Little is known about the incidence of magnetic fields among the coolest
white dwarfs. Their spectra usually do not exhibit any absorption lines as the
bound-bound opacities of hydrogen and helium are vanishingly small. Probing
these stars for the presence of magnetic fields is therefore extremely
challenging. However, external pollution of a cool white dwarf by, e.g.,
planetary debris, leads to the appearance of metal lines in its spectral energy
distribution. These lines provide a unique tool to identify and measure
magnetism in the coolest and oldest white dwarfs in the Galaxy.
We report the identification of 7 strongly metal polluted, cool (T_eff < 8000
K) white dwarfs with magnetic field strengths ranging from 1.9 to 9.6 MG. An
analysis of our larger magnitude-limited sample of cool DZ yields a lower limit
on the magnetic incidence of 13+/-4 percent, noticeably much higher than among
hot DA white dwarfs.
Magnetars are surrounded by diffuse plasma in magnetic field strengths well above the quantum electrodynamic critical value. We derive equations of "quantum force-free electrodynamics" for this plasma using an effective field theory arguments. We argue that quantum effects do not modify the large scale structure of the magnetosphere, and in particular that the spin-down rate does not deviate significantly from the classical result. We provide definite evolution equations that can be used to explore potentially important small-scale corrections, such as shock formation, which has been proposed as a mechanism for both burst and quiescent emission from magnetars.
We present an analysis of the optical spectra available in the Sloan Digital Sky survey data release nine (SDSS DR9) for the blazars listed in the ROMA-BZCAT and for the gamma-ray blazar candidates selected according to their IR colors. First, we adopt a statistical approach based on MonteCarlo simulations to find the optical counterparts of the blazarslisted in the ROMA-BZCAT catalog. Then we crossmatched the SDSS spectroscopic catalog with our selected samples of blazars and gamma-ray blazar candidates searching for those with optical spectra available to classify our blazar-like sources and, whenever possible, to confirm their redshifts. Our main objectives are determining the classification of uncertain blazars listed in the ROMA-BZCAT and discovering new gamma-ray blazars. For the ROMA-BZCAT sources we investigated a sample of 84 blazars confirming the classification for 20 of them and obtaining 18 new redshift estimates. For the gamma-ray blazars, indicated as potential counterparts of unassociated Fermi sources or with uncertain nature, we established the blazar-like nature of 8 out the 27 sources analyzed and confirmed 14 classifications.
The 6 billion solar mass supermassive black hole at the center of the giant elliptical galaxy M87 powers a relativistic jet. Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.
We present a technique to extract radial velocity measurements from echelle spectrograph observations of rapidly rotating stars ($V\sin{i} \gtrsim 50$ km s$^{-1}$). This type of measurement is difficult because the line widths of such stars are often comparable to the width of a single echelle order. To compensate for the scarcity of lines and Doppler information content, we have developed a process that forward-models the observations, fitting the radial velocity shift of the star for all echelle orders simultaneously with the echelle blaze function. We use our technique to extract radial velocity measurements from a sample of rapidly rotating A- and B-type stars used as calibrator stars observed by the California Planet Survey observations. We measure absolute radial velocities with a precision ranging from 0.5-2.0 km s$^{-1}$ per epoch for more than 100 A- and B-type stars. In our sample of 10 well-sampled stars with radial velocity scatter in excess of their measurement uncertainties, three of these are single-lined binaries with long observational baselines. From this subsample, we present detections of two previously unknown spectroscopic binaries and one known astrometric system. Our technique will be useful in measuring or placing upper limits on the masses of sub-stellar companions discovered by wide-field transit surveys, and conducting future spectroscopic binarity surveys and Galactic space-motion studies of massive and/or young, rapidly-rotating stars.
We examine characteristics of circumbinary orbits in the context of current planet formation scenarios. Analytical perturbation theory predicts the existence of nested circumbinary orbits that are generalizations of circular orbits in a Keplerian potential. They contain forced epicyclic motion aligned with the binary as well as higher frequency oscillations, yet they do not cross, even in the presence of massive disks and perturbations from large planets. For this reason, dissipative gas and planetesimals can settle onto these "most circular" orbits, facilitating the growth of protoplanets. Outside a region close to the binary where orbits are generally unstable, circumbinary planets form in much the same way as their cousins around a single star. Here, we review the theory and confirm its predictions with a suite of representative simulations. We then consider the circumbinary planets discovered with NASA's Kepler satellite. These Neptune- and Jupiter-size planets, or their planetesimal precursors, may have migrated inward to reach their observed orbits, since their current positions are outside of unstable zones caused by overlapping resonances. In situ formation without migration seems less likely, only because the surface density of the protoplanetary disks must be implausibly high. Otherwise, the circumbinary environment is friendly to planet formation, and we expect that many Earth-like "Tatooines" will join the growing census of circumbinary planets.
We calculate the present-day impact flux on Mars and its variation over the Martian year, using the current data on the orbital distribution of known Mars-crossing minor planets. We adapt the {\"O}pik-Wetherill formulation for calculating collision probabilities, paying careful attention to the non-uniform distribution of the perihelion longitude and the argument of perihelion owed to secular planetary perturbations. We find that these previously neglected non-uniformities have a significant effect on the mean annual impact flux as well as its seasonal variation. The impact flux peaks when Mars is at aphelion, but the near-alignment of Mars' eccentricity vector with the mean direction of the eccentricity vectors of Mars-crossers causes the mean annual impact flux as well as the amplitude of the seasonal variation to be significantly lower than the estimate based on a uniform random distribution of perihelion longitudes of Mars-crossers. We estimate that the flux of large impactors (of absolute magnitude $H<16$) within $\pm30^\circ$ of Mars' aphelion is about four times larger than when the planet is near perihelion. Extrapolation of our results to a model population of meter-size Mars-crossers shows that if these small impactors have a uniform distribution of their angular elements, then their aphelion-to-perihelion impact flux ratio would be as large as 25. These theoretical predictions can be tested with observational data of contemporary impacts that is becoming available from spacecraft currently in orbit about Mars.
We present deep $g,i$-band DECam stellar photometry of the Hercules Milky Way satellite galaxy, and its surrounding field, out to a radial distance of 5.4 times the tidal radius. We have identified nine extended stellar substructures associated with the dwarf; preferentially distributed along the major axis of the galaxy. Two significant over-densities lie outside the 95\% confidence band for the likely orbital path of the galaxy and appear to be free-floating tidal debris. We estimate the luminosity of the new stellar substructures, and find that approximately the same amount of stellar flux is lying in these extended structures as inside the main body of Hercules. We also analyse the distribution of candidate blue-horizontal-branch stars and find agreement with the alignment of the substructures at a confidence level greater than 98\%. Our analysis provides a quantitative demonstration that Hercules is a strongly tidally disrupted system, with noticeable stellar features at least 1.9 kpc away from the galaxy.
It has been clear for some time now that super-critical surface magnetic fields, exceeding 4 x 10^13 G, exist on a subset of neutron stars. These magnetars may harbor interior fields many orders of magnitude larger, potentially reaching equipartition values. However, the impact of these strong fields on stellar structure has been largely ignored, potentially complicating attempts to infer the high density nuclear equation of state. Here we assess the effect of these strong magnetic fields on the mass-radius relationship of neutron stars. We employ an effective field theory model for the nuclear equation of state that includes the impact of hyperons, anomalous magnetic moments, and the physics of the crust. We consider two magnetic field geometries, bounding the likely magnitude of the impact of magnetic fields: a statistically isotropic, tangled field and a force-free configuration. In both cases even equipartition fields have at most a 30% impact on the maximum mass. However, the direction of the effect of the magnetic field depends on the geometry employed - force-free fields leading to reductions in the maximum neutron star mass and radius while tangled fields increase both - challenging the common intuition in the literature on the impact of magnetic fields.
Determining reliable distances to classical novae is a challenging but crucial step in deriving their ejected masses and explosion energetics. Here we combine radio expansion measurements from the Karl G. Jansky Very Large Array with velocities derived from optical spectra to estimate an expansion parallax for nova V959 Mon, the first nova discovered through its gamma-ray emission. We spatially resolve the nova at frequencies of 4.5-36.5 GHz in nine different imaging epochs. The first five epochs cover the expansion of the ejecta from 2012 October to 2013 January, while the final four epochs span 2014 February to 2014 May. These observations correspond to days 126 through 199 and days 615 through 703 after the first detection of the nova. The images clearly show a non-spherical ejecta geometry. Utilizing ejecta velocities derived from 3D modelling of optical spectroscopy, the radio expansion implies a distance between 0.9 +/- 0.2 and 2.2 +/- 0.4 kpc, with a most probable distance of 1.4 +/- 0.4 kpc. This distance implies a gamma-ray luminosity much less than the prototype gamma-ray-detected nova, V407 Cyg, possibly due to the lack of a red giant companion in the V959 Mon system. V959 Mon also has a much lower gamma-ray luminosity than other classical novae detected in gamma-rays to date, indicating a range of at least a factor of 10 in the gamma-ray luminosities for these explosions.
We present deep ($\sim 17~\mu$Jy) radio continuum observations of the Serpens molecular cloud, the Serpens south cluster, and the W40 region obtained using the Very Large Array in its A configuration. We detect a total of 146 sources, 29 of which are young stellar objects (YSOs), 2 are BV stars and 5 more are associated with phenomena related to YSOs. Based on their radio variability and spectral index, we propose that about 16 of the remaining 110 unclassified sources are also YSOs. For approximately 65% of the known YSOs detected here as radio sources, the emission is most likely non-thermal, and related to stellar coronal activity. As also recently observed in Ophiuchus, our sample of YSOs with X-ray counterparts lies below the fiducial G\"udel & Benz relation. Finally, we analyze the proper motions of 9 sources in the W40 region. This allows us to better constrain the membership of the radio sources in the region.
Within a sufficiently large cosmic volume, conservation of baryons implies a simple "closed box" view in which the sum of the baryonic components must equal a constant fraction of the total enclosed mass. We present evidence from Rhapsody-G hydrodynamic simulations of massive galaxy clusters that the closed-box expectation may hold to a surprising degree within the interior, non-linear regions of very massive haloes. We find a significant anti-correlation between hot gas mass fraction and galaxy mass fraction (cold gas + stars), with rank correlation coefficient, -0.69, within R500c. Because of this anti-correlation, the total baryon mass serves as a low-scatter proxy for total cluster mass. The fractional scatter in total baryon fraction scales approximately as 0.02 (Delta_c/100)^0.6, while the scatter of either gas mass or stellar mass is larger in magnitude and declines more slowly with increasing radius. We discuss potential observational tests using cluster samples selected by optical and hot gas properties; the simulations suggest that joint selection on stellar and hot gas has potential to achieve 5% scatter in total halo mass.
We use a sample of 262 spectroscopically confirmed star-forming galaxies at redshifts $2.08\leq z\leq 2.51$ to compare H$\alpha$, UV, and IR star-formation-rate diagnostics and to investigate the dust properties of the galaxies. At these redshifts, the H$\alpha$ line shifts to the $K_{s}$-band. By comparing $K_{s}$-band photometry to underlying stellar population model fits to other UV, optical, and near-infrared data, we infer the H$\alpha$ flux for each galaxy. We obtain the best agreement between H$\alpha$- and UV-based SFRs if we assume that the ionized gas and stellar continuum are reddened by the same value and that the Calzetti attenuation curve is applied to both. Aided with MIPS 24$\mu$m data, we find that an attenuation curve steeper than the Calzetti curve is needed to reproduce the observed IR/UV ratios of galaxies younger than 100 Myr. Furthermore, using the bolometric star-formation rate inferred from the UV and mid-IR data (SFR$_{IR}$+SFR$_{UV}$), we calculated the conversion between the H$\alpha$ luminosity and SFR to be $(7.5\pm1.3) \times 10^{-42}$ for a Salpeter IMF, which is consistent with the Kennicutt (1998) conversion. The derived conversion factor is independent of any assumption of the dust correction and is robust to stellar population model uncertainties.
We study the quark-hadron phase transition with the finite-size effects in neutron stars. The finite-size effects should be, generally, taken into account in the phase transition of multi-component system. The behavior of the phase transition, however, strongly depends on the quark model, hadron model, surface tension, neutrino fraction, and temperature. We find that, if the surface tension is strong, the EOS becomes to be close the one with the Maxwell condition for any hadron and/or quark models, though we adopt the Gibbs conditions. We also find that the mass-radius relations by the EOS are consistent with the observations, and our model is, then, applicable to realistic astrophysical phenomena such as the thermal evolutions of compact stars.
We analyse the model of stochastic re-acceleration of electrons, which are emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then into the Galactic halo, in order to explain the origin on nonthermal (radio and gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for re-acceleration in the halo is supplied by shocks generated by processes of star accretion onto the central black hole. Numerical simulations show that regions with strong turbulence (places for electron re-acceleration) are located high up in the Galactic Halo about several kpc above the disk. The energy of SNR electrons that reach these regions does not exceed several GeV because of synchrotron and inverse Compton energy losses. At appropriate parameters of re-acceleration these electrons can be re-accelerated up to the energy 10E12 eV which explains in this model the origin of the observed radio and gamma-ray emission from the FB. However although the model gamma-ray spectrum is consistent with the Fermi results, the model radio spectrum is steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma outflow from the Galactic central regions are taken into account, then the re-acceleration model nicely reproduces the Planck datapoints.
We present a first application of the subhalo abundance matching (SHAM) method to describe the redshift-space clustering of galaxies including the non-linear redshift-space distortion, i.e., the Fingers-of-God. We find that the standard SHAM connecting the luminosity of galaxies to the maximum circular velocity of subhalos well reproduces the luminosity dependence of redshift-space clustering of galaxies in the Sloan Digital Sky Survey in a wide range of scales from 0.3 to 40 Mpc/h. The result indicates that the SHAM approach is very promising for establishing a theoretical model of redshift-space galaxy clustering without additional parameters. We also test color abundance matching using two different proxies for colors: subhalo age and local dark matter density following the method by Masaki et al. (2013b). Observed clustering of red galaxies exhibits much stronger Fingers-of-God effect than blue galaxies. We find that the subhalo age model describes the observed color-dependent redshift-space clustering much better than the local dark matter density model. The result infers that the age of subhalos is a key ingredient to determine the color of galaxies.
Based on stellar population models without (SSP) and with (BSP) binary interactions, we investigate the effects of binary interactions on parameter determinations for early-type galaxies (ETGs). We present photometric redshift (photo-z), age and spectral type for photometric data sample by fitting observed magnitudes with the SSP and BSP models. Our results show that binary interactions have no effect on photo-z estimation. Once we neglect binary interactions, the age of ETGs will be underestimated, by contrast, the effects on the age estimations can be negligible for other type of galaxies. For ETG sample, we derive their properties by fitting their spectra with the SSP and BSP models. When comparing these galaxy properties, we find no variation of the overall metallicities for ETGs among the SSP and BSP models. Moreover, the inclusion of binary interactions can affect age estimations. Our results show that the BSP-fitted ages in ~33.3% of ETG sample are around 0.5-1.0 Gyr larger than the SSP-fitted ages; ~44.2\% are only 0.1-0.5 Gyr larger; the rest ~22.5% are approximately equal. By comparisons, we find the difference of the star formation rate between the SSP and BSP models is large at the late evolution stage.
We have obtained H$\alpha$ high spatial and time resolution observations of the upper solar chromosphere and supplemented these with multi-wavelength observations from the Solar Dynamic Observatory (SDO) and the {\it Hinode} ExtremeUltraviolet Imaging Spectrometer (EIS). The H$\alpha$ observations were conducted on 11 February 2012 with the Hydrogen-Alpha Rapid Dynamics Camera (HARDcam) instrument at the National Solar Observatory's Dunn Solar Telescope. Our H$\alpha$ observations found large downflows of chromospheric material returning from coronal heights following a failed prominence eruption. We have detected several large condensations ("blobs") returning to the solar surface at velocities of $\approx$200 km s$^{-1}$ in both H$\alpha$ and several SDO AIA band passes. The average derived size of these "blobs" in H$\alpha$ is 500 by 3000 km$^2$ in the directions perpendicular and parallel to the direction of travel, respectively. A comparison of our "blob" widths to those found from coronal rain, indicate there are additional smaller, unresolved "blobs" in agreement with previous studies and recent numerical simulations. Our observed velocities and decelerations of the "blobs" in both H$\alpha$ and SDO bands are less than those expected for gravitational free-fall and imply additional magnetic or gas pressure impeding the flow. We derived a kinetic energy $\approx$2 orders of magnitude lower for the main eruption than a typical CME, which may explain its partial nature.
We aim to constrain the structure of the circumstellar material around the post-AGB binary and RV Tauri pulsator AC Her. We want to constrain the spatial distribution of the amorphous as well as of the crystalline dust. We present very high-quality mid-IR interferometric data that were obtained with MIDI/VLTI. We analyse the MIDI data and the full SED, using the MCMax radiative transfer code, to find a good structure model of AC Her's circumbinary disk. We include a grain size distribution and midplane settling of dust self-consistently. The spatial distribution of crystalline forsterite in the disk is investigated with the mid-IR features, the 69~$\mu$m band and the 11.3~$\mu$m signatures in the interferometric data. All the data are well fitted. The inclination and position angle of the disk are well determined at i=50+-8 and PA=305+-10. We firmly establish that the inner disk radius is about an order of magnitude larger than the dust sublimation radius. Significant grain growth has occurred, with mm-sized grains being settled to the midplane of the disk. A large dust mass is needed to fit the sub-mm fluxes. By assuming {\alpha}=0.01, a good fit is obtained with a small grain size power law index of 3.25, combined with a small gas/dust ratio <10. The resulting gas mass is compatible with recent estimates employing direct gas diagnostics. The spatial distribution of the forsterite is different from the amorphous dust, as more warm forsterite is needed in the surface layers of the inner disk. The disk in AC Her is very evolved, with its small gas/dust ratio and large inner hole. Mid-IR interferometry offers unique constraints, complementary to mid-IR features, for studying the mineralogy in disks. A better uv coverage is needed to constrain in detail the distribution of the crystalline forsterite in AC Her, but we find strong similarities with the protoplanetary disk HD100546.
Broadband spectrum of AGN consists of multiple components such as jet emission and accretion disk emission. Temporal correlation study is useful to understand emission components and their physical origins. We have performed optical monitoring using Kanata telescope for 4 radio galaxies and 6 radio-loud Narrow-Line Seyfert 1 (RL-NLSy1): 2 gamma-ray-loud RL-NLSy1s, 1H 0323+342 and PMN J0948+0022, and 4 gamma-ray-quiet RL-NLSy1s. From these results, it is suggested that RL-NLSy1s show a disk-dominant phase and a jet-dominant phase in the optical band, but it is not well correlated with brightness.
Counting galaxy number density with wide range sky surveys has been well
adopted in researches focusing on revealing evolution pattern of different
types of galaxies. As understood intuitively the astrophysics environment
physics is intimated affected by cosmology priors with theoretical estimation
or vise versa, or simply stating that the astrophysics effect couples the
corresponding cosmology observations
or the way backwards. In this article we try to quantify the influence on
galaxy number density prediction at faint luminosity limit from the
uncertainties in cosmology, and how much the uncertainties blur the detection
of galaxy evolution, with the hope that this trying may indeed help for precise
and physical cosmology study in near future or vise versa
We use recent very extended (out to 48 kpc) HI kinematics alongside with previous H$\alpha$ kinematics of the spiral galaxy NGC 3198 in order to derive its distribution of Dark Matter (DM). First, we use a chi-square method to model the Rotation Curve of this galaxy in terms of different profiles of its DM distribution: the Universal Rotation Curve (URC) mass model (stellar disk $+$ Burkert halo $+$ gaseous disk), the NFW mass model (stellar disk $+$ NFW halo $+$ gaseus disk) and the Baryon$\Lambda$CDM mass model (stellar disk $+$ NFW halo modified by baryonic physics $+$ gaseous disk). Secondly, in order to derive the DM halo density distribution we apply a new method developed by Salucci et al.(2010) which does not require a global and often uncertain mass modelling. We find that, while, according to the standard method, both URC and NFW mass models can account for the RC, the new method instead leads to a density profile which is in sharp disagreement with the dark halo density distribution predicted within the Lambda Cold Dark Matter ($\Lambda$CDM) scenario. We find that the effects of baryonic physics proposed by Di Cintio et al. (2014) modify the original $\Lambda$CDM halo densities in such a way that the resulting profile is more compatible with the DM density of NGC 3198 derived using our new method. However, at large distances, r $\sim$ 25 kpc, also this modified Baryon$\Lambda$CDM halo profile appears in tension with the derived DM halo density.
We present the Swift X-ray Cluster Survey (SWXCS) catalog obtained using archival data from the X-ray telescope (XRT) on board the Swift satellite acquired from 2005 to 2012, extending the first release of the SWXCS. The catalog provides positions, soft fluxes, and, when possible, optical counterparts for a flux-limited sample of X-ray group and cluster candidates. We consider the fields with Galactic latitude |b| > 20 degree to avoid high HI column densities. We discard all of the observations targeted at groups or clusters of galaxies, as well as particular extragalactic fields not suitable to search for faint extended sources. We finally select ~3000 useful fields covering a total solid angle of ~400 degree^2. We identify extended source candidates in the soft-band (0.5-2keV) images of these fields using the software EXSdetect, which is specifically calibrated for the XRT data. Extensive simulations are used to evaluate contamination and completeness as a function of the source signal, allowing us to minimize the number of spurious detections and to robustly assess the selection function. Our catalog includes 263 candidate galaxy clusters and groups down to a flux limit of 7E-15 erg/cm^2/s in the soft band, and the logN-logS is in very good agreement with previous deep X-ray surveys. The final list of sources is cross-correlated with published optical, X-ray, and SZ catalogs of clusters. We find that 137 sources have been previously identified as clusters, while 126 are new detections. Currently, we have collected redshift information for 158 sources (60% of the entire sample). Once the optical follow-up and the X-ray spectral analysis of the sources are complete, the SWXCS will provide a large and well-defined catalog of groups and clusters of galaxies to perform statistical studies of cluster properties and tests of cosmological models.
We present the effects of the vertical convection on the structure and luminosity of the neutrino-dominated accretion flow (NDAF) around a stellar-mass black hole in spherical coordinates. We found that the convective energy transfer can suppress the radial advection in the NDAF, and that the density, temperature and opening angle are slightly changed. As a result, the neutrino luminosity and annihilation luminosity are increased, which is conducive to achieve the energy requirement of gamma-ray bursts.
We consider some models describing interaction between the dark components and obtain an expression for the coupling constant which contains only the cosmographic parameters. It enables us on the one hand to find constrains on the coupling constants using observational data, and on the other hand, given fixed constraints on the coupling, to restrict number of numerous models describing the interaction in the dark sector.
$\gamma$-ray spectra of pulsars have been mostly studied in a phenomenological way, by fitting them to a cut-off power-law function. Here, we analyze a model where pulsed emission comes from synchro-curvature processes in a gap. We calculate the variation of kinetic energy of magnetospheric particles along the gap and the associated radiated spectra, considering an effective particle distribution. We fit the phase-averaged and phase-resolved {\em Fermi}-LAT spectra of the three brightest $\gamma$-ray pulsars: Geminga, Crab, and Vela, and constrain the three free parameters we leave free in the model. Our best-fit models well reproduce the observed data, apart from residuals above a few GeV in some cases, range for which the inverse Compton scattering likely becomes the dominant mechanism. In any case, the flat slope at low-energy ($\lesssim$ GeV) seen by {\it Fermi}-LAT both in the phase-averaged and phase-resolved spectra of most pulsars, including the ones we studied, requires that most of the detected radiation below $\sim$GeV is produced during the beginning of the particle trajectories, when radiation mostly come from the loss of perpendicular momentum.
We present a study of X-ray ionization of magnetohydrodynamic (MHD) accretion-disk winds in an effort to constrain the physics underlying the highly-ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub-classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically-driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an {\it XMM-Newton}/EPIC spectrum of the narrow-line Seyfert, \pg. We find, through identifying the detected features with Fe K$\alpha$ transitions, that the absorber has a characteristic ionization parameter of $\log (\xi_c [erg~cm~s$^{-1}$]) \simeq 5-6$ and a column density on the order of $N_H \simeq 10^{23}$ cm$^{-2}$, outflowing at a characteristic velocity of $v_c/c \simeq 0.1-0.2$ (where $c$ is the speed of light). The best-fit model favors its radial location at $r_c \simeq 200 R_o$ ($R_o$ is the black hole innermost stable circular orbit), with an inner wind truncation radius at $R_{\rm t} \simeq 30 R_o$. The overall K-shell feature in the data is suggested to be dominated by \fexxv\ with very little contribution from \fexxvi\ and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including \pg.
Initially cold and spherically symmetric self-gravitating systems may give rise to a virial equilibrium state which is far from spherically symmetric, and typically triaxial. We focus here on how the degree of symmetry breaking in the final state depends on the initial density profile. We note that the most asymmetric structures result when, during the collapse phase, there is a strong injection of energy preferentially into the particles which are localized initially in the outer shells. These particles are still collapsing when the others, initially located in the inner part, are already re-expanding; the motion of particles in a time varying potential allow them to gain kinetic energy --- in some cases enough to be ejected from the system. We show that this mechanism of energy gain amplifies the initial small deviations from perfect spherical symmetry due to finite $N$ fluctuations. This amplification is more efficient when the initial density profile depends on radius, because particles have a greater spread of fall times compared to a uniform density profile, for which very close to symmetric final states are obtained}. These effects lead to a distinctive correlation of the orientation of the final structure with the distribution of ejected mass, and also with the initial (very small) angular fluctuations.
CCD sensors do not deliver a perfect image of the light they receive. Beyond the well known linear image smearing due to diffusion of charges during their drift towards the pixel wells, non-linear effects are at play in these sensors. We now have ample evidence for both a flux- dependent and static image distortions, especially but not only, on deep-depleted CCDs. For large surveys relying on CCD sensors, these effects should now be taken into account when reducing data. We present here a summary of current results on sensor characterization and mitigation methods.
The Cassini flyby of Jupiter in 2000 provided spatially resolved spectra of Jupiter's atmosphere using the Visual and Infrared Mapping Spectrometer (VIMS). These spectra contain a strong absorption at wavelengths from about 2.9 $\mu$m to 3.1 $\mu$m, previously noticed in a 3-$\mu$m spectrum obtained by the Infrared Space Observatory (ISO) in 1996. While Brooke et al. (1998, Icarus 136, 1-13) were able to fit the ISO spectrum very well using ammonia ice as the sole source of particulate absorption, Sromovsky and Fry (2010, Icarus 210, 211-229), using significantly revised NH$_3$ gas absorption models, showed that ammonium hydrosulfide (NH$_4$SH) provided a better fit to the ISO spectrum than NH$_3$ , but that the best fit was obtained when both NH$_3$ and NH$_4$SH were present. Although the large FOV of the ISO instrument precluded identification of the spatial distribution of these two components, the VIMS spectra at low and intermediate phase angles show that 3-$\mu$m absorption is present in zones and belts, in every region investigated, and both low- and high-opacity samples are best fit with a combination of NH$_4$SH and NH$_3$ particles at all locations. The best fits are obtained with a layer of small ammonia-coated particles ($r\sim0.3$ $\mu$m) overlying but often close to an optically thicker but still modest layer of much larger NH$_4$SH particles ($r\sim 10$ $\mu$m), with a deeper optically thicker layer, which might also be composed of NH$_4$SH. Although these fits put NH$_3$ ice at pressures less than 500 mb, this is not inconsistent with the lack of prominent NH$_3$ features in Jupiter's longwave spectrum because the reflectivity of the core particles strongly suppresses the NH$_3$ absorption features, at both near-IR and thermal wavelengths.
We present new models for low-mass stars down to the hydrogen-burning limit that consistently couple atmosphere and interior structures, thereby superseding the widely used BCAH98 models. The new models include updated molecular linelists and solar abundances, as well as atmospheric convection parameters calibrated on 2D/3D radiative hydrodynamics simulations. Comparison of these models with observations in various colour-magnitude diagrams for various ages shows significant improvement over previous generations of models. The new models can solve flaws that are present in the previous ones, such as the prediction of optical colours that are too blue compared to M dwarf observations. They can also reproduce the four components of the young quadruple system LkCa 3 in a colour-magnitude diagram with one single isochrone, in contrast to any presently existing model. In this paper we also highlight the need for consistency when comparing models and observations, with the necessity of using evolutionary models and colours based on the same atmospheric structures.
Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions). These data were complemented with interferometric observations of the HCO+ 1-0 and C17O 1-0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results. Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN and CS, were detected. In addition, we detected the SO 54-33 and 56-45 lines, confirming the previous tentative detection. Comparing to other T Tauri's and Herbig Ae disks, AB Aur presents low HCN 3-2/HCO+ 3-2 and CN 2-1/HCN 3-2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far. Conclusions. We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 Msun , Rin=110 AU, Rout=550 AU, a surface density radial index of 1.5 and an inclination of 27 deg. The intensities and line profiles were reproduced within a factor of 2 for most lines. This agreement is reasonable taking into account the simplicity of our model that neglects any structure within the disk. However, the HCN 3-2 and CN 2-1 line intensities were predicted more intense by a factor of >10. We discuss several scenarios to explain this discrepancy.
Classical Cepheid variable stars are crucial calibrators of the cosmic distance scale thanks to a relation between their pulsation periods and luminosities. Their archetype, {\delta} Cephei, is an important calibrator for this relation. In this paper, we show that {\delta} Cephei is a spectroscopic binary based on newly-obtained high-precision radial velocities. We combine these new data with literature data to determine the orbit, which has period 2201 days, semi-amplitude 1.5 km/s, and high eccentricity (e = 0.647). We re-analyze Hipparcos intermediate astrometric data to measure {\delta} Cephei's parallax ($\varpi = 4.09 \pm 0.16$ mas) and find tentative evidence for an orbital signature, although we cannot claim detection. We estimate that Gaia will fully determine the astrometric orbit. Using the available information from spectroscopy, velocimetry, astrometry, and Geneva stellar evolution models ($M_{\delta Cep} ~ 5.0 - 5.25 M_\odot$), we constrain the companion mass to within $0.2 < M_2 < 1.2 M_\odot$. We discuss the potential of ongoing and previous interactions between the companion and {\delta} Cephei near pericenter passage, informing reported observations of circumstellar material and bow-shock. The orbit may have undergone significant changes due to a Kozai-Lidov mechanism driven by the outer (visual and astrometric) companion HD 213307. Our discovery of {\delta} Cephei's nature as a spectroscopic binary exposes a hidden companion and reveals a rich and dynamical history of the archetype of classical Cepheid variables.
Complexity of an active region is related to its flare-productivity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from the magnetogram to analyze separately the core part of an active region from its surrounding part. We find the relationship between complexity of an active region as measured by Mount Wilson and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. These results also pave the way for patch-based dictionary learning with a view towards automatic clustering of active regions.
We report the discovery and characterization of four transiting exoplanets by the HATNet survey. The planet HAT-P-50b has a mass of 1.35 M_J and a radius of 1.29 R_J, and orbits a bright (V = 11.8 mag) M = 1.27 M_sun, R = 1.70 R_sun star every P = 3.1220 days. The planet HAT-P-51b has a mass of 0.31 M_J and a radius of 1.29 R_J, and orbits a V = 13.4 mag, M = 0.98 M_sun, R = 1.04 R_sun star with a period of P = 4.2180 days. The planet HAT-P-52b has a mass of 0.82 M_J and a radius of 1.01 R_J, and orbits a V = 14.1 mag, M = 0.89 M_sun, R = 0.89 R_sun star with a period of P = 2.7536 days. The planet HAT-P-53b has a mass of 1.48 M_J and a radius of 1.32 R_J, and orbits a V = 13.7 mag, M = 1.09 M_sun, R = 1.21 R_sun star with a period of P = 1.9616 days. All four planets are consistent with having circular orbits and have masses and radii measured to better than 10% precision. The low stellar jitter and favorable R_P/R_star ratio for HAT-P-51 make it a promising target for measuring the Rossiter-McLaughlin effect for a Saturn-mass planet.
Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here we present the Fermi/GBM magnetar catalog, giving the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from July 2008 to June 2013. We provide durations, spectral parameters for various models, fluences and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550-5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.
Since a few years, the study of exoplanets has evolved from being purely discovery and exploratory in nature to being quite quantitative. In particular, transmission spectroscopy now allows the study of exoplanetary atmospheres. Such studies rely heavily on space-based or large ground-based facilities, as one needs to perform time-resolved, high signal-to-noise spectroscopy. The very recent exchange of the prisms of the FORS2 atmospheric diffraction corrector on ESO's Very Large Telescope should allow us to reach higher data quality than was possible before. With FORS2, we have obtained the first optical ground-based transmission spectrum of WASP-19b, with a 20 nm resolution in the 550--830 nm range. For this planet, the data set represents the highest resolution transmission spectrum obtained to date. We detect large deviations from planetary atmospheric models in the transmission spectrum redward of 790 nm, indicating the presence of additional sources of opacity not included in the current atmospheric models for WASP-19b, or additional, unexplored sources of systematics. Nonetheless, this work shows the new potential of FORS2 to study the atmospheres of exoplanets in greater detail than has been possible so far.
Context. RW Aur A is a classical T Tauri star (CTTS) with an unusually rich emission line spectrum. In 2014 the star faded by ~ 3 magnitudes in the V band and went into a long-lasting minimum. In 2010 the star suffered from a similar fading, although less deep. These events in RW Aur A are very unusual among the CTTS, and have been attributed to occultations by passing dust clouds. Aims. We want to find out if any spectral changes took place after the last fading of RW Aur A with the intention to gather more information on the occulting body and the cause of the phenomenon. Methods. We collected spectra of the two components of RW Aur. Photometry was made before and during the minimum. Results. The overall spectral signatures reflecting emission from accretion flows from disk to star did not change after the fading. However, blue-shifted absorption components related to the stellar wind had increased in strength in certain resonance lines, and the profiles and strengths, but not fluxes, of forbidden lines had become drastically different. Conclusions. The extinction through the obscuring cloud is grey indicating the presence of large dust grains. At the same time, there are no traces of related absorbing gas. The cloud occults the star and the interior part of the stellar wind, but not the wind/jet further out. The dimming in 2014 was not accompanied by changes in the accretion flows at the stellar surface. There is evidence that the structure and velocity pattern of the stellar wind did change significantly. The dimmings could be related to passing condensations in a tidally disrupted disk, as proposed earlier, but we also speculate that large dust grains have been stirred up from the inclined disk into the line-of-sight through the interaction with an enhanced wind.
We study the instability of magnetic fields in a neutron star core driven by the parity violating part of the electron-nucleon interaction in the Standard Model. Assuming a seed field of the order $10^{12}\thinspace\text{G}$, that is a common value for pulsars, one obtains its amplification due to such a novel mechanism by about five orders of magnitude, up to $10^{17}\thinspace\text{G}$, at time scales $\sim (10^3 - 10^5)\thinspace\text{yr}$. This effect is suggested to be a possible explanation of the origin of the strongest magnetic fields observed in magnetars. The growth of a seed magnetic field energy density is stipulated by the corresponding growth of the magnetic helicity density due to the presence of the anomalous electric current in the Maxwell equation. Such an anomaly is the sum of the two competitive effects: (i) the chiral magnetic effect driven by the difference of chemical potentials for the right and left handed massless electrons and (ii) constant chiral electroweak electron-nucleon interaction term, which has the polarization origin and depends on the constant neutron density in a neutron star core. The remarkable issue for the decisive role of the magnetic helicity evolution in the suggested mechanism is the arbitrariness of an initial magnetic helicity including the case of non-helical fields from the beginning. The tendency of the magnetic helicity density to the maximal helicity case at large evolution times provides the growth of a seed magnetic field to the strongest magnetic fields in astrophysics.
Hypervelocity stars (HVS) move so fast that they are unbound to the Galaxy. When they were first discovered in 2005, dynamical ejection from the supermassive black hole (SMBH) in the Galactic Centre (GC) was suggested as their origin. The two dozen HVSs known today are young massive B stars, mostly of 3-4 solar masses. Recently, 20 HVS candidates of low mass were discovered in the Segue G and K dwarf sample, but none of them originates from the GC. We embarked on a kinematic analysis of the Segue HVS candidate sample using the full 6D phase space information based on new proper motion measurements. Their orbital properties can then be derived by tracing back their trajectories in different mass models of our Galaxy. We present the results for 14 candidate HVSs, for which proper motion measurements were possible. Significantly lower proper motions than found in the previous study were derived. Considering three different Galactic mass models we find that all stars are bound to the Galaxy. We confirm that the stars do not originate from the GC. The distribution of their proper motions and radial velocities is consistent with predictions for runaway stars ejected from the Galactic disk by the binary supernova mechanism. However, their kinematics are also consistent with old disk membership. Moreover, most stars have rather low metallicities and strong $\alpha$-element enrichment as typical for thick disk and halo stars, whereas the metallicity of the three most metal-rich stars could possibly indicate that they are runaway stars from the thin disk. One star shows halo kinematics.
During a supernova explosion, a radiation-dominated shock (RDS) travels through its progenitor. A collisionless shock (CS) is usually assumed to replace it during shock breakout (SB). We demonstrate here that for some realistic progenitors enshrouded in optically thick winds, such as possibly SN 2008D, a CS forms deep inside the wind, soon after the RDS leaves the core, and therefore significantly before SB. The RDS does not survive the transition from the core to the thick wind when the wind close to the core is not sufficiently dense to compensate for the $r^{-2}$ dilution of photons due to shock curvature. This typically happens when the shock velocity is $\lesssim 0.1 {\rm c} \, (\frac{u_{\rm w}}{10\,{\rm km/s}}) (\frac{\dot{M}}{5 \cdot 10^{-4} \, {\rm M}_\odot {\rm /yr}})^{-1} (\frac{r_\ast}{10^{13}\,{\rm cm}})$, where $u_{\rm w}$, $\dot{M}$ and $r_\ast$ are respectively the wind velocity, mass-loss rate and radius of the progenitor star. The radiative CS results in a hard spectrum of the photon flash at breakout, which would produce an X-ray flash. Cosmic ray acceleration would start before SB, for such progenitors. A fraction of secondary TeV neutrinos can reach the observer up to more than ten hours before the first photons from breakout, providing information on the invisible layers of the progenitor.
The properties of uniformly rotating white dwarfs (RWDs) are analyzed within the framework of Newton's gravity and general relativity. In both cases Hartle's formalism is applied to construct the internal and external solutions to the field equations. The white dwarf (WD) matter is described by the Chandrasekhar equation of state. The region of stability of RWDs is constructed taking into account the mass-shedding limit, inverse $\beta$-decay instability, and the boundary established by the turning points of constant angular momentum $J$ sequences which separates stable from secularly unstable configurations. We found the minimum rotation period $\sim0.28$ s in both cases and maximum rotating masses $\sim1.534 M_{\odot}$ and $\sim1.516 M_{\odot}$ for the Newtonian and general relativistic WDs, respectively. By using the turning point method we show that general relativistic WDs can indeed be axisymmetrically unstable whereas the Newtonian WDs are stable.
We describe one of the so-called low magnetic field magnetars SGR 0418+5729, as a massive fast rotating highly magnetized white dwarf following Malheiro et. al. 2012. We give bounds for the mass, radius, moment of inertia, and magnetic field for these sources, by requesting the stability of realistic general relativistic uniformly rotating configurations. Based on these parameters, we improve the theoretical prediction of the lower limit of the spin-down rate of SGR 0418+5729. In addition, we compute the electron cyclotron frequencies corresponding to the predicted surface magnetic fields.
{\tau} Ceti (HD10700), a G8 dwarf with solar mass of 0.78, is a close (3.65 pc) sun-like star where 5 possibly terrestrial planet candidates (minimum masses of 2, 3.1, 3.5, 4.3, and 6.7 Earth masses) have recently been discovered. We report abundances of 23 elements using spectra from the MIKE spectrograph on Magellan. Using stellar models with the abundances determined here, we calculate the position of the classical habitable zone with time. At the current best fit age, 7.63 Gy, up to two planets (e and f) may be in the habitable zone, depending on atmospheric properties. The Mg/Si ratio of the star is found to be 1.78, which is much greater than for Earth (about 1.2). With a system that has such an excess of Mg to Si ratio it is possible that the mineralogical make-up of planets around {\tau} Ceti could be significantly different from that of Earth, with possible oversaturation of MgO, resulting in an increase in the content of olivine and ferropericlase compared with Earth. The increase in MgO would have a drastic impact on the rheology of the mantles of the planets around {\tau} Ceti.
We characterize a cosmic rest frame in which the variation of the spherically averaged Hubble expansion is most uniform, under local Lorentz boosts of the central observer. Using the COMPOSITE sample of 4534 galaxies, we identify a degenerate set of candidate minimum variance frames, which includes the rest frame of the Local Group (LG) of galaxies, but excludes the standard Cosmic Microwave Background (CMB) frame. Candidate rest frames defined by a boost from the LG frame close to the plane of the galaxy have a statistical likelihood similar to the LG frame. This may result from a lack of constraining data in the Zone of Avoidance in the COMPOSITE sample. We extend our analysis to the Cosmicflows-2 (CF2) sample of 8,162 galaxies. While the signature of a systematic boost offset between the CMB and LG frames averages is still detected, the spherically averaged expansion variance in all rest frames is significantly larger in the CF2 sample than would be reasonably expected. We trace this to an omission of any correction for inhomogeneous distribution Malmquist bias in the CF2 distances. Systematic differences in the inclusion of the large SFI++ subsample into the COMPOSITE and CF2 catalogues are analysed. Our results highlight the importance of a careful treatment of Malmquist biases for future peculiar velocities studies, including tests of the hypothesis of Wiltshire et al [arXiv:1201.5371] that a significant fraction of the CMB temperature dipole may be nonkinematic in origin.
Four years after the last LISA meeting, the NASA Astrophysics Data System (ADS) finds itself in the middle of major changes to the infrastructure and contents of its database. In this paper we highlight a number of features of great importance to librarians and discuss the additional functionality that we are currently developing. Starting in 2011, the ADS started to systematically collect, parse and index full-text documents for all the major publications in Physics and Astronomy as well as many smaller Astronomy journals and arXiv e-prints, for a total of over 3.5 million papers. Our citation coverage has doubled since 2010 and now consists of over 70 million citations. We are normalizing the affiliation information in our records and, in collaboration with the CfA library and NASA, we have started collecting and linking funding sources with papers in our system. At the same time, we are undergoing major technology changes in the ADS platform which affect all aspects of the system and its operations. We have rolled out and are now enhancing a new high-performance search engine capable of performing full-text as well as metadata searches using an intuitive query language which supports fielded, unfielded and functional searches. We are currently able to index acknowledgments, affiliations, citations, funding sources, and to the extent that these metadata are available to us they are now searchable under our new platform. The ADS private library system is being enhanced to support reading groups, collaborative editing of lists of papers, tagging, and a variety of privacy settings when managing one's paper collection. While this effort is still ongoing, some of its benefits are already available through the ADS Labs user interface and API at this http URL
Photoionization modelling allows to follow the transport, the emergence, and the absorption of photons taking into account all important processes in nebular plasmas. Such modelling needs the spatial distribution of density, chemical abundances and temperature, that can be provided by chemo-dynamical simulations (ChDS) of dwarf galaxies. We perform multicomponent photoionization modelling (MPhM) of the ionized gas using 2-D ChDSs of dwarf galaxies. We calculate emissivity maps for important nebular emission lines. Their intensities are used to derive the chemical abundance of oxygen by the so-called Te- and R23-methods. Some disagreements are found between oxygen abundances calculated with these methods and the ones coming from the ChDSs. We investigate the fraction of ionizing radiation emitted in the star-forming region which is able to leak out the galaxy. The time- and direction-averaged escape fraction in our simulation is 0.35-0.4. Finally, we have calculated the total Halpha lumi- nosity of our model galaxy using Kennicutt's calibration to derive the star-formation rate. This value has been compared to the 'true' rate in the ChDSs. The Halpha-based star-formation rate agrees with the true one only at the beginning of the simulation. Minor deviations arise later on and are due in part to the production of high-energy photons in the warm-hot gas, in part to the leakage of energetic photons out of the galaxy. The effect of artificially introduced thin dense shells (with thicknesses smaller than the ChDSs spatial resolution) is investigated, as well.
We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability of transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.
We formulate a smoothed-particle hydrodynamics numerical method, traditionally used for the Euler equations for fluid dynamics in the context of astrophysical simulations, to solve the non-linear Schrodinger equation in the Madelung formulation. The probability density of the wavefunction is discretized into moving particles, whose properties are smoothed by a kernel function. The traditional fluid pressure is replaced by a quantum pressure tensor, for which a novel, robust discretization is found. We demonstrate our numerical method on a variety of numerical test problems involving the simple harmonic oscillator, Bose-Einstein condensates, collapsing singularities, and dark matter halos governed by the Gross-Pitaevskii-Poisson equation. Our method is conservative, applicable to unbounded domains, and is automatically adaptive in its resolution, making it well suited to study problems with collapsing solutions.
We construct cosmological long-wavelength solutions without symmetry in general gauge conditions compatible with the long-wavelength scheme. We then specify the relationship among the solutions in different time slicings. Nonspherical long-wavelength solutions are particularly important for primordial structure formation in the epoch of soft equations of state. Applying this framework to spherical symmetry, we show the equivalence between long-wavelength solutions in the constant mean curvature slicing and asymptotic quasi-homogeneous solutions in the comoving slicing. We derive the correspondence relation and compare the results of numerical simulations of primordial black hole (PBH) formation. In terms of $\tilde{\delta}_{c}$, the value which the averaged density perturbation at threshold in the comoving slicing would take at horizon entry in the first-order long-wavelength expansion, we find that the sharper the transition from the overdense region to the FRW universe is, the larger the $\tilde{\delta}_{c}$ becomes. We suggest that, for $p=(\Gamma-1)\rho$, we can apply the analytic formula for the minimum $\tilde{\delta}_{c, {\rm min}} \simeq 3\Gamma/(3\Gamma+2)\sin^2 \left[\pi\sqrt{\Gamma-1}/(3\Gamma-2)\right]$ and the maximum $\tilde{\delta}_{c, {\rm max}} \simeq 3\Gamma/(3\Gamma+2)$. As for the threshold peak value of the curvature perturbation $\psi_{0,c}$, we find that the sharper the transition is, the smaller the $\psi_{0,c}$ becomes. We explain this intriguing feature with a compensated top-hat density model. We also deduce an environmental effect in the presence of much longer wavelength perturbations using simplified models. We conclude that PBH formation can be significantly suppressed (enhanced) in the underlying positive (negative) density perturbation of longer wavelength, provided that the smaller value of $\psi_{0,c}$ implies higher production rate of PBHs.
We constrain the effective theory of one-body dark matter-nucleon interactions using neutrino telescope observations. We derive exclusion limits on the 28 coupling constants of the theory, exploring interaction operators previously considered in dark matter direct detection only, and using new nuclear response functions recently derived through nuclear structure calculations. We determine for what interactions neutrino telescopes are superior to current direct detection experiments, and show that Hydrogen is not the most important element in the exclusion limit calculation for the majority of the spin-dependent operators.
By insisting on naturalness in both the electroweak and QCD sectors of the MSSM, the portrait for dark matter production is seriously modified from the usual WIMP miracle picture. In SUSY models with radiatively-driven naturalness (radiative natural SUSY or RNS) which include a DFSZ-like solution to the strong CP and SUSY mu problems, dark matter is expected to be an admixture of both axions and higgsino-like WIMPs. The WIMP/axion abundance calculation requires simultaneous solution of a set of coupled Boltzmann equations which describe quasi-stable axinos and saxions. In most of parameter space, axions make up the dominant contribution of dark matter although regions of WIMP dominance also occur. We show the allowed range of PQ scale f_a and compare to the values expected to be probed by the ADMX axion detector in the near future. We also show WIMP detection rates which are suppressed from usual expectations because now WIMPs comprise only a fraction of the total dark matter. Nonetheless, ton-scale noble liquid detectors should be able to probe the entirety of RNS parameter space. Indirect WIMP detection rates are less propitious since they are reduced by the square of the depleted WIMP abundance.
Links to: arXiv, form interface, find, astro-ph, recent, 1503, contact, help (Access key information)
We present a study of the dynamical properties of 125 compact stellar systems (CSSs) in the nearby giant elliptical galaxy NGC5128, using high-resolution spectra (R~26,000) obtained with VLT/FLAMES. Our results provide evidence for a new type of star cluster, based on the CSS dynamical mass scaling relations. All radial velocity (v_r) and line-of-sight velocity dispersion (sigma_los) measurements are performed with the penalized pixel fitting (ppxf) technique, which provided sigma_ppxf estimates for 115 targets. The sigma_ppxf estimates are corrected to the 2D projected half-light radii, sigma_{1/2}, as well as the cluster cores, sigma_0, accounting for observational/aperture effects and are combined with structural parameters, from high spatial resolution imaging, in order to derive total dynamical masses (M_dyn) for 112 members of NGC5128's star cluster system. In total, 89 CSSs have dynamical masses measured for the first time along with the corresponding dynamical mass-to-light ratios (Upsilon_V^dyn). We find two distinct sequences in the Upsilon_V^dyn - M_dyn plane, which are well approximated by power laws of the forms Upsilon_V^dyn ~ M_dyn^0.33+\-0.04 and Upsilon_V^dyn - M_dyn^0.79+\-0.04. The shallower sequence corresponds to the very bright tail of the globular cluster luminosity function (GCLF), while the steeper relation appears to be populated by a distinct group of objects which require significant dark gravitating components such as central massive black holes and/or exotically concentrated dark matter distributions. This result would suggest that the formation and evolution of these CSSs are markedly different from the "classical" globular clusters in NGC5128 and the Local Group, despite the fact that these clusters have luminosities similar to the GCLF turn-over magnitude.~We include a thorough discussion of myriad factors potentially influencing our measurements.
We present a study of extended galaxy halo gas through HI and OVI absorption over two decades in projected distance at $z\approx0.2$. The study is based on a sample of $95$ galaxies from a highly complete ($ > 80\%$) survey of faint galaxies ($L > 0.1L_*$) with archival quasar absorption spectra and $53$ galaxies from the literature. A clear anti-correlation is found between HI (OVI) column density and virial radius normalized projected distance, $d/R_{\rm h}$. Strong HI (OVI) absorption systems with column densities greater than $10^{14.0}$ ($10^{13.5}$) cm$^{-2}$ are found for $48$ of $54$ ($36$ of $42$) galaxies at $d < \,R_{\rm h}$ indicating a mean covering fraction of $\langle\kappa_{\rm HI}\rangle=0.89$ ($\langle\kappa_{\rm OVI}\rangle=0.86$). OVI absorbers are found at $d\approx R_{\rm h}$, beyond the extent observed for lower ionization species. At $d/R_{\rm h}=1-3$ strong HI (OVI) absorption systems are found for only $7$ of $43$ ($5$ of $34$) galaxies ($\langle\kappa_{\rm HI}\rangle=0.16$ and $\langle\kappa_{\rm OVI}\rangle=0.15$). Beyond $d=3\,R_{\rm h}$, the HI and OVI covering fractions decrease to levels consistent with coincidental systems. The high completeness of the galaxy survey enables an investigation of environmental dependence of extended gas properties. Galaxies with nearby neighbors exhibit a modest increase in OVI covering fraction at $d>R_{\rm h}$ compared to isolated galaxies ($\kappa_{\rm OVI}\approx0.13$ versus $0.04$) but no excess HI absorption. These findings suggest that environmental effects play a role in distributing heavy elements beyond the enriched gaseous halos of individual galaxies. Finally, we find that differential HI and OVI absorption between early- and late-type galaxies continues from $d < R_{\rm h}$ to $d\approx3\,R_{\rm h}$.
We recently started a systematic search of low-energy counterparts of the unidentified gamma-ray sources (UGSs) listed in the Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL) and the Fermi-LAT 2-Year Source Catalog (2FGL).} The main goal of our investigation is to find active galaxies belonging to the blazar class that lie within the positional uncertainty region of the UGSs and thus could be their potential low-energy counterparts. To achieve our aims, we first adopted several procedures based on the peculiar observational properties of blazars in the radio and in the IR. Then we carried out a follow-up spectroscopic campaign in the optical band to verify the nature of the candidates selected as potential counterparts of the UGSs. Here we present the results of the observations carried out in 2013 in the Northern Hemisphere at Kitt Peak National Observatory (KPNO). Optical spectroscopy is crucial to confirm the nature of the sources and can be used to estimate their redshifts; it will also allow us to test the robustness of our methods when the whole campaign is completed. Here we present the optical spectroscopic observations of 39 sources. Within our sample we found that 6 sources are blazars, candidates to be low-energy counterparts of the UGSs listed in the 2FGL. We confirm that an additional 8 sources, previously classified as active galaxies of uncertain type and associated in the 2FGL, are also all BL Lac objects. Moreover, we also present 20 new spectra for known blazars listed in the Multi-frequency Catalogue of Blazars as having an uncertain redshift and/or being classified as BL Lac candidates. We conclude that our methods for selecting gamma-ray blazar candidates allows us to discover new blazars and increase the list of potential low-energy counterparts for the Fermi UGSs.
We present the design and performance of a non-imaging concentrator for use in broad-band polarimetry at millimeter through submillimeter wavelengths. A rectangular geometry preserves the input polarization state as the concentrator couples f/2 incident optics to a 2 pi sr detector. Measurements of the co-polar and cross-polar beams in both the few-mode and highly over-moded limits agree with a simple model based on mode truncation. The measured co-polar beam pattern is nearly independent of frequency in both linear polarizations. The cross-polar beam pattern is dominated by a uniform term corresponding to polarization efficiency 94%. After correcting for efficiency, the remaining cross-polar response is -18 dB.
Radio-loud Active Galactic Nuclei at z~2-4 are typically located in dense environments and their host galaxies are among the most massive systems at those redshifts, providing key insights for galaxy evolution. Finding radio-loud quasars at the highest accessible redshifts (z~6) is important to study their properties and environments at even earlier cosmic time. They would also serve as background sources for radio surveys intended to study the intergalactic medium beyond the epoch of reionization in HI 21 cm absorption. Currently, only five radio-loud ($R=f_{\nu,5{\rm GHz}}/f_{\nu,4400\AA}>10$) quasars are known at z~6. In this paper we search for 5.5 < z < 7.2 quasars by cross-matching the optical Pan-STARRS1 and radio FIRST surveys. The radio information allows identification of quasars missed by typical color-based selections. While we find no good 6.4 < z <7.2 quasar candidates at the sensitivities of these surveys, we discover two new radio-loud quasars at z~6. Furthermore, we identify two additional z~6 radio-loud quasars which were not previously known to be radio-loud, nearly doubling the current z~6 sample. We show the importance of having infrared photometry for z>5.5 quasars to robustly classify them as radio-quiet or radio-loud. Based on this, we reclassify the quasar J0203+0012 (z=5.72), previously considered radio-loud, to be radio-quiet. Using the available data in the literature, we constrain the radio-loud fraction of quasars at z~6, using the Kaplan--Meier estimator, to be $8.1^{+5.0}_{-3.2}\%$. This result is consistent with there being no evolution of the radio-loud fraction with redshift, in contrast to what has been suggested by some studies at lower redshifts.
We present a high-frequency very long baseline interferometry (VLBI) kinematical study of the BL Lac object S5 0716+714 over the time period of September 2008 to October 2010. The aim of the study is to investigate the relation of the jet kinematics to the observed broadband flux variability. We find significant non-radial motions in the jet outflow of the source. In the radial direction, the highest measured apparent speed is \sim37 c, which is exceptionally high, especially for a BL Lac object. Patterns in the jet flow reveal a roughly stationary feature \sim0.15 mas downstream of the core. The long-term fits to the component trajectories reveal acceleration in the sub-mas region of the jet. The measured brightness temperature, T_{B}, follows a continuous trend of decline with distance, T_B \propto r_{jet}^{-(2.36\pm0.41)}, which suggests a gradient in Doppler factor along the jet axis. Our analysis suggest that a moving disturbance (or a shock wave) from the base of the jet produces the high-energy (optical to \gamma-ray) variations upstream of the 7 mm core, and then later causes an outburst in the core. Repetitive optical/\gamma-ray flares and the curved trajectories of the associated components suggest that the shock front propagates along a bent trajectory or helical path. Sharper \gamma-ray flares could be related to the passage of moving disturbances through the stationary feature. Our analysis suggests that the \gamma-ray and radio emission regions have different Doppler factors.
The analysis of $\gamma$-ray flux variability along with the parsec-scale jet kinematics suggests that the high-energy radiation in the BL Lac object S5 0716+714 has a significant correlation with the mm-VLBI core flux density and with the local orientation of the inner jet flow. For the first time in any blazar, we report a significant correlation between the $\gamma$-ray flux variations and the variations in the local orientation of the jet outflow (position angle). We find that the $\gamma$-ray flux variations lead the 7~mm VLBI core flux variations by 82$\pm$32~days, which suggests that the high-energy emission in S5 0716+714 is coming from a region located 3.8$\pm$1.9~parsecs closer to the central black hole than the "core" seen on the mm-VLBI images. The results imply a strong physical and casual connection between $\gamma$-ray emission and the inner jet morphology in the source.
The global-scale dynamo action achieved in a simulation of a Sun-like star rotating at thrice the solar rate is assessed. The 3-D MHD Anelastic Spherical Harmonic (ASH) code, augmented with a viscosity minimization scheme, is employed to capture convection and dynamo processes in this G-type star. The simulation is carried out in a spherical shell that encompasses 3.8 density scale heights of the solar convection zone. It is found that dynamo action with a high degree of time variation occurs, with many periodic polarity reversals occurring roughly every 6.2 years. The magnetic energy also rises and falls with a regular period. The magnetic energy cycles arise from a Lorentz-force feedback on the differential rotation, whereas the processes leading to polarity reversals are more complex, appearing to arise from the interaction of convection with the mean toroidal fields. Moreover, an equatorial migration of toroidal field is found, which is linked to the changing differential rotation, and potentially to a nonlinear dynamo wave. This simulation also enters a grand minimum lasting roughly 20~years, after which the dynamo recovers its regular polarity cycles.
The luminous Class I protostar HBC 494, embedded in the Orion A cloud, is associated with a pair of reflection nebulae, Re50 and Re50N, which appeared sometime between 1955 and 1979. We have found that a dramatic brightening of Re50N has taken place sometime between 2006 and 2014. This could result if the embedded source is undergoing a FUor eruption. However, the near-infrared spectrum shows a featureless very red continuum, in contrast to the strong CO bandhead absorption displayed by FUors. Such heavy veiling, and the high luminosity of the protostar, is indicative of strong accretion but seemingly not in the manner of typical FUors. We favor the alternative explanation that the major brightening of Re50N and the simultaneous fading of Re50 is caused by curtains of obscuring material that cast patterns of illumination and shadows across the surface of the molecular cloud. This is likely occurring as an outflow cavity surrounding the embedded protostar breaks through to the surface of the molecular cloud. Several Herbig-Haro objects are found in the region.
Gamma-ray bursts (GRBs) offer a route to characterizing star-forming galaxies and quantifying high-$z$ star-formation that is distinct from the approach of traditional galaxy surveys: GRB selection is independent of dust and probes even the faintest galaxies that can evade detection in flux-limited surveys. However, the exact relation between GRB rate and Star Formation Rate (SFR) throughout all redshifts is controversial. The TOUGH survey includes observations of all GRB hosts (69) in an optically unbiased sample and we utilize these to constrain the evolution of the UV GRB-host-galaxy Luminosity Function (LF) between $z=0$ and $z=4.5$, and compare this with LFs derived from both Lyman-break galaxy (LBG) surveys and simulation modeling. At all redshifts we find the GRB hosts to be most consistent with a Luminosity Function derived from SFR weighted models incorporating GRB production via both metallicity-dependent and independent channels with a relatively high level of bias towards low metallicity hosts. In the range $1<z<3$ an SFR weighted LBG derived (i.e. non-metallicity biased) LF is also a reasonable fit to the data. Between $z\sim3$ and $z\sim6$, we observe an apparent lack of UV bright hosts in comparison with Lyman-break galaxies, though the significance of this shortfall is limited by nine hosts of unknown redshift.
We present six-year multi-wavelength monitoring result for broad-line radio galaxy 3C 120. The source was sporadically detected by Fermi-LAT and after the MeV/GeV gamma-ray detection the 43 GHz radio core brightened and a knot ejected from an unresolved core, implying that the radio-gamma phenomena are physically connected. We show that the gamma-ray emission region is located at sub-pc distance from the central black hole, and MeV/GeV gamma-ray emission mechanism is inverse-Compton scattering of synchrotron photons. We also discuss future perspective revealed by next-generation X-ray satellite Astro-H.
We searched through roughly 12 years of archival survey data acquired by the Katzman Automatic Imaging Telescope (KAIT) as part of the Lick Observatory Supernova Search (LOSS) in order to detect or place limits on possible progenitor outbursts of Type IIn supernovae (SNe~IIn). The KAIT database contains multiple pre-SN images for 5 SNe~IIn (plus one ambiguous case of a SN IIn/imposter) within 50 Mpc. No progenitor outbursts are found using the false discovery rate (FDR) statistical method in any of our targets. Instead, we derive limiting magnitudes (LMs) at the locations of the SNe. These limiting magnitudes (typically reaching $m_R \approx 19.5\,\mathrm{mag}$) are compared to outbursts of SN 2009ip and $\eta$ Car, plus additional simulated outbursts. We find that the data for SN 1999el and SN 2003dv are of sufficient quality to rule out events $\sim40$ days before the main peak caused by initially faint SNe from blue supergiant (BSG) precursor stars, as in the cases of SN 2009ip and SN 2010mc. These SNe~IIn may thus have arisen from red supergiant progenitors, or they may have had a more rapid onset of circumstellar matter interaction. We also estimate the probability of detecting at least one outburst in our dataset to be $\gtrsim60\%$ for each type of the example outbursts, so the lack of any detections suggests that such outbursts are either typically less luminous (intrinsically or owing to dust) than $\sim -13\,\mathrm{mag}$, or not very common among SNe~IIn within a few years prior to explosion.
In this study, equilibrium points and periodic orbits in the potential field of asteroids are investigated. We present the linearized equations of motion relative to the equilibrium points and characteristic equations. We find that the distribution of characteristic multipliers of periodic orbits around the equilibrium point and the distribution of eigenvalues of the equilibrium point correspond to each other. The distribution of eigenvalues of the equilibrium point confirms the topology and the stability of periodic orbits around the equilibrium point.
A crucial feature not widely accounted for in local helioseismology is that surface magnetic regions actually open a window from the interior into the solar atmosphere, and that the seismic waves leak through this window, reflect high in the atmosphere, and then re-enter the interior to rejoin the seismic wave field normally confined there. In a series of recent numerical studies using translation invariant atmospheres, we utilised a "directional time-distance helioseismology" measurement scheme to study the implications of the returning fast and Alfv\'en waves higher up in the solar atmosphere on the seismology at the photosphere (Cally & Moradi 2013; Moradi & Cally 2014). In this study, we extend our directional time-distance analysis to more realistic sunspot-like atmospheres to better understand the direct effects of the magnetic field on helioseismic travel-time measurements in sunspots. In line with our previous findings, we uncover a distinct frequency-dependant directional behaviour in the travel-time measurements, consistent with the signatures of MHD mode conversion. We found this to be the case regardless of the sunspot field strength or depth of its Wilson depression. We also isolated and analysed the direct contribution from purely thermal perturbations to the measured travel times, finding that waves propagating in the umbra are much more sensitive to the underlying thermal effects of the sunspot.
In this article we review the astrophysical application of gravitational microlensing. After introducing the history of gravitational lensing, we present the key equations and concept of microlensing. The most frequent microlensing events are single-lens events and historically it has been used for searching dark matter in the form of compact astrophysical halo objects in the Galactic halo. We discuss about the degeneracy problem in the parameters of lens and perturbation effects that can partially break the degeneracy between the lens parameters. The rest of paper is about the astrophysical applications of microlensing. One of the important applications is in the stellar physics by probing the surface of source stars in the high magnification microlensing events. The astrometric and polarimetric observations will be complimentary for probing the atmosphere and stellar spots on the surface of source stars. Finally we discuss about the future projects as space based telescopes for parallax and astrometry observations of microlensing events. With this project, we would expect to produce a complete stellar and remnant mass function and study the structure of Galaxy in term of distribution of stars along our line of sight towards the centre of galaxy.
Asteroid surveys are the backbone of asteroid science, and with this in mind we begin with a broad review of the impact of asteroid surveys on our field. We then provide a brief history of asteroid discoveries so as to place contemporary and future surveys in perspective. Surveys in the United States have discovered the vast majority of the asteroids and this dominance has been consolidated since the publication of Asteroids III. Our descriptions of the asteroid surveys that have been operational since that time are focussed upon those that have contributed the vast majority of asteroid observations and discoveries. We also provide some insight into upcoming next-generation surveys that are sure to alter our understanding of the small bodies in the inner solar system and provide evidence to untangle their complicated dynamical and physical histories. The Minor Planet Center, the nerve center of the asteroid discovery effort, has improved its operations significantly in the past decade so that it can manage the increasing discovery rate, and ensure that it is well-placed to handle the data rates expected in the next decade. We also consider the difficulties associated with astrometric follow-up of newly identified objects. It seems clear that both of these efforts must operate in new modes in order to keep pace with expected discovery rates of next-generation ground- and space-based surveys.
We calculate non-axisymmetric oscillations of uniformly rotating polytropes magnetized with a purely toroidal magnetic field, taking account of the effects of the deformation due to the magnetic field. As for rotation, we consider only the effects of Coriolis force on the oscillation modes, ignoring those of the centrifugal force, that is, of the rotational deformation of the star. Since separation of variables is not possible for the oscillation of rotating magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We calculate magnetically modified normal modes such as $g$-, $f$-, $p$-, $r$-, and inertial modes. In the lowest order, the frequency shifts produced by the magnetic field scale with the square of the characteristic Alfv\'en frequency. As a measure of the effects of the magnetic field, we calculate the proportionality constant for the frequency shifts for various oscillation modes. We find that the effects of the deformation are significant for high frequency modes such as $f$- and $p$-modes but unimportant for low frequency modes such as $g$-, $r$-, and inertial modes.
Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 Msun of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-MCh WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-MCh bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching MCh to be on the order of 1 percent of the Galactic SN Ia rate.
We examine the stellar mass assembly in galaxy cluster cores using data from the Cluster Lensing and Supernova survey with Hubble (CLASH). We measure the growth of brightest cluster galaxy (BCG) stellar mass, the fraction of the total cluster light which is in the intracluster light (ICL) and the numbers of mergers that occur in the BCG over the redshift range of the sample, 0.18<z<0.90. We find that BCGs grow in stellar mass by a factor of 1.4 on average from accretion of their companions, and this growth is reduced to a factor of 1.2 assuming 50% of the accreted stellar mass becomes ICL, in line with the predictions of simulations. We find that the ICL shows significant growth over this same redshift range, growing by a factor of of 4--5 in its contribution to the total cluster light. This result is in line with our previous findings for ICL at higher redshifts, however our measured growth is somewhat steeper than is predicted by simulations of ICL assembly. We find high mass companions and hence major merging (mergers with objects of masses $\geq$1/2 of the BCG) to be very rare for our sample. We conclude that minor mergers (mergers with objects with masses $<$ 1/2 of the BCG) are the dominant process for stellar mass assembly at low redshifts, with the majority of the stellar mass from interactions ending up contributing to the ICL rather than building up the BCG. From a rough estimate of the stellar mass growth of the ICL we also conclude that the majority of the ICL stars must come from galaxies which fall from outside of the core of the cluster, as is predicted by simulations. It appears that the growth of the ICL is the major evolution event in galaxy cluster cores during the second half of the lifetime of the Universe.
In this work we study the relevance of the cosmic web and substructures on the matter and lensing power spectra measured from halo mock catalogues extracted from the N-body simulations. Since N-body simulations are computationally expensive, it is common to use faster methods that approximate the dark matter field as a set of halos. In this approximation, we replace mass concentrations in N-body simulations by a spherically symmetric Navarro-Frenk-White halo density profile. We also consider the full mass field as the sum of two distinct fields: dark matter halos ($M>9\times 10^{12}~M_{\odot}$/h) and particles not included into halos. Mock halos reproduce well the matter power spectrum, but underestimate the lensing power spectrum on large and small scales. For sources at $z_{\rm s}=1$ the lensing power spectrum is underestimated by up to 40% at $\ell\approx 10^4$ with respect to the simulated halos. The large scale effect can be alleviated by combining the mock catalogue with the dark matter distribution outside the halos. In addition, to evaluate the contribution of substructures we have smeared out the intra-halo substructures in a N-body simulation while keeping the halo density profiles unchanged. For the matter power spectrum the effect of this smoothing is only of the order of 5%, but for lensing substructures are much more important: for $\ell\approx 10^4$ the internal structures contribute 30% of the total spectrum. These findings have important implications in the way mock catalogues have to be created, suggesting that some approximate methods currently used for galaxy surveys will be inadequate for future weak lensing surveys.
The composition of ultrahigh energy cosmic rays is yet unknown. The photo-disintegration of cosmic ray nuclei by star light leads to the production of secondary antineutrinos and gamma rays. We have calculated the antineutrino flux produced in this way from ultrahigh energy cosmic ray nuclei trapped close to the Galactic plane where the radiation field is intense. The IceCube detector has measured the neutrino/antineutrino flux in the TeV-PeV energy range. Our calculated secondary antineutrino flux in the energy range of 28-100 TeV is compared with the neutrino/antineutrino flux detected by the IceCube detector to constrain the flux of heavy nuclei of per nucleon energy 27-98 PeV.
The new generation of radio telescopes, such as the Square Kilometer Array (SKA), requires dramatic advances in computer hardware and software, in order to process the large amounts of produced data efficiently. In this document, we explore a new approach to wide-field imaging. By generalizing the image reconstruction, which is performed by an inverse Fourier transform, to arbitrary transformations, we gain enormous new possibilities. In particular, we outline an approach that might allow to obtain a sky image of size P times Q in (optimal) O(PQ) time. This could be a step in the direction of real-time, wide-field sky imaging for future telescopes.
We analyze a sample of 3,944 low-resolution (R ~ 2000) optical spectra from the Sloan Digital Sky Survey (SDSS), focusing on stars with effective temperatures 5800 < Teff < 6300 K, and distances from the Milky Way plane in excess of 5 kpc, and determine their abundances of Fe, Ca, and Mg. We followed the same methodology as in the previous paper in this series, deriving atmospheric parameters by chi2 minimization, but this time we obtained the abundances of individual elements by fitting their associated spectral lines. Distances were calculated from absolute magnitudes obtained by a statistical comparison of our stellar parameters with stellar-evolution models. The observations reveal a decrease in the abundances of iron, calcium, and magnesium at large distances from the Galactic center. The median abundances for the halo stars analyzed are fairly constant up to a Galactocentric distance r ~ 20 kpc, rapidly decrease between r ~ 20 and r ~ 40 kpc, and flatten out to significantly lower values at larger distances, consistent with previous studies. In addition, we examine the [Ca/Fe] and [Mg/Fe] as a function of Fe/H and Galactocentric distance. Our results show that the most distant parts of the halo show a steeper variation of the [Ca/Fe] and [Mg/Fe] with iron. We found that at the range -1.6 < [Fe/H] < -0.4 [Ca/Fe] decreases with distance, in agreement with earlier results based on local stars. However, the opposite trend is apparent for [Mg/Fe]. Our conclusion that the outer regions of the halo are more metal-poor than the inner regions, based on in situ observations of distant stars, agrees with recent results based on inferences from the kinematics of more local stars, and with predictions of recent galaxy formation simulations for galaxies similar to the Milky Way.
The Chandra High Energy Transmission Gratings (HETG) Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster which provides high resolution X-ray spectra of very young stars over a wide mass range (0.7 - 2.3 Msun). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts which are well-characterized at optical and infra-red wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above $10^{31}$ erg/s, in some cases exceeding $10^{32}$ erg/s for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total EMs range between 3 - 8$\times10^{54}$ cm$^{-3}$ and are comparable to active coronal sources. Limits on the forbidden to inter-combination line ratios in the He-Like K-shell lines show that we observe a predominantely optically thin plasma with electron densities below $10^{12}$ cm$^{-3}$. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6 to 2.3 Msun classical T Tauri stars shows that coronal activity and possibly coronal loop size increase significantly between ages 0.1 to 10 Myrs.
This paper deals with the application of the creep tide theory (Ferraz-Mello, Cel. Mech. Dyn. Astron. vol. 116, 109, 2013) to the study of the rotation of stars hosting massive close-in planets. The stars have nearly the same tidal relaxation factors as gaseous planets and the evolution of their rotation is similar to that of close-in hot Jupiters: they tidally evolve towards a stationary solution. However, stellar rotation may also be affected by stellar wind braking. Thus, while the rotation of a quiet host star evolves towards a stationary attractor with a frequency ($1+6e^2$) times the orbital mean-motion of the companion, the continuous loss of angular momentum in an active star displaces the stationary solution towards slower values: Active host stars with big close-in companions tend to have rotational periods larger than the orbital periods of their companions. The study of some hypothetical examples shows that because of tidal evolution, the rules of gyrochronology cannot be used to estimate the age of one system with a large close-in companion, no matter if the star is quiet or active, if the current semi-major axis of the companion is smaller than 0.03--0.04 AU. Details on the evolution of the systems: CoRoT LRc06E21637, CoRoT-27, Kepler-75, CoRoT-2, CoRoT-18, CoRoT-14 and on hypothetical systems with 1--4 M_Jup planets in orbit around a star similar to the Sun are given.
The radial profiles of gas, stars, and far ultraviolet radiation in 20 dwarf Irregular galaxies are converted to stability parameters and scale heights for a test of the importance of two-dimensional (2D) instabilities in promoting star formation. A detailed model of this instability involving gaseous and stellar fluids with self-consistent thicknesses and energy dissipation on a perturbation crossing time give the unstable growth rates. We find that all locations are effectively stable to 2D perturbations, mostly because the disks are thick. We then consider the average volume densities in the midplanes, evaluated from the observed HI surface densities and calculated scale heights. The radial profiles of the star formation rates are equal to about 1% of the HI surface densities divided by the free fall times at the average midplane densities. This 1% resembles the efficiency per unit free fall time commonly found in other cases. There is a further variation of this efficiency with radius in all of our galaxies, following the exponential disk with a scale length equal to about twice the stellar mass scale length. This additional variation is modeled by the molecular fraction in a diffuse medium using radiative transfer solutions for galaxies with the observed dimensions and properties of our sample. We conclude that star formation is activated by a combination of three-dimensional gaseous gravitational processes and molecule formation. Implications for outer disk structure and formation are discussed.
We report preliminary results of large-scale distribution toward the Magellanic supernova remnant N132D using Mopra and Chandra archival datasets. We identified a cavity-like CO structure along the X-ray shell toward the southern half of it. The total mass of associating molecular gas is $\sim10^4 M_\odot$, which is smaller than the previous study by an order of magnitude. Further observations using ALMA, ASTE, and Mopra will reveal the detailed spatial structures and its physical conditions.
We perform a weak-lensing study of the nearby cool-core galaxy clusters, Hydra A ($z=0.0538$) and A478 ($z=0.0881$), of which brightest cluster galaxies (BCGs) host powerful activities of active galactic nuclei (AGNs). For each cluster, the observed tangential shear profile is well described either by a single Navarro--Frenk--White model or a two-component model including the BCG as an unresolved point mass. For A478, we determine the BCG and its host-halo masses from a joint fit to weak-lensing and stellar photometry measurements. We find that the choice of initial mass functions (IMFs) can introduce a factor of two uncertainty in the BCG mass, whereas the BCG host halo mass is well constrained by data. We perform a joint analysis of weak-lensing and stellar kinematics data available for the Hydra A cluster, which allows us to constrain the central mass profile without assuming specific IMFs.We find that the central mass profile ($r<300$ kpc) determined from the joint analysis is in excellent agreement with those from independent measurements,including dynamical masses estimated from the cold gas disk component, X-ray hydrostatic total mass estimates,and the central stellar mass estimated based on the Salpeter IMF. The observed dark-matter fractions around the BCGs for the two clusters are found to be smaller than those predicted by adiabatic contraction models, suggesting the importance of other physical processes, such as the the AGN feedback and/or dissipationless mergers.
V1094 Tau is bright eclipsing binary star with an orbital period close to 9 days containing two stars similar to the Sun. Our aim is to test models of Sun-like stars using precise and accurate mass and radius measurements for both stars in V1094 Tau. We present new spectroscopy of V1094 Tau which we use to estimate the effective temperatures of both stars and to refine their spectroscopic orbits. We also present new, high-quality photometry covering both eclipses of V1094 Tau in the Stroemgren uvby system and in the Johnson V-band. The masses, radii and effective temperatures of the stars in V1094 Tau are found to be M$_A$ = 1.0964 $\pm$ 0.0040 M$_{\odot}$, R$_A$ = 1.4129 $\pm$ 0.0058 R$_{\odot}$, T$_{\rm eff,A}$ = 5850 $\pm$ 100 K, and M$_B$ = 1.0120 $\pm$ 0.0028 M$_{\odot}$, R$_B$ = 1.0913 $\pm$ 0.0066 R$_{\odot}$, T$_{\rm eff,B}$ = 5700 $\pm$ 100 K. An analysis of the times of mid-eclipse and the radial velocity data reveals apsidal motion with a period of 14500 $\pm$ 3700 years. The observed masses, radii and effective temperatures are consistent with stellar models for an age $\approx$ 6 Gyr if the stars are assumed to have a metallicity similar to the Sun. This estimate is in reasonable agreement with our estimate of the metallicity derived using Stroemgren photometry and treating the binary as a single star ([Fe/H] $= -0.09 \pm 0.11$). The rotation velocities of the stars suggest that V1094 Tau is close to the limit at which tidal interactions between the stars force them to rotate pseudo-synchronously with the orbital motion.
Blazars are a class of AGN known to be powerful very-high-energy (VHE, 100 GeV - 100 TeV) celestial gamma-ray emitters. At the time of writing, 41 blazars, spread all over the sky and with known redshift in the range $0.0215 \leq z \leq 0.635$ have been observed in the VHE band by the Imaging Atmospheric Cherenkov Telescopes H.E.S.S., MAGIC and VERITAS. Thus, they represent an isotropic and relatively local extragalactic sample, unaffected by significant cosmological evolution. The blazar emitted spectra are well fitted by a power law with index $\Gamma_{\rm em}$. We show that the $\Gamma_{\rm em}$ distribution exhibits an unexpected and previously unnoticed unphysical redshift-dependence. We demonstrate that this result is not due to any selection effect. It is difficult to imagine an intrinsic mechanism which could lead to such a spectral variation, and so this result seriously challenges the conventional view. We propose that such a behaviour is explained by oscillations between the VHE gamma-rays and Axion-Like Particles (ALPs), taking place in extragalactic magnetic fields. We recall that ALPs are predicted by several extensions of the Standard Model and especially by those based on superstring theories. Moreover, they are attracting growing interest being also good candidates for cold dark matter. As a consequence of the photon-ALP oscillation mechanism, the $\Gamma_{\rm em}$ distribution becomes redshift-independent, indeed in agreement with the physical expectation. This is a highly nontrivial fact, which therefore provides a preliminary evidence for the existence of ALPs. Thus, besides physics laboratory data, astrophysical VHE data from e.g. the upcoming CTA can settle this issue. Our Universe may in this way be offering us a compelling reason to push physics beyond the Standard Model along a very specific direction and can shed light on the nature of cold dark matter.
The scenario of galaxy formation is believed to follow a structure that builds up from the bottom, with large galaxies being formed by several merging episodes of smaller ones. In this scenario a number of galaxies can be expected to be seen in the merging phase, with their external regions already mixed, while their nuclei, with stronger self-gravitation, are still recognizable as such. During a photometric monitoring of AGNs in the field of a long-exposure INTEGRAL pointing, we serendipitously found an elliptical galaxy in the center of the X-ray cluster (EXO 0422-086) with two nuclei. We performed surface photometry on our images and those of the SDSS archive and obtained slit spectra of both nuclei. Aperture photometry of the two stellar-like nuclei showed very similar colors in the SDSS image and in our Johnson BVRI images, which is typical of an elliptical galaxy nucleus. The spectra of the nuclei showed the typical absorption lines of an elliptical galaxy without appreciable emission lines. The redshifts derived from each nucleus were equal and fully consistent with the literature value (0.0397). We can therefore exclude the possibility that one of the nuclei is a foreground star or a background AGN and consider this elliptical galaxy as a bona fide example of a galaxy merger.
We present 3D MHD simulations of purely toroidal and mixed poloidal-toroidal magnetic field configurations to study the behavior of the Tayler instability. For the first time the simultaneous action of rotation and magnetic diffusion are taken into account and the effects of a poloidal field on the dynamic evolution of unstable toroidal magnetic fields is included. In the absence of diffusion, fast rotation (rotation rate compared to Alfv\'en frequency) is able to suppress the instability when the rotation and magnetic axes are aligned and when the radial field strength gradient p < 1.5. When diffusion is included, this system turns unstable for diffusion dominated and marginally diffusive dominated regions. If the magnetic and rotation axes are perpendicular to each other the stabilizing effect induced by the Coriolis force is scale dependent and decreases with increasing wavenumber. In toroidal fields with radial field gradients bigger than p > 1.5, rapid rotation does not suppress the instability but instead introduces a damping factor to the growth rate in agreement with the analytic predictions. For the mixed poloidal-toroidal fields we find an unstable axisymmetric mode, not predicted analytically, right at the stability threshold for the non-axisymmetric modes; it has been argued that an axisymmetric mode is necessary for the closure of the Tayler-Spruit dynamo loop.
I find evidence for clustering in age of well-dated impact craters over the last 500 Myr. At least nine impact episodes are identified, with durations whose upper limits are set by the dating accuracy of the craters. Their amplitudes and frequency are inconsistent with an origin in asteroid breakups or Oort cloud disturbances, but are consistent with the arrival and disintegration in near-Earth orbits of rare, giant comets, mainly in transit from the Centaur population into the Jupiter family and Encke regions. About 1 in 10 Centaurs in Chiron-like orbits enter Earth-crossing epochs, usually repeatedly, each such epoch being generally of a few thousand years duration. On time-scales of geological interest, debris from their breakup may increase the mass of the near-Earth interplanetary environment by two or three orders of magnitude, yielding repeated episodes of bombardment and stratospheric dusting. I find a strong correlation between these bombardment episodes and major biostratigraphic and geological boundaries, and propose that episodes of extinction are most effectively driven by prolonged encounters with meteoroid streams during bombardment episodes. Possible mechanisms are discussed.
Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).
Owing to the frequency and reproducibility of its outbursts, the black-hole candidate GX 339-4 has become the standard against which the outbursts of other black-hole candidate are matched up. Here we present the first systematic study of the evolution of the X-ray lags of the broad-band variability component (0.008-5 Hz) in GX 339-4 as a function of the position of the source in the hardness-intensity diagram. The hard photons always lag the soft ones, consistent with previous results. In the low-hard state the lags correlate with X-ray intensity, and as the source starts the transition to the intermediate/soft states, the lags first increase faster, and then appear to reach a maximum, although the exact evolution depends on the outburst and the energy band used to calculate the lags. The time of the maximum of the lags appears to coincide with a sudden drop of the Optical/NIR flux, the fractional RMS amplitude of the broadband component in the power spectrum, and the appearance of a thermal component in the X-ray spectra, strongly suggesting that the lags can be very useful to understand the physical changes that GX 339-4 undergoes during an outburst. We find strong evidence for a connection between the evolution of the cut-off energy of the hard component in the energy spectrum and the phase lags, suggesting that the average magnitude of the lags is correlated with the properties of the corona/jet rather than those of the disc. Finally, we show that the lags in GX 339-4 evolve in a similar manner to those of the black-hole candidate Cygnus X-1, suggesting similar phenomena could be observable in other black-hole systems.
We obtain a consistency relation for the observed three-point correlator of galaxies. It includes relativistic effects and it is valid in the squeezed limit. Furthermore, the consistency relation is non-perturbative and can be used at arbitrarily small scales for the short modes. Our results are also useful to compute the non-linear relativistic corrections which induce a signal in the observations that might be misinterpreted as primordial non-Gaussianity with a local shape. We estimate the effective local non-Gaussianity parameter from the relativistic corrections. The exact value depends on the redshift and the magnification bias. At redshift of $ z = 1$, in the absence of magnification bias, we get $\,\, f^{\rm GR}_{\rm NL} \simeq - 3.7 $.
The interplanetary magnetic field near has a characteristic "sector" structure that reflects its polarity relative to the solar direction. Typically we observe large-scale coherence in these directions, with two or four "away" or "towards" sectors per solar rotation, from any platform in deep space and near the ecliptic plane. In a simple picture, this morphology simply reflects the idea that the sources of the interplanetary field lie mainly in or near the Sun, and that the solar-wind flow enforces a radial component in this field. Although defined strictly via the interplanetary field near one AU, recent evidence confirms that this pattern also appears clearly at the level of the photosphere, with signatures including not only the large-scale structures (e.g., the streamers) but also highly concentrated fields such as those found in sunspots and even solar flares. This association with small-scale fields strengthens at the Hale sector boundary, defining the Hale boundary as the one for which the polarity switch matches that of the leading-to-following polarity alternation in the sunspots of a given hemisphere.
We have detected sporadic, bright, short-duration radio pulses from PSR J0901$-$4624. These pulses are emitted simultaneously with persistent, periodic emission that dominates the flux density when averaging over many periods of the pulsar. The bright pulses have energies that are consistent with a power-law distribution. The integrated profile of PSR J0901$-$4624 is highly polarized and shows four distinct components. The bright pulses appear to originate near the magnetic pole of the pulsar and have polarization properties unlike that of the underlying emission at the same pulse phase. We conclude that the bright pulses represent a secondary giant-micropulse emission process, possibly from a different region in the pulsar magnetosphere.
We present multi-wavelength observations of a fan-spine dome in the active region NOAA 11996 with the \textit{Interface Region Imaging Spectrograph} (\emph{IRIS}) and the Atmospheric Imaging Assembly on board the \textit{Solar Dynamics Observatory} (\emph{SDO}) on March 9, 2014. The destruction of the fan-spine topology owing to the interaction between its magnetic fields and an nearby emerging flux region (EFR) is firstly observed. The line-of-sight magnetograms from the Helioseismic and Magnetic Imager on board the \emph{SDO} reveal that the dome is located on the mixed magnetic fields, with its rim rooted in the redundant positive polarity surrounding the minority parasitic negative fields. The fan surface of the dome consists of a filament system and recurring jets are observed along its spine. The jet occurring around 13:54 UT is accompanied with a quasi-circular ribbon that brightens in the clockwise direction along the bottom rim of the dome, which may indicate an occurrence of slipping reconnection in the fan-spine topology. The EFR emerges continuously and meets with the magnetic fields of the dome. Magnetic cancellations take place between the emerging negative polarity and the outer positive polarity of the dome's fields, which lead to the rise of the loop connecting the EFR and brightenings related to the dome. A single Gaussian fit to the profiles of the \emph{IRIS} SI IV 1394 \AA\ line is used in the analysis. It appears that there are two rising components along the slit, except for the rise in the line-of-sight direction. The cancellation process repeats again and again. Eventually the fan-spine dome is destroyed and a new connectivity is formed. We suggest that magnetic reconnection between the EFR and the magnetic fields of the fan-spine dome in the process is responsible for the destruction of the dome.
ADASS has been a successful conference series for 24 years. If it is to
continue to be successful and relevant we need to ensure that it provides what
we as a community need from an annual conference. Earlier this year the ADASS
Program Organising Committee conducted a survey on the content, style and
governance of ADASS, in order to ascertain the conference needs of our
community of astronomy software, methods and algorithms providers and users.
140 people participated in the survey: familiar faces, newcomers and a
significant number of people who have yet to attend an ADASS.
We summarise the Birds of a Feather session held on 7 October 2014, which
discussed the findings of the survey and the shape that the community would
like future ADASS meetings to take: What do we like of the current format? What
would we change? What can we do to make ADASS fit our current and future needs?
If we are to ensure that ADASS is vibrant, interesting and at the cutting edge
of our subject we need to take collective responsibility for shaping its
future.
We present the results obtained from linear stability analysis and 2.5-dimensional magnetohydrodynamic (MHD) simulations of the magnetorotational instability (MRI), including the effects of cosmic rays (CRs). We took into account of the CR diffusion along the magnetic field but neglect the cross-field-line diffusion. Two models are considered in this paper: shearing box model and differentially rotating cylinder model. We studied how MRI is affected by the initial CR pressure (i.e., energy) distribution. In the shearing box model, the initial state is uniform distribution. Linear analysis shows that the growth rate of MRI does not depend on the value of CR diffusion coefficient. In the differentially rotating cylinder model, the initial state is a constant angular momentum polytropic disk threaded by weak uniform vertical magnetic field. Linear analysis shows that the growth rate of MRI becomes larger if the CR diffusion coefficient is larger. Both results are confirmed by MHD simulations. The MHD simulation results show that the outward movement of matter by the growth of MRI is not impeded by the CR pressure gradient, and the centrifugal force which acts to the concentrated matter becomes larger. Consequently, the growth rate of MRI is increased. On the other hand, if the initial CR pressure is uniform, then the growth rate of the MRI barely depends on the value of the CR diffusion coefficient.
The TAIPAN instrument, currently being developed for the Australian Astronomical Observatory's UK Schmidt telescope at Siding Spring Observatory, makes use of the AAO's Starbug technology to deploy 150 science fibres to target positions on the optical plane. This paper describes the software system for controlling and deploying the fibre-bearing Starbug robots. The TAIPAN software is responsible for allocating each Starbug to its next target position based on its current position and the distribution of targets, finding a collision-free path for each Starbug, and then simultaneously controlling the Starbug hardware in a closed loop, with a metrology camera used to determine the position of each Starbug in the field during reconfiguration. The software is written in C++ and Java and employs a DRAMA middleware layer (Farrell et al. 1995).
Imposing that the excursion distance of inflaton in field space during inflation be less than the Planck scale, we derive an upper bound on the tensor-to-scalar ratio at the CMB scales, i.e. $r_{*,max}$, in the general canonical single-field slow-roll inflation model, in particular the model with non-negligible running of the spectral index $\alpha_s$ and/or the running of running $\beta_s$. We find that $r_{*,max}\simeq 7\times 10^{-4}$ for $n_s=0.9645$ without running and running of running, and $r_{*,max}$ is significantly relaxed to the order of ${\cal O}(10^{-2}\sim 10^{-1})$ in the inflation model with $\alpha_s$ and/or $\beta_s\sim +{\cal O}(10^{-2})$ which are marginally preferred by the Planck 2015 data.
NGC 4258 is the galaxy with the most accurate (maser-based) determination for the mass of the supermassive black hole (SMBH) in its nucleus. In this work we present a two-dimensional mapping of the stellar kinematics in the inner 3.0 x 3.0 arcsec = 100 x 100 pc of NGC 4258 using adaptative-optics observations obtained with the Near-Infrared Integral Field Spectrograph of the GEMINI North telescope at a 0.11 arcsec (4 pc) angular resolution. The observations resolve the radius of influence of the SMBH, revealing an abrupt increase in the stellar velocity dispersion within 10 pc from the nucleus, consistent with the presence of a SMBH there. Assuming that the galaxy nucleus is in a steady state and that the velocity dispersion ellipsoid is aligned with a cylindrical coordinate system, we constructed a Jeans anisotropic dynamical model to fit the observed kinematics distribution. Our dynamical model assumes that the galaxy has axial symmetry and is constructed using the multi-gaussian expansion method to parametrize the observed surface brightness distribution. The Jeans dynamical model has three free parameters: the mass of the central SMBH, the mass-luminosity ratio of the galaxy and the anisotropy of the velocity distribution. We test two types of models: one with constant velocity anisotropy, and another with variable anisotropy. The model that best reproduces the observed kinematics was obtained considering that the galaxy has radially varying anisotropy, being the best-fitting parameters with 3$\sigma$ significance $M_\bullet=4.8^{+0.8}_{-0.9}\times 10^7\,{\rm M_\odot}$ and $\Gamma_k = 4.1^{+0.4}_{-0.5}$. This value for the mass of the SMBH is just 25 per cent larger than that of the maser determination and 50 per cent larger that a previous stellar dynamical determination obtained via Schwarzschild models.
In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter ($\beta_{\rm m}$) and to photons ($\beta_{\gamma}$) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1$\,$keV to 400$\,$eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600$\,$eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of $\beta_{\gamma}\!\lesssim\!10^{11}$ for $1<\beta_{\rm m}<10^6$.
Recent results by Bensby and collaborators on the ages of microlensed stars in the Galactic bulge have challenged the picture of an exclusively old stellar population. However, these age estimates have not been independently confirmed. In this paper we verify these results by means of a grid-based method and quantify the systematic biases that might be induced by some assumptions adopted to compute stellar models. We explore the impact of increasing the initial helium abundance, neglecting the element microscopic diffusion, and changing the mixing-length calibration in theoretical stellar track computations. We adopt the SCEPtER pipeline with a novel stellar model grid for metallicities [Fe/H] from -2.00 to 0.55 dex, and masses in the range [0.60; 1.60] Msun from the ZAMS to the helium flash at the red giant branch tip. We show for the considered evolutionary phases that our technique provides unbiased age estimates. Our age results are in good agreement with Bensby and collaborators findings and show 16 stars younger than 5 Gyr and 28 younger than 9 Gyr over a sample of 58. The effect of a helium enhancement as large as Delta Y/Delta Z = 5 is quite modest, resulting in a mean age increase of metal rich stars of 0.6 Gyr. Even simultaneously adopting a high helium content and the upper values of age estimates, there is evidence of 4 stars younger than 5 Gyr and 15 younger than 9 Gyr. For stars younger than 5 Gyr, the use of stellar models computed by neglecting microscopic diffusion or by assuming a super-solar mixing-length value leads to a mean increase in the age estimates of about 0.4 Gyr and 0.5 Gyr respectively. Even considering the upper values for the age estimates, there are four stars estimated younger than 5 Gyr is in both cases. Thus, the assessment of a sizeable fraction of young stars among the microlensed sample in the Galactic bulge appears robust.
We report on an X-ray observation of the Be X-ray Binary Pulsar RX J0059.2-7138, performed by XMM-Newton in March 2014. The 19 ks long observation was carried out about three months after the discovery of the latest outburst from this Small Magellanic Cloud transient, when the source luminosity was Lx ~ 10$^{38}$ erg/s. A spin period of P=2.762383(5) s was derived, corresponding to an average spin-up of $\dot{P}_{\mathrm{spin}} = -(1.27\pm0.01)\times10^{-12}$ s $s^{-1}$ from the only previous period measurement, obtained more than 20 years earlier. The time-averaged continuum spectrum (0.2-12 keV) consisted of a hard power-law (photon index ~0.44) with an exponential cut-off at a phase-dependent energy (20-50 keV) plus a significant soft excess below about 0.5 keV. In addition, several features were observed in the spectrum: an emission line at 6.6 keV from highly ionized iron, a broad feature at 0.9-1 keV likely due to a blend of Fe L-shell lines, and narrow emission and absorption lines consistent with transitions in highly ionized oxygen, nitrogen and iron visible in the high resolution RGS data (0.4-2.1 keV). Given the different ionization stages of the narrow line components, indicative of photoionization from the luminous X-ray pulsar, we argue that the soft excess in RX J0059.2-7138 is produced by reprocessing of the pulsar emission in the inner regions of the accretion disc.
Gamma-ray bursts (GRB) are extreme events. They are crudely classified into two groups based on their duration, namely the short and long bursts. Such a classification has proven to be useful to determine their progenitors: the merger of two compact objects for short bursts and the explosion of a massive star for long bursts. Further classifying the long GRBs might give tighter constraints on their progenitor and on the emission mechanism(s). In my thesis, I present evidence for the existence of a sub-class of long GRBs, based on their faint afterglow emission. These bursts were named low-luminosity afterglow (LLA) GRBs. I discuss the data analysis and the selection method, and their main properties are described. Their link to supernova is strong as 64% of all the bursts firmly associated to SNe are LLA GRBs. Finally, I present additional properties of LLA GRBs: the study of their rate density, which seems to indicate a new distinct third class of events, the properties of their host galaxies, which show that they take place in young star-forming galaxies. Additionally, I show that it is difficult to reconcile all differences between normal long GRBs and LLA GRBs only by considering instrumental or environmental effects, a different ejecta content or a different geometry for the burst. Thus, I conclude that LLA GRBs and normal long GRBs should have different properties. I indicate that a binary system is favored in the case of LLA GRB. The argument is based on the initial mass function of massive stars, on the larger rate density of LLA GRBs compared to the rate of normal long GRBs and on the type of accompanying SNe.
(abridged) The calculation of the thermal stratification in the superadiabatic layers of stellar models with convective envelopes is a long standing problem of stellar astrophysics, and has a major impact on predicted observational properties like radius and effective temperature. The Mixing Length Theory, almost universally used to model the superadiabatic convective layers, contains effectively one free parameter to be calibrated --alpha(ml)-- whose value controls the resulting effective temperature. Here we present the first self-consistent stellar evolution models calculated by employing the atmospheric temperature stratification, Rosseland opacities, and calibrated variable alpha(ml) (dependent on effective temperature and surface gravity) from a large suite of three-dimensional radiation hydrodynamics simulations of stellar convective envelopes and atmospheres for solar stellar composition (Trampedach et al. 2013). From our calculations (with the same composition of the radiation hydrodynamics simulations), we find that the effective temperatures of models with the hydro-calibrated variable alpha(ml) display only minor differences, by at most ~30-50 K, compared to models calculated at constant solar alpha(ml). The depth of the convective regions is essentially the same in both cases. We have also analyzed the role played by the hydro-calibrated T(tau) relationships in determining the evolution of the model effective temperatures, when compared to alternative T(tau) relationships often used in stellar model computations. The choice of the T(tau) can have a larger impact than the use of a variable alpha(ml) compared to a constant solar value. We found that the solar semi-empirical T(tau) by Vernazza et al. (1981) provides stellar model effective temperatures that agree quite well with the results with the hydro-calibrated relationships.
Galactic bulges are complex systems. Once thought to be small-scale versions of elliptical galaxies, advances in astronomical instrumentation (spectroscopy in particular) has revealed a wealth of photometric and kinematic substructure in otherwise simple-looking components. This review provides an overview of how our perspective on galactic bulges has changed over the years. While it is mainly focused on aspects related to the dynamical state of their stars, there will be natural connections to other properties (e.g. morphology, stellar populations) discussed in other reviews in this volume.
Aims: To incorporate background subtraction into the Bayesian Blocks algorithm so that transient events can be timed accurately and precisely even in the presence of a substantial, rapidly variable, background. Methods: We developed several modifications to the algorithm and tested them on a simulated XMM-Newton observation of a bursting and eclipsing object. Results: We found that bursts can be found to good precision for almost all background subtraction methods, but eclipse ingresses and egresses present problems for most methods. We found one method that recovered these events with precision comparable to the interval between individual photons, in which both source and background region photons are combined into a single list and weighted according to the exposure area. We have also found that adjusting the Bayesian Blocks change points nearer to blocks with higher count rate removes a systematic bias towards blocks of low count rate.
We present Fermi-LAT and multi-frequency, multi-epoch VLBA data for the TeV blazar Mrk421. We collected the data during a long and intensive multi-frequency campaign in 2011. We study the gamma-ray light curve, the photon index evolution and their connection to the radio data on sub-parsec scales, including total intensity, polarized flux density, polarization angle, spectral index, and rotation measure both in the core and the jet region. The VLBA data were obtained at 15 and 24 GHz for 12 epochs and at 43 GHz for 23 epochs, thus providing the best temporal and spatial coverage in the radio band ever achieved for a TeV blazar. We provide significant constraints on the jet Doppler factor, the presence of proper motion, the magnetic field configuration, and an intriguing connection between variability in the radio data and the gamma-ray light curve: the total intensity and polarized core emission reach a peak simultaneously to the main gamma-ray peak, followed by a rotation of the polarization angle at low frequency. Opacity-related, long wavelength polarization swings are also detected later in the year, possibly related to secondary peaks in the gamma-ray light curve, setting constraints on the physics of the gamma-ray zone.
Aims. The main goal of this study is to detect the stellar overdensity associated with the Perseus arm in the anticenter direction. Methods. We used the physical parameters derived from Str\"omgren photometric data to compute the surface density distribution as a function of galactocentric distance for different samples of intermediate young stars. The radial distribution of the interstellar absorption has also been derived. Results. We detected the Perseus arm stellar overdensity at 1.6+-0.2 kpc from the Sun with a significance of 4-5{\sigma} and a surface density amplitude of around 10%, slightly depending on the sample used. Values for the radial scale length of the Galactic disk have been simultaneously fitted obtaining values in the range [2.9,3.5] kpc for the population of the B4-A1 stars. Moreover, the interstellar visual absorption distribution is congruent with a dust layer in front of the Perseus arm. Conclusions. This is the first time that the presence of the Perseus arm stellar overdensity has been detected through individual star counts, and its location matches a variation in the dust distribution. The offset between the dust lane and the overdensity indicates that the Perseus arm is placed inside the co-rotation radius of the Milky Way spiral pattern.
This work gives a van't Hoff law expression of Langmuir constants of different species for determining their occupancy in the nanocavities of clathrate hydrates. The van't Hoff law's parameters are derived from a fit with Langmuir constants calculated using a pairwise site-site interaction potential to model the anisotropic potential environment in the cavities, as a function of temperature. The parameters can be used for calculating clathrates compositions. Results are given for nineteen gas species trapped in the small and large cavities of structure types I and II [1]. The accuracy of this approach is based on a comparison with available experimental data for ethane and cyclo- propane clathrate hydrates. The numerical method applied in this work, was recently validated from a comparison with the spherical cell method based on analytical considerations [1]
The forecast method introduced by Kors\'os et al.(2014) is generalised from the horizontal magnetic gradient (GM), defined between two opposite polarity spots, to all spots within an appropriately defined region close to the magnetic neutral line of an active region. This novel approach is not limited to searching for the largest GM of two single spots as in previous methods. Instead, the pre-flare conditions of the evolution of spot groups is captured by the introduction of the weighted horizontal magnetic gradient, or W_GM. This new proxy enables the potential of forecasting flares stronger than M5. The improved capability includes (i) the prediction of flare onset time and (ii) an assessment whether a flare is followed by another event within about 18 hours. The prediction of onset time is found to be more accurate here. A linear relationship is established between the duration of converging motion and the time elapsed from the moment of closest position to that of the flare onset of opposite polarity spot groups. The other promising relationship is between the maximum of the W_GM prior to flaring and the value of W_GM at the moment of the initial flare onset in the case of multiple flaring. We found that when the W_GM decreases by about 54%, then there is no second flare. If, however, when the W_GM decreases less than 42%, then there will be likely a follow-up flare stronger than M5. This new capability may be useful for an automated flare prediction tool.
We present preliminary results from our investigation into using an 'inside-out' velocity space for creating a Doppler tomogram. The aim is to transpose the inverted appearance of the Cartesian velocity space used in normal Doppler tomography. In a comparison between normal and inside-out Doppler tomograms of cataclysmic variables, we show that the inside-out velocity space has the potential to produce new insights into the accretion dynamics in these systems.
We propose a new method of calculating a dark matter halo mass function based on the rescaling of a mass function measured in simulations. Our tests show that the accuracy almost linearly depends on the difference of the cosmological parameters and amounts to few percent in the case of WMAP5 and PLANCK parameters.
Distances to AGB stars with optically thick circumstellar shells cannot be determined using optical parallaxes. However, for stars with OH 1612 MHz maser emission emanating from their circumstellar shells, distances can be determined by the phase-lag method. This method combines a linear diameter obtained from a phase-lag measurement with an angular diameter obtained from interferometry. The phase-lag of the variable emission from the back and front sides of the shells has been determined for 20 OH/IR stars in the galactic disk. These measurements are based on a monitoring program with the Nancay radio telescope ongoing for more than 6 years. The interferometric observations are continuing. We estimate that the uncertainties of the distance determination will be ~20%.
Mapping the polarization of the Cosmic Microwave Background is yielding exciting data on the origin of the universe, the reionization of the universe, and the growth of cosmic structure. Kilopixel arrays represent the current state of the art, but advances in detector technology are needed to enable the larger detector arrays needed for future measurements. Here we present a design for single-band dual-polarization Kinetic Inductance Detectors (KIDs) at 20% bandwidths centered at 145, 220, and 280 GHz. The detection and readout system is nearly identical to the successful photon-noise-limited aluminum Lumped-Element KIDs that have been recently built and tested by some of the authors. Fabricating large focal plane arrays of the feed horns and quarter-wave backshorts requires only conventional precision machining. Since the detectors and readout lines consist only of a single patterned aluminum layer on a SOI wafer, arrays of the detectors can be built commercially or at a standard university cleanroom.
Analysis of T dwarfs using model atmospheres has been hampered by the absence of reliable line lists for methane and ammonia. Newly computed high temperature line lists for both of these important molecules are now available, so it is timely to investigate the appearance of the various absorption features in T dwarfs in order to better understand their atmospheres and validate the new line lists. We present high quality R~5000 Gemini/NIFS 1.0-2.4 microns spectra of the T8 standard 2MASS 0415-0935 and the T9 standard UGPS 0722-0540. We use these spectra to identify numerous methane and ammonia features not previously seen and we discuss the implications for our understanding of T dwarf atmospheres. Among our results, we find that ammonia is the dominant opacity source between ~1.233-1.266 microns in UGPS 0722-0540, and we tentatively identify several absorption features in this wavelength range in the T9's spectrum which may be due entirely to ammonia opacity. Our results also suggest that water rather than methane is the dominant opacity source in the red half of the J-band of the T8 dwarf. Water appears to be the main absorber in this wavelength region in the T9 dwarf until ~1.31 microns, when methane starts to dominate.
We give an overview of the SPHERE experiment based on detection of reflected Vavilov-Cherenkov radiation (Cherenkov light) from extensive air showers in the energy region E>10^{15} eV. A brief history of the reflected Cherenkov light technique is given; the observations carried out with the SPHERE-2 detector are summarized; the methods of the experimental datasample analysis are described. The first results on the primary cosmic ray all-nuclei energy spectrum and mass composition are presented. Finally, the prospects of the SPHERE experiment and the reflected Cherenkov light technique are given.
The general model for incoherent synchrotron radiation has long been known, with the first theory being published by Westfold in $1959$ and continued by Westfold and Legg in $1968$. When this model was first developed it was applied to radiation from Jupiter, with a magnetic field of $\approx$ 1 G. Pulsars have a magnetic field of $\approx 10^{12}$ G. The Westfold and Legg model predict a circular polarization which is proportional to the square root of the magnetic field, and consequently predicts greater than 100 per cent circular polarization at high magnetic fields. Here a new model is derived based upon a more detailed analysis of the pitch angle distribution. This model is concerned with the frequency range $f_{B_0}/\gamma <<f\lesssim f_{B_0}$, noting that $f_{B_0} = 2.7\times10^7B$, which for a relatively high magnetic field ($\sim 10^6-10^8$ Gauss) leaves emission in the optical range. This is much lower than the expected frequency peak for a mono-energetic particle of $0.29\frac{3eB}{4\pi m_e c}\gamma^2$. We predict the circular polarization peaks around $10^7$G in the optical regime with the radiation almost $15$ per cent circularly polarized. The linear polarization changes from about $60$ to $80$ per cent in the same regime. We examine implications of this for pulsar studies.
The analytical theory of diffusive cosmic ray acceleration at parallel stationary shock waves with magnetostatic turbulence is generalized to arbitrary shock speeds $V_s=\beta_1c$, including in particular relativistic speeds. This is achieved by applying the diffusion approximation to the relevant Fokker-Planck particle transport equation formulated in the mixed comoving coordinate system. In this coordinate system the particle's momentum coordinates $p$ and $\mu =p_{\parallel }/p$ are taken in the rest frame of the streaming plasma, whereas the time and space coordinates are taken in the observer's system. For magnetostatic slab turbulence the diffusion-convection transport equation for the isotropic (in the rest frame of the streaming plasma) part of the particle's phase space density is derived. For a step-wise shock velocity profile the steady-state diffusion-convection transport equation is solved. For a symmetric pitch-angle scattering Fokker-Planck coefficient $D_{\mu \mu }(-\mu )=D_{\mu \mu }(\mu )$ the steady-state solution is independent of the microphysical scattering details. For nonrelativistic mono-momentum particle injection at the shock the differential number density of accelerated particles is a Lorentzian-type distribution function which at large momenta approaches a power law distribution function $N(p\ge p_c)\propto p^{-\xi }$ with the spectral index $\xi (\beta_1) =1+[3/(\Gamma_1\sqrt{r^2-\beta_1^2}-1)(1+3\beta_1^2)]$. For nonrelativistic ($\beta_1\ll 1$) shock speeds this spectral index agrees with the known result $\xi (\beta_1\ll 1)\simeq (r+2)/(r-1)$, whereas for ultrarelativistic ($\Gamma_1\gg 1$) shock speeds the spectral index value is close to unity.
We present an analysis of the optical nuclear spectra from the active galactic nuclei (AGN) in a sample of giant low surface brightness (GLSB) galaxies. GLSB galaxies are extreme late type spirals that are large, isolated and poorly evolved compared to regular spiral galaxies. Earlier studies have indicated that their nuclei have relatively low mass black holes. Using data from the Sloan Digital Sky Survey (SDSS), we selected a sample of 30 GLSB galaxies that showed broad H$\alpha$ emission lines in their AGN spectra. In some galaxies such as UGC 6284, the broad component of H$\alpha$ is more related to outflows rather than the black hole. One galaxy (UGC 6614) showed two broad components in H$\alpha$, one associated with the black hole and the other associated with an outflow event. We derived the nuclear black hole (BH) masses of 29 galaxies from their broad H$\alpha$ parameters. We find that the nuclear BH masses lie in the range $10^{5}-10^{7} M_{\odot}$. The bulge stellar velocity dispersion $\sigma_{e}$ was determined from the underlying stellar spectra. We compared our results with the existing BH mass - velocity dispersion ($M_{BH}-\sigma_{e}$) correlations and found that the majority of our sample lie in the low BH mass regime and below the $M_{BH}-\sigma_{e}$ correlation. The effects of galaxy orientation in the measurement of $\sigma_e$ and the increase of $\sigma_e$ due to the effects of bar are probable reasons for the observed offset for some galaxies, but in many galaxies the offset is real. A possible explanation for the $M_{BH}-\sigma_{e}$ offset could be lack of mergers and accretion events in the history of these galaxies which leads to a lack of BH-bulge co-evolution. \keywords{galaxies: active, galaxies: bulges, galaxies: nuclei}
We report the discovery of two new types of variability in the neutron star low-mass X-ray binary MXB 1730-335 (the 'Rapid Burster'). In one observation in 1999, it exhibits a large-amplitude quasi-periodic oscillation with a period of about 7 min. In another observation in 2008, it exhibits two 4-min long 75 per cent deep dips 44 min apart. These two kinds of variability are very similar to the so-called $\rho$ or 'heartbeat' variability and the $\theta$ variability, respectively, seen in the black hole low-mass X-ray binaries GRS 1915+105 and IGR J17091-3624. This shows that these types of behavior are unrelated to a black hole nature of the accretor. Our findings also show that these kinds of behaviour need not take place at near-Eddington accretion rates. We speculate that they may rather be related to the presence of a relatively wide orbit with an orbital period in excess of a few days and about the relation between these instabilities and the type II bursts.
A large number of high-dispersion spectra of classical Cepheids were obtained in the region of the CaII H+K spectral lines. The analysis of these spectra allowed us to detect the presence of a strong Balmer line, H$\epsilon$, for several Cepheids, interpreted as the signature of a blue companion: the presence of a sufficiently bright blue companion to the Cepheid results in a discernible strengthening of the CaII H + Hepsilon line relative to the CaII K line. We investigated 103 Cepheids, including those with known hot companions (B5-B6 main-sequence stars) in order to test the method. We could confirm the presence of a companion to WW Car and FN Vel (the existence of the former was only suspected before) and we found that these companions are blue hot stars. The method remains efficient when the orbital velocity changes in a binary system cannot be revealed and other methods of binarity detection are not efficient.
The production factor, or broad band averaged cross-section, for solar wind charge-exchange with hydrogen producing emission in the ROSAT 1/4 keV (R12) band is $3.8\pm0.2\times10^{-20}$ count degree$^{-2}$ cm$^4$. This value is derived from a comparison of the Long-Term (background) Enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8 to 4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of 1/4 keV band flux that is due to the Local Hot Bubble, for planning future observations in the 1/4 keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the 3/4 keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally, that recent efforts to correlate XMM-Newton observing geometry with magnetosheath solar wind charge-exchange emission in the oxygen lines have been, quite literally, misguided. Simulations of the inner heliosphere show that broader efforts to correlate heliospheric solar wind charge-exchange with local solar wind parameters are unlikely to produce useful results.
Low- and intermediate-mass stars go through a period of intense mass-loss at the end of their lives in a phase known as the asymptotic giant branch (AGB). During the AGB a significant fraction of their initial mass is expelled in a stellar wind. This process controls the final stages of their evolution and contributes to the chemical evolution of galaxies. However, the wind-driving mechanism of AGB stars is not yet well understood, especially so for oxygen-rich sources. Characterizing both the present-day mass-loss and wind structure and the evolution of the mass-loss rate of such stars is paramount to advancing our understanding of this processes. We modelled the dust envelope of W Hya using an advanced radiative transfer code. The dust model was analysed in the light of a previously calculated gas-phase wind model and compared to measurements available in the literature, such as infrared spectra, infrared images, and optical scattered light fractions. We find that the dust spectrum of W Hya can partly be explained by a gravitationally bound dust shell that probably is responsible for most of the amorphous Al$_2$O$_3$ emission. The composition of the large ($\sim$\,0.3\,$\mu$m) grains needed to explain the scattered light cannot be constrained, but probably is dominated by silicates. Silicate emission in the thermal infrared was found to originate from beyond 40 AU from the star and we find that they need to have substantial near-infrared opacities to be visible at such large distances. The increase in near-infrared opacity of the dust at these distances roughly coincides with a sudden increase in expansion velocity as deduced from the gas-phase CO lines. Finally, the recent mass loss of W Hya is confirmed to be highly variable and we identify a strong peak in the mass-loss rate that occurred about 3500 years ago and lasted for a few hundred years.
We use archival X-ray and radio VLBA data to calculate inverse Compton Doppler factors for four high-power radio, $\gamma$-loud Flat Spectrum Radio Quasars frequently monitored by the F-GAMMA project. We explore the effect of the non-simultaneity between X-ray and radio observations by calculating Doppler factors for simultaneous and non-simultaneous observations. By comparing the newly re-calculated values from this work and archival values with variability Doppler factors, we show that simultaneous/quasi-simultaneous X-ray and radio observations can provide a reliable estimate of the true Doppler factor in blazar jets. For the particular case of PKS0528+134 we find that a time-difference of up to 1 week provides inverse Compton Doppler factor estimates consistent with the variability Doppler factor of this source at the 19% percent level. In contrast, time differences of more than 30 days between radio and X-ray observations result to discrepancies from 100% to more than a factor of 4.
The existence of sub-stellar cold H2 globules in planetary nebulae and the
mere existence of comets suggest that the physics of cold interstellar gas
might be much richer than usually envisioned.
We study the case of a cold gaseous medium in ISM conditions which is subject
to a gas-liquid/solid phase transition.
First the equilibrium of such fluids is studied using the virial theorem and
linear stability analysis. Then the non-linear dynamics is studied by using
simulations in order to characterize the expected formation of solid bodies
analogous to comets. The simulations are run with a state of the art molecular
dynamics code (LAMMPS). The long-range gravitational forces can be taken into
account together with short-range molecular forces with finite limited
computational resources by using super-molecules, provided the right scaling is
followed.
The concept of super-molecule is tested with simulations, allowing to
correctly satisfy the ideal gas Jeans instability criterion for one-phase
fluids. The simulations show that fluids presenting a phase transition are
gravitationally unstable as well, independent of the strength of the
gravitational potential, producing two distinct kinds of sub-stellar bodies,
those dominated by gravity ("planetoids") and those dominated by molecular
attractive force ("comets").
Observations, formal analysis and computer simulations suggest the
possibility of the formation of sub-stellar H2 clumps in cold molecular clouds
due to the combination of phase transition and gravity. Fluids in a phase
transition are gravitationally unstable, independent of the strength of the
gravitational potential. Small H2 clumps may form even at relatively high
temperatures, up to 400 - 600K according to virial analysis. The combination of
phase transition and gravity may be relevant for a wider range of astrophysical
situations, such as proto-planetary disks.
We study a prototypical class of magnetostatic equilibria where the magnetic field satisfies $\nabla \times\mathbf B = \alpha \mathbf B$, where $\alpha$ is spatially uniform, on a periodic domain. Using numerical solutions of the force-free electrodynamic and relativistic ideal magnetohydrodynamic evolution equations, we show that generic examples of such equilibria are unstable to ideal modes which are marked by exponential growth in the linear phase. We characterize the unstable mode, showing how it can be understood in terms of merging magnetic and current structures and explicitly demonstrate its instability using the energy principle. Following the nonlinear evolution of these solutions, we find that they exhibit dissipation of magnetic energy and eventually settle into a configuration with the largest allowable wavelength. Such examples of magnetic energy being liberated on dynamical time-scales may have implications for astrophysical sources.
We surveyed 113 astronomers and 82 psychologists active in applying for federally funded research on their grant-writing history between January, 2009 and November, 2012. We collected demographic data, effort levels, success rates, and perceived non-financial benefits from writing grant proposals. We find that the average proposal takes 116 PI hours and 55 CI hours to write; although time spent writing was not related to whether the grant was funded. Effort did translate into success, however, as academics who wrote more grants received more funding. Participants indicated modest non-monetary benefits from grant writing, with psychologists reporting a somewhat greater benefit overall than astronomers. These perceptions of non-financial benefits were unrelated to how many grants investigators applied for, the number of grants they received, or the amount of time they devoted to writing their proposals. We also explored the number of years an investigator can afford to apply unsuccessfully for research grants and our analyses suggest that funding rates below approximately 20%, commensurate with current NIH and NSF funding, are likely to drive at least half of the active researchers away from federally funded research. We conclude with recommendations and suggestions for individual investigators and for department heads.
Several variations of the Heisenberg uncertainty inequality are derived on the basis of "noise-resolution duality" recently proposed by the authors. The same approach leads to a related inequality that provides an upper limit for the information capacity of imaging systems in terms of the number of imaging quanta (particles) used in the experiment. These results can be useful in the context of biomedical imaging constrained by the radiation dose delivered to the sample, or in imaging (e.g. astronomical) problems under "low light" conditions.
We present a detailed exploration of a family of low--$\ell$ angular power spectra inspired by "Brane Supersymmetry Breaking". This mechanism splits Bose and Fermi excitations in String Theory and leaves behind \emph{an exponential potential that is just too steep for the inflaton to emerge from the initial singularity while descending it}. As a result, the scalar generically bounces against the exponential wall, which typically introduces \emph{an infrared depression and a pre--inflationary peak} in the power spectrum of scalar perturbations. We elaborate on a possible link between this phenomenon and the low--$\ell$ CMB. For the first 32 multipoles, combining the hard exponential with a milder one leading to $n_s\simeq 0.96$ and with a small gaussian bump we have attained a reduction of $\chi^{\,2}$ to about 46\% of the standard $\Lambda$CDM setting, with both WMAP9 and PLANCK 2013 data. This result corresponds to a $\chi^{\,2}/DOF$ of about 0.45, to be compared with a $\Lambda$CDM value of about 0.85. The preferred choices combine naturally quadrupole depression, a first peak around $\ell=5$ and a wide minimum around $\ell=20$. We have also gathered some evidence that similar spectra emerge if the hard exponential is combined with more realistic models of inflation.
Radiative emission lines from nitrogen and its ions are often observed in nebulae spectra, where the N$^{2+}$ abundance can be inferred from lines of the 2p4f configuration. In addition, intensity ratios between lines of the 2p3p -- 2p3s and 2p4f -- 2p3d transition arrays can serve as temperature diagnostics. To aid abundance determinations and plasma diagnostics, wavelengths and oscillator strengths were calculated with high-precision for electric-dipole (E1) transitions from levels in the 2p4f configuration of N$^{+}$. Electron correlation and relativistic effects, including the Breit interaction, were systematically taken into account within the framework of the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Except for the 2p4f - 2p4d transitions with quite large wavelengths and the two-electron-one-photon 2p4f -2s2p$^3$ transitions, the uncertainties of the present calculations were controlled to within 3% and 5% for wavelengths and oscillator strengths, respectively. We also compared our results with other theoretical and experimental values when available. Discrepancies were found between our calculations and previous calculations due to the neglect of relativistic effects in the latter.
We undertake a non-perturbative study of the evolution of the "gravitational entropy" proposed by Clifton, Ellis and Tavakol (CET) on local expanding cosmic CDM voids of $\sim 50-100$ Mpc size described as spherical under-dense regions with negative spatial curvature, whose dynamics is determined by Lemaitre-Tolman-Bondi (LTB) dust models asymptotic to three different types of FLRW background: $\Lambda$CDM, Einstein de Sitter and "open" FLRW with $\Lambda=0$ and negative spatial curvature. By assuming generic nearly spatially flat and linear initial conditions at the last scattering time, we examine analytically and numerically the CET entropy evolution into a fully non-linear regime in our present cosmic time and beyond. Both analytic and numerical analysis reveal that the late time CET entropy growth is determined by the amplitude of initial fluctuations of spatial curvature at the last scattering time. This entropy growth decays to zero in the late asymptotic time range for all voids, but at a faster rate in voids with $\Lambda$CDM and open FLRW backgrounds. However, only for voids in a $\Lambda$CDM background this suppression is sufficiently rapid for the CET entropy itself to reach a terminal equilibrium (or "saturation") value. The CET gravitational temperature vanishes asymptotically if $\Lambda=0$ and becomes asymptotically proportional to $\Lambda$ for voids in a $\Lambda$CDM background. In the linear regime of the LTB evolution our results coincide, qualitatively and quantitatively, with previous results based on linear perturbation theory.
Cosmological inflation is discussed in the framework of $F(R,{\cal G})$ gravity where $F$ is a generic function of the curvature scalar $R$ and the Gauss-Bonnet topological invariant $\cal G$. The main feature that emerges in this analysis is the fact that this kind of theory can exhaust all the curvature budget related to curvature invariants without considering derivatives of $R,$ $R_{\mu\nu}$, $R^{\lambda}_{\sigma\mu\nu}$ etc. in the action. Cosmological dynamics results driven by two effective masses (lenghts) related to the $R$ scalaron and the $\cal G$ scalaron working respectively at early and very early epochs of cosmic evolution. In this sense, a double inflationary scenario naturally emerges.
Late time decay of very heavy dark matter is considered as one of the possible explanations for diffuse PeV neutrinos observed in IceCube. We consider implications of multimessenger constraints, and show that proposed models are marginally consistent with the diffuse gamma-ray background data. Critical tests are possible by a detailed analysis and identification of the sub-TeV isotropic diffuse gamma-ray data observed by Fermi and future observations of sub-PeV gamma-rays by observatories like HAWC or Tibet AS+MD. In addition, with several-year observations by next-generation telescopes such as IceCube-Gen2, muon neutrino searches for nearby clusters such as the Virgo cluster should allow us to rule out or support the dark matter models, independently of gamma-ray and anisotropy tests.
Based on the quantum effective action we compute for interacting theories the time evolution of correlation functions in inflationary cosmology. We neglect non-linearities due to backreaction, an explicit space-time dependence of the effective action reflecting boundary effects, and higher than second time derivatives. In this approximation the information about the state of the universe at the beginning of inflation remains imprinted on the observable primordial fluctuation spectrum. We therefore observe the initial spectrum, processed only mildly by the scale-violating effects at horizon crossing induced by the inflaton potential. Depending on initial conditions the relation between amplitude and Hubble parameter at the time of horizon crossing or the spectral index can be modified. Observations of the cosmic microwave background can gain information on the inflaton potential only if either the omitted non-linear effects lead to a fast enough symmetrization and dissipation of the initial spectrum, or if the initial spectrum can be constrained. The latter may be realized if inflation lasts sufficiently long before the time of horizon crossing and the ultraviolet behavior of correlation functions is the same as for flat space.
Links to: arXiv, form interface, find, astro-ph, recent, 1503, contact, help (Access key information)
The massive black hole in our galactic center, Sgr A*, accretes only a small fraction of the gas available at its Bondi radius. The physical processes determining this accretion rate remain unknown, partly due to a lack of observational constraints on the gas at distances between ~10 and ~10$^5$ Schwarzschild radii (Rs) from the black hole. Recent infrared observations identify low-mass gas clouds, G1 and G2, moving on highly eccentric, nearly co-planar orbits through the accretion flow around Sgr A*. Although it is not yet clear whether these objects contain embedded stars, their extended gaseous envelopes evolve independently as gas clouds. In this paper we attempt to use these gas clouds to constrain the properties of the accretion flow at ~10$^3$ Rs. Assuming that G1 and G2 follow the same trajectory, we model the small differences in their orbital parameters as evolution resulting from interaction with the background flow. We find evolution consistent with the G-clouds originating in the clockwise disk. Our analysis enables the first unique determination of the rotation axis of the accretion flow: we localize the rotation axis to within 20 degrees, finding an orientation consistent with the parsec-scale jet identified in x-ray observations and with the circumnuclear disk, a massive torus of molecular gas ~1.5 pc from Sgr A*. This suggests that the gas in the accretion flow comes predominantly from the circumnuclear disk, rather than the winds of stars in the young clockwise disk. This result will be tested by the Event Horizon Telescope within the next year. Our model also makes testable predictions for the orbital evolution of G1 and G2, falsifiable on a 5-10 year timescale.
In this paper we attempt to investigate the nature of the first gravitational wave (GW) signal to be detected by pulsar timing arrays (PTAs): will it be an individual, resolved supermassive black hole binary (SBHB), or a stochastic background made by the superposition of GWs produced by an ensemble of SBHBs? To address this issue, we analyse a broad set of simulations of the cosmological population of SBHBs, that cover the entire parameter space allowed by current electromagnetic observations in an unbiased way. For each simulation, we construct the expected GW signal and identify the loudest individual sources. We then employ appropriate detection statistics to evaluate the relative probability of detecting each type of source as a function of time for a variety of PTAs; we consider the current International PTA (IPTA), and speculate into the era of the Square Kilometre Array (SKA). The main properties of the first detectable individual SBHBs are also investigated. Contrary to previous work, we cast our results in terms of the detection probability (DP), since the commonly adopted criterion based on a signal-to-noise ratio threshold is statistic-dependent and may result in misleading conclusions for the statistics adopted here. Our results confirm quantitatively that a stochastic signal is more likely to be detected first (with between 75\% to 93\% probability, depending on the array), but the DP of single-sources is not negligible. Our framework is very flexible and can be easily extended to more realistic arrays and to signal models including environmental coupling and SBHB eccentricity.
Bars have a complex three-dimensional shape. In particular their inner part is vertically much thicker than the parts further out. Viewed edge-on, the thick part of the bar is what is commonly known as a boxy-, peanut- or X- bulge and viewed face-on it is referred to as a barlens. These components are due to disc and bar instabilities and are composed of disc material. I review here their formation, evolution and dynamics, using simulations, orbital structure theory and comparisons to observations.
We report the results of our exploratory program carried out with the Southern Astrophysical Research (SOAR) telescope aimed at associating counterparts and establishing the nature of the Fermi Unidentified gamma-ray Sources (UGS). We selected the optical counterparts of 6 UGSs from the Fermi catalog on the basis of our recently discovered tight connection between infrared and gamma-ray emission found for the gamma-ray blazars detected by the Wide-Field Infrared Survey Explorer (WISE) in its the all-sky survey. We perform for the first time a spectroscopic study of the low-energy counterparts of Fermi UGS, in the optical band, confirming the blazar-like nature for the whole sample. We also present new spectroscopic observations of 6 Active Galaxies of Uncertain type associated with Fermi sources (AGUs) that appear to be BL Lac objects. Finally, we report the spectra collected for 6 known gamma-ray blazars belonging to the Roma BZCAT that were obtained to establish their nature or better estimate their redshifts. Two interesting cases of high redshift and extremely luminous BL Lac objects (z>1.18 and z>1.02, based on the detection of Mg II intervening systems) are also discussed.
We investigate the abundance of galactic molecular hydrogen (H$_2$) in the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) cosmological hydrodynamic simulations. We assign H$_2$ masses to gas particles in the simulations in post-processing using two different prescriptions that depend on the local dust-to-gas ratio and the interstellar radiation field. Both result in H$_2$ galaxy mass functions that agree well with observations in the local and high-redshift Universe. The simulations reproduce the observed scaling relations between the mass of H$_2$ and the stellar mass, star formation rate and stellar surface density. Towards high edshifts, galaxies in the simulations display larger H$_2$ mass fractions, and correspondingly lower H$_2$ depletion timescales, also in good agreement with observations. The comoving mass density of H$_2$ in units of the critical density, $\Omega_{\rm H_2}$, peaks at $z\approx 1.2-1.5$, later than the predicted peak of the cosmic star formation rate activity, at $z\approx 2$. This difference stems from the decrease in gas metallicity and increase in interstellar radiation field with redshift, both of which hamper H$_2$ formation. We find that the cosmic H$_2$ budget is dominated by galaxies with $M_{\rm H_2}>10^9\,\rm M_{\odot}$, star formation rates $>10\,\rm M_{\odot}\,\rm yr^{-1}$ and stellar masses $M_{\rm stellar}>10^{10}\,\rm M_{\odot}$, which are readily observable in the optical and near-IR. The match between the H$_2$ properties of galaxies that emerge in the simulations and observations is remarkable, particularly since it involves no adjustable parameters.
In models like axion monodromy, temporal features during inflation which are not associated with its ending can produce scalar, and to a lesser extent, tensor power spectra where deviations from scale-free power law spectra can be as large as the deviations from scale invariance itself. Here the standard slow-roll approach breaks down since its parameters evolve on an efolding scale $\Delta N$ much smaller than the efolds to the end of inflation. Using the generalized slow-roll approach, we show that the expansion of observables in a hierarchy of potential or Hubble evolution parameters comes from a Taylor expansion of the features around an evaluation point that can be optimized. Optimization of the leading order expression provides a sufficiently accurate approximation for current data as long as the power spectrum can be described over the well-observed few efolds by the local tilt and running. Standard second order approaches, often used in the literature, ironically are worse than leading order approaches due to inconsistent evaluation of observables. We develop a new optimized next order approach which predicts observables to $10^{-3}$ even for $\Delta N\sim 1$ where all parameters in the infinite hierarchy are of comparable magnitude. For models with $\Delta N \ll 1$, the generalized slow-roll approach provides integral expressions that are accurate to second order in the deviation from scale invariance. Their evaluation in the monodromy model provides highly accurate explicit relations between the running oscillation amplitude, frequency and phase in the curvature spectrum and parameters of the potential.
We present the catalogue of blended galaxy spectra from the Galaxy And Mass Assembly (GAMA) survey. These are cases where light from two galaxies are significantly detected in a single GAMA fibre. Galaxy pairs identified from their blended spectrum fall into two principal classes: they are either strong lenses, a passive galaxy lensing an emission-line galaxy; or occulting galaxies, serendipitous overlaps of two galaxies, of any type. Blended spectra can thus be used to reliably identify strong lenses for follow-up observations (high resolution imaging) and occulting pairs, especially those that are a late-type partly obscuring an early-type galaxy which are of interest for the study of dust content of spiral and irregular galaxies. The GAMA survey setup and its autoz automated redshift determination were used to identify candidate blended galaxy spectra from the cross-correlation peaks. We identify 280 blended spectra with a minimum velocity separation of 600 km/s, of which 104 are lens pair candidates, 71 emission-line-passive pairs, 78 are pairs of emission-line galaxies and and 27 are pairs of galaxies with passive spectra. We have visually inspected the candidates in the Sloan Digital Sky Survey (SDSS) and Kilo Degree Survey (KiDS) images. Many blended objects are ellipticals with blue fuzz (Ef in our classification). These latter "Ef" classifications are candidates for possible strong lenses, massive ellipticals with an emission-line galaxy in one or more lensed images. The GAMA lens and occulting galaxy candidate samples are similar in size to those identified in the entire SDSS. This blended spectrum sample stands as a testament of the power of this highly complete, second-largest spectroscopic survey in existence and offers the possibility to expand e.g., strong gravitational lens surveys.
We show the effect of galaxy formation on the dark matter (DM) distribution across a wide range of halo masses. We focus on how baryon physics changes the dark matter halo shape, the so called "pseudo phase-space density distribution" and the velocity distribution within the virial radius, Rvir and in the solar neighborhood. This study is based on the NIHAO galaxy formation simulations, a large suite of cosmological zoom-in simulations. The galaxies reproduce key properties of observed galaxies, and hence offer unique insight into how baryons change the dark matter morphology and kinematics. When compared to dark matter only simulations, the NIHAO haloes have similar shapes at Rvir, but are substantially rounder inside ~0.1 Rvir. In DM-only simulations the inner halo has a minor-to-major axis ratio of c/a~0.5. In hydro simulations c/a increases with halo mass and integrated star formation efficiency, reaching ~0.8 at the Milky Way mass, reconciling a long-standing conflict between observations and DM only simulations. The radial profile of the phase-space Q parameter is best fit with a single power law in DM-only simulations, but shows a substantial flattening within ~0.1 Rvir, with hydro. Finally, the global velocity distribution of DM is similar in both DM-only and hydro simulations, but in the solar neighborhood, hydro galaxies deviate substantially from Maxwellian. Instead, dark matter particles show a more symmetric distribution, roughly Gaussian, around the mean, which has implications for direct DM detection experiments. Our results show that the comparison of theoretical predictions with observational data can no longer rely on pure collisionless simulations, but must include the effects of visible matter.
The growth of galaxies through adiabatic accretion of dark matter is one of the main drivers of galaxy evolution. By isolating it from other processes like mergers, we analyse how it affects the evolution of star clusters. Our study comprises a fast and approximate exploration of the orbital and intrinsic cluster parameter space, and more detailed monitoring of their evolution, through N-body simulations for a handful of cases. We find that the properties of present-day star clusters and their tidal tails differ very little, whether the clusters are embedded in a growing galactic halo for 12 Gyr, or in a static one.
We introduce project NIHAO (Numerical Investigation of a Hundred Astrophysical Objects), a set of 100 cosmological zoom-in hydrodynamical simulations performed using the GASOLINE code, with an improved implementation of the SPH algorithm. The haloes in our study range from dwarf to Milky Way masses, and represent an unbiased sampling of merger histories, concentrations and spin parameters. The particle masses and force softenings are chosen to resolve the mass profile to below 1% of the virial radius at all masses, ensuring that galaxy half-light radii are well resolved. Using the same treatment of star formation and stellar feedback for every object, the simulated galaxies reproduce the observed inefficiency of galaxy formation across cosmic time as expressed through the stellar mass vs halo mass relation, and the star formation rate vs stellar mass relation. We thus conclude that stellar feedback is the chief piece of physics required to limit the efficiency of star formation in galaxies less massive than the MilkyWay.
We report the discovery of significant localized structures in the projected two-dimensional (2D) spatial distributions of the Globular Cluster (GC) systems of the ten brightest galaxies in the Virgo Cluster. We use catalogs of GCs extracted from the HST ACS Virgo Cluster Survey (ACSVCS) imaging data, complemented, when available, by additional archival ACS data. These structures have projected sizes ranging from $\sim\!5$ arcsec to few arc-minutes ($\sim\!1$ to $\sim\!25$ kpc). Their morphologies range from localized, circular, to coherent, complex shapes resembling arcs and streams. The largest structures are preferentially aligned with the major axis of the host galaxy. A few relatively smaller structures follow the minor axis. Differences in the shape and significance of the GC structures can be noticed by investigating the spatial distribution of GCs grouped by color and luminosity. The largest coherent GC structures are located in low-density regions within the Virgo cluster. This trend is more evident in the red GC population, believed to form in mergers involving late-type galaxies. We suggest that GC over-densities may be driven by either accretion of satellite galaxies, major dissipationless mergers or wet dissipation mergers. We discuss caveats to these scenarios, and estimate the masses of the potential progenitors galaxies. These masses range in the interval $10^{8.5}\!-\!10^{9.5}$ solar masses, larger than those of the Local Group dwarf galaxies.
We present ALMA (Cycle 0) band-6 and band-3 observations of the transition disk Sz\,91. The disk inclination and position angle are determined to be $i=49.5\degr\pm3.5\degr$ and $\mathrm{PA}=18.2\degr\pm3.5\degr$ and the dusty and gaseous disk are detected up to $\sim220$ au and $\sim400$ au from the star, respectively. Most importantly, our continuum observations indicate that the cavity size in the mm-sized dust distribution must be $\sim97$ au in radius, the largest cavity observed around a T Tauri star. Our data clearly confirms the presence of \co(2-1) well inside the dust cavity. Based on these observational constrains we developed a disk model that simultaneously accounts for the \co and continuum observations (i.e., gaseous and dusty disk). According to our model, most of the millimeter emission comes from a ring located between 97 and 140 au. We also find that the dust cavity is divided into an innermost region largely depleted of dust particles ranging from the dust sublimation radius up to 85 au, and a second, moderately dust-depleted region, extending from 85 to 97 au. The extremely large size of the dust cavity, the presence of gas and small dust particles within the cavity and the accretion rate of Sz\,91 are consistent with the formation of multiple (giant) planets.
Primordial magnetic fields (PMF) damp at scales smaller than the photon diffusion and free-streaming scale. This leads to heating of ordinary matter (electrons and baryons), which affects both the thermal and ionization history of our Universe. Here, we study the effect of heating due to ambipolar diffusion and decaying magnetic turbulence. We find that changes to the ionization history computed with recfast are significantly overestimated when compared with CosmoRec. The main physical reason for the difference is that the photoionization coefficient has to be evaluated using the radiation temperature rather than the matter temperature. A good agreement with CosmoRec is found after changing this aspect. Using Planck 2013 data and considering only the effect of PMF-induced heating, we find an upper limit on the r.m.s. magnetic field amplitude of B0 < 1.1 nG (95% c.l.) for a stochastic background of PMF with a nearly scale-invariant power spectrum. We also discuss uncertainties related to the approximations for the heating rates and differences with respect to previous studies. Our results are important for the derivation of constraints on the PMF power spectrum obtained from measurements of the cosmic microwave background anisotropies with full-mission Planck data. They may also change some of the calculations of PMF-induced effects on the primordial chemistry and 21cm signals.
There are four different stable climate states for pure water atmospheres, as
might exist on so-called "waterworlds". I map these as a function of solar
constant for planets ranging in size from Mars size to 10 Earth-mass. The
states are: globally ice covered (Ts< 245K), cold and damp (270 < Ts< 290K),
hot and moist (350< Ts< 550K) and very hot and dry (Ts< 900K). No stable
climate exists for 290< Ts < 350K or 550 < Ts < 900K. The union of hot moist
and cold damp climates describe the liquid water habitable zone, the width and
location of which depends on planet mass. At each solar constant, two or three
different climate states are stable. This is a consequence of strong
non-linearities in both thermal emission and the net absorption of sunlight.
Across the range of planet sizes, I account for the atmospheres expanding to
high altitudes as they warm. The emitting and absorbing surfaces (optical depth
of unity) move to high altitude, making their area larger than the planet
surface, so more thermal radiation is emitted and more sunlight absorbed (the
former dominates). The atmospheres of small planets expand more due to weaker
gravity: the effective runaway greenhouse threshold is about 35Wm-2 higher for
Mars, 10Wm-2 higher for Earth or Venus but only a few Wm-2 higher for a 10
Earth-mass planet. There is an underlying (expansion neglected) trend of
increasing runaway greenhouse threshold with planetary size (40Wm-2 higher for
a 10 Earth-mass planet than for Mars). Summing these opposing trends means that
Venus-size (or slightly smaller) planets are most susceptible to a runaway
greenhouse.
The habitable zone for pure water atmospheres is very narrow, with an
insolation range of 0.07 times the solar constant. A wider habitable zone
requires background gas and greenhouse gas; N2 and CO2 on Earth, which are
biologically controlled. Thus, habitability depends on inhabitance.
The most powerful blazars are the flat spectrum radio quasars whose emission is dominated by a Compton component peaking between a few hundred keV and a few hundred MeV. We selected two bright blazars, PKS 2149-306 at redshift z=2.345 and S5 0836+710 at z=2.172, in order to observe them in the hard X-ray band with the NuSTAR satellite. In this band the Compton component is rapidly rising almost up to the peak of the emission. Simultaneous soft-X-rays and UV-optical observations were performed with the Swift satellite, while near-infrared (NIR) data were obtained with the REM telescope. To study their variability, we repeated these observations for both sources on a timescale of a few months. While no fast variability was detected during a single observation, both sources were found to be variable in the X-ray band, up to 50%, between the two observations, with larger variability at higher energies. No variability was detected in the optical/NIR band. These data together with Fermi-LAT, WISE and other literature data are then used to study the overall spectral energy distributions (SEDs) of these blazars. Although the jet non-thermal emission dominates the SED, it leaves the UV band unhidden, allowing us to detect the thermal emission of the disc and to estimate the mass of the black hole. The non-thermal emission is well reproduced by a one-zone leptonic model. The non-thermal radiative processes are synchrotron, self-Compton and external Compton using seed photons from both the broad-line region (BLR) and the torus. We find that our data are better reproduced if we assume that the location of the dissipation region of the jet, Rdiss}, is in-between the torus, (at Rtorus), and the BLR (Rtorus>R_diss >R_BLR). The observed variability is explained by changing a minimum number of model parameters by a very small amount.
In arXiv:1502.01250, we have recently argued that when the energy of a photon injected in the primordial plasma falls below the pair-production threshold, the universality of the non-thermal photon spectrum from the standard theory of electromagnetic cascades onto a photon background breaks down. We showed that this could reopen or widen the parameter space for an exotic solution to the 'lithium problem'. Here we discuss another application, namely the impact that this has on non-thermal big bang nucleosynthesis constraints from 4He, 3He and 2H, using the parametric example of monochromatic photon injection of different energies. Typically, we find tighter bounds than those existing in the literature, up to more than one order of magnitude. As a consequence of the non-universality of the spectrum, the energy-dependence of the photodissociation cross-sections is important. We also compare the constraints obtained with current level and future reach of cosmic microwave background spectral distortion bounds.
For some blazars, the gamma-ray absorption features due to pair-production on the Extragalactic Background Light (EBL) are fainter than expected. The present work reviews the main models that could explain this paradox, with emphasis on conservative ones, that do not include any new physics. The models that are intrinsic to the source, do allow a very hard primary spectrum, but fail to explain a regular redshift dependence of the anomaly starting energy. The model that includes a contribution from secondary photons produced by cosmic rays (CR) near the Earth seems to require a well collimated CR beam, what is hard to achieve. Finally, the model with secondary photons produced in electromagnetic (EM) cascades initiated by primary gamma-rays is considered. In principle, it allows to decrease the statistical significance of the anomaly and, while requiring quite low EGMF strength B, does not contradict to most contemporary constraints on the B value. Additionally, it is shown that the recently observed correlation between directions to hard gamma-ray sources and voids in the Large Scale Structure is a natural feature of the EM cascade model.
During its first 10 years of orbital operations Swift dedicated approximately 11% of its observing time to blazars, carrying out more than 12,000 observations of ~1,600 different objects, for a total exposure time of over 25 million seconds. This is probably the largest contribution to multi-frequency (optical, UV, soft and hard X-rays) and multi-temporal data archives about this type of sources. In this paper I briefly discuss the impact that Swift is having on blazar multi-frequency and time-domain astrophysics, as well as how it is contributing to the opening of the era of multi-messenger astronomy. Finally, I present some preliminary results from a systematic analysis of a very large number of Swift XRT observations of blazars. All the "science ready" data products that are being generated by this project will be publicly released. Specifically, deconvolved X-ray spectra and best fit spectral parameters will be available through the ASDC "SED builder" tool (https://tools.asdc.asi.it/SED) and by means of interactive tables (this http URL). Innovative data visualisation methods (see e.g. this http URL) are being developed to help exploiting this new large data set as well as data form other multi-frequency archives.
We argue that the `changing look' AGN recently reported by LaMassa et al. could in fact be a luminous flare produced by the tidal disruption of a super-solar mass star passing just a few gravitational radii outside the event horizon of a $\sim 10^8 M_{\odot}$ nuclear black hole. This flare occurred in a massive, star forming galaxy at redshift $z=0.312$, which is robustly characterized thanks to repeated late-time photometric and spectroscopic observations. By taking difference-photometry of the well sampled multi-year SDSS Stripe-82 light-curve, we are able to probe the evolution of the nuclear spectrum over the course of the outburst. The tidal disruption event (TDE) interpretation is consistent with the very rapid rise and the decay time of the flare, which displays an evolution consistent with the well-known $t^{-5/3}$ behaviour, and would otherwise be inconsistent with a viscous draining of a large-scale accretion disc. Our analysis places strong constraints on the physical properties of the TDE, such as the putative disrupted star's mass and orbital parameters, as well as the size and temperature of the emitting material. Assuming standard (and conservative) bolometric corrections, this would be amongst the most luminous non-beamed tidal disruption flares discovered so far, and the only one observed from a black hole as massive as $\sim 10^8 M_{\odot}$. The properties of the broad and narrow emission lines observed in two epochs of SDSS spectra provide further constraints on the circum-nuclear structure, and could be indicative that the system hosted a moderate-luminosity AGN as recently as a few $10^4$ years ago. We discuss the complex interplay between tidal disruption events and gas accretion episodes in galactic nuclei, highlighting the implications for future TDE searches and for estimates of their intrinsic rates.
We test a model of inflation with a fast-rolling kinetic dominated initial condition against data from Planck using MCMC. We choose a m^2 {\phi}^2 potential and perform a full numerical calculation of both the scalar and tensor primordial power spectra. We find a slight improvement in fit for this model over the standard eternal slow roll case.
Beyond the linear regime of structure formation, part of cosmological information encoded in galaxy clustering becomes inaccessible to the usual power spectrum. "Sufficient statistics", A*, were introduced recently to recapture the lost, and ultimately extract all, cosmological information. We present analytical approximations for the A* and traditional power spectra as well as for their covariance matrices in order to calculate analytically their cosmological information content in the context of Fisher information theory. Our approach allows the precise quantitative comparison of the techniques with each other and to the total information in the data, and provides insights into sufficient statistics. In particular, we find that while the A* power spectrum has a similar shape to the usual galaxy power spectrum, its amplitude is strongly modulated by small scale statistics. This effect is mostly responsible for the ability of the A* power spectrum to recapture the information lost for the usual power spectrum. We use our framework to forecast the best achievable cosmological constraints for projected surveys as a function of their galaxy density, and compare the information content of the two power spectra. We find that sufficient statistics extract all cosmological information, resulting in an approximately factor of ~2 gain for dense projected surveys at low redshift. This increase in the effective volume of projected surveys is consistent with previous numerical calculations.
We investigate the formation and evolution of the first core, protostar, and circumstellar disc with a three-dimensional non-ideal (including both Ohmic and ambipolar diffusion) radiation magnetohydrodynamics simulation. We found that the magnetic flux is largely removed by magnetic diffusion in the first core phase and that the plasma $\beta$ of the centre of the first core becomes large, $\beta>10^4$. On the other hand, in an ideal simulation, $\beta\sim 10$ at the centre of the first core. Even though $\beta$ inside the first core thus differs significantly between the resistive and ideal model, the angular momentum of the first core does not. The simulations with magnetic diffusion show that the circumstellar disc forms at almost the same time of protostar formation even with a relatively strong initial magnetic field (the value for the initial mass-to-flux ratio of the cloud core relative to the critical value is $\mu=4$). The disc has a radius of $r \sim 1$ AU at the protostar formation epoch. We confirm that the disc is rotationally supported. We also show that the disc is massive ($Q\sim 1$) and that gravitational instability may play an important role in the subsequent disc evolution.
Recently, Sahni, Shafielo o & Starobinsky (2014) combined two independent measurements of $H(z)$ from BAO data with the value of the Hubble constant $H_0 = H(z=0)$, in order to test the cosmological constant hypothesis by means of an improved version of the $Om$ diagnostic. Their result indicated a considerable tension between observations and predictions of the $\Lambda$CDM model. However, such strong conclusion was based only on three measurements of $H(z)$. This motivated us to repeat similar work on a larger sample. By using a comprehensive data set of 29 $H(z)$, we find that discrepancy indeed exists. Even though the value of $\Omega_{m,0} h^2$ inferred from $Omh^2$ diagnostic depends on the way one chooses to make a summary statistics (weighted mean or the median), the persisting discrepancy supports the claims of Sahni, Shafielo o & Starobinsky (2014) that $\Lambda$CDM model may not be the best description of our Universe.
We present 2.5-5.0 $\mu$m spectra of 83 nearby ($0.002\,<\,z\,<\,0.48$) and bright ($K<14$mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera (IRC) on board $\it{AKARI}$. The 2.5-5.0 $\mu$m spectral region contains emission lines such as Br$\beta$ (2.63 $\mu$m), Br$\alpha$ (4.05 $\mu$m), and polycyclic aromatic hydrocarbons (PAH; 3.3 $\mu$m), which can be used for studying the black hole (BH) masses and star formation activities in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green (PG) and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. (2004). Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region (BLR). Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, $\it{WISE}$, and $\it{ISO}$ to the $\it{AKARI}$ spectra, finding hot and warm dust temperatures of $\sim1100\,\rm{K}$ and $\sim220\,\rm{K}$, respectively, rather than the commonly cited hot dust temperature of 1500 K.
We report measurements of the Diffuse Galactic Light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95-1.65 {\mu}m by the Cosmic Infrared Background ExpeRiment (CIBER). Using the low-resolution spectrometer (LRS) calibrated for absolute spectro-photometry, we acquired long-slit spectral images of the total diffuse sky brightness towards four high-latitude fields spread over four sounding rocket flights. To separate the DGL spectrum from the total sky brightness, we correlated the spectral images with a 100 {\mu}m intensity map, which traces the dust column density in optically thin regions. The measured DGL spectrum shows no resolved features and is consistent with other DGL measurements in the optical and at near-infrared wavelengths longer than 1.8 {\mu}m. Our result implies that the continuum is consistently reproduced by models of scattered starlight in the Rayleigh scattering regime with a few large grains.
In this paper, we investigate the modification of our expressions developed for the model-independent data analysis procedure of the reconstruction of the (time-averaged) one-dimensional velocity distribution of Galactic Weakly Interacting Massive Particles (WIMPs) with a non-negligible experimental threshold energy. Our numerical simulations show that, for a minimal reconstructable velocity of as high as O(200) km/s, our model-independent modification of the estimator for the normalization constant could provide precise reconstructed velocity distribution points to match the true WIMP velocity distribution with a <~ 10% bias.
Gamma-ray bursts (GRBs) are proposed as candidate sources of ultra-high energy cosmic rays (UHECRs). We study the possibility that the PeV neutrinos recently observed by IceCube are produced by GRB cosmic rays interacting with the interstellar gas in the host galaxies. By studying the relation between the X-ray absorption column density N_H and the surface star-formation rate of GRB host galaxies, we find that N_H is a good indicator of the surface gas density of the host galaxies. Then we are able to calculate the neutrino production efficiency of CRs for GRBs with known N_H. We collect a sample of GRBs that have both measurements of N_H and accurate gamma-ray fluence, and attempt to calculate the accumulated neutrino flux based on the current knowledge about GRBs and their host galaxies. When the CR intensity produced by GRBs is normalized with the observed UHECR flux above $10^{19}{\rm eV}$, the accumulated neutrino flux at PeV energies is estimated to be about $(0.3\pm0.2)\times10^{-8} \rm{GeV\ cm^{-2}\ s^{-1}\ sr^{-1}} $ (per flavor) under the assumption that GRB energy production rate follows the cosmic star-formation rate and the favorable assumption about the CR diffusion coefficient. This flux is insufficient to account for the IceCube observations, but the estimate suffers from some assumptions in the calculation and thus we can not rule out this scenario at present.
Aims: Accretion rates in low-mass protostars can be highly variable in time.
Each accretion burst is accompanied by a temporary increase in luminosity,
heating up the circumstellar envelope and altering the chemical composition of
the gas and dust. This paper aims to study such chemical effects and discusses
the feasibility of using molecular spectroscopy as a tracer of episodic
accretion rates and timescales.
Methods: We simulate a strong accretion burst in a diverse sample of 25
spherical envelope models by increasing the luminosity to 100 times the
observed value. Using a comprehensive gas-grain network, we follow the chemical
evolution during the burst and for up to 10^5 yr after the system returns to
quiescence. The resulting abundance profiles are fed into a line radiative
transfer code to simulate rotational spectra of C18O, HCO+, H13CO+, and N2H+ at
a series of time steps. We compare these spectra to observations taken from the
literature and to previously unpublished data of HCO+ and N2H+ 6-5 from the
Herschel Space Observatory.
Results: The bursts are strong enough to evaporate CO throughout the
envelope, which in turn enhances the abundance of HCO+ and reduces that of
N2H+. After the burst, it takes 10^3-10^4 yr for CO to refreeze and for HCO+
and N2H+ to return to normal. The chemical effects of the burst remain visible
in the rotational spectra for as long as 10^5 yr after the burst has ended,
highlighting the importance of considering luminosity variations when analyzing
molecular line observations in protostars. The spherical models are currently
not accurate enough to derive robust timescales from single-dish observations.
As follow-up work, we suggest that the models be calibrated against spatially
resolved observations in order to identify the best tracers to be used for
statistically significant source samples.
An isolated, initially cold and ellipsoidal cloud of self-gravitating particles represents a relatively simple system to study the effects of the deviations from spherical symmetry in the mechanism of violent relaxation. Initial deviations from spherical symmetry are shown to play a dynamical role that is equivalent to that of density fluctuations in the case of an initially spherical cloud. Indeed, these deviations control the amount of particles energy change and thus determine the properties of the final energy distribution, particularly the appearance of two species of particles: bound and free. Ejection of mass and energy from the system together with the formation of a density profile decaying as $\rho(r) \sim r^{-4}$ and a Keplerian radial velocity dispersion profile, are the prominent features similar to those observed after the violent relaxation of spherical clouds. In addition, we find that ejected particles are characterized by highly non-spherical shapes, whose features can be traced in the initial deviations from spherical symmetry that are amplified during the dynamical evolution: particles can indeed form anisotropic configurations, like bars and/or disks, even though the initial cloud was very close to spherical.
Recent progress in observational studies of magnetic activity in M dwarfs urgently requires support from ideas of stellar dynamo theory. We propose a strategy to connect observational and theoretical studies. In particular, we suggest four magnetic configurations that appear relevant to dwarfs from the viewpoint of the most conservative version of dynamo theory, and discuss observational tests to identify the configurations observationally. As expected, any such identification contains substantial uncertainties. However the situation in general looks less pessimistic than might be expected. Several identifications between the phenomenology of individual stars and dynamo models are suggested. Remarkably, all models discussed predict substantial surface magnetic activity at rather high stellar latitudes. This prediction looks unexpected from the viewpoint of our experience observing the Sun (which of course differs in some fundamental ways from these late-type dwarfs). We stress that a fuller understanding of the topic requires a long-term (at least 15 years) monitoring of M dwarfs by Zeeman-Doppler imaging.
N-body simulations of galactic collisions are employed to investigate the formation of elliptical rings in disk galaxies. The relative inclination between disk and dwarf galaxies is studied with a fine step of five degrees. It is confirmed that the eccentricity of elliptical ring is linearly proportional to the inclination angle. Deriving from the simulational results, an analytic formula which expresses the eccentricity as a function of time and inclination angle is obtained. This formula shall be useful for the interpretations of the observations of ring systems, and therefore reveals the merging histories of galaxies.
We have carried-out 98-level configuration-interaction / close-coupling (CI/CC) intermediate coupling frame transformation (ICFT) and Breit-Pauli R-matrix calculations for the electron-impact excitation of Be-like Al$^{9+}$. The close agreement that we find between the two sets of effective collision strengths demonstrates the continued robustness of the ICFT method. On the other hand, a comparison of this data with previous 238-level CI/CC ICFT effective collision strengths shows that the results for excitation up to n=4 levels are systematically and increasingly underestimated over a wide range of temperatures by R-matrix calculations whose close-coupling expansion extends only to n=4 (98-levels). Thus, we find to be false a recent conjecture that the ICFT approach may not be completely robust. The conjecture was based upon a comparison of 98-level CI/CC Dirac R-matrix effective collision strengths for Al$^{9+}$ with those from the 238-level CI/CC ICFT R-matrix calculations. The disagreement found recently is due to a lack of convergence of the close-coupling expansion in the 98-level CI/CC Dirac work. The earlier 238-level CI/CC ICFT work has a superior target to the 98-level CI/CC Dirac one and provides more accurate atomic data. Similar considerations need to be made for other Be-like ions and for other sequences.
We present an event-by-event study of cosmic ray (CR) composition with the reflected Cherenkov light method. The fraction of CR light component above 5 PeV was reconstructed using the 2013 run data of the SPHERE experiment which observed optical Vavilov-Cherenkov radiation of extensive air showers, reflected from snow surface of Lake Baikal. Additionally, we discuss a possibility to improve the elemental groups separability by means of multidimensional criteria.
The problem of impulsive heating of dust grains in cold, dense interstellar clouds is revisited theoretically, with the aim to better understand leading mechanisms of the explosive desorption of icy mantles. It is rigorously shown that if the heating of a reactive medium occurs within a sufficiently localized spot (e.g., heating of mantles by cosmic rays), then the subsequent thermal evolution is characterized by a single dimensionless number $\lambda$. This number identifies a bifurcation between two distinct regimes: When $\lambda$ exceeds a critical value (threshold), the heat equation exhibits the explosive solution, i.e., the thermal (chemical) explosion is triggered. Otherwise, thermal diffusion causes the deposited heat to spread over the entire grain -- this regime is commonly known as the whole-grain heating. The theory allows us to find a critical combination of the physical parameters that govern the explosion of icy mantles due to impulsive spot heating. In particular, the calculations suggest that heavy cosmic ray species (e.g., iron ions) colliding with dust are able to trigger the explosion. Based on the recently calculated local cosmic-ray spectra, the expected rate of the explosive desorption is estimated. The efficiency of the desorption, which affects all solid species independent of their binding energy, is shown to be comparable with other cosmic-ray desorption mechanisms typically considered in the literature. Also, the theory allows us to estimate maximum abundances of reactive species that may be stored in the mantles, which provides important constraints on available astrochemical models.
The circumstellar environment of L2 Pup, an oxygen-rich semiregular variable, was observed to understand the evolution of mass loss and the shaping of ejecta in the late stages of stellar evolution. High-angular resolution observations from a single 8 m telescope were obtained using aperture masking in the near-infrared (1.64, 2.30 and 3.74 $\rm\mu m$) on the NACO/VLT, both in imaging and polarimetric modes. The aperture-masking images of L2 Pup at 2.30 $\rm\mu m$ show a resolved structure that resembles a toroidal structure with a major axis of ~140 milliarcseconds (mas) and an east-west orientation. Two clumps can be seen on either side of the star, ~65 mas from the star, beyond the edge of the circumstellar envelope (estimated diameter is ~27 mas), while a faint, hook-like structure appear toward the northeast. The patterns are visible both in the imaging and polarimetric mode, although the latter was only used to measure the total intensity (Stokes I). The overall shape of the structure is similar at the 3.74 $\rm\mu m$ pseudo-continuum (dust emission), where the clumps appear to be embedded within a dark, dusty lane. The faint, hook-like patterns are also seen at this wavelength, extending northeast and southwest with the central, dark lane being an apparent axis of symmetry. We interpret the structure as a circumstellar torus with inner radius of 4.2 au. With a rotation velocity of 10 km s$^{-1}$ as suggested by the SiO maser profile, we estimate a stellar mass of 0.7 M$_\odot$.}
Cosmological tests based on the statistical analysis of galaxy distributions are usually dependent on the evolution of the sources. An exception is the Alcock-Paczynski (AP) test, which is based on the changing ratio of angular to spatial/redshift size of (presumed) spherically-symmetric source distributions with distance. Intrinsic redshift distortions due to gravitational effects may also have an influence, but there is now a way to overcome them: with the inclusion in the AP test of an observational signature with a sharp feature, such as the Baryonic Acoustic Oscillation (BAO) peak. Redshift distortions affect only the amplitude of the peak, not its position. As we will show here, the use of this diagnostic, with newly acquired data on the anisotropic distribution of the BAO peaks from SDSS-III/BOSS-DR11 at average redshifts 0.57 and 2.34, strongly disfavours the current concordance (LCDM) model, which is discarded at the 3-sigma level. A statistically acceptable fit to the AP data with wCDM (the version of LCDM with a dark-energy equation of state w_de=p_de/rho_de rather than w_de=w_L=-1) is possible only with w_de=-0.24{+0.60}{-0.42} and Omega_m=0.74{+0.22}{-0.33}. Within the context of expanding Friedmann-Robertson-Walker (FRW) cosmologies, these data strongly favour the zero `active mass' equation-of-state, the basis for the R_h=ct Universe, in which rho+3p=0, where rho and p are, respectively, the total density and pressure of the cosmic fluid.
The weak orbital-phase dependent reflection signal of an exoplanet contains
information on the planet surface, such as the distribution of continents and
oceans on terrestrial planets. This light curve is usually studied in the time
domain, but because the signal from a stationary surface is (quasi)periodic,
analysis of the Fourier series may provide an alternative, complementary
approach.
We study Fourier spectra from reflected light curves for geometrically simple
configurations. Depending on its atmospheric properties, a rotating planet in
the habitable zone could have circular polar ice caps. Tidally locked planets,
on the other hand, may have symmetric circular oceans facing the star. These
cases are interesting because the high-albedo contrast at the sharp edges of
the ice-sheets and the glint from the host star in the ocean may produce
recognizable light curves with orbital periodicity, which could also be
interpreted in the Fourier domain.
We derive a simple general expression for the Fourier coefficients of a
quasiperiodic light curve in terms of the albedo map of a Lambertian planet
surface. Analytic expressions for light curves and their spectra are calculated
for idealized situations, and dependence of the spectral peaks on key
parameters inclination, obliquity, and cap size are studied.
We study the detailed evolution of the fine-structure constant $\alpha$ in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent $\alpha$ measurements and discuss ways to distinguish it from alternative models for varying $\alpha$. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical $\Lambda$CDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive $\alpha$ measurements, will thus dramatically constrain these scenarios.
Many astrophysical sources radiate via synchrotron emission from relativistic electrons. The electrons give off their kinetic energy as radiation and this radiative loss modifies the electron energy distribution. An analytical treatment of this problem is possible in asymptotic limits by employing the continuity equation. In this article, we are using a probabilistic approach to obtain the analytical results. The basic logic behind this approach is that any particle distribution can be viewed as a probability distribution after normalizing it (as is done frequently in statistical mechanics withi ensembles containing very large number of particles). We are able to reproduce the established results from our novel approach. Same approach can be applied to other physics problems involving spatial or temporal evolution of distribution functions.
We present the spectroscopic analysis of a large sample of late-M, L, and T dwarfs from UKIDSS. Using the YJHK photometry from ULAS and the red-optical photometry from SDSS we selected a sample of 262 brown dwarf candidates and we followed-up 196 of them using X-shooter on the VLT. The large wavelength coverage (0.30-2.48 $\mu$m) and moderate resolution (R~5000-9000) of X-shooter allowed us to identify peculiar objects including 22 blue L dwarfs, 2 blue T dwarfs, and 2 low gravity M dwarfs. Using a spectral indices-based technique we identified 27 unresolved binary candidates, for which we determined the spectral type of the potential components via spectral deconvolution. The spectra allowed us to measure the equivalent width of the prominent absorption features and to compare them to atmospheric models. Cross-correlating the spectra with a radial velocity standard, we measured the radial velocity for our targets, and we determined the distribution of the sample, which is centred at -1.7$\pm$1.2 km s$^{-1}$ with a dispersion of 31.5 km s$^{-1}$. Using our results we estimated the space density of field brown dwarfs and compared it with the results of numerical simulations. Depending on the binary fraction, we found that there are (0.85$\pm$0.55) x 10$^{-3}$ to (1.00$\pm$0.64) x 10$^{-3}$ objects per cubic parsec in the L4-L6.5 range, (0.73$\pm$0.47) x 10$^{-3}$ to (0.85$\pm$0.55) x 10$^{-3}$ objects per cubic parsec in the L7-T0.5 range, and (0.74$\pm$0.48) x 10$^{-3}$ to (0.88$\pm$0.56) x 10$^{-3}$ objects per cubic parsec in the T1-T4.5 range. There seem to be an excess of objects in the L/T transition with respect to the late T dwarfs, a discrepancy that could be explained assuming a higher binary fraction than expected for the L/T transition, or that objects in the high-mass end and low-mass end of this regime form in different environments, i.e. following different IMFs.
We analyse all available X-ray observations of X1822-371 made with XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to constrain the spectral shape of the continuum emission well. We use the model already proposed for this source, consisting of a Comptonised component absorbed by interstellar matter and partially absorbed by local neutral matter, and we added a Gaussian feature in absorption at $\sim 0.7$ keV. This addition significantly improves the fit and flattens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in absorption as a cyclotron resonant scattering feature (CRSF) produced close to the neutron star surface and derive the magnetic field strength at the surface of the neutron star, $(8.8 \pm 0.3) \times 10^{10}$ G for a radius of 10 km. We derive the pulse period in the EPIC-pn data to be 0.5928850(6) s and estimate that the spin period derivative of X1822-371 is $(-2.55 \pm 0.03) \times 10^{-12}$ s/s using all available pulse period measurements. Assuming that the intrinsic luminosity of X1822-371is at the Eddington limit and using the values of spin period and spin period derivative of the source, we constrain the neutron star and companion star masses. We find the neutron star and the companion star masses to be $1.69 \pm 0.13$ M$_{\odot}$ and $0.46 \pm 0.02$ M$_{\odot}$, respectively, for a neutron star radius of 10 km.In a self-consistent scenario in which X1822-371 is spinning-up and accretes at the Eddington limit, we estimate that the magnetic field of the neutron star is $(8.8 \pm 0.3) \times 10^{10}$ G for a neutron star radius of 10 km. If our interpretation is correct, the Gaussian absorption feature near 0.7 keV is the very first detection of a CRSF below 1 keV in a LMXB. (abridged)
A new one-dimensional, dynamical model is proposed for geometrically thin,
self-gravitating viscous accretion discs. The vertically integrated equations
are simplified using the slow accretion limit and the monopole approximation
with a time-dependent central point mass to account for self-gravity and
accretion. It is shown that the system of partial differential equations can be
reduced to a single non-linear advection diffusion equation which describes the
time evolution of angular velocity.
In order to solve the equation three different turbulent viscosity
prescriptions are considered. It is shown that for these parametrizations the
differential equation allows for similarity transformations depending only on a
single non-dimensional parameter. A detailed analysis of the similarity
solutions reveals that this parameter is the initial power law exponent of the
angular velocity distribution at large radii. The radial dependence of the
self-similar solutions is in most cases given by broken power laws. At small
radii the rotation law always becomes Keplerian with respect to the current
central point mass. In the outer regions the power law exponent of the rotation
law deviates from the Keplerian value and approaches asymptotically the value
determined by the initial condition. It is shown that accretion discs with
flatter rotation laws at large radii yield higher accretion rates.
The methods are applied to self-gravitating accretion discs in active
galactic nuclei. Fully self-gravitating discs are found to evolve faster than
nearly Keplerian discs. The implications on supermassive black hole formation
and Quasar evolution are discussed.
We analyze the gamma-ray emission from 9 high latitude, translucent molecular clouds taken with the Fermi Large Area Telescope (LAT) between 250 MeV and 10 GeV. Observations of gamma-rays allow us to probe the density and spectrum of cosmic rays in the solar neighborhood. The clouds studied lie within $\sim\!$270 pc from the Sun and are selected from the Planck all-sky CO map. Gamma-rays in this energy range mostly result from cosmic ray interactions with the interstellar medium, which is traced with three components: HI, CO, and dark gas. Every cloud is detected and shows significant, extended gamma-ray emission from molecular gas. The gamma-ray emission is dominated by the CO-emitting gas in some clouds, but by the CO-dark gas in others. The average emissivity and gamma-ray power law index from HI above 1 GeV shows no evidence of a systematic variation. The CO-to-H$_2$ conversion factor shows no variation between clouds over this small spatial range, but shows significant variations within each cloud. The average CO-to-H$_2$ conversion factor suggests that the CO-dark gas is molecular as opposed to optically thick HI.
Aims. We aim at finding candidates of potential survivors of high-redshift
compact galaxies in SDSS, as targets for more detailed follow-up observations.
Methods. From the virial theorem it is expected that for a given mass,
compact galaxies have stellar velocity dispersion higher than the mean due to
their smaller sizes. Therefore velocity dispersion coupled with size (or mass)
is an appropriate method to select relics, independent of the stellar
population properties. Based on these consideration we design a set of criteria
using distribution of early-type galaxies from SDSS on the
log$_{10}$(R$_{0}$)-log$_{10}$($\sigma_{0}$) plane to find the most extreme
objects on it.
Results. We find 76 galaxies at 0.05 < z < 0.2, which have properties similar
to the typical quiescent galaxies at high redshift. We study how well these
galaxies fit on well-known local universe relations of early-type galaxies such
as the fundamental plane, the red sequence or mass-size relations. As expected
from the selection criteria, the candidates are located in an extreme corner of
mass-size plane. However, they do not extend as deeply into the so-called zone
of exclusion as some of the red nuggets found at high redshift, being a factor
2-3 less massive at a given intrinsic scale size. We find that our candidates
are systematically offset on scaling relation compared to the average
early-type galaxies, and similar to the mass-size range expected for passive
evolution of the red nuggets from their high redshift to the present.
Conclusions. The 76 selected candidates form a well suited set of objects for
further follow-up observations. We argue that selecting a high velocity
dispersion is the best way to find analogues of compact high redshift galaxies
in the local universe.
The Galactic Centre is a bright gamma-ray source with the GeV-TeV band spectrum composed of two distinct components in the 1-10 GeV and 1-10 TeV energy ranges. The nature of these two components is not clearly understood. We investigate the gamma-ray properties of the GC in order to clarify the origin of the observed emission. We report imaging, spectral and timing analysis of the data of 74 months of observations of the Galactic Centre by FERMI/LAT gamma-ray telescope complemented by the sub-MeV data from ~10 years of INTEGRAL/PICsIT observations. We find that in the GeV band the Galactic Centre is spatially consistent with a point source. The 3 sigma upper limit on its radius is 0.13 degree. The spectrum of the source in the 100 MeV energy range does not have a characteristic turnover which would point to the pion decay origin of the signal. Instead, the source spectrum is consistent with a model of inverse Compton scattering by high-energy electrons. In such a model, the GeV bump in the spectrum originates from an episode of injection of high-energy particles which happened ~300 years ago. This injection episode coincides with the known activity episode of the Galactic Centre region, previously identified using X-ray observations. The hadronic model of source activity could be still compatible with the data, if bremsstrahlung emission from high-energy electrons is present in addition to the pion decay emission.
We present a description of the Prototype All-Sky Imager (PASI), a backend correlator and imager of the first station of the Long Wavelength Array (LWA1). PASI cross-correlates a live stream of 260 dual-polarization dipole antennas of the LWA1, creates all-sky images, and uploads them to the LWA-TV website in near real-time. PASI has recorded over 13,000 hours of all-sky images at frequencies between 10 and 88 MHz creating opportunities for new research and discoveries. We also report rate density and pulse energy density limits on transients at 38, 52, and 74 MHz, for pulse widths of 5 s. We limit transients at those frequencies with pulse energy densities of $>2.7\times 10^{-23}$, $>1.1\times 10^{-23}$, and $>2.8\times 10^{-23}$ J m$^{-2}$ Hz$^{-1}$ to have rate densities $<1.2\times10^{-4}$, $<5.6\times10^{-4}$, and $<7.2\times10^{-4}$ yr$^{-1}$ deg$^{-2}$
It is proposed that there exists a class of pulsars, called weak pulsars, for
which the large-scale magnetosphere, and hence the gamma-ray emission, are
independent of the detailed pattern of plasma production. The weak pulsar
magnetosphere and its gamma-ray emission are uniquely determined by just three
parameters: spin, dipole, and the spin-dipole angle. We calculate this
supposedly unique pulsar magnetosphere in the axisymmetric case. The
magnetosphere is found to be very close to (although interestingly not fully
identical with) the magnetosphere we have previously calculated, explaining the
phenomenological success of the old calculation.
We offer only a highly tentative proof of this "Pulsar No-Hair Theorem". Our
analytics, while convincing in its non-triviality, is incomplete, and counts
only as a plausibility argument. Our numerics, while complete, is dubious.
The plasma flow in the weak pulsar magnetosphere turns out to be even more
intricate than what we have previously proposed: some particles, after being
created near the star, move beyond the light cylinder and then return to the
star.
In this work we present IRAM-30m telescope observations of a sample of bulge-dominated galaxies with large dust lanes, which have had a recent minor merger. We find these galaxies are very gas rich, with H2 masses between 4x10^8 and 2x10^10 Msun. We use these molecular gas masses, combined with atomic gas masses from an accompanying paper, to calculate gas-to-dust and gas-to-stellar mass ratios. The gas-to-dust ratios of our sample objects vary widely (between ~50 and 750), suggesting many objects have low gas-phase metallicities, and thus that the gas has been accreted through a recent merger with a lower mass companion. We calculate the implied minor companion masses and gas fractions, finding a median predicted stellar mass ratio of ~40:1. The minor companion likely had masses between ~10^7 - 10^10 Msun. The implied merger mass ratios are consistent with the expectation for low redshift gas-rich mergers from simulations. We then go on to present evidence that (no matter which star-formation rate indicator is used) our sample objects have very low star-formation efficiencies (star-formation rate per unit gas mass), lower even than the early-type galaxies from ATLAS3D which already show a suppression. This suggests that minor mergers can actually suppress star-formation activity. We discuss mechanisms that could cause such a suppression, include dynamical effects induced by the minor merger.
We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350-MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed {\tt RRATtrap}, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array (LOFAR), yielding improved positions and measurements of their periods, dispersion measures, and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have dispersion measures (DMs) ranging from 15 to 97 pc cm$^{-3}$, periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr$^{-1}$ at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e. $P>200$ ms) are preferentially more likely to emit bright single pulses than are faster pulsars ($P<200$ ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.
The distances of pulsating stars, in particular Cepheids, are commonly measured using the parallax of pulsation technique. The different versions of this technique combine measurements of the linear diameter variation (from spectroscopy) and the angular diameter variation (from photometry or interferometry) amplitudes, to retrieve the distance in a quasi-geometrical way. However, the linear diameter amplitude is directly proportional to the projection factor (hereafter p-factor), which is used to convert spectroscopic radial velocities (i.e., disk integrated) into pulsating (i.e., photospheric) velocities. The value of the p-factor and its possible dependence on the pulsation period are still widely debated. Our goal is to measure an observational value of the p-factor of the type-II Cepheid kappa Pavonis, whose parallax was measured with an accuracy of 5% using HST/FGS. We used this parallax as a starting point to derive the p-factor of kappa Pav, using the SPIPS technique, which is a robust version of the parallax-of-pulsation method that employs radial velocity, interferometric and photometric data. We applied this technique to a combination of new VLTI/PIONIER optical interferometric angular diameters, new CORALIE and HARPS radial velocities, as well as multi-colour photometry and radial velocities from the literature. We obtain a value of p = 1.26 +/- 0.07 for the p-factor of kappa Pav. This result agrees with several of the recently derived Period-p-factor relationships from the literature, as well as previous observational determinations for Cepheids. Individual estimates of the p-factor are fundamental to calibrating the parallax of pulsation distances of Cepheids. Together with previous observational estimates, the projection factor we obtain points to a weak dependence of the p-factor on period.
We present deep NH$_3$ observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3 degree angular range using the K-band focal plane array on the 100m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH$_3$ (1,1) and (2,2) with a spectral resolution of 0.038 km/s and a spatial resolution of 31$"$. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 $\mu$m and 500 $\mu$m. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8 $-$ 15 K, velocity dispersions of 0.05 $-$ 0.25 km/s, and NH$_3$ column densities of 5$\times$10$^{12}$ $-$ 1$\times$10$^{14}$ cm$^{-2}$. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH$_3$ structures including 39 leaves and 16 branches. The masses of the NH$_3$ sources range from 0.05 M$_\odot$ to 9.5 M$_\odot$. The masses of NH$_3$ leaves are mostly smaller than their corresponding virial mass estimated from their internal and gravitational energies, which suggests these leaves are gravitationally unbound structures. 9 out of 39 NH$_3$ leaves are gravitationally bound and 7 out of 9 gravitationally bound NH$_3$ leaves are associated with star formation. We also found that 12 out of 30 gravitationally unbound leaves are pressure-confined. Our data suggest that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and undergo collapse to form a protostar.
We discuss quantum gravitational effects in Einstein theory coupled to periodic axion scalars to analyze the viability of several proposals to achieve superplanckian axion periods (aka decay constants) and their possible application to large field inflation models. The effects we study correspond to the nucleation of euclidean gravitational instantons charged under the axion, and our results are essentially compatible with (but independent of) the Weak Gravity Conjecture, as follows: Single axion theories with superplanckian periods contain gravitational instantons inducing sizable higher harmonics in the axion potential, which spoil superplanckian inflaton field range. A similar result holds for multi-axion models with lattice alignment (like the Kim-Nilles-Peloso model). Finally, theories with $N$ axions can still achieve a moderately superplanckian periodicity (by a $\sqrt{N}$ factor) with no higher harmonics in the axion potential. The Weak Gravity Conjecture fails to hold in this case due to the absence of some instantons, which are forbidden by a discrete $\mathbf{Z}_N$ gauge symmetry. Finally we discuss the realization of these instantons as euclidean D-branes in string compactifications.
We present a common chiral power-counting scheme for vector, axial-vector, scalar, and pseudoscalar WIMP-nucleon interactions, and derive all one- and two-body currents up to third order in the chiral expansion. Matching our amplitudes to non-relativistic effective field theory, we find that chiral symmetry predicts a hierarchy amongst the non-relativistic operators. Moreover, we identify interaction channels where two-body currents that so far have not been accounted for become relevant.
Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\simeq 90\%$ (at a cost of $\simeq 20\%$ deadtime), but its rate at 6 -- 18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\it et al.}, Phys.~Rev.~D {\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discovery on a firm theoretical foundation. We show that almost all spallation decay isotopes are produced by muon-induced showers, and that these showers are rare enough and energetic enough to be identifiable. This is the first such demonstration for any detector. We detail how the physics of showers explains the peak in the muon Cherenkov light profile and other Super-K observations. Our results provide a physical basis for practical improvements in background rejection that will benefit multiple studies. For solar neutrinos in particular, it should be possible to dramatically reduce backgrounds at energies as low as 6 MeV.
The recent measurements of the masses of the pulsars PSR J1614-2230 and PSR J0348-0432 provide independent proof for the existence of neutron stars with masses in range of 2 $M_\odot$. This fact has significant implications for the physics of high density matter and it challenges the hypothesis that the cores of NS can be composed of deconfined quark matter. In this contribution we study a description of quark matter based on the Nambu--Jona-Lasinio effective model and construct the equation of state for matter in beta equilibrium. This equation of state together with the hadronic Dirac-Brueckner-Hartree-Fock equation of state is used here to describe neutron star and hybrid star configurations. We show that compact stars masses of 2 $M_\odot$ are compatible with the possible existence of deconfined quark matter in their core.
We formulate a theory combining the principles of a scalar-tensor gravity and the Rastall proposal of a violation of the usual conservation laws. In the resulting Brans-Dicke-Rastall (BDR) theory the only exact, static, spherically symmetric solution is a Robinson-Bertotti type solution besides the trivial Schwarzschild one. The PPN constraints can be completely satisfied for some values of the free parameters.The cosmological solutions display, among others, a decelerate-accelerate transition in the matter dominated phase.
We obtain stronger constraints on the coupling constants of axion-like particles to nucleons from a recently performed Casimir-less experiment. For this purpose, the differential force between a Au-coated sphe\-re and either Au or Si sectors of a rotating disc, arising due to two-axion exchange, is calculated. Over a wide region of axion masses from 1.7 meV to 0.9 eV the obtained constraints are stronger up to a factor of 60 than the previously known ones following from the Cavendish-type experiment and measurements of the effective Casimir pressure.
Among the different methods to derive particle creation, finding the quantum stress tensor expectation value gives a covariant quantity which can be used for examining the back-reaction issue. However this tensor also includes vacuum polarization in a way that depends on the vacuum chosen. Here we review different aspects of particle creation by looking at energy conservation and at the quantum stress tensor. It will be shown that in the case of general spherically symmetric black holes that have a \emph{dynamical horizon}, as occurs in a cosmological context, one cannot have pair creation on the horizon because this violates energy conservation. This confirms the results obtained in other ways in a previous paper [25]. Looking at the expectation value of the quantum stress tensor with three different definitions of the vacuum state, we study the nature of particle creation and vacuum polarization in black hole and cosmological models, and the associated stress energy tensors. We show that the thermal temperature that is calculated from the particle flux given by the quantum stress tensor is compatible with the temperature determined by the affine null parameter approach. Finally, it will be shown that in the spherically symmetric dynamic case, we can neglect the backscattering term and only consider the s-waves term near the future apparent horizon.
Electronic transitions of the title molecules were measured between 250 and 710 nm using a mass-resolved 1+1' resonant two-photon ionization technique at a resolution of 0.1 nm. Calculations at the B3LYP/aug-cc-pVQZ level of theory support the analyses. Because of their spectral properties, SiC$_2$, linear Si$_2$C$_2$, Si$_3$C, and SiC$_6$H$_4$ are interesting target species for astronomical searches in the visible spectral region. Of special relevance is the Si--C$_2$--Si chain, which features a prominent band at 516.4 nm of a strong transition ($f=0.25$). This band and one from SiC$_6$H$_4$ at 445.3 nm were also investigated at higher resolution (0.002 nm).
Links to: arXiv, form interface, find, astro-ph, recent, 1503, contact, help (Access key information)
We present a CARMA 1.3 mm continuum survey toward 9 Class 0 protostars in the Perseus molecular cloud at $\sim$0.3$^{\prime\prime}$ (70 AU) resolution. This study approximately doubles the number of Class 0 protostars observed with spatial resolutions $<$ 100 AU at millimeter wavelengths, enabling the presence of protostellar disks and proto-binary systems to be probed. We detect flattened structures with radii $>$ 100 AU around 2 sources (L1448 IRS2 and Per-emb-14) and these sources may be strong disk candidates. Marginally-resolved structures with position angles within 30$^{\circ}$ of perpendicular to the outflow are found toward 3 protostars (L1448 IRS3C, IRAS 03282+3035, and L1448C) and are considered disk candidates. Two others (L1448 IRS3B and IRAS 03292+3039) have resolved structure, possibly indicative of massive inner envelopes or disks; L1448 IRS3B also has a companion separated by 0.9$^{\prime\prime}$ ($\sim$210 AU). IC348-MMS does not have well-resolved structure and the candidate first hydrostatic core L1451-MMS is marginally resolved on 1$^{\prime\prime}$ scales. The strong disk candidate sources were followed-up with C$^{18}$O ($J=2\rightarrow1$) observations, detecting velocity gradients consistent with rotation, but it is unclear if the rotation is Keplerian. We compare the observed visibility amplitudes to radiative transfer models, finding that visibility amplitude ratios suggest a compact component (possibly a disk) is necessary for 5 of 9 Class 0 sources; envelopes alone may explain the other 4 systems. We conclude that there is evidence for the formation of large disks in the Class 0 phase with a range of radii and masses dependent upon their initial formation conditions.
As galaxy simulations increase in resolution more attention is being paid towards the evolution of dwarf galaxies and how the simulations compare to observations. Despite this increasing resolution we are however, far away from resolving the interactions of satellite dwarf galaxies and the hot coronae which surround host galaxies. We describe a new method which focuses only on the local region surrounding an infalling dwarf in an effort to understand how the hot baryonic halo will alter the chemodynamical evolution of dwarf galaxies. Using this method we examine how a dwarf, similar to Sextans dwarf spheroidal, evolves in the corona of a Milky Way like galaxy. We find that even at high perigalacticons the synergistic interaction between ram pressure and tidal forces transform a dwarf into a stream, suggesting that Sextans was much more massive in the past in order survive its perigalacticon passage. In addition the large confining pressure of the hot corona allows gas that was originally at the outskirts to begin forming stars, initially forming stars of low metallicity compared to the dwarf evolved in isolation. This increase in star formation eventually allows a dwarf galaxy to form more metal rich stars compared to one in isolation, but only if the dwarf retains gas for a sufficiently long period of time. In addition, dwarfs which formed substantial numbers of stars post-infall will have a slightly elevated [Mg/Fe] at high metallicity ([Fe/H] -1.5).
The classification of galaxy mergers and isolated disks is key for understanding the relative importance of galaxy interactions and secular evolution during the assembly of galaxies. The kinematic properties of galaxies as traced by emission lines have been used to suggest the existence of a significant population of high-z star-forming galaxies consistent with isolated rotating disks. However, recent studies have cautioned that post-coalescence mergers may also display disk-like kinematics. To further investigate the robustness of merger/disk classifications based on kinematic properties, we carry out a systematic classification of 24 local (U)LIRGs spanning a range of galaxy morphologies: from isolated spiral galaxies, ongoing interacting systems, to fully merged remnants. We artificially redshift the WiFeS observations of these local (U)LIRGs to z=1.5 to make a realistic comparison with observations at high-z, and also to ensure that all galaxies have the same spatial sampling of ~900 pc. Using both kinemetry-based and visual classifications, we find that the reliability of kinematic classification shows a strong trend with the interaction stage of galaxies. Mergers with two nuclei and tidal tails have the most distinct kinematic properties compared to isolated disks, whereas a significant population of the interacting disks and merger remnants are indistinguishable from isolated disks. The high fraction of late-stage mergers showing disk-like kinematics reflects the complexity of the dynamics during galaxy interactions. However, the exact fractions of misidentified disks and mergers depend on the definition of kinematic asymmetries and the classification threshold when using kinemetry-based classifications. Our results suggest that additional indicators such as morphologies traced by stars or molecular gas are required to further constrain the merger/disk classifications at high-z.
New spectral line observations, obtained with the Jansky Very Large Array (VLA), of a sample of 34 galaxies in 17 close pairs are presented in this paper. The sample of galaxy pairs is selected to contain galaxies in close, major interactions (i.e., projected separations $<$30 kpc/h, and mass ratios less extreme than 4:1), while still having a sufficiently large angular separation that the VLA can spatially resolve both galaxies in the pair. Of the 34 galaxies, 17 are detected at $> 3\sigma$. We compare the HI gas fraction of the galaxies with the triggered star formation present in that galaxy. When compared to the star formation rates (SFRs) of non-pair galaxies matched in mass, redshift, and local environment, we find that the star formation enhancement is weakly positively correlated ($\sim 2.5\sigma$) with HI gas fraction. In order to help understand the physical mechanisms driving this weak correlation, we also present results from a small suite of binary galaxy merger simulations with varying gas fractions. The simulated galaxies indicate that larger initial gas fractions are associated with lower levels of interaction-triggered star formation (relative to an identical galaxy in isolation), but also show that high gas fraction galaxies have higher absolute SFRs prior to an interaction. We show that when interaction-driven SFR enhancements are calculated relative to a galaxy with an average gas fraction for its stellar mass, the relationship between SFR and initial gas fraction dominates over the SFR enhancements driven by the interaction. Simulated galaxy interactions that are matched in stellar mass but not in gas fraction, like our VLA sample, yield the same general positive correlation between SFR enhancement and gas fraction that we observe.
We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellite's current proximity to a massive host and its quenching epoch; (3) There are hints of systematic differences in quenching times of M31 and Milky Way (MW) satellites, although the sample sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with literature results, we qualitatively consider the redshift evolution (z=0-1) of the quenched galaxy fraction over ~7 dex in stellar mass (10^4 < Mstar < 10^11.5 Msun). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between Mstar ~ 10^8-10^10 Msun have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times of low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall while higher mass satellites (e.g., Leo I, Fornax) typically quench ~1-4 Gyr after infall.
The extragalactic gamma-ray sky is dominated by the emission arising from blazars, one of the most peculiar classes of radio-loud active galaxies. Since the launch of Fermi several methods were developed to search for blazars as potential counterparts of unidentified gamma-ray sources (UGSs). To confirm the nature of the selected candidates, optical spectroscopic observations are necessary. In 2013 we started a spectroscopic campaign to investigate gamma-ray blazar candidates selected according to different procedures. The main goals of our campaign are: 1) to confirm the nature of these candidates, and 2) whenever possible determine their redshifts. Optical spectroscopic observations will also permit us to verify the robustness of the proposed associations and check for the presence of possible source class contaminants to our counterpart selection. This paper reports the results of observations carried out in 2014 in the Northern hemisphere with Kitt Peak National Observatory (KPNO) and in the Southern hemisphere with the Southern Astrophysical Research (SOAR) telescopes. We also report three sources observed with the Magellan and Palomar telescopes. Our selection of blazar-like sources that could be potential counterparts of UGSs is based on their peculiar IR colors and on their combination with radio observations both at high and low frequencies (i.e., above and below ~ 1 GHz) in publicly available large radio surveys. We present the optical spectra of 27 objects. [....] We also report the case for WISE J173052.85-035247.2, candidate counterpart of the source 2FGL J1730.6-0353, which has no radio counterpart in the major radio surveys. We confirm that our selection of gamma-ray blazars candidates can successfully indentify low-energy counterparts to Fermi unassociated sources and allow us to discover new blazars.
The white dwarf (WD) mass distribution of cataclysmic variables (CVs) has recently been found to dramatically disagree with the predictions of the standard CV formation model. The high mean WD mass among CVs is not imprinted in the currently observed sample of CV progenitors and cannot be attributed to selection effects. Two possibilities have been put forward: either the WD grows in mass during CV evolution, or in a significant fraction of cases, CV formation is preceded by a (short) phase of thermal time-scale mass transfer (TTMT) in which the WD gains a sufficient amount of mass. We investigate if either of these two scenarios can bring theoretical predictions and observations into agreement. We employed binary population synthesis models to simulate the present intrinsic CV population. We incorporated aspects specific to CV evolution such as an appropriate mass-radius relation of the donor star and a more detailed prescription for the critical mass ratio for dynamically unstable mass transfer. We also implemented a previously suggested wind from the surface of the WD during TTMT and tested the idea of WD mass growth during the CV phase by arbitrarily changing the accretion efficiency. We compare the model predictions with the characteristics of CVs derived from observed samples. We find that mass growth of the WDs in CVs fails to reproduce the observed WD mass distribution. In the case of TTMT, we are able to produce a large number of massive WDs if we assume significant mass loss from the surface of the WD during the TTMT phase. However, the model still produces too many CVs with helium WDs. Moreover, the donor stars are evolved in many of these post-TTMT CVs, which contradicts the observations. We conclude that in our current framework of CV evolution neither TTMT nor WD mass growth can fully explain either the observed WD mass or the period distribution in CVs.
The two Large Magellanic Cloud star clusters NGC 1805 and NGC 1818 are approximately the same chronological age (~30 Myr), but show different radial trends in binary frequency. The F-type stars (1.3 - 2.2 MSun) in NGC 1818 have a binary frequency that decreases towards the core, while the binary frequency for stars of similar mass in NGC 1805 is flat with radius, or perhaps bimodal (with a peak in the core). We show here, through detailed N-body modeling, that both clusters could have formed with the same primordial binary frequency and with binary orbital elements and masses drawn from the same distributions (defined from observations of open clusters and the field of our Galaxy). The observed radial trends in binary frequency for both clusters are best matched with models that have initial substructure. Furthermore, both clusters may be evolving along a very similar dynamical sequence, with the key difference that NGC 1805 is dynamically older than NGC 1818. The F-type binaries in NGC 1818 still show evidence of an initial period of rapid dynamical disruptions (which occur preferentially in the core), while NGC 1805 has already begun to recover a higher core binary frequency, owing to mass segregation (which will eventually produce a distribution in binary frequency that rises only towards the core, as is observed in old Milky Way star clusters). This recovery rate increases for higher-mass binaries, and therefore even at one age in one cluster, we predict a similar dynamical sequence in the radial distribution of the binary frequency as a function of binary primary mass.
Luminous Red Galaxies (LRG) from the Sloan Digital Sky Survey are considered among the best understood samples of galaxies, and they are employed in a broad range of cosmological studies. Because they form a relatively homogeneous population, with high stellar masses and red colors, they are expected to occupy halos in a relatively simple way. In this paper, we study how LRGs occupy massive halos via direct counts in clusters and we reveal several unexpected trends suggesting that the connection between LRGs and dark matter halos may not be straightforward. Using the redMaPPer cluster catalog, we derive the central occupation of LRGs as a function richness, Ncen({\lambda}). Assuming no correlation between cluster mass and central galaxy luminosity at fixed richness, we show that clusters contain a significantly lower fraction of central LRGs than predicted from the two-point correlation function. At halo masses of 10^14.5 Msun, we find Ncen=0.73, compared to Ncen of 0.89 from correlation studies. Our central occupation function for LRGs converges to 0.95 at large halo masses. A strong anti-correlation between central luminosity and cluster mass at fixed richness is required to reconcile our results with those based on clustering studies. We also derive P_BNC, the probability that the brightest cluster member is not the central galaxy. We find P_BNC ~ 20-30% which is a factor of ~2 lower than the value found by Skibba et al. 2011. Finally, we study the radial offsets of bright non-central LRGs from cluster centers and show that bright non-central LRGs follow a different radial distribution compared to red cluster members, which follow a Navarro-Frank-White profile. This work demonstrates that even the most massive clusters do not always have an LRG at the center, and that the brightest galaxy in a cluster is not always the central galaxy.
We calculate Lyman Alpha Emitter (LAE) angular correlation functions (ACFs) at $z\simeq6.6$ and the fraction of lifetime (for the 100 Myrs preceding $z\simeq6.6$) galaxies spend as Lyman Break Galaxies (LBGs) with/without Lyman Alpha (Ly\alpha) emission using a model that combines SPH cosmological simulations (GADGET-2), dust attenuation and a radiative transfer code (pCRASH). The ACFs are a powerful tool that significantly narrows the 3D parameter space allowed by LAE Ly$\alpha$ and UV luminosity functions (LFs) alone. With this work, we simultaneously constrain the escape fraction of ionizing photons $f_{esc}=0.05-0.5$, the mean fraction of neutral hydrogen in the intergalactic medium (IGM) $<\chi_{HI}>\leq 0.01$ and the dust-dependent ratio of the escape fractions of Ly$\alpha$ and UV continuum photons $f_\alpha/f_c=0.6-1.2$. Our results show that reionization has the largest impact on the amplitude of the ACFs, and its imprints are clearly distinguishable from those of $f_{esc}$ and $f_\alpha/f_c$. We also show that galaxies with a critical stellar mass of $M_* = 10^{8.5} (10^{9.5}) M_\odot$ produce enough luminosity to stay visible as LBGs (LAEs). Finally, the fraction of time during the past 100 Myrs prior to z=6.6 a galaxy spends as a LBG with (without) Lya emission increases with the UV magnitude (and $M_*$): considering observed (dust and IGM attenuated) luminosities, the fraction of time a galaxy spends as a LBG (LAE) increases from 65% to 100% (0-100%) as $M_{UV}$ decreases from $M_{UV} = -18.0$ to $-23.5$ ($M_*$ increases from $10^8-10^{10.5} M_\odot$). Thus in our model the brightest (most massive) LBGs most often show Ly$\alpha$ emission.
We address the problem of line confusion in intensity mapping surveys and explore the possibility to mitigate line foreground contamination by progressively masking the brightest pixels in the observed map. We consider experiments targeting CO(1-0) at $z=3$, Ly$\alpha$ at $z=7$, and CII at $z=7$, and use simulated intensity maps, which include both clustering and shot noise components of the signal and possible foregrounds, in order to test the efficiency of our method. We find that for CO and Ly$\alpha$ it is quite possible to remove most of the foreground contribution from the maps via only 1%-3% pixel masking. The CII maps will be more difficult to clean, however, due to instrumental constraints and the high-intensity foreground contamination involved. While the masking procedure sacrifices much of the astrophysical information present in our maps, we demonstrate that useful cosmological information in the targeted lines can be successfully retrieved.
Active Galactic Nuclei (AGN) represent the growth phases of the supermassive black holes in the center of almost every galaxy. Powerful, highly ionized winds, with velocities $\sim 0.1- 0.2c$ are a common feature in X--ray spectra of luminous AGN, offering a plausible physical origin for the well known connections between the hole and properties of its host. Observability constraints suggest that the winds must be episodic, and detectable only for a few percent of their lifetimes. The most powerful wind feedback, establishing the $M -\sigma$ relation, is probably not directly observable at all. The $M - \sigma$ relation signals a global change in the nature of AGN feedback. At black hole masses below $M-\sigma$ feedback is confined to the immediate vicinity of the hole. At the $M-\sigma$ mass it becomes much more energetic and widespread, and can drive away much of the bulge gas as a fast molecular outflow.
Direct imaging searches have revealed many very low-mass objects, including a small number of planetary mass objects, as wide-orbit companions to young stars. The formation mechanism of these objects remains uncertain. In this paper we present the predictions of the disc fragmentation model regarding the properties of the discs around such low-mass objects. We find that the discs around objects that have formed by fragmentation in discs hosted by Sun-like stars (referred to as 'parent' discs and 'parent' stars) are more massive than expected from the ${M}_{\rm disc}-M_*$ relation (which is derived for stars with masses $M_*>0.2 {\rm M}_{\odot}$). Accordingly, the accretion rates onto these objects are also higher than expected from the $\dot{M}_*-M_*$ relation. Moreover there is no significant correlation between the mass of the brown dwarf or planet with the mass of its disc nor with the accretion rate from the disc onto it. The discs around objects that form by disc fragmentation have larger than expected masses as they accrete gas from the disc of their parent star during the first few kyr after they form. The amount of gas that they accrete and therefore their mass depend on how they move in their parent disc and how they interact with it. Observations of disc masses and accretion rates onto very low-mass objects are consistent with the predictions of the disc fragmentation model. Future observations (e.g. by ALMA) of disc masses and accretion rates onto substellar objects that have even lower masses (young planets and young, low-mass brown dwarfs), where the scaling relations predicted by the disc fragmentation model diverge significantly from the corresponding relations established for higher-mass stars, will test the predictions of this model.
Arp 270 (NGC 3395 and NGC 3396) is the system of two actively star-forming late-type galaxies in contact, which already have experienced at least one close encounter in the past. We performed long-slit observations of peripheric regions of this merging system with the 6-m telescope of SAO RAS. Line-of-sight velocity distribution along the slits was obtained for gas and stellar population. We found that the stellar component of NGC 3395 differs by its velocity from the emission gas component in the extended region in the periphery, which evidences a spatial separation of stars and gas in the tidally disturbed galaxy. Gas abundances obtained by different methods demonstrate that both galaxies are mildly underabundant (log(O/H) $\approx 8.4$) without significant variations of metallicity along the slits. By comparing stellar and gaseous masses of galaxies we came to conclusion that the chemical evolution of gas is badly described by the closed box model. It allows us to admit that the significant part of interstellar gas was swept out of galaxies during the preceding encounter(s). A special attention was paid to the extended kpc-size island of star formation between the galaxies. We have not found neither noticeable kinematic decoupling of this region from the adjacent areas, nor any peculiarities of its emission spectra, which evidences that it was formed recently from the gas of NGC 3395 in the transition region between the colliding galaxies.
We present the results of our Moon impact flashes detection campaigns performed around the maximum activity period of the Perseid meteor shower in 2012 and 2013. Just one flash produced by a Perseid meteoroid was detected in 2012 because of very unfavourable geometric conditions, but 12 of these were confirmed in 2013. The visual magnitude of the flashes ranged between 6.6 and 9.3. A luminous efficiency of 1.8 $\times$ 10$^{-3}$ has been estimated for meteoroids from this stream. According to this value, impactor masses would range between 1.9 and 190 g. In addition, we propose a criterion to establish, from a statistical point of view, the likely origin of impact flashes recorded on the lunar surface.
We present the first high-angular resolution study of the MonR2 star-forming complex carried out with the Submillimeter Array at (sub-)millimeter wavelengths. We image the continuum and molecular line emission toward the young stellar objects in MonR2 at 0.85mm and 1.3mm, with resolutions ranging from 0.5" to ~3". While free-free emission dominates the IRS1 and IRS2 continuum, dust thermal emission prevails for IRS3 and IRS5, giving envelope masses of ~0.1-0.3 M_Sun. IRS5 splits into at least two sub-arcsecond scale sources, IRS5B and the more massive IRS5A. Our 12CO(2-1) images reveal 11 previously unknown molecular outflows in the MonR2 clump. Comparing these outflows with known IR sources in the IRS5 and IRS3 subclusters allows for tentative identification of driving stars. Line images of molecular species such as CH3CN or CH3OH show that, besides IRS3 (a well-known hot molecular core), IRS5 is also a chemically active source in the region. The gas excitation temperature derived from CH3CN lines toward IRS5 is 144 \pm 15 K, indicating a deeply embedded protostar at the hot-core evolutionary stage. SED fitting of IRS5 gives a mass of ~7 M_Sun and a luminosity of 300 L_Sun for the central source. The derived physical properties of the CO outflows suggest that they contribute to the turbulent support of the MonR2 complex and to the gas velocity dispersion in the clump's center. The detection of a large number of CO outflows widespread across the region supports the competitive accretion scenario as origin of the MonR2 star cluster.
We have simulated the Expanded Owens Valley Solar Array (EOVSA) radio images generated at multiple frequencies from a model solar active region, embedded in a realistic solar disk model, and explored the resulting datacube for different spectral analysis schemes to evaluate the potential for realizing one of EOVSA's most important scientific goals--coronal magnetography. In this paper, we focus on modeling the gyroresonance and free-free emission from an on-disk solar active region model with realistic complexities in electron density, temperature and magnetic field distribution. We compare the magnetic field parameters extrapolated from the image datacube along each line of sight after folding through the EOVSA instrumental profile with the original (unfolded) parameters used in the model. We find that even the most easily automated, image-based analysis approach (Level 0) provides reasonable quantitative results, although they are affected by systematic effects due to finite sampling in the Fourier (uv) plane. Finally, we note the potential for errors due to misidentified harmonics of the gyrofrequency, and discuss the prospects for applying a more sophisticated spectrally-based analysis scheme (Level 1) to resolve the issue in cases where improved uv coverage and spatial resolution are available.
We have obtained a deep 8-field XMM-Newton mosaic of M33 covering the galaxy out to the D$_{25}$ isophote and beyond to a limiting 0.2--4.5 keV unabsorbed flux of 5$\times$10$^{-16}$ erg cm$^{-2}$ s$^{-1}$ (L${>}$4$\times$10$^{34}$ erg s$^{-1}$ at the distance of M33). These data allow complete coverage of the galaxy with high sensitivity to soft sources such as diffuse hot gas and supernova remnants. Here we describe the methods we used to identify and characterize 1296 point sources in the 8 fields. We compare our resulting source catalog to the literature, note variable sources, construct hardness ratios, classify soft sources, analyze the source density profile, and measure the X-ray luminosity function. As a result of the large effective area of XMM-Newton below 1 keV, the survey contains many new soft X-ray sources. The radial source density profile and X-ray luminosity function for the sources suggests that only $\sim$15% of the 391 bright sources with L${>}$3.6$\times$10$^{35}$ erg s$^{-1}$ are likely to be associated with M33, and more than a third of these are known supernova remnants. The log(N)--log(S) distribution, when corrected for background contamination, is a relatively flat power-law with a differential index of 1.5, which suggests many of the other M33 sources may be high-mass X-ray binaries. Finally, we note the discovery of an interesting new transient X-ray source, which we are unable to classify.
Fast Radios Bursts (FRBs) show large dispersion measures (DMs), indicating an extragalactic location. We analyze the DMs of the ten known FRBs in detail and identify steps as integer multiples of half the lowest found DM, 187.5cm$^{-3}$ pc, so that DMs occur in groups centred at 375, 562, 750, 937, 1125cm$^{-3}$ pc, with errors observed <5%. We estimate the likelhood of a coincidence as 5:10,000. We speculate that this originates from a Galaxy population of FRBs, with Milky Way DM contribution as model deviations, and an underlying generator process that produces FRBs with DMs in discrete steps. This can be verified, or refuted, with new FRBs to be detected.
We report on a series of spectroscopic observations of PSR J1311-3430, an extreme black-widow gamma-ray pulsar with a helium-star companion. In a previous study we estimated the neutron star mass as M_NS= 2.68+/-0.14M_Sun (statistical error), based on limited spectroscopy and a basic (direct heating) light curve model; however, much larger model-dependent systematics dominate the mass uncertainty. Our new spectroscopy reveals a range of complex source behavior. The variable He I companion wind emission lines can dominate broad-band photometry, especially in red filters or near minimum brightness, and the wind flux should complete companion evaporation in a spin-down time. The heated companion face also undergoes dramatic flares, reaching 40,000K over 20% of the star; this is likely powered by a magnetic field generated in the companion. The companion center-of-light radial velocity is now well measured with K_CoL = 615.4+/-5.km/s. We detect non-sinusoidal velocity components due to the heated face flux distribution. Using our spectra to excise flares and wind lines, we generate substantially improved light curves for companion continuum fitting. We show that the inferred inclination and neutron star mass, however, remain sensitive to the poorly constrained heating pattern. The neutron star's mass, M_NS, is likely less than the direct heating value and could range as low as 1.8M_Sun for extreme equatorial heating concentration. While we cannot yet pin down M_NS, our data imply that an intrabinary shock reprocesses the pulsar emission and heats the companion. Improved spectra and, especially, models that include such shock heating are needed for precise parameter measurement.
The Blandford-Znajek (BZ) mechanism describes a physical process for the energy extraction from a spinning black hole (BH), which is believed to power a great variety of astrophysical sources, such as active galactic nuclei (AGNs) and Gamma ray bursts (GRBs). The only known analytic solution to the BZ mechanism is a split monopole perturbation solution up to $O(a^2)$, where $a$ is the spin parameter of a Kerr black hole. In this paper, we extend the monopole solution to higher order $\sim O(a^4)$. We carefully investigate the structure of the BH magnetosphere, including the angular velocity of magnetic field lines $\Omega$, the toroidal magnetic field $B^\phi$ as well as the poloidal electric current $I$. In addition, the relevant energy extraction rate $\dot E$ and the stability of this high-order monopole perturbation solution are also examined.
We explore the effects of an outer stably stratified coronal envelope on rotating turbulent convection, differential rotation, and large-scale dynamo action in spherical wedge models of the Sun. We solve the compressible magnetohydrodynamic equations in a two-layer model with unstable stratification below the surface, representing the convection zone, and a stably stratified outer layer, the coronal envelope. The interface emulates essentially a free surface. We compare with models that have no coronal envelope. The presence of a coronal envelope is found to modify the Reynolds stress and the $\Lambda$-effect resulting in a weaker and non-cylindrical differential rotation. This is related to the reduced latitudinal temperature variations, which are caused by and dependent on the Coriolis force. Some simulations develop a rudimentary near-surface shear layer, which we can relate to a sign change of the meridional Reynolds stress term in the thermal wind balance equation. Furthermore, the presence of a free surface changes the magnetic field evolution since the field is generated closer to the surface. In all simulations, however, the migration direction of the mean magnetic field can be explained by the Parker--Yoshimura rule, which is consistent with earlier findings.
We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton scattered 662 keV $\gamma$-rays from a $^{137}$Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg$\cdot$year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.
A local dwarf galaxy, NGC 5253, has a young super star cluster that may provide an example of highly efficient star formation. Here we report the detection and imaging, with the Submillimeter Array, of the J= 3-2 rotational transition of CO at the location of the massive cluster associated with the supernebula. The gas cloud is hot, dense, quiescent, and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by Wolf-Rayet stars within the embedded star cluster. Its star formation efficiency exceeds 50%, ten times higher than clouds in the Milky Way: this cloud is a factory of stars and soot. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.
Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0<z<4.5 observed with Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local AGN, we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3-sigma level. This implies that iron emission from the inner disk is relatively common in the population of lensed quasars, and in turn further demonstrates that, with additional observations, this population represents an opportunity to significantly extend the sample of AGN spin measurements out to high-redshift.
We report laboratory measurements of the absorption coefficient of solid para-H2, within the wavelength range from 1 to 16.7 micron, at high spectral resolution. In addition to the narrow rovibrational lines of H2 which are familiar from gas phase spectroscopy, the data manifest double transitions and broad phonon branches that are characteristic specifically of hydrogen in the solid phase. These transitions are of interest because they provide a spectral signature which is independent of the impurity content of the matrix. We have used our data, in combination with a model of the ultraviolet absorptions of the H2 molecule, to construct the dielectric function of solid para-H2 over a broad range of frequencies. Our results will be useful in determining the electromagnetic response of small particles of solid hydrogen. The dielectric function makes it clear that pure H2 dust would contribute to IR extinction predominantly by scattering starlight, rather than absorbing it, and the characteristic IR absorption spectrum of the hydrogen matrix itself will be difficult to observe.
J. Graf von der Pahlen and D. Tsiklauri, Phys. Plas. 21, 060705 (2014), established that the generation of octupolar out-of-plane magnetic field structure in a stressed $X$-point collapse is due to ion currents. The field has a central region, comprising of the well-known qaudrupolar field (quadrupolar components), as well as four additional poles of reversed polarity closer to the corners of the domain (octupolar components). In this extended work, the dependence of the octupolar structure on domain size and ion mass variation is investigated. Simulations show that the strength and spatial structure of the generated octupolar magnetic field is independent of ion to electron mass ratio. Thus showing that ion currents play a significant role in out-of-plane magnetic structure generation in physically realistic scenarios. Simulations of different system sizes show that the width of the octupolar structure remains the same and has a spacial extent of the order of the ion inertial length. The width of the structure thus appears to be independent on boundary condition effects. The length of the octupolar structure however increases for greater domain sizes, prescribed by the external system size. This was found to be a consequence of the structure of the in-plane magnetic field in the outflow region halting the particle flow and thus terminating the in-plane currents that generate the out-of-plane field. The generation of octupolar magnetic field structure is also established in a tearing-mode reconnection scenario. The differences in the generation of the octupolar field and resulting qualitative differences between $X$-point collapse and tearing-mode are discussed.
At the beginning of inflation, when the vacuum energy starts to dominate, there could be many dynamical fields in the Universe. At the same time, velocity of the inflaton may not coincide with the slow-roll (attractor) velocity. Although these additional degrees of freedom may neither enhance nor suppress the curvature perturbation, they can easily alter the scale-dependence of the spectrum. Therefore, if the perturbations exit horizon during the early stage of inflation where these effects are still not negligible, one might observe peculiar scale dependence in the spectrum. We show that the effect can be measured using the running of the tensor mode.
We present a photometric catalogue of star cluster candidates in Hickson compact groups (HCGs) 7, 31, 42, 59, and 92, based on observations with the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope. The catalogue contains precise cluster positions (right ascension and declination), magnitudes, and colours in the BVI filters. The number of detected sources ranges from 2200 to 5600 per group, from which we construct the high-confidence sample by applying a number of criteria designed to reduce foreground and background contaminants. Furthermore, the high-confidence cluster candidates for each of the 16 galaxies in our sample are split into two sub-populations: one that may contain young star clusters and one that is dominated by globular older clusters. The ratio of young star cluster to globular cluster candidates varies from group to group, from equal numbers to the extreme of HCG 31 which has a ratio of 8 to 1, due to a recent starburst induced by interactions in the group. We find that the number of blue clusters with $M_V < -9$ correlates well with the current star formation rate in an individual galaxy, while the number of globular cluster candidates with $M_V < -7.8$ correlates well (though with large scatter) with the stellar mass. Analyses of the high-confidence sample presented in this paper show that star clusters can be successfully used to infer the gross star formation history of the host groups and therefore determine their placement in a proposed evolutionary sequence for compact galaxy groups.
In an attempt to place an explicit constraint on dark matter models, we define and estimate a mean surface density of a dark halo within a radius of maximum circular velocity, which is derivable for various galaxies with any dark-matter density profiles. We find that this surface density is generally constant across a wide range of maximum circular velocities of $\sim$ 10 to 400 km s$^{-1}$, irrespective of different density distribution in each of the galaxies. This common surface density at high halo-mass scales is found to be naturally reproduced by both cold and warm dark matter (CDM and WDM) models, even without employing any fitting procedures. However, the common surface density at dwarf-galaxy scales, for which we have derived from the Milky Way and Andromeda dwarf satellites, is reproduced only in a massive range of WDM particle masses, whereas CDM provides a reasonable agreement with the observed constancy. This is due to the striking difference between mass-concentration relations for CDM and WDM halos at low halo-mass scales. In order to explain the universal surface density of dwarf-galaxy scales in WDM models, we suggest that WDM particles need to be heavier than 3 keV.
Observations of strong gravitational lensing, stellar kinematics, and mass tracers on larger scales enable accurate measures of the distribution of dark matter and baryons in massive early-type galaxies (ETGs). While such techniques have previously been applied to galaxy-scale and cluster-scale lenses, the paucity of intermediate-mass systems with high-quality data has precluded a uniform analysis of mass-dependent trends. With the aim of bridging this gap, we present new observations and analyses of 10 group-scale lenses at <z>=0.36 characterized by Einstein radii 2.5"-5.1" and a mean halo mass of M_200 = 10^14.0 Msol. For these groups, we find a mean halo concentration c_200 = 5.0 +- 0.8 consistent with unmodified cold dark matter halos and recent simulations of galaxy formation. By combining our data with other lens samples in the literature, we analyze the mass structure of ETGs in halos spanning the mass range 10^13-10^15 Msol using homogeneous methods and data. We show that the slope of the total density profile gamma_tot within the effective radius depends on the stellar surface density, as demonstrated previously, but also on the halo mass. We analyze these trends using halo occupation models and resolved stellar kinematics with the goal of testing the universality of the dark matter profile within ETGs of various masses. Whereas the central galaxies of clusters require a shallow inner dark matter density profile, group-scale lenses are consistent with an unmodified Navarro-Frenk-White profile or one that is slightly contracted. We conclude that the net effect of baryons on the dark matter distribution may not be universal, but more likely varies with halo mass due to underlying trends in star formation efficiency and assembly history.
The magnetic field topology in the surrounding of neutron stars is one of the key questions in pulsar magnetospheric physics. A very extensive literature exists about the assumption of a dipolar magnetic field but very little progress has been made in attempts to include multipolar components in a self-consistent way. In this paper, we study the effect of multipolar electromagnetic fields anchored in the star. We give exact analytical solutions in closed form for any order $l$ and apply them to the retarded point quadrupole ($l=2$), hexapole ($l=3$) and octopole ($l=4$), a generalization of the retarded point dipole ($l=1$). We also compare the Poynting flux from each multipole and show that the spin down luminosity depends on the ratio $R/r_{\rm L}$, $R$ being the neutron star radius and $r_{\rm L}$ the light-cylinder radius. Therefore the braking index also depends on $R/r_{\rm L}$. As such multipole fields possess very different topology, most importantly smaller length scales compared to the dipolar field, especially close to the neutron star, we investigate the deformation of the polar caps induced by these multipolar fields. Such fields could have a strong impact on the interpretation of the pulsed radio emission suspected to emanate from these polar caps as well as on the inferred geometry deduced from the high-energy light-curve fitting and on the magnetic field strength. Discrepancies between the two-pole caustic model and our new multipole-caustic model are emphasized with the quadrupole field. To this respect, we demonstrate that working with only a dipole field can be very misleading.
Advances in our numerical and theoretical understanding of gamma-ray burst afterglow processes allow us to construct models capable of dealing with complex relativistic jet dynamics and non-thermal emission, that can be compared directly to data from instruments such as Swift. Because afterglow blast waves and power law spectra are intrinsically scale-invariant under changes of explosion energy and medium density, templates can be generated from large-scale hydrodynamics simulations. This allows for iterative template-based model fitting using the physical model parameters (quantifying the properties of the burster, emission and observer) directly as fit variables. Here I review how such an approach to afterglow analysis works in practice, paying special attention to the underlying model assumptions, possibilities, caveats and limitations of this type of analysis. Because some model parameters can be degenerate in certain regions of parameter space, or unconstrained if data in a limited number of a bands is available, a Bayesian approach is a natural fit. The main features of the standard afterglow model are reviewed in detail.
The study of the atmospheres of exoplanets requires a photometric precision, and repeatability, at the level of one part in ~10^4. This is beyond the original calibration plans of current observatories, hence the necessity to disentangle some of the instrumental systematics from the astrophysical signals in raw datasets. Most methods used in the literature are parametric, i.e. based on an approximate model of the instrument, and therefore they have many degrees of freedom, which are, most likely, the cause of several controversies in the literature. Non-parametric methods have been proposed to guarantee an higher degree of objectivity (Carter & Winn 2009; Thatte et al. 2010; Gibson et al. 2012; Waldmann 2012; Waldmann et al. 2013; Waldmann 2014). Recently, Morello et al. (2014, 2015) have developed a non-parametric detrending method that gave coherent and repeatable results when applied to Spitzer/IRAC datasets that were debated in the literature. Said method is based on Independent Component Analysis (ICA) applied to individual pixel time-series, hereafter "pixel-ICA". The main purpose of this paper is to investigate the limits and advantages of pixel-ICA on a series of simulated datasets. We focus in particular on two mechanisms that cause systematics similar to the Spitzer/IRAC ones, then we generate several datasets to analyze, with different time scales, non-stationarity, sudden change points, etc. The performances of pixel-ICA detrending method are compared against the ones of a traditional polynomial centroid division (PCD) method.
A growing body of evidence suggests that part of, if not all, scattering regions of active galactic nuclei (AGNs) are clumpy. Hence. in this paper, we run radiative transfer models in the optical/UV for a variety of AGN reprocessing regions with different distributions of clumpy scattering media. We use the latest version of the Monte Carlo code STOKES presented in the first two papers of this series to model AGN reprocessing regions of increasing morphological complexity. We replace previously uniform-density media with up to thousands of constant-density clumps. We couple a continuum source to fragmented equatorial scattering regions, polar outflows, and toroidal, obscuring dust regions and investigate a wide range of geometries. We also consider different levels of fragmentation in each scattering region to evaluate importance of fragmentation for the net polarization of the AGN. We find that, in comparison with uniform-density models, equatorial distributions of gas and dust clouds result in grayer spectra, and show a decrease of the net polarization percentage at all lines of sight. The resulting polarization position angle depends on the morphology of the clumpy structure, with extended tori favoring parallel polarization while compact tori produce orthogonal polarization position angles. In the case of polar scattering regions, fragmentation increases the net polarization unless the cloud filling factor is small. A complete set of AGN models constructed from the individual, fragmented regions is investigated. Our modeling shows that the introduction of fragmented dusty tori significantly alters the resulting net polarization of an AGN. Comparison of our models to polarization observations of large AGN samples greatly favors geometrically compact clumpy tori over extended ones.
Observations indicate that some of the largest Kuiper Belt Objects (KBOs) have retained volatiles in the gas phase, which implies the presence of an atmosphere that can affect their reflectance spectra and thermal balance. Volatile escape rates driven by solar heating of the surface were estimated by Schaller and Brown (2007) (SB) and Levi and Podolak (2009)(LP) using Jeans escape from the surface and a hydrodynamic model respectively. Based on recent molecular kinetic simulations these rates can be hugely in error (e.g., a factor of $\sim 10^{16}$ for the SB estimate for Pluto). In this paper we estimate the loss of primordial N$_2$ for several large KBOs guided by recent molecular kinetic simulations of escape due to solar heating of the surface and due to UV/EUV heating of the upper atmosphere. For the latter we extrapolate simulations of escape from Pluto (Erwin et al. 2013) using the energy limited escape model recently validated for the KBOs of interest by molecular kinetic simulations (Johnson et al. 2013). Unless the N$_2$ atmosphere is thin ($\lesssim 10^{18}$ N$_2$/cm$^2$) and/or the radius small ($\lesssim 200-300$ km), we find that escape is primarily driven by the UV/EUV radiation absorbed in the upper atmosphere rather than the solar heating of the surface. This affects the previous interpretations of the relationship between atmospheric loss and the observed surface properties. The long-term goal is to connect detailed atmospheric loss simulations with a model for volatile transport (e.g., Young, 2014) for individual KBOs.
We present the first uniform treatment of long duration gamma-ray burst (GRB) host galaxy detections and upper limits over the redshift range 3<z<5, a key epoch for observational and theoretical efforts to understand the processes, environments, and consequences of early cosmic star formation. We contribute deep imaging observations of 13 GRB positions yielding the discovery of eight new host galaxies. We use this dataset in tandem with previously published observations of 31 further GRB positions to estimate or constrain the host galaxy rest-frame ultraviolet (UV; 1600 A) absolute magnitudes M_UV. We then use the combined set of 44 M_UV estimates and limits to construct the M_UV luminosity function (LF) for GRB host galaxies over 3<z<5 and compare it to expectations from Lyman break galaxy (LBG) photometric surveys with the Hubble Space Telescope. Adopting standard prescriptions for the luminosity dependence of galaxy dust obscuration (and hence, total star formation rate), we find that our LF is compatible with LBG observations over a factor of 600x in host luminosity, from M_UV = -22.5 mag to >-15.6 mag, and with extrapolations of the assumed Schechter-type LF well beyond this range. We review proposed astrophysical and observational biases for our sample, and find they are for the most part minimal. We therefore conclude, as the simplest interpretation of our results, that GRBs successfully trace UV metrics of cosmic star formation over the range 3<z<5. Our findings suggest GRBs are providing an accurate picture of star formation processes from z ~3 out to the highest redshifts.
Cool and dense prominences found in the solar atmosphere are known to be partially ionized because of their relative low temperature. In this Letter, we address the long-standing problem of how the neutral component of the plasma in prominences is supported against gravity. Using the multiple fluid approach we solve the time-dependent equations in two dimensions considering the frictional coupling between the neutral and ionized components of the magnetized plasma representative of a solar prominence embedded in a hot coronal environment. We demonstrate that given an initial density enhancement in the two fluids, representing the body of the prominence, the system is able to relax in the vicinity of magnetic dips to a stationary state in which both neutrals and ionized species are dynamically suspended above the photosphere. Two different coupling processes are considered in this study, collisions between ions and neutrals and charge exchange interactions. We find that for realistic conditions ions are essentially static while neutrals have a very small downflow velocity. The coupling between ions and neutrals is so strong at the prominence body that the behavior is similar to that of a single fluid with an effective density equal to the sum of the ion and neutral species. We also find that the charge exchange mechanism is about three times more efficient sustaining neutrals than elastic scattering of ions with neutrals.
In this work we consider non-zero circular polarization for the CMB radiation as a result of new interactions. We then rewrite the Boltzmann equations for the Stokes parameters $Q$, $U$ and $V$ and show that the circular polarization can generate the B-mode polarization even if no tensor perturbations are present.
Ellerman Bombs (EBs) are thought to arise as a result of photospheric magnetic reconnection. We use data from the Swedish 1-m Solar Telescope (SST), to study EB events on the solar disk and at the limb. Both datasets show that EBs are connected to the foot-points of forming chromospheric jets. The limb observations show that a bright structure in the H$\alpha$ blue wing connects to the EB initially fuelling it, leading to the ejection of material upwards. The material moves along a loop structure where a newly formed jet is subsequently observed in the red wing of H$\alpha$. In the disk dataset, an EB initiates a jet which propagates away from the apparent reconnection site within the EB flame. The EB then splits into two, with associated brightenings in the inter-granular lanes (IGLs). Micro-jets are then observed, extending to 500 km with a lifetime of a few minutes. Observed velocities of the micro-jets are approximately 5-10 km s$^{-1}$, while their chromospheric counterparts range from 50-80 km s$^{-1}$. MURaM simulations of quiet Sun reconnection show that micro-jets with similar properties to that of the observations follow the line of reconnection in the photosphere, with associated H$\alpha$ brightening at the location of increased temperature.
Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of such time series is derived: sigma_P = sigma_T (12/( N^3-N))^0.5, where sigma_P is the period error; sigma_T the timing error of a single measurement and N the number of measurements. Relative to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, the usual linear ephemeris where epoch errors are quoted for the first time measurement, are prone to overestimation of the error of that prediction. This may be avoided by a correction for the duration of the time series. An alternative is the derivation of ephemerides whose reference epoch and epoch error are given for the centre of the time series. For long continuous or near-continuous time series whose acquisition is completed, such central epochs should be the preferred way for the quotation of linear ephemerides. While this work was motivated from the analysis of eclipse timing measures in space-based light curves, it should be applicable to any other problem with an uninterrupted sequence of discrete timings for which the determination of a zero point, of a constant period and of the associated errors is needed.
We present a method for modelling star-forming clouds that combines two different models of the thermal evolution of the interstellar medium (ISM). In the combined model, where the densities are low enough that at least some part of the spectrum is optically thin, a model of the thermodynamics of the diffuse ISM is more significant in setting the temperatures. Where the densities are high enough to be optically thick across the spectrum, a model of flux limited diffusion is more appropriate. Previous methods either model the low-density interstellar medium and ignore the thermal behaviour at high densities (e.g. inside collapsing molecular cloud cores), or model the thermal behaviour near protostars but assume a fixed background temperature (e.g. approximately 10 K) on large-scales. Our new method treats both regimes. It also captures the different thermal evolution of the gas, dust, and radiation separately. We compare our results with those from the literature, and investigate the dependence of the thermal behaviour of the gas on the various model parameters. This new method should allow us to model the ISM across a wide range of densities and, thus, develop a more complete and consistent understanding of the role of thermodynamics in the star formation process.
In solar wind, magnetohydrodynamic (MHD) discontinuities are ubiquitous and often found to be at the origin of turbulence intermittency. They may also play a key role in the turbulence dissipation and heating of the solar wind. The tangential (TD) and rotational (RD) discontinuities are the two most important types of discontinuities. Recently, the connection between turbulence intermittency and proton thermodynamics has been being investigated observationally. Here we present numerical results from three-dimensional MHD simulation with pressure anisotropy and define new methods to identify and to distinguish TDs and RDs. Three statistical results obtained about the relative occurrence rates and heating effects are highlighted: (1) RDs tend to take up the majority of the discontinuities along with time; (2) the thermal states embedding TDs tend to be associated with extreme plasma parameters or instabilities, while RDs do not; (3) TDs have a higher average T as well as perpendicular temperature $T_\perp$. The simulation shows that TDs and RDs evolve and contribute to solar wind heating differently. These results will inspire our understanding of the mechanisms that generate discontinuities and cause plasma heating.
Full sky surveys of peculiar velocity are arguably the best way to map the large scale structure out to distances of a few times 100 Mpc/h. Using the largest and most accurate ever catalog of galaxy peculiar velocities "Cosmicflows-2", the large scale structure has been reconstructed by means of the Wiener filter and constrained realizations assuming as a Bayesian prior model the LCDM model with the WMAP inferred cosmological parameters. The present paper focuses on studying the bulk flow of the local flow field, defined as the mean velocity of top-hat spheres with radii ranging out to R=500 Mpc/h. The estimated large scale structures, in general, and the bulk flow, in particular, are determined by the tension between the observational data and the assumed prior model. A prerequisite for such an analysis is the requirement that the estimated bulk flow is consistent with the prior model. Such a consistency is found here. At R=50(150) Mpc/h the estimated bulk velocity is 250+/-21 (239+/-38) km/s. The corresponding cosmic variance at these radii is 126(60)km/s, which implies that these estimated bulk flows are dominated by the data and not by the assumed prior model. The estimated bulk velocity is dominated by the data out to R~200 Mpc/h, where the cosmic variance on the individual Supergalactic Cartesian components (of the r.m.s. values) exceeds the variance of the Constrained Realizations by at least a factor of 2. The supergalactic SGX and SGY components of the CMB dipole velocity are recovered by the Wiener filter velocity field down to a very few km/s. The SGZ component of the estimated velocity, the one that is most affected by the Zone of Avoidance, is off by 126 km/s (an almost 2 sigma discrepancy).
Analysis of the transit light curve deformed by the stellar gravity darkening allows us to photometrically measure both components of the spin-orbit angle $\psi$, its sky projection $\lambda$ and inclination of the stellar spin axis $i_\star$. In this paper, we apply the method to two transiting hot Jupiter systems monitored with the Kepler spacecraft, Kepler-13A and HAT-P-7. For Kepler-13A, we find $i_\star=81^\circ\pm5^\circ$ and $\psi=60^\circ\pm2^\circ$ adopting the spectroscopic constraint $\lambda=58.6^\circ\pm2.0^\circ$ by Johnson et al. (2014). In our solution, the discrepancy between the above $\lambda$ and that previously reported by Barnes et al. (2011) is solved by fitting both of the two parameters in the quadratic limb-darkening law. We also report the temporal variation in the orbital inclination of Kepler-13Ab, $\mathrm{d} |\cos i_{\rm orb}|/\mathrm{d}t=(-7.0\pm0.4)\times10^{-6}\,\mathrm{day}^{-1}$, providing further evidence for the spin-orbit precession in this system. By fitting the precession model to the time series of $i_{\rm orb}$, $\lambda$, and $i_\star$ obtained with the gravity-darkened model, we constrain the stellar quadrupole moment $J_2=(6.1\pm0.3)\times10^{-5}$ for our new solution, which is several times larger than $J_2=(1.66\pm0.08)\times10^{-4}$ obtained for the previous one. We show that the difference can be observable in the future evolution of $\lambda$, thus providing a possibility to test our solution with follow-up observations. The second target, HAT-P-7, is the first F-dwarf star analyzed with the gravity-darkening method. Our analysis points to a nearly pole-on configuration with $\psi=101^\circ\pm2^\circ$ or $87^\circ\pm2^\circ$ and the gravity-darkening exponent $\beta$ consistent with $0.25$. Such an observational constraint on $\beta$ can be useful for testing the theory of gravity darkening.
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wave numbers. The simulation results exhibit simultaneously several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magneto-hydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm's law.
We present numerical simulations that include 1-D Eulerian multi-group radiation-hydrodynamics, 1-D non-LTE radiative transfer, and 2-D polarised radiative transfer for super-luminous interacting supernovae (SNe). Our reference model is a ~10Msun inner shell with 10^51erg ramming into a ~3Msun cold outer shell (the circumstellar-medium, or CSM) that extends from 10^15cm to 2x10^16cm and moves at 100km/s. We discuss the light curve evolution, which cannot be captured adequately with a grey approach. In these interactions, the shock-crossing time through the optically-thick CSM is much longer than the photon diffusion time. Radiation is thus continuously leaking from the shock through the CSM, in disagreement with the shell-shocked model that is often invoked. Our spectra redden with time, with a peak distribution in the near-UV during the first month gradually shifting to the optical range over the following year. Initially Balmer lines exhibit a narrow line core and the broad line wings that are characteristic of electron scattering in the SNe IIn atmospheres (CSM). At later times they also exhibit a broad blue shifted component which arises from the cold dense shell. Our model results are broadly consistent with the bolometric light curve and spectral evolution observed for SN2010jl. Invoking a prolate pole-to-equator density ratio in the CSM, we can also reproduce the ~2% continuum polarisation, and line depolarisation, observed in SN2010jl. By varying the inner shell kinetic energy and the mass and extent of the outer shell, a large range of peak luminosities and durations, broadly compatible with super-luminous SNe IIn like 2010jl or 2006gy, can be produced.
The Cherenkov Telescope Array (CTA) is the next generation facility of Imaging Atmospheric Cherenkov Telescopes. It will reach unprecedented sensitivity and energy resolution in very-high-energy gamma-ray astronomy. CTA will detect Cherenkov light emitted within an atmospheric shower of particles initiated by cosmic-gamma rays or cosmic rays entering the Earth's atmosphere. From the combination of images the Cherenkov light produces in the telescopes, one is able to infer the primary particle energy and direction. A correct energy estimation can be thus performed only if the local atmosphere is well characterized. The atmosphere not only affects the shower development itself, but also the Cherenkov photon transmission from the emission point in the particle shower, at about 10-20 km above the ground, to the detector. Cherenkov light on the ground is peaked in the UV-blue region, and therefore molecular and aerosol extinction phenomena are important. The goal of CTA is to control systematics in energy reconstruction to better than 10%. For this reason, a careful and continuous monitoring and characterization of the atmosphere is required. In addition, CTA will be operated as an observatory, with data made public along with appropriate analysis tools. High-level data quality can only be ensured if the atmospheric properties are consistently and continuously taken into account. In this contribution, we concentrate on discussing the implementation strategy for the various atmospheric monitoring instruments currently under discussion in CTA. These includes Raman lidars and ceilometers, stellar photometers and others available both from commercial providers and public research centres.
We analyzed near-infrared data of the nearby galaxy IC5063 taken with the Very Large Telescope SINFONI instrument. IC5063 is an elliptical galaxy that has a radio jet nearly aligned with the major axis of a gas disk in its center. The data reveal multiple signatures of molecular and atomic gas that has been kinematically distorted by the jet passage within an area of ~1 kpc^2. Concrete evidence that the impact of jet plasma upon gas causes the gas to accelerate comes from outflows detected near four different bending points of the jet: at the two bright radio lobes, near a diverted plasma stream close to the north lobe, and near the tip of a plasma stream in the narrow-line region. Gas moving with a velocity excess of 600 km/s to 1200 km/s with respect to ordered motions is detected in [FeII], Paa, and H2 lines. Around these regions, gas is scattered in different directions. Near the north lobe, the highly blueshifted and the highly redshifted [FeII] emission is offset by 240 pc. The (scattered or not) plasma and its cocoon drive a diffuse outflow that extends >700 pc parallel and perpendicular to the jet trail. This diffuse outflow has two main observational signatures: its emission unfolds around the jet trail and away from the nucleus with increasing velocity, and it forms a biconical shape that is centered 220 pc away from the nucleus and that is oriented perpendicularly to the jet trail. Overall, the highest gas line-of-sight velocities are attained near the jet trail and bending points. High H2 (1-0) S(1)/S(3) flux ratios indicate non-thermal excitation of gas in the diffuse outflow.
Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambitious and sensitive project between them is LHAASO, a new generation multi-component experiment to be installed at very high altitude in China (Daocheng, Sichuan province, 4400 m a.s.l.). The experiment will face the open problems through a combined study of photon- and charged particle-induced extensive air showers in the wide energy range 10$^{11}$ - 10$^{18}$ eV. In this paper the status of the experiment will be summarized, the science program presented and the outlook discussed in comparison with leading new projects.
We present the spectrum of eigenfrequencies of axisymmetric acoustic-inertial oscillations of thin accretion disks for a Schwarzschild black hole modeled with a pseudo-potential. There are nine discrete frequencies, corresponding to trapped modes. Eigenmodes with nine or more radial nodes in the inner disk belong to the continuum, whose frequency range starts somewhat below the maximum value of the radial epicyclic frequency. The results are derived under the assumption that the oscillatory motion is parallel to the midplane of the disk.
In models of low-energy gauge mediation, the observed Higgs mass is in tension with the cosmological limit on the gravitino mass $m_{3/2} \lesssim 16$ eV. We present an alternative mediation mechanism of supersymmetry breaking via a $U(1)$ $D$-term with an $E_6$-inspired particle content, which we call "vector mediation". The gravitino mass can be in the eV range. The sfermion masses are at the 10 TeV scale, while gauginos around a TeV. This mechanism also greatly ameliorates the $\mu$-problem.
We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early universe, and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress-energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: non-zero cross correlation of the cosmic microwave background temperature and polarization, $TB$ and $EB$, both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future CMB experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and magnetic field energy density. The fluctuation power of primordial gravitational waves oscillates back and forth into fluctuations of the gauge field. In certain cases, the gravitational wave spectrum is shown to be suppressed or amplified by up to an order of magnitude depending on the initial conditions of the gauge field.
Accurate measurements of nuclear reactions of astrophysical interest within, or close to, the Gamow peak, show evidence of an unexpected effect attributed to the presence of atomic electrons in the target. The experiments need to include an effective "screening" potential to explain the enhancement of the cross sections at the lowest measurable energies. Despite various theoretical studies conducted over the past 20 years and numerous experimental measurements, a theory has not yet been found that can explain the cause of the exceedingly high values of the screening potential needed to explain the data. In this letter we show that instead of an atomic physics solution of the "electron screening puzzle", the reason for the large screening potential values is in fact due to clusterization effects in nuclear reactions, in particular for reaction involving light nuclei.
Inspired by the $f(R)$ non-linear massive gravity, we propose a new kind of modified gravity model, namely $f(T)$ non-linear massive gravity, by adding the dRGT mass term reformulated in the vierbein formalism, to the $f(T)$ theory. We then investigate the cosmological evolution of $f(T)$ massive gravity, and constrain it by using the latest observational data. We find that it slightly favors a crossing of the phantom divide line from the quintessence-like phase ($w_{de} > -1$) to the phantom-like one ($w_{de} < -1$) as redshift decreases.
The detection of VUV scintillation light, e.g. in (liquid) argon detectors, commonly includes a reflector with a fluorescent coating, converting UV photons to visible light. The light yield of these detectors depends directly on the conversion efficiency. Several coating/reflector combinations were produced using VM2000, a specular reflecting multi layer polymer, and Tetratex, a diffuse reflecting PTFE fabric, as reflector foils. The efficiency of these coatings was optimised and has been measured in a dedicated liquid argon setup built at the University of Zurich. It employs a small, 1.3 kg LAr cell viewed by a 3-inch, low radioactivity PMT of type R11065-10 from Hamamatsu. The cryogenic stability of these coatings was additionally studied. The optimum reflector/coating combination was found to be Tetratex dip coated with Tetraphenyl-butadiene with a thickness of 0.9 mg/cm$^2$ resulting in a 3.6 times higher light yield compared to uncoated VM2000. Its performance was stable in long term measurements, ran up to 100 days, in liquid argon. This coated reflector was further investigated concerning radioactive impurities and outgassing compounds, both of which are suitable for current and upcoming low-background experiments. Therefore it is used for the liquid argon veto in Phase II of the GERDA neutrinoless double beta decay experiment.
Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1PN order, it was found that O(20) sources would suffice to distinguish between a hard, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOS and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.
I present a class of hidden sector dark matter (DM) models with local dark gauge symmetries, where DM is stable due to unbroken local dark gauge symmetry, or due topology, or it is long-lived because of some accidental symme- tries, and the particle contents and their dynamics are completely fixed by local gauge symmetries. In these models, one have two types of natural force mediators, dark gauge bosons and dark Higgs boson, which would affect DM and Higgs phenomenology in important ways. I discuss various phenomenological issues including the GeV scale gamma-ray excess from the galactic center (GC), (in)direct detection signatures, dark radiation, Higgs phenomenology and Higgs inflation assisted by dark Higgs.
The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus LHC results might hint at critical phenomena near the Planck scale.
Links to: arXiv, form interface, find, astro-ph, recent, 1503, contact, help (Access key information)
The observed high covering fractions of neutral hydrogen (HI) with column densities above $\sim 10^{17} \rm{cm}^{-2}$ around Lyman-Break Galaxies (LBGs) and bright quasars at redshifts z ~ 2-3 has been identified as a challenge for simulations of galaxy formation. We use the EAGLE cosmological, hydrodynamical simulation, which has been shown to reproduce a wide range of galaxy properties and for which the subgrid feedback was calibrated without considering gas properties, to study the distribution of HI around high-redshift galaxies. We predict the covering fractions of strong HI absorbers ($N_{\rm{HI}} \gtrsim 10^{17} \rm{cm}^{-2}$) inside haloes to increase rapidly with redshift but to depend only weakly on halo mass. For massive ($M_{200} \gtrsim 10^{12} {\rm M_{\odot}}$) halos the covering fraction profiles are nearly scale-invariant and we provide fitting functions that reproduce the simulation results. While efficient feedback is required to increase the HI covering fractions to the high observed values, the distribution of strong absorbers in and around halos of a fixed mass is insensitive to factor of two variations in the strength of the stellar feedback. In contrast, at fixed stellar mass the predicted HI distribution is highly sensitive to the feedback efficiency. The fiducial EAGLE simulation reproduces both the observed global column density distribution function of HI and the observed radial covering fraction profiles of strong HI absorbers around LBGs and bright quasars.
We present the discovery of a faint Milky Way satellite, Laevens 2/Triangulum II, found in the Panoramic Survey Telescope And Rapid Response System (Pan-STARRS 1) 3 pi imaging data and confirmed with follow-up wide-field photometry from the Large Binocular Cameras. The stellar system, with an absolute magnitude of M_V=-1.8 +/-0.5, a heliocentric distance of 30 +2/-2 kpc, and a half-mass radius of 34 +9/-8 pc, shows remarkable similarity to faint, nearby, small satellites such as Willman 1, Segue 1, Segue 2, and Bo\"otes II. The discovery of Laevens 2/Triangulum II further populates the region of parameter space for which the boundary between dwarf galaxies and globular clusters becomes tenuous. Follow-up spectroscopy will ultimately determine the nature of this new satellite, whose spatial location hints at a possible connection with the complex Triangulum-Andromeda stellar structures.
We present a survey of 41 Kepler Objects of Interest (KOIs) for exomoons using Bayesian photodynamics, more than tripling the number of KOIs surveyed with this technique. We find no compelling evidence for exomoons although thirteen KOIs yield spurious detections driven by instrumental artifacts, stellar activity and/or perturbations from unseen bodies. Regarding the latter, we find seven KOIs exhibiting >5 sigma evidence of transit timing variations, including the 'mega-Earth' Kepler-10c, likely indicating an additional planet in that system. We exploit the moderately large sample of 57 unique KOIs surveyed to date to infer several useful statistics. For example, although there is a diverse range in sensitivities, we find that we are sensitive to Pluto-Charon mass-ratio systems for ~40% of KOIs studied and Earth-Moon mass-ratios for 1 in 8 cases. In terms of absolute mass, our limits probe down to 1.7 Ganymede masses, with a sensitivity to Earth-mass moons for 1 in 3 cases studied and to the smallest moons capable of sustaining an Earth-like atmosphere (0.3 Earth masses) for 1 in 4. Despite the lack of positive detections to date, we caution against drawing conclusions yet, since our most interesting objects remain under analysis. Finally, we point out that had we searched for the photometric transit signals of exomoons alone, rather than using photodynamics, we estimate that 1 in 4 KOIs would have erroneously been concluded to harbor exomoons due to residual time correlated noise in the Kepler data, posing a serious problem for alternative methods.
The Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL) was released in February 2010 and the Fermi-LAT 2-Year Source Catalog (2FGL) appeared in April 2012, based on data from 24 months of operation. Since their releases, many follow up observations of unidentified gamma-ray sources (UGSs) were performed and new procedures to associate gamma-ray sources with potential counterparts at other wavelengths were developed. Here we review and characterize all the associations as published in the 1FGL and 2FGL catalog on the basis of multifrequency archival observations. In particular we located 177 spectra for the low-energy counterparts that were not listed in the previous Fermi catalogs, and in addition we present new spectroscopic observations of 8 gamma-ray blazar candidates. Based on our investigations, we introduce a new counterpart category of "candidate associations" and propose a refined classification for the candidate low-energy counterparts of the Fermi sources. We compare the 1FGL-assigned counterparts with those listed in the 2FGL to determine which unassociated sources became associated in later releases of the Fermi catalogs. We also search for potential counterparts to all the remaining unassociated Fermi sources. Finally, we prepare a refined and merged list of all the associations of the 1FGL plus 2FGL catalogs that includes 2219 unique Fermi objects. This is the most comprehensive and systematic study of all the associations collected for the gamma-ray sources available to date. We conclude that 80% of the Fermi sources have at least one known plausible gamma-ray emitter within their positional uncertainty regions.
The central image of a strongly lensed background source places constraints on the foreground lens galaxy's inner mass profile slope, core radius and mass of its nuclear supermassive black hole. Using high-resolution long-baseline Atacama Large Millimeter/submillimeter Array (ALMA) observations and archival $Hubble~Space~Telescope$ ($HST$) imaging, we model the gravitational lens H-ATLAS J090311.6+003906 (also known as SDP.81) and search for the demagnified central image. There is central continuum emission from the lens galaxy's active galactic nucleus (AGN) but no evidence of the central lensed image in any molecular line. We use the CO $J$=5-4 map to determine the flux limit of the central image excluding the AGN continuum. We predict the flux density of the central image and use the limits from the ALMA data to constrain the inner mass distribution of the lens. For the core radius of $0.15"$ measured from $HST$ photometry of the lens galaxy assuming that the central flux is completely attributed to the AGN, we find that a black hole mass of $\mathrm{\log(M_{BH}/M_{\odot})} \gtrsim 8.4$ is preferred. Deeper observations with a detection of the central image will significantly improve the constraints of the inner mass distribution of the lens galaxy.
We investigate the environmental dependence of the mass-metallicity relation at z=2 with MOSFIRE/Keck as part of the ZFIRE survey. Here, we present the chemical abundance of a Virgo-like progenitor at z=2.095 that has an established red sequence. We identified 43 cluster ($<z>=2.095\pm0.004$) and 74 field galaxies ($<z>=2.195\pm0.083$) for which we can measure metallicities. For the first time, we show that there is no discernible difference between the mass-metallicity relation of field and cluster galaxies to within 0.02dex. Both our field and cluster galaxy mass-metallicity relations are consistent with recent field galaxy studies at z~2. We present hydrodynamical simulations for which we derive mass-metallicity relations for field and cluster galaxies. We find at most a 0.1dex offset towards more metal-rich simulated cluster galaxies. Our results from both simulations and observations are suggestive that environmental effects, if present, are small and are secondary to the ongoing inflow and outflow processes that are governed by galaxy halo mass.
Massive bigravity, a theoretically consistent modification of general relativity with an additional dynamical rank two tensor, successfully describes the observed accelerated expansion of the Universe without a cosmological constant. Recent analyses of perturbations around a cosmological background have revealed power law instabilities in both scalar and tensor perturbations, motivating an analysis of the initial conditions, evolution, and cosmological observables to determine the viability of these theories. In this paper we focus on the tensor sector, and study a primordial stochastic gravitational wave background in massive bigravity. The phenomenology can differ from standard General Relativity due to non-trivial mixing between the two linearized tensor fluctuations in the theory, only one of which couples to matter. We study perturbations about two classes of cosmological solutions in bigravity, computing the tensor contribution to the temperature anisotropies in the Cosmic Microwave Background radiation and the present stochastic gravitational wave background. The result is strongly dependent on the choice of cosmological background and initial conditions. One class of background solution generically displaying tremendous growth in the amplitude of large-wavelength gravitational waves, while the other remains observationally indistinguishable from standard General Relativity for a wide variety of initial conditions. We analyze the initial conditions for tensor modes expected in an inflationary cosmology, finding again that there is a strong dependence on the assumed background. For one choice of background, the semi-classical theory is beyond the perturbative regime. For the other choice, inflation generically yields initial conditions that, when evolved, give rise to a stochastic background observationally indistinguishable from standard General Relativity.
When an accretion disk surrounds a binary rotating in the same sense, the binary exerts strong torques on the gas. Analytic work in the 1D approximation indicated that these torques sharply diminish or even eliminate accretion from the disk onto the binary. However, recent 2D and 3D simulational work has shown at most modest diminution. We present new MHD simulations demonstrating that for binaries with mass ratios of 1 and 0.1 there is essentially no difference between the accretion rate at large radius in the disk and the accretion rate onto the binary. To resolve the discrepancy with earlier analytic estimates, we identify the small subset of gas trajectories traveling from the inner edge of the disk to the binary and show how the full accretion rate is concentrated onto them.
The arm structure of the Milky Way remains somewhat of an unknown, with observational studies hindered by our location within the Galactic disc. In the work presented here we use smoothed particle hydrodynamics (SPH) and radiative transfer to create synthetic longitude-velocity observations. Our aim is to reverse-engineer a top down map of the Galaxy by comparing synthetic longitude-velocity maps to those observed. We set up a system of N-body particles to represent the disc and bulge, allowing for dynamic creation of spiral features. Interstellar gas, and the molecular content, is evolved alongside the stellar system. A 3D-radiative transfer code is then used to compare the models to observational data. The resulting models display arm features that are a good reproduction of many of the observed emission structures of the Milky Way. These arms however are dynamic and transient, allowing for a wide range of morphologies not possible with standard density wave theory. The best fitting models are a much better match than previous work using fixed potentials. They favour a 4-armed model with a pitch angle of approximately 20 degrees, though with a pattern speed that decreases with increasing Galactic radius. Inner bars are lacking however, which appear required to fully reproduce the central molecular zone.
We generalize the technique of fringe-rate filtering, whereby visibilities measured by a radio interferometer are re-weighted according to their temporal variation. As the Earth rotates, radio sources traverse through an interferometer's fringe pattern at rates that depend on their position on the sky. Capitalizing on this geometric interpretation of fringe rates, we employ time-domain convolution kernels to enact fringe-rate filters that sculpt the effective primary beam of antennas in an interferometer. As we show, beam sculpting through fringe-rate filtering can be used to optimize measurements for a variety of applications, including mapmaking, minimizing polarization leakage, suppressing instrumental systematics, and enhancing the sensitivity of power-spectrum measurements. We show that fringe-rate filtering arises naturally in minimum variance treatments of many of these problems, enabling optimal visibility-based approaches to analyses of interferometric data that avoid systematics potentially introduced by traditional approaches such as imaging. Our techniques have recently been demonstrated in Ali et al. (2015), where new upper limits were placed on the 21 cm power spectrum from reionization, showcasing the ability of fringe-rate filtering to successfully boost sensitivity and reduce the impact of systematics in deep observations.
In order to prove the existence of a critical end point (CEP) in the QCD
phase diagram it is sufficient to demonstrate that at zero temperature $T=0$ a
first order phase transition exists as a function of the baryochemical
potential $\mu$, since it is established knowledge from ab-initio lattice QCD
simulations that at $\mu=0$ the transition on the temperature axis is a
crossover.
We present the argument that the observation of a gap in the mass-radius
relationship for compact stars which proves the existence of a so-called third
family (aka "mass twins") will imply that the $T=0$ equation of state of
compact star matter exhibits a strong first order transition with a latent heat
that satisfies $\Delta\epsilon/\epsilon_c \gt 0.6$.
Since such a strong first order transition under compact star conditions will
remain first order when going to symmetric matter, the observation of a
disconnected branch (third family) of compact stars in the mass-radius diagram
proves the existence of a CEP in QCD. For the equation of state of the twins
the quark matter description is based on a QCD-motivated chiral approach with
higher-order quark interactions in the Dirac scalar and vector coupling
channels. For hadronic matter we select a relativistic mean-field equation of
state with density-dependent couplings. Since the nucleons are treated in the
quasi-particle framework, an excluded volume has been included for the nuclear
equation of state at super-saturation density that takes into account the
finite size of the nucleons.
Furthermore we show results of a Bayesian analysis (BA) using disjunct M-R
constraints for extracting probability measures for cold, dense matter
equations of state. This study reveals that measuring the radii of neutron star
twins has the potential to support the existence of a first order phase
transition for compact star matter.
Atmospheric properties of exoplanets can be constrained with transit spectroscopy. The signature of atomic sodium NaI, known to be present above the clouds, is a powerful probe of the upper atmosphere, where it can be best detected and characterized at high spectral resolution. Our goal is to obtain a high-resolution transit spectrum of HD189733b in the region around the resonance doublet of NaI at 589 nm, to characterize the absorption signature previously detected from space at low resolution. We analyze archival transit data of HD189733b obtained with the HARPS spectrograph. We retrieve the transit spectrum and light curve of the planet, implementing corrections for telluric contamination and planetary orbital motion. We spectrally resolve the NaI D doublet and measure line contrasts of $0.64\pm0.07\%$ (D2) and $0.40\pm0.07\%$ (D1) and FWHMs of $0.52\pm0.08~\AA$. This corresponds to a detection at the 10-$\sigma$ level of excess of absorption of $0.32\pm0.03\%$ in a passband of $2\times0.75\ \AA$ centered on each line. We derive temperatures of $2\,600\pm600$ K and $3270\pm330$ K at altitudes of $9\,800\pm2\,800$ km and $12\,700\pm2\,600$ km in the NaI D1 and D2 line cores, respectively. We measure a temperature gradient of $\sim0.2$ K km$^{-1}$ from comparison with theoretical models. We also detect a blueshift of $0.16\pm0.04\ \AA$ (4 $\sigma$) in the line positions. This blueshift may be due to winds blowing at $8\pm2$ km s$^{-1}$ in the upper layers of the atmosphere. We demonstrate the relevance of studying exoplanet atmospheres with high-resolution spectrographs mounted on 4-meter-class telescopes. Our results pave the way towards in-depth characterization of physical conditions in the atmospheres of many exoplanetary systems with future spectrographs such as ESPRESSO on the VLT or HiReS and METIS on the E-ELT.
We present a theory for interpreting the sodium lines detected in transmission spectra of exoplanetary atmospheres. Previous analyses employed the isothermal approximation and dealt only with the transit radius. By recognising the absorption depth and the transit radius as being independent observables, we develop a theory for jointly interpreting both quantities, which allows us to infer the temperatures and number densities associated with the sodium lines. We are able to treat a non-isothermal situation with a constant temperature gradient. Our novel diagnostics take the form of simple-to-use algebraic formulae and require measurements of the transit radii (and their corresponding absorption depths) at line center and in the line wing for both sodium lines. We apply our diagnostics to the HARPS data of HD 189733b, confirm the upper atmospheric heating reported by Huitson et al. (2012), derive a temperature gradient of $0.4376 \pm 0.0154$ K km$^{-1}$ and find densities $\sim 1$ to $10^4$ cm$^{-3}$.
Spectral distortions of the CMB have recently experienced an increased interest. One of the inevitable distortion signals of our cosmological concordance model is created by the cosmological recombination process, just a little before photons last scatter at redshift $z\simeq 1100$. These cosmological recombination lines, emitted by the hydrogen and helium plasma, should still be observable as tiny deviation from the CMB blackbody spectrum in the cm--dm spectral bands. In this paper, we present a forecast for the detectability of the recombination signal with future satellite experiments. We argue that serious consideration for future CMB experiments in space should be given to probing spectral distortions and, in particular, the recombination line signals. The cosmological recombination radiation not only allows determination of standard cosmological parameters, but also provides a direct observational confirmation for one of the key ingredients of our cosmological model: the cosmological recombination history. We show that, with present technology, such experiments are futuristic but feasible. The potential rewards won by opening this new window to the very early universe could be considerable.
Hot Jupiters are subject to strong irradiation from the host stars and, as a consequence, they do evaporate. They can also interact with the parent stars by means of tides and magnetic fields. Both phenomena have strong implications for the evolution of these systems. Here we present time resolved spectroscopy of HD~189733 observed with the Cosmic Origin Spectrograph (COS) on board to HST. The star has been observed during five consecutive HST orbits, starting at a secondary transit of the planet ($\phi$ ~0.50-0.63). Two main episodes of variability of ion lines of Si, C, N and O are detected, with an increase of line fluxes. Si IV lines show the highest degree of variability. The FUV variability is a signature of enhanced activity in phase with the planet motion, occurring after the planet egress, as already observed three times in X-rays. With the support of MHD simulations, we propose the following interpretation: a stream of gas evaporating from the planet is actively and almost steadily accreting onto the stellar surface, impacting at $70-90\deg$ ahead of the sub-planetary point.
We study the dynamics of stellar wind from one of the bodies in the binary system, where the other body interacts only gravitationally. We focus on following three issues: (i) we explore the origin of observed periodic variations in maser intensity; (ii) we address the nature of bipolar molecular outflows; and (iii) we show generation of baroclinicity in the same model setup. From direct numerical simulations and further numerical modelling, we find that the maser intensity along a given line of sight varies periodically due to periodic modulation of material density. This modulation period is of the order of the binary period. Another feature of this model is that the velocity structure of the flow remains unchanged with time in late stages of wind evolution. Therefore the location of the masing spot along the chosen sightline stays at the same spatial location, thus naturally explaining the observational fact. This also gives an appearance of bipolar nature in the standard position-velocity diagram, as has been observed in a number of molecular outflows. Remarkably, we also find the generation of baroclinicity in the flow around binary system, offering another site where the seed magnetic fields could possibly be generated due to the Biermann battery mechanisms, within galaxies.
Tip of the red giant branch measurements based on Hubble Space Telescope and ground-based imaging have resulted in accurate distances to 29 galaxies in the nearby Centaurus A Group. All but two of the 29 galaxies lie in either of two thin planes roughly parallel with the supergalactic equator. The planes are only slightly tilted from the line-of-sight, leaving little ambiguity regarding the morphology of the structure. The planes have characteristic r.m.s. long axis dimensions of ~300 kpc and short axis dimensions of ~60 kpc, hence axial ratios ~0.2, and are separated in the short axis direction by 303 kpc.
In the effort to understand the link between the structure of galaxy clusters and their galaxy populations, we focus on MACS J1206.2-0847, at z~0.44, probing its substructure in the projected phase space through the spectrophotometric properties of a large number of galaxies from the CLASH-VLT survey. Our analysis is mainly based on an extensive spectroscopic dataset of 445 member galaxies, mostly acquired with VIMOS@VLT as part of our ESO Large Programme, sampling the cluster out to a radius ~2R200 (4 Mpc). We classify 412 galaxies as: passive, with strong Hdelta absorption (red and blue ones), and with emission lines from weak to very strong ones. A number of tests for substructure detection is applied to analyze the galaxy distribution in the velocity space, in the 2D space, and in the (3D) projected phase-space. Studied in its entirety, the cluster appears as a large-scale relaxed system with a few, secondary, minor overdensities in 2D distribution. We detect no velocity gradient or evidence of deviations in local mean velocities. The main feature is the WNW-ESE elongation. The analysis of galaxy populations per spectral class highlights a more complex scenario. The passive and red strong Hdelta galaxies trace the cluster center and the WNW-ESE elongated structure. The red strong Hdelta galaxies also mark a secondary, dense peak ~2 Mpc at ESE. The emission line galaxies cluster in several loose structures, mostly outside R200. The observational scenario agrees with MACS J1206.2-0847 having WNW-ESE as the direction of the main cluster accretion, traced by passive and red strong Hdelta galaxies. The latter ones, interpreted as poststarburst galaxies, date a likely important event 1-2 Gyr before the epoch of observation. The emission line galaxies trace a secondary, ongoing infall where groups are accreted along several directions.
The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial planet zone around a 35-million year-old solar analog star. We observed a substantial brightening of the debris disk at 3-5 {\mu}m, followed by a decay over a year, with quasi-periodic modulations of the disk flux. The behavior is consistent with the occurrence of a violent impact that produced vapor out of which a thick cloud of silicate spherules condensed that were ground into dust by collisions. These results demonstrate how the time domain can become a new dimension for the study of terrestrial planet formation.
Luminous debris disks of warm dust in the terrestrial planet zones around solar-like stars are recently found to vary, indicative of ongoing large-scale collisions of rocky objects. We use Spitzer 3.6 and 4.5 {\mu}m time-series observations in 2012 and 2013 (extended to 2014 in one case) to monitor 5 more debris disks with unusually high fractional luminosities ("extreme debris disk"), including P1121 in the open cluster M47 (80 Myr), HD 15407A in the AB Dor moving group (80 Myr), HD 23514 in the Pleiades (120 Myr), HD 145263 in the Upper Sco Association (10 Myr), and the field star BD+20 307 (>1 Gyr). Together with the published results for ID8 in NGC 2547 (35 Myr), this makes the first systematic time-domain investigation of planetary impacts outside the solar system. Significant variations with timescales shorter than a year are detected in five out of the six extreme debris disks we have monitored. However, different systems show diverse sets of characteristics in the time domain, including long-term decay or growth, disk temperature variations, and possible periodicity.
Modern large-scale surveys have allowed the identification of large numbers of white dwarfs. However, these surveys are subject to complicated target selection algorithms, which make it almost impossible to quantify to what extent the observational biases affect the observed populations. The LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) Spectroscopic Survey of the Galactic anti-center (LSS-GAC) follows a well-defined set of criteria for selecting targets for observations. This advantage over previous surveys has been fully exploited here to identify a small yet well-characterised magnitude-limited sample of hydrogen-rich (DA) white dwarfs. We derive preliminary LSS-GAC DA white dwarf luminosity and mass functions. The space density and average formation rate of DA white dwarfs we derive are 0.83+/-0.16 x 10^{-3} pc^{-3} and 5.42 +/- 0.08 x 10^{-13} pc^{-3} yr^{-1}, respectively. Additionally, using an existing Monte Carlo population synthesis code we simulate the population of single DA white dwarfs in the Galactic anti-center, under various assumptions. The synthetic populations are passed through the LSS-GAC selection criteria, taking into account all possible observational biases. This allows us to perform a meaningful comparison of the observed and simulated distributions. We find that the LSS-GAC set of criteria is highly efficient in selecting white dwarfs for spectroscopic observations (80-85 per cent) and that, overall, our simulations reproduce well the observed luminosity function. However, they fail at reproducing an excess of massive white dwarfs present in the observed mass function. A plausible explanation for this is that a sizable fraction of massive white dwarfs in the Galaxy are the product of white dwarf-white dwarf mergers.
Although the two moons of Mars, Phobos and Deimos, have long been thought to be captured asteroids, recent observations of their compositions and orbits suggest that they may have formed from debris generated by one or more giant impacts of bodies with ~ 0.01 x target mass. Recent studies have both analytically estimated debris produced by giant impacts on Mars and numerically examined the evolution of circum-Mars debris disks. We perform a numerical study (Smoothed Particle Hydrodynamics simulation) of debris retention from giant impacts onto Mars, particularly in relation to a Borealis-scale giant impact (E ~ 3 x 10^29 J) capable of producing the Borealis basin. We find that a Borealis-scale impact is capable of producing a disk of mass ~ 5 x 10^20 kg (~ 1 - 4 % of the impactor mass), sufficient debris to form at least one of the martian moons according to recent numerical studies of martian debris disk evolution. While a Borealis-scale impact may generate sufficient debris to form both Phobos and Deimos, further studies of the debris disk evolution are necessary. Our results can serve as inputs for future studies of martian debris disk evolution.
The field of exoplanetary science is one of the most rapidly growing areas of astrophysical research. As more planets are discovered around other stars, new techniques have been developed that have allowed astronomers to begin to characterise them. Two of the most important factors in understanding the evolution of these planets, and potentially determining whether they are habitable, are the behaviour of the winds of the host star and the way in which they interact with the planet. The purpose of this project is to reconstruct the magnetic fields of planet hosting stars from spectropolarimetric observations, and to use these magnetic field maps to inform simulations of the stellar winds in those systems using the Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) code. The BATS-R-US code was originally written to investigate the behaviour of the Solar wind, and so has been altered to be used in the context of other stellar systems. These simulations will give information about the velocity, pressure and density of the wind outward from the host star. They will also allow us to determine what influence the winds will have on the space weather environment of the planet. This paper presents the preliminary results of these simulations for the star $\tau$ Bo\"otis, using a newly reconstructed magnetic field map based on previously published observations. These simulations show interesting structures in the wind velocity around the star, consistent with the complex topology of its magnetic field.
While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200-m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 $\pm$ 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption of the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus.
We study pion production from proton synchrotron radiation in the presence of strong magnetic fields. We derive the exact proton propagator from the Dirac equation in a strong magnetic field by explicitly including the anomalous magnetic moment. In this exact quantum-field approach the magnitude of pion synchrotron emission turns out to be much smaller than that obtained in the semi-classical approach. However, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two order magnitude.
We compiled the radio, optical, and X-ray data of blazars from the Sloan Digital Sky Survey (SDSS) database, and presented the distribution of luminosities and broad band spectral indices. The distribution of luminosities shows that the averaged luminosity of flat-spectral radio quasars (FSRQs) is larger than that of BL Lacs objects. On the other hand, the broad band spectral energy distribution reveals that FSRQs and low energy peaked BL Lac objects (LBLs) objects have similar spectral properties, but high energy peaked BL Lac objects (HBLs) have a distinct spectral property. This may be due to that different subclasses of blazars have different intrinsic environments and are at different cooling levels. Even so, a unified scheme also is revealed from the color-color diagram, which hints that there are similar physical processes operating in all objects under a range of intrinsic physical conditions or beaming parameter.
An important aspect in the evolutionary scenario of cool stars is their rotation and the rotationally induced magnetic activity and interior mixing. Stars in open clusters are particularly useful tracers for these aspects because of their known ages. We aim to characterize the open cluster IC4756 and measure stellar rotation periods and surface differential rotation for a sample of its member stars. Thirty-seven cluster stars were observed continuously with the CoRoT satellite for 78 days in 2010. Follow-up high-resolution spectroscopy of the CoRoT targets and deep Str\"omgren $uvby\beta$ and H$\alpha$ photometry of the entire cluster were obtained with our robotic STELLA facility and its echelle spectrograph and wide-field imager, respectively. We determined high-precision photometric periods for 27 of the 37 CoRoT targets and found values between 0.155 and 11.4 days. Twenty of these are rotation periods. Twelve targets are spectroscopic binaries of which 11 were previously unknown; orbits are given for six of them. Six targets were found that show evidence of differential rotation with $\Delta\Omega/\Omega$ in the range 0.04-0.15. Five stars are non-radially pulsating stars with fundamental periods of below 1d, two stars are semi-contact binaries, and one target is a micro-flaring star that also shows rotational modulation. Nine stars in total were not considered members because of much redder color(s) and deviant radial velocities with respect to the cluster mean. H$\alpha$ photometry indicates that the cluster ensemble does not contain magnetically over-active stars. The cluster average metallicity is -0.08$\pm$0.06 (rms) and its logarithmic lithium abundance for 12 G-dwarf stars is 2.39$\pm$0.17 (rms). [...]
Data reduction techniques published so far for the CoRoT N2 data product were targeted primarily on the detection of extrasolar planets. Since the whole dataset has been released, specific algorithms are required to process the lightcurves from CoRoT correctly. Though only unflagged datapoints must be chosen for scientific processing, some flags might be reconsidered. The reduction of data along with improving the signal-to-noise ratio can be achieved by applying a one dimensional drizzle algorithm. Gaps can be filled by linear interpolated data without harming the frequency spectrum. Magnitudes derived from the CoRoT color channels might be used to derive additional information about the targets. Depending on the needs, various filters in the frequency domain remove either the red noise background or high frequency noise. The autocorrelation function or the least squares periodogram are appropriate methods to identify periodic signals.The methods described here are not strictly limited to CoRoT data but may also be applied on Kepler data or the upcoming Plato mission.
The standard cold dark matter (CDM) model predicts too many and too dense small structures. We consider an alternative model that the dark matter undergoes two-body decays with cosmological lifetime $\tau$ into only one type of massive daughters with non-relativistic recoil velocity $V_k$. This decaying dark matter model (DDM) can suppress the structure formation below its free-streaming scale at time scale comparable to $\tau$. Comparing with warm dark matter (WDM), DDM can better reduce the small structures while being consistent with high redshfit observations. We study the cosmological structure formation in DDM by performing self-consistent N-body simulations and point out that cosmological simulations are necessary to understand the DDM structures especially on non-linear scales. We propose empirical fitting functions for the DDM suppression of the mass function and the mass-concentration relation, which depend on the decay parameters lifetime $\tau$ and recoil velocity $V_k$, and redshift. The fitting functions lead to accurate reconstruction of the the non-linear power transfer function of DDM to CDM in the framework of halo model. Using these results, we set constraints on the DDM parameter space by demanding that DDM does not induce larger suppression than the Lyman-$\alpha$ constrained WDM models. We further generalize and constrain the DDM models to initial conditions with non-trivial mother fractions and show that the halo model predictions are still valid after considering a global decayed fraction. Finally, we point out that the DDM is unlikely to resolve the disagreement on cluster numbers between the Planck primary CMB prediction and the Sunyaev-Zeldovich (SZ) effect number count for $\tau \sim H_{0}^{-1}$.
BS Cir is a representative of moderately cool magnetic chemically peculiar stars which displays very strong light variations in Stroemgren index c1 indicating large changes in the height of the Balmer jump. We present two-spot model of light variations fitting successfully all of nine light curves obtained in the spectral region 335-750 nm. We also discuss the nature of the observed variations of intensities of Fe, Cr, Ti, Si, Mg and RE spectral lines and possible mechanisms matching the observed light variations. It was confirmed that the observed period of BS Cir 2.204 d is rising with the rate of dP/dt=5.4(4)x10^-9. The found minor secular changes in the shape of light curve should be compatible with the period changes caused by precessional motion due to magnetic distortion of the star.
Our paper presents new methods for finding and testing of weak periodic variability of stellar objects developed for the purpose of detecting expected regular light variations of magnetic chemically peculiar (mCP) candidates in the Large Magellanic Cloud. We introduce two new periodograms of the mCP star, BS Cir (HD 125630), appropriate for rotating spotted variables and compare the results with those obtained by the well-known Lomb-Scargle periodogram. The usage of periodograms and the testing of the significance of the found period candidates are demonstrated with two examples: the observed and simulated observations of the magnetic field of the mCP star CQ UMa (HD 119213) and the mCP candidate OGLE LMC136.7 16501. Three newly developed tests of the periodic variability - the shuffling, bootstrap and subsidiary ones, are presented. We demonstrate that the found periodic variations known with Signal-to-Noise ratio larger than 6 can be approved as real.
We describe an image timestamp verification system to determine the exposure timing characteristics and continuity of images made by an imaging camera and recorder, with reference to Coordinated Universal Time (UTC). The original use was to verify the timestamps of stellar occultation recording systems, but the system is applicable to lunar flashes, planetary transits, sprite recording, or any area where reliable timestamps are required. The system offers good temporal resolution (down to 2 msec, referred to UTC) and provides exposure duration and interframe dead time information. The system uses inexpensive, off-the- shelf components, requires minimal assembly and requires no high-voltage components or connections. We also describe an application to load FITS (and other format) image files, which can decode the verification image timestamp. Source code, wiring diagrams and built applications are provided to aid the construction and use of the device.
We propose a procedure to evaluate the impact of nonlinear couplings on the evolution of massive neutrino streams in the context of large-scale structure growth. Such streams can be described by general nonlinear conservation equations, derived from a multiple-flow perspective, which generalize the conservation equations of non-relativistic pressureless fluids. The relevance of the nonlinear couplings is quantified with the help of the eikonal approximation applied to the subhorizon limit of this system. It highlights the role played by the relative displacements of different cosmic streams and it specifies, for each flow, the spatial scales at which the growth of structure is affected by nonlinear couplings. We found that, at redshift zero, such couplings can be significant for wavenumbers as small as $k=0.2\,h$/Mpc for most of the neutrino streams.
Exoplanets in extremely close-in orbits are immersed in a local interplanetary medium (i.e., the stellar wind) much denser than the local conditions encountered around the solar system planets. The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (likely higher for host stars more active than the Sun). Here, we quantitatively investigate the nature of the interplanetary media surrounding the hot Jupiters HD46375b, HD73256b, HD102195b, HD130322b, HD179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive mass-loss rates (1.9 to 8.0 $\times 10^{-13} M_{\odot}$/yr) and the wind properties at the position of the hot-Jupiters' orbits (temperature, velocity, magnetic field intensity and pressure). We show that these exoplanets' orbits are super-magnetosonic, indicating that bow shocks are formed surrounding these planets. Assuming planetary magnetic fields similar to Jupiter's, we estimate planetary magnetospheric sizes of 4.1 to 5.6 planetary radii. We also derive the exoplanetary radio emission released in the dissipation of the stellar wind energy. We find radio fluxes ranging from 0.02 to 0.13 mJy, which are challenging to be observed with present-day technology, but could be detectable with future higher sensitivity arrays (e.g., SKA). Radio emission from systems having closer hot-Jupiters, such as from tau Boo b or HD189733b, or from nearby planetary systems orbiting young stars, are likely to have higher radio fluxes, presenting better prospects for detecting exoplanetary radio emission.
A satellite galaxy or dark matter subhalo that passes through a stellar disk may excite coherent oscillations in the disk perpendicular to its plane. We determine the properties of these modes for various self-gravitating plane symmetric systems (Spitzer sheets) using the matrix method of Kalnajs. In particular, we find an infinite series of modes for the case of a barotropic fluid. In general, for a collisionless system, there is a double series of modes, which include normal modes and/or Landau-damped oscillations depending on the phase space distribution function of the stars. Even Landau-damped oscillations may decay slowly enough to persist for several hundred Myr. We discuss the implications of these results for the recently discovered vertical perturbations in the kinematics of solar neighborhood stars and for broader questions surrounding secular phenomena such as spiral structure in disk galaxies.
Beta Cephei-type variables are early B-type stars that are characterized by oscillations observable in their optical light curves. At least one Beta Cep-variable also shows periodic variability in X-rays. Here we study the X-ray light curves in a sample of beta Cep-variables to investigate how common X-ray pulsations are for this type of stars. We searched the Chandra and XMM-Newton X-ray archives and selected stars that were observed by these telescopes for at least three optical pulsational periods. We retrieved and analyzed the X-ray data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these objects were studied to test for their variability and periodicity. While there is a weak indication for X-ray variability in beta Cru, we find no statistically significant evidence of X-ray pulsations in any of our sample stars. This might be due either to the insufficient data quality or to the physical lack of modulations. New, more sensitive observations should settle this question.
We propose a new method of pushing $Herschel$ to its faintest detection limits using universal trends in the redshift evolution of the far infrared over 24$\mu$m colours in the well-sampled GOODS-North field. An extension to other fields with less multi-wavelength information is presented. This method is applied here to raise the contribution of individually detected $Herschel$ sources to the cosmic infrared background (CIRB) by a factor 5 close to its peak at 250$\mu$m and more than 3 in the 350$\mu$m and 500$\mu$m bands. We produce realistic mock $Herschel$ images of the deep PACS and SPIRE images of the GOODS-North field from the GOODS-$Herschel$ Key Program and use them to quantify the confusion noise at the position of individual sources, i.e., estimate a "local confusion noise". Two methods are used to identify sources with reliable photometric accuracy extracted using 24$\mu$m prior positions. The clean index (CI), previously defined but validated here with simulations, which measures the presence of bright 24$\mu$m neighbours and the photometric accuracy index (PAI) directly extracted from the mock $Herschel$ images. After correction for completeness, thanks to our mock $Herschel$ images, individually detected sources make up as much as 54% and 60% of the CIRB in the PACS bands down to 1.1 mJy at 100$\mu$m and 2.2 mJy at 160$\mu$m and 55, 33, and 13% of the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250$\mu$m, 350$\mu$m, and 500$\mu$m, respectively. The latter depths improve the detection limits of $Herschel$ by factors of 5 at 250$\mu$m, and 3 at 350$\mu$m and 500$\mu$m as compared to the standard confusion limit. Interestingly, the dominant contributors to the CIRB in all $Herschel$ bands appear to be distant siblings of the Milky Way ($z$$\sim$0.96 for $\lambda$$<$300$\mu$m) with a stellar mass of $M_{\star}$$\sim$9$\times$10$^{10}$M$_{\odot}$.
In this thesis, we theoretically predict the normal characteristics of Very
Low Frequency (3~30 kHz) radio wave propagation through Earth-ionosphere
waveguide corresponding to normal behavior of the D-region ionosphere. We took
the VLF narrow band data from the receivers of Indian Centre for Space Physics
(ICSP) to validate our models. Detection of sudden ionospheric disturbances
(SIDs) are common to all the measurements. We apply our theoretical models to
infer the D-region characteristics and to reproduce the observed VLF signal
behavior corresponding to such SIDs.
We develop a code based on ray theory to simulate the diurnal behavior of VLF
signals over short propagation paths (2000~3000 km). The diurnal variation from
this code are comparable to the variation obtained from a more general Long
Wave Propagation Capability (LWPC) code which is based on mode theory approach.
We simulate the observational results obtained during the Total Solar Eclipse
of July 22, 2009 in India. We also report and simulate a historic event,
namely, the lunar occultation of a solar flare during the annular solar eclipse
of 15th January, 2010 and find the effects on the D-region electron density
profiles.
We investigate the effect of averaging inhomogeneities on expansion and large-scale structure growth observables using the exact and covariant framework of Macroscopic Gravity (MG). It is well-known that applying the Einstein's equations and spatial averaging do not commute and lead to the averaging problem. For the MG formalism applied to the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, this gives an extra dynamical term encapsulated as an averaging density parameter denoted $\Omega_A$. An exact isotropic cosmological solution of MG for the flat FLRW metric is already known in the literature, we derive here an anisotropic exact solution. Using the isotropic solution, we compare the expansion history to current data of distances to supernovae, Baryon Acoustic Oscillations, CMB last scattering surface, and Hubble constant measurements, and find $-0.05 \le \Omega_A \le 0.07$ (at the 95% CL). For the flat metric case this reduces to $-0.03 \le \Omega_A \le 0.05$. We also find that the inclusion of this term in the fits can shift the values of the usual cosmological parameters by a few to several percents. Next, we derive an equation for the growth rate of large scale structure in MG that includes a term due to the averaging and compare it to that of the LCDM concordance model. We find that an $\Omega_A$ of an amplitude range within the bounds above leads to a relative deviation of the growth from that of the LCDM of up to 2-4% at late times. Thus, the shift in the growth could be of comparable amplitude to that caused by similar changes in cosmological parameters like the dark energy density parameter or its equation of state. The effect could also be comparable in amplitude to some systematic effects considered for future surveys. This indicates that the averaging term and its possible effect need to be tightly constrained in future precision cosmological studies. (Abridged)
There has been a growing evidence for the existence of magnetic fields in the extra-galactic regions, while the attempt to associate their origin with the inflationary epoch alone has been found extremely challenging. We therefore take into account the consistent post-inflationary evolution of the magnetic fields that are originated from vacuum fluctuations during inflation. In the model of our interest, the electromagnetic (EM) field is coupled to a pseudo-scalar inflaton $\phi$ through the characteristic term $\phi F\tilde F$, breaking the conformal invariance. This interaction dynamically breaks the parity and enables a continuous production of only one of the polarization states of the EM field through tachyonic instability. The produced magnetic fields are thus helical. We find that the dominant contribution to the observed magnetic fields in this model comes from the modes that leave the horizon near the end of inflation, further enhanced by the tachyonic instability right after the end of inflation. The EM field is subsequently amplified by parametric resonance during the period of inflaton oscillation. Once the thermal plasma is formed (reheating), the produced helical magnetic fields undergo a turbulent process called inverse cascade, which shifts their peak correlation scales from smaller to larger scales. We consistently take all these effects into account within the regime where the perturbation of $\phi$ is negligible and obtain $B_{\rm eff} \sim 10^{-19}$G, indicating the necessity of additional mechanisms to accommodate the observations.
This paper reports the results of Suzaku observation of the spectral variation of the black hole binary LMCX-1 in the soft state. The observationwas carried out in 2009 from July 21 to 24. the obtained net count rate was $\sim$30 counts s$^{-1}$ in the 0.5--50 keV band with $\sim$10% peak-to-peak flux variation. The time-averaged X-ray spectrum cannot be described by a multi-color disk and single Compton component with its reflection, but requires additional Comptonized emissions. This double Compton component model allows a slightly larger inner radius of the multi-color disk, implying a lower spin parameter. Significant spectral evolution was observed above 8 keV along with a flux decrease on a timescale of $\sim$10$^4$--10$^5$ s. By spectral fitting, we show that this behavior is well explained by changes in the hard Comptonized emission component in contrast to the maintained disk and soft Comptonized emission.
An X-ray spectrograph consisting of radially ruled off-plane reflection gratings and silicon pore optics was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The silicon pore optic (SPO) stack used is a test module for the Arcus small explorer mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. The gratings were aligned using an active alignment module which allows for the independent manipulation of subsequent gratings to a reference grating in three degrees of freedom using picomotor actuators which are controllable external to the test chamber. We report the line spread functions of the spectrograph and the actively aligned gratings, and plans for future development.
Feedback in massive galaxies generally involves quenching of star formation, a favored candidate being outflows from a central supermassive black hole. At high redshifts however, explanation of the huge rates of star formation often found in galaxies containing AGN may require a more vigorous mode of star formation than attainable by simply enriching the gas content of galaxies in the usual gravitationally-driven mode that is associated with the nearby Universe. Using hydrodynamical simulations, we demonstrate that AGN-pressure-driven star formation potentially provides the positive feedback that may be required to generate the accelerated star formation rates observed in the distant Universe.
We report the discovery of a gravitationally lensed hyperluminous infrared galaxy (L_IR~10^13 L_sun) with strong radio emission (L_1.4GHz~10^25 W/Hz) at z=2.553. The source was identified in the citizen science project SpaceWarps through the visual inspection of tens of thousands of iJKs colour composite images of Luminous Red Galaxies (LRGs), groups and clusters of galaxies and quasars. Appearing as a partial Einstein ring (r_e~3") around an LRG at z=0.2, the galaxy is extremely bright in the sub-millimetre for a cosmological source, with the thermal dust emission approaching 1 Jy at peak. The redshift of the lensed galaxy is determined through the detection of the CO(3-2) molecular emission line with the Large Millimetre Telescope's Redshift Search Receiver and through [OIII] and H-alpha line detections in the near-infrared from Subaru/IRCS. We have resolved the radio emission with high resolution (300-400 mas) eMERLIN L-band and JVLA C-band imaging. These observations are used in combination with the near-infrared imaging to construct a lens model, which indicates a lensing magnification of ~10x. The source reconstruction appears to support a radio morphology comprised of a compact (<250 pc) core and more extended component, perhaps indicative of an active nucleus and jet or lobe.
We consider the evolution of millisecond radio pulsars in binary systems with a main-sequence or evolved stellar companion. Evolution of non-accreting binary systems with "eclipsing" milisecond pulsars was described by Klu\'zniak, Czerny & Ray (1992) who predicted that systems like the one containing the Terzan 5 PSR 1744-24A will in the future become accreting low mass X-ray binaries (LMXBs), while PSR 1957+20 may evaporate its companion. The model presented in the current paper gives similar results for these two objects and allows to obtain diverse evolutionary tracks of millisecond pulsars with low mass companions (black widows). Our results suggest that the properties of many black widow systems can be explained by an ablation phase lasting a few hundred million years. Some of these sources may regain Roche lobe contact in a comparable time, and become LMXBs.
Recent studies have presented evidence that the Milky Way global potential may be nonspherical. In this case, the assembling process of the Galaxy may have left long lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such possibility, considering now potential models further away from $\Lambda$CDM halos, like scalar field dark matter halos, MOND, and including several other factors that may mimic the emergence and permanence of kinematic groups, such as, a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.
The relationship between the cosmic microwave background radiation temperature and the redshift, i.e., the $T$--$z$ relation, is examined in a phenomenological dissipative model. The model contains two constant terms, as if a nonzero cosmological constant $\Lambda$ and a dissipative process are operative in a homogeneous, isotropic, and spatially flat universe. The $T$--$z$ relation is derived from a general radiative temperature law, as appropriate for describing nonequilibrium states in a creation of cold dark matter (CCDM) model. Using this relation, the radiation temperature in the late universe is calculated as a function of a dissipation rate ranging from $\tilde{\mu} =0$, corresponding to a nondissipative $\Lambda$CDM model, to $\tilde{\mu} =1$, corresponding to a fully dissipative CCDM model. The $T$--$z$ relation for $\tilde{\mu} =0$ is linear for standard cosmology and is consistent with observations. However, with increasing dissipation rate $\tilde{\mu}$, the radiation temperature gradually deviates from a linear law because the effective equation-of-state parameter varies with time. When the background evolution of the universe agrees with a fine-tuned pure $\Lambda$CDM model, the $T$--$z$ relation for low $\tilde{\mu}$ matches observations, whereas the $T$--$z$ relation for high $\tilde{\mu}$ does not. Previous work also found that a weakly dissipative model accords with measurements of a growth rate for clustering related to structure formations. These results imply that low dissipation is likely for the universe.
We derived elemental abundances in 27 Cepheids, the great majority situated within a zone of Galactocentric distances ranging from 5 to 7 kpc. One star of our sample, SU Sct, has a Galactocentric distance of about 3 kpc, and thus falls in a poorly investigated region of the inner thin disc. Our new results, combined with data on abundances in the very central part of our Galaxy taken from literature, show that iron, magnesium, silicon, sulfur, calcium and titanium LTE abundance radial distributions, as well as NLTE distribution of oxygen reveal a plateau-like structure or even positive abundance gradient in the region extending from the Galactic center to about 5 kpc.
Dielectronic recombination (DR) is the dominant recombination process for most heavy elements in photoionized clouds. Accurate DR rates for a species can be predicted when the positions of autoionizing states are known. Unfortunately such data are not available for most third and higher-row elements. This introduces an uncertainty that is especially acute for photoionized clouds, where the low temperatures mean that DR occurs energetically through very low-lying autoionizing states. This paper discusses S$^{2+} \rightarrow$ S$^+$ DR, the process that is largely responsible for establishing the [S~III]/[S~II] ratio in nebulae. We derive an empirical rate coefficient using a novel method for second-row ions, which do have accurate data. Photoionization models are used to reproduce the [O~III] / [O~II] / [O~I] / [Ne~III] intensity ratios in central regions of the Orion Nebula. O and Ne have accurate atomic data and can be used to derive an empirical S$^{2+} \rightarrow$ S$^+$ DR rate coefficient at $\sim 10^{4}$~K. We present new calculations of the DR rate coefficient for S$^{2+} \rightarrow$ S$^+$ and quantify how uncertainties in the autoionizing level positions affect it. The empirical and theoretical results are combined and we derive a simple fit to the resulting rate coefficient at all temperatures for incorporation into spectral synthesis codes. This method can be used to derive empirical DR rates for other ions, provided that good observations of several stages of ionization of O and Ne are available.
A mostly right-handed sneutrino as the lightest supersymmetric particle (LSP) is an interesting dark matter candidate, leading to LHC signatures which can be quite distinct from those of the conventional neutralino LSP. Using SModelSv1.0.1 for testing the model against the limits published by ATLAS and CMS in the context of so-called Simplified Model Spectra (SMS), we investigate to what extent the supersymmetry searches at Run 1 of the LHC constrain the sneutrino-LSP scenario. Moreover, we discuss the most relevant topologies for which no SMS results are provided by the experimental collaborations but which would allow to put more stringent constraints on sneutrino LSPs. These include, for instance, the mono-lepton signature which should be particularly interesting to consider at Run 2 of the LHC.
In this paper, we demonstrate that the Wald's entropy for any spherically symmetric blackhole within an infinite derivative theory of gravity is determined solely by the area law. Thus, the infrared behaviour of gravity is captured by the Einstein-Hilbert term, provided that the massless graviton remains the only propagating degree of freedom in the spacetime.
In the case of ground-based telescopes equipped with adaptive optics systems, the point spread function (PSF) is only poorly known or completely unknown. Moreover, an accurate modeling of the PSF is in general not available. Therefore in several imaging situations the so-called blind deconvolution methods, aiming at estimating both the scientific target and the PSF from the detected image, can be useful. A blind deconvolution problem is severely ill-posed and, in order to reduce the extremely large number of possible solutions, it is necessary to introduce sensible constraints on both the scientific target and the PSF. In a previous paper we proposed a sound mathematical approach based on a suitable inexact alternating minimization strategy for minimizing the generalized Kullback-Leibler divergence, assuring global convergence. In the framework of this method we showed that an important constraint on the PSF is the upper bound which can be derived from the knowledge of its Strehl ratio. The efficacy of the approach was demonstrated by means of numerical simulations. In this paper, besides improving the previous approach by the use of a further constraint on the unknown scientific target, we extend it to the case of multiple images of the same target obtained with different PSFs. The main application we have in mind is to Fizeau interferometry. As it is known this is a special feature of the Large Binocular Telescope (LBT). The method is applied to realistic simulations of imaging both by single mirrors and Fizeau interferometers. Successes and failures of the method in the imaging of stellar fields are demonstrated in simple cases. These preliminary results look promising at least in specific situations. The IDL code of the proposed method is available on request and will be included in the forthcoming version of the Software Package AIRY (v.6.1).
We survey a variety of cosmological problems where the issue of generality has arisen. This is aimed at providing a wider context for many claims and deductions made when philosophers of science choose cosmological problems for investigation. We show how simple counting arguments can be used to characterise parts of the general solution of Einstein's equations when various matter fields are present and with different spatial topologies. Applications are described to the problem of singularities, static cosmological models, cosmic no hair theorems, the late-time isotropisation of cosmological models, and the number of parameters needed to describe a general astronomical universe.
A general method to extract exact cosmological solutions for scalar field dark energy in the presence of perfect fluids is presented. We use as a selection rule the existence of invariant transformations for the Wheeler De Witt (WdW) equation. We show that the existence of point transformation in which the WdW equation is invariant is equivalent to the existence of conservation laws for the field equations. Mathematically, the existence of extra integrals of motion indicates the existence of analytical solutions. We extend previous work by providing exact solutions for the Hubble parameter and the effective dark energy equation of state parameter for cosmologies containing a combination of perfect fluid and a scalar field whose self-interaction potential is a power of hyperbolic functions. Finally, we perform a dynamical analysis by studying the fixed points of the field equations using dimensionless variables. Amongst the variety of dynamical cases, we find that if the current cosmological model is Liouville integrable (admits conservation laws) then there is a unique stable point which describes the de-Sitter phase of the universe.
We consider Supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the phi^n potential with 2<=n<=6. We show that the coexistence of a nonminimal coupling to gravity, fR=1+cR phi^{n/2}, with a kinetic mixing of the form fK=cK fR^m can accommodate values of the spectral index, ns, and the tensor-to-scalar ratio, r, favored by the Bicep2/Keck Array and Planck results for 0<=m<=4 and 2.5x10^{-4}<=rRK=cR/cK^{n/4}<=1. Inflation can be attained for subplanckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.
Links to: arXiv, form interface, find, astro-ph, recent, 1503, contact, help (Access key information)