipartition is reached. Therefore, at the end of the acceleration phase, the jet should still carry a substantial fraction ($\approx$ half) of its power in the form of a Poynting flux. It has been also argued that, in these conditions, the best candidate particle acceleration mechanism is efficient reconnection of magnetic field lines, for which it is predicted that magnetic field and accelerated relativistic electron energy densities are in equipartition.Through the modeling of the jet non--thermal emission, we explore if equipartition is indeed possible in BL Lac objects, i.e. low-power blazars with weak or absent broad emission lines. We find that one-zone models (for which only one region is involved in the production of the radiation we observe) the particle energy density is largely dominating (by 1-2 orders of magnitude) over the magnetic one. As a consequence, the jet kinetic power largely exceeds the magnetic power. Instead, if the jet is structured (i.e. made by a fast spine surrounded by a slower layer), the amplification of the IC emission due to the radiative interplay between the two components allows us to reproduce the emission in equipartition conditions.
We present a multi-wavelength study of the Sh2-138, a Galactic compact H II region. The data comprise of optical and near-infrared (NIR) photometric and spectroscopic observations from the 2-m Himalayan Chandra Telescope, radio observations from the Giant Metrewave Radio Telescope (GMRT), and archival data covering radio through NIR wavelengths. A total of 10 Class I and 54 Class II young stellar objects (YSOs) are identified in a 4'.6$\times$4'.6 area of the Sh2-138 region. Five compact ionized clumps, with four lacking of any optical or NIR counterparts, are identified using the 1280 MHz radio map, and correspond to sources with spectral type earlier than B0.5. Free-free emission spectral energy distribution fitting of the central compact H II region yields an electron density of ~2250$\pm$400 cm$^{-3}$. With the aid of a wide range of spectra, from 0.5-15 $\mu m$, the central brightest source - previously hypothesised to be the main ionizing source - is characterized as a Herbig Be type star. At large scale (15'$\times$15'), the Herschel images (70-500 $\mu m$) and the nearest neighbour analysis of YSOs suggest the formation of an isolated cluster at the junction of filaments. Furthermore, using a greybody fit to the dust spectrum, the cluster is found to be associated with the highest column density (~3$\times$10$^{22}$ cm$^{-2}$) and high temperature (~35 K) regime, as well as with the radio continuum emission. The mass of the central clump seen in the column density map is estimated to be ~3770 $M_\odot$.
We used the OSIRIS camera at the 10.4 m Gran Telescopio Canarias (GTC) to monitor the astrometric motion of the L4.5 dwarf 2M1821$+$14 over 17 months. The astrometric residuals of eleven epochs have a r.m.s. dispersion of 0.4 mas, which is larger than the average precision of 0.23 mas per epoch and hints towards an additional signal or excess noise. Comparison of the point-spread-functions in OSIRIS and FORS2/VLT images reveals no differences critical for high-precision astrometry, despite the GTC's segmented primary mirror. We attribute the excess noise to an unknown effect that may be uncovered with additional data. For 2M1821$+$14, we measured a relative parallax of $106.15 \pm 0.18$ mas and determined a correction of $0.50\pm0.05$ mas to absolute parallax, leading to a distance of $9.38 \pm0.03$ pc. We excluded at 3-$\sigma$ confidence the presence of a companion to 2M1821$+$14 down to a mass ratio of 0.1 ($\approx 5\, M_\mathrm{Jupiter}$) with a period of 50--1000 days and a separation of 0.1--0.7 au. The accurate parallax allowed us to estimate the age and mass of 2M1821$+$14 of 120--700 Myr and 0.049$^{+0.014}_{-0.024}$ M$_\odot$, thus confirming its intermediate age and substellar mass. We complement our study with a parallax and proper motion catalogue of 587 stars ($i'\simeq15.5-22$) close to 2M1821$+$14, used as astrometric references. This study demonstrates sub-mas astrometry with the GTC, a capability applicable for a variety of science cases including the search for extrasolar planets and relevant for future astrometric observations with E-ELT and TMT.
We study Active Galactic Nucleus (AGN) activity in the fossil galaxy cluster, RX J1416.4+2315. Radio observations were carried out using Giant Metrewave Radio Telescope (GMRT) at two frequencies, 1420 MHz and 610 MHz. A weak radio lobe that extends from the central nucleus is detected in 610 MHz map. Assuming the radio lobe originated from the central AGN, we show the energy injection into the Inter Galactic Medium (IGM) is only sufficient to heat up the central 50 kpc within the cluster core, while the cooling radius is larger ( $\sim$ 130 kpc). In the hardness ratio map, three low energy cavities have been identified. No radio emission is detected for these regions. We evaluated the power required to inflate the cavities and showed that the total energy budget is sufficient to offset the radiative cooling. We showed that the initial conditions would change the results remarkably. Furthermore, efficiency of Bondi accretion to power the AGN has been estimated.
We report the multiband imagery with an emphasis on the X-ray emission properties of a prominent dust lane lenticular galaxy NGC 5866. X-ray emission from this galaxy is due to a diffuse component and a substantial contribution from the population of discrete X-ray binary sources. A total of 22 discrete sources have been detected within the optical D25 extent of the galaxy, few of which exhibit spatial association with the globular clusters hosted by this system. Composite spectrum of the diffuse emission from this galaxy was well constrained by a thermal plasma model plus a power law component to represent the emission from unresolved sources, while that of the discrete sources was well fitted by an absorbed power law component of photon index 1.82$\pm$0.14. X-ray color-color plot for the resolved source was used to classify the detected sources. The cumulative X-ray luminosity function of the XRBs is well represented by a power law function of index of {\Gamma} ~ 0.82$\pm$0.12. Optical imagery of NGC 5866 revealed a prominent dust lane along the optical major axis of the host with dust extinction properties similar to those of the canonical grains in the Milky Way. The dust grains responsible for the extinction of starlight in NGC 5866 are relatively smaller in size when compared with the canonical grains in the Milky Way and high energetic charged particles seems to be responsible for the modulation of the dust grain size. Spatial correspondence is evident between the dust and other phases of ISM.
X-rays and gamma-rays from astronomical sources such as solar flares are mostly absorbed by the Earth's atmosphere. Resulting electron-ion production rate as a function of height depends on the intensity and wavelength of the injected spectrum and therefore the effects vary from one source to another. In other words, the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we investigate whether we can invert the problem uniquely by deconvolution of the VLF amplitude signal to obtain the details of the injected spectrum. We find that it is possible to do this up to a certain accuracy. Our method is useful to carry out a similar exercise to infer the spectra of more energetic events such as the Gamma Ray Bursts (GRBs), Soft Gamma Ray Repeaters (SGRs) etc. by probing even the lower part of the atmosphere. We thus show that to certain extent, the Earth's atmosphere could be used as a gigantic detector of relatively strong events.
Wood et al suggested that mass-loss rate is a function of X-ray flux ($\dot{M} \propto F_x^{1.34}$) for dwarf stars with $F_x \lesssim F_{x,6} \equiv 10^6$ erg cm$^{-2}$ s$^{-1}$. However, more active stars do not obey this relation. These authors suggested that the break at $F_{x,6}$ could be caused by significant changes in magnetic field topology that would inhibit stellar wind generation. Here, we investigate this hypothesis by analysing the stars in Wood et al's sample that had their surface magnetic fields reconstructed through Zeeman-Doppler Imaging (ZDI). Although the solar-like outliers in the $\dot{M}$ -- $F_x$ relation have higher fractional toroidal magnetic energy, we do not find evidence of a sharp transition in magnetic topology at $F_{x,6}$. To confirm this, further wind measurements and ZDI observations at both sides of the break are required. As active stars can jump between states with highly toroidal to highly poloidal fields, we expect significant scatter in magnetic field topology to exist for stars with $F_x \gtrsim F_{x,6}$. This strengthens the importance of multi-epoch ZDI observations. Finally, we show that there is a correlation between $F_x$ and magnetic energy, which implies that $\dot{M}$ -- magnetic energy relation has the same qualitative behaviour as the original $\dot{M}$ -- $F_x$ relation. No break is seen in any of the $F_x$ -- magnetic energy
In this paper, we perform numerical modeling of the interstellar hydrogen fluxes measured by IBEX-Lo during orbit 23 (spring 2009) using a state-of-the-art kinetic model of the interstellar neutral hydrogen distribution in the heliosphere. This model takes into account the temporal and heliolatitudinal variations of the solar parameters as well as non-Maxwellian kinetic properties of the hydrogen distribution due to charge exchange in the heliospheric interface. We found that there is a qualitative difference between the IBEX-Lo data and the modeling results obtained with the three-dimensional, time-dependent model. Namely, the model predicts a larger count rate in energy bin~2 (20-41 eV) than in energy bin~1 (11-21 eV), while the data shows the opposite case. We perform study of the model parameter effects on the IBEX-Lo fluxes and the ratio of fluxes in two energy channels. We shown that the most important parameter, which has a major influence on the ratio of the fluxes in the two energy bins, is the solar radiation pressure. The parameter fitting procedure shows that the best agreement between the model result and the data occurs in the case when the ratio of the solar radiation pressure to the solar gravitation, $\mu_0$, is 1.26$^{+0.06}_{-0.076}$, and the total ionization rate of hydrogen at 1 AU is $\beta_{E,0}=3.7^{+0.39}_{-0.35}\times 10^{-7}$~s$^{-1}$. We have found that the value of $\mu_0$ is much larger than $\mu_0=0.89$, which is the value derived from the integrated solar Lyman-alpha flux data for the period of time studied. We discuss possible reasons for the differences.
Core-collapse supernovae are among the most powerful explosions in the Universe, releasing about $10^{53}~\mbox{erg}$ of energy on timescales of a few tens of seconds. These explosion events are also responsible for the production and dissemination of most of the heavy elements, making life as we know it possible. Yet exactly how they work is still unresolved. One reason for this is the sheer complexity and cost of a self-consistent, multi-physics, and multi-dimensional core-collapse supernova simulation, which is impractical, and often impossible, even on the largest supercomputers we have available today. To advance our understanding we instead must often use simplified models, teasing out the most important ingredients for successful explosions, while helping us to interpret results from higher fidelity multi-physics models. In this paper we investigate the role of instabilities in the core-collapse supernova environment. We present here simulation and visualization results produced by our code GenASiS.
In the last dozen years a wide and variegated mass of observational data revealed that the universe is now expanding at an accelerated rate. In the absence of a well-based theory to interpret the observations, cosmography provides information about the evolution of the Universe from measured distances, only assuming that the geometry of the can be described by the Friedmann-Lemaitre-Robertson -Walker metric. We perform a high-redshift analysis allows us to put constraints on the cosmographic parameters up to the 5fth order, thus inducing indirect constraints on any gravity theory. Here we are interested in the so called teleparallel gravity theory, f(T). Actually we use the analytical expressions of the present day values of f(T) and its derivatives as functions of the cosmographic parameters to map the cosmography region of confidences into confidence ranges for f(T) and its derivative. Moreover, we show how these can be used to test some teleparallel gravity models without solving the dynamical equations. Our analysis is based on the Union2 Type Ia Supernovae (SNIa) data set, a set of 28 measurements of the Hubble parameter, the Hubble diagram constructed from some Gamma Ray Bursts (GRB) luminosity distance indicators, and gaussian priors on the distance from the Baryon Acoustic Oscillations (BAO), and the Hubble constant h. To perform our statistical analysis and to explore the probability distributions of the cosmographic parameters we use the Markov Chain Monte Carlo Method (MCMC).
We show that provided the principal axes of the stress tensor of a stellar population are generally unequal and are oriented perpendicular to a set of orthogonal surfaces at each point, then those surfaces must be confocal quadric surfaces and the potential must be separable or Stackel. In particular, if the stress tensor is everywhere exactly aligned in spherical polar coordinates, then the potential must be of separable form in spherical polars (excepting degenerate cases where two or more of the semiaxes of ellipsoid are everywhere the same). Thus we provide a new, more powerful, proof of Eddington's theorem which does not rest on the restrictive ellipsoidal hypothesis.The theorem also holds true for alignment in cylindrical polar coordinates, which is used in the popular Jeans Anisotropic Models (JAM) of Cappellari (2006) and so the only physical JAM solutions correspond to separable potentials in cylindrical polars. We analyse data on the radial velocities and proper motions of a sample of $\sim 7300$ stars in the stellar halo of the Milky Way. We provide the distributions of the tilt angles or misalignments from both the spherical polar and prolate spheroidal coordinate systems. We show that in this sample the misalignment is always small ($< 7^\circ$) in the Northern hemisphere, though there are some deviations in the Southern hemisphere, where the data are sparse. Finally, we construct a triaxial stellar halo in a triaxial NFW dark matter halo using a made-to-measure method. Despite the triaxiality of the potential, the velocity ellipsoid of the stellar halo is nearly spherically aligned within $\sim 6^\circ$ for large regions of space, particularly outside the scale radius of the stellar halo. We conclude that the velocity ellipsoid can be close to spherically aligned for a much wider class of potentials than the strong constraints that arise from exact alignment might suggest.
To understand the nature of supernovae and neutron star (NS) formation, as well as binary stellar evolution and their interactions, it is important to probe the distribution of NS masses. Until now, all double NS (DNS) systems have been measured to have a mass ratio close to unity (q $\geq$ 0.91). Here we report the measurement of the individual masses of the 4.07-day binary pulsar J0453+1559 from measurements of the rate of advance of periastron and Shapiro delay: The mass of the pulsar is 1.559(5) $M_{\odot}$ and that of its companion is 1.174(4) $M_{\odot}$; q = 0.75. If this companion is also a neutron star (NS), as indicated by the orbital eccentricity of the system (e=0.11), then its mass is the smallest precisely measured for any such object. The pulsar has a spin period of 45.7 ms and a spin derivative of 1.8616(7) x$10^-19$; from these we derive a characteristic age of ~ 4.1 x $10^9$ years and a magnetic field of ~ 2.9 x $10^9$ G,i.e, this pulsar was mildly recycled by accretion of matter from the progenitor of the companion star. This suggests that it was formed with (very approximately) its current mass. Thus NSs form with a wide range of masses, which is important for understanding their formation in supernovae. It is also important for the search for gravitational waves released during a NS-NS merger: it is now evident that we should not assume all DNS systems are symmetric.
The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to gamma rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of gamma-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic gamma rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing gamma-ray observations and magnetospheric models in more detail.
The concept of highly relativistic electrons confined to blobs that are moving out with modestly relativistic speeds is often invoked to explain high energy blazar observations. The important parameters in this model such as the bulk Lorentz factor of the blob ($\Gamma$), the random Lorentz factor of the electrons ($\gamma$) and the blob size are typically observationally constrained, but its not clear how and why the energetic electrons are held together as a blob. Here we present some preliminary ideas based on scenarios for cosmic ray electron self-confinement that could lead to a coherent picture.
The spatial distribution of the tropospheric methane on Titan was measured using near-infrared spectroscopy. Ground-based observations at 1.5$\mu{\rm m}$ (H-band) were performed during the same night using instruments with adaptive optics at both the W. M. Keck Observatory and at the Paranal Observatory on 17 July 2014 UT. The integral field observations with SINFONI on the VLT covered the entire H-band at moderate resolving power, $R=\lambda/\Delta\lambda\approx1,500$, while the Keck observations were performed with NIRSPAO near 1.55254$\mu{\rm m}$ at higher resolution, $R\approx25,000$. The moderate resolution observations are used for flux calibration and for the determination of model parameters that can be degenerate in the interpretation of high resolution spectra. Line-by-line calculations of CH$_4$ and CH$_3$D correlated $k$ distributions from the HITRAN 2012 database were used, which incorporate revised line assignments near 1.5$\mu{\rm m}$. We fit the surface albedo and aerosol distributions in the VLT SINFONI observations that cover the entire H-band window and used these quantities to constrain the models of the high-resolution Keck NIRSPAO spectra when retrieving the methane abundances. Cassini VIMS images of the polar regions, acquired on 20 July 2014 UT, are used to validate the assumption that the opacity of tropospheric aerosol is relatively uniform below 10 km. We retrieved methane abundances at latitudes between 42$^{\circ}$ S and 80$^{\circ}$ N. The tropospheric methane in the Southern mid-latitudes was enhanced by a factor of $\sim$10--40% over the nominal profile that was measured using the GCMS on Huygens. The Northern hemisphere had $\sim$90% of the nominal methane abundance up to polar latitudes (80$^{\circ}$N). These measurements suggest that a source of saturated polar air is equilibrating with dryer conditions at lower latitudes.
Our understanding of the process of fast reconnection has undergone a dramatic change in the last 10 years driven, in part, by the availability of high-resolution numerical simulations that have consistently demonstrated the break-up of current sheets into magnetic islands, with reconnection rates that become independent of Lundquist number, challenging the belief that fast magnetic reconnection in flares proceeds via the Petschek mechanism that invokes pairs of slow-mode shocks connected to a compact diffusion region. The reconnection sites are too small to be resolved with images but these reconnection mechanisms, Petschek and the plasmoid instability, have reconnection sites with very different density and velocity structures and so can be distinguished by high-resolution line-profiles observations. Using IRIS spectroscopic observations we obtain a survey of typical line profiles produced by small-scale events thought to be reconnection sites on the Sun. Slit-jaw images are used to investigate the plasma heating and re-configuration at the sites. A sample of 15 events from two active regions is presented. The line profiles are complex with bright cores and broad wings extending to over 300 km/s. The profiles can be reproduced with the multiple magnetic islands and acceleration sites that characterise the plasmoid instability but not by bi-directional jets that characterise the Petschek mechanism. This result suggests that if these small-scale events are reconnection sites, then fast reconnection proceeds via the plasmoid instability, rather than the Petschek mechanism during small-scale reconnection on the Sun.
pt5m is a 0.5m robotic telescope located on the roof of the 4.2m William Herschel Telescope (WHT) building, at the Roque de los Muchachos Observatory, La Palma. Using a 5-position filter wheel and CCD detector, and bespoke control software, pt5m provides a high quality robotic observing facility. The telescope first began robotic observing in 2012, and is now contributing to transient follow-up and time-resolved astronomical studies. In this paper we present the scientific motivation behind pt5m, as well as the specifications and unique features of the facility. We also present an example of the science we have performed with pt5m, where we measure the radius of the transiting exoplanet WASP-33b. We find a planetary radius of 1.603 +/- 0.014 R(J).
In this work we study the process of energy dissipation triggered by a slow large scale motion of a magnetized conducting fluid. Our consideration is motivated by the problem of heating the solar corona, which is believed to be governed by fast reconnection events set off by the slow motion of magnetic field lines anchored in the photospheric plasma. To elucidate the physics governing the disruption of the imposed laminar motion and the energy transfer to small scales, we propose a simplified model where the large-scale motion of magnetic field lines is prescribed not at the footpoints but rather imposed volumetrically. As a result, the problem can be treated numerically with an efficient, highly-accurate spectral method, allowing us to use a resolution and statistical ensemble exceeding those of the previous work. We find that, even though the large-scale deformations are slow, they eventually lead to reconnection events that drive a turbulent state at smaller scales. The small-scale turbulence displays many of the universal features of field-guided MHD turbulence like a well developed inertial range spectrum. Based on these observations, we construct a phenomenological model that gives the scalings of the amplitude of the fluctuations and the energy dissipation rate as functions of the input parameters. We find a good agreement between the numerical results and the predictions of the model.
We present IFU observations with MUSE@VLT and deep imaging with FORS@VLT of a dwarf galaxy recently formed within the giant collisional HI ring surrounding NGC 5291. This TDG-like object has the characteristics of typical z=1-2 gas-rich spiral galaxies: a high gas fraction, a rather turbulent clumpy ISM, the absence of an old stellar population, a moderate metallicity and star formation efficiency. The MUSE spectra allow us to determine the physical conditions within the various complex substructures revealed by the deep optical images, and to scrutinize at unprecedented spatial resolution the ionization processes at play in this specific medium. Starburst age, extinction and metallicity maps of the TDG and surrounding regions were determined using the strong emission lines Hbeta, [OIII], [OI], [NII], Halpha and [SII] combined with empirical diagnostics. Discrimination between different ionization mechanisms was made using BPT--like diagrams and shock plus photoionization models. Globally, the physical conditions within the star--forming regions are homogeneous, with in particular an uniform half-solar oxygen abundance. At small scales, the derived extinction map shows narrow dust lanes. Regions with atypically strong [OI] emission line immediately surround the TDG. The [OI] / Halpha ratio cannot be easily accounted for by photoionization by young stars or shock models. At larger distances from the main star--forming clumps, a faint diffuse blue continuum emission is observed, both with the deep FORS images and MUSE data. It does not have a clear counterpart in the UV regime probed by GALEX. A stacked spectrum towards this region does not exhibit any emission line, excluding faint levels of star formation, nor stellar absorption lines that might have revealed the presence of old stars. Several hypotheses are discussed for the origin of these intriguing features.
Cosmic inflation is commonly assumed to be driven by quantum fields. Quantum mechanics predicts phenomena such as quantum fluctuations and tunneling of the field. Here we show an example of a quantum interference effect which goes beyond the semi-classical treatment and which may be of relevance in the early universe. We study the quantum coherent dynamics for a tilted, periodic potential, which results in genuine quantum oscillations of the inflaton field, analogous to Bloch oscillations in condensed matter and atomic systems. Our results show that quantum interference phenomena may be of relevance in cosmology.
Using a framework based on the $1+3$ formalism we carry out a study on axially and reflection symmetric dissipative fluids, in the quasi--static regime. We first derive a set of invariantly defined "velocities", which allow for an inambiguous definition of the quasi--static approximation. Next we rewrite all the relevant equations in this aproximation and extract all the possible, physically relevant, consequences ensuing the adoption of such an approximation. In particular we show how the vorticity, the shear and the dissipative flux, may lead to situations where different kind of "velocities" change of sign within the fluid distribution with respect to theirs sign on the boundary surface. It is shown that states of gravitational radiation are not {\it a priori} incompatible with the quasistatic--regime. However, any such state must last for an infinite period of time, thereby diminishing its physical relevance.
"Almost all" seems to be known about isolated stationary black holes in asymptotically flat space-times and about the behaviour of {\em test} matter and fields in their backgrounds. The black holes likely present in galactic nuclei and in some X-ray binaries are commonly being represented by the Kerr metric, but actually they are not isolated (they are detected only thanks to a strong interaction with the surroundings), they are not stationary (black-hole sources are rather strongly variable) and they also probably do not live in an asymptotically flat universe. Such "perturbations" may query the classical black-hole theorems (how robust are the latter against them?) and certainly affect particles and fields around, which can have observational consequences. In the present contribution we examine how the geodesic structure of the static and axially symmetric black-hole space-time responds to the presence of an additional matter in the form of a thin disc or ring. We use several different methods to show that geodesic motion may become chaotic, to reveal the strength and type of this irregularity and its dependence on parameters. The relevance of such an analysis for galactic nuclei is briefly commented on.
We consider a gravitational theory that contains the Einstein term, a scalar field and the quadratic Gauss-Bonnet term. We focus on the early-universe dynamics, and demonstrate that the Ricci scalar does not affect the cosmological solutions at early times, when the curvature is strong. We then consider a pure scalar-GB theory with a quadratic coupling function: for a negative coupling parameter, we obtain solutions that contain always an inflationary, de Sitter phase, while for a positive coupling function, we find instead expanding singularity-free solutions.
In the past decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, a clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focussing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.
It is of great interest to connect cosmology in the early universe to the Standard Model of particle physics. In this paper, we try to construct a bounce inflation model with the standard model Higgs boson, where the one loop correction is taken into account in the effective potential of Higgs field. In this model, a Galileon term has been introduced to eliminate the ghost mode when bounce happens. Moreover, due to the fact that the Fermion loop correction can make part of the Higgs potential negative, one naturally obtains a large equation of state(EoS) parameter in the contracting phase, which can eliminate the anisotropy problem. After the bounce, the model can drive the universe into the standard higgs inflation phase, which can generate nearly scale-invariant power spectrum.
Dark matter detectors with directional sensitivity have the capability to distinguish dark matter induced nuclear recoils from isotropic backgrounds, thus providing a smoking gun signature for dark matter in the Galactic halo. Here we propose a conceptually novel class of high directional sensitivity dark matter detectors utilizing graphene-based van der Waals heterostructures. The advantages over conventional low pressure gas time projection chamber-based directional detectors are discussed in detail. A practical implementation using graphene/hexagonal boron nitride and graphene/molybdenum disulfide heterostructures is presented together with an overwhelming amount of experimental evidence in strong support of its feasibility.
We present three-dimensional simulations of the dynamics of binary neutron
star (BNS) mergers from the late stage of the inspiral process up to $\sim 20$
ms after the system has merged, either to form a hyper-massive neutron star
(NS) or a rotating black hole (BH). We investigate five equal-mass models of
total gravitational mass $2.207$, $2.373$, $2.537$, $2.697$ and $2.854
M_\odot$, respectively, and four unequal mass models with
$M_{\mathrm{ADM}}\simeq 2.53\ M_\odot$ and $q\simeq 0.94$, $0.88$, $0.82$, and
$0.77$ (where $q = M^{(1)}/M^{(2)}$ is the mass ratio). We use a semi-realistic
equation of state (EOS) namely, the seven-segment piece-wise polytropic SLyPP
with a thermal component given by $\Gamma_{th} = 1.8$. We have also compared
the resulting dynamics (for one model) using both, the BSSN-NOK and CCZ4
methods for the evolution of the gravitational sector, and also different
reconstruction methods for the matter sector, namely PPM, WENO and MP5. Our
results show agreement and high resolution, but superiority of BSSN-NOK
supplemented by WENO reconstruction at lower resolutions.
One of the important characteristics of the present investigation is that,
for the first time, this has been done using only publicly available open
source software, in particular, the Einstein Toolkit code deployed for the
dynamical evolution and the LORENE code for the generation of the initial
models. All of the source code and parameters used for the simulations have
been made publicly available. This not only makes it possible to re-run and
re-analyze our data; it also enables others to directly build upon this work
for future research.
The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of finite gauge models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameters values. The inflationary models thus obtained are seen to be in good agreement with the most recent and accurate observational data. More specifically, the values of the relevant inflationary parameters, $n_s$ and $r$, are close to the corresponding ones in the $R^2$ and Higgs-driven inflation scenarios. It is shown that the model here constructed and Higgs-driven inflation belong to the same class of cosmological attractors.
The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials $V(\phi)=\lambda \vert\phi\vert^{n}/n$. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained $c_{\text{eff}}^2 = \omega=(n-2)/(n+2)$ with $\omega$ the effective equation of state. We also obtain the first order correction in $k^2/\omega_{\text{eff}}^2$, when the wavenumber $k$ of the perturbations is much smaller than the background oscillation frequency, $\omega_{\text{eff}}$. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for $\delta\phi$; and for sub-Hubble modes, exploiting Floquet's theorem.
We consider two potential non-accelerator signatures of generalizations of the well-studied constrained minimal supersymmetric standard model (CMSSM). In one generalization, the universality constraints on soft supersymmetry-breaking parameters are applied at some input scale $M_{in}$ below the grand unification (GUT) scale $M_{GUT}$, a scenario referred to as `sub-GUT'. The other generalization we consider is to retain GUT-scale universality for the squark and slepton masses, but to relax universality for the soft supersymmetry-breaking contributions to the masses of the Higgs doublets. As with other CMSSM-like models, the measured Higgs mass requires supersymmetric particle masses near or beyond the TeV scale. Because of these rather heavy sparticle masses, the embedding of these CMSSM-like models in a minimal SU(5) model of grand unification can yield a proton lifetime consistent with current experimental limits, and may be accessible in existing and future proton decay experiments. Another possible signature of these CMSSM-like models is direct detection of supersymmetric dark matter. The direct dark matter scattering rate is typically below the reach of the LUX-ZEPLIN (LZ) experiment if $M_{in}$ is close to $M_{GUT}$, but may lie within its reach if $M_{in} \lesssim 10^{11}$ GeV. Likewise, generalizing the CMSSM to allow non-universal supersymmetry-breaking contributions to the Higgs offers extensive possibilities for models within reach of the LZ experiment that have long proton lifetimes.
Compact binaries in our galaxy are expected to be one of the main sources of gravitational waves for the future eLISA mission. During the mission lifetime, many thousands of galactic binaries should be individually resolved. However, the identification of the sources, and the extraction of the signal parameters in a noisy environment is a real challenge for data analysis. So far, stochastic searches have proven to be the most successful for this problem. In this work we present the first application of a swarm-based algorithm combining particle swarm optimization, differential evolution and Markov Chain Monte Carlo. We first demonstrate the effectiveness of the algorithm for the case of a single binary in a 1 mHz search bandwidth. This interesting problem gives the algorithm plenty of opportunity to fail, as it can be easier to find a strong noise peak rather than the signal itself. After a successful detection of a fictitious low frequency source, as well as the verification binary RXJ0806.3+1527, we then applied the algorithm to the detection of multiple binaries, over different search bandwidths, in the cases of low and mild source confusion. In all cases, we show that we can successfully identify the sources, and recover the true parameters within a 99\% credible interval.
Links to: arXiv, form interface, find, astro-ph, recent, 1509, contact, help (Access key information)
We present a high-precision mass model of the galaxy cluster MACSJ1149.6+2223, based on a strong-gravitational-lensing analysis of Hubble Space Telescope Frontier Fields (HFF) imaging data. Our model includes 12 new multiply imaged galaxies, bringing the total to 22, comprised of 65 individual lensed images. Unlike the first two HFF clusters, Abell 2744 and MACSJ0416.1$-$2403, MACSJ1149 does not reveal as many multiple images in the HFF data as expected. Using the Lenstool software package and the new sets of multiple images, we model the cluster with several cluster-scale dark-matter halos and additional galaxy-scale halos for the cluster members. Consistent with previous analyses, we find the system to be complex, composed of four cluster-scale halos. Their spatial distribution and compactness, however, makes MACSJ1149 a less powerful lens. Our best-fit model predicts image positions with an RMS of 1.11". We measure the total projected mass inside a 200~kpc aperture as ($1.800\pm 0.004$)$\times 10^{14}$M$_{\odot}$, thus reaching again 1\% precision, following our previous HFF analyses of MACSJ0416.1$-$2403 and Abell 2744. In light of the discovery of the first resolved quadruply lensed supernova, SN Refsdal, in one of the multiply imaged galaxy identified in MACSJ1149, we use our revised mass model to investigate the time delays and predict the appearance of the next image.
The kinetic energy of a star in orbit about a supermassive black hole is a significant fraction of its rest mass energy when its periapse is comparable to its tidal radius. Upon its destruction, a fraction of this energy is extracted and injected into the stellar debris, half of which becomes unbound from the black hole, with the fastest material moving at $\sim 0.03 c$. In this paper, we present a formalism for determining the fate of these unbound debris streams (UDSs) as they depart from the black hole and interact with the surrounding gas. As the density and velocity varies along the length of a UDS, we find that hydrodynamical drag quickly shapes UDSs into loop-like structures, with the densest portions of the streams leading portions of lower density. As UDSs travel outwards, their drag against the ISM increases quadratically with distance, which causes UDSs to deposit their momentum and energy into the ambient medium before the surrounding shocked ISM has a chance to cool. This sudden injection of $\sim 10^{50}$ erg into the ambient medium generates a Sedov-like unbound debris remnant (UDR) that mimics supernova remnants (SNRs) in energetics and appearance, accelerates particles which will produce cosmic rays and synchrotron emission, and provides momentum feedback into the molecular clouds surrounding a black hole. We estimate that a few of these UDRs might be present within a couple degrees of the Galactic Center masquerading as SNRs, and that the UDR scenario is a plausible explanation for Sgr A East.
We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster M62 (NGC6266). Here we present the detailed abundance analysis of iron, titanium, and light-elements (O, Na, Al and Mg). For the majority (5 out 6) of the AGB targets we find that the abundances, of both iron and titanium, determined from neutral lines are significantly underestimated with respect to those obtained from ionized features, the latter being, instead, in agreement with those measured for the RGB targets. This is similar to recent findings in other clusters and may suggest the presence of Non-Local Thermodynamical Equilibrium (NLTE) effects. In the O-Na, Al-Mg and Na-Al planes, the RGB stars show the typical correlations observed for globular cluster stars. Instead, all the AGB targets are clumped in the regions where first generation stars are expected to lie, similarly to what recently found for the AGB population of NGC6752. While the sodium and aluminum abundance could be underestimated as a consequence of the NLTE bias affecting iron and titanium, the used oxygen line does not suffer from the same effects and the lack of O-poor AGB stars therefore is solid. We can thus conclude that none of the investigated AGB stars belong to the second stellar generation of M62. We also find a RGB star with extremely high sodium abundance ([Na/Fe] = +1.08 dex).
Disks of bodies orbiting a much more massive central object are extremely common in astrophysics. When the orbits comprising such disks are eccentric, we show they are susceptible to a new dynamical instability. Gravitational forces between bodies in the disk drive exponential growth of their orbital inclinations and clustering in their angles of pericenter, expanding an initially thin disk into a conical shape by giving each orbit an identical 'tilt' with respect to the disk plane. This new instability dynamically produces the unusual distribution of orbits observed for minor planets beyond Neptune, suggesting that the instability has shaped the outer Solar System. It also implies a large initial disk mass (1-10 Earth masses) of scattered bodies at hundreds of AU; we predict increasing numbers of detections of minor planets clustered in their angles of pericenter with high inclinations.
Exoplanet habitability is traditionally assessed by comparing a planet's semi-major axis to the location of its host star's "habitable zone," the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an "eccentricity-albedo degeneracy" for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass-radius relationships, and, when available, constraints on eccentricity to compute a number we call the "habitability index for transiting exoplanets" that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler Objects of Interest and find that planets that receive between 60-90% of the Earth's incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and JWST missions.
We quantify the role of Population (Pop) III core-collapse supernovae (SNe) as the first cosmic dust polluters. Starting from a homogeneous set of stellar progenitors with masses in the range [13 - 80] Msun, we find that the mass and composition of newly formed dust depend on the mixing efficiency of the ejecta and the degree of fallback experienced during the explosion. For standard Pop III SNe, whose explosions are calibrated to reproduce the average elemental abundances of Galactic halo stars with [Fe/H] < -2.5, between 0.18 and 3.1 Msun (0.39 - 1.76 Msun) of dust can form in uniformly mixed (unmixed) ejecta, and the dominant grain species are silicates. We also investigate dust formation in the ejecta of faint Pop III SN, where the ejecta experience a strong fallback. By examining a set of models, tailored to minimize the scatter with the abundances of carbon-enhanced Galactic halo stars with [Fe/H ] < -4, we find that amorphous carbon is the only grain species that forms, with masses in the range 2.7 10^{-3} - 0.27 Msun (7.5 10^{-4} - 0.11 Msun) for uniformly mixed (unmixed) ejecta models. Finally, for all the models we estimate the amount and composition of dust that survives the passage of the reverse shock, and find that, depending on circumstellar medium densities, between 3 and 50% (10 - 80%) of dust produced by standard (faint) Pop III SNe can contribute to early dust enrichment.
We present a comprehensive study of Far Ultraviolet Spectroscopic Explorer (FUSE) spectra (912-1190 A) of two members of the PG1159 spectral class, which consists of hydrogen-deficient (pre-) white dwarfs with effective temperatures in the range Teff = 75,000-200,000 K. As two representatives of the cooler objects, we have selected PG1707+427 (Teff = 85,000 K) and PG1424+535 (Teff = 110,000 K), complementing a previous study of the hotter prototype PG1159-035 (Teff = 140,000 K). The helium-dominated atmospheres are strongly enriched in carbon and oxygen, therefore, their spectra are dominated by lines from C III-IV and O III-VI, many of which were never observed before in hot stars. In addition, lines of many other metals (N, F, Ne, Si, P, S, Ar, Fe) are detectable, demonstrating that observations in this spectral region are most rewarding when compared to the near-ultraviolet and optical wavelength bands. We perform abundance analyses of these species and derive upper limits for several undetected light and heavy metals including iron-group and trans-iron elements. The results are compared to predictions of stellar evolution models for neutron-capture nucleosynthesis and good agreement is found.
Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). The average weak lensing mass is $\left(4.8\pm0.8\right)\,\times10^{14}\,\mathrm{M}_\odot$, consistent with the tSZ mass estimate of $\left(4.70\pm1.0\right)\,\times10^{14}\,\mathrm{M}_\odot$ which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously neglected.
We report the results of optical spectroscopy of the candidate evolved massive star MN44 revealed via detection of a circular shell with the Spitzer Space Telescope. First spectra taken in 2009 May--June showed the Balmer lines in emission as well as numerous emission lines of iron, which is typical of luminous blue variables (LBVs) near the visual maximum. New observations carried out in 2015 May--September detected significant changes in the spectrum, indicating that the star became hotter. We found that these changes are accompanied by significant brightness variability of MN44. In particular, the I_c-band brightness decreased by \approx 1.6 mag during the last six years and after reaching its minimum in 2015 June has started to increase. Using archival data, we also found that the I_c-band brightness increased by \approx 3 mag in \approx 30 yr preceding our observations. MN44 therefore represents the seventeenth known example of the Galactic bona fide LBVs. We detected a nitrogen-rich knot to the northwest of the star, which might represent an interstellar cloudlet interacting with the circumstellar shell. We discuss a possible association between MN44 and the INTEGRAL transient source of hard X-ray emission IGR J16327-4940, implying that MN44 might be either a colliding-wind binary or a high-mass X-ray binary.
Measuring the angular clustering of galaxies as a function of redshift is a powerful method for tracting information from the three-dimensional galaxy distribution. The precision of such measurements will dramatically increase with ongoing and future wide-field galaxy surveys. However, these are also increasingly sensitive to observational and astrophysical contaminants. Here, we study the statistical properties of three methods proposed for controlling such systematics - template subtraction, basic mode projection, and extended mode projection - all of which make use of externally supplied template maps, designed to characterise and capture the spatial variations of potential systematic effects. Based on a detailed mathematical analysis, and in agreement with simulations, we find that the template subtraction method in its original formulation returns biased estimates of the galaxy angular clustering. We derive closed-form expressions that should be used to correct results for this shortcoming. Turning to the basic mode projection algorithm, we prove it to be free of any bias, whereas we conclude that results computed with extended mode projection are biased. Within a simplified setup, we derive analytical expressions for the bias and discuss the options for correcting it in more realistic configurations. Common to all three methods is an increased estimator variance induced by the cleaning process, albeit at different levels. These results enable unbiased high-precision clustering measurements in the presence of spatially-varying systematics, an essential step towards realising the full potential of current and planned galaxy surveys.
The rapid neutron-capture process (r-process) is a major process to synthesize elements heavier than iron, but the astrophysical site(s) of r-process is not identified yet. Neutron star mergers (NSMs) are suggested to be a major r-process site from nucleosynthesis studies. Previous chemical evolution studies however require unlikely short merger time of NSMs to reproduce the observed large star-to-star scatters in the abundance ratios of r-process elements relative to iron, [Eu/Fe], of extremely metal-poor stars in the Milky Way (MW) halo. This problem can be solved by considering chemical evolution in dwarf spheroidal galaxies (dSphs) which would be building blocks of the MW and have lower star formation efficiencies than the MW halo. We demonstrate that enrichment of r-process elements in dSphs by NSMs using an N-body/smoothed particle hydrodynamics code. Our high-resolution model reproduces the observed [Eu/Fe] by NSMs with a merger time of 100 Myr when the effect of metal mixing is taken into account. This is because metallicity is not correlated with time up to ~ 300 Myr from the start of the simulation due to low star formation efficiency in dSphs. We also confirm that this model is consistent with observed properties of dSphs such as radial profiles and metallicity distribution. The merger time and the Galactic rate of NSMs are suggested to be <~ 300 Myr and ~ $10^{-4}$ yr$^{-1}$, which are consistent with the values suggested by population synthesis and nucleosynthesis studies. This study supports that NSMs are the major astrophysical site of r-process.
We present far-infrared spectral line observations of five galaxies from the LITTLE THINGS sample: DDO 69, DDO 70, DDO 75, DDO 155, and WLM. While most studies of dwarfs focus on bright systems or starbursts due to observational constraints, our data extend the observed parameter space into the regime of low surface brightness dwarf galaxies with low metallicities and moderate star formation rates. Our targets were observed with Herschel at the [CII] 158um, [OI] 63um, [OIII] 88um, and NII 122um emission lines using the PACS Spectrometer. These high-resolution maps allow us for the first time to study the far-infrared properties of these systems on the scales of larger star-forming complexes. The spatial resolution in our maps, in combination with star formation tracers, allows us to identify separate PDRs in some of the regions we observed. Our systems have widespread [CII] emission that is bright relative to continuum, averaging near 0.5% of the total infrared budget - higher than in solar-metallicity galaxies of other types. [NII] is weak, suggesting that the [CII] emission in our galaxies comes mostly from PDRs instead of the diffuse ionized ISM. These systems exhibit efficient cooling at low dust temperatures, as shown by ([OI]+[CII])/TIR in relation to 60um/100um, and low [OI]/[CII] ratios which indicate that [CII] is the dominant coolant of the ISM. We observe [OIII]/[CII] ratios in our galaxies that are lower than those published for other dwarfs, but similar to levels noted in spirals.
Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfv\'en wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates and that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.
We present a model atmosphere analysis of ultraviolet echelle spectra of KPD0005+5106 taken with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. The star is the hottest known pre-white dwarf (Teff = 200,000+-20,000 K, log g = 6.7+-0.3; Wassermann et al. 2010). Its atmosphere is composed of helium with trace amounts of metals. It is of the so-called O(He) spectral type that comprises very hot helium-rich pre-white dwarfs whose origin is debated. From neon and silicon ionisation balances, we derive tighter constraints on the effective temperature (195,000+-15,000 K) and improve previous abundance determinations of these elements. We confirm the idea that KPD0005+5106 is the descendant of an R Coronae Borealis (RCB) star and, hence, is the outcome of a binary-white dwarf merger. We discuss the relation of KPD0005+5106 to other O(He) and RCB stars.
The contact phase expected to precede the coalescence of two massive stars is poorly characterized due to the paucity of observational constraints. Here we report on the discovery of VFTS 352, an O-type binary in the 30 Doradus region, as the most massive and earliest spectral type overcontact system known to date. We derived the 3D geometry of the system, its orbital period $P_{\rm orb}=1.1241452(4)$ d, components' effective temperatures -- $T_1=42\,540\pm280$ K and $T_2=41\,120\pm290$ K -- and dynamical masses -- $M_1=28.63\pm0.30 M_{\odot}$ and $M_2 = 28.85\pm0.30 M_{\odot}$. Compared to single-star evolutionary models, the VFTS 352 components are too hot for their dynamical masses by about 2700 and 1100 K, respectively. These results can be explained naturally as a result of enhanced mixing, theoretically predicted to occur in very short-period tidally-locked systems. The VFTS 352 components are two of the best candidates identified so far to undergo this so-called chemically homogeneous evolution. The future of VFTS 352 is uncertain. If the two stars merge, a very rapidly rotating star will be produced. Instead, if the stars continue to evolve homogeneously and keep shrinking within their Roche Lobes, coalescence can be avoided. In this case, tides may counteract the spin down by winds such that the VFTS 352 components may, at the end of their life, fulfill the requirements for long gamma-ray burst (GRB) progenitors in the collapsar scenario. Independently of whether the VFTS 352 components become GRB progenitors, this scenario makes VFTS 352 interesting as a progenitor of a black hole binary, hence as a potential gravitational wave source through black hole-black hole merger.
We report on the X-ray spectral behavior within the steady states of GRS 1915+105. Our work is based on a vast data set obtained using the Proportional Counter Array on the Rossi X-ray Timing Explorer (RXTE/PCA) during the course of its entire mission (1996-2012). We also utilized 15 GHz radio data obtained using the Ryle Telescope from 1995 to 2006. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to them as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. We fit both steady-soft and steady-hard observations with a model comprised of 'simplcut' in tandem with a multicolor disk model 'ezdiskbb' with the steady-soft observations requiring a slightly more complex overall model. A majority of the steady-soft observations displays a roughly constant inner disk radius, reminiscent of canonical soft state black hole binaries. On the other hand, the steady-hard observations display an evolving disk truncation, which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes \eta=0.68+/-0.35 and \eta=1.12+/-0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of model parameters to the state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state. A large portion (80 %) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected.
H1504+65 is an extremely hot white dwarf (effective temperature Teff = 200,000 K) with a carbon-oxygen dominated atmosphere devoid of hydrogen and helium. This atmospheric composition was hitherto unique among hot white dwarfs (WDs), and it could be related to recently detected cooler WDs with C or O dominated spectra. The origin of the H and He deficiency in H1504+65 is unclear. To further assess this problem, we performed ultraviolet spectroscopy with the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope (HST). In accordance with previous far-ultraviolet spectroscopy performed with the Far Ultraviolet Spectroscopic Explorer, the most prominent lines stem from C IV, O V-VI, and Ne VI-VIII. Archival HST/COS spectra are utilized to prove that the supersoft X-ray source RX J0439.8-6809 is, considering the exotic composition, a twin of H1504+65 that is even hotter (Teff = 250,000 K). In contrast to earlier claims, we find that the star is not located in the Large Magellanic Cloud but a foreground object in the Galactic halo at a distance of 9.2 kpc, 5.6 kpc below the Galactic plane, receding with vrad = +220 km/s.
We present late-time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery, and show that 1.4 years after outburst the relativistic jet switched-off on a timescale less than tens of days, corresponding to a power-law decay faster than $t^{-70}$. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of $L_X \sim 5 \times 10^{42}$ erg s$^{-1}$, and are marginally inconsistent with a continuing decay of $t^{-5/3}$, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of $M_{BH}=3 \times 10^6$ M$_{\odot}$, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint AGN or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of $M_R \sim -22-23$. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape and spectrum are broadly similar to those seen in superluminous SNe, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.
To explore the origin of high-velocity gas in the direction of the Large Magellanic Cloud (LMC) we analyze absorption lines in the ultraviolet spectrum of a Galactic halo star that is located in front of the LMC at d=9.2 kpc distance. We study the velocity-component structure of low and intermediate metal ions in the spectrum of RXJ0439.8-6809, as obtained with the Cosmic Origins Spectrograph (COS) onboard HST, and measure equivalent widths and column densities for these ions. We supplement our COS data with a Far-Ultraviolet Spectroscopic Explorer spectrum of the nearby LMC star Sk-69 59 and with HI 21cm data from the Leiden-Argentina-Bonn (LAB) survey. Metal absorption towards RXJ0439.8-6809 is unambiguously detected in three different velocity components near v_LSR=0,+60, and +150 km/s. The presence of absorption proves that all three gas components are situated in front of the star, thus being located in the disk and inner halo of the Milky Way. For the high-velocity cloud (HVC) at v_LSR=+150 km/s we derive an oxygen abundance of [O/H]=-0.63 (~0.2 solar) from the neighbouring Sk-69 59 sightline, in accordance with previous abundance measurements for this HVC. From the observed kinematics we infer that the HVC hardly participates in the Galactic rotation. Our study shows that the HVC towards the LMC represents a Milky Way halo cloud that traces low-column density gas with relatively low metallicity. It rules out scenarios in which the HVC represents material close to the LMC that stems from a LMC outflow.
Scattering, during interplanetary transport in large, "gradual" solar energetic-particle (SEP) events, can cause element abundance enhancements or suppressions that depend upon the mass-to-charge ratio A/Q of the ions as an increasing power law early in events and a decreasing power law of the residual ions later. Since the Q values for the ions depend upon the source plasma temperature T, best fits to the power-law dependence of enhancements vs. A/Q provide a fundamentally new method to determine the most probable value of T for these events. We find that fits to the times of increasing and decreasing powers give similar values of T, most commonly (69%) in the range of 0.8-1.6 MK, consistent with the acceleration of ambient coronal plasma by shock waves driven out from the Sun by coronal mass ejections (CMEs). However, 24% of the SEP events studied showed plasma of 2.5-3.2 MK, typical of that previously determined for the smaller impulsive SEP events; these particles may be reaccelerated preferentially by quasi-perpendicular shock waves that require a high injection threshold that the impulsive-event ions exceed or simply by high intensities of impulsive suprathermal ions at the shock. The source-temperature distribution of ten higher-energy ground-level events (GLEs) in the sample is similar to that of the other gradual events. Some events show evidence that a portion of the ions have been further stripped of electrons; such events are smaller and tend to cluster late in the solar cycle.
We report the discovery of KELT-14b and KELT-15b, two hot Jupiters from the KELT-South survey. KELT-14b, an independent discovery of the recently announced WASP-122b, is an inflated Jupiter mass planet that orbits a $\sim5.0^{+0.3}_{-0.7}$ Gyr, $V$ = 11.0, G2 star that is near the main sequence turnoff. The host star, KELT-14 (TYC 7638-981-1), has an inferred mass $M_{*}$=$1.18_{-0.07}^{+0.05}$ M$_{\odot}$ and radius $R_{*}$=$1.37\pm{-0.08}$ R$_{\odot}$, and has T$_{eff}$=$5802_{-92}^{+95}$ K, $\log{g}$ = $4.23_{-0.04}^{+0.05}$ and [Fe/H] = $0.33\pm{-0.09}$. The planet orbits with a period of $1.7100588 \pm 0.0000025$ days ($T_{0}$=2457091.02863$\pm$0.00047) and has a radius R$_{P}$=$1.52_{-0.11}^{+0.12}$ R$_{J}$ and mass M$_{P}$ = $1.196\pm0.072$ M$_{J}$, and the eccentricity is consistent with zero. KELT-15b is another inflated Jupiter mass planet that orbits a $\sim$ $4.6^{+0.5}_{-0.4}$ Gyr, $V$ = 11.2, G0 star (TYC 8146-86-1) that is near the "blue hook" stage of evolution prior to the Hertzsprung gap, and has an inferred mass $M_{*}$=$1.181_{-0.050}^{+0.051}$ M$_{\odot}$ and radius $R_{*}$=$1.48_{-0.04}^{+0.09}$ R$_{\odot}$, and T$_{eff}$=$6003_{-52}^{+56}$ K, $\log{g}$=$4.17_{-0.04}^{+0.02}$ and [Fe/H]=$0.05\pm0.03$. The planet orbits on a period of $3.329441 \pm 0.000016$ days ($T_{0}$ = 2457029.1663$\pm$0.0073) and has a radius R$_{P}$=$1.443_{-0.057}^{+0.11}$ R$_{J}$ and mass M$_{P}$=$0.91_{-0.22}^{+0.21}$ M$_{J}$ and an eccentricity consistent with zero. KELT-14b has the second largest expected emission signal in the K-band for known transiting planets brighter than $K<10.5$. Both KELT-14b and KELT-15b are predicted to have large enough emission signals that their secondary eclipses should be detectable using ground-based observatories.
Halo Occupation Distribution (HOD) is a model giving the average number of galaxies in a dark matter halo, function of its mass and other intrinsic properties, like distance from halo center, luminosity and redshift of its constituting galaxies. It is believed that these parameters could also be related to the galaxy history of formation. We want to investigate more this relation in order to test and better refine this model. To do that, we extract HOD indicators from EUCLID mock catalogs for different luminosity cuts and for redshifts ranges going from 0.1 < z < 3.0. We study and interpret the trends of indicators function of these variations and tried to retrace galaxy formation history following the idea that galaxy evolution is the combination rather than the conflict of the two main proposed ideas nowadays: the older hierarchical mass merger driven paradigm and the recent downsizing star formation driven approach.
We show that decaying turbulent non-helical magnetic fields satisfy a self-similarity relation according to which the relevant scales increase as time passes (inverse cascade or inverse transfer). We compute analytically quantities which have previously been determined by numerical calculations, for example the average energy and the integral scale which are proportional to 1/t and the square root of t,respectively, where t is the time. We also briefly discuss self-similarity for the helical case.
Measuring environment for large numbers of distant galaxies is still an open problem, for which we need galaxy positions and redshifts. Photometric redshifts are more easily available for large numbers of galaxies, but at the price of larger uncertainties than spectroscopic ones. In this work we study how photometric redshifts affect the measurement of galaxy environment and how this may limit an analysis of the galaxy stellar mass function (GSMF) in different environments. Using mock galaxy catalogues, we measured the environment with a fixed aperture method, using each galaxy's true and photometric redshifts. We varied the fixed aperture volume parameters and the photometric redshift uncertainties. We then computed GSMF as a function of redshift and environment. We found that only when using high-precision photometric redshifts with $\sigma_{\Delta z/(1+z)} \le 0.01$, the most extreme environments can be reconstructed in a fairly accurate way, with a fraction $\ge 60\div 80\%$ of galaxies placed in the correct density quartile and a contamination of $\le 10\%$ by opposite quartile interlopers. A volume height comparable to the $\pm 1.5\sigma$ error of photometric redshifts grants a better reconstruction than other volume configurations. When using such an environmental measure, we found that any differences between the starting GSMF (divided accordingly to the true galaxy environment) will be damped on average of $\sim 0.3$ dex when using photometric redshifts, but will be still resolvable. These results may be used to interpret real data as we obtained them in a way that is fairly independent from how well the mock catalogues reproduce the real galaxy distribution. This work represents a preparatory study for future wide area photometric redshift surveys such as the Euclid Survey and we plan to apply these results to an analysis of the GSMF in the UltraVISTA Survey in future work.
Using the nine-year radio-pulsar timing data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), collected at Arecibo Observatory and the Green Bank Telescope, we have measured the positions, proper motions, and parallaxes for 37 millisecond pulsars. We report eleven significant parallax measurements and distance measurements, and nineteen lower limits on distance. We compare these measurements to distances predicted by the NE2001 interstellar electron density model and find them to be in general agreement. We use measured orbital-decay rates and spin-down rates to confirm two of the parallax distances and to place distance upper limits on other sources; these distance limits agree with the parallax distances with one exception, PSR J1024-0719, which we discuss at length. Using our measurements in combination with other published measurements, we calculate the velocity dispersion of the millisecond pulsar population in Galactocentric coordinates. We find the radial, azimuthal, and perpendicular dispersions to be 51, 42, and 25 km/s, respectively, in a model that allows for high-velocity outliers; or 83, 58, and 42 km/s for the full population. These velocity dispersions are far smaller than those of the canonical pulsar population, and are similar to older Galactic disk populations. This suggests that millisecond pulsar velocities are largely attributable to their being an old population rather than being artifacts of their birth and evolution as neutron star binary systems. The components of these velocity dispersions follow the same proportions as other Galactic populations, suggesting that our results are not biased by selection effects.
Eternal inflation is studied in the context of warm inflation. We focus on different tools to analyze the effects of dissipation and the presence of a thermal radiation bath on the fluctuation-dominated regime, for which the self-reproduction of Hubble-regions can take place. The tools we explore are the threshold inflaton field and threshold number of e-folds necessary to establish a self-reproduction regime and the counting of Hubble-regions, using generalized conditions for the occurrence of a fluctuation-dominated regime. We obtain the functional dependence of these quantities on the dissipation and temperature. A Sturm-Liouville analysis of the Fokker-Planck equation for the probability of having eternal inflation and an analysis for the probability of having eternal points are performed. We have considered the representative cases of inflation models with monomial potentials of the form of chaotic and hilltop ones. Our results show that warm inflation tends to initially favor the onset of a self-reproduction regime for smaller values of the dissipation. As the dissipation increases, it becomes harder than in cold inflation (i.e., in the absence of dissipation) to achieve a self-reproduction regime for both types of models analyzed. The results are interpreted and explicit analytical expressions are given whenever that is possible.
Interstellar abundance determinations from fits to X-ray absorption edges often rely on the following false assumptions: (1) the grains are "optically thin" at the observed X-ray wavelengths, and (2) scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. An open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), is presented that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.
We present statistical properties of diffuse Lyman-alpha halos (LAHs) around high-$z$ star-forming galaxies with large Subaru samples of Lyman-alpha emitters (LAEs) at $z=2.2$. We make subsamples defined by the physical quantities of LAEs' central Lyman-alpha luminosities, UV magnitudes, Lyman-alpha equivalent widths, and UV slopes, and investigate LAHs' radial surface brightness (SB) profiles and scale lengths $r_n$ as a function of these physical quantities. We find that there exist prominent LAHs around LAEs with faint Lyman-alpha luminosities, bright UV luminosities, and small Lyman-alpha equivalent widths in cumulative radial Lyman-alpha SB profiles. We confirm this trend with the anti-correlation between $r_n$ and Lyman-alpha luminosities (equivalent widths) based on the Spearman's rank correlation coefficient that is $\rho=-0.9$ ($-0.7$) corresponding to the $96\%$ ($93\%$) confidence level, although the correlation between $r_n$ and UV magnitudes is not clearly found in the rank correlation coefficient. Our results suggest that LAEs with properties similar to typical Lyman-break galaxies (with faint Lyman-alpha luminosities and small equivalent widths) possess more prominent LAHs. We investigate scenarios for the major physical origins of LAHs with our results, and find that the cold stream scenario is not preferred, due to the relatively small equivalent widths up to $77$\AA\ in LAHs that include LAEs' central components. There remain two possible scenarios of Lyman-alpha scattering in circum-galactic medium and satellite galaxies that cannot be tested with our observational data.
The total infra-red (IR) luminosity (L_IR) can be used as a robust measure of a galaxy's star formation rate (SFR), even in the presence of an active galactic nucleus (AGN), or when optical emission lines are weak. Unfortunately, existing all sky far-IR surveys, such as the Infra-red Astronomical Satellite (IRAS) and AKARI, are relatively shallow and are biased towards the highest SFR galaxies and lowest redshifts. More sensitive surveys with the Herschel Space Observatory are limited to much smaller areas. In order to construct a large sample of L_IR measurements for galaxies in the nearby universe, we employ artificial neural networks (ANNs), using 1136 galaxies in the Herschel Stripe 82 sample as the training set. The networks are validated using two independent datasets (IRAS and AKARI) and demonstrated to predict the L_IR with a scatter sigma ~ 0.23 dex, and with no systematic offset. Importantly, the ANN performs well for both star-forming galaxies and those with an AGN. A public catalog is presented with our L_IR predictions which can be used to determine SFRs for 331,926 galaxies in the Sloan Digital Sky Survey (SDSS), including ~ 129,000 SFRs for AGN-dominated galaxies for which SDSS SFRs have large uncertainties.
Since 2012, we have initiated developing systematically the simplistic to rigorous models to prove that highly super-Chandrasekhar, as well as highly sub-Chandrasekhar, limiting mass white dwarfs are possible to exist. We show that the mass of highly magnetized or modified Einstein's gravity induced white dwarfs could be significantly super-Chandrasekhar and such white dwarfs could altogether have a different mass-limit. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar-limit. However, observations of several peculiar, over- and under-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of super-Chandrasekhar limiting mass white dwarfs result in over-luminous SNeIa. We arrive at this revelation, first by considering simplistic, spherical, Newtonian white dwarfs with constant magnetic fields. Then we relax the Newtonian assumption and consider the varying fields, however obtain similar results. Finally, we consider a full scale general relativistic magnetohydrodynamic description of white dwarfs allowing their self-consistent departure from a sphere to ellipsoid. Subsequently, we also explore the effects of modified Einstein's gravity. Our finding questions the uniqueness of the Chandrasekhar-limit. It further argues for a possible second standard candle, which has many far reaching implications.
Aims. This program originated as the north pole region extension of the established exoplanet survey using 1.8 m telescope at Bohyunsan Optical Astronomy Observatory (BOAO). The aim of our paper is to find exoplanets in northern circumpolar stars with a precise radial velocity (RV) survey. Methods. We have selected about 200 northern circumpolar stars with the following criteria: Dec. > 70 degree, 0.6 < B-V < 1.6, HIPPARCOS_scat < 0.05 magnitude, and 5.0 < mv < 7.0. The high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was used for the RV survey. Chromospheric activities, the HIPPARCOS photometry, and line bisectors were analyzed to exclude other causes for the RV variations. Results. In 2010, we started to monitor the candidates and have completed initial screening for all stars for the last five years. We present the detection of four new exoplanets. Stars HD 11755, HD 12648, HD 24064, and 8 UMi all show evidence for giant planets in Keplerian motion. The companion to HD 11755 has a minimum mass of 6.5 M_Jup in a 433-day orbit with an eccentricity of 0.19. HD 12648 is orbited by a companion of minimum mass of 2.9 M_Jup having a period of 133 days and an eccentricity of 0.04. Weak surface activity was suspected in HD 24064. However, no evidence was found to be associated with the RV variations. Its companion has a minimum mass of 9.4 M_Jup, a period of 535 days, and an eccentricity of 0.35. Finally, 8 UMi has a minimum mass of 1.5 M_Jup, a period of 93 days with an eccentricity of 0.06.
We prove that, if the distribution function $F(v;r)$ of a steady-state stellar system is symmetric under velocity inversion such that $F(-v_1,v_2,v_3;r)=F(v_1,v_2,v_3;r)$ and the same for $v_2$ and $v_3$, where $(v_1,v_2,v_3)$ is the velocity component projected onto an orthogonal frame, then the potential within which the system is in equilibrium must be a separable (i.e. St\"ackel) potential. Furthermore, we find that the Jeans equations do imply that, if all mixed second moments of the velocity vanish, that is, $\langle v_iv_j\rangle=0$ for any $i\ne j$, in some St\"ackel coordinate system and the only non-vanishing fourth moments in the same coordinate are those in the form of $\langle v_i^4\rangle$ or $\langle v_i^2v_j^2\rangle$, then the potential must be separable in the same coordinates. Finally we also show that all second and fourth velocity moments of tracers with the odd power to the radial component $v_r$ being zero is a sufficient condition to guarantee the potential to be of the form $\Phi=f(r)+r^{-2}g(\theta,\phi)$.
The dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic context all the way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently close, they coalesce via the emission of gravitational waves. How often two BHs are involved in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger history. It is therefore necessary to start with full cosmological models including BH physics and a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich and gas-poor galaxies, leading to a sort of "dichotomy" between high-redshift and low-redshift galaxies, and late-type and early-type, typically more massive galaxies.
Arrival directions of ultra-high energy cosmic rays from the direction of ten brightest radio sources lying within 50 Mpc from our Galaxy were studied by using recent models of the largescale Galactic magnetic field. A detailed study, where also small-scale turbulent magnetic field component was implemented, is presented for the radiogalaxy Virgo A. This radiogalaxy is located far from the Galactic plane which leads to a unique image of this UHECR source candidate, if the flux is composed from a mixture of intermediate mass nuclei. We present a method suitable for identifying cosmic rays arriving from this close-by radiogalaxy.
Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved
spectral performance without any demand for active cooling. The Chandrayaan-1
X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used
an array of SCDs to map the global surface elemental abundances on the Moon
using the X-ray fluorescence (XRF) technique. The successful demonstration of
SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2
using the next-generation SCD sensors.
The objective of this paper is to demonstrate validation of a physical model
developed to simulate X-ray photon interaction and charge transportation in a
SCD. The model helps to understand and identify the origin of individual
components that collectively contribute to the energy-dependent spectral
response of the SCD. Furthermore, the model provides completeness to various
calibration tasks, such as generating spectral response matrices (RMFs -
redistribution matrix files), estimating efficiency, optimizing event selection
logic, and maximizing event recovery to improve photon-collection efficiency in
SCDs.
We compare simulation results of the SCD CCD54 with measurements obtained
during the ground calibration of C1XS and clearly demonstrate that our model
reproduces all the major spectral features seen in calibration data. We also
describe our understanding of interactions at different layers of SCD that
contribute to the observed spectrum. Using simulation results, we identify the
origin of different spectral features and quantify their contributions.
Cosmic-ray (CR) physics has been a prolific field of research for over a century. The open problems related to CR acceleration, transport and modulation are deeply connected with the indirect searches for particle dark matter (DM). In particular, the high-quality gamma-ray data released by Fermi-LAT are under the spotlight in the scientific community because of a recent claim about a inner Galaxy anomaly: The necessity to disentangle the astrophysical emission due to CR interactions from a possible DM signal is therefore compelling and requires a deep knowledge of several non-trivial aspects regarding CR physics. I review all these connections in this contribution. In the first part, I present a detailed overview on recent results regarding modeling of cosmic-ray (CR) production and propagation: I focus on the necessity to go beyond the standard and simplified picture of uniform and homogeneous diffusion, showing that gamma-ray data point towards different transport regimes in different regions of the Galaxy; I sketch the impact of large-scale structure on CR observables, and -- concerning the interaction with the Heliosphere -- I mention the necessity to consider a charge-dependent modulation scenario. In the second part, all these aspects are linked to the DM problem. I analyze the claim of a inner Galaxy excess and discuss the impact of the non-trivial aspects presented in the first part on our understanding of this anomaly.
We present the results of the spectroscopic and photometric monitoring campaign of ASASSN-15ed. The transient was discovered quite young by the All Sky Automated Survey for SuperNovae (ASAS-SN). Amateur astronomers allowed us to sample the photometric SN evolution around maximum light, which we estimate to have occurred on JD = 2457087.4 +- 0.6 in the r-band. Its apparent r-band magnitude at maximum was r = 16.91 +- 0.10, providing an absolute magnitude M(r) ~ -20.04 +- 0.20, which is slightly more luminous than the typical magnitudes estimated for Type Ibn SNe. The post-peak evolution was well monitored, and the decline rate (being in most bands around 0.1 mag/d during the first 25 d after maximum) is marginally slower than the average decline rates of SNe Ibn during the same time interval. The object was initially classified as a Type Ibn SN because early-time spectra were characterized by a blue continuum with superimposed narrow P-Cygni lines of He I, suggesting the presence of a slowly moving (1200-1500 km/s), He-rich circumstellar medium. Later on, broad P-Cygni He I lines became prominent. The inferred velocities, as measured from the minimum of the broad absorption components, were between 6000 and 7000 km/s. As we attribute these broad features to the SN ejecta, this is the first time we have observed the transition of a Type Ibn SN to a Type Ib SN.
We present spectroscopic and photometric observations for the Type Ibn supernova (SN) dubbed PSN J07285387+3349106. Using data provided by amateur astronomers, we monitored the photometric rise of the SN to maximum light, occurred on 2015 February 18.8 UT (JD(max,V) = 2457072.0 +- 0.8). PSN J07285387+3349106 exploded in the inner region of an infrared luminous galaxy, and is the most reddened SN Ibn discovered so far. We apply multiple methods to derive the total reddening to the SN, and determine a total colour excess E(B-V)(tot) = 0.99 +- 0.48 mag. Accounting for the reddening correction, which is affected by a large uncertainty, we estimate a peak absolute magnitude of M(V) = -20.30 +- 1.50. The spectra are dominated by continuum emission at early phases, and He I lines with narrow P-Cygni profiles are detected. We also identify weak Fe III and N II features. All these lines show an absorption component which is blue-shifted by about 900-1000 km/s. The spectra also show relatively broad He I line wings with low contrast, which extend to above 3000 km/s. From about 2 weeks past maximum, broad lines of O I, Mg II and the Ca II near-infrared triplet are identified. The composition and the expansion velocity of the circumstellar material, and the presence of He I and alpha-elements in the SN ejecta indicate that PSN J07285387+3349106 was produced by the core-collapse of a stripped-envelope star. We suggest that the precursor was WNE-type Wolf-Rayet star in its dense, He-rich circumstellar cocoon.
We present spectroscopic and photometric data of the Type Ibn supernova (SN) 2014av, discovered by the Xingming Observatory Sky Survey. A stringent pre-discovery detection limit indicates that the object was discovered soon after core-collapse. A prompt follow-up campaign arranged by amateur astronomers allows us to monitor the rising phase (lasting 10.6 days) and to accurately estimate the epoch of the maximum light, on 2014 April 23 (JD = 2456771.1 +- 1.2). The absolute magnitude of the SN at the maximum light is M(R) = -19.76 +- 0.16. The post-peak light curve shows an initial fast decline lasting about 3 weeks, and is followed by a slower decline in all bands until the end of the monitoring campaign. The spectra are initially characterized by a hot continuum. Later on, the temperature declines and a number of lines become prominent mostly in emission. In particular, later spectra are dominated by strong and narrow emission features of He I typical of Type Ibn supernovae (SNe), although there is clear evidence of lines from heavier elements (in particular O I, Mg II and Ca II). A forest of relatively narrow Fe II lines is also detected, showing P-Cygni profiles with the absorption component blue-shifted by about 1200 km/s. Another spectral feature often observed in interacting SNe, a strong blue pseudo-continuum, is seen in our latest spectra of SN 2014av. We discuss in this paper the physical parameters of SN 2014av in the context of the Type Ibn supernova variety, and revise the characterization of this SN Type on the basis of new observational evidences.
We report here on the determination of plasma physical parameters across a shock driven by a Coronal Mass Ejection using White Light (WL) coronagraphic images and Radio Dynamic Spectra (RDS). The event analyzed here is the spectacular eruption that occurred on June 7th 2011, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the SOHO/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2-12 R$_\odot$ in an angular interval of about 110$^\circ$. In these intervals we derived 2-Dimensional (2D) maps of electron density, shock velocity and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number $M_\text{A}$ and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2-4 R$_\odot$) the whole shock surface is super-Alfv\'enic, while later on (i.e. higher up) it becomes super-Alfvenic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over a 10 R$_\odot$ altitude and $\sim 110^\circ$ latitude intervals.
The current need for atomic data to model stellar spectra obtained in various wavelength ranges is described. The level of completeness and accuracy of these data is discussed.
A primordial inflationary phase allows one to erase any possible anisotropic expansion thanks to the cosmic no-hair theorem. If there is no global anisotropic stress, then the anisotropic expansion rate tends to decrease. What are the observational consequences of a possible early anisotropic phase? We first review the dynamics of anisotropic universes and report analytic approximations. We then discuss the structure of dynamical equations for perturbations and the statistical properties of observables, as well as the implication of a primordial anisotropy on the quantization of these perturbations during inflation. Finally we briefly review models based on primordial vector field which evade the cosmic no-hair theorem.
In the last few years the Fermi-LAT instrument has detected GeV gamma-ray emission from several novae. Such GeV emission can be interpreted in terms of inverse Compton emission from electrons accelerated in the shock or in terms of emission from hadrons accelerated in the same conditions. The latter might reach much higher energies and could produce a second component in the gamma-ray spectrum at TeV energies. We perform follow-up observations of selected novae and dwarf novae in search of the second component in TeV energy gamma rays. This can shed light on the acceleration process of leptons and hadrons in nova explosions. We have performed observations with the MAGIC telescopes of 3 sources, a symbiotic nova YY Her, a dwarf nova ASASSN-13ax and a classical nova V339 Del, shortly after their outbursts. We did not detect TeV gamma-ray emission from any of the objects observed. The TeV upper limits from MAGIC observations and the GeV detection by Fermi constrain the acceleration parameters for electrons and hadrons.
The pulsar wind nebula (PWN) 3C 58 has been proposed as a good candidate for detection at VHE (VHE; E>100 GeV) for many years. It is powered by one of the highest spin-down power pulsars known (5\% of Crab pulsar) and it has been compared to the Crab Nebula due to its morphology. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), and upper limit of 2.4\% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65\% C.U. above 1 TeV. We report the first significant detection of PWN 3C 58 at TeV energies. According to our results 3C 58 is the least luminous VHE gamma-ray PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. If we consider an unexpectedly high FIR density according to GALPROP, the data can also be reproduced by models assuming a 3.2 kpc distance. A low magnetic field, far from equipartition, is required to explain the VHE data. Hadronic contribution from the hosting supernova remnant (SNR) requires an unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.
We present high spatial resolution observations of chromospheric evaporation in the flare SOL2014-03-29T17:48. Interface Region Imaging Spectrograph (IRIS) observations of the FeXXI 1354.1 A line indicate evaporating plasma at a temperature of 10 MK along the flare ribbon during the flare peak and several minutes into the decay phase with upflow velocities between 30 km s$^{-1}$ and 200 km s$^{-1}$. Hard X-ray (HXR) footpoints were observed by RHESSI for two minutes during the peak of the flare. Their locations coincided with the locations of the upflows in parts of the southern flare ribbon but the HXR footpoint source preceded the observation of upflows in FeXXI by 30-75 seconds. However, in other parts of the southern ribbon and in the northern ribbon the observed upflows were not coincident with a HXR source in time nor space, most prominently during the decay phase. In this case evaporation is likely caused by energy input via a conductive flux that is established between the hot (25 MK) coronal source, which is present during the whole observed time-interval, and the chromosphere. The presented observations suggest that conduction may drive evaporation not only during the decay phase but also during the flare peak. Electron beam heating may only play a role in driving evaporation during the initial phases of the flare.
We investigate if the active galactic nucleus (AGN) of Mrk 590, whose supermassive black hole was until recently highly accreting, is turning off due to a lack of central gas to fuel it. We analyse new sub-arcsecond resolution ALMA maps of the $^{12}$CO(3-2) line and 344 GHz continuum emission in Mrk 590. We detect no $^{12}$CO(3-2) emission in the inner 150 pc, constraining the central molecular gas mass to $M({\rm H_2}) \lesssim 1.6 \times 10^5\, {M_{\odot}}$, no more than a typical giant molecular gas cloud. However, there is still potentially enough gas to fuel the black hole for another $2.6 \times 10^5$ years assuming Eddington-limited accretion. We therefore cannot rule out that the AGN may just be experiencing a temporary feeding break, and may turn on again in the near future. We discover a ring-like structure at a radius of $\sim 1$ kpc, where a gas clump exhibiting disturbed kinematics and located just $\sim 200$ pc west of the AGN, may be refueling the centre. Mrk 590 does not have significantly less gas than other nearby AGN host galaxies at kpc scales, confirming that gas reservoirs at these scales provide no direct indication of on-going AGN activity and accretion rates. Continuum emission detected in the central 150 pc likely originates from warm AGN-heated dust, although contributions from synchrotron and free-free emission cannot be ruled out.
Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS1149-JD galaxy at z=9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882 ([PCB2012] 2882 is the NED-searchable name for this source.), source number 2882 in the Hubble Space Telescope ( HST) Cluster Lensing and Supernova (CLASH) catalog of MACS J1149.6+2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z=0.99. We combine the GISMO 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution (SED) of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54/mu Msun yr-1, and its dust mass is about 5 10^7/mu Msun, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae (CCSN) and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the ISM.
We explore magnetic-field amplification due to the Kelvin-Helmholtz instability during binary neutron star mergers. By performing high-resolution general relativistic magnetohydrodynamics simulations with a resolution of $17.5$ m for $4$--$5$ ms after the onset of the merger on the Japanese supercomputer "K", we find that an initial magnetic field of moderate maximum strength $10^{13}$ G is amplified at least by a factor of $\approx 10^3$. We also explore the saturation of the magnetic-field energy and our result shows that it is likely to be $\gtrsim 4 \times 10^{50}$ erg, which is $\gtrsim 0.1\%$ of the bulk kinetic energy of the merging binary neutron stars.
The Martin-Puplett interferometer (MPI) is a differential Fourier transform spectrometer (FTS), measuring the difference between spectral brightness at two input ports. This unique feature makes the MPI an optimal zero instrument, able to detect small brightness gradients embeddend in a large common background. In this paper we investigate experimentally the common-mode rejection achievable in the MPI at mm wavelengths, and discuss the use of the instrument to measure the spectrum of cosmic microwave background (CMB) anisotropy.
We present a comprehensive X-ray study of the population of supernova remnants (SNRs) in the LMC. Using primarily XMM-Newton, we conduct a systematic spectral analysis of LMC SNRs to gain new insights on their evolution and the interplay with their host galaxy. We combine all the archival XMM observations of the LMC with those of our Very Large Programme survey. We produce X-ray images and spectra of 51 SNRs, out of a list of 59. Using a careful modeling of the background, we consistently analyse all the X-ray spectra and measure temperatures, luminosities, and chemical compositions. We investigate the spatial distribution of SNRs in the LMC and the connection with their environment, characterised by various SFHs. We tentatively type all LMC SNRs to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We compare the X-ray-derived column densities to HI maps to probing the 3D structure of the LMC. This work provides the first homogeneous catalogue of X-ray spectral properties of LMC SNRs. It offers a complete census of LMC SNRs exhibiting Fe K lines (13% of the sample), or revealing contribution from hot SN ejecta (39%). Abundances in the LMC ISM are found to be 0.2-0.5 solar, with a lower [$\alpha$/Fe] than in the Milky Way. The ratio of CC/type Ia SN in the LMC is $N_{\mathrm{CC}}/N_{\mathrm{Ia}} = 1.35(_{-0.24}^{+0.11})$, lower than in local SN surveys and galaxy clusters. Comparison of X-ray luminosity functions of SNRs in Local Group galaxies reveals an intriguing excess of bright objects in the LMC. We confirm that 30 Doradus and the LMC Bar are offset from the main disc of the LMC, to the far and near sides, respectively. (abridged)
We report the discovery of an L dwarf companion to the A3V star \beta{} Circini. VVV J151721.49-585131.5, or \beta{} Cir B, was identified in a proper motion and parallax catalogue of the Vista Variables in the V\'{i}a L\'{a}ctea survey as having near infrared luminosity and colour indicative of an early L dwarf, and a proper motion and parallax consistent with that of \beta{} Cir. The projected separation of $\sim$3.6' corresponds to $6656$ au, which is unusually wide. The most recent published estimate of the age of the primary combined with our own estimate based on newer isochrones yields an age of $370-500$ Myr. The system therefore serves as a useful benchmark at an age greater than that of the Pleiades brown dwarfs and most other young L dwarf benchmarks. We have obtained a medium resolution echelle spectrum of the companion which indicates a spectral type of L1.0$\pm$0.5 and lacks the typical signatures of low surface gravity seen in younger brown dwarfs. This suggests that signs of low surface gravity disappear from the spectra of early L dwarfs by an age of $\sim370-500$ Myr, as expected from theoretical isochrones. The mass of \beta{} Cir B is estimated from the BHAC15 isochrones as $0.056\pm0.007$ M$_{\odot}$.
We report short-cadence monitoring of a radio-quiet Active Galactic Nuclei (AGN), NGC7469, at 95 GHz (3 mm) over a period of 70 days with the CARMA telescope. The AGN varies significantly ($\pm3\sigma$ from the mean) by a factor of two within 4-5 days. The intrinsic 95 GHz variability amplitude in excess of the measurement noise (10%) and relative to the mean flux is comparable to that in the X-rays, and much higher than at 8.4 GHz. The mm-band variability and its similarity to the X-ray variability adds to the evidence that the mm and X-ray emission have the same physical origin, and are associated with the accretion disk corona.
Gamma-ray bursts (GRBs) are the most luminous explosions in the universe, yet the nature and physical properties of their energy sources are far from understood. Very important clues, however, can be inferred by studying the afterglows of these events. We present optical and X-ray observations of GRB 130831A obtained by Swift, Chandra, Skynet, RATIR, Maidanak, ISON, NOT, LT and GTC. This burst shows a steep drop in the X-ray light-curve at $\simeq 10^5$ s after the trigger, with a power-law decay index of $\alpha \sim 6$. Such a rare behaviour cannot be explained by the standard forward shock (FS) model and indicates that the emission, up to the fast decay at $10^5$ s, must be of "internal origin", produced by a dissipation process within an ultrarelativistic outflow. We propose that the source of such an outflow, which must produce the X-ray flux for $\simeq 1$ day in the cosmological rest frame, is a newly born magnetar or black hole. After the drop, the faint X-ray afterglow continues with a much shallower decay. The optical emission, on the other hand, shows no break across the X-ray steep decrease, and the late-time decays of both the X-ray and optical are consistent. Using both the X-ray and optical data, we show that the emission after $\simeq 10^5$ s can be explained well by the FS model. We model our data to derive the kinetic energy of the ejecta and thus measure the efficiency of the central engine of a GRB with emission of internal origin visible for a long time. Furthermore, we break down the energy budget of this GRB into the prompt emission, the late internal dissipation, the kinetic energy of the relativistic ejecta, and compare it with the energy of the associated supernova, SN 2013fu.
We review recent work on 111 Fe-rich impulsive solar energetic ($\sim$ 3 MeV/nuc) particle (SEP) events observed from 1994 to 2013. Strong elemental abundance enhancements scale with A/Q, the ion mass-to-charge ratio, as (A/Q)$^{\alpha}$, where 2 $< \alpha <$ 8 for different events. Most Fe-rich events are associated with both flares and coronal mass ejections (CMEs), and those with larger $\alpha$ are associated with smaller flares, slower and narrower CMEs, and lower SEP event fluences. The narrow equilibrium temperature range required to fit the observed A/Q enhancements is 2.5--3.2 MK, far below the characteristic flare temperatures of $>$ 10 MK. Only a small number of SEP events slightly outside this temperature range were found in an expanded search of impulsive Fe-rich events. Event characteristics are similar for events isolated in time and those occurring in clusters. The current challenge is to determine the solar sources of the Fe-rich events. Ambient coronal regions in the 2.5--3.2 MK range are broadly distributed both in and outside active regions. We explore the possibility of acceleration from thermal plasmas at reconnecting current sheets in the context of observed standard and blowout jets. Recent current sheet reconnection modelling provides a basis for the A/Q enhancements.
Tidal streams of globular clusters are ideal tracers of the Galactic gravitational potential. Compared to the few known, complex and diffuse dwarf-galaxy streams, they are kinematically cold, have thin morphologies and are abundant in the halo of the Milky Way. Their coldness and thinness in combination with potential epicyclic substructure in the vicinity of the stream progenitor turns them into high-precision scales. With the example of Palomar 5, we demonstrate how modeling of a globular cluster stream allows us to simultaneously measure the properties of the disrupting globular cluster, its orbital motion, and the gravitational potential of the Milky Way.
A new interstellar molecule, CH$_3$NCO (methyl isocyanate), has been detected using the 12 m telescope of the Arizona Radio Observatory (ARO). CH$_3$NCO was identified in spectra covering 48 GHz (68-116 GHz) in the 3 mm segment of a broadband survey of Sgr B2(N). Thirty very favorable rotational lines (K$_a$ = 0 and K$_a$ = 1 only; E$_u$ < 60 K) originating in five consecutive transitions (J = 8 $\rightarrow$ 7, 9 $\rightarrow$ 8, 10 $\rightarrow$ 9, 11 $\rightarrow$ 10, and 12 $\rightarrow$ 11) in both the A and E internal rotation species are present in this frequency range. Emission was observed at all of the predicted frequencies, with seventeen lines appearing as distinct, uncontaminated spectral features, clearly showing the classic a-type, asymmetric top pattern, with T$_R$* ~ 20-70 mK. The CH$_3$NCO spectra also appear to exhibit two velocities components near V$_{LSR}$ ~ 62 and 73 km s$^{-1}$, both with $\Delta$V$_{1/2}$ ~ 10 km s$^{-1}$ - typical of molecules such as CH$_2$CHCN, HNCO, and HCOOCH$_3$ in Sgr B2(N). The column density of CH$_3$NCO in Sgr B2(N) was determined to be N$_{tot}$ ~ 2.3 x 10$^{13}$ cm$^{-2}$ and 1.5 x 10$^{13}$ cm$^{-2}$ for the 62 and 73 km s$^{-1}$ components, corresponding to fractional abundances, relative to H$_2$, of f ~ 7.6 x 10$^{-12}$ and 5.0 x 10$^{-12}$, respectively. CH$_3$NCO was recently detected in volatized material from comet 67P/Churyumov-Gerasimenko by Rosetta's Philae lander, with an abundance ~1.3% of water; in Sgr B2(N), CH$_3$NCO is roughly ~0.04% of the H$_2$O abundance.
The methodical properties of the original difference method for the search of the anisotropy at the knee region of the primary cosmic radiation energy spectrum are analyzed. The main feature of the suggested method is a study of the difference in the EAS characteristics in different directions but not their intensity. It is shown that the method is stable to the random experimental errors and allows to separate the anomalies related to the laboratory coordinate system from the anomalies in the celestial coordinates. The method uses multiple scattering of the charge particles in the Galaxy magnetic fields to study the whole celestial sphere including the regions outside of the line of sight of the installation.
We consider cosmological solutions to general relativity with a single barotropic fluid, where the pressure is a general function of the density, $p = f(\rho)$. We derive conditions for static and oscillating solutions and provide examples, extending earlier work to these simpler and more general single-fluid cosmologies. Generically we expect such solutions to suffer from instabilities, through effects such as quantum fluctuations or tunneling to zero size. We also find a classical instability ("no-go" theorem) for oscillating solutions of a single barotropic perfect fluid due to a necessarily negative squared sound speed.
In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.
Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9 sigma annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusp-like behaviour of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, meaning that nonrelativistic calculations may greatly underestimate the cross section.
The influence of the electron environment on the alpha decay is elucidated. Within the frame of a simple model based on the generalized Thomas-Fermi theory of the atom, it is shown that the increase of the electron density around the parent nucleus drives a mechanism which shortens the lifetime. Numerical results are provided for 144Nd, 154Yb and 210Po. Depending on the nuclide, fractional lifetime reduction relative to the bare nucleus is of the order of 0.1-1% in free ions, neutral atoms and ordinary matter, but may reach up to 10% at matter densities as high as 10^4 g/cm3, in a high-Z matrix. The effect induced by means of state-of-the-art compression techniques, although much smaller than previously found, would however be measurable. The extent of the effect in ultra-high-density stellar environments might become significant and would deserve further investigation.
In the past years the spotlight of the search for dark matter particles widened to the low mass region, both from theoretical and experimental side. We discuss results from data obtained in 2013 with a single detector TUM40. This detector is equipped with a new upgraded holding scheme to efficiently veto backgrounds induced by surface alpha decays. This veto, the low threshold of 0.6keV and an unprecedented background level for CaWO$_4$ target crystals render TUM40 the detector with the best overall performance of CRESST-II phase 2 (July 2013 - August 2015). A low-threshold analysis allowed to investigate light dark matter particles (<3GeV/c$^2$), previously not accessible for other direct detection experiments.
Using an experimentally constrained single-nucleon momentum distribution for cold nuclear matter in a nonlinear relativistic mean field (RMF) model, we study the equation of state (EOS) of asymmetric nucleonic matter (ANM), especially the density dependence of nuclear symmetry energy $E_{\rm{sym}}(\rho)$. Firstly, as a test of the model, the average nucleon kinetic energy extracted recently from electron-nucleus scattering experiments using a neutron-proton dominance model is well reproduced by the RMF model incorporating effects of the SRC (Short-range correlation)-induced high momentum nucleons, while it is significantly under predicted by the traditional RMF model using a step function for the single-nucleon momentum distribution as in a free Fermi gas (FFG). Secondly, consistent with earlier findings within non-relativistic models, the kinetic symmetry energy of quasi-nucleons is found to have a negative value of $E^{\rm{kin}}_{\rm{sym}}(\rho_0)=-16.94\pm13.66\,\rm{MeV}$ which is dramatically different from the prediction of $E^{\rm{kin}}_{\rm{sym}}(\rho_0)\approx 12.5$ MeV by FFG models at nuclear matter saturation density of $\rho_0=0.16\,\rm{fm}^{-3}$. Thirdly, comparing the calculations with and without the high momentum nucleons using two sets of RMF model parameters both reproducing identically all empirical constraints on the EOS of symmetric nuclear matter (SNM) and the symmetry energy of ANM at $\rho_0$, the SRC-modified single-nucleon momentum distribution is found to make the $E_{\rm{sym}}(\rho)$ more concave around $\rho_0$ by softening it significantly at both sub-saturation and supra-saturation densities, leading to a more strongly isospin-dependent incompressibility of ANM in better agreement with existing experimental data.
Links to: arXiv, form interface, find, astro-ph, recent, 1509, contact, help (Access key information)
Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of $\gamma$-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3\deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential $\gamma$-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into $b\overline{b}$, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for $m_{\mathrm{DM}}\lesssim100\,\mathrm{GeV}$. In a more optimistic scenario, we exclude $\langle \sigma v \rangle\sim3\times10^{-26}\,\mathrm{cm^{3}\,s^{-1}}$ for $m_{\mathrm{DM}}\lesssim40\,\mathrm{GeV}$ for the same channel. Finally, we derive upper limits on the $\gamma$-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than $\sim6\%$.
High-precision time series photometry with the Kepler satellite has been crucial to our understanding both of exoplanets, and via asteroseismology, of stellar physics. After the failure of two reaction wheels, the Kepler satellite has been repurposed as Kepler-2 (K2), observing fields close to the ecliptic plane. As these fields contain many more bright stars than the original Kepler field, K2 provides an unprecedented opportunity to study nearby objects amenable to detailed follow-up with ground-based instruments. Due to bandwidth constraints, only a small fraction of pixels can be downloaded, with the result that most bright stars which saturate the detector are not observed. We show that engineering data acquired for photometric calibration, consisting of collateral `smear' measurements, can be used to reconstruct light curves for bright targets not otherwise observable with Kepler/K2. Here we present some examples from Kepler Quarter 6 and K2 Campaign 3, including the delta Scuti variables HD 178875 and 70 Aqr, and the red giant HR 8500 displaying solar-like oscillations. We compare aperture and smear photometry where possible, and also study targets not previously observed. These encouraging results suggest this new method can be applied to most Kepler and K2 fields.
The progenitors of type-IIb supernovae (SNe) are believed to have lost their H-rich envelopes almost completely in the direct pre-SN phase. Recently the first 'flash spectrum' of a SN IIb (SN2013cu) has been presented, taken early enough to study its immediate circumstellar medium (CSM). Similar to a previous study by Groh (2014) we analyse the structure and chemical composition of the optically-thick CSM using non-LTE model atmospheres. For the first time we take light-travel time (LTT) effects on the spectrum formation into account, which affect the shapes and strengths of the observable emission lines, as well as the inferred SN luminosity. Based on the new CSM parameters we estimate a lower limit of ~0.3Msun for the CSM mass, which is a factor 10-100 higher than previous estimates. The spectral fit implies a CSM in the form of a homogeneous and spherically symmetric superwind whose mass-loss rate exceeds common expectations by up to two orders of magnitude. The derived chemical composition is in agreement with a progenitor that has just left, or is just about to leave the Red-Supergiant (RSG) stage, confirming the standard picture for the origin of SNe IIb. Due to its extreme mass loss the SN progenitor will likely appear as extreme RSG, Luminous Blue Variable (LBV), or Yellow Hypergiant (YHG). The direct detection of a superwind, and the high inferred CSM mass suggest that stellar wind mass loss may play an important role in the formation of SNe IIb.
We report the discovery of KELT-4Ab, an inflated, transiting Hot Jupiter orbiting the brightest component of a hierarchical triple stellar system. The host star is an F star with $T_{\rm eff}=6206\pm75$ K, $\log g=4.108\pm0.014$, $\left[{\rm Fe}/{\rm H}\right]=-0.116_{-0.069}^{+0.065}$, ${\rm M_*}=1.201_{-0.061}^{+0.067} \ {\rm M}_{\odot}$, and ${\rm R_*}=1.610_{-0.068}^{+0.078} \ {\rm R}_{\odot}$. The best-fit linear ephemeris is $\rm {BJD_{TDB}} = 2456193.29157 \pm 0.00021 + E\left(2.9895936 \pm 0.0000048\right)$. With a magnitude of $V\sim10$, a planetary radius of $1.699_{-0.045}^{+0.046} \ {\rm R_J}$, and a mass of $0.902_{-0.059}^{+0.060} \ {\rm M_J}$, it is the brightest host among the population of inflated Hot Jupiters ($R_P > 1.5R_J$), making it a valuable discovery for probing the nature of inflated planets. In addition, its existence within a hierarchical triple and its proximity to Earth ($210$ pc) provides a unique opportunity for dynamical studies with continued monitoring with high resolution imaging and precision radial velocities. In particular, the motion of the binary stars around each other and of both stars around the primary star relative to the measured epoch in this work should be detectable when it rises in October 2015.
We present results from recent Suzaku and Chandra X-ray, and MMT optical observations of the strongly merging "double cluster" A1750 out to its virial radius, both along and perpendicular to a putative large-scale structure filament. Some previous studies of individual clusters have found evidence for ICM entropy profiles that flatten at large cluster radii, as compared with the self-similar prediction based on purely gravitational models of hierarchical cluster formation, and gas fractions that rise above the mean cosmic value. Weakening accretion shocks and the presence of unresolved cool gas clumps, both of which are expected to correlate with large scale structure filaments, have been invoked to explain these results. In the outskirts of A1750, we find entropy profiles that are consistent with self-similar expectations, and gas fractions that are consistent with the mean cosmic value, both along and perpendicular to the putative large scale filament. Thus, we find no evidence for gas clumping in the outskirts of A1750, in either direction. This may indicate that gas clumping is less prevalent in lower temperature (kT = 4 keV) and mass systems, as found in simulations and in a few isolated clusters of similar mass studied out to their virial radii. Cluster mass may therefore play a more important role in gas clumping than dynamical state. Finally, we find evidence for diffuse, cool (< 1 keV) gas at large cluster radii (R_200) along the filament, which is consistent with the expected properties of the denser, hotter phase of the WHIM.
We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box--Cox transformations and generalisations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in MCMC samples. Further, the model evidence integral (i.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianising transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianise the joint distribution of data from weak lensing and baryon acoustic oscillations (BAO), for different cosmological models, and find a preference for flat $\Lambda$CDM. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.
A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by the quasar lifetime. We then compare the predictions of this model to a sample of high equivalent width Ly a emitters (EW0 > 100 A) that were identified in a deep narrow-band 36x36 arcmin2 image centered on the luminous quasar Q0420-388. These are identified to the edge of the field and show some evidence of an azimuthal asymmetry on the sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, then the two most distant sources require a lifetime of at least 15 Myr for an opening angle of 60 degrees or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum 30 degrees. The overall distribution of all of the sources across the field gives best fit lifetimes in the range 20 < t < 50 Myr for opening angles in the range 90 < alpha < 40 degrees. If these sources are not being fluorescently illuminated by the quasar, then it suggests that a higher equivalent width limit than has been used in the literature to identify fluorescent objects will be required.
Recently ANTARES collaboration presented a time dependent analysis to a selected number of flaring blazars to look for upward going muon events produced from the charge current interaction of the muon neutrinos. We use the same list of flaring blazars to look for possible positional correlation with the IceCube neutrino events. We observed that six FSRQs and two BL Lac objects from the list are within the error circles of eight IceCube events. We also observed that three FSRQs are within the error circles of more than one event. In the context of photohadronic model we propose that these neutrinos are produced within the nuclear region of the blazar where Fermi accelerated high energy protons interact with the background synchrotron/SSC photons.
Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general however, these models can be grouped into two broad categories: 1) models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and 2) models that simply slow a planet's radiative cooling allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post main sequence stars will experience enormous increases their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these "re-inflated" gas giants and examine how the existence or absence of such planets can be used to place unique constraints of the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.
We have analyzed the Magellanic Stream (MS) using the deepest and the most resolved HI survey of the Southern Hemisphere (GASS). The overall Stream is structured into two filaments suggesting two ram-pressure tails lagging behind the Magellanic Clouds (MCs), and resembling two close, transonic, von Karman vortex streets. The past motions of the Clouds appear imprinted in them, implying almost parallel initial orbits, and then a radical change after their passage near the N(HI) peak of the MS. This is consistent with a recent collision between the MCs, 200-300 Myr ago, which has stripped further their gas into small clouds, spreading them out along a gigantic bow-shock, perpendicular to the MS. The Stream is formed by the interplay between stellar feedback and the ram-pressure exerted by Milky Way (MW) halo hot gas with $n_h$= $10^{-4}$ $cm^{-3}$ at 50-70 kpc, a value necessary for explaining the MS multiphase high-velocity clouds. The corresponding hydrodynamical modeling provides the currently most accurate reproduction of the whole HI Stream morphology, of its velocity, and column density profiles along $L_{MS}$. The 'ram-pressure plus collision' scenario requires tidal dwarf galaxies (TDGs), which are assumed to be the Cloud and dSph progenitors having let imprints into the MS and the Leading Arm, respectively. The simulated LMC and SMC have baryonic mass, kinematics and proper motions consistent with observations. This supports a novel paradigm for the Magellanic Stream System, which could take its origin from material expelled towards the MW by the ancient gas-rich merger that formed M31.
Characterization of the binary fractions in star clusters is of fundamental importance for many fields in astrophysics. Observations indicate that the majority of stars are found in binary systems, while most stars with masses greater than $0.5 M_\odot$ are formed in star clusters. In addition, since binaries are on average more massive than single stars, in resolved star clusters these systems are thought to be good tracers of (dynamical) mass segregation. Over time, dynamical evolution through two-body relaxation will cause the most massive objects to migrate to the cluster center, while the relatively lower-mass objects remain in or migrate to orbits at greater radii. This process will globally dominate a cluster's stellar distribution. However, close encounters involving binary systems may disrupt `soft' binaries. This process will occur more frequently in a cluster's central, dense region than in its periphery, which may mask the effects of mass segregation. Using high resolution Hubble Space Telescope observations, combined with sophisticated $N$-body simulations, we investigate the radial distributions of the main-sequence binary fractions in massive young Large Magellanic Cloud star clusters. We show that binary disruption may play an important role on very short timescales, depending on the environmental conditions in the cluster cores. This may lead to radial binary fractions that initially decline in the cluster centers, which is contrary to the effects expected from dynamical mass segregation.
We review a physical model where the high brightness temperature of 10$^{25}-10^{30}$ K observed in pulsar radio emission is explained by coherent curvature radiation excited in the relativistic electron-positron plasma in the pulsar magnetosphere.
We study the slope, intercept, and scatter of the color-magnitude and color-mass relations for a sample of ten infrared red-sequence-selected clusters at z ~ 1. The quiescent galaxies in these clusters formed the bulk of their stars above z ~ 3 with an age spread {\Delta}t ~ 1 Gyr. We compare UVJ color-color and spectroscopic-based galaxy selection techniques, and find a 15% difference in the galaxy populations classified as quiescent by these methods. We compare the color-magnitude relations from our red-sequence selected sample with X-ray- and photometric- redshift-selected cluster samples of similar mass and redshift. Within uncertainties, we are unable to detect any difference in the ages and star formation histories of quiescent cluster members in clusters selected by different methods, suggesting that the dominant quenching mechanism is insensitive to cluster baryon partitioning at z ~ 1.
Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as G_RVS~16. A specific stellar parametrization will be performed for most of these RVS spectra. Some individual chemical abundances will also be estimated for the brightest targets. We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-spec working group of the analysis consortium. The tested codes are based on optimization (FERRE and GAUGUIN), projection (MATISSE) or pattern recognition methods (Artificial Neural Networks). We present and discuss their expected performances in the recovered stellar atmospheric parameters (Teff, log(g), [M/H]) for B- to K- type stars. The performances for the determinations of [alpha/Fe] ratios are also presented for cool stars. For all the considered stellar types, stars brighter than G_RVS~12.5 will be very efficiently parametrized by the GSP-spec pipeline, including solid estimations of [alpha/Fe]. Typical internal errors for FGK metal-rich and metal-intermediate stars are around 40K in Teff , 0.1dex in log(g), 0.04dex in [M/H], and 0.03dex in [alpha/Fe] at G_RVS=10.3. Similar accuracies in Teff and [M/H] are found for A-type stars, while the log(g) derivation is more accurate. For the faintest stars, with G_RVS>13-14, a spectrophotometric Teff input will allow the improvement of the final GSP-spec parametrization. The reported results show that the contribution of the RVS based stellar parameters will be unique in the brighter part of the Gaia survey allowing crucial age estimations, and accurate chemical abundances. This will constitute a unique and precious sample for which many pieces of the Milky Way history puzzle will be available, with unprecedented precision and statistical relevance.
We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantles under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C,CH_3,CH_2D,OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ~ 2 x 10^4 cm^-3), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (~ 10^6 cm^-3), water and methanol productions are suppressed but surface coverage of CO,CO_2,O_2,O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water. Effects of various types of energy barriers are also studied. Moreover, we allow grain mantles to interact with various charged particles (such as H^+, Fe^+,S^+ and C^+) to study the stopping power and projected range of these charged particles on various target ices.
We analyze the spectral properties of masked, foreground-cleaned Planck maps between 100 and 545 GHz. We find convincing evidence for residual excess emission in the 143 GHz band in the direction of CMB cold spots which is well correlated with corresponding emission at 100 GHz. The median residual 100 to 143 GHz intensity ratio is consistent with Galactic synchrotron emission with a I$_{\nu}\propto\nu^{-0.69}$ spectrum. In addition, we find a small set of ~2-4 degree regions which show anomalously strong 143 GHz emission but no correspondingly strong emission at either 100 or 217 GHz. The signal to noise of this 143 GHz residual emission is at the $\gtrsim$6$\sigma$ level. We assess different mechanisms for this residual emission and conclude that although there is a 30\% probability that noise fluctuations may cause foregrounds to fall within 3$\sigma$ of the excess, it could also possibly be due to the collision of our Universe with an alternate Universe whose baryon to photon ratio is a factor of $\sim$65 larger than ours. The dominant systematic source of uncertainty in the conclusion remains residual foreground emission from the Galaxy which can be mitigated through narrow band spectral mapping in the millimeter bands by future missions and through deeper observations at 100 and 217 GHz.
We conducted radio observations searching for OH 18-cm maser emission from a sample of 169 unclassified MIPSGAL compact Galactic bubbles. These sources are thought to be the circumstellar envelopes of different kinds of evolved stars. Our observations were aimed at shedding light on the nature of MIPSGAL bubbles, since their characterisation is a fundamental aid for the development of accurate physical models of stellar and Galaxy evolution. The maser emission is observatively linked to the last stages of the life of low- and intermediate-mass stars, which may constitute a significant fraction of the MIPSGAL bubbles. In particular OH masers are usually observed towards post-AGB stars. Our observations were performed with the Green Bank Telescope and, for each source, produced spectra around the four OH 18-cm transitions. The observations were compared with archive interferometer data in order to exclude possible contamination from nearby sources. The main result is that the OH maser emission is not a common feature among the MIPSGAL bubbles, with only one certain detection. We conclude that among the MIPSGAL bubbles the post-AGB stars could be very rare.
The interstellar medium (ISM) is constantly evolving due to unremitting injection of energy in various forms. Energetic radiation transfers energy to the ISM: from the UV photons, emitted by the massive stars, to X- and $\gamma$-ray ones. Cosmic rays are another source of energy. Finally, mechanical energy is injected through shocks or turbulence. Shocks are ubiquitous in the interstellar medium of galaxies. They are associated to star formation (through jets and bipolar outflows), life (via stellar winds), and death (in AGB stellar winds or supernovae explosion). The dynamical processes leading to the formation of molecular clouds also generate shocks where flows of interstellar matter collide. Because of their ubiquity, the study of interstellar shocks is also a useful probe to the other mechanisms of energy injection in the ISM. This study must be conducted in order to understand the evolution of the ISM as a whole, and to address various questions: what is the peculiar chemistry associated to shocks, and what is their contribution to the cycle of matter in galaxies ? What is the energetic impact of shocks on their surroundings on various scales, and hence what is the feedback of stars on the galaxies ? What are the scenarios of star formation, whether this star formation leads to the propagation of shocks, or whether it is triggered by shock propagation ? What is the role of shocks in the acceleration of cosmic rays ? Can they shed light on their composition and diffusion processes ? In order to progress on these questions, it is paramount to interpret the most precise observations with the most precise models of shocks. From the observational point of view, the James Webb Space Telescope represents a powerful tool to better address the above questions, as it will allow to observe numerous shock tracers in the infrared range at an unprecedented spatial and spectral resolution.
The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, $z<0.2$, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 $h^{-1}$Mpc wave-mode of the BAO. Using cosmological $N$-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 deg$^2$), {\rm i.e.} a $K_\mathrm{2MASS}<14$ magnitude-limited sample, one can measure the BAO scale up to a precision of 4\%. Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 $K<14$ galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.
We present an analysis of the ALMA long baseline science verification data of the gravitational lens system SDP.81. We fit the positions of the brightest clumps at redshift z=3.042 and a possible AGN component of the lensing galaxy at redshift z=0.2999 in the band 7 continuum image using a canonical lens model, a singular isothermal ellipsoid plus an external shear. Then, we measure the ratio of fluxes in some apertures at the source plane where the lensed images are inversely mapped. We find that the aperture flux ratios of band 7 continuum image are perturbed by 10-20 percent with a significance at 2 ~ 3 sigma level. Moreover, we measure the astrometric shifts of multiply lensed images near the caustic using the CO(8-7) line. Using a lens model best-fitted to the band 7 continuum image, we reconstruct the source image of the CO(8-7) line by taking linear combination of inverted quadruply lensed images. At the 50th channel (rest-frame velocity 28.6 km/s) of the CO(8-7) line, we find an imprint of astrometric shifts of the order of 0.01 arcsec in the source image. Based on a semi-analytic calculation, we find that the observed anomalous flux ratios and the astrometric shifts can be explained by intergalactic dark structures in the line of sight. A compensated homogeneous spherical clump with a mean surface mass density of the order of 10^8 solar mass h^-1 arcsec^-2 can explain the observed anomaly and astrometric shifts simultaneously.
Persistent evidence for a cosmic hemispherical asymmetry in the temperature field of cosmic microwave background (CMB) as observed by both WMAP as well as Planck increases the possibility of its cosmological origin. Presence of this signal may lead to different values for the standard model cosmological parameters in different directions, and that can have significant implications for other studies where they are used. We investigate the effect of this cosmic hemispherical asymmetry on cosmological parameters using non-isotropic Gaussian random simulations injected with both scale dependent and scale independent modulation strengths. Our analysis shows that the parameters $A_s$ and $n_s$ are the most susceptible to variation in the sky for the kind of isotropy breaking phenomena under study. As expected, we find maximum variation arises for the case of scale independent modulation of CMB anisotropies. A deviation of $2.25\sigma$ in $A_s$ is observed for scale dependent modulation case in comparison to its estimate from isotropic CMB sky.
Hardly any of the observed black hole accretion disks in X-Ray binaries and active galaxies shows constant flux. When the local stochastic variations of the disk occur at specific regions where a resonant behaviour takes place, there appear the Quasi-Periodic Oscillations (QPOs). If the global structure of the flow and its non-linear hydrodynamics affects the fluctuations, the variability is chaotic in the sense of deterministic chaos. Our aim is to solve a problem of the stochastic versus deterministic nature of the black hole binaries vari- ability. We use both observational and analytic methods. We use the recurrence analysis and we study the occurence of long diagonal lines in the recurrence plot of observed data series and compare it to the sur- rogate series. We analyze here the data of two X-Ray binaries - XTE J1550-564, and GX 339-4 observed by Rossi X-ray Timing Explorer. In these sources, the non-linear variability is expected because of the global conditions (such as the mean accretion rate) leading to the pos- sible instability of an accretion disk. The thermal-viscous instability and fluctuations around the fixed-point solution occurs at high accretion rate, when the radiation pressure gives dominant contribution to the stress tensor.
In this paper, we report radio observations of the Galactic Center magnetar PSR J1745-2900 at six epochs between June and October, 2014. These observations were carried out using the new Shanghai Tian Ma Radio Telescope at a frequency of 8.6 GHz. Both the flux density and integrated profile of PSR J1745-2900 show dramatic changes from epoch to epoch showing that the pulsar was in its "erratic" phase. On MJD 56836, the flux density of this magnetar was about 8.7 mJy, which was ten times large than that reported at the time of discovery, enabling a single-pulse analysis. The emission is dominated by narrow "spiky" pulses which follow a log-normal distribution in peak flux density. From 1913 pulses, we detected 53 pulses whose peak flux density is ten times greater than that of the integrated profile. They are concentrated in pulse phase at the peaks of the integrated profile. The pulse widths at the 50% level of these bright pulses was between 0.2 to 0.9 deg, much narrower than that of integrated profile (~12 deg). The observed pulse widths may be limited by interstellar scattering. No clear correlation was found between the widths and peak flux density of these pulses and no evidence was found for subpulse drifting. Relatively strong spiky pulses are also detected in the other five epochs of observation, showing the same properties as that detected in MJD 56836. These strong spiky pulses cannot be classified as "giant" pulses but are more closely related to normal pulse emission.
The quartet of galaxies NGC 7769, 7770, 7771 and 7771A is a system of interacting galaxies. Close interaction between galaxies caused characteristic morphological features: tidal arms and bars, as well as an induced star formation. In this study, we performed the Fabry-Perot scanning interferometry of the system in Ha line and studied the velocity fields of the galaxies. We found that the rotation curve of NGC 7769 is weakly distorted. The rotation curve of NGC 7771 is strongly distorted with the tidal arms caused by direct flyby of NGC 7769 and flyby of a smaller neighbor NGC 7770. The rotation curve of NGC 7770 is significantly skewed because of the interaction with much massive NGC 7771. The rotation curves and morphological disturbances suggest that the NGC 7769 and NGC 7771 have passed the first pericenter stage, however, probably the second encounter has not happened yet. Profiles of surface brightness of NGC 7769 have a characteristic break, and profiles of color indices have a minimum at a radius of intensive star formation induced by the interaction with NGC 7771.
We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, alpha. As a result, the theory we consider can explain the non-zero reported variation in the evolution of alpha by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of alpha. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in alpha. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on current laboratory measurements.
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn into an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures Teff, (iii) an increase in the helium abundance Y, and finally (iv) the Eddington factor Gamma. Over the last couple of years, we have made a breakthrough in our understanding of Gamma-dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Ly-alpha and He II emitting galaxies.
Optical counterparts can provide significant constraints on the physical nature of ultraluminous X-ray sources (ULXs). In this letter, we identify six point sources in the error circle of a ULX in M82, namely M82 X-1, by registering Chandra positions onto Hubble Space Telescope images. Two objects are considered as optical counterpart candidates of M82 X-1, which show F658N flux excess compared to the optical continuum that may suggest the existence of an accretion disk. The spectral energy distributions of the two candidates match well with the spectra for supergiants, with stellar types as F5-G0 and B5-G0, respectively. Deep spatially resolved spectroscopic follow-up and detailed studies are needed to identify the true companion and confirm the properties of this BH system.
Compound strong gravitational lensing is a rare phenomenon, but a handful of such lensed systems are likely to be discovered in forthcoming surveys. In this work, we use a double SIS lens model to analytically understand how the properties of the system impact image multiplicity for the final source. We find that up to six images of a background source can form, but only if the second lens is multiply imaged by the first and the Einstein radius of the second lens is comparable to, but does not exceed that of the first. We then build a model of compound lensing masses in the Universe, using SIE lenses, and assess how the optical depth for multiple imaging by a galaxy-galaxy compound lens varies with source redshift. For a source redshift of 4, we find optical depths of $6 \times 10^{-6}$ for multiple imaging and $5 \times 10^{-8}$ for multiplicity of 6 or greater. We find that extreme magnifications are possible, with magnifications of 100 or more for $6 \times 10^{-9}$ of $z=10$ sources with 0.1 kpc radii. We show some of the image configurations that can be generated by compound lenses, and demonstrate that they are qualitatively different to those generated by single-plane lenses; dedicated compound lens finders will be necessary if these systems are to be discovered in forthcoming surveys.
Without any doubt solar flaring loops possess a multi-thread internal structure that is poorly resolved and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modelling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of 1D hydrodynamic and 2D magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters of the modeled loop are set according to the progenitor M1.8 flare recorded in the AR10126 on September 20, 2002 between 09:21 UT and 09:50 UT. The non-ideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy loss mechanisms, while the non-ideal 2D models take into account viscosity and thermal conduction as energy loss mechanisms only. The 2D models have a continuous distribution of the parameters of the plasma across the loop, and are powered by varying in time and space along and across the loop heating flux. We show that such 2D models are a borderline case of a multi-thread internal structure of the flaring loop, with a filling factor equal to one. Despite the assumptions used in applied 2D models, their overall success in replicating the observations suggests that they can be adopted as a correct approximation of the observed flaring structures.
One approach to extracting the global 21-cm signal from total-power measurements at low radio frequencies is to parametrize the different contributions to the data and then fit for these parameters. We examine parametrizations of the 21-cm signal itself, and propose one based on modelling the Lyman-alpha background, IGM temperature and hydrogen ionized fraction using tanh functions. This captures the shape of the signal from a physical modelling code better than an earlier parametrization based on interpolating between maxima and minima of the signal, and imposes a greater level of physical plausibility. This allows less biased constraints on the turning points of the signal, even though these are not explicitly fit for. Biases can also be alleviated by discarding information which is less robustly described by the parametrization, for example by ignoring detailed shape information coming from the covariances between turning points or from the high-frequency parts of the signal, or by marginalizing over the high-frequency parts of the signal by fitting a more complex foreground model. The fits are sufficiently accurate to be usable for experiments gathering 1000 h of data, though in this case it may be important to choose observing windows which do not include the brightest areas of the foregrounds. Our assumption of pointed, single-antenna observations and very broad-band fitting makes these results particularly applicable to experiments such as the Dark Ages Radio Explorer, which would study the global 21-cm signal from the clean environment of a low lunar orbit, taking data from the far side.
The space-borne missions have provided us with a wealth of high-quality observational data that allows for seismic inferences of stellar interiors. This requires the computation of precise and accurate theoretical frequencies, but imperfect modeling of the uppermost stellar layers introduces systematic errors. To overcome this problem, an empirical correction has been introduced by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic inferences. Nevertheless, we still lack a physical justification allowing for the quantification of the surface-effect corrections. We used a grid of these simulations computed with the CO$^5$BOLD code to model the outer layers of solar-like stars. Upper layers of the corresponding 1D standard models were then replaced by the layers obtained from the horizontally averaged 3D models. The frequency differences between these patched models and the 1D standard models were then calculated using the adiabatic approximation and allowed us to constrain the Kjeldsen et al. power law, as well as a Lorentzian formulation. We find that the surface effects on modal frequencies depend significantly on both the effective temperature and the surface gravity. We further provide the variation in the parameters related to the surface-effect corrections using their power law as well as a Lorentzian formulation. Scaling relations between these parameters and the elevation (related to the Mach number) is also provided. The Lorentzian formulation is shown to be more robust for the whole frequency spectrum, while the power law is not suitable for the frequency shifts in the frequency range above $\nu_{\rm max}$.
MWC 314 is a bright candidate luminous blue variable that resides in a fairly close binary system, with an orbital period of 60.753$\pm$0.003 d. We observed MWC 314 with a combination of optical spectroscopy, broad-band ground- and space-based photometry, as well as with long baseline, near-infrared interferometry. We have revised the single-lined spectroscopic orbit and explored the photometric variability. The orbital light curve displays two minima each orbit that can be partially explained in terms of the tidal distortion of the primary that occurs around the time of periastron. The emission lines in the system are often double-peaked and stationary in their kinematics, indicative of a circumbinary disc. We find that the stellar wind or circumbinary disc is partially resolved in the K\prime-band with the longest baselines of the CHARA Array. From this analysis, we provide a simple, qualitative model in an attempt to explain the observations. From the assumption of Roche Lobe overflow and tidal synchronisation at periastron, we estimate the component masses to be M1 $\approx 5$ M$_\odot$ and M2$\approx 15$ M$_\odot$, which indicates a mass of the LBV that is extremely low. In addition to the orbital modulation, we discovered two pulsational modes with the MOST satellite. These modes are easily supported by a low-mass hydrogen-poor star, but cannot be easily supported by a star with the parameters of an LBV. The combination of these results provides evidence that the primary star was likely never a normal LBV, but rather is the product of binary interactions. As such, this system presents opportunities for studying mass-transfer and binary evolution with many observational techniques.
Phenomenological modeling of variable stars allows determination of a set of the parameters, which are needed for classification in the "General Catalogue of Variable Stars" and similar catalogs. We apply a recent method NAV ("New Algol Variable") to eclipsing binary stars of different types. Although all periodic functions may be represented as Fourier series with an infinite number of coefficients, this is impossible for a finite number of the observations. Thus one may use a restricted Fourier series, i.e. a trigonometric polynomial (TP) of order s either for fitting the light curve, or to make a periodogram analysis. However, the number of parameters needed drastically increases with decreasing width of minimum. In the NAV algorithm, the special shape of minimum is used, so the number of parameters is limited to 10 (if the period and initial epoch are fixed) or 12 (not fixed). We illustrate the NAV method by application to a recently discovered Algol-type eclipsing variable 2MASS J11080308-6145589 (in the field of previously known variable star RS Car) and compare results to that obtained using the TP fits. For this system, the statistically optimal number of parameters is 44, but the fit is still worse than that of the NAV fit. Application to the system GSC 3692-00624 argues that the NAV fit is better than the TP one even for the case of EW-type stars with much wider eclipses. Model parameters are listed.
The amplitudes of the Evershed flow are measured using pairs of carefully selected FeI and FeII spectral lines located close in wavelength and registered simultaneously. A sunspot belonging to the NOAA 11582 group was scanned using the spectrograph of the German Vacuum Tower Telescope (Observatorio del Teide, Tenerife). Velocities were extracted from intensity profiles using the lambda-meter technique. The formation heights of the observed spectral lines were calculated using semi-empirical models of a bright and dark penumbral filament taking into account the sunspot location at the limb. Our objective is to compare azimuthally averaged amplitudes of the Evershed flow extracted from neutral and ion lines. We find measurable differences in the radial component of the flow. All five pairs of lines show the same tendency, with a few hundred m/s larger amplitude of the flow measured from FeI lines compared to FeII lines. This tendency is preserved at all photospheric heights and radial distances in the penumbra. We discuss the possible origin of this effect.
Coronal loops on the east limb of the Sun were observed by SUMER on SOHO for several days. Small flare-like brightenings are detected very frequently in the hot flare line Fe~{\small XIX}. We find that the relatively intense events are in good coincidence with the transient brightenings seen by Yohkoh/SXT. A statistical analysis shows that these brightenings have durations of 5-84 min and extensions along the slit of 2-67 Mm. The integrated energy observed in Fe~{\small XIX} for each event is in the range of $3\times10^{18}-5\times10^{23}$ ergs, and the estimated thermal energy ranges from $10^{26}-10^{29}$ ergs. Application of the statistical method proposed by Parnell \& Jupp (2000) yields a value of 1.5 to 1.8 for the index of a power law relation between the frequency of the events and the radiated energy in Fe~{\small XIX}, and a value of 1.7 to 1.8 for the index of the frequency distribution of the thermal energy in the energy range $>10^{27}$ ergs. We examine the possibility that these small brightenings give a big contribution to heating of the active region corona.
Emission from high-$z$ galaxies must unquestionably contribute to the Near-InfraRed Background (NIRB). However, this contribution has so far proven difficult to isolate even after subtracting resolved galaxies to deep levels. Remaining NIRB fluctuations are dominated by unresolved low-redshift galaxies on small angular scales, and by an unidentified component of unclear origin on large scales ($\approx 1000"$). In this paper, by analyzing mock maps generated from semi-numerical simulations and empirically determined $L_{\rm UV} - M_{\rm h}$ relations, we find that fluctuations associated with galaxies at $5 < z < 10$ amount to several percent of the unresolved NIRB flux. We investigate the properties of this component for different survey areas and limiting magnitudes. In all cases, we show that this signal can be efficiently, and most easily at small angular scales, isolated by cross-correlating the source-subtracted NIRB with Lyman Break Galaxies (LBGs) detected in the same field by {\tt HST} surveys. This result provides a fresh insight into the properties of reionization sources.
A number of observational studies claim detection or non-detection of the extra line in X-ray spectra of various cosmic objects dominated by dark matter -- gravitationally interacting substance that constitutes the major fraction of non-relativistic matter in the Universe. In this review I summarize results of these studies and especially the status of the detection of new emission line at ~3.55 keV in spectra of nearby galaxies and galaxy clusters, overview possible interpretations of this line, including an intriguing connection with radiatively decaying dark matter, and show directions achievable with existing and upcoming X-ray cosmic missions.
The fine-structure line of [OI] at 63micron is an important diagnostic tool in different fields of astrophysics. However, our knowledge of this line relies on observations with low spectral resolution, and the real contribution of each component (PDR, jet) in complex environment of star-forming regions (SFRs) is poorly understood. We investigate the contribution of jet and PDR emission, and of absorption to the [OI]63micron line towards the ultra-compact H{\sc ii} region G5.89--0.39 and study its far-IR line luminosity in different velocity regimes through [OI], [CII], CO, OH, and H2O. We mapped G5.89--0.39 in [OI] and in CO(16--15) with the GREAT receiver onboard SOFIA. We observed the central position of the source in the OH^2\Pi_{3/2}, J=5/2\toJ=3/2 and ^2\Pi_{1/2}, J=3/2\toJ=1/2 lines. These data were complemented with APEX CO(6-5) and CO(7-6) and HIFI maps and single-pointing observations in [CII], H2O, and HF. The [OI] spectra in G5.89--0.39 are severely contaminated by absorptions from the envelope and from different clouds along the line of sight. Emission is detected only at HV, clearly associated with the compact north-south outflows traced by extremely HV low-J CO. The mass-loss rate and energetics of derived from [OI] agree well with estimates from CO, suggesting that the molecular outflows in G5.89--0.39 are driven by the jet system seen in [OI]. The far-IR line luminosity of G5.89--0.39 is dominated by [OI] at HV; the second coolant in this velocity regime is CO, while [CII], OH and H2O are minor contributors to the cooling in the outflow. Our study shows the importance of spectroscopically resolved data of [OI]63micron for using this line as diagnostic of SFRs. While this was not possible until now, the GREAT receiver onboard SOFIA has recently opened the possibility of detailed studies of this line to investigate its potential for probing different environments.
The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from D-branes in a warped throat. We show that warping allows the requisite super-Planckian axion decay constant to be achieved consistently with the Weak Gravity Conjecture. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.
In the standard model (SM), lepton flavor violating (LFV) Higgs decay is absent at renormalizable level and thus it is a good probe to new physics. In this article we study a type of new physics that could lead to large LFV Higgs decay, i.e., a lepton-flavored dark matter (DM) model which is specified by the particle property of DM (a Majorana fermion) and DM-SM mediators (scalar leptons). Different from other similar setups, here we introduce both the left-handed and the right-handed scalar leptons. They allow large LFV Higgs decay and thus may explain the tentative Br$(h\ra\tau\mu)\sim1\%$ experimental results from LHC. In particular, we find that the stringent bound from $\tau\ra\mu\gamma$ can be naturally evaded. One reason, among others, is a large chirality violation in the mediator sector. Aspects of relic density and especially radiative direct detection of the leptonic DM are also investigated, stressing the difference from previous lepton-flavored DM models.
Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark matter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showers give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov detectors and find very competitive sensitivities for few-GeV dark matter masses.
The inner regions of the most massive compact stellar objects might be occupied by a phase of quarks. Since the observations of the massive pulsars PSR J1614-2230 and of PSR J0348+0432 with about two solar masses, the equations of state constructing relativistic stellar models have to be constrained respecting these new limits. We discuss stable hybrid stars, i.e. compact objects with an outer layer composed of nuclear matter and with a core consisting of quark matter (QM). For the outer nuclear layer we utilize a density dependent nuclear equation of state and we use a chiral SU(3) Quark-Meson model with a vacuum energy pressure to describe the objects core. The appearance of a disconnected mass-radius branch emerging from the hybrid star branch implies the existence of a third family of compact stars, so called twin stars. Twin stars did not emerge as the transition pressure has to be relatively small with a large jump in energy density, which could not be satisfied within our approach. This is, among other reasons, due to the fact that the speed of sound in QM has to be relatively high, which can be accomplished by an increase of the repulsive coupling. This increase on the other hand yields too high transition pressures for twins stars to appear.
DM-Ice is a program towards the first direct detection search for dark matter in the Southern Hemisphere with a 250 kg-scale NaI(Tl) crystal array. It will provide a definitive understanding of the modulation signal reported by DAMA by running an array at both Northern and Southern Hemisphere sites. A 17 kg predecessor, DM-Ice17, was deployed in December 2010 at a depth of 2457 m under the ice at the geographic South Pole and has concluded its 3.5 yr data run. An active R&D program is underway to investigate detectors with lower backgrounds and improved readout electronics; two crystals with 37 kg combined mass are currently operating at the Boulby Underground Laboratory. We report on the final analyses of the DM-Ice17 data and describe progress towards a 250 kg DM-Ice experiment.
Links to: arXiv, form interface, find, astro-ph, recent, 1510, contact, help (Access key information)