Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-alpha photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this note we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying Paper I, but also have potential applications in the context of dark matter decay or de-excitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at this http URL, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.
We study a sample of ~10^4 galaxy clusters in the redshift range 0.2<z<0.8 with masses M_200 > 5x10^13 h_70^-1 M_sun, discovered in the second Red-sequence Cluster Survey (RCS2). The depth and excellent image quality of the RCS2 enable us to detect the cluster-mass cross-correlation up to z~0.7. To obtain cluster masses, concentrations and halo biases, we fit a cluster halo model simultaneously to the lensing signal and to the projected density profile of red-sequence cluster members, as the latter provides tight constraints on the cluster miscentring distribution. We parametrise the mass-richness relation as M_200 = A x (N_200/20)^alpha, and find A = (16.7 +- 1.2) x 10^13 h_70^-1 M_sun and alpha = 0.73 +- 0.09 at low redshift (0.2<z<0.35). At intermediate redshift (0.35<z<0.55), we find a higher normalisation, which points at a fractional increase of the richness towards lower redshift caused by the build-up of the red-sequence. The miscentring distribution is well constrained. Only ~30% of our BCGs coincide with the peak of the dark matter distribution. The distribution of the remaining BCGs are modelled with a 2D-Gaussian, whose width increases from 0.2 to 0.4 h_70^-1 Mpc towards higher masses; the ratio of width and r_200 is constant with mass and has an average value of 0.43 +- 0.01. The mass-concentration and mass-bias relation agree fairly well with literature results at low redshift, but have a higher normalisation at higher redshifts, which may be due to selection and projection effects. The concentration of the satellite distribution decreases with mass and is correlated with the concentration of the halo.
We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. We compare our sample with 80 non-interacting galaxies. We measure for the stellar and the ionized gas components the major (projected) kinematic position angles (PA$_{\mathrm{kin}}$, approaching and receding) directly from the velocity fields with no assumptions on the internal motions. This method allow us to derive the deviations of the kinematic PAs from a straight line ($\delta$PA$_{\mathrm{kin}}$). Around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. Those misalignments are present mostly in galaxies with morphological signatures of interaction. Alignment between the kinematic sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA from a straight line in the stellar component measured by $\delta$PA$_{\mathrm{kin}}$ are large for both samples. However, for a large fraction of interacting galaxies the ionized gas $\delta$PA$_{\mathrm{kin}}$ is larger than typical values derived from isolated galaxies (48%), making this parameter a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16 degrees, compared to 10% from the control sample. Our results show the impact of interactions in the internal structure of galaxies as well as the wide variety of their velocity distributions. This study also provides a local Universe benchmark for kinematic studies in merging galaxies at high redshift.
The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3--2 towards the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3--2, and IRAM 30m observations of HCN and HNC 1--0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1--0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. To realize the full potential of HNC as a disk tracer requires, however, a combination of high SNR spatially resolved observations of HNC and HCN, and disk specific HNC chemical modeling.
We use near ultraviolet and optical photometry to investigate the dust properties in the nearby starburst galaxy M82. By combining imaging from the Swift/UVOT instrument and optical data from the Sloan Digital Sky Survey, we derive the extinction curve parameterized by the standard Rv factor, and the strength of the NUV 2175 A feature - quantified by a parameter B -- out to projected galactocentric distances of 4 kpc. Our analysis is robust against possible degeneracies from the properties of the underlying stellar populations. Both B and Rv correlate with galactocentric distance, revealing a systematic trend of the dust properties. Our results confirm previous findings that dust in M82 is better fit by a Milky Way standard extinction curve (Hutton et al.), in contrast to a Calzetti law. We find a strong correlation between Rv and B, towards a stronger NUV bump in regions with higher Rv, possibly reflecting a distribution with larger dust grain sizes. The data we use were taken before SN2014J, and therefore can be used to probe the properties of the interstellar medium before the event. Our Rv values around the position of the supernova are significantly higher than recent measurements post-SN2014J (Rv~1.4). This result is consistent with a significant change in the dust properties after the supernova event, either from disruption of large grains or from the contribution by an intrinsic circumstellar component. Intrinsic variations among supernovae not accounted for could also give rise to this mismatch.
We present a catalogue of 348 galaxy clusters and groups with $0.2<z<1.2$
selected in the 2.78 $deg^2$ ALHAMBRA Survey. The high precision of our
photometric redshifts, close to $1\%$, and the wide spread of the seven
ALHAMBRA pointings ensure that this catalogue has better mass sensitivity and
is less affected by cosmic variance than comparable samples.
The detection has been carried out with the Bayesian Cluster Finder (BCF),
whose performance has been checked in ALHAMBRA-like light-cone mock catalogues.
Great care has been taken to ensure that the observable properties of the mocks
photometry accurately correspond to those of real catalogues. From our
simulations, we expect to detect galaxy clusters and groups with both $70\%$
completeness and purity down to dark matter halo masses of
$M_h\sim3\times10^{13}\rm M_{\odot}$ for $z<0.85$. Cluster redshifts are
expected to be recovered with $\sim0.6\%$ precision for $z<1$. We also expect
to measure cluster masses with $\sigma_{M_h|M^*_{CL}}\sim0.25-0.35\, dex$
precision down to $\sim3\times10^{13}\rm M_{\odot}$, masses which are $50\%$
smaller than those reached by similar work.
We have compared these detections with previous optical, spectroscopic and
X-rays work, finding an excellent agreement with the rates reported from the
simulations. We have also explored the overall properties of these detections
such as the presence of a colour-magnitude relation, the evolution of the
photometric blue fraction and the clustering of these sources in the different
ALHAMBRA fields. Despite the small numbers, we observe tentative evidence that,
for a fixed stellar mass, the environment is playing a crucial role at lower
redshifts (z$<$0.5).
We model driven, compressible, isothermal, turbulence with Mach numbers ranging from the subsonic ($\mathcal{M} \approx 0.65$) to the highly supersonic regime ($\mathcal{M}\approx 16 $). The forcing scheme consists both solenoidal (transverse) and compressive (longitudinal) modes in equal parts. We find a relation $\sigma_{s}^2 = \mathrm{b}\log{(1+\mathrm{b}^2\mathcal{M}^2)}$ between the Mach number and the standard deviation of the logarithmic density with $\mathrm{b} = 0.457 \pm 0.007$. The density spectra follow $\mathcal{D}(k,\,\mathcal{M}) \propto k^{\zeta(\mathcal{M})}$ with scaling exponents depending on the Mach number. We find $\zeta(\mathcal{M}) = \alpha \mathcal{M}^{\beta}$ with a coefficient $\alpha$ that varies slightly with resolution, whereas $\beta$ changes systematically. We extrapolate to the limit of infinite resolution and find $\alpha = -1.91 \pm 0.01,\, \beta =-0.30\pm 0.03$. The dependence of the scaling exponent on the Mach number implies a fractal dimension $D=2+0.96 \mathcal{M}^{-0.30}$. We determine how the scaling parameters depend on the wavenumber and find that the density spectra are slightly curved. This curvature gets more pronounced with increasing Mach number. We propose a physically motivated fitting formula $\mathcal{D}(k) = \mathcal{D}_0 k^{\zeta k^{\eta}}$ by using simple scaling arguments. The fit reproduces the spectral behaviour down to scales $k\approx 80$. The density spectrum follows a single power-law $\eta = -0.005 \pm 0.01$ in the low Mach number regime and the strongest curvature $\eta = -0.04 \pm 0.02$ for the highest Mach number. These values of $\eta$ represent a lower limit, as the curvature increases with resolution.
Outflows promote the escape of Lyman-$\alpha$ (Ly$\alpha$) photons from dusty interstellar media. The process of radiative transfer through interstellar outflows is often modelled by a spherically symmetric, geometrically thin shell of gas that scatters photons emitted by a central Ly$\alpha$ source. Despite its simplified geometry, this `shell model' has been surprisingly successful at reproducing observed Ly$\alpha$ line shapes. In this paper we perform automated line fitting on a set of noisy simulated shell model spectra, in order to determine whether degeneracies exist between the different shell model parameters. While there are some significant degeneracies, we find that most parameters are accurately recovered, especially the HI column density ($N_{\rm HI}$) and outflow velocity ($v_{\rm exp}$). This work represents an important first step in determining how the shell model parameters relate to the actual physical properties of Ly$\alpha$ sources. To aid further exploration of the parameter space, we have made our simulated model spectra available through an interactive online tool.
The Transiting Exoplanet Survey Satellite (TESS) is a NASA-sponsored Explorer mission that will perform a wide-field survey for planets that transit bright host stars. Here, we predict the properties of the transiting planets that TESS will detect along with the eclipsing binary stars that produce false-positive photometric signals. The predictions are based on Monte Carlo simulations of the nearby population of stars, occurrence rates of planets derived from Kepler, and models for the photometric performance and sky coverage of the TESS cameras. We expect that TESS will find approximately 1700 transiting planets from 200,000 pre-selected target stars. This includes 556 planets smaller than twice the size of Earth, of which 419 are hosted by M dwarf stars and 137 are hosted by FGK dwarfs. Approximately 130 of the R < 2 R_Earth planets will have host stars brighter than K = 9. Approximately 48 of the planets with R < 2 R_Earth lie within or near the habitable zone (0.2 < S/S_Earth < 2), and between 2-7 such planets have host stars brighter than K = 9. We also expect approximately 1100 detections of planets with radii 2-4 R_Earth, and 67 planets larger than 4 R_Earth. Additional planets larger than 2 R_Earth can be detected around stars that are not among the pre-selected target stars, because TESS will also deliver full-frame images at a 30-minute cadence. The planet detections are accompanied by over one thousand astrophysical false positives. We discuss how TESS data and ground-based observations can be used to distinguish the false positives from genuine planets. We also discuss the prospects for follow-up observations to measure the masses and atmospheres of the TESS planets.
An accretion outburst in an X-ray transient deposits material onto the neutron star primary; this accumulation of matter induces reactions in the neutron star's crust. During the accretion outburst these reactions heat the crust out of thermal equilibrium with the core. When accretion halts, the crust cools to its long-term equilibrium temperature on observable timescales. Here we examine the accreting neutron star transient MAXI J0556-332, which is the hottest transient, at the start of quiescence, observed to date. Models of the quiescent light curve require a large deposition of heat in the shallow outer crust from an unknown source. The additional heat injected is $\approx 4\textrm{-}10\,\mathrm{MeV}$ per accreted nucleon; when the observed decline in accretion rate at the end of the outburst is accounted for, the required heating increases to $\approx 6\textrm{-}16\,\mathrm{MeV}$. This shallow heating is still required to fit the lightcurve even after taking into account a second accretion episode, uncertainties in distance, and different surface gravities. The amount of shallow heating is larger than that inferred for other neutron star transients and is larger than can be supplied by nuclear reactions or compositionally driven convection; but it is consistent with stored mechanical energy in the accretion disk. The high crust temperature ($T_b \gtrsim 10^{9} \, {\rm K}$) makes its cooling behavior in quiescence largely independent of the crust composition and envelope properties, so that future observations will probe the gravity of the source. Fits to the lightcurve disfavor the presence of Urca cooling pairs in the crust.
Synchrotron radiation is commonly observed associated with shocks of different velocities, ranging from relativistic shocks associated with, e.g., active galactic nuclei, gamma-ray bursts or microquasars to weakly- or non-relativistic flows as those observed e.g. in supernovae and supernova remnants. Recent observations of polarization in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow to measure directly the jet and interstellar magnetic field structure and intensity, thus giving insights on the jet ejection mechanism itself. In this paper, we compute for the first time polarized (synchrotron) and non polarized (thermal-X-ray) synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as models with toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities ~ 1000km/s and ~ 10 times lighter than the environment can produce internal knots with significant synchrotron emission, and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium.
A set of diffuse interstellar clouds in the inner Galaxy within a few hundred pc of the Galactic plane has been observed at an angular resolution of ~1 arcmin combining data from the NRAO Green Bank Telescope and the Very Large Array. At the distance of the clouds the linear resolution ranges from ~1.9 pc to ~2.8 pc. These clouds have been selected to be somewhat out of the Galactic plane and are thus not confused with unrelated emission, but in other respects they are a Galactic population. They are located near the tangent points in the inner Galaxy, and thus at a quantifiable distance: $2.3 \leq R \leq 6.0$ kpc from the Galactic Center, and $-1000 \leq z \leq +610$ pc from the Galactic plane. These are the first images of the diffuse neutral HI clouds that may constitute a considerable fraction of the ISM. Peak HI column densities range from $N_{HI} = 0.8-2.9 \times 10^{20}$ cm$^{-2}$. Cloud diameters vary between about 10 and 100 pc, and their HI mass spans the range from less than a hundred to a few thousands Msun. The clouds show no morphological consistency of any kind except that their shapes are highly irregular. One cloud may lie within the hot wind from the nucleus of the Galaxy, and some clouds show evidence of two distinct thermal phases as would be expected from equilibrium models of the interstellar medium.
We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH$_{3}$CN, C$_{2}$H$_{3}$CN, C$_{2}$H$_{5}$CN, and NH$_{2}$CHO systematically trace hotter gas than the oxygen bearing organics CH$_{3}$OH, C$_{2}$H$_{5}$OH, CH$_{3}$OCH$_{3}$, and CH$_{3}$OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (T$_{\rm kin}$$\sim$300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales $\gtrsim$ 10$^{5}$ years, with several species being under predicted by less than 3$\sigma$. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules which also contain oxygen (i.e. SO, SO$_{2}$, and OCS) tend to probe the hottest gas toward Orion KL indicating the formation pathways for these species are most efficient at high temperatures.
The relative phasing of the X-ray eclipse ephemeris and optical radial velocity (RV) curve for the X-ray binary IC10 X-1 suggests the He[$\lambda$4686] emission-line originates in a shadowed sector of the stellar wind that avoids ionization by X-rays from the compact object. The line attains maximum blueshift when the wind is directly toward us at mid X-ray eclipse, as is also seen in Cygnus X-3. If the RV curve is unrelated to stellar motion, evidence for a massive black hole evaporates because the mass function of the binary is unknown. The reported X-ray luminosity, spectrum, slow QPO, and broad eclipses caused by absorption/scattering in the WR wind are all consistent with either a low-stellar-mass BH or a NS. For a NS, the centre of mass lies inside the WR envelope whose motion is then far below the observed 370 km/s RV amplitude, while the velocity of the compact object is as high as 600 km/s. The resulting 0.4\% doppler variation of X-ray spectral lines could be confirmed by missions in development. These arguments also apply to other putative BH binaries whose RV and eclipse curves are not yet phase-connected. Theories of BH formation and predicted rates of gravitational wave sources may need revision.
We investigate the prospects of detecting radio afterglows from long Gamma-Ray Bursts (GRBs) from Population III (Pop III) progenitors using the SKA precursor instruments WMA (Murchison Widefield Array) and ASKAP (Australian SKA Pathfinder). We derive a realistic model of GRB afterglows that encompasses the widest range of plausible physical parameters and observation angles. We define the best case scenario of Pop III GRB energy and redshift distributions. Using probability distribution functions fitted to the observed microphysical parameters of long GRBs, we simulate a large number of Pop III GRB afterglows to find the global probability of detection. We find that ASKAP may be able to detect 35% of Pop III GRB afterglows in the optimistic case, and 27% in the pessimistic case. A negligible number will be detectable by MWA in either case. Detections per image for ASKAP, found by incorporating intrinsic rates with detectable timescales, are as high as $\sim$ 6000 and as low as $\sim$ 11, which shows the optimistic case is unrealistic. We track how the afterglow flux density changes over various time intervals and find that, because of their very slow variability, the cadence for blind searches of these afterglows should be as long as possible. We also find Pop III GRBs at high redshift have radio afterglow lightcurves that are indistinguishable from those of regular long GRBs in the more local universe.
We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the overlap region of the two datasets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements $D_V r_s^{\rm fid} / r_s = (1970 \pm 47, 2132 \pm 67, 2100 \pm 200)$ Mpc from CMASS, the cross-correlation and WiggleZ, respectively. We use correlated mock realizations to calculate the covariance between the three BAO constraints. The distance scales derived from the two datasets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. This approach can be used to construct a correlation matrix, permitting for the first time a rigorous combination of WiggleZ and CMASS BAO measurements. Using a volume-scaling technique, our result can also be used to combine WiggleZ and future CMASS DR12 results. Finally, we use the cross-correlation function measurements to show that the relative velocity effect, a possible source of systematic uncertainty for the BAO technique, is consistent with zero for our samples.
The anisotropic galaxy 2-point correlation function (2PCF) allows measurement of the growth of large-scale structures from the effect of peculiar velocities on the clustering pattern. We present new measurements of the auto- and cross- correlation function multipoles of 69,180 WiggleZ and 46,380 BOSS-CMASS galaxies sharing an overlapping volume of ~0.2 (Gpc/h)^3. Analysing the redshift-space distortions (RSD) of galaxy 2-point statistics for these two galaxy tracers, we test for systematic errors in the modelling depending on galaxy type and investigate potential improvements in cosmological constraints. We build a large number of mock galaxy catalogues to examine the limits of different RSD models in terms of fitting scales and galaxy type, and to study the covariance of the measurements when performing joint fits. For the galaxy data, fitting the monopole and quadrupole of the WiggleZ 2PCF on scales 24<s<80 Mpc/h produces a measurement of the normalised growth rate $f\sigma_8$(z=0.54)=0.409$\pm$0.059, whereas for the CMASS galaxies we found a consistent constraint of $f\sigma_8$(z=0.54)=0.466$\pm$0.074. When combining the measurements, accounting for the correlation between the two surveys, we obtain $f\sigma_8$(z=0.54)=0.413$\pm$0.054, in agreement with the LCDM-GR model of structure growth and with other survey measurements.
We report the first test of isotropy of the Universe in the matter dominated epoch using the Lyman-$\alpha$ forest data from the high redshift quasars ($z>2$) from SDSS-III BOSS-DR9 datasets. Using some specified data cuts, we obtain the probability distribution function (PDF) of the Lyman-$\alpha$ forest transmitted flux and use the statistical moments of the PDF to address the isotropy of the Universe. In an isotropic Universe one would expect the transmitted flux to have consistent statistical characteristics in different parts of the sky. We trisect the total survey area of 3275 ${\rm deg}^2$ along the galactic latitude and using quadrant convention. We also make three subdivisions in the data for three different signal-to-noise-ratios (SNR). Finally we obtain and compare the statistical moments in the mean redshifts of 2.3, 2.6 and 2.9. We find, that the moments from all patches agree at all redshifts and at all SNRs, within 3$\sigma$ uncertainties. Since Lyman-$\alpha$ transmitted flux directly maps the neutral hydrogen distribution in the inter galactic medium (IGM), our results indicate, within the limited survey area and sensitivity of the data, the distribution of the neutral hydrogen in the Universe is consistent with isotropic distribution. We should mention that we report few deviations from isotropy in the data with low statistical significance. Increase in survey area and larger amount of data are needed to make any strong conclusion about these deviations.
We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep HST photometry obtained with the Legacy ExtraGalactic UV Survey (LEGUS). We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95% being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviors, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ~1.7 for length-scales between ~20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60% of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behavior in a time-scale of ~60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.
In the standard scenario for spin evolution of isolated neutron stars, a young pulsar slows down with a surface magnetic field B that does not change. Thus the pulsar follows a constant B trajectory in the phase space of spin period and spin period time derivative. Such an evolution predicts a braking index n = 3 while the field is constant and n > 3 when the field decays. This contrasts with all nine observed values being n < 3. Here we consider a magnetic field that is buried soon after birth and diffuses to the surface. We use a model of a growing surface magnetic field to fit observations of the three pulsars with lowest n: PSR J0537-6910 with n = -1.5, PSR B0833-45 (Vela) with n = 1.4, and PSR J1734-3333 with n = 0.9. By matching the age of each pulsar, we determine their magnetic field and spin period at birth and confirm the magnetar-strength field of PSR J1734-3333. Our results indicate all three pulsars formed in a similar way to central compact objects (CCOs), with differences due to the amount of accreted mass. We suggest magnetic field emergence may play a role in the distinctive glitch behaviour of low braking index pulsars, and we propose glitch behaviour and characteristic age as possible criteria in searches for CCO descendants.
Extragalactic jets launched from the immediate vicinity of supermassive black holes in radio-loud active galactic nuclei (AGN) are key objects in modern astronomy and astroparticle physics. AGN jets carry a fraction of the total gravitational energy released during the accretion of matter onto supermassive black holes and are prime suspects as possible sources of ultrahigh-energy cosmic rays and the recently detected extraterrestrial neutrinos at PeV energies. TANAMI (Tracking Active galactic Nuclei with Austral Milliarcsecond Interferometry) is a multiwavelength program monitoring AGN jets of the southern sky. It combines high-resolution imaging and spectral monitoring at radio wavelengths with higher-frequency observations at IR, optical/UV, X-ray and $\gamma$-ray energies. We review recent results of the TANAMI program, highlighting AGN candidate neutrino-emitters in the error circles of the IceCube PeV neutrino events.
Neutralino annihilation in the Galactic halo is the most definite observational signature proposed for indirect registration of the SUSY Dark Matter (DM) candidate particles. The corresponding annihilation signal (in the form of gamma-rays, positrons and antiprotons) may be boosted for one or three orders of magnitude due to the clustering of cold DM particles into the small-scale and very dense self-gravitating clumps. We discuss the formation of these clumps from the initial density perturbations and their successive fate in the Galactic halo. Only a small fraction of these clumps, $\sim0.1$%, in each logarithmic mass interval $\Delta\log M\sim1$ survives the stage of hierarchical clustering. We calculate the probability of surviving the remnants of dark matter clumps in the Galaxy by modelling the tidal destruction of the small-scale clumps by the Galactic disk and stars. It is demonstrated that a substantial fraction of clump remnants may survive through the tidal destruction during the lifetime of the Galaxy. The resulting mass spectrum of survived clumps is extended down to the mass of the core of the cosmologically produced clumps with a minimal mass. The survived dense remnants of tidally destructed clumps provide an amplification (boosting) of the annihilation signal with respect to the diffuse DM in the Galactic halo. We describe the anisotropy of clump distribution caused by the tidal destruction of clumps in the Galactic disk.
The continuum-fitting method is one of the two most important methods of determining the black hole spins in the accreting sources. Fits for a sequence of the increasing luminosities in a given source show an apparent decrease in the spin, which indicates a problem in the disk model. We perform simple tests whether the outflow from the disk close to the inner radius can fix this problem. We design four simple parametric models of the outflow from the disk close to the inner radius, and we compare these models with the apparent decrease trend of the spins in LMC X-3 and GRS 1915+105. Models without explicit dependence of parameters on the luminosity do not reproduce the spin measurements, but the simplest model with luminosity-dependent parameter (truncation radius of the disk) properly represents the trend. We perform tests of the sensitivity of the RXTE data to various disk models. The assumption of an outflow removes the artifact of the spin decrease with an increase of the source luminosity, but the solution is not unique due to the too low quality of the RXTE data.
Recent observations with Swift have begun to uncover $\gamma$-ray transients whose total energies are comparable to those of gamma-ray bursts (GRB), but have a duration an order of magnitude or more longer than the bulk of the GRB population. Some are suggested to form a new population of ultra-long GRBs, with a mean duration around $10^4$s, while a further population with $\gamma-$ray durations $>10^5$ s may represent manifestations of relativistic outflows from stars shredded around massive black holes in tidal disruption flares (TDFs). Here I review the observations of these new classes of events, discuss progress towards identifying their progenitors and suggest how new observations may both hone our understanding of the outbursts, and allow them to be used as probes, that offer both complementary and additional tools to GRBs.
Context. We study the atmosphere of the carbon-rich Mira RU Vir using the mid-infrared high spatial resolution interferometric observations from VLTI/MIDI. Aims. The aim of this work is to analyse the atmosphere of the carbon-rich Mira RU Vir, with state of the art models, in this way deepening the knowledge of the dynamic processes at work in carbon-rich Miras. Methods. We compare spectro-photometric and interferometric measurements of this carbon-rich Mira AGB star, with the predictions of different kinds of modelling approaches (hydrostatic model atmospheres plus MOD-More Of Dusty, self-consistent dynamic model atmospheres). A geometric model fitting tool is used for a first interpretation of the interferometric data. Results. The results show that a joint use of different kind of observations (photometry, spectroscopy, interferometry) is essential to shed light on the structure of the atmosphere of a carbon-rich Mira. The dynamic model atmospheres fit well the ISO spectrum in the wavelength range {\lambda} = [2.9, 25.0] {\mu}m. Nevertheless, a discrepancy is noticeable both in the SED (visible), and in the visibilities (shape and level). A possible explanation are intra-/inter-cycle variations in the dynamic model atmospheres as well as in the observations. The presence of a companion star and/or a disk or a decrease of mass loss within the last few hundred years cannot be excluded but are considered unlikely.
We investigate the deceleration of Solar Energetic Particles (SEPs) during their propagation from the Sun through interplanetary space, in the presence of weak to strong scattering in a Parker spiral configuration, using relativistic full orbit test particle simulations. The calculations retain all three spatial variables describing particles' trajectories, allowing to model any transport across the magnetic field. Large energy change is shown to occur for protons, due to the combined effect of standard adiabatic deceleration and a significant contribution from particle drift in the direction opposite to that of the solar wind electric field. The latter drift-induced deceleration is found to have a stronger effect for SEP energies than for galactic cosmic rays. The kinetic energy of protons injected at 1 MeV is found to be reduced by between 35 and 90% after four days, and for protons injected at 100 MeV by between 20 and 55%. The overall degree of deceleration is a weak function of the scattering mean free path, showing that, although adiabatic deceleration plays a role, a large contribution is due to particle drift. Current SEP transport models are found to account for drift-induced deceleration in an approximate way and their accuracy will need to be assessed in future work.
The source sky location estimate for the first detected gravitational wave signals will likely be poor, typically spanning areas more than hundreds of square degrees. It is an enormous task for most telescopes to search such large sky regions for counterpart signals in the electromagnetic spectrum. To maximise the chance of successfully observing the desired counterpart signal, we have developed an algorithm which maximises the detection probability by optimising the number of observing fields, and the time allocation for those fields. As a proof-of-concept demonstration, we use the algorithm to optimise the follow-up observations of the Palomar Transient Factory for a simulated gravitational wave event. We show that the optimal numbers for the Palomar Transient Factory are $24$ and $68$ for observation times $1800s$ and $5400s$ respectively, with a maximum detection probability about $65\%$ for a kilonova at $200 Mpc$.
This article, written for Scolarpedia, provides a brief introduction into the subject of cosmic strings, together with a review of their main properties, cosmological evolution and observational signatures.
Remarkable dust extinction features in the deep HST V and I images of the face-on Coma cluster spiral galaxy NGC 4921 show in unprecedented ways how ram pressure strips the ISM from the disk of a spiral galaxy. New VLA HI maps show a truncated and highly asymmetric HI disk with a compressed HI distribution in the NW, providing evidence for ram pressure acting from the NW. Where the HI distribution is truncated in the NW region, HST images show a well-defined, continuous front of dust that extends over 90 degrees and 20 kpc. This dust front separates the dusty from dust-free regions of the galaxy, and we interpret it as galaxy ISM swept up near the leading side of the ICM-ISM interaction. We identify and characterize 100 pc-1 kpc scale substructure within this dust front caused by ram pressure, including head-tail filaments, C-shaped filaments, and long smooth dust fronts. The morphology of these features strongly suggests that dense gas clouds partially decouple from surrounding lower density gas during stripping, but decoupling is inhibited, possibly by magnetic fields which link and bind distant parts of the ISM.
Studying coronal mass ejections (CMEs) in coronagraph data can be challenging due to their diffuse structure and transient nature, compounded by the variations in their dynamics, morphology, and frequency of occurrence. The large amounts of data available from missions like the Solar and Heliospheric Observatory (SOHO) make manual cataloging of CMEs tedious and prone to human error, and so a robust method of detection and analysis is required and often preferred. A new coronal image processing catalog called CORIMP has been developed in an effort to achieve this, through the implementation of a dynamic background separation technique and multiscale edge detection. These algorithms together isolate and characterise CME structure in the field-of-view of the Large Angle Spectrometric Coronagraph (LASCO) onboard SOHO. CORIMP also applies a Savitzky-Golay filter, along with quadratic and linear fits, to the height-time measurements for better revealing the true CME speed and acceleration profiles across the plane-of-sky. Here we present a sample of new results from the CORIMP CME catalog, and directly compare them with the other automated catalogs of Computer Aided CME Tracking (CACTus) and Solar Eruptive Events Detection System (SEEDS), as well as the manual CME catalog at the Coordinated Data Analysis Workshop (CDAW) Data Center and a previously published study of the sample events. We further investigate a form of unsupervised machine learning by using a k-means clustering algorithm to distinguish detections of multiple CMEs that occur close together in space and time. While challenges still exist, this investigation and comparison of results demonstrates the reliability and robustness of the CORIMP catalog, proving its effectiveness at detecting and tracking CMEs throughout the LASCO dataset.
We show that dark matter abundance and the inflationary scale $H$ could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a $Z_2$ symmetric singlet $s$ coupled to the Standard Model Higgs $\Phi$ via $\lambda \Phi^{\dag}\Phi s^2$. Dark matter relic density is generated non-thermally for $\lambda \lesssim 10^{-7}$. We show that the dark matter yield crucially depends on the inflationary scale. For $H\sim 10^{10}$ GeV we find that the singlet self-coupling and mass should lie in the regime $\lambda_{\rm s}\gtrsim 10^{-9}$ and $m_{\rm s}\lesssim 50$ GeV to avoid dark matter overproduction.
The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of $H_\alpha$ and $H_\beta$ Balmer lines in spectra of DA white dwarfs (WDs), as masking effects in measurements of the gravitational red shift in WDs, have been examined in detail. The results are compared with our earlier ones from before a quarter of a century (Grabowski et al. 1987, hereafter ApJ'87; Madej and Grabowski 1990). In these earlier papers, as a dominant constituent of the Balmer-line-profiles, the standard, symmetrical Stark line profiles, shifted as the whole by PS-effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark-line-profiles (especially of $H_\beta$) are immanently asymmetrical and shifted due to the effects of strong inhomogeneity of the perturbing fields in plasma. To calculate the Stark line-profiles in successive layers of the WD atmosphere we used the modified Full Computer Simulation Method (mFCSM), able to take adequately into account the complexity of local elementary quantum processes in plasma. In the case of the $H_\alpha$ line, the present value of Stark-induced shift of the synthetic $H_\alpha$ line-profile is about twice smaller than the previous one (ApJ'87) and it is negligible in comparison with the gravitational red shift. In the case of the $H_\beta$ line, the present value of Stark-induced shift of the synthetic $H_\beta$ line-profile is about twice larger than the previous one. The source of this extra shift is the asymmetry of $H_\beta$ peaks.
The size and mass of two circum-galactic medium (CGM) clouds in the halo (impact parameter = 65 kpc) of a nearby late-type galaxy, MGC-01-04-005 ($cz = 1865$ km/s), are investigated using a close triplet of QSO sight lines (the "LBQS Triplet"; Crighton et al. 2010). Far ultraviolet spectra obtained with the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope (HST) find two velocity components in Lyman $\alpha$ at $\sim1830$ and 1900 km/s in two of these sight lines, requiring minimum transverse cloud sizes of $\geq10$ kpc. A plausible, but not conclusive, detection of CIV 1548 \AA\ absorption at the higher velocity in the third sight line suggests an even larger lower limit of $\geq23$ kpc for that cloud. Using various combinations of constraints, including photo-ionization modeling for one absorber, lower limits on masses of these two clouds of $\geq10^6$ M_Sun are obtained. Ground-based imaging and long-slit spectroscopy of MCG -01-04-005 obtained at the Apache Point Observatory (APO) 3.5m telescope find it to be a relatively normal late-type galaxy with a current star formation rate (SFR) of $\sim0.01$ M_Sun per year. Galaxy Evolution Explorer (GALEX) photometry finds an SFR only a few times higher over the last $10^8$ yrs. We conclude that the CGM clouds probed by these spectra are typical in being at impact parameters of 0.4-0.5 R_vir from a rather typical, non-starbursting late-type galaxy so that these size and mass results should be generic for this class. Therefore, at least some CGM clouds are exceptionally large and massive.
For any MONDian extended theory of gravity where the rotation curves of spiral galaxies are explained through a change in physics rather than the hypothesis of dark matter, a generic dynamical behaviour is expected for pressure supported systems: an outer flattening of the velocity dispersion profile occurring at a characteristic radius, where both the amplitude of this flat velocity dispersion and the radius at which it appears are predicted to show distinct scalings with the total mass of the system. By carefully analysing dynamics of globular clusters, elliptical galaxies and galaxy clusters, we are able to significantly extend the astronomical scales over which MONDian gravity has been tested, from those of spiral galaxies, to the much larger range covered by pressure supported systems. We show that a universal projected velocity dispersion profile accurately describes various classes of pressure supported systems, and further, that the expectations of extended gravity are met, across twelve orders of magnitude in mass. This observed scalings are not expected under dark matter cosmology, and would require particular explanations tuned at the scales of each distinct astrophysical system.
We propose a new mechanism for turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of non-helical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help to explain generation of large-scale magnetic fields across a wide range of astrophysical objects.
We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity ($\beta \rightarrow \infty$). We find that for a given $\beta$, mass $M$ and charge $Q$, there exist critical spinning parameter $a_{E}$ and $r_{H}^{E}$, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and $a_{E}$ decreases and $r_{H}^{E}$ increases with increase in the Born-Infeld parameter $\beta$. While $a<a_{E}$ describe a non-extremal Einstein-Born-Infeld black hole with outer and inner horizons. Similarly, the effect of $\beta$ on infinite redshift surface and in turn on ergoregion is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the non-rotating ($a=0$) Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated that allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of the Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole. F urther, the shadow is concentric circles whose radius decreases with increase in value of parameter $\beta$.
Recent measurements of the cosmic microwave background (CMB) anisotropies by Planck provide a sensitive probe of dark matter annihilation during the cosmic dark ages, and specifically constrain the annihilation parameter $f_\mathrm{eff} \langle \sigma v \rangle/m_\chi$. Using new results (Paper II) for the ionization produced by particles injected at arbitrary energies, we calculate and provide $f_\mathrm{eff}$ values for photons and $e^+e^-$ pairs injected at keV-TeV energies; the $f_\mathrm{eff}$ value for any dark matter model can be obtained straightforwardly by weighting these results by the spectrum of annihilation products. This result allows the sensitive and robust constraints on dark matter annihilation presented by the Planck Collaboration to be applied to arbitrary dark matter models with $s$-wave annihilation. We demonstrate the validity of this approach using principal component analysis. As an example, we integrate over the spectrum of annihilation products for a range of Standard Model final states to determine the CMB bounds on these models as a function of dark matter mass, and demonstrate that the new limits generically exclude models proposed to explain the observed high-energy rise in the cosmic ray positron fraction. We make our results publicly available at this http URL
I introduce a covariant four-vector $\mathcal{G}^a[v]$, which can be interpreted as the momentum density attributed to the spacetime geometry by an observer with velocity $v^a$, and describe its properties: (a) Demanding that the total momentum of matter plus geometry is conserved for all observers, leads to the gravitational field equations. Thus, how matter curves spacetime is entirely determined by this principle of momentum conservation. (b) The $\mathcal{G}^a[v]$ can be related to the gravitational Lagrangian in a manner similar to the usual definition of Hamiltonian in, say, classical mechanics. (c) Geodesic observers in a spacetime will find that the conserved total momentum vanishes on-shell. (d) The on-shell, conserved, total energy in a region of space, as measured by the comoving observers, will be equal to the total heat energy of the boundary surface. (e) The off-shell gravitational energy in a region will be the sum of the ADM energy in the bulk plus the thermal energy of the boundary. These results suggest that $\mathcal{G}^a[v]$ can be a useful physical quantity to probe the gravitational theories.
We study static, spherically symmetric mixed configurations with a nontrivial (wormhole) spacetime topology provided by the presence of two interacting ghost scalar fields. Wormhole is assumed to be filled by a perfect relativistic neutron fluid modeled by a polytropic equation of state. For such mixed configurations, we find regular, asymptotically flat general relativistic solutions. It is shown that the maximum of the fluid density is always shifted from the center, and the resulting configurations represent, in general, double-throat systems.
We review the status and future of direct searches for light dark matter. We start by answering the question: `Whatever happened to the light dark matter anomalies?' i.e. the fate of the potential dark matter signals observed by the CoGeNT, CRESST-II, CDMS-Si and DAMA/LIBRA experiments. We discuss how the excess events in the first two of these experiments have been explained by previously underestimated backgrounds. For DAMA we summarise the progress and future of mundane explanations for the annual modulation reported in its event rate. Concerning the future of direct detection we focus on the irreducible background from solar neutrinos. We explain broadly how it will affect future searches and summarise efforts to mitigate its effects.
We generalise the Buchdahl-Bondi limit for the case of static, spherically symmetric, relativistic compact stars immersed in Schwarzschild vacuum in f(R)-theory of gravity, subject to very generic regularity, thermodynamic stability and matching conditions. Similar to the case of general relativity, our result is model independent and remains true for any physically realistic equation of state of standard stellar matter. We show that an extra-massive stable star can exist in these theories, with surface redshift larger than 2, which is forbidden in general relativity. This result gives a novel and interesting observational test for validity or otherwise of general relativity and also provides a possible solution to the dark matter problem.
We study inflation on a non-commutative space-time within the framework of enveloping algebra approach which allows for a consistent formulation of general relativity and of the standard model of particle physics. We show that within this framework, the effects of the non-commutativity of spacetime are very subtle. The dominant effect comes from contributions to the process of structure formation. We describe the bound relevant to this class of non-commutative theories and derive the tightest bound to date of the value of the non-commutative scale within this framework. Assuming that inflation took place, we get a model independent bound on the scale of space-time non-commutativity of the order of 19 TeV.
In this work we present 3D numerical relativity simulations of thick accretion disks around {\it tilted} Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered ($0.044-0.16$) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of black hole spin and disk angular momentum in the most massive model with constant specific angular momentum $l$. For the model with non-constant $l$-profile we observe a long-lived $m=1$ non-axisymmetric structure which shows strong oscillations of the tilt angle in the inner regions of the disk. We attribute this effect to the development of Kozai-Lidov oscillations. Our simulations also confirm earlier findings that the development of the PP instability causes the long-term emission of large amplitude gravitational waves, predominantly for the $l=m=2$ multipole mode. The imprint of the BH precession on the gravitational waves from tilted BH-torus systems remains an interesting open issue that would require significantly longer simulations than those presented in this work.
Disformally coupled, light scalar fields arise in many of the theories of dark energy and modified gravity that attempt to explain the accelerated expansion of the universe. They have proved difficult to constrain with precision tests of gravity because they do not give rise to fifth forces around static non-relativistic sources. However, because the scalar field couples derivatively to standard model matter, measurements at high energy particle colliders offer an effective way to constrain and potentially detect a disformally coupled scalar field. Here we derive new constraints on the strength of the disformal coupling from LHC run 1 data and provide a forecast for the improvement of these constraints from run 2. We additionally comment on the running of disformal and standard model couplings in this scenario under the renormalisation group flow.
We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the Standard Model only through the non-minimal gravitational coupling $\xi$ of the Higgs field. Such a coupling is required by renormalisation of the Standard Model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for $\xi\gtrsim 1$, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.
Links to: arXiv, form interface, find, astro-ph, recent, 1506, contact, help (Access key information)
We present a new method to measure or constrain p-wave-suppressed cross sections for dark matter (DM) annihilations inside the steep density spikes induced by supermassive black holes. We demonstrate that the high DM densities, together with the increased velocity dispersion, within such spikes combine to make thermal p-wave annihilation cross-sections potentially visible in gamma-ray observations of the Galactic center (GC). The resulting DM signal is a bright central point source with emission originating from DM annihilations in the absence of a detectable spatially-extended signal from the halo. We define two simple reference theories of DM with a thermal p-wave annihilation cross-section and establish new limits on the combined particle and astrophysical parameter space of these models, demonstrating that Fermi is currently sensitive to thermal p-wave DM over a wide range of possible scenarios for the DM distribution in the GC.
We study the stellar mass Tully-Fisher relation (TFR, stellar mass versus rotation velocity) for a morphologically blind selection of emission line galaxies in the field at redshifts 0.1 $<$ z $<$ 0.375. Kinematics ($\sigma_g$, V$_{rot}$) are measured from emission lines in Keck/DEIMOS spectra and quantitative morphology is measured from V- and I-band Hubble images. We find a transition stellar mass in the TFR, $\log$ M$_*$ = 9.5 M$_{\odot}$. Above this mass, nearly all galaxies are rotation-dominated, on average more morphologically disk-like according to quantitative morphology, and lie on a relatively tight TFR. Below this mass, the TFR has significant scatter to low rotation velocity and galaxies can either be rotation-dominated disks on the TFR or asymmetric or compact galaxies which scatter off. We refer to this transition mass as the "mass of disk formation", M$_{\mathrm{df}}$ because above it all star-forming galaxies form disks (except for a small number of major mergers and highly star-forming systems), whereas below it a galaxy may or may not form a disk.
The AMS-02 collaboration has released preliminary data on the antiproton fraction in cosmic rays. The surprisingly hard antiproton spectrum at high rigidity has triggered speculations about a possible primary antiproton component originating from dark matter annihilations. In this note, we employ newly available AMS-02 boron to carbon data to update the secondary antiproton flux within the standard two-zone diffusion model. The new background permits a considerably better fit to the measured antiproton fraction compared to previous estimates. This is mainly a consequence of the smaller slope of the diffusion coefficient favored by the new AMS-02 boron to carbon data.
The detection of planar structures within the satellite systems of both the Milky Way (MW) and Andromeda (M31) has been reported as being in stark contradiction to the predictions of the standard cosmological model ($\Lambda$CDM). Given the ambiguity in defining a planar configuration, it is unclear how to interpret the low incidence of the MW and M31 planes in $\Lambda$CDM. We investigate the prevalence of satellite planes around galactic mass haloes identified in high resolution cosmological simulations. We find that planar structures are very common, and that ~10% of $\Lambda$CDM haloes have even more prominent planes than those present in the Local Group. While ubiquitous, the planes of satellite galaxies show a large diversity in their properties. This precludes using one or two systems as small scale probes of cosmology, since a large sample of satellite systems is needed to obtain a good measure of the object-to-object variation. This very diversity has been misinterpreted as a discrepancy between the satellite planes observed in the Local Group and $\Lambda$CDM predictions. In fact, ~10% of $\Lambda$CDM galactic haloes have planes of satellites that are as infrequent as the MW and M31 planes. The look-elsewhere effect plays an important role in assessing the detection significance of satellite planes and accounting for it leads to overestimating the significance level by a factor of 30 and 100 for the MW and M31 systems, respectively.
A measurement of primordial non-gaussianity will be of paramount importance to distinguish between different models of inflation. Cosmic microwave background (CMB) anisotropy observations have set unprecedented bounds on the non-gaussianity parameter f_NL but the interesting regime f_NL <~ 1 is beyond their reach. Brightness-temperature fluctuations in the 21-cm line during the dark ages (z ~ 30-100) are a promising successor to CMB studies, giving access to a much larger number of modes. They are, however, intrinsically non-linear, which results in secondary non-gaussianities orders of magnitude larger than the sought-after primordial signal. In this paper we carefully compute the primary and secondary bispectra of 21-cm fluctuations on small scales. We use the flat-sky formalism, which greatly simplifies the analysis, while still being very accurate on small angular scales. We show that the secondary bispectrum is highly degenerate with the primordial one, and argue that even percent-level uncertainties in the amplitude of the former lead to a bias of order Delta f_NL ~ 10. To tackle this problem we carry out a detailed Fisher analysis, marginalizing over the amplitudes of a few smooth redshift-dependent coefficients characterizing the secondary bispectrum. We find that the signal-to-noise ratio for a single redshift slice is reduced by a factor of ~5 in comparison to a case without secondary non-gaussianities. Setting aside foreground contamination, we forecast that a cosmic-variance-limited experiment observing 21-cm fluctuations over 30 < z < 100 with a 0.1-MHz bandwidth and 0.1-arcminute angular resolution could achieve a sensitivity of order f_NL[local] ~ 0.03, f_NL[equilateral] ~ 0.04, and f_NL[orthogonal] ~ 0.03.
Observations of Pluto's companion planet Charon have so far yielded no compelling evidence for a persistent atmosphere. However, with the upcoming encounter of New Horizons at the Pluto-Charon system, sensitivity to detection of a possible Charon atmosphere will increase by orders of magnitude. In particular, it has long been planned for New Horizons to use its Alice ultraviolet spectrograph during solar occultation observations of Charon on July 14, 2015, for this purpose. But in the days before closest encounter, the Alice instrument will also acquire spectra of reflected sunlight from Charon's surface. We examine the effect of absorption by several possible atmospheres around Charon composed of N$_2$, CH$_4$, and CO, with plausible surface pressures of 0.1, 1, and 10 nanobar (nbar). We show that this reflectance technique is sensitive to surface pressures on Charon down to the 0.1 nbar level, and should provide significant evidence of a possible atmosphere on Charon before closest encounter. It may also be the only way to detect a local atmosphere domed over the subsolar region on Charon.
Age, metallicity and spatial distribution of globular clusters (GCs) provide a powerful tool to reconstruct major star-formation episodes in galaxies. IKN is a faint dwarf spheroidal (dSph) in the M81 group of galaxies. It contains five old GCs, which makes it the galaxy with the highest known specific frequency (SN=126). We estimate the photometric age, metallicity and spatial distribution of the poorly studied IKN GCs. We search SDSS for GC candidates beyond the HST field of view, which covers half of IKN. To break the age-metallicity degeneracy in the V-I colour we use WHT/LIRIS Ks-band photometry and derive photometric ages and metallicities by comparison with SSP models in the V,I,Ks colour space. IKN GCs' VIKs colours are consistent with old ages ($\geq\!8$ Gyr) and a metallicity distribution with a higher mean than typical for such a dSph ([Fe/H$]\!\simeq\!-1.4_{-0.2}^{+0.6}$ dex). Their photometric masses range ($0.5 <{\cal M_{\rm GC}}<4\times10^5M_\odot$) implies a high mass ratio between GCs and field stars, of $10.6\%$. Mixture model analysis of the RGB field stars' metallicity suggests that 72\% of the stars may have formed together with the GCs. Using the most massive GC-SFR relation we calculate a SFR of $\sim\!10M_\odot/$yr during its formation epoch. We note that the more massive GCs are closer to the galaxy photometric centre. IKN GCs also appear spatially aligned along a line close to the IKN major-axis and nearly orthogonal to the plane of spatial distribution of galaxies in the M81 group. We identify one new IKN GC candidate based on colour and PSF analysis of the SDSS data. The evidence towards i) broad and high metallicity distribution of the field IKN RGB stars and its GCs, ii) high fraction and iii), spatial alignment of IKN GCs, supports a scenario for tidally triggered complex IKN's SFH in the context of interactions with galaxies in the M81 group.
Gas velocity dispersions provide important diagnostics of the forces counteracting gravity to prevent collapse of the gas. We use the 21 cm line of neutral atomic hydrogen (HI) to study HI velocity dispersion and HI phases as a function of galaxy morphology in 22 galaxies from The HI Nearby Galaxy Survey (THINGS). We stack individual HI velocity profiles and decompose them into broad and narrow Gaussian components. We study the HI velocity dispersion and the HI surface density, as a function of radius. For spirals, the velocity dispersions of the narrow and broad components decline with radius and their radial profiles are well described by an exponential function. For dwarfs, however, the profiles are much flatter. The single Gaussian dispersion profiles are, in general, flatter than those of the narrow and broad components. In most cases, the dispersion profiles in the outer disks do not drop as fast as the star formation profiles, derived in the literature. This indicates the importance of other energy sources in driving HI velocity dispersion in the outer disks. The radial surface density profiles of spirals and dwarfs are similar. The surface density profiles of the narrow component decline more steeply than those of the broad component, but not as steep as what was found previously for the molecular component. As a consequence, the surface density ratio between the narrow and broad components, an estimate of the mass ratio between cold HI and warm HI, tends to decrease with radius. On average, this ratio is lower in dwarfs than in spirals. This lack of a narrow, cold HI component in dwarfs may explain their low star formation activity.
This paper characterizes the radial structure of stellar population properties of galaxies in the nearby universe, based on 300 galaxies from the CALIFA survey. The sample covers a wide range of Hubble types, and galaxy stellar mass. We apply the spectral synthesis techniques to recover the stellar mass surface density, stellar extinction, light and mass-weighted ages, and mass-weighted metallicity, for each spatial resolution element in our target galaxies. To study mean trends with overall galaxy properties, the individual radial profiles are stacked in seven bins of galaxy morphology. We confirm that more massive galaxies are more compact, older, more metal rich, and less reddened by dust. Additionally, we find that these trends are preserved spatially with the radial distance to the nucleus. Deviations from these relations appear correlated with Hubble type: earlier types are more compact, older, and more metal rich for a given mass, which evidences that quenching is related to morphology, but not driven by mass. Negative gradients of ages are consistent with an inside-out growth of galaxies, with the largest ages gradients in Sb-Sbc galaxies. Further, the mean stellar ages of disks and bulges are correlated, with disks covering a wider range of ages, and late type spirals hosting younger disks. The gradients in stellar mass surface density depend mostly on stellar mass, in the sense that more massive galaxies are more centrally concentrated. There is a secondary correlation in the sense that at the same mass early type galaxies have steeper gradients. We find mildly negative metallicity gradients, shallower than predicted from models of galaxy evolution in isolation. The largest gradients occur in Sb galaxies. Overall we conclude that quenching processes act in manners that are independent of mass, while metallicity and galaxy structure are influenced by mass-dependent processes.
Most low-mass protostars form in clusters, in particular high-mass clusters; however, how low-mass stars form in high-mass clusters and what the mass distribution is, are still open questions both in our own Galaxy and elsewhere. To access the population of forming embedded low-mass protostars observationally, we propose to use molecular outflows as tracers. Because the outflow emission scales with mass, the effective contrast between low-mass protostars and their high-mass cousins is greatly lowered. In particular, maps of methanol emission at 338.4 GHz (J=7_0 - 6_0 A+) in low-mass clusters illustrate that this transition is an excellent probe of the low-mass population. We here present a model of a forming cluster where methanol emission is assigned to every embedded low-mass protostar. The resulting model image of methanol emission is compared to recent ALMA observations toward a high-mass cluster and the similarity is striking: the toy model reproduces observations to better than a factor of two and suggests that approximately 50\% of the total flux originates in low-mass outflows. Future fine-tuning of the model will eventually make it a tool for interpreting the embedded low-mass population of distant regions within our own Galaxy and ultimately higher-redshift starburst galaxies, not just for methanol emission but also water and high-J CO.
Geo-Synchronous orbits are appealing for Solar or astrophysical observatories because they permit continuous data downlink at high rates. The radiation environment in these orbits presents unique challenges, however. This paper describes the characteristics of the radiation environment in Geo-Synchronous orbit and the implications for instrument design. Radiation-induced background event rates are given for some simplified shielding models, and for a detailed model of the proposed Wide-Field InfraRed Survey Telescope observatory.
Photochemical heating is analyzed with emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimes as large if not much larger than the direct heating. In very dense gas the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.
For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M_sun) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.
Pulsar glitches, i.e. the sudden spin-ups of pulsars, have been detected for most pulsars that we known. The mechanism giving rise to this kind of phenomenon is uncertain, although a large data set has been built. We derive the relation between glitch-sizes (the relative increases of spin-frequencies during glitches) $\Delta \Omega/\Omega$ and the released energies during glitches, in the framework of star-quake model, and show that less released energies during glitches would correspond to smaller glitch sizes. On the other hand, as one of dark matter candidates, our galaxy might be filled with the so called strange quark nuggets (SQNs) which are the relics from the early Universe. In this case the collisions between pulsars and the quark nuggets is inevitable, and collisions could help pulsars to release their elastic energy that accumulated during the spin-down process. Therefore, if a pulsar is hit frequently by SQNs, it would tend to have more small size glitches. Based on the assumption that in our galaxy the distribution of SQNs is similar to that of dark matter, as well as on the glitch data in ATNF Pulsar Catalogue and Jodrell Bank glitch table, we find that in our galaxy the incidences of small size glitches $\Delta \Omega/\Omega< 10^{-9}$ exhibit tendencies consistent with the collision rates of pulsars and quark nuggets. Further test of this scenario is expected by detecting more small glitches (e.g., by the Square Kilometre Array).
We measure planet occurrence rates using the planet candidates discovered by the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates for the Kepler GK dwarf target sample for planet radii, 0.75<Rp<2.5 Rearth, and orbital periods, 50<Porb<300 days, with an emphasis on a thorough exploration and identification of the most important sources of systematic uncertainties. Integrating over this parameter space, we measure an occurrence rate of F=0.77 planets per star, with an allowed range of 0.3<F<1.9. The allowed range takes into account both statistical and systematic uncertainties, and values of F beyond the allowed range are significantly in disagreement with our analysis. We generally find higher planet occurrence rates and a steeper increase in planet occurrence rates towards small planets than previous studies of the Kepler GK dwarf sample. Through extrapolation, we find that the one year orbital period terrestrial planet occurrence rate, zeta_1=0.1, with an allowed range of 0.01<zeta_1<2, where zeta_1 is defined as the number of planets per star within 20% of the Rp and Porb of Earth. For G dwarf hosts, the zeta_1 parameter space is a subset of the larger eta_earth parameter space, thus zeta_1 places a lower limit on eta_earth for G dwarf hosts. From our analysis, we identify the leading sources of systematics impacting Kepler occurrence rate determinations as: reliability of the planet candidate sample, planet radii, pipeline completeness, and stellar parameters.
When the gauge fields have derivative couplings to scalars, like in the case of the relativistic theory of Van der Waals (or Casimir-Polder) interactions, conformal invariance is broken but the magnetic and electric susceptibilities are not bound to coincide. We analyze the formation of large-scale magnetic fields in slow-roll inflation and find that they are generated at the level of few hundredths of a nG and over typical length scales between few Mpc and $100$ Mpc. Using a new time parametrization that reduces to conformal time but only for coincident susceptibilities, the gauge action is quantized while the evolution equations of the corresponding mode functions are more easily solvable. The power spectra depend on the normalized rates of variation of the two susceptibilities (or of the corresponding gauge couplings) and on the absolute value of their ratio at the beginning of inflation. We pin down explicit regions in the parameter space where all the physical requirements (i.e. the backreaction constraints, the magnetogenesis bounds and the naturalness of the initial conditions of the scenario) are jointly satisfied. Weakly coupled initial data are favoured if the gauge couplings are of the same order at the end of inflation. Duality is systematically used to simplify the analysis of the wide parameter space of the model.
We describe in this work the BASS survey for brown dwarfs in young moving groups of the solar neighborhood, and summarize the results that it generated. These include the discovery of the 2MASS J01033563-5515561 (AB)b and 2MASS J02192210-3925225 B young companions near the deuterium-burning limit as well as 44 new low-mass stars and 69 new brown dwarfs with a spectroscopically confirmed low gravity. Among those, ~20 have estimated masses within the planetary regime, one is a new L4 $\gamma$ bona fide member of AB Doradus, three are TW Hydrae candidates with later spectral types (L1-L4) than all of its previously known members and six are among the first contenders to low-gravity $\geq$ L5 $\beta$/$\gamma$ brown dwarfs, reminiscent of WISEP J004701.06+680352.1, PSO J318.5338-22.8603 and VHS J125601.92-125723.9 b. Finally, we describe a future version of this survey, BASS-Ultracool, that will specifically target $\geq$ L5 candidate members of young moving groups. First experimentations in designing the survey have already led to the discovery of a new T dwarf member of AB Doradus, as well as the serendipitous discoveries of an L9 subdwarf and an L5 + T5 brown dwarf binary.
We present a new radial velocity measurement that, together with a trigonometric parallax, proper motion and signs of low gravity from the literature, confirms that SDSS J111010.01+011613.1 is a new T5.5 bona fide member of AB Doradus. Fitting $\lambda/\Delta\lambda$ $\approx$ 6000 FIRE spectroscopy in the 1.20-1.33 $\mu$m region to BT-Settl atmosphere models yielded a radial velocity of $7.5 \pm 3.8$ km s$^{-1}$. At such a young age (110-130 Myr), current evolution models predict a mass of $\sim$ 10-12 $M_{\mathrm{Jup}}$, thus placing SDSS J1110+0116 well into the planetary-mass regime. We compare the fundamental properties of SDSS J1110+0116 with a sequence of seven recently identified M8-T5 brown dwarf bona fide or high-confidence candidate members of AB Doradus. We also note that its near-infrared $J-K$ color is redder than field T5-T6 brown dwarfs, however its absolute $J$-band magnitude is similar to them. SDSS J1110+0116 is one of the few age-calibrated T dwarfs known to date, as well as one of the coolest bona fide members of a young moving group.
The Andromeda Galaxy recurrent nova M31N 2008-12a had been caught in eruption eight times. The inter-eruption period of M31N 2008-12a is ~1 year, making it the most rapidly recurring system known, and a strong single-degenerate Type Ia Supernova progenitor candidate. Following the 2013 eruption, a campaign was initiated to detect the predicted 2014 eruption and to then perform high cadence optical photometric and spectroscopic monitoring using ground-based telescopes, along with rapid UV and X-ray follow-up with the Swift satellite. Here we report the results of a high cadence multicolour optical monitoring campaign, the spectroscopic evolution, and the UV photometry. We also discuss tantalising evidence of a potentially related, vastly-extended, nebulosity. The 2014 eruption was discovered, before optical maximum, on October 2, 2014. We find that the optical properties of M31N 2008-12a evolve faster than all Galactic recurrent novae known, and all its eruptions show remarkable similarity both photometrically and spectroscopically. Optical spectra were obtained as early as 0.26 days post maximum, and again confirm the nova nature of the eruption. A significant deceleration of the inferred ejecta expansion velocity is observed which may be caused by interaction of the ejecta with surrounding material, possibly a red giant wind. We find a low ejected mass and low ejection velocity, which are consistent with high mass-accretion rate, high mass white dwarf, and short recurrence time models of novae. We encourage additional observations, especially around the predicted time of the next eruption, towards the end of 2015.
We present the discovery of a strongly phase-variable absorption feature in the X-ray spectrum of the nearby, thermally-emitting, isolated neutron star RX J0720.4-3125. The absorption line was detected performing detailed phase-resolved spectroscopy in 20 XMM-Newton observations, covering the period May 2000 - September 2012. The feature has an energy of ~750eV, an equivalent width of ~30eV, and it is significantly detected for only ~20% of the pulsar rotation. The absorption feature appears to be stable over the timespan covered by the observations. Given its strong dependence on the pulsar rotational phase and its narrow width, a plausible interpretation is in terms of resonant proton cyclotron absorption/scattering in a confined magnetic structure very close to the neutron star surface. The inferred field in such a magnetic loop is B_loop ~ 2 x 10^{14} G, a factor of ~7 higher than the surface dipolar magnetic field.
In this work, we provide 2189 photometric- and kinematic-selected member candidates of 24 star clusters from the LAMOST DR2 catalog. We perform two-step membership identification: selection along the stellar track in the color-magnitude diagram, i.e., photometric identification, and the selection from the distribution of radial velocities, i.e. the kinematic identification. We find that the radial velocity from the LAMOST data are very helpful in the membership identification. The mean probability of membership is 40\% for the radial velocity selected sample. With these 24 star clusters, we investigate the performance of the radial velocity and metallicity estimated in the LAMOST pipeline. We find that the systematic offset in radial velocity and metallicity are $0.85\pm1.26$\,\kms\ and $-0.08\pm0.04$\,dex, with dispersions of $5.47_{-0.71}^{+1.16}$\,\kms\ and $0.13_{-0.02}^{+0.04}$\,dex, respectively. Finally, we propose that the photometric member candidates of the clusters covered by the LAMOST footprints should be assigned higher priority so that more member stars can be observed.
Near-field observations may provide tight constraints - i.e. "boundary conditions" - on any model of structure formation in the Universe. Detailed observational data have long been available for the Milky Way (e.g. Freeman $\&$ Bland-Hawthorn 2002) and have provided tight constraints on several Galaxy formation models (e.g. Abadi et al. 2003, Bekki $\&$ Chiba 2001). An implicit assumption still remains unanswered though: is the Milky Way a "normal" spiral? Searching for directions, it feels natural to look at our neighbour: Andromeda. An intriguing piece of the puzzle is provided by contrasting its stellar halo with that of our Galaxy, even more so since Mouhcine et al. (2005) have suggested that a correlation between stellar halo metallicity and galactic luminosity is in place and would leave the Milky Way halo as an outlier with respect to other spirals of comparable luminosities. Further questions hence arise: is there any stellar halo-galaxy formation symbiosis? Our first step has been to contrast the chemical evolution of the Milky Way with that of Andromeda by means of a semi-analytic model. We have then pursued a complementary approach through the analysis of several semi-cosmological late-type galaxy simulations which sample a wide variety of merging histories. We have focused on the stellar halo properties in the simulations at redshift zero and shown that - at any given galaxy luminosity - the metallicities of the stellar halos in the simulations span a range in excess of $\sim$ 1 dex, a result which is strengthened by the robustness tests we have performed. We suggest that the underlying driver of the halo metallicity dispersion can be traced to the diversity of galactic mass assembly histories inherent within the hierarchical clustering paradigm.
We revisit the problem of exact CMB likelihood and power spectrum estimation with the goal of minimizing computational cost through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al.\ (1997), and here we develop it into a fully working computational framework for large-scale polarization analysis, adopting \WMAP\ as a worked example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked \WMAP\ sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8\% at $\ell\le32$, and a maximum shift in the mean values of a joint distribution of an amplitude--tilt model of 0.006$\sigma$. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation that requires less than 3 GB of memory and 2 CPU minutes per iteration for $\ell \le 32$, rendering low-$\ell$ QML CMB power spectrum analysis fully tractable on a standard laptop.
Experimental data from the Tien Shan complex array on different components of extensive air showers at 0.5-10 PeV primary cosmic rays are compared with results of various calculated models of cosmic rays interactions at the atmosphere. Conclusion is made about the growth with energy of the inelastic proton-air cross section {\sigma}p-air from 0.2 TeV (accelerator experiments with fixed targets) to 10 PeV (cosmic rays). The analysis showed that the rise conforms to (7-9)% per one order of energy. That corresponds to {\sigma}p-air (1 PeV) = 350 mb. These data correspond better to the new QGSJET-II-04 version of the interaction model based on the recent LHC results. This model predicts better the slower rise of the cross section than previous versions of QGSJET-II and some other models.
The distribution of local gravitational potentials generated by a complete volume-limited sample of galaxy groups and clusters filling the Corona Borealis region has been analyzed. Mapping such a distribution as a function of spatial posi-tions, the deepest potential wells trace unambiguously the locations of the densest cluster clumps within the selected sample providing the physical keys to disentangle a still open issue regarding the true extent and cluster membership of the well-known region of the Corona Borealis Supercluster. The two deepest potential wells found at R.A. ~ 230{\deg}, Decl. ~ 29{\deg} and z ~ .074 and, R.A. ~ 240{\deg}, Decl. ~ 28{\deg} and z ~ .09 correspond to very close and massive clumps of galaxy groups and clusters similar to a binary-like system lying in the central part of the Corona Borealis region. The first clump matches the location of the supercluster commonly referred to as Corona Borealis, while its more massive com-panion is centrally dominated by the cluster A2142, one of the richest clusters found by Abell (1961). To a first approx-imation, this binary-like system seems gravitationally bound favoring the idea that the region apparently dominated by the Corona Borealis Supercluster is more massive and extended than commonly believed in literature.
We present Keck spectroscopic measurements of the millisecond pulsar binary J2215+5135. These data indicate a neutron-star (NS) mass M_NS=1.6Mo, much less than previously estimated. The pulsar heats the companion face to T_D~9000K; the large heating efficiency may be mediated by the intrabinary shock dominating the X-ray light curve. At the best-fit inclination i=88.8deg, the pulsar should be eclipsed. We find weak evidence for such eclipses in the pulsed gamma-rays; an improved radio ephemeris allows use of up to 5 times more Fermi-LAT gamma-ray photons for a definitive test of this picture. If confirmed, the gamma-ray eclipse provides a novel probe of the dense companion wind and the pulsar magnetosphere.
Perpendicular shocks are shown to be rapid particle accelerators that perform optimally when the ratio $u_{\rm s}$ of the shock speed to the particle speed roughly equals the ratio $1/\eta$ of the scattering rate to the gyro frequency. We use analytical methods and Monte-Carlo simulations to solve the kinetic equation that governs the anisotropy generated at these shocks, and find, for $\eta u_{\rm s}\approx1$, that the spectral index softens by unity and the acceleration time increases by a factor of two compared to the standard result of diffusive shock acceleration theory. These results provide a theoretical basis for the thirty-year-old conjecture that a supernova exploding into the wind of a Wolf-Rayet star may accelerate protons to an energy exceeding $10^{15}\,$eV.
We present the results of an age determination study for pre-main sequence stars in the Ophiuchus molecular cloud. The ages of eight pre-main sequence stars were estimated from surface gravities derived from high-resolution spectroscopy. The average age of the target stars was 0.7 Myr. By comparing the individual age and the near-infrared color excess, we found that color excess decreases gradually with a constant rate and the lifetime of the inner disk was determined to be 1.2 Myr. The estimated lifetime is nearly a half of the time compared to that of the pre-main sequence stars in the Taurus molecular cloud estimated with the same method. This result indicates that the disk evolution timescale depends on the environment of the star-forming region.
Context. Impulsive solar energetic particle events in the inner heliosphere show the long-lasting enrichment of 3He. Aims. We study the source regions of long-lasting 3He-rich solar energetic particle (SEP) events Methods. We located the responsible open magnetic field regions, we combined potential field source surface extrapolations (PFSS) with the Parker spiral, and compared the magnetic field of the identified source regions with in situ magnetic fields. The candidate open field regions are active region plages. The activity was examined by using extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO) and STEREO together with radio observations from STEREO and WIND. Results. Multi-day periods of 3He-rich SEP events are associated with ion production in single active region. Small flares or coronal jets are their responsible solar sources. We also find that the 3He enrichment may depend on the occurrence rate of coronal jets.
During the past decade circumbinary disks have been discovered around various young binary stars. Hydrodynamical calculations indicate that the gravitational interaction between the central binary star and the surrounding disk results in global perturbations of the disk density profile. We study the observability of characteristic large-scale disk structures resulting from the binary-disk interaction in the case of close binary systems. We derived the structure of circumbinary disks from smoothed-particle hydrodynamic simulations. Subsequently, we performed radiative transfer simulations to obtain scattered light and thermal reemission maps. We investigated the influence of the binary mass ratio, the inclination of the binary orbit relative to the disk midplane, and the eccentricity of the binary orbit on observational quantities. We find that ALMA will allow tracing asymmetries of the inner edge of the disk and potentially resolving spiral arms if the disk is seen face-on. For an edge-on orientation, ALMA will allow detecting perturbations in the disk density distribution through asymmetries in the radial brightness profile. Through the asymmetric structure of the disks, areas are formed with a temperature $2.6$ times higher than at the same location in equivalent unperturbed disks. The time-dependent appearance of the density waves and spiral arms in the disk affects the total re-emission flux of the object by a few percent.
In this paper we present an analysis of the geological, meteorological and climatic data recorded in Acquapendente (VT) over 24 years. These data are compared to check local variations,long term trends, and correlation with maen annual temperature. The ultimate goal of this work is to understand logn term climatic changes in this geographic area. The analysis is performed using a statistical approach. From each long series of data calculate the hourly averages and that the monthly averages in order to reduce the fluctuations in the short time due to the day / night cycle. A particular care is used to minimize any effect due to prejudices in case of lack of data. Finally, we calculate the annual average from the monthly ones.
We present HI imaging of the galaxy group IC 1459 carried out with six antennas of the Australian SKA Pathfinder equipped with phased-array feeds. We detect and resolve HI in eleven galaxies down to a column density of $\sim10^{20}$ cm$^{-2}$ inside a ~6 deg$^2$ field and with a resolution of ~1 arcmin on the sky and ~8 km/s in velocity. We present HI images, velocity fields and integrated spectra of all detections, and highlight the discovery of three HI clouds -- two in the proximity of the galaxy IC 5270 and one close to NGC 7418. Each cloud has an HI mass of $10^9$ M$_\odot$ and accounts for ~15% of the HI associated with its host galaxy. Available images at ultraviolet, optical and infrared wavelengths do not reveal any clear stellar counterpart of any of the clouds, suggesting that they are not gas-rich dwarf neighbours of IC 5270 and NGC 7418. Using Parkes data we find evidence of additional extended, low-column-density HI emission around IC 5270, indicating that the clouds are the tip of the iceberg of a larger system of gas surrounding this galaxy. This result adds to the body of evidence on the presence of intra-group gas within the IC 1459 group. Altogether, the HI found outside galaxies in this group amounts to several times $10^9$ M$_\odot$, at least 10% of the HI contained inside galaxies. This suggests a substantial flow of gas in and out of galaxies during the several billion years of the group's evolution.
Full-sky maps of the cosmic microwave background temperature reveal a 7% asymmetry of fluctuation power between two halves of the sky. A common phenomenological model for this asymmetry is an overall dipole modulation of statistically isotropic fluctuations, which produces particular off-diagonal correlations between multipole coefficients. We compute these correlations and construct corresponding estimators for the amplitude and direction of the dipole modulation. Applying these estimators to various cut-sky temperature maps from Planck and WMAP data shows consistency with a dipole modulation, differing from a null signal at 2.5$\sigma$, with an amplitude and direction consistent with previous fits based on the temperature fluctuation power. The signal is scale dependent, with a statistically significant amplitude at angular scales larger than 2 degrees. Future measurements of microwave background polarization and gravitational lensing can increase the significance of the signal. If the signal is not a statistical fluke in an isotropic Universe, it requires new physics beyond the standard model of cosmology.
Solar Extreme Ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo ionization of molecular Oxygen. Solar heating of the ionosphere creates thermal winds which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and sets with the Sun and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us the deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the 'Magnetic Crusade' of the 1830s and less reliable, but still usable, data are available for portions of the hundred years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F10.7 flux and the sunspot number, and find that the reconstructed EUV flux reproduces the F10.7 flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every sunspot minimum (possibly including Grand Minima), representing an invariant 'solar magnetic ground state'.
Ellerman bombs are transient brightenings of the wings of the solar Balmer lines that mark reconnection in the photosphere. Ellerman noted in 1917 that he did not observe such brightenings in the Na I D and Mg I b lines. This non-visibility should constrain EB interpretation, but has not been addressed in published bomb modeling. We therefore test Ellerman's observation and confirm it using high-quality imaging spectrometry with the Swedish 1-m Solar Telescope. However, we find diffuse brightness in these lines that seems to result from prior EBs. We tentatively suggest this is a post-bomb hot-cloud phenomenon also found in recent EB spectroscopy in the ultraviolet.
Due to stellar rotation, the observed radial velocity of a star varies during the transit of a planet across its surface, a phenomenon known as the Rossiter-McLaughlin (RM) effect. The amplitude of the RM effect is related to the radius of the planet which, because of differential absorption in the planetary atmosphere, depends on wavelength. Therefore, the wavelength-dependent RM effect can be used to probe the planetary atmosphere. We measure for the first time the RM effect of the Earth transiting the Sun using a lunar eclipse observed with the ESO HARPS spectrograph. We analyze the observed RM effect at different wavelengths to obtain the transmission spectrum of the Earth's atmosphere after the correction of the solar limb-darkening and the convective blueshift. The ozone Chappuis band absorption as well as the Rayleigh scattering features are clearly detectable with this technique. Our observation demonstrates that the RM effect can be an effective technique for exoplanet atmosphere characterization. Its particular asset is that photometric reference stars are not required, circumventing the principal challenge for transmission spectroscopy studies of exoplanet atmospheres using large ground-based telescopes.
There is increasing evidence that episodic accretion is a common phenomenon in Young Stellar Objects (YSOs). Recently, the source HOPS 383 in Orion was reported to have a $\times 35$ mid-infrared -- and bolometric -- luminosity increase between 2004 and 2008, constituting the first clear example of a class 0 YSO (a protostar) with a large accretion burst. The usual assumption that in YSOs accretion and ejection follow each other in time needs to be tested. Radio jets at centimeter wavelengths are often the only way of tracing the jets from embedded protostars. We searched the Very Large Array archive for the available observations of the radio counterpart of HOPS 383. The data show that the radio flux of HOPS 383 varies only mildly from January 1998 to December 2014, staying at the level of $\sim 200$ to 300 $\mu$Jy in the X band ($\sim 9$ GHz), with a typical uncertainty of 10 to 20 $\mu$Jy in each measurement. We interpret the absence of a radio burst as suggesting that accretion and ejection enhancements do not follow each other in time, at least not within timescales shorter than a few years. Time monitoring of more objects and specific predictions from simulations are needed to clarify the details of the connection betwen accretion and jets/winds in YSOs.
The Square Kilometre Array (SKA) will be a formidable instrument for the detailed study of neutral hydrogen (HI) in external galaxies and in our own Galaxy and Local Group. The sensitivity of the SKA, its wide receiver bands, and the relative freedom from radio frequency interference at the SKA sites will allow the imaging of substantial number of high-redshift galaxies in HI for the first time. It will also allow imaging of galaxies throughout the Local Volume at resolutions of <100 pc and detailed investigations of galaxy disks and the transition between disks, halos and the intergalactic medium (IGM) in the Milky Way and external galaxies. Together with deep optical and millimetre/sub-mm imaging, this will have a profound effect on our understanding of the formation, growth and subsequent evolution of galaxies in different environments. This paper provides an introductory text to a series of nine science papers describing the impact of the SKA in the field of HI and galaxy evolution. We propose a nested set of surveys with phase 1 of the SKA which will help tackle much of the exciting science described. Longer commensal surveys are discussed, including an ultra-deep survey which should permit the detection of galaxies at z=2, when the Universe was a quarter of its current age. The full SKA will allow more detailed imaging of even more distant galaxies, and allow cosmological and evolutionary parameters to be measured with exquisite precision.
Accurately determining the mass of galaxy clusters is fundamental for many studies on cosmology and galaxy evolution. We collect and rescale the cluster masses of 1191 clusters of 0.05<z<0.75 estimated by X-ray or Sunyaev-Zeldovich measurements and use them to calibrate optical mass proxy. The total r-band luminosity (in units of L^{\ast}) of these clusters are obtained by using spectroscopic and photometric data of the Sloan Digital Sky Survey (SDSS). We find that the correlation between the cluster mass M_{500} and total r-band luminosity L_{500} significantly evolves with redshift. After correction of the evolution, we define a new cluster richness R_{L\ast,500}=L_{500}E(z)^{1.40} as the optical mass proxy. By using this newly defined richness and the recently released SDSS DR12 spectroscopic data, we update the WHL12 cluster catalog and complementally identify 25,419 new rich clusters at high redshift. In the SDSS spectroscopic survey region, about 89% of galaxy clusters have spectroscopic redshifts. The mass can be estimated with an uncertainty of ~\sigma_{\log M_{500}}=0.17 for the clusters in the updated catalog.
We propose and apply a new classification for the CEMP-no stars, which are "carbon-enhanced metal-poor" stars with no overabundance of s-elements and with [Fe/H] generally inferior or equal to -2.5. This classification is based on the changes in abundances for the elements and isotopes involved in the CNO, Ne-Na, and Mg-Al nuclear cycles. These abundances change very much owing to successive back and forth mixing motions between the He- and H-burning regions in massive stars (the "source stars" responsible for the chemical enrichment of the CEMP-no stars). The wide variety of the ratios [C/Fe], 12C/13C, [N/Fe], [O/Fe], [Na/Fe], [Mg/Fe], [Al/Fe], [Sr/Fe], and [Ba/Fe], which are the main characteristics making the CEMP-no and low s stars so peculiar, is described well in terms of the proposed nucleosynthetic classification. We note that the [(C+N+O)/Fe] ratios significantly increase for lower values of [Fe/H]. The classification of CEMP-no stars and the behavior of [(C+N+O)/Fe] support the presence, in the first stellar generations of the Galaxy, of fast-rotating massive stars experiencing strong mixing and mass loss (spinstars). This result has an impact on the early chemical and spectral evolution of the Galaxy.
The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at $z\sim 2.3$, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyman Alpha transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyman Alpha forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyman Alpha transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.
Stellar rotation depends on different parameters. The range of values of these parameters causes the dispersion in the rotation period distributions observed in young stellar clusters/associations. We focus our investigation on the effects of different circumstellar environments on stellar rotation. More specifically, we are searching in stellar Associations for visual triple systems where all stellar parameters are similar, with the only exceptions of the unknown initial rotation period, and of the circum-stellar environment, in the sense that one of the two about equal-mass components has a close-by third 'perturber' component. In the present study we analyse the 35-Myr old visual triple system TYC 9300-0891-1AB + TYC 9300-0529-1 in the young Octans stellar association consisting of three equal-mass K0V components. We collected from the literature all information that allowed us to infer that the three components are actually physically bound forming a triple system and are members of the Octans Association. We collected broad-band photometric timeseries in two observation seasons. We discovered that all the components are variable, magnetically active, and from periodogram analysis we found the unresolved components TYC 9300-0891-1AB to have a rotation period P = 1.383d and TYC 9300-0529-1 a rotation period P = 1.634d. TYC 9300-0891-1A, TYC 9300-0891-1B, and TYC 9300-0529-1 have same masses, ages, and initial chemical compositions. The relatively small 16% rotation period difference measured by us indicates that all components had similar initial rotation periods and disc lifetimes, and the separation of 157AU between the component A and the 'perturber' component B (or vice-versa) has been sufficiently large to prevent any significant perturbation/shortening of the accretion-disc lifetime.
We present an X-ray spectral and timing model to investigate the broad and variable iron line seen in the high flux state of Mrk 335. The model consists of a variable X-ray source positioned along the rotation axis of the black hole that illuminates the accretion disc producing a back-scattered, ionized reflection spectrum. We compute time lags including full dilution effects and perform simultaneous fitting of the 2-10 keV spectrum and the frequency-dependent time lags of 2.5-4 vs. 4-6.5 keV bands. The best-fitting parameters are consistent with a black hole mass of approximately 1.3 x 10^7 M_sun, disc inclination of 45 degrees and the photon index of the direct continuum of 2.4. The iron abundance is 0.5 and the ionization parameter is 10^3 erg cm / s at the innermost part of the disc and decreases further out. The X-ray source height is very small, approximately 2 r_g. Furthermore, we fit the Fe L lags simultaneously with the 0.3-10 keV spectrum. The key parameters are comparable to those previously obtained. We also report the differences below 2 keV using the xillver and reflionx models which could affect the interpretation of the soft excess. While simultaneously fitting spectroscopic and timing data can break the degeneracy between the source height and the black hole mass, we find that the measurements of the source height and the central mass significantly depend on the ionization state of the disc and are possibly model-dependent.
Radio emission has been detected in a broad variety of stellar objects from all stages of stellar evolution. However, most of our knowledge originates from targeted observations of small samples, which are strongly biased to sources which are peculiar at other wavelengths. In order to tackle this problem we have conducted a deep 1.4 GHz survey by using the Australian Telescope Compact Array (ATCA), following the same observing setup as that used for the Australia Telescope Large Area Survey (ATLAS) project, this time choosing a region more appropriate for stellar work. In this paper, the SCORPIO project is presented as well as results from the pilot experiment. The achieved rms is about 30 /uJy and the angular resolution ~10 arcsec. About six hundred of point-like sources have been extracted just from the pilot field. A very small percentage of them are classified in SIMBAD or the NASA/IPAC Extragalactic Database (NED). About 80 % of the extracted sources are reported in one of the inspected catalogues and 50 % of them appears to belong to a reddened stellar/galactic population. The evaluation of extragalactic contaminants is very difficult without further investigations. Interesting results have been obtained for extended radio sources that fall in the SCORPIO field. Many bubble-like structures have been found, some of which are classified at other wavelengths. However, for all of these sources, our project has provided us with images of unprecedented sensitivity and angular resolution at 2.1 GHz.
We show the broadband spectral energy distribution of the extreme Narrow Line
Seyfert 1 (NLS1) 1H0707-495. This is the most convincing example of an extreme
spin black hole as determined from both its iron K$\alpha$ line profile,
extreme variability and the new reverberation lag techniques. We compare this
with another NLS1, PG 1244+026, which has much less obvious signs of high spin.
This has a small and not very broad iron line, no deep variability dips, and
longer reverberation lags. We show that these two very different objects have
similar H$\beta$ line width and optical luminosity, hence have similar masses
and mass accretion rates. The only remaining free parameters which can
determine their very different X-ray spectra and variability are black hole
spin, and inclination angle. We show that the optical/UV emission from the
outer disc strongly implies that both these objects are highly super-Eddington
(assuming that the H$\beta$ FWHM mass is reliable), and lose substantial energy
via advection and/or a wind. The accretion flow cannot then be a flat disc, and
inclination angle with respect to its vertical structure (which may also be
variable due to time dependent clumps in a wind) is the most likely origin for
the different properties seen in simple and complex NLS1.
This geometry is quite different to the clean view of a flat disc which is
assumed for the spin measurements, so it is possible that even 1H0707-495 has
low spin. If so, this re-opens the simplest and hence very attractive
possibility that high black hole spin is a necessary and sufficient condition
to trigger highly relativistic (bulk Lorentz factor $\sim$10) jets.
We positionally match a sample of infrared-selected young stellar objects (YSOs), identified by combining the Spitzer GLIMPSE, WISE and Herschel Space Observatory Hi-GAL surveys, to the dense clumps identified in the millimetre continuum by the Bolocam Galactic Plane Survey in two Galactic lines of sight centred towards l = 30deg and l = 40deg. We calculate the ratio of infrared luminosity, L_IR, to the mass of the clump, M_clump, in a variety of Galactic environments and find it to be somewhat enhanced in spiral arms compared to the interarm regions when averaged over kiloparsec scales. We find no compelling evidence that these changes are due to the mechanical influence of the spiral arm on the star-formation efficiency rather than, e.g., different gradients in the star-formation rate due to patchy or intermittent star formation, or local variations that are not averaged out due to small source samples. The largest variation in L_IR/M_clump is found in individual clump values, which follow a log-normal distribution and have a range of over three orders of magnitude. This spread is intrinsic as no dependence of L_IR/M_clump with M_clump was found. No difference was found in the luminosity distribution of sources in the arm and interarm samples and a strong linear correlation was found between L_IR and M_clump.
We describe the implementation and performance of the ${\rm P^3T}$ (Particle-Particle Particle-Tree) scheme for simulating dense stellar systems. In ${\rm P^3T}$, the force experienced by a particle is split into short-range and long-range contributions. Short-range forces are evaluated by direct summation and integrated with the fourth order Hermite predictor-corrector method with the block timesteps. For long-range forces, we use a combination of the Barnes-Hut tree code and the leapfrog integrator. The tree part of our simulation environment is accelerated using graphical processing units (GPU), whereas the direct summation is carried out on the host CPU. Our code gives excellent performance and accuracy for star cluster simulations with a large number of particles even when the core size of the star cluster is small.
The spatially resolved AU Mic debris disc is among the most famous and best-studied debris discs. We aim at a comprehensive understanding of the dust production and the dynamics of the disc objects with in depth collisional modelling including stellar radiative and corpuscular forces. Our models are compared to a suite of observational data for thermal and scattered light emission, ranging from the ALMA radial surface brightness profile at 1.3mm to polarisation measurements in the visible. Most of the data can be reproduced with a planetesimal belt having an outer edge at around 40au and subsequent inward transport of dust by stellar winds. A low dynamical excitation of the planetesimals with eccentricities up to 0.03 is preferred. The radial width of the planetesimal belt cannot be constrained tightly. Belts that are 5au and 17au wide, as well as a broad 44au-wide belt are consistent with observations. All models show surface density profiles increasing with distance from the star as inferred from observations. The best model is achieved by assuming a stellar mass loss rate that exceeds the solar one by a factor of 50. While the SED and the shape of the ALMA profile are well reproduced, the models deviate from the scattered light data more strongly. The observations show a bluer disc colour and a lower degree of polarisation for projected distances <40au than predicted by the models. The problem may be mitigated by irregularly-shaped dust grains which have scattering properties different from the Mie spheres used. From tests with a handful of selected dust materials, we derive a preference for mixtures of silicate, carbon, and ice of moderate porosity. We address the origin of the unresolved central excess emission detected by ALMA and show that it cannot stem from an additional inner belt alone. Instead, it should derive, at least partly, from the chromosphere of the central star.
A new all-sky catalogue of all available uvbybeta measurements from the literature was generated. The uvbybeta photometric system is widely used for the study of various Galactic and extragalactic objects. It measures the colour due to temperature differences, the Balmer discontinuity, and blanketing absorption due to metals. The data for the individual stars were cross-checked on the basis of the Tycho-2 catalogue. This catalogue includes very precise celestial coordinates, but is magnitude and spatial resolution limited. However, the loss of objects is only marginal and is compensated for by the gain of homogeneity. In total, 298 639 measurements of 60 668 stars were used to derive unweighted mean indices and their errors. Photoelectric and CCD observations were treated in the same way. The presented data set can be used for various applications such as new calibrations of astrophysical parameters, the standardization of new observations, and as additional information for ongoing and forthcoming all-sky surveys.
The gravitational radiation has been proposed a long time before, as an explanation for the observed relatively low spin frequencies of young neutron stars and of accreting neutron stars in low-mass X-ray binaries as well. In the present work we studied the effects of the neutron star equation of state on the r-mode instability window of rotating neutron stars. Firstly, we employed a set of analytical solution of the Tolman-Oppemheimer-Volkoff equations. In particular, we tried to clarify the effects of the bulk neutron star properties (mass, radius, density distribution, crust size and elasticity) on the r-mode instability window. We found that the critical angular velocity $\Omega_c$ depends mainly on the neutron star radius. The effects of the gravitational mass and the mass distribution are almost negligible. Secondly, we studied the effect of the elasticity of the crust, via to the slippage factor $S$ and also the effect of the nuclear equation of state, via the slope parameter $L$, on the instability window. We found that the crust effects are more pronounced, compared to those originated from the equation of state. Moreover, we proposed simple analytical expressions which relate the macroscopic quantity $\Omega_c$ to the radius, the parameter $L$ and the factor ${\cal S}$. Finally, we investigated the possibility to measure the radius of a neutron star and the factor ${\cal S}$ with the help of accurate measures of $\Omega_c$ and the neutron star temperature.
The Luminous Convolution Model (LCM) is an empirical formula, based on a
heuristic convolution of Relativistic transformations, which makes it possible
to predict the observed rotation curves of a broad class of spiral galaxies
from luminous matter alone. Since the LCM is independent of distance estimates
or dark matter halo densities, it is the first model of its kind which
constrains luminous matter modeling directly from the observed spectral shifts
of characteristic photon emission/absorption lines. In this paper we present
the LCM solution to a diverse sample of twenty-five (25) galaxies of varying
morphologies and sizes. For the chosen sample, it is shown that the LCM is more
accurate than either Modified Newtonian Dynamics or dark matter models and
returns physically reasonable mass to light ratios and exponential scale
lengths. Unlike either Modified Newtonian Dynamics or dark matter models, the
LCM predicts something which is directly falsifiable through improvements in
our observational capacity, the luminous mass profile. The question, while
interesting, of if the LCM constrains the relation of the baryonic to dark
matter is beyond the scope of the current work.
The focus of this paper is to show that it is possible to describe a broad
and diverse spectrum of galaxies efficiently with the LCM formula. Moreover,
since the LCM free parameter predicts the ratio of the Milky Way galaxy
baryonic mass density to that of the galaxy emitting the photon, if the Milky
Way mass models can be trusted at face values, we then show that the LCM
becomes a zero parameter model.
This paper substantially expands the results in arXiv:1309.7370 and
arXiv:1407:7583.
Pulsars are good clocks in the universe. One fundamental question is that why they are good clocks? This is related to the braking mechanism of pulsars. Nowadays pulsar timing is done with unprecedented accuracy. More pulsars have braking indices measured. The period derivative of intermittent pulsars and magnetars can vary by a factor of several. However, during pulsar studies, the magnetic dipole braking in vacuum is still often assumed. It is shown that the fundamental assumption of magnetic dipole braking (vacuum condition) does not exist and it is not consistent with the observations. The physical torque must consider the presence of the pulsar magnetosphere. Among various efforts, the wind braking model can explain many observations of pulsars and magnetars in a unified way. It is also consistent with the up-to-date observations. It is time for a paradigm shift in pulsar studies: from magnetic dipole braking to wind braking. As one alternative to the magnetospheric model, the fallback disk model is also discussed.
Cosmological fluids are commonly assumed to be distributed in a spatially homogeneous way, while their internal properties are described by a perfect fluid. As such, they influence the Hubble-expansion through their respective densities and equation of state parameters. The subject of this paper is an investigation of the fluid-mechanical properties of a dark energy fluid, which is characterised by its sound speed and its viscosity apart from its equation of state. In particular, we compute the predicted spectra for the integrated Sachs-Wolfe effect for our generalised fluid, and compare them with the corresponding predictions for weak gravitational lensing and galaxy clustering, which had been computed in previous work. We perform statistical forecasts and show that the integrated Sachs-Wolfe signal obtained by cross correlating Euclid galaxies with Planck temperatures, when joined to galaxy clustering and weak lensing observations, yields a percent sensitivity on the dark energy sound speed and viscosity. We prove that the iSW effect provides strong degeneracy breaking for low sound speeds and large differences between the sound speed and viscosity parameters.
Punzo et al. (2015) recently reported on the state of the art for visualisation of H I data cubes. I here briefly describe another program, FRELLED, specifically designed for dealing with H I data. Unlike many 3D viewers, FRELLED can handle astronomical world coordinates, easily and interactively mask and label specific volumes within the data, overlay optical data from the SDSS, generate contour plots and renzograms, make basic spectral profile measurements via an interface with MIRIAD, and can switch between viewing the data in 3D and 2D. The code is open source and can potentially be extended to include any astronomical function possible with Python, displaying the result in an interactive 3D environment.
We present an analysis of XMM-Newton X-ray data of WR30a (WO+O), a close massive binary that harbours an oxygen-rich Wolf-Rayet star. Its spectrum is characterized by the presence of two well-separated broad peaks, or `bumps', one peaking at energies between 1 and 2 keV and the other between 5 and 7 keV. A two-component model is required to match the observed spectrum. The higher energy spectral peak is considerably more absorbed and dominates the X-ray luminosity. For the currently accepted distance of 7.77 kpc, the X-ray luminosity of WR30a is L_X > 10^{34} erg s^{-1}, making it one of the most X-ray luminous WR+O binary amongst those in the Galaxy with orbital periods less than ~20 d. The X-ray spectrum can be acceptably fitted using either thermal or nonthermal models, so the X-ray production mechanism is yet unclear.
The process of convective settling is based on the assumption that a small fraction of the low-entropy downflows sink from the photosphere down to the bottom of the star's envelope convection zone retaining a substantial entropy contrast. We have previously shown that this process could explain the slow Li depletion observed in the Sun. We construct a parametric model of convective settling to investigate the dependence of Li and Be depletion on stellar mass and age. Our model is generally in good agreement with the Li abundances measured in open clusters and solar twins, although it seems to underestimate the Li depletion in the first ~1 Gyr. The model is also compatible with the Be abundances measured in a sample of field stars.
Luminous compact blue galaxies (LCBGs) have enhanced star formation rates and compact morphologies. We combine Sloan Digital Sky Survey data with HI data of 29 LCBGs at redshift z~0 to understand their nature. We find that local LCBGs have high atomic gas fractions (~50%) and star formation rates per stellar mass consistent with some high redshift star forming galaxies. Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy star forming galaxies commonly observed at z~1-3. Local LCBGs separate into three groups: 1. Interacting galaxies (~20%); 2. Clumpy spirals (~40%); 3. Non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (~40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.
The surfaces of the large Uranian satellites are characterized by a mixture of H2O ice and a dark, potentially carbon-rich, constituent, along with CO2 ice. At the mean heliocentric distance of the Uranian system, native CO2 ice should be removed on timescales shorter than the age of the Solar System. Consequently, the detected CO2 ice might be actively produced. Analogous to irradiation of icy moons in the Jupiter and Saturn systems, we hypothesize that charged particles caught in Uranus' magnetic field bombard the surfaces of the Uranian satellites, driving a radiolytic CO2 production cycle. To test this hypothesis, we investigated the distribution of CO2 ice by analyzing near-infrared (NIR) spectra of these moons, gathered using the SpeX spectrograph at NASA's Infrared Telescope Facility (IRTF) (2000 - 2013). Additionally, we made spectrophotometric measurements using images gathered by the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope (2003 - 2005). We find that the detected CO2 ice is primarily on the trailing hemispheres of the satellites closest to Uranus, consistent with other observations of these moons. Our band parameter analysis indicates that the detected CO2 ice is pure and segregated from other constituents. Our spectrophotometric analysis indicates that IRAC is not sensitive to the CO2 ice detected by SpeX, potentially because CO2 is retained beneath a thin surface layer dominated by H2O ice that is opaque to photons over IRAC wavelengths. Thus, our combined SpeX and IRAC analyses suggest that the near-surfaces (i.e., top few 100 microns) of the Uranian satellites are compositionally stratified. We briefly compare the spectral characteristics of the CO2 ice detected on the Uranian moons to icy satellites elsewhere, and we also consider the most likely drivers of the observed distribution of CO2 ice.
We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EIS observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient kappa0 = classical value) and the enthalpy flux dominant regime (kappa0 = 0.1 x classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is importance to reproduce the strong downflows in Fe XII and Fe XV.
We study the quenching of satellite galaxies by gradual depletion of gas due to star formation, by ram-pressure striping and by tidally triggered starburst. Using progenitors constrained by the empirical model of Lu et al., in which outflow loading factor is low, we do not find an over-quenching problem in satellites even if there is no further cold gas supply from the cooling of the halo gas after a galaxy is accreted by its host. Gradual depletion alone predicts a unimodal distribution in specific star formation, in contrast to the bimodal distribution observed, and under-predicts the quenched fraction in low mass halos. Ram-pressure stripping nicely reproduces the bimodal distribution but under-predicts the quenched fraction in low-mass halos. Starbursts in gas-rich satellites triggered by tidal interactions with central galaxies can nicely reproduce the quenched satellite population in low-mass halos, but become unimportant for low-mass satellites in massive halos. The combined processes, together with the constrained progenitors, can reproduce the observed star formation properties of satellites in halos of different masses.
We test the feasibility of 3D coronal-loop tracing in stereoscopic EUV image pairs, with the ultimate goal of enabling efficient 3D reconstruction of the coronal magnetic field that drives flares and coronal mass ejections (CMEs). We developed an automated code designed to perform triangulation of coronal loops in pairs (or triplets) of EUV images recorded from different perspectives. The automated (or blind) stereoscopy code includes three major tasks: (i) automated pattern recognition of coronal loops in EUV images, (ii) automated pairing of corresponding loop patterns from two different aspect angles, and (iii) stereoscopic triangulation of 3D loop coordinates. We perform tests with simulated stereoscopic EUV images and quantify the accuracy of all three procedures. In addition we test the performance of the blind stereoscopy code as a function of the spacecraft-separation angle and as a function of the spatial resolution. We also test the sensitivity to magnetic non-potentiality. The automated code developed here can be used for analysis of existing {\sl Solar TErrestrial RElationship Observatory (STEREO)} data, but primarily serves for a design study of a future mission with dedicated diagnostics of non-potential magnetic fields. For a pixel size of 0.6\arcsec (corresponding to the {\sl Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA)} spatial resolution of 1.4\arcsec), we find an optimum spacecraft-separation angle of $\alpha_s \approx 5^\circ$.
The dynamics of the tilted Bianchi IX cosmological models are explored allowing energy flux in the source fluid. The equation of state and the tilt angle of the fluid are the two free parameters and the shear, the vorticity and the curvature of the spacetime span a three-dimensional phase space that contains seven fixed points. One of them is an attractor that inflates the universe anisotropically, thus providing a counter example to the cosmic no-hair conjecture. Also, an example of a realistic though fine-tuned cosmology is presented wherein the rotation can grow significant towards the present epoch but the shear stays within the observational bounds.
The spheroidal harmonics $S_{lm}(\theta;c)$ have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues $\{A_{lm}(c)\}$ of these functions have been determined by many authors. However, it should be emphasized that all previous asymptotic analyzes were restricted either to the regime $m\to\infty$ with a fixed value of $c$, or to the complementary regime $|c|\to\infty$ with a fixed value of $m$. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both $m$ and $c$. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit $m\to\infty$ and $|c|\to\infty$ with a fixed $m/c$ ratio.
Starting with geometrical premises, we infer the existence of fundamental cosmological scalar fields. We then consider physically relevant situations in which spacetime metric is induced by one or, in general, by two scalar fields, in accord with the Papapetrou algorithm. The first of these fields, identified with dark energy, has exceedingly small but finite (subquantum) Hubble mass scale (~ 10^-33 eV), and might be represented as a neutral superposition of quasi-static electric fields. The second field is identified with dark matter as an effectively scalar conglomerate composed of primordial neutrinos and antineutrinos in a special tachyonic state.
A recent paper by Fr\"ob employs the linearized Weyl-Weyl correlator to construct the tensor power spectrum. Although his purpose was to argue that infrared divergences and secular growth in the graviton propagator are gauge artefacts, a closer examination of the problem leads to the opposite conclusion. The analogies with the BMS symmetries of graviton scattering on a flat background, and with the Aharonov-Bohm effect of quantum mechanics, suggest that de Sitter breaking secular growth is likely to be observable in graviton loop effects. And a recent result for the vacuum polarization does seem to show it.
Many theoretically well-motivated extensions of the Standard Model of particle physics predict the existence of the axion and further ultralight axion-like particles. They may constitute the mysterious dark matter in the universe and solve some puzzles in stellar and high-energy astrophysics. There are new, relatively small experiments around the globe, which started to hunt for these elusive particles and complement the accelerator based search for physics beyond the Standard Model.
Identifying the true theory of dark matter depends crucially on accurately characterizing interactions of dark matter (DM) with other species. In the context of DM direct detection, we present a study of the prospects for correctly identifying the low-energy effective DM-nucleus scattering operators connected to UV-complete models of DM-quark interactions. We take a census of plausible UV-complete interaction models with different low-energy leading-order DM-nuclear responses. For each model (corresponding to different spin-, momentum-, and velocity-dependent responses), we create a large number of realizations of recoil-energy spectra, and use Bayesian methods to investigate the probability that experiments will be able to select the correct scattering model within a broad set of competing scattering hypotheses. We conclude that agnostic analysis of a strong signal (such as Generation-2 would see if cross sections are just below the current limits) seen on xenon and germanium experiments is likely to correctly identify momentum dependence of the dominant response, ruling out models with either "heavy" or "light" mediators, and enabling downselection of allowed models. However, a unique determination of the correct UV completion will critically depend on the availability of measurements from a wider variety of nuclear targets, including iodine or fluorine. We investigate how model-selection prospects depend on the energy window available for the analysis. In addition, we discuss accuracy of the DM particle mass determination under a wide variety of scattering models, and investigate impact of the specific types of particle-physics uncertainties on prospects for model selection.
We address a conflicting report on the value and uncertainty of the astrophysical cross section factor of the 12C(a,g) reaction extracted from existing data. In sharp contrast to previously reported ambiguities (by up to a factor 8), Schuermann et al. suggest an accuracy of 12%. We demonstrate that the so claimed "rigorous data selection criteria" used by Schuermann et al. relies on the s-factors extracted by Assuncao et al. But these results were shown in a later analysis (by this author) to have large error bars (considerably larger than claimed by Assuncao em et al.) which render these data not appropriate for a rigorous analysis. When their "rigorous data selection" is adjusted to remove the results of Assuncao et al. the astrophysical cross section factor cannot be extracted with 12% accuracy, or even close to it. Such data on the S_E2 values at low energies deviate by up to a factor two from their fit and exhibit a sharper slope rising toward low energies, leading to strong doubt on their extrapolated S_E2(300) value and the quoted small error bar. Contrary to their claim the small value of S_E1(300) ~10 keVb cannot be ruled out by current data including the most modern gamma-ray data. As previously observed by several authors current data reveal ambiguities in the value of S_E1(300) ~10 keVb or ~80 keVb, and the new ambiguity that was recently revealed (by this author) of S_E2(300) ~60 keVb or ~154 keVb, appear to be a more reasonable evaluation the status of current data.
We study the stability of a spherically symmetric perturbation around the flat Friedmann-Lema$\hat{\i}$tre-Robertson-Walker spacetime in the ghost-free bigravity theory, retaining nonlinearities of the helicity-$0$ mode of the massive graviton. It has been known that, when the graviton mass is smaller than the Hubble parameter, homogeneous and isotropic spacetimes suffer from the Higuchi-type ghost or the gradient instability against the linear perturbation in the bigravity. Hence, the bigravity theory has no healthy massless limit for cosmological solutions at linear level. In this paper we show that the instabilities can be resolved by taking into account nonlinear effects of the scalar graviton mode for an appropriate parameter space of coupling constants. The growth history in the bigravity can be restored to the result in general relativity in the early stage of the Universe, in which the St\"uckelberg fields are nonlinear and there is neither ghost nor gradient instability. Therefore, the bigravity theory has the healthy massless limit, and cosmology based on it is viable even when the graviton mass is smaller than the Hubble parameter.
In this work, we consider a generalised gravitational theory that contains the Einstein term, a scalar field and the quadratic Gauss-Bonnet term. We focus on the early-universe dynamics, and demonstrate that a simple choice of the coupling function between the scalar field and the Gauss-Bonnet term and a simplifying assumption regarding the role of the Ricci scalar can lead to new, analytical, elegant solutions with interesting characteristics. We first argue, and demonstrate in the context of two different models, that the presence of the Ricci scalar in the theory at early times, when the curvature is strong, does not affect the actual cosmological solutions. By considering therefore a pure scalar-GB theory with a quadratic coupling function we derive a plethora of interesting, analytic solutions: for a negative coupling parameter, we obtain inflationary, de Sitter-type solutions or expanding solutions with a de Sitter phase in their past and a natural exit mechanism at later times; for a positive coupling function, we find instead singularity-free solutions with no Big-Bang singularity. We show that the aforementioned solutions arise only for this particular choice of coupling function, a result that may hint to some fundamental role that this coupling function may hold in the context of an ultimate theory.
Sum rules provide useful insights into transition strength functions and are often expressed as expectation values of an operator. In this letter I demonstrate that non-energy-weighted transition sum rules have strong secular dependences on the energy of the initial state. Such non-trivial systematics have consequences: the simplification suggested by the generalized Brink-Axel hypothesis, for example, does not hold for most cases. Furthermore, I show the systematics can be understood through spectral distribution theory, calculated via traces of operators and of products of operators.
We study the vacuum stability of a minimal Higgs portal model in which the standard model (SM) particle spectrum is extended to include one complex scalar field and one Dirac fermion. These new fields are singlets under the SM gauge group and are charged under a global U(1) symmetry. Breaking of this U(1) symmetry results in a massless Goldstone boson, a massive CP-even scalar, and splits the Dirac fermion into two new mass-eigenstates, corresponding to Majorana fermions. The lightest Majorana fermion (w) is absolutely stable, providing a plausible dark matter (DM) candidate. We show that interactions between the Higgs sector and the lightest Majorana fermion which are strong enough to yield a thermal relic abundance consistent with observation can easily destabilize the electroweak vacuum or drive the theory into a non-perturbative regime at an energy scale well below the Planck mass. However, we also demonstrate that there is a region of the parameter space which develops a stable vacuum (up to the Planck scale), satisfies the relic abundance, and is in agreement with direct DM searches. Such an interesting region of the parameter space corresponds to DM masses 350 GeV \alt m_w \alt 1 TeV, which are outside the discovery reach of the LHC Run I but will be probed at Run II. The region of interest is also within reach of second generation DM direct detection experiments.
Combining the stochastic and $\delta N$ formalisms, we derive non perturbative analytical expressions for all correlation functions of scalar perturbations in single-field, slow-roll inflation. The standard, classical formulas are recovered as saddle-point limits of the full results. This yields a classicality criterion that shows that stochastic effects are small only if the potential is sub-Planckian and not too flat. The saddle-point approximation also provides an expansion scheme for calculating stochastic corrections to observable quantities perturbatively in this regime. In the opposite regime, we show that a strong suppression in the power spectrum is generically obtained, and comment on the physical implications of this effect.
Links to: arXiv, form interface, find, astro-ph, recent, 1506, contact, help (Access key information)
Following a suggestion that a directed relativistic explosion may have a universal intermediate asymptotic, we derive a self-similar solution for an ultra-relativistic jetted blast wave. The solution involves three distinct regions: an approximately paraboloid head where the Lorentz factor $\gamma$ exceeds $\sim1/2$ of its maximal, nose value; a geometrically self-similar, expanding envelope slightly narrower than a paraboloid; and an axial core in which the radial flow $U$ converges inward towards the axis. Most ($\sim 80\%$) of the energy lies well beyond the head. Here, a radial cross section shows a maximal $\gamma$ (separating the core and the envelope), a sign reversal in $U$, and a minimal $\gamma$, at respectively $\sim 1/6$, $\sim1/4$, and $\sim3/4$ of the shock radius. The solution is apparently unique, and approximately agrees with previous simulations, of different initial conditions, that resolved the head. This suggests that unlike a spherical relativistic blast wave, our solution is an attractor, and may thus describe directed blast waves such as in the external shock phase of a $\gamma$-ray burst.
We propose a new method to constrain elastic scattering between dark matter (DM) and standard model particles in the early Universe. Direct or indirect thermal coupling of non-relativistic DM with photons leads to a heat sink for the latter. This results in spectral distortions of the cosmic microwave background (CMB), the amplitude of which can be as large as a few times the DM-to-photon number ratio. We compute CMB spectral distortions due to DM-proton, DM-electron and DM-photon scattering for generic energy-dependent cross sections and DM mass m_DM >~ 1 keV. Using FIRAS measurements we set constraints on the cross sections for m_DM <~ 0.1 MeV. In particular, for energy-independent scattering we obtain sigma[DM-proton] <~ 10^(-24) cm^2 (keV/m_DM)^(1/2), sigma[DM-electron] <~ 10^(-27) cm^2 (keV/m_DM)^(1/2) and sigma[DM-photon] <~ 10^(-39) cm^2 (m_DM/keV). An experiment with the characteristics of PIXIE would extend the regime of sensitivity up to masses m_DM ~ 1 GeV.
Though Fourier Transforms (FTs) are a common technique for finding correlation functions, they are not typically used in computations of the anisotropy of the two-point correlation function (2PCF) about the line of sight in wide-angle surveys because the line-of-sight direction is not constant on the Cartesian grid. Here we show how FTs can be used to compute the multipole moments of the anisotropic 2PCF. We also show how FTs can be used to accelerate the 3PCF algorithm of Slepian & Eisenstein (2015). In both cases, these FT methods allow one to avoid the computational cost of pair counting, which scales as the square of the number density of objects in the survey. With the upcoming large datasets of DESI, Euclid, and LSST, FT techniques will therefore offer an important complement to simple pair or triplet counts.
We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver (RSR), towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the SCUBA-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z=2.040, 3.252 and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (J_up=2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H_2 gas mass of the full sample is (2.0 +- 0.2) x 10^11 M_sun/\mu, and the mean dust mass is (2.0+-0.2) x 10^9 M_sun/\mu, where \mu=2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of \delta_GDR=55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the L'_CO - L_FIR correlation observed for local luminous and ultraluminous infrared galaxies to higher FIR and CO luminosities.
In Gentile Fusillo et al. (2015) we developed a selection method for white dwarf candidates which makes use of photometry, colours and proper motions to calculate a probability of being a white dwarf (Pwd). The application of our method to the Sloan Digital Sky Survey (SDSS) data release 10 resulted in nearly 66,000 photometrically selected objects with a derived Pwd, approximately 21000 of which are high confidence white dwarf candidates. Here we present an independent test of our selection method based on a sample of spectroscopically confirmed white dwarfs from the LAMOST (Large Sky Area Multi-Fiber Spectroscopic Telescope) survey. We do this by cross matching all our $\sim$66,000 SDSS photometric white dwarf candidates with the over 4 million spectra available in the third data release of LAMOST. This results in 1673 white dwarf candidates with no previous SDSS spectroscopy, but with available LAMOST spectra. Among these objects we identify 309 genuine white dwarfs. We find that our Pwd can efficiently discriminate between confirmed LAMOST white dwarfs and contaminants. Our white dwarf candidate selection method can be applied to any multi-band photometric survey and in this work we conclusively confirm its reliability in selecting white dwarfs without recourse to spectroscopy. We also discuss the spectroscopic completeness of white dwarfs in LAMOST, as well as deriving effective temperatures, surface gravities and masses for the hydrogen-rich atmosphere white dwarfs in the newly identified LAMOST sample.
The observational evidence that Super-Massive Black Holes ($M_{\bullet} \sim 10^{9-10} \, \mathrm{M_{\odot}}$) are already in place less than $1 \, \mathrm{Gyr}$ after the Big Bang poses stringent time constraints on the growth efficiency of their seeds. Among proposed possibilities, the formation of massive ($\sim 10^{3-6} \, \mathrm{M_{\odot}}$) seeds and/or the occurrence of super-Eddington ($\dot{M}>\dot{M}_{Edd}$) accretion episodes may contribute to the solution of this problem. In this work, using realistic initial conditions, we analytically and numerically investigate the accretion flow onto high-redshift ($z \sim 10$) black holes to understand the physical requirements favoring rapid and efficient growth. Our model identifies a "feeding-dominated" accretion regime and a "feedback-limited" one, the latter being characterized by intermittent (duty cycles ${\cal D} \lesssim 0.5$) and inefficient growth, with recurring outflow episodes. We find that low-mass seeds ($\lesssim 10^{3-4} \, \mathrm{M_{\odot}}$) evolve in the feedback-limited regime, while more massive seeds ($\gtrsim 10^{5-6} \, \mathrm{M_{\odot}}$) grow very rapidly as they are found in the feeding-dominated regime. In addition to the standard accretion model with a fixed matter-energy conversion factor ($\epsilon = 0.1$), we have also explored slim disk models ($\epsilon \lesssim 0.04$), which may ensure a continuous growth with $\dot{M} \gg \dot{M}_{Edd}$ (up to $\sim 300\dot{M}_{Edd}$ in our simulations). Under these conditions, outflows play a negligible role and a black hole can accrete $80\%-100\%$ of the gas mass of the host halo ($\sim 10^7 \, \mathrm{M_{\odot}}$) in $\sim 10 \, \mathrm{Myr}$, while in feedback-limited systems we predict that black holes can accrete only up to $\sim 15\%$ of the available mass.
We report Markov chain Monte Carlo fits of the thermophysical model of Wright (2007) to the fluxes of 10 asteroids which have been observed by both WISE and NEOWISE. This model is especially useful when one has observations of an asteroid at multiple epochs, as it takes advantage of the views of different local times and latitudes to determine the spin axis and the thermal parameter. Many of the asteroids NEOWISE observes will have already been imaged by WISE, so this proof of concept shows there is an opportunity to use a rotating cratered thermophysical model to determine surface thermal properties of a large number of asteroids.
We present multi-epoch, time-resolved optical spectroscopic observations of the dwarf nova HT Cas, obtained during 1986, 1992, 1995 and 2005 with the aim to study the properties of emission structures in the system. We determined that the accretion disc radius, measured from the double-peaked emission line profiles, is persistently large and lies within the range of 0.45-0.52a, where a is the binary separation. This is close to the tidal truncation radius r_max=0.52a. This result contradicts with previous radius measurements. An extensive set of Doppler maps has revealed a very complex emission structure of the accretion disc. Apart from a ring of disc emission, the tomograms display at least three areas of enhanced emission: the hot spot from the area of interaction between the gas stream and the disc, which is superposed on the elongated spiral structure, and the extended bright region on the leading side of the disc, opposite to the location of the hot spot. The position of the hot spot in all the emission lines is consistent with the trajectory of the gas stream. However, the peaks of emission are located in the range of distances 0.22-0.30a, which are much closer to the white dwarf than the disc edge. This suggests that the outer disc regions have a very low density, allowing the gas stream to flow almost freely before it starts to be seen as an emission source. We have found that the extended emission region in the leading side of the disc is always observed at the very edge of the large disc. Observations of other cataclysmic variables, which show a similar emission structure in their tomograms, confirm this conclusion. We propose that the leading side bright region is caused by irradiation of tidally thickened sectors of the outer disc by the white dwarf and/or hot inner disc regions.
It has now become clear that the radio jet in the giant elliptical galaxy M87 must turn on very close to the black hole. This implies the efficient acceleration of leptons within the jet at scales much smaller than feasible by the typical dissipative events usually invoked to explain jet synchrotron emission. Here we show that the stagnation surface, the separatrix between material that falls back into the black hole and material that is accelerated outward forming the jet, is a natural site of pair formation and particle acceleration. This occurs via an inverse-Compton pair catastrophe driven by unscreened electric fields within the charge-starved region about the stagnation surface and substantially amplified by a post-gap cascade. For typical estimates of the jet properties in M87, we find excellent quantitive agreement between the predicted relativistic lepton densities and those required by recent high-frequency radio observations of M87. This mechanism fails to adequately fill a putative jet from Sagittarius A* with relativistic leptons, which may explain the lack of an obvious radio jet in the Galactic center. Finally, this process implies a relationship between the kinetic jet power and the gamma-ray luminosity of blazars, produced during the post-gap cascade.
New images from the Hubble Space Telescope of the FRII radio galaxy Pictor A reveal a previously undiscovered tidal tail, as well as a number of jet knots coinciding with a known X-ray and radio jet. The tidal tail is approximately 5" wide (3 kpc projected), starting 18" (12 kpc) from the center of Pictor A, and extends more than 90" (60 kpc). The knots are part of a jet observed to be about 4' (160 kpc) long, extending to a bright hotspot. These images are the first optical detections of this jet, and by extracting knot flux densities through three filters we set constraints on emission models. While the radio and optical flux densities are usually explained by synchrotron emission, there are several emission mechanisms which might be used to explain the X-ray flux densities. Our data rule out Doppler boosted inverse Compton scattering as a source of the high energy emission. Instead, we find that the observed emission can be well described by synchrotron emission from electrons with a low energy index ($p\sim2$) that dominates the radio band, while a high energy index ($p\sim3$) is needed for the X-ray band and the transition occurs in the optical/infrared band. This model is consistent with a continuous electron injection scenario.
The CARMA 1.3 mm polarization system consists of dual-polarization receivers that are sensitive to right- (R) and left-circular (L) polarization, and a spectral-line correlator that measures all four cross polarizations (RR, LL, LR, RL) on each of the 105 baselines connecting the 15 telescopes. Each receiver comprises a single feed horn, a waveguide circular polarizer, an orthomode transducer (OMT), two heterodyne mixers, and two low-noise amplifiers (LNAs), all mounted in a cryogenically cooled dewar. Here we review the basics of polarization observations, describe the construction and performance of key receiver components (circular polarizer, OMT, and mixers -- but not the correlator), and discuss in detail the calibration of the system, particularly the calibration of the R-L phase offsets and the polarization leakage corrections. The absolute accuracy of polarization position angle measurements was checked by mapping the radial polarization pattern across the disk of Mars. Transferring the Mars calibration to the well known polarization calibrator 3C286, we find a polarization position angle of $\chi = 39.2 \pm 1^{\circ}$ for 3C286 at 225 GHz, consistent with other observations at millimeter wavelengths. Finally, we consider what limitations in accuracy are expected due to the signal-to-noise ratio, dynamic range, and primary beam polarization.
Individual particles from comet 81P/Wild 2 collected by NASA's Stardust mission vary in size from small sub-$\mu$m fragments found in the walls of the aerogel tracks, to large fragments up to tens of $\mu$m in size found towards the termini of tracks. The comet, in an orbit beyond Neptune since its formation, retains an intact a record of early-Solar-System processes that was compromised in asteroidal samples by heating and aqueous alteration. We measured the O isotopic composition of seven Stardust fragments larger than $\sim$2 $\mu$m extracted from five different Stardust aerogel tracks, and 63 particles smaller than $\sim$2 $\mu$m from the wall of a Stardust track. The larger particles show a relatively narrow range of O isotopic compositions that is consistent with $^{16}$O-poor phases commonly seen in meteorites. Many of the larger Stardust fragments studied so far have chondrule-like mineralogy which is consistent with formation in the inner Solar System. The fine-grained material shows a very broad range of O isotopic compositions ($-70<\Delta^{17}$O$<+60$) suggesting that Wild 2 fines are either primitive outer-nebula dust or a very diverse sampling of inner Solar System compositional reservoirs that accreted along with a large number of inner-Solar-System rocks to form comet Wild 2.
We present a model for spectrophotometric calibration errors in observations of quasars from the third generation of the Sloan Digital Sky Survey (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) and describe the correction procedure we have developed and applied to this sample. Calibration errors are primarily due to atmospheric differential refraction and guiding offsets during each exposure. The corrections potentially reduce the systematics for any studies of BOSS quasars, including the measurement of baryon acoustic oscillations using the Lyman-$\alpha$ forest. Our model suggests that, on average, the observed quasar flux in BOSS is overestimated by $\sim 19\%$ at 3600 \AA\ and underestimated by $\sim 24\%$ at 10,000 \AA. Our corrections for the entire BOSS quasar sample are publicly available.
In this paper, the third in a series illustrating the power of generalized linear models (GLMs) for the astronomical community, we elucidate the potential of the class of GLMs which handles count data. The size of a galaxy's globular cluster population $N_{\rm GC}$ is a prolonged puzzle in the astronomical literature. It falls in the category of count data analysis, yet it is usually modelled as if it were a continuous response variable. We have developed a Bayesian negative binomial regression model to study the connection between $N_{\rm GC}$ and the following galaxy properties: central black hole mass, dynamical bulge mass, bulge velocity dispersion, and absolute visual magnitude. The methodology introduced herein naturally accounts for heteroscedasticity, intrinsic scatter, errors in measurements in both axes (either discrete or continuous), and allows modelling the population of globular clusters on their natural scale as a non-negative integer variable. Prediction intervals of 99% around the trend for expected $N_{\rm GC}$comfortably envelope the data, notably including the Milky Way, which has hitherto been considered a problematic outlier. Finally, we demonstrate how random intercept models can incorporate information of each particular galaxy morphological type. Bayesian variable selection methodology allows for automatically identifying galaxy types with different productions of GCs, suggesting that on average S0 galaxies have a GC population 35% smaller than other types with similar brightness.
Population III stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby halos, and even if their ionizing photons are trapped by their own halos, their Lyman-Werner (LW) photons can still escape and destroy H$_2$ in other halos, preventing them from cooling and forming stars. LW escape fractions are thus a key parameter in cosmological simulations of early reionization and star formation but have not yet been parametrized for realistic halos by halo or stellar mass. To do so, we perform radiation hydrodynamical simulations of LW UV escape from 9--120 M$_{\odot}$ Pop III stars in $10^5$ to $10^7$ M$_{\odot}$ halos with ZEUS-MP. We find that photons in the LW lines (i.e. those responsible for destroying H$_{2}$ in nearby systems) have escape fractions ranging from 0% to 85%. No LW photons escape the most massive halo in our sample, even from the most massive star. Escape fractions for photons elsewhere in the 11.18--13.6~eV energy range, which can be redshifted into the LW lines at cosmological distances, are generally much higher, being above 60% for all but the least massive stars in the most massive halos. We find that shielding of H$_2$ by neutral hydrogen, which has been neglected in most studies to date, produces escape fractions that are up to a factor of three smaller than those predicted by H$_2$ self-shielding alone.
The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spectroscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with bolometric rather than monochromatic AGN luminosity, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on H-alpha / H-beta and C IV lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.
The past decade has brought major improvements in large-scale asteroid discovery and characterization with over half a million known asteroids and over 100,000 with some measurement of physical characterization. This explosion of data has allowed us to create a new global picture of the Main Asteroid Belt. Put in context with meteorite measurements and dynamical models, a new and more complete picture of Solar System evolution has emerged. The question has changed from "What was the original compositional gradient of the Asteroid Belt?" to "What was the original compositional gradient of small bodies across the entire Solar System?" No longer is the leading theory that two belts of planetesimals are primordial, but instead those belts were formed and sculpted through evolutionary processes after Solar System formation. This article reviews the advancements on the fronts of asteroid compositional characterization, meteorite measurements, and dynamical theories in the context of the heliocentric distribution of asteroid compositions seen in the Main Belt today. This chapter also reviews the major outstanding questions relating to asteroid compositions and distributions and summarizes the progress and current state of understanding of these questions to form the big picture of the formation and evolution of asteroids in the Main Belt. Finally, we briefly review the relevance of asteroids and their compositions in their greater context within our Solar System and beyond.
We use a 3D general circulation model to compare the primitive Martian hydrological cycle in "warm and wet" and "cold and icy" scenarios. In the warm and wet scenario, an anomalously high solar flux or intense greenhouse warming artificially added to the climate model are required to maintain warm conditions and an ice-free northern ocean. Precipitation shows strong surface variations, with high rates around Hellas basin and west of Tharsis but low rates around Margaritifer Sinus (where the observed valley network drainage density is nonetheless high). In the cold and icy scenario, snow migration is a function of both obliquity and surface pressure, and limited episodic melting is possible through combinations of seasonal, volcanic and impact forcing. At surface pressures above those required to avoid atmospheric collapse (~0.5 bar) and moderate to high obliquity, snow is transported to the equatorial highland regions where the concentration of valley networks is highest. Snow accumulation in the Aeolis quadrangle is high, indicating an ice-free northern ocean is not required to supply water to Gale crater. At lower surface pressures and obliquities, both H2O and CO2 are trapped as ice at the poles and the equatorial regions become extremely dry. The valley network distribution is positively correlated with snow accumulation produced by the cold and icy simulation at 41.8 degrees obliquity but uncorrelated with precipitation produced by the warm and wet simulation. Because our simulations make specific predictions for precipitation patterns under different climate scenarios, they motivate future targeted geological studies.
With the advent of modern multi-detector heterodyne instruments that can result in observations generating thousands of spectra per minute it is no longer feasible to reduce these data as individual spectra. We describe the automated data reduction procedure used to generate baselined data cubes from heterodyne data obtained at the James Clerk Maxwell Telescope. The system can automatically detect baseline regions in spectra and automatically determine regridding parameters, all without input from a user. Additionally it can detect and remove spectra suffering from transient interference effects or anomalous baselines. The pipeline is written as a set of recipes using the ORAC-DR pipeline environment with the algorithmic code using Starlink software packages and infrastructure. The algorithms presented here can be applied to other heterodyne array instruments and have been applied to data from historical JCMT heterodyne instrumentation.
We reanalyse the time-variable lightcurves of the transiting planetary system PTFO 8-8695, in which a planet of 3 to 4 Jupiter mass orbits around a rapidly rotating pre-main-sequence star. Both the planetary orbital period of 0.448 days and the stellar spin period less than 0.671 days are unusually short, which makes PTFO 8-8695 an ideal system to check the model of gravity darkening and nodal precession. While the previous analysis of PTFO 8-8695 assumed that the stellar spin and planetary orbital periods are the same, we extend the analysis by discarding the spin-orbit synchronous condition, and find three different classes of solutions roughly corresponding to the nodal precession periods of 199$\pm$16, 475$\pm$21, and 827$\pm$53 days that reproduce the transit lightcurves observed in 2009 and 2010. We compare the predicted lightcurves of the three solutions against the photometry data of a few percent accuracy obtained at Koyama Astronomical Observatory in 2014 and 2015, and find that the solution with the precession period of 199$\pm$16 days is preferred even though preliminary. Future prospect and implications to other transiting systems are briefly discussed.
Ultra Violet Imaging Telescope (UVIT) is one of the payloads on the first Indian multi wavelength satellite ASTROSAT expected to be launched by Indian Space Research Organisation (ISRO) in the year 2015. We have performed simulations of UV studies of old open clusters for the UVIT. The colour magnitude diagrams (CMDs) and spatial appearances have been created using 10 filters of FUV channel (130 - 180 nm) and NUV channel (200 - 300nm) available for observations on the UVIT, for three old open clusters M67, NGC 188 and NGC 6791. The CMDs are simulated for different filter combinations, and they are used to identify the loci of various evolutionary sequences, white dwarfs, blue stragglers, red giants, sub giants, turn off stars and the main sequence of the clusters. The present work helps in identifying the potential area of study in the case of three old open clusters, by considering the availability of filters and the detection limits of the instrument. We also recommend filter combinations, which can be used to detect and study the above mentioned evolutionary stages. The simulations and the results presented here are essential for the optimal use of the UVIT for studies of old open clusters.
The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from 4 curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1mm on either side of focus. In this paper we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intra- and extra-focal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing.
The Earth's Moon is thought to have formed by an impact between the Earth and an impactor around 4.5 billion years ago. This impact could have been so energetic that it could have mixed and homogenized the Earth's mantle. However, this view appears to be inconsistent with geochemical studies that suggest that the Earth's mantle was not mixed by the impact. Another plausible outcome is that this energetic impact melted the whole mantle, but the extent of mantle melting is not well understood even though it must have had a significant effect on the subsequent evolution of the Earth's interior and atmosphere. To understand the initial state of the Earth's mantle, we perform giant impact simulations using smoothed particle hydrodynamics (SPH) for three different models: (a) standard: a Mars-sized impactor hits the proto-Earth, (b) fast-spinning Earth: a small impactor hits a rapidly rotating proto-Earth, and (c) sub-Earths: two half Earth-sized planets collide. We use two types of equations of state (MgSiO3 liquid and forsterite) to describe the Earth's mantle. We find that the mantle remains unmixed in (a), but it may be mixed in (b) and (c). The extent of mixing is most extensive in (c). Therefore, (a) is most consistent and (c) may be least consistent with the preservation of the mantle heterogeneity, while (b) may fall between. We determine that the Earth's mantle becomes mostly molten by the impact in all of the models. The choice of the equations of state does not affect these outcomes. Additionally, our results indicate that entropy gains of the mantle materials by a giant impact cannot be predicted well by the Rankine-Hugoniot equations. Moreover, we show that the mantle can remain unmixed on a Moon-forming timescale if it does not become mixed by the impact.
We report a timing analysis of the black hole binary GRS 1915+105 with the NuSTAR observatory. A strong type-C QPO below 2 Hz appears in the power density spectrum during the whole observation, whose frequency is correlated with the 3-25 keV count rate. The QPO shows a sudden increase in frequency along with an increase in flux and a softening of the spectrum. We discuss the possible origin of the QPO and the reasons that lead to the QPO frequency variation. It is suggested that the reflection component has little influence on QPO frequency and the increase in QPO frequency could be associated with the inward motion of the outer part of the disk.
We extent the previously published DALI-approximation for likelihoods to cases of a parameter dependent covariance matrix. The approximation recovers non-Gaussian likelihoods and falls back onto the Fisher matrix approach in the case of Gaussianity. It works with the minimal assumptions of having Gaussian errors on the data, and a covariance matrix that posesses a converging Taylor approximation. The resulting approximation works in cases of severe parameter degeneracies and in cases where the Fisher matrix is singular. It is easily a 1000 times faster than typical Monte Carlo Markov Chain runs. Two example applications to cases of extremely non-Gaussian likelihoods are presented - one demonstrates how the method succeeds in reconstructing completely a ring-shaped likelihood. A public code is released on github.
Ultraviolet (UV) planetary astronomy is a unique tool to probe planetary environments of the solar system and beyond. But despite a rising interest for new generation giant UV telescopes regularly proposed to international agencies, none has been selected yet, leaving the Hubble Space Telescope (HST) as the most powerful UV observatory in activity. HST regularly observed the auroral emissions of the Jupiter, Saturn and Uranus systems, leading to significant discoveries and achievements. This rich legacy remains of high interest for further statistical and long-term studies, but new observations are necessary to comparatively tackle pending questions, under varying solar or seasonal cycles.
We suggest that the collision of a small solid body with a pulsar can lead to an observable glitch/anti-glitch. The glitch amplitude depends on the mass of the small body and the impact parameter as well. In the collision, a considerable amount of potential energy will be released either in the form of a short hard X-ray burst or as a relatively long-lasting soft X-ray afterglow. The connection between the glitch amplitude and the X-ray energetics can help to diagnose the nature of these timing anomalies.
Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic interstellar medium. Although we find the possibility of a superdiffusive process (travel distance proportional to t^0.75) in our simulations, its effect on CR diffusion at the length scale of the turbulence in the SNR is limited.
Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLauglin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blue-shifted) or receding (red-shifted) parts of the planet causes a temporal distortion in the planet's spectral line profiles resulting in an anomaly in the planet's radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt and impact factor (i.e. sky-projected planet spin-orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.
Type Iax supernovae (SNe Iax) are proposed as one new sub-class of SNe Ia since they present sufficiently distinct observational properties from the bulk of SNe Ia. SNe Iax are the most common of all types of peculiar SNe by both number and rate, with an estimated rate of occurrence of about 5-30% of the total SN Ia rate. However, the progenitor systems of SNe Iax are still uncertain. Analyzing pre-explosion images at SN Iax positions provides a direct way to place strong constraints on the nature of progenitor systems of SNe Iax. In this work, we predict pre-explosion properties of binary companion stars in a variety of potential progenitor systems by performing detailed binary evolution calculations with the one-dimensional stellar evolution code STARS. This will be helpful for constraining progenitor systems of SNe Iax from their pre-explosion observations. With our binary evolution calculations, it is found that the non-degenerate helium (He) companion star to both a massive C/O WD (> 1.1 solar mass) and a hybrid C/O/Ne WD can provide an explanation for the observations of SN~2012Z-S1, but the hybrid WD+He star scenario is more favorable.
The first step when investigating time varying data is the detection of any reliable changes in star brightness. This step is crucial to decreasing the processing time by reducing the number of sources processed in later, slower steps. Variability indices and their combinations have been used to identify variability patterns and to select non-stochastic variations, but the separation of true variables is hindered because of wavelength-correlated systematics of instrumental and atmospheric origin, or due to possible data reduction anomalies. The main aim is to review the current inventory of correlation variability indices and measure the efficiency for selecting non-stochastic variations in photometric data. The WFCAM Science Archive (WSA) were used to test the different indices. We improve the panchromatic variability indices and introduce a new set of variability indices for preselecting variable star candidates. Using the WFCAMCAL Variable Star Catalogue (WVSC1) we delimit the efficiency of each variability index. Moreover we test new insights about these indices to improve the efficiency of detection of time-series data dominated by correlated variations. We propose five new variability indices which display a high efficiency for the detection of variable stars. We determine the best way to select variable stars using these and the current tool inventory. In addition, we propose an universal analytical expression to select likely variables using the fraction-of-fluctuations on these indices (f_fluc). The f_fluc can be used as an universal way to analyse photometric data since it displays a only weak dependency with the instrument properties. The variability indices computed in this new approach allow us to reduce misclassification and these will be implemented in an automatic classifier which will be addressed in a forthcoming paper in this series.
It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst. Despite using an unreliable method to determine its distance, previous work showed that nova V1324 Sco was the most gamma-ray luminous of all gamma-ray-detected novae. We present here a different, more robust, method to determine the reddening and distance to V1324 Sco using high-resolution optical spectroscopy. Using two independent methods we derived a reddening of E(B-V) = 1.16 +/- 0.12 and a distance rD > 6.5 kpc. This distance is >40% greater than previously estimated, meaning that V1324 Sco has an even higher gamma-ray luminosity than previously calculated. We also use periodic modulations in the brightness, interpreted as the orbital period, in conjunction with pre-outburst photometric limits to show that a main-sequence companion is strongly favored.
We investigate the observational consequences of scalar instabilities in bimetric theory, under the assumption that the Vainshtein mechanism restores general relativity within a certain distance from gravitational sources. We argue that early time instabilities have a negligible impact on observed structures. Assuming that the instabilities affect sub-horizon density fluctuations, we constrain the redshift, z_i, below which instabilities are ruled out. For the "minimal" beta_1-model, observational constraints are close to the theoretical expectations of z_i = 0.5, potentially allowing the model to be ruled in or out with a more detailed study, possibly including secondary cosmic microwave background constraints.
Observations of the EoR with the 21-cm hyperfine emission of neutral hydrogen (HI) promise to open an entirely new window onto the formation of the first stars, galaxies and accreting black holes. In order to characterize the weak 21-cm signal, we need to develop imaging techniques which can reconstruct the extended emission very precisely. Here, we present an inversion technique for LOFAR baselines at NCP, based on a Bayesian formalism with optimal spatial regularization, which is used to reconstruct the diffuse foreground map directly from the simulated visibility data. We notice the spatial regularization de-noises the images to a large extent, allowing one to recover the 21-cm power-spectrum over a considerable $k_{\perp}-k_{\para}$ space in the range of $0.03\,{\rm Mpc^{-1}}<k_{\perp}<0.19\,{\rm Mpc^{-1}}$ and $0.14\,{\rm Mpc^{-1}}<k_{\para}<0.35\,{\rm Mpc^{-1}}$ without subtracting the noise power-spectrum. We find that, in combination with using the GMCA, a non-parametric foreground removal technique, we can mostly recover the spherically average power-spectrum within $2\sigma$ statistical fluctuations for an input Gaussian random rms noise level of $60 \, {\rm mK}$ in the maps after 600 hrs of integration over a $10 \, {\rm MHz}$ bandwidth.
We explore the ramification of associating the energetics of extreme mag- netic reconnection events with transient mass loss in a stellar analogy with solar eruptive events. We establish energy partitions relative to the total bolometric radiated flare energy for different observed components of stellar flares, and show that there is rough agreement for these values with solar flares. We apply an equipartition between the bolometric radiated flare energy and kinetic energy in an accompanying mass ejection, seen in solar eruptive events and expected from reconnection. This allows an integrated flare rate in a particular waveband to be used to estimate the amount of associated transient mass loss. This approach is supported by a good correspondence between observational flare signatures on high flaring rate stars and the Sun, which suggests a common physical origin. If the frequent and extreme flares that young solar-like stars and low-mass stars experience are accompanied by transient mass loss in the form of coronal mass ejections, then the cumulative effect of this mass loss could be large. We find that for young solar-like stars and active M dwarfs, the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.
We infer stellar metallicity and abundance ratio gradients for a sample of red galaxies in the Sloan Digital Sky Survey (SDSS) Main galaxy sample. Because this sample does not have multiple spectra at various radii in a single galaxy, we measure these gradients statistically. We separate galaxies into stellar mass bins, stack their spectra in redshift bins, and calculate the measured absorption line indices in projected annuli by differencing spectra in neighboring redshift bins. After determining the line indices, we use stellar population modeling from the EZ\_Ages software to calculate ages, metallicities, and abundance ratios within each annulus. Our data covers the central regions of these galaxies, out to slightly higher than $1 R_{e}$. We find detectable gradients in metallicity and relatively shallow gradients in abundance ratios, similar to results found for direct measurements of individual galaxies. The gradients are only weakly dependent on stellar mass, and this dependence is well-correlated with the change of $R_e$ with mass. Based on this data, we report mean equivalent widths, metallicities, and abundance ratios as a function of mass and velocity dispersion for SDSS early-type galaxies, for fixed apertures of 2.5 kpc and of 0.5 $R_e$.
Stellar coronagraph performance is highly sensitive to optical aberrations. In order to effectively suppress starlight for exoplanet imaging applications, low-order wavefront aberrations entering a coronagraph such as tip-tilt, defocus and coma must be determined and compensated. Previous authors have established the utility of pupil-plane masks (both non-redundant/sparse-aperture and generally asymmetric aperture masks) for wavefront sensing. Here we show how a sparse aperture mask (SAM) can be integrated with a coronagraph to measure low-order, differential phase aberrations. Starlight rejected by the coronagraph's focal plane stop is collimated to a relay pupil, where the mask forms an interference fringe pattern on a subsequent detector. Our numerical Fourier propagation models show that the information encoded in the fringe intensity distortions is sufficient to accurately discriminate and estimate Zernike phase modes extending from tip-tilt up to radial degree $n=5$, with amplitude up to $\lambda/20$ RMS. The SAM sensor can be integrated with both Lyot and shaped pupil coronagraphs (SPC) at no detriment to the science beam quality. We characterize the reconstruction accuracy and the performance under low flux/short exposure time conditions, and place it in context of other coronagraph wavefront sensing schemes.
We present a comprehensive nucleosynthesis study of the neutrino-driven wind in the aftermath of a binary neutron star merger. Our focus is the initial remnant phase when a massive central neutron star is present. Using tracers from a recent hydrodynamical simulation, we determine total masses and integrated abundances to characterize the composition of unbound matter. We find that the nucleosynthetic yields depend sensitively on both the life time of the massive neutron star and the polar angle. Matter in excess of up to $9 \cdot 10^{-3} M_\odot$ becomes unbound until $\sim 200~{\rm ms}$. Due to electron fractions of $Y_{\rm e} \approx 0.2 - 0.4$ mainly nuclei with mass numbers $A < 130$ are synthesized, complementing the yields from the earlier dynamic ejecta. Mixing scenarios with these two types of ejecta can explain the abundance pattern in r-process enriched metal-poor stars. Additionally, we calculate heating rates for the decay of the freshly produced radioactive isotopes. The resulting light curve peaks in the blue band after about $4~{\rm h}$. Furthermore, high opacities due to heavy r-process nuclei in the dynamic ejecta lead to a second peak in the infrared after $3-4~{\rm d}$.
V471 Tauri, a white dwarf--red dwarf eclipsing binary in the Hyades, is well known for stimulating development of common envelope theory, whereby novae and other cataclysmic variables form from much wider binaries by catastrophic orbit shrinkage. Our evaluation of a recent imaging search that reported negative results for a much postulated third body shows that the object could have escaped detection or may have actually been seen. The balance of evidence continues to favor a brown dwarf companion about 12 AU from the eclipsing binary. A recently developed algorithm finds unified solutions from three datatypes. New radial velocities (RVs) of the red dwarf and BV RCIC light curves are solved simultaneously along with white dwarf and red dwarf RVs from the literature, uvby data, the MOST mission light curve, and 40 years of eclipse timings. Precision-based weighting is the key to proper information balance among the various datasets. Timewise variation of modeled starspots allows unified solution of multiple data eras. Light curve amplitudes strongly suggest decreasing spottedness from 1976 to about 1980, followed by approximately constant spot coverage from 1981 to 2005. An explanation is proposed for lack of noticeable variation in 1981 light curves, in terms of competition between spot and tidal variations. Photometric spectroscopic distance is estimated. The red dwarf mass comes out larger than normal for a K2V star, and even larger than adopted in several structure and evolution papers. An identified cause for this result is that much improved red dwarf RVs curves now exist.
HI in galaxies traces the fuel for future star formation and reveals the effects of feedback on neutral gas. Using a statistically uniform, HI-selected sample of 565 galaxies from the ALFALFA H-alpha survey, we explore HI properties as a function of star formation activity. ALFALFA H-alpha provides R-band and H-alpha imaging for a volume-limited subset of the 21-cm ALFALFA survey. We identify eight starbursts based on H-alpha equivalent width and six with enhanced star formation relative to the main sequence. Both starbursts and non-starbursts have similar HI to stellar mass ratios (MHI/M*), which suggests that feedback is not depleting the starbursts' HI. Consequently, the starbursts do have shorter HI depletion times (t_dep), implying more efficient HI-to-H2 conversion. While major mergers likely drive this enhanced efficiency in some starbursts, the lowest mass starbursts may experience periodic bursts, consistent with enhanced scatter in t_dep at low M*. Two starbursts appear to be pre-coalescence mergers; their elevated MHI/M* suggest that HI-to-H2 conversion is still ongoing at this stage. By comparing with the GASS sample, we find that t_dep anti-correlates with stellar surface density for disks, while spheroids show no such trend. Among early-type galaxies, t_dep does not correlate with bulge-to-disk ratio; instead, the gas distribution may determine the star formation efficiency. Finally, the weak connection between galaxies' specific star formation rates and MHI/M* contrasts with the well-known correlation between MHI/M* and color. We show that dust extinction can explain the HI-color trend, which may arise from the relationship between M*, MHI, and metallicity.
We provide software with a graphical user interface to calculate the phenomenology of a wide class of dark energy models featuring multiple scalar fields. The user chooses a subclass of models and, if desired, initial conditions, or else a range of initial parameters for Monte Carlo. The code calculates the energy density of components in the universe, the equation of state of dark energy, and the linear growth of density perturbations, all as a function of redshift and scale factor. The output also includes an approximate conversion into the average equation of state, as well as the common $(w_0, w_a)$ parametrization. The code is available here: this http URL
We present the mass-density relationship (log M - log rho) for objects with masses ranging from planets (M ~ 0.01 M_Jup) through stars (M > 0.08 M_Sun). This relationship shows three distinct regions separated by a change in slope in log M -- log rho plane. In particular, objects with masses in the range 0.3 M_Jup to 60 M_Jup follow a tight linear relationship with no distinguishing feature to separate the low mass end (giant planets) from the high mass end (brown dwarfs). The distinction between giant planets and brown dwarfs thus seems arbitrary. We propose a new definition of giant planets based simply on changes in the slope of the log $M$ versus log rho relationship. By this criterion, objects with masses less than ~ 0.3 M_Jup are low mass planets, either icy or rocky. Giant planets cover the mass range 0.3 M_Jup to 60 M_Jup. Analogous to the stellar main sequence, objects on the upper end of the giant planet sequence (brown dwarfs) can simply be referred to as "high mass giant planets", while planets with masses near that of Jupiter can be considered to be "low mass giant planets".
We present a determination of the pion-nucleon ($\pi N$) $\sigma$-term $\sigma_{\pi N}$ based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent precision data from pionic atoms to pin down the threshold $\pi N$ amplitude as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain $\sigma_{\pi N}=(59.1\pm 1.9\pm 3.0)$ MeV $=(59.1\pm 3.5)$ MeV, where the first error refers to uncertainties in the $\pi N$ amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.
The standard picture of electroweak baryogenesis requires slowly expanding bubbles. This can be difficult to achieve if the vacuum expectation value of a gauge singlet scalar field changes appreciably during the electroweak phase transition. It is important to determine the bubble wall velocity in this case, since the predicted baryon asymmetry can depend sensitively on its value. Here, this calculation is discussed and illustrated in the real singlet extension of the Standard Model. The friction on the bubble wall is computed using a kinetic theory approach and including hydrodynamic effects. Wall velocities are found to be rather large ($v_w \gtrsim 0.2$) but compatible with electroweak baryogenesis in some portions of the parameter space. If the phase transition is strong enough, however, a subsonic solution may not exist, precluding non-local electroweak baryogenesis altogether. The results presented here can be used in calculating the baryon asymmetry in various singlet-driven scenarios, as well as other features related to cosmological phase transitions in the early Universe, such as the resulting spectrum of gravitational radiation.
We study the spin dynamics of individual black holes in a binary system. In particular we focus on the polar precession of spins and the possibility of a complete flip of spins with respect to the orbital plane. We perform a full numerical simulation that displays these characteristics. We evolve equal mass binary spinning black holes for $t=20,000M$ from an initial proper separation of $d=25M$ down to merger after 48.5 orbits. We compute the gravitational radiation from this system and compare it to 3.5 post-Newtonian generated waveforms finding close agreement. We then further use 3.5 post-Newtonian evolutions to show the extension of this spin {flip-flop} phenomenon to unequal mass binaries. We also provide analytic expressions to approximate the maximum {flip-flop} angle and frequency in terms of the binary spins and mass ratio parameters at a given orbital radius. Finally we discuss the effect this spin {flip-flop} would have on accreting matter and other potential observational effects.
If the inflationary era is preceded by a radiation dominated era in which the inflaton too was in thermal equilibrium at some very early time then the CMB data places an upper bound on the comoving temperature of the (decoupled) inflaton quanta. In addition, if one considers models of "just enough" inflation, where the number of e-foldings of inflation is just enough to solve the horizon and flatness problems, then we find that such scenarios are compatible with the data only if there is an extremely large number of relativistic degrees of freedom $(\sim 10^9$ or $\sim 10^{12})$ in the thermal bath in the pre-inflationary Universe.
In realistic model-building, spinor fields with various masses are present. During inflation, spinor field may induce gravitational waves as a second order effect. In this paper, we calculate the contribution of single massive spinor field to the power spectrum of primordial gravitational wave by using retarded Green propagator. We find that the correction is scale-invariant and of order $H^4/M_P^4$ for arbitrary spinor mass $m_{\psi}$. Additionally, we also observe that when $m_\psi \gtrsim H$, the dependence of correction on $m_\psi/H$ is nontrivial.
Links to: arXiv, form interface, find, astro-ph, recent, 1506, contact, help (Access key information)
Using gamma-ray data from the Fermi Large Area Telescope, various groups have identified a clear excess emission in the inner Galaxy, around energies of a few GeV. This excess resembles remarkably well a signal from dark matter annihilation. One of the most plausible astrophysical interpretations it that the excess is caused by the combined effect of a previously undetected population of dim gamma-ray sources. Due to their spectral similarity, the best candidates are millisecond pulsars. Here, we search for this hypothetical source population, using a novel approach based on wavelet decomposition of the gamma-ray sky and the statistics of Gaussian random fields. Assuming a spatial distribution compatible with the GeV excess emission, we find evidence at the >4 sigma level for the existence of such a population in the inner Galaxy. For plausible values of the luminosity function, this component explains 100% of the observed excess emission.
The separation distribution for M-dwarf binaries in the ASTRALUX survey is narrower and peaking at smaller separations than the distribution for solar-type binaries. This is often interpreted to mean that M-dwarfs constitute a continuous transition from brown dwarfs (BDs) to stars. Here a prediction for the M-dwarf separation distribution is presented, using a dynamical population synthesis (DPS) model in which "star-like" binaries with late-type primaries ($\lesssim1.5 M_{\rm sun}$) follow universal initial distribution functions and are dynamically processed in their birth embedded clusters. A separate "BD-like" population has both its own distribution functions for binaries and initial mass function (IMF), which overlaps in mass with the IMF for stars. Combining these two formation modes results in a peak on top of a wider separation distribution for late M-dwarfs consistent with the late ASTRALUX sample. The DPS separation distribution for early M-dwarfs shows no such peak and is in agreement with the M-dwarfs in Multiples (MinMS) data. We note that the latter survey is potentially in tension with the early ASTRALUX data. Concluding, the ASTRALUX and MinMS data are unable to unambiguously distinguish whether or not BDs are a continuous extension of the stellar IMF. Future observational efforts are needed to fully answer this interesting question. The DPS model predicts that binaries outside the sensitivity range of the ASTRALUX survey remain to be detected. For application to future data, we present a means to observationally measure the overlap of the putative BD-like branch and the stellar branch. We discuss the meaning of universal star formation and distribution functions.
The over-dense environments of protoclusters of galaxies in the early Universe z>2 are expected to accelerate the evolution of galaxies, with an increased rate of stellar mass assembly and black hole accretion compared to co-eval galaxies in the average density `field'. These galaxies are destined to form the passive population of massive systems that dominate the cores of rich clusters today. While signatures of accelerated growth of galaxies in the SSA22 protocluster z=3.1 have been observed, the mechanism driving this remain unclear. In this work we show an enhanced rate of galaxy-galaxy mergers could be responsible. We morphologically classify Lyman-break Galaxies (LBGs) in the SSA22 protocluster and compare these to those of galaxies in a typical density field at z=3.1 as either active mergers or non-merging using Hubble Space Telescope F814W imaging, probing the rest frame ultraviolet stellar emission. We measure a merger fraction of 48+/-10% for LBGs in the protocluster compared to 30+/-6% for the field. Although the excess is marginal the enhanced rate of mergers in SSA22 hints that galaxy-galaxy mergers are one of the key channels driving accelerated star formation and AGN growth in protocluster environments.
The one-point function (i.e., the isotropic flux distribution) is a complementary method to (anisotropic) two-point correlations in searches for a gamma-ray dark matter annihilation signature. Using analytical models of structure formation and dark matter halo properties, we compute the gamma-ray flux distribution due to annihilations in extragalactic dark matter halos, as it would be observed by the Fermi Large Area Telescope. Combining the central limit theorem and Monte Carlo sampling, we show that the flux distribution takes the form of a narrow Gaussian of `diffuse' light, with an `unresolved point source' power-law tail as a result of bright halos. We argue that this background due to dark matter constitutes an irreducible and significant background component for point-source annihilation searches with galaxy clusters and dwarf spheroidal galaxies, modifying the predicted signal-to-noise ratio. A study of astrophysical backgrounds to this signal reveals that the shape of the total gamma-ray flux distribution is very sensitive to the contribution of a dark matter component, allowing us to forecast promising one-point upper limits on the annihilation cross section. We show that by using the flux distribution at only one energy bin, one can probe the canonical cross section required for explaining the relic density, for dark matter of masses around tens of GeV.
It has been proposed that a recent outburst of cosmic-ray electrons could account for the excess of GeV-scale gamma rays observed from the region surrounding the Galactic Center. After studying this possibility in some detail, we identify scenarios in which a series of leptonic cosmic-ray outbursts could plausibly generate the observed excess. The morphology of the emission observed outside of $\sim1^{\circ}-2^{\circ}$ from the Galactic Center can be accommodated with two outbursts, one which took place approximately $\sim10^6$ years ago, and another (injecting only about 10\% as much energy as the first) about $\sim10^5$ years ago. The emission observed from the innermost $\sim1^{\circ}-2^{\circ}$ requires one or more additional recent outbursts and/or a contribution from a centrally concentrated population of unresolved millisecond pulsars. In order to produce a spectrum that is compatible with the measured excess (whose shape is approximately uniform over the region of the excess), the electrons from the older outburst must be injected with significantly greater average energy than those injected more recently, enabling their spectra to be similar after $\sim10^6$ years of energy losses.
The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z<1, the X-ray spectra can only be reliably characterized using broad-band measurements which extend to energies above 10 keV. Using the hard X-ray observatory NuSTAR, along with archival Chandra and XMM-Newton data, we study the broad-band X-ray spectra of nine optically selected (from the SDSS), candidate Compton-thick (NH > 1.5e24 cm^-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z<0.5, have observed [OIII] luminosities in the range 8.4 < log (L_[OIII]/L_solar) < 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Amongst the nine candidate CTQSO2s, five are detected by NuSTAR in the high energy (8-24 keV) band: two are weakly detected at the ~ 3 sigma confidence level and three are strongly detected with sufficient counts for spectral modeling (>~ 90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic AGN properties are feasible, and we measure column densities ~2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ~10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of f_CT = 36^{+14}_{-12} %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.
Radiation pressure can be dynamically important in certain star-forming environments such as ultra-luminous infrared and submillimeter galaxies. Whether and how radiation drives turbulence and bulk outflows in star formation sites is still unclear. The uncertainty stems from the limitations of direct numerical schemes used to simulate radiation transfer and radiation-gas coupling. The idealized setup in which radiation is introduced at the base of a dusty atmosphere in a gravitational field has recently become a standard for the testing of radiation hydrodynamics methods in the context of star formation. To a series of treatments enlisting the flux-limited-diffusion approximation as well as a short-characteristics tracing and M1 closure for the variable Eddington tensor approximation, we here add another, very different treatment based on the Implicit Monte Carlo radiation transfer scheme. Consistent with all previous treatment, we observe Rayleigh-Taylor instability and a readjustment to a near-Eddington state. We detect late-time net acceleration with velocity dispersion matching that reported for the short characteristics, the most accurate of the three preceding treatments. This technical result highlights the importance of proper radiation transfer in simulating radiation feedback.
NGC 4013 is a distinctly warped galaxy with evidence of disk-halo activity. Through deep HI observations and modeling we confirm that the HI disk is thin (central exponential scale height of with an upper limit of 4" or 280 pc), but flaring. We detect a vertical gradient in rotation velocity (lag), which shallows radially from a value of -35 +7/-28 km/s/kpc at 1.4' (5.8 kpc), to a value of zero near R_25 (11.2 kpc). Over much of this radial range, the lag is relatively steep. Both the steepness and the radial shallowing are consistent with recent determinations for a number of edge-ons, which have been difficult to explain. We briefly consider the lag measured in NGC 4013 in the context of this larger sample and theoretical models, further illuminating disk-halo flows.
We present a new method to characterize unresolved point sources (PSs), generalizing traditional template fits to account for non-Poissonian photon statistics. We apply this method to Fermi Large Area Telescope gamma-ray data to characterize PS populations at high latitudes and in the Inner Galaxy. We find that PSs (resolved and unresolved) account for ~50% of the total extragalactic gamma-ray background in the energy range ~1.9 to 11.9 GeV. Within 10$^\circ$ of the Galactic Center with $|b| \geq 2^\circ$, we find that ~5-10% of the flux can be accounted for by a population of unresolved PSs, distributed consistently with the observed ~GeV gamma-ray excess in this region. The excess is fully absorbed by such a population, in preference to dark-matter annihilation. The inferred source population is dominated by near-threshold sources, which may be detectable in future searches.
Making use of a set of detailed potential models for normal spiral galaxies, we analyze the disk stellar orbital dynamics as the structural and dynamical parameters of the spiral arms (mass, pattern speed and pitch angle) are gradually modified. With this comprehensive study of ordered and chaotic behavior, we constructed an assemblage of orbitally supported galactic models and plausible parameters for orbitally self-consistent spiral arms models. We find that, to maintain orbital support for the spiral arms, the spiral arm mass, M$_{sp}$, must decrease with the increase of the pitch angle, $i$; if $i$ is smaller than $\sim10\deg$, M$_{sp}$ can be as large as $\sim7\%$, $\sim6\%$, $\sim5\%$ of the disk mass, for Sa, Sb, and Sc galaxies, respectively. If $i$ increases up to $\sim25\deg$, the maximum M$_{sp}$ is $\sim1\%$ of the disk mass independently in this case of morphological type. For values larger than these limits, spiral arms would likely act as transient features. Regarding the limits posed by extreme chaotic behavior, we find a strong restriction on the maximum plausible values of spiral arms parameters on disk galaxies beyond which, chaotic behavior becomes pervasive. We find that for $i$ smaller than $\sim20\deg$, $\sim25\deg$, $\sim30\deg$, for Sa, Sb, and Sc galaxies, respectively, M$_{sp}$ can go up to $\sim10\%$, of the mass of the disk. If the corresponding $i$ is around $\sim40\deg$, $\sim45\deg$, $\sim50\deg$, M$_{sp}$ is $\sim1\%$, $\sim2\%$, $\sim3\%$ of the mass of the disk. Beyond these values, chaos dominates phase space, destroying the main periodic and the neighboring quasi-periodic orbits.
The young binary system HD 350731 is a noteworthy laboratory for studying early-type binaries with similar components. We present here the analysis of differential multi-color photometric and spectroscopic observations for the double-lined detached system. Accurate absolute parameters were determined from the simultaneous solution of light and radial velocity curves for the first time. HD 350731 consists of two B8V-type components having masses and radii respectively of $M_{1}=2.91\pm0.13$ M$_{\odot}$, $M_{2}=2.80\pm0.14$ M$_{\odot}$, $R_{1}= 2.11 \pm0.05$ R$_{\odot}$ and $R_{2}=2.07\pm0.05$ R$_{\odot}$. The effective temperatures were determined based on analysis of disentangled spectra of the components and derived to be $12000\pm250$ K and $11830\pm300$ K for the primary and secondary components, respectively. The measured projected rotational velocities, 69.2$\pm$1.5 km s$^{-1}$ for primary and 70.1$\pm$1.7 km s$^{-1}$ for secondary, were found closer to the pseudo-synchronous velocities of the components. Comparison with evolutionary models suggests an age of 120$\pm$35 Myr. Kinematic analysis of the unevolved binary system HD 350731 revealed that it belongs to the young thin-disc population of the Galaxy.
Located in the Perseus cluster, NGC 1271 is an early-type galaxy with a small effective radius of 2.2 kpc and a large stellar velocity dispersion of 276 km/s for its K-band luminosity of 8.9x10^{10} L_sun. We present a mass measurement for the black hole in this compact, high-dispersion galaxy using observations from the integral field spectrograph NIFS on the Gemini North telescope assisted by laser guide star adaptive optics, large-scale integral field unit observations with PPAK at the Calar Alto Observatory, and Hubble Space Telescope WFC3 imaging observations. We are able to map out the stellar kinematics on small spatial scales, within the black hole sphere of influence, and on large scales that extend out to four times the galaxy's effective radius. We find that the galaxy is rapidly rotating and exhibits a sharp rise in the velocity dispersion. Through the use of orbit-based stellar dynamical models, we determine that the black hole has a mass of (3.0^{+1.0}_{-1.1}) x 10^9 M_sun and the H-band stellar mass-to-light ratio is 1.40^{+0.13}_{-0.11} M_sun/L_sun (1-sigma uncertainties). NGC 1271 occupies the sparsely-populated upper end of the black hole mass distribution, but is very different from the Brightest Cluster Galaxies (BCGs) and giant elliptical galaxies that are expected to host the most massive black holes. Interestingly, the black hole mass is an order of magnitude larger than expectations based on the galaxy's bulge luminosity, but is consistent with the mass predicted using the galaxy's bulge stellar velocity dispersion. More compact, high-dispersion galaxies need to be studied using high spatial resolution observations to securely determine black hole masses, as there could be systematic differences in the black hole scaling relations between these types of galaxies and the BCGs/giant ellipticals, thereby implying different pathways for black hole and galaxy growth.
The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB $\textit{141028A}$, is analyzed under the guise of an external shock model. First, we fit the $\gamma$-ray spectrum with a two-component photon model, namely synchrotron+blackbody, and then fit the recovered evolution of the synchrotron $\nu F_{\nu}$ peak to an analytic model derived considering the emission of a relativistic blast-wave expanding into an external medium. The prediction of the model for the $\nu F_{\nu}$ peak evolution matches well with the observations. We observe the blast-wave transitioning into the deceleration phase. Further we assume the expansion of the blast-wave to be nearly adiabatic, motivated by the low magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the $\nu F_{\nu}$ peak, which is remarkable considering the simplicity of the analytic model. Across all wavelengths, synchrotron emission from a single forward shock provides a sufficient solution for the observations. Under this scenario we argue that the distinction between $\textit{prompt}$ and $\textit{ afterglow}$ emission is superfluous as both early and late time emission emanate from the same source. While the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained with an external shock origin of their prompt phase.
Based on a large number of observations carried out in the last decade it appears that the fraction of stars with protoplanetary disks declines steadily between ~1 Myr and ~10 Myr. We do, however, know that the multiplicity fraction of star-forming regions can be as high as >50% and that multiples have reduced disk lifetimes on average. As a consequence, the observed roughly exponential disk decay can neither be fully attributed to single nor binary stars and its functional form may need revision. Observational evidence for the latter has been provided by Kraus et al. (2012), who statistically correct previous disk frequency measurements for the presence of binaries and find agreement with models that feature a constantly high disk fraction up to ~3 Myr, followed by a rapid ($\lesssim$2 Myr) decline. We present results from our high-angular resolution observational program to study the fraction of protoplanetary disks of single and binary stars separately. We find that disk evolution timescales of stars bound in close binaries (<100 AU) are significantly reduced compared to wider binaries. The frequencies of accretors among single stars and wide binaries appear indistinguishable, and are found lower than predicted from planet forming disk models governed by viscous evolution and photoevaporation.
The cores of Arp 220, the closest ultra-luminous infrared starburst galaxy, provide an opportunity to study interactions of cosmic rays under extreme conditions. In this paper, we model the populations of cosmic rays produced by supernovae in the central molecular zones of both starburst nuclei. We find that ~65 - 100% of cosmic rays are absorbed in these regions due to their huge molecular gas contents, and thus, the nuclei of Arp 220 nearly complete proton calorimeters. As the cosmic ray protons collide with the interstellar medium, they produce secondary electrons that are also contained within the system and radiate synchrotron emission. Using results from chi-squared tests between the model and the observed radio spectral energy distribution, we predict the emergent gamma-ray and high-energy neutrino spectra and find the magnetic field to be at milligauss levels. Because of the extremely intense far-infrared radiation fields, the gamma-ray spectrum steepens significantly at TeV energies due to gamma-gamma absorption.
We study the growth of the explosion energy after shock revival in neutrino-driven explosions in two and three dimensions (2D/3D) using multi-group neutrino hydrodynamics simulations of an $11.2 M_\odot$ star. The 3D model shows a faster and steadier growth of the explosion energy and already shows signs of subsiding accretion after one second. By contrast, the growth of the explosion energy in 2D is unsteady, and accretion lasts for several seconds as confirmed by additional long-time simulations of stars of similar masses. Appreciable explosion energies can still be reached, albeit at the expense of rather high neutron star masses. In 2D, the binding energy at the gain radius is larger because the strong excitation of downward-propagating $g$-modes removes energy from the freshly accreted material in the downflows. Consequently, the mass outflow rate is considerably lower in 2D than in 3D. This is only partially compensated by additional heating by outward-propagating acoustic waves in 2D. Moreover, the mass outflow rate in 2D is reduced because much of the neutrino energy deposition occurs in downflows or bubbles confined by secondary shocks without driving outflows. Episodic constriction of outflows and vertical mixing of colder shocked material and hot, neutrino-heated ejecta due to Rayleigh-Taylor instability further hamper the growth of the explosion energy in 2D. Both in 2D and 3D, the explosion energy and the shock velocity are reasonably well described by the approximate formula of Matzner & McKee (1999) already at early times.
We have conducted a sensitive search down to the hydrogen burning limit for unextincted stars over $\sim$200 square degrees around Lambda Orionis and 20 square degrees around Sigma Orionis using the methodology of Koenig & Leisawitz (2014). From WISE and 2MASS data we identify 544 and 418 candidate YSOs in the vicinity of Lambda and Sigma respectively. Based on our followup spectroscopy for some candidates and the existing literature for others, we found that $\sim$80% of the K14-selected candidates are probable or likely members of the Orion star forming region. The yield from the photometric selection criteria shows that WISE sources with $K_S -w3 > 1.5$ mag and $K_S $ between 10--12 mag are most likely to show spectroscopic signs of youth, while WISE sources with $K_S -w3 > 4$ mag and $K_S > 12$ were often AGNs when followed up spectroscopically. The population of candidate YSOs traces known areas of active star formation, with a few new `hot spots' of activity near Lynds 1588 and 1589 and a more dispersed population of YSOs in the northern half of the HII region bubble around $\sigma$ and $\epsilon$ Ori. A minimal spanning tree analysis of the two regions to identify stellar groupings finds that roughly two-thirds of the YSO candidates in each region belong to groups of 5 or more members. The population of stars selected by WISE outside the MST groupings also contains spectroscopically verified YSOs, with a local stellar density as low as 0.5 stars per square degree.
We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 26 gravitationally lensed quasars (24 doubles, 1 quad, and 1 possible triple) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in 5 systems, without a-priory knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity > 0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time-delays in order to infer the Hubble constant.
We use mid-infrared 3.6 and 4.5microns imaging of NGC 3906 from the Spitzer Survey of Stellar Structure in Galaxies (S4G) to understand the nature of an unusual offset between its stellar bar and the photometric center of an otherwise regular, circular outer stellar disk. We measure an offset of ~720 pc between the center of the stellar bar and photometric center of the stellar disk; the bar center coincides with the kinematic center of the disk determined from previous HI observations. Although the undisturbed shape of the disk suggests that NGC 3906 has not undergone a significant merger event in its recent history, the most plausible explanation for the observed offset is an interaction. Given the relatively isolated nature of NGC 3906 this interaction could be with dark matter sub structure in the galaxy's halo or from a recent interaction with a fast moving neighbor which remains to be identified. Simulations aimed at reproducing the observed offset between the stellar bar / kinematic center of the system and the photometric center of the disk are necessary to confirm this hypothesis and constrain the interaction history of the galaxy.
Many exoplanets have now been detected in orbits with ultra-short periods, very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly ("stable mass transfer" in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code MESA. We include the effects of tides, RLO, irradiation and photo-evaporation of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have a rocky core and some amount of envelope material, which is slowly removed via photo-evaporation at nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets we also predict an anti-correlation between mass and orbital period; very low-mass planets ($M_{\rm pl}\,\lesssim\,5\,M_{\oplus}$) in ultra-short periods ($P_{\rm orb}$<1d) cannot be produced through this type of evolution.
We present various infrared two-color diagrams (2CDs) for AGB stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PNe), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, MSX, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks are generally converged to the region of the observed points of PNe on most 2CDs.
Cosmological transverse momentum fields, whose directions are perpendicular to Fourier wave vectors, induce temperature anisotropies in the cosmic microwave background via the kinetic Sunyaev-Zeldovich (kSZ) effect. The transverse momentum power spectrum contains the four-point function of density and velocity fields, $\langle\delta\delta v v\rangle$. In the post-reionization epoch, nonlinear effects dominate in the power spectrum. We use perturbation theory and cosmological $N$-body simulations to calculate this nonlinearity. We derive the next-to-leading order expression for the power spectrum with a particular emphasis on the connected term that has been ignored in the literature. While the contribution from the connected term on small scales ($k>0.1~h~\rm{Mpc}^{-1}$) is subdominant relative to the unconnected term, we find that its contribution to the kSZ power spectrum at $\ell = 3000$ at $z<6$ can be as large as ten percent of the unconnected term, which would reduce the allowed contribution from the reionization epoch ($z>6$) by twenty percent. The power spectrum of transverse momentum on large scales is expected to scale as $k^2$ as a consequence of momentum conservation. We show that both the leading and the next-to-leading order terms satisfy this scaling. In particular, we find that both of the unconnected and connected terms are necessary to reproduce $k^2$.
We report on the first measurements of the isotopic ratio 14N/15N in N2H+ toward a statistically significant sample of high-mass star forming cores. The sources belong to the three main evolutionary categories of the high-mass star formation process: high-mass starless cores, high-mass protostellar objects, and ultracompact HII regions. Simultaneous measurements of 14N/15N in CN have been made. The 14N/15N ratios derived from N2H+ show a large spread (from ~180 up to ~1300), while those derived from CN are in between the value measured in the terrestrial atmosphere (~270) and that of the proto-Solar nebula (~440) for the large majority of the sources within the errors. However, this different spread might be due to the fact that the sources detected in the N2H+ isotopologues are more than those detected in the CN ones. The 14N/15N ratio does not change significantly with the source evolutionary stage, which indicates that time seems to be irrelevant for the fractionation of nitrogen. We also find a possible anticorrelation between the 14N/15N (as derived from N2H+) and the H/D isotopic ratios. This suggests that 15N enrichment could not be linked to the parameters that cause D enrichment, in agreement with the prediction by recent chemical models. These models, however, are not able to reproduce the observed large spread in 14N/15N, pointing out that some important routes of nitrogen fractionation could be still missing in the models.
We report the discovery of an extremely metal-poor (EMP) giant, LAMOST J110901.22+075441.8, which exhibits large excess of r-process elements with [Eu/Fe] ~ +1.16. The star is one of the newly discovered EMP stars identified from LAMOST low-resolution spectroscopic survey and the high-resolution follow-up observation with the Subaru Telescope. Stellar parameters and elemental abundances have been determined from the Subaru spectrum. Accurate abundances for a total of 23 elements including 11 neutron-capture elements from Sr through Dy have been derived for LAMOST J110901.22+075441.8. The abundance pattern of LAMOST J110901.22+075441.8 in the range of C through Zn is in line with the "normal" population of EMP halo stars, except that it shows a notable underabundance in carbon. The heavy element abundance pattern of LAMOST J110901.22+075441.8 is in agreement with other well studied cool r-II metal-poor giants such as CS 22892-052 and CS 31082-001. The abundances of elements in the range from Ba through Dy well match the scaled Solar r-process pattern. LAMOST J110901.22+075441.8 provides the first detailed measurements of neutron-capture elements among r-II stars at such low metallicity with [Fe/H]<-3.4, and exhibits similar behavior in the abundance ratio of Zr/Eu as well as Sr/Eu and Ba/Eu as other r-II stars.
The intermediate phases of planet formation are not directly observable due to lack of emission from planetesimals. Planet formation is, however, a dynamically active process resulting in collisions between the evolving planetesimals and the production of dust. Thus, indirect observation of planet formation may indeed be possible in the near future. In this paper we present synthetic observations based on numerical N-body simulations of the intermediate phase of planet formation including a state-of-the-art collision model, EDACM, which allows multiple collision outcomes, such as, accretion, erosion, and bouncing events. We show that the formation of planetary embryos may be indirectly observable by a fully functioning ALMA telescope if the surface area involved in planetesimal evolution is sufficiently large and/or the amount of dust produced in the collisions is sufficiently high in mass.
We discuss a new scenario for the formation of intermediate mass black holes in dense star clusters. In this scenario, intermediate mass black holes are formed as a result of dynamical interactions of hard binaries containing a stellar mass black hole, with other stars and binaries. We discuss the necessary conditions to initiate the process of intermediate mass black hole formation and the influence of an intermediate mass black hole on the host global globular cluster properties. We discuss two scenarios for intermediate mass black hole formation. The SLOW scenario occurs in the presence of modest central densities, with the intermediate mass black hole forming later on in the cluster evolution (usually following the post collapse phase) due to a low mass accretion rate. The FAST scenario requires extremely large central densities, with the intermediate mass black hole forming early on in the cluster evolution (after the formation of a dense, self-gravitating BH sub-system) due to a very high mass accretion rate. In our simulations, the formation of intermediate mass black holes is highly stochastic. In general, higher formation probabilities follow from larger cluster concentrations (i.e. central densities). We further discuss possible observational signatures of the presence of intermediate mass black holes in globular clusters that follow from our simulations. These include the spatial and kinematic structure of the host cluster, possible radio, X-ray and gravitational wave emissions due to dynamical collisions or mass-transfer and the creation of hypervelocity main sequence escapers during strong dynamical interactions between binaries and an intermediate mass black hole.
We study the effect of oblateness up to $J_4$ of the primaries and power-law density profile (PDP) on the linear stability of libration location of an infinitesimal mass within the framework of restricted three body problem (R3BP), by using a more realistic model in which a disc with PDP is rotating around the common center of the system mass with perturbed mean motion. The existence and stability of triangular equilibrium points have been explored. It has been shown that triangular equilibrium points are stable for $0<\mu<\mu_c$ and unstable for $\mu_c\leq\mu\leq1/2$, where $\mu_c$ denotes the critical mass parameter. It has been found that, the oblateness up to $J_2$ of the primaries and the radiation reduces the stability range while the oblateness up to $J_4$ of the primaries will increase the size of stability both in the regime where PDP is considered and ignored. The PDP have effect of about $\approx0.01$ reduction on the application of $\mu_c$ to Earth-Moon and Jupiter-Moons systems. In the limiting case $c=0$, and also by setting appropriate parameter(s) to zero, our results are in excellent agreement with those obtained previously. Libration points play a very important role in space mission and as a consequence, our results have a practical application in space science and related areas.
The simplest models of inflation predict small non-gaussianities and a featureless power spectrum. However, there exist a large number of well-motivated theoretical scenarios in which large non-gaussianties could be generated. In general, in these scenarios the primordial power spectrum will deviate from its standard power law shape. We study, in a model-independent manner, the constraints from future large scale structure surveys on the local non-gaussianity parameter $f_{\rm NL}$ when the standard power law assumption for the primordial power spectrum is relaxed. If the analyses are restricted to the large scale-dependent bias induced in the linear matter power spectrum by non-gaussianites, the errors on the $f_{\rm NL}$ parameter could be increased by $60\%$ when exploiting data from the future DESI survey, if dealing with only one possible dark matter tracer. In the same context, a nontrivial bias $|\delta f_{\rm NL}| \sim 2.5$ could be induced if future data are fitted to the wrong primordial power spectrum. Combining all the possible DESI objects slightly ameliorates the problem, as the forecasted errors on $f_{\rm NL}$ would be degraded by $40\%$ when relaxing the assumptions concerning the primordial power spectrum shape. Also the shift on the non-gaussianity parameter is reduced in this case, $|\delta f_{\rm NL}| \sim 1.6$. The addition of Cosmic Microwave Background priors ensure robust future $f_{\rm NL}$ bounds, as the forecasted errors obtained including these measurements are almost independent on the primordial power spectrum features, and $|\delta f_{\rm NL}| \sim 0.2$, close to the standard single-field slow-roll paradigm prediction.
The formation and evolution of the cosmic web in which galaxy superclusters are the largest relatively isolated objects is governed by a gravitational attraction of the dark matter and antigravity of the dark energy (cosmological constant). We study the characteristic density contrasts in the spherical collapse model for several epochs in the supercluster evolution and their dynamical state. We analyse the density contrasts for the turnaround, for the future collapse and for the zero-gravity in different LCDM models and apply them to study the dynamical state of the supercluster A2142 with an almost spherical main body. The analysis of the supercluster A2142 shows that its high-density core has already started to collapse. The zero-gravity line outlines the outer region of the main body of the supercluster. In the course of future evolution the supercluster may split into several collapsing systems. The various density contrasts presented in our study and applied to the supercluster A2142 offer a promising way to characterise the dynamical state and expected future evolution of galaxy superclusters.
We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all of our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher $z$ the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear theory.
The X-ray emission from flares on cool (i.e. spectral-type F-M) stars is indicative of very energetic, transient phenomena, associated with energy release via magnetic reconnection. We present a uniform, large-scale survey of X-ray flare emission. The XMM-Newton Serendipitous Source Catalogue and its associated data products provide an excellent basis for a comprehensive and sensitive survey of stellar flares - both from targeted active stars and from those observed serendipitously in the half-degree diameter field-of-view of each observation. The 2XMM Catalogue and the associated time-series (`light-curve') data products have been used as the basis for a survey of X-ray flares from cool stars in the Hipparcos Tycho-2 catalogue. In addition, we have generated and analysed spectrally-resolved (i.e. hardness-ratio), X-ray light-curves. Where available, we have compared XMM OM UV/optical data with the X-ray light-curves. Our sample contains ~130 flares with well-observed profiles; they originate from ~70 stars. The flares range in duration from ~1e3 to ~1e4 s, have peak X-ray fluxes from ~1e-13 to ~1e-11 erg/cm2/s, peak X-ray luminosities from ~1e29 to ~1e32 erg/s, and X-ray energy output from ~1e32 to ~1e35 erg. Most of the ~30 serendipitously-observed stars have little previously reported information. The hardness-ratio plots clearly illustrate the spectral (and hence inferred temperature) variations characteristic of many flares, and provide an easily accessible overview of the data. We present flare frequency distributions from both target and serendipitous observations. The latter provide an unbiased (with respect to stellar activity) study of flare energetics; in addition, they allow us to predict numbers of stellar flares that may be detected in future X-ray wide-field surveys. The serendipitous sample demonstrates the need for care when calculating flaring rates.
Signatures of the processes in the early Universe are imprinted in the cosmic web. Some of them may define characteristic scales of shell-like structures in the web. We search for shell-like structures in the distribution of nearby rich clusters of galaxies drawn from the SDSS DR8. We calculate the distance distributions between rich clusters of galaxies, and groups and clusters of various richness, look for the maxima in the distance distributions, and select candidates of shell-like structures. We analyse the space distribution of groups and clusters forming shell walls. We find six possible candidates of shell-like structures, in which galaxy clusters have maxima in the distance distribution to other galaxy groups and clusters at the distance of about 120 Mpc/h. The rich galaxy cluster A1795, the central cluster of the Bootes supercluster, has the highest maximum in the distance distribution of other groups and clusters around them at the distance of about 120 Mpc/h among our rich cluster sample, and another maximum at the distance of about 240 Mpc/h. The structures of galaxy systems causing the maxima at 120 Mpc/h form an almost complete shell of galaxy groups, clusters and superclusters, the richest systems in the nearby universe, the Sloan Great Wall, the Corona Borealis supercluster and the Ursa Major supercluster among them. Our results confirm that shell-like structures can be found in the distribution of nearby galaxies and their systems. The radii of the possible shells are larger than expected for a BAO shell (approximately 109 Mpc/h versus approximately 120 Mpc/h), and they are determined by very rich galaxy clusters and superclusters with high density contrast while BAO shells are barely seen in the galaxy distribution. We discuss possible consequences of these differences.
The observed mass-age-rotation relationship in open clusters shows the progressive development of a slow-rotators sequence at masses lower than 1.2 $M_{\odot}$. After 0.6 Gyr, almost all stars have settled on this sequence. The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, crucial to our understanding of the stellar angular momentum evolution. We couple a rotational evolution model that takes into account internal differential rotation with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov Chain method tailored to the case at hand. We explore the extent to which these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotators sequence. The description of the early evolution (0.1-0.6 Gyr) of the slow-rotators sequence requires taking into account the transfer of angular momentum from the radiative core to the convective envelope. We find that, in the mass range (0.85, 1.10) $M_{\odot}$, the core-envelope coupling time-scale for stars in the slow-rotators sequence scales as $M^{-7.28}$. After most of the angular momentum stored in the radiative core is transferred to the convective envelope, the rotational period evolution on the slow-rotators sequence follows quite closely the Skumanich law ($P \propto \sqrt{t}$). The observed evolution (0.1-2.5 Gyr) is best reproduced by assuming that the wind angular momentum loss is proportional to the convective turnover time-scale, the stellar moment of inertia, and to the cube of the envelope angular velocity. We therefore confirm that the convective turnover time-scale is a key parameter in the wind braking law.
Massive Black Hole (MBH) seeds at redshift $z \gtrsim 10$ are now thought to be key ingredients to explain the presence of the super-massive ($10^{9-10} \, \mathrm{M_{\odot}}$) black holes in place $ < 1 \, \mathrm{Gyr}$ after the Big Bang. Once formed, massive seeds grow and emit copious amounts of radiation by accreting the left-over halo gas; their spectrum can then provide crucial information on their evolution. By combining radiation-hydrodynamic and spectral synthesis codes, we simulate the time-evolving spectrum emerging from the host halo of a MBH seed with initial mass $10^5 \, \mathrm{M_{\odot}}$, assuming both standard Eddington-limited accretion, or slim accretion disks, appropriate for super-Eddington flows. The emission occurs predominantly in the observed infrared-submm ($1-1000 \, \mathrm{\mu m}$) and X-ray ($0.1 - 100 \, \mathrm{keV}$) bands. Such signal should be easily detectable by JWST around $\sim 1 \, \mathrm{\mu m}$ up to $z \sim 25$, and by ATHENA (between $0.1$ and $10 \, \mathrm{keV}$, up to $z \sim 15$). Ultra-deep X-ray surveys like the Chandra Deep Field South could have already detected these systems up to $z \sim 15$. Based on this, we provide an upper limit for the $z \gtrsim 6$ MBH mass density of $\rho_{\bullet} \lesssim 2 \times 10^{2} \, \mathrm{M_{\odot} \, Mpc^{-3}}$ assuming standard Eddington-limited accretion. If accretion occurs in the slim disk mode the limits are much weaker, $\rho_{\bullet} \lesssim 7.6 \times 10^{3} \, \mathrm{M_{\odot} \, Mpc^{-3}}$ in the most constraining case.
We have carried out a large grid of N-body simulations in order to investigate if mass-loss as a result of primordial gas expulsion can be responsible for the large fraction of second generation stars in globular clusters (GCs) with multiple stellar populations (MSPs). Our clusters start with two stellar populations in which $10\%$ of all stars are second generation stars. We simulate clusters with different initial masses, different ratios of the half-mass radius of first to second generation stars, different primordial gas fractions and Galactic tidal fields with varying strength. We then let our clusters undergo primordial gas-loss and obtain their final properties such as mass, half-mass radius and the fraction of second generation stars. Using our N-body grid we then perform a Monte Carlo analysis to constrain the initial masses, radii and required gas expulsion time-scales of GCs with MSPs. Our results can explain the present-day properties of GCs only if (1) a substantial amount of gas was present in the clusters after the formation of second generation stars and (2) gas expulsion time-scales were extremely short ($\lesssim 10^5$ yr). Such short gas expulsion time-scales are in agreement with recent predictions that dark remnants have ejected the primordial gas from globular clusters, and pose a potential problem for the AGB scenario. In addition, our results predict a strong anti-correlation between the number ratio of second-generation stars in GCs and the present-day mass of GCs. So far, the observational data show only a significantly weaker anti-correlation, if any at all.
We define an appropriate problem for benchmarking dust emissivity calculations in the context of radiative transfer (RT) simulations, specifically including the emission from stochastically heated dust grains. Our aim is to provide a self-contained guide for implementors of such functionality, and to offer insights in the effects of the various approximations and heuristics implemented by the participating codes to accelerate the calculations. The benchmark problem definition includes the optical and calorimetric material properties, and the grain size distributions, for a typical astronomical dust mixture with silicate, graphite and PAH components; a series of analytically defined radiation fields to which the dust population is to be exposed; and instructions for the desired output. We process this problem using six RT codes participating in this benchmark effort, and compare the results to a reference solution computed with the publicly available dust emission code DustEM. The participating codes implement different heuristics to keep the calculation time at an acceptable level. We study the effects of these mechanisms on the calculated solutions, and report on the level of (dis)agreement between the participating codes. For all but the most extreme input fields, we find agreement within 10% across the important wavelength range from 3 to 1000 micron. We conclude that the relevant modules in RT codes can and do produce fairly consistent results for the emissivity spectra of stochastically heated dust grains.
We investigated the properties of the stellar populations in the discs of a sample of ten spiral galaxies. Our analysis focused on the galaxy region where the disc contributes more than 95 per cent of total surface brightness in order to minimise the contamination of the bulge and bar. The luminosity-weighted age and metallicity were obtained by fitting the galaxy spectra with a linear combination of stellar population synthesis models, while the total overabundance of {\alpha}-elements over iron was derived by measuring the line-strength indices. Most of the sample discs display a bimodal age distribution and they are characterised by a total [{\alpha}/Fe] enhancement ranging from solar and supersolar. We interpreted the age bimodality as due to the simultaneous presence of both a young (Age$\,\leq\,4$ Gyr) and an old (Age$\,>\,$4 Gyr) stellar population. The old stellar component usually dominates the disc surface brightness and its light contribution is almost constant within the observed radial range. For this reason, no age gradient is observed in half of the sample galaxies. The old component is slightly more metal poor than the young one. The metallicity gradient is negative and slightly positive in the old and young components, respectively. These results are in agreement with an inside-out scenario of disc formation and suggest a reduced impact of the radial migration on the stellar populations of the disc. The young component could be the result of a second burst of star formation in gas captured from the environment.
Observations of recurrent explosive events (EEs) with time scale of 3-5 minutes are reported. These EEs have been observed with the Interface Region Imaging Spectrograph (IRIS) and have a spatial dimension of $\sim1.5"$ along the slit. The spectral line profiles of \ion{C}{2}~$1335/1336$ \AA\ and \ion{Si}{4}~$1394/1403$ \AA\ become highly broadened both in red as well as blue wings. Several absorption lines on top of the broadened profiles were identified. In addition, emission lines corresponding to neutral lines such as \ion{Cl}{1}~1351.66~{\AA}, \ion{C}{1}~1354.29~{\AA}, and \ion{C}{1}~1355.84~{\AA} were identified. The \ion{C}{1}~1354.29~{\AA}, and \ion{C}{1}~1355.84 {\AA} lines were found only during the EEs whereas \ion{Cl}{1}~1351.66~{\AA} broadens during the EEs. The estimated lower limit on electron number density obtained using the line ratios of \ion{Si}{4} and \ion{O}{4} is about $10^{13.5}$ cm$^{-3}$, suggesting that the observed events are most likely occurring at heights corresponding to lower chromosphere. To the best of our knowledge, for the first time we have detected short-period variability (30 s and 60--90 s) within the EE bursts. Observations of photospheric magnetic field underneath EEs indicate that negative polarity field emerges in the neighbourhood of oppositely directed positive fields which undergo repetitive reconnection (magnetic flux cancellation) events. The dynamic changes observed in AIA 1700 \AA, 1600 \AA, \ion{C}{2} 1330 \AA\ and \ion{Si}{4} 1400 \AA\ intensity images corresponded very well with the emergence and cancellation of photospheric magnetic field (negative polarity) on the time scale of 3--5 min. The observations reported here suggests that these EEs are formed due to magnetic reconnection and are occurring in the lower chromosphere.
Assuming a Euclid-like weak lensing data set, we compare different methods of dealing with its inherent parameter degeneracies. Including priors into a data analysis can mask the information content of a given data set alone. However, since the information content of a data set is usually estimated with the Fisher matrix, priors are added in order to enforce an approximately Gaussian likelihood. Here, we compare priorless forecasts to more conventional forecasts that use priors. We find strongly non-Gaussian likelihoods for 2d-weak lensing if no priors are used, which we approximate with the DALI-expansion. Without priors, the Fisher matrix of the 2d-weak lensing likelihood includes unphysical values of $\Omega_m$ and $h$, since it does not capture the shape of the likelihood well. The Cramer-Rao inequality then does not need to apply. We find that DALI and Monte Carlo Markov Chains predict the presence of a dark energy with high significance, whereas a Fisher forecast of the same data set also allows decelerated expansion. We also find that a 2d-weak lensing analysis provides a sharp lower limit on the Hubble constant of $h > 0.4$, even if the equation of state of dark energy is jointly constrained by the data. This is not predicted by the Fisher matrix and usually masked in other works by a sharp prior on $h$. Additionally, we find that DALI estimates Figures of Merit in the presence of non-Gaussianities better than the Fisher matrix. We additionally demonstrate how DALI allows switching to a Hamiltonian Monte Carlo sampling of a highly curved likelihood with acceptance rates of $\approx 0.5$, an effective covering of the parameter space, and numerically effectively costless leapfrog steps. This shows how quick forecasts can be upgraded to accurate forecasts whenever needed. Results were gained with the public code from this http URL
In the paper the spectral temporal evolution of a steeply rising submillimeter (THz) burst occurred on 2003 November 2 was investigated in detail for the first time. Observations show that the flux density of the THz spectrum increased steeply with frequency above 200 GHz. Their average rising rates reached a value of 235 sfu/GHz (corresponding spectral index $\alpha$ of 4.8) during the burst. The flux densities reached about 4,000 and 70,000 sfu at 212 and 405 GHz at maximum phase, respectively. The emissions at 405 GHz maintained continuous high level that they exceed largely the peak values of the microwave (MW) spectra during the main phase. Our studies suggest that only energetic electrons with a low-energy cutoff of $\sim$1 MeV and number density of $\sim$$10^{6}$--$10^{8}$ cm$^{-3}$ can produce such strong and steeply rising THz component via gyrosynchrotron (GS) radiation based on numerical simulations of burst spectra in the nonuniform magnetic field case. The electron number density $N$, derived from our numerical fits to the THz temporal evolution spectra, increased substantially from $8\times10^{6}$ to $4\times10^{8}$ cm$^{-3}$, i.e., $N$ value increased 50 times during the rise phase. During the decay phase it decreased to $7\times10^{7}$ cm$^{-3}$, i.e., decreased about five times from the maximum phase. The total electron number decreased an order of magnitude from the maximum phase to the decay phase. Nevertheless the variation amplitude of $N$ is only about one time in the MW emission source during this burst, and the total electron number did not decrease but increased by about 20$\%$ during the decay phase. Interestingly, we find that the THz source radius decreased by about 24$\%$ while the MW source one, on the contrary, increased by 28$\%$ during the decay phase.
We present a theoretical light curve model of the recurrent nova M31N 2008-12a, the current record holder for the shortest recurrence period (1 yr). We combined interior structures calculated using a Henyey-type evolution code with optically thick wind solutions of hydrogen-rich envelopes, which give the proper mass-loss rates, photospheric temperatures, and luminosities. The light curve model is calculated for a 1.38 M_sun white dwarf (WD) with an accretion rate of 1.6 \times 10^{-7} M_sun yr^{-1}. This model shows a very high effective temperature (log T_ph (K) \geq 4.97) and a very small wind mass-loss rate (\dot M_wind \leq 9.3 \times 10^{-6} M_sun yr^{-1}) even at the maximum expansion of the photosphere. These properties are consistent with the faint optical peak of M31N 2008-12a because the brightness of the free-free emission is proportional to the square of the mass-loss rate. The model well reproduces the short supersoft X-ray turn-on time of 6 days and turnoff time of 18 days after the outburst. The ejecta mass of our model is calculated to be 6.3 \times 10^{-8} M_sun, corresponding to 37% of the accreted mass. The growth rate of the WD is 0.63 times the mass accretion rate, making it a progenitor for a Type Ia supernova. Our light curve model predicts a bright supersoft X-ray phase one or two days before the optical peak. We encourage detection of this X-ray flash in future outbursts.
We measure the three components of velocity dispersion, $\sigma_{R},\sigma_{\theta},\sigma_{\phi}$, for stars within 6 < R < 30 kpc of the Milky Way using a new radial velocity sample from the MMT telescope. We combine our measurements with previously published data so that we can more finely sample the stellar halo. We use a maximum likelihood statistical method for estimating mean velocities, dispersions, and covariances assuming only that velocities are normally distributed. The alignment of the velocity ellipsoid is consistent with a spherically symmetric gravitational potential. From the spherical Jeans equation, the mass of the Milky Way is M(<14 kpc) = $2.6\times10^{11}$ M$_{\odot}$. We also find a region of discontinuity, 15 < R < 25 kpc, where the estimated velocity dispersions and anisotropies diverge from their anticipated values, confirming at high significance the break observed by others. We argue that this break in anisotropy is physically explained by coherent stellar velocity structure in the halo, such as the Sgr stream. To significantly improve our understanding of halo kinematics will require combining radial velocities with future Gaia proper motions.
We present new analyses of the photometric lightcurve of Comet 1P/Halley during its 1985/86 apparition. As part of a world-wide campaign coordinated by the International Halley Watch (IHW), narrowband photometry was obtained with telescopes at 18 observatories. Following submissions to and basic reductions by the Photometry and Polarimetry Network of the IHW, we computed production rates and created composite lightcurves for each species. These were used to measure how the apparent rotational period (~7.35 day), along with its shape, evolved with time during the apparition. The lightcurve shape systematically varied from double-peaked to triple-peaked and back again every 8-9 weeks, due to Halley's non-principal axis (complex) rotation and the associated component periods. Unexpectedly, we found a phase shift of one-half cycle also took place during this interval, and therefore the actual beat frequency between the component periods is twice this interval or 16-18 weeks. Preliminary modeling suggests that a single source might produce the entire post-perihelion lightcurve variability and associated evolution. The detailed evolution of the apparent period varied in a non-smooth manner between 7.2 and 7.6 day, likely due to a combination of synodic effects and the interaction of solar illumination with isolated source regions on a body in complex rotation. The need to simultaneously reproduce each of these characteristics will provide very strong additional constraints on Halley's component periods associated with its complex rotation. To assist in these and future analyses, we created a synthetic lightcurve based directly on the measured data. We unexpectedly discovered a strong correlation of ion tail disconnection event start times with minima in the comet's gas production, implying that a decrease in outgassing is another cause of these events.
The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. For 14 of these events, this radiation was reflected from the ice. The dominant contribution to the radiation from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. This radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of 36km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations. In addition, we find that the Monte Carlo simulation of the ANITA data set is in agreement with the total number of observed events and with the properties of those events.
We analyze Spitzer/IRS spectra of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius-Centaurus (ScoCen) OB association. The age of these stars ranges from 11-17 Myr. We fit the infrared excesses observed in these sources by Spitzer/IRS and Spitzer/MIPS to simple dust models according to Mie theory. We find that nearly all the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with trunction of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.
We have studied the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project Observation. With a total exposure time of ~1.1 Ms, we constructed the XLF down to a limiting luminosity of ~10^36 erg/s, much deeper than typically reached for other early-type galaxies. We found significant flattening of the overall LMXB XLF from dN/dL \propto L^{-2.2\pm0.4} above 5.5x10^37 erg/s to dN/dL \propto L^{-1.0\pm0.1} below it, though we could not rule out a fit with a higher break at ~1.6x10^38 erg/s. We also found evidence that the XLF of LMXBs in globular clusters (GCs) is overall flatter than that of field LMXBs. Thus our results for this galaxy do not support the idea that all LMXBs are formed in GCs. The XLF of field LMXBs seems to show spatial variation, with the XLF in the inner region of the galaxy being flatter than that in the outer region, probably due to contamination of LMXBs from undetected and/or disrupted GCs in the inner region. The XLF in the outer region is probably the XLF of primordial field LMXBs, exhibiting dN/dL \propto L^{-1.2\pm0.1} up to a break close to the Eddington limit of neutron star LMXBs (~1.7x10^38 erg/s). The break of the GC LMXB XLF is lower, at ~1.1x10^37 erg/s. We also confirm previous findings that the metal-rich/red GCs are more likely to host LMXBs than the metal-poor/blue GCs, which is more significant for more luminous LMXBs, and that more massive GCs are more likely to host LMXBs.
We have carried out an in-depth study of low-mass X-ray binaries (LMXBs) detected in the nearby lenticular galaxy NGC 3115, using the Megasecond Chandra X-Ray Visionary Project observation (total exposure time 1.1 Ms). In total we found 136 candidate LMXBs in the field and 49 in globular clusters (GCs) above 2\sigma\ detection, with 0.3--8 keV luminosity L_X ~10^36-10^39 erg/s. Other than 13 transient candidates, the sources overall have less long-term variability at higher luminosity, at least at L_X > 2x10^37 erg/s. In order to identify the nature and spectral state of our sources, we compared their collective spectral properties based on single-component models (a simple power law or a multicolor disk) with the spectral evolution seen in representative Galactic LMXBs. We found that in the L_X versus photon index \Gamma_PL and L_X versus disk temperature kT_MCD plots, most of our sources fall on a narrow track in which the spectral shape hardens with increasing luminosity below L_X~7x10^37 erg/s but is relatively constant (\Gamma_PL~1.5 or kT_MCD~1.5 keV) above this luminosity, similar to the spectral evolution of Galactic neutron star (NS) LMXBs in the soft state in the Chandra bandpass. Therefore we identified the track as the NS LMXB soft-state track and suggested sources with L_X<7x10^37 erg/s as atolls in the soft state and those with L_X>7x10^37 erg/s as Z sources. Ten other sources (five are transients) displayed significantly softer spectra and are probably black hole X-ray binaries in the thermal state. One of them (persistent) is in a metal-poor GC.
The Collins-Williams Regge calculus models of FLRW space-times and Brewin's subdivided models are applied to closed vacuum $\Lambda$-FLRW universes. In each case, we embed the Regge Cauchy surfaces into 3-spheres in $\mathbf{E}^4$ and consider possible measures of Cauchy surface radius that can be derived from the embedding. Regge equations are obtained from both global variation, where entire sets of identical edges get varied simultaneously, and local variation, where each edge gets varied individually. We explore the relationship between the two sets of solutions, the conditions under which the Regge Hamiltonian constraint would be a first integral of the evolution equation, the initial value equation for each model at its moment of time symmetry, and the performance of the various models. It is revealed that local variation does not generally lead to a viable Regge model. It is also demonstrated that the various models do satisfy their respective initial value equations. Finally, it is shown that the models reproduce the behaviour of the continuum model rather well initially, with performance improving as we increase the number of tetrahedra used to construct the Regge Cauchy surface. Eventually though, all models gradually fail to keep up with the continuum FLRW model's expansion, with the models with lower numbers of tetrahedra falling away more quickly. We believe this failure to keep up is due to the finite resolution of the Regge Cauchy surfaces trying to approximate an ever expanding continuum Cauchy surface; each Regge surface has a fixed number of tetrahedra and as the surface being approximated gets larger, the resolution would degrade. Finally, we note that all Regge models end abruptly at a point when the time-like struts of the skeleton become null, though this end-point appears to get delayed as the number of tetrahedra is increased.
Current Higgs boson and top quark data favor metastability of our vacuum which raises questions as to why the Universe has chosen an energetically disfavored state and remained there during inflation. In this Letter, we point out that these problems can be solved by a Higgs-inflaton coupling which appears in realistic models of inflation. Since an inflaton must couple to the Standard Model particles either directly or indirectly, such a coupling is generated radiatively, even if absent at tree level. As a result, the dynamics of the Higgs field can change dramatically.
The GRACE mission has been providing valuable new information on time variations in the Earth's gravity field since 2002. In addition, the GRACE Follow-On mission is scheduled to be flown soon after the end of life of the GRACE mission in order to minimize the loss of valuable data on the Earth's gravity field changes. In view of the major benefits to hydrology and oceanography, as well as to other fields, it is desirable to investigate the fundamental limits to monitoring the time variations in the Earth's gravity field during GRACE-type missions. A simplified model is presented in this paper for making estimates of the effect of differential spurious accelerations of the satellites during times when four successive revolutions cross the Pacific Ocean. The analysis approach discussed is to make use of changes in the satellite separation observed during passages across low latitude regions of the Pacific and of other oceans to correct for spurious accelerations of the satellites. The low latitude regions of the Pacific and of other oceans are the extended regions where the a priori uncertainties in the time variations of the geopotential heights due to mass distribution changes are known best. In addition, advantage can be taken of the repeated crossings of the South Pole and the North Pole, since the uncertainties in changes in the geopotential heights at the poles during the time required for four orbit revolutions are likely to be small.
We are motivated by the recently reported dynamical evidence of stars with
short orbital periods moving around the center of the Milky Way and the
corresponding hypothesis about the existence of a supermassive black hole
hosted at its center. In this paper we show how the mass and rotation
parameters of a Kerr black hole (assuming that the putative supermassive black
hole is of this type), as well as the distance that separates the black hole
from the Earth, can be estimated in a relativistic way in terms of i) the red
and blue shifts of photons that are emitted by geodesic massive particles
(stars and galactic gas) and travel along null geodesics towards a distant
observer, and ii) the radius of these star/gas orbits.
As a concrete example and as a first step towards a full relativistic
analysis of the above mentioned star orbits around the center of our galaxy, we
consider stable equatorial circular orbits of stars and express their
corresponding red/blue shifts in terms of the metric parameters (mass and
angular momentum per unit mass) and the orbital radii of both the emitter star
(and/or galactic gas) and the distant observer.
In principle, these expressions allow one to statistically estimate the mass
and rotation parameters of the Kerr black hole, and the radius of our orbit,
through a Bayesian fitting, i.e., with the aid of observational data: the
red/blue shifts measured at certain points of stars' orbits and their radii,
with their respective errors, a task that we hope to perform in the near
future. We also point to several astrophysical phenomena, like accretion discs
of rotating black holes, binary systems and active galactic nuclei, among
others, to which this formalism can be applied.
We propose a QCD axion model where the origin of PQ symmetry and suppression of axion isocurvature perturbations are explained by introducing an extra dimension. Each extra quark-antiquark pair lives on branes separately to suppress PQ breaking operators. The size of the extra dimension changes after inflation due to an interaction between inflaton and a bulk scalar field, which implies that the PQ symmetry can be drastically broken during inflation to suppress undesirable axion isocurvature fluctuations.
The notion that we live in an evolving universe was established only in the
twentieth century with the discovery of the recession of galaxies by Hubble and
with the Lemaitre and Friedmann's interpretation in the 1920s.
However, the concept of an evolving universe is intrinsically tied to the law
of universal gravitation, and it is surprising that it remained unrecognized
for more than two centuries. A remarkable exception to this lack of awareness
is represented by Poe. In Eureka (1848), the writer developed a conception of
an evolving universe following the reasoning that a physical universe cannot be
static and nothing can stop stars or galaxies from collapsing on each other.
Unfortunately this literary work was, and still is, very little understood both
by the literary critics and scientists of the time. We will discuss Poe's
cosmological views in their historical scientific context, highlighting the
remarkable insights of the writer, such as those dealing with the Olbers
paradox, the existence of other galaxies and of a multi-universe.
We propose a novel method to probe primordial gravitational waves by means of primordial black holes (PBHs). When the amplitude of primordial tensor perturbations on comoving scales much smaller than those relevant to Cosmic Microwave Background is very large, it induces scalar perturbations due to second-order effects substantially. If the amplitude of resultant scalar perturbations becomes too large, then PBHs are overproduced to a level that is inconsistent with a variety of existing observations constraining their abundance. This leads to upper bounds on the amplitude of initial tensor perturbations on super-horizon scales. The resultant PBH upper bounds turn out be tighter than other bounds obtained from Big Bang Nucleosynthesis and Cosmic Microwave Background.
We discuss the problem of identification of coupling constants, which describe interactions between photons and space-time curvature, using exact regular solutions to the extended equations of the nonminimal Einstein-Maxwell theory. We argue the idea that three nonminimal coupling constants in this theory can be reduced to the single guiding parameter, which plays the role of nonminimal radius. We base our consideration on two examples of exact solutions obtained earlier in our works: the first of them describes a nonminimal spherically symmetric object (star or black hole) with regular radial electric field; the second example represents a nonminimal Dirac-type object (monopole or black hole) with regular metric. We demonstrate that one of the inflexion points of the regular metric function identifies a specific nonminimal radius, thus marking the domain of dominance of nonminimal interactions.
We point out that the prediction of the minimal chaotic inflation model is altered if a scalar field takes a large field value close to the Planck scale during inflation due to a negative Hubble induced mass. In particular, we show that the inflaton potential is effectively suppressed at a large inflaton field value in the presence of such a scalar field. The scalar field may be identified with the standard model Higgs field or flat directions in supersymmetric theory. With such spontaneous suppression, we find that the minimal chaotic inflation model, especially the model with a quadratic potential, is consistent with recent observations of the cosmic microwave background fluctuation without modifying the inflation model itself.
Sterile neutrinos are thermalised in the early Universe via oscillations with the active neutrinos for certain mixing parameters. The most detailed calculation of this thermalisation process involves the solution of the momentum-dependent quantum kinetic equations, which track the evolution of the neutrino phase space distributions. Until now the collision terms in the quantum kinetic equations have always been approximated using equilibrium distributions, but this approximation has never been checked numerically. In this work we revisit the sterile neutrino thermalisation calculation using the full collision term, and compare the results with various existing approximations in the literature. We find a better agreement than would naively be expected, but also identify some issues with these approximations that have not been appreciated previously. These include an unphysical production of neutrinos via scattering and the importance of redistributing momentum through scattering, as well as details of Pauli blocking. Finally, we devise a new approximation scheme, which improves upon some of the shortcomings of previous schemes.
The recent astronomical observation confirms a spatially extended excess of $\sim$1-3 GeV gamma rays from the region surrounding the Galactic Center, and it is suggested that the excess is due to annihilating dark matter, e.g. dark matter particles of $35\sim 51$ GeV annihilating to $b\bar b$ pairs. Inevitably, models about dark matter must undergo the tests of astronomical observation, accelerator and direct detection. In this work, considering the pseudoscalar-mediated WIMP (weakly interacting massive particle) model and assuming the mass of WIMP is around 5-60 GeV, we suggest to test the model in the $t\to c$ decays with missing energy. With the reasonable inputs, the branching ratio $\mathcal {B}_{t\rightarrow c \bar{\chi} \chi}$ is derived of order $10^{-8} - 10^{-6}$, thus careful studies in the future on top-physics may help to gain a better understanding of dark matter.
Many extensions of the Standard Model include axions or axion-like particles (ALPs). Here we study ALP to photon conversion in the magnetic field of the Milky Way and starburst galaxies. By modelling the effects of the coherent and random magnetic fields, the warm ionized medium and the warm neutral medium on the conversion process, we simulate maps of the conversion probability across the sky for a range of ALP energies. In particular, we consider a diffuse cosmic ALP background (CAB) analogous to the CMB, whose existence is suggested by string models of inflation. ALP-photon conversion of a CAB in the magnetic fields of galaxy clusters has been proposed as an explanation of the cluster soft X-ray excess. We therefore study the phenomenology and expected photon signal of CAB propagation in the Milky Way. We find that, for the CAB parameters required to explain the cluster soft X-ray excess, the photon flux from ALP-photon conversion in the Milky Way would be unobservably small. The ALP-photon conversion probability in galaxy clusters is 3 orders of magnitude higher than that in the Milky Way. Furthermore, the morphology of the unresolved cosmic X-ray background is incompatible with a significant component from ALP-photon conversion. We also consider ALP-photon conversion in starburst galaxies, which host much higher magnetic fields. By considering the clumpy structure of the galactic plasma, we find that conversion probabilities comparable to those in clusters may be possible in starburst galaxies.
In this paper we investigate the chameleon effect in the different conformal frames of the Brans--Dicke theory. Given that, in the standard literature on the subject, the chameleon is described in the Einstein frame almost exclusively, here we pay special attention to the description of this effect in the Jordan and in the string frames. It is shown that, in general, terrestrial and solar system bounds on the mass of the BD scalar field, and bounds of cosmological origin, are difficult to reconcile at once through a single chameleon potential. We point out that, in a cosmological context, provided that the effective chameleon potential has a minimum within a region of constant density of matter, the Brans--Dicke theory transmutes into general relativity with a cosmological constant, in that region. This result, however, can be only locally valid. In cosmological settings de Sitter--general relativity is a global attractor of the Brans--Dicke theory only for the quadratic potential $V(\phi)=M^2\phi^2$, or for potentials that asymptote to $M^2\phi^2$.
Links to: arXiv, form interface, find, astro-ph, recent, 1506, contact, help (Access key information)
Many transiting planet host stars lack high resolution imaging and thus close stellar sources can be missed. Those unknown stars potentially bias the derivation of the planetary and stellar parameters from the transit light curve, no matter if they are bound or not. In addition, bound stellar companions interact gravitationally with the exoplanet host star, the disk and the planets and can thus influence the formation and evolution of the planetary system strongly. We extended our high-resolution Lucky Imaging survey for close stellar sources by 74 transiting planet host stars. 39 of these stars lack previous high-resolution imaging, 23 are follow up observations of companions or companion candidates, and the remaining stars have been observed by others with AO imaging though in different bands. We determine the separation of all new and known companion candidates and estimate the flux ratio in the observed bands. All observations were carried out with the Lucky Imaging camera AstraLux Norte at the Calar Alto 2.2 m telescope in i' and z' passbands. We find new stellar sources within 1 arcsec to HAT-P-27, HAT-P-28, HAT-P-35, WASP-76, and WASP-103, and between 1 and 4 arcsec to HAT-P-29 and WASP-56.
Using deep Herschel and ALMA observations, we investigate the star formation rate (SFR) distributions of X-ray AGN host galaxies at 0.5<z<1.5 and 1.5<z<4, comparing them to that of normal, star-forming (i.e., "main-sequence", or MS) galaxies. We find 34-55 per cent of AGNs have SFRs at least a factor of two below that of the average MS galaxy, compared to ~15 per cent of all MS galaxies, suggesting significantly different SFR distributions. Indeed, when both are modelled as log-normal distributions, the mass and redshift-normalised SFR distributions of AGNs are roughly twice as broad, and peak ~0.4 dex lower, than that of MS galaxies. However, like MS galaxies, the normalised SFR distribution of AGNs appears not to evolve with redshift. Despite AGNs and MS galaxies having different SFR distributions, the linear-mean SFR of AGNs derived from our distributions is remarkably consistent with that of MS galaxies, and thus with previous results derived from stacked Herschel data. This apparent contradiction is due to the linear-mean SFR being biased by bright outliers, and thus does not necessarily represent a true characterisation of the typical SFR of AGNs.
Radiatively inefficient accretion flows (RIAFs) in low-luminosity active galactic nuclei (LLAGNs) have been suggested as cosmic-ray and neutrino sources, which may largely contribute to the observed diffuse neutrino intensity. We show that this scenario naturally predicts hadronic multi-TeV gamma-ray excesses around galactic centers. The protons accelerated in the RIAF in Sagittarius A* (Sgr A*) escape and interact with dense molecular gas surrounding Sgr A*, which is known as the Central Molecular Zone (CMZ), and produce gamma rays as well as neutrinos. Based on a theoretical model that is compatible with the IceCube data, we calculate gamma-ray spectra of the CMZ and find that the gamma rays with $\gtrsim 1$~TeV may have already been detected with the High Energy Stereoscopic System (HESS), if Sgr A* was more active in the past than it is today as indicated by various observations. Our model predicts that neutrinos should come from the CMZ with a spectrum similar to the gamma-ray spectrum. We also show that such a gamma-ray excess is expected for some nearby galaxies hosting LLAGNs.
We derive, adopting a direct method, the luminosity function and the formation rate of long Gamma Ray Bursts through a complete, flux-limited, sample of Swift bursts which has a high level of completeness in redshift z (~82%). We parametrise the redshift evolution of the GRB luminosity as L = L_0(1+ z)^k and we derive k = 2.5, consistently with recent estimates. The de-evolved luminosity function of GRBs can be represented by a broken power law with slopes a = -1.32 +- 0.21 and b = -1.84 +- 0.24 below and above, respectively, a characteristic break luminosity L_0,b = 10^51.45+-0.15 erg/s. Under the hypothesis of luminosity evolution we find that the GRB formation rate increases with redshift up to z~2, where it peaks, and then decreases in agreement with the shape of the cosmic star formation rate. We test the direct method through numerical simulations and we show that if it is applied to incomplete (both in redshift and/or flux) GRB samples it can misleadingly result in an excess of the GRB formation rate at low redshifts.
We study the dynamical stability and fates of hierarchical (in semi-major axis) two-planet systems with arbitrary eccentricities and mutual inclinations. We run a large number of long-term numerical integrations and use the Support Vector Machine algorithm to search for an empirical boundary that best separates stable systems from systems experiencing either ejections or collisions with the star. We propose the following new criterion for dynamical stability: $a_{\rm out}(1-e_{\rm out})/a_{\rm in}(1+e_{\rm in})>2.4\left[\max(\mu_{\rm in},\mu_{\rm out})\right]^{1/3}(a_{\rm out}/a_{\rm in})^{1/2}+1.15$, which should be applicable to planet-star mass ratios $\mu_{\rm in},\mu_{\rm out}=10^{-4}-10^{-2}$, integration times up to $10^8$ orbits of the inner planet, and mutual inclinations $\lesssim40^\circ$. Systems which do not satisfy this condition by a margin of $\gtrsim0.5$ are expected to be unstable, mostly leading to planet ejections if $\mu_{\rm in}>\mu_{\rm out}$, while slightly favoring collisions with the star for $\mu_{\rm in}<\mu_{\rm out}$. We use our numerical integrations to test other stability criteria that have been proposed in the literature and show that our stability criterion performs significantly better for the range of system parameters that we have explored.
Using results from the Herschel Astrophysical Terrahertz Large-Area Survey and the Galaxy and Mass Assembly project, we show that, for galaxy masses above approximately 1.0e8 solar masses, 51% of the stellar mass-density in the local Universe is in early-type galaxies (ETGs: Sersic n > 2.5) while 89% of the rate of production of stellar mass-density is occurring in late-type galaxies (LTGs: Sersic n < 2.5). From this zero-redshift benchmark, we have used a calorimetric technique to quantify the importance of the morphological transformation of galaxies over the history of the Universe. The extragalactic background radiation contains all the energy generated by nuclear fusion in stars since the Big Bang. By resolving this background radiation into individual galaxies using the deepest far-infrared survey with the Herschel Space Observatory and a deep near-infrared/optical survey with the Hubble Space Telescope (HST), and using measurements of the Sersic index of these galaxies derived from the HST images, we estimate that approximately 83% of the stellar mass-density formed over the history of the Universe occurred in LTGs. The difference between this and the fraction of the stellar mass-density that is in LTGs today implies there must have been a major transformation of LTGs into ETGs after the formation of most of the stars.
Feedback from outflows driven by active galactic nuclei (AGN) can affect the distribution and properties of the gaseous halos of galaxies. We study the hydrodynamics and non-thermal emission from the forward outflow shock produced by an AGN-driven outflow. We consider a few possible profiles for the halo gas density, self-consistently constrained by the halo mass, redshift and the disk baryonic concentration of the galaxy. We show that the outflow velocity levels off at $\sim 10^3\,\rm km\, s^{-1}$ within the scale of the galaxy disk. Typically, the outflow can reach the virial radius around the time when the AGN shuts off. We show that the outflows are energy-driven, consistently with observations. The outflow shock lights up the halos of massive galaxies across a broad wavelength range. For Milky Way (MW) mass halos, radio observations by The Jansky Very Large Array (JVLA) and The Square Kilometer Array (SKA) and infrared/optical observations by The James Webb Space Telescope (JWST) and Hubble Space Telescope (HST) can detect the emission signal of angular size $\sim 8"$ from galaxies out to redshift $z\sim5$. Millimeter observations by The Atacama Large Millimeter/submillimeter Array (ALMA) are sensitive to non-thermal emission of angular size $\sim 18"$ from galaxies at redshift $z\lesssim1$, while X-ray observations by Chandra, XMM-Newton and The Advanced Telescope for High Energy Astrophysics (ATHENA) is limited to local galaxies ($z\lesssim 0.1$) with an emission angular size of $\sim2'$. Overall, the extended non-thermal emission provides a new way of probing the gaseous halos of galaxies at high redshifts.
Using a simple analytic formalism, we demonstrate that significant dark matter self-interactions produce halo cores that obey scaling relations nearly independent of the underlying particle physics parameters such as the annihilation cross section and the mass of the dark matter particle. For dwarf galaxies, we predict that the core density $\rho_c$ and the core radius $r_c$ should obey $\rho_c r_c \sim 75\,\text{M}_\odot \text{pc}^{-2}$. Remarkably, such a scaling relation has recently been empirically inferred. Scaling relations involving core mass, core radius, and core velocity dispersion are predicted and agree well with observational data. By calibrating against numerical simulations, we predict the scatter in such relations and find them to be in excellent agreement with existing data. Future observations can test our predictions for different halo masses and redshifts.
We present a catalogue of starless and protostellar clumps associated with infrared dark clouds (IRDCs) in a 40 degrees wide region of the inner Galactic Plane (b<1). We have extracted the far-infrared (FIR) counterparts of 3493 IRDCs with known distance in the Galactic longitude range 15<l<55 and searched for the young clumps using Hi-GAL, the survey of the Galactic Plane carried out with the Herschel satellite. Each clump is identified as a compact source detected at 160, 250 and 350 mum. The clumps have been classified as protostellar or starless, based on their emission (or lack of emission) at 70 mum. We identify 1723 clumps, 1056 (61%) of which are protostellar and 667 (39%) starless. These clumps are found within 764 different IRDCs, 375 (49%) of which are only associated with protostellar clumps, 178 (23%) only with starless clumps, and 211 (28%) with both categories of clumps. The clumps have a median mass of 250 M_sun and range up to >10^4$ M_sun in mass and up to 10^5 L_sun in luminosity. The mass-radius distribution shows that almost 30% of the starless clumps identified in this survey could form high-mass stars, however these massive clumps are confined in only ~4% of the IRDCs. Assuming a minimum mass surface density threshold for the formation of high-mass stars, the comparison of the numbers of massive starless clumps and those already containing embedded sources suggests an upper limit lifetime for the starless phase of 10^5 years for clumps with a mass M>500 M_sun.
We systematically performed numerical-relativity simulations for black hole (BH) - neutron star (NS) binary mergers with a variety of the BH spin orientation and equations of state (EOS) of the NS. The initial misalignment angles of the BH spin are chosen in the range of i_tilt,0 = 30--90[deg.]. We employed four models of NS EOS with which the compactness of the NS is in the range of C = M_NS/R_NS = 0.138--0.180, where M_NS and R_NS are the mass and the radius of the NS, respectively. The mass ratio of the BH to the NS, Q = M_BH/M_NS, and the dimensionless spin parameter of the BH, chi, are chosen to be Q = 5 and chi = 0.75, together with M_NS = 1.35 M_sun. We obtain the following results: (i) The inclination angle of i_tilt,0 < 70[deg.] and i_tilt,0 < 50[deg.] are required for the formation of a remnant disk with its mass larger than 0.1 M_sun for the case C = 0.140 and C = 0.160, respectively, while the disk mass is always smaller than 0.1M_sun for C = 0.175. The ejecta with its mass larger than 0.01 M_sun is obtained for i_tilt,0 < 85[deg.] with C = 0.140, for i_tilt,0 < 65[deg.] with C = 0.160, and for i_tilt,0 < 30[deg.] with C = 0.175. (ii) The rotational axis of the dense part of the remnant disk is approximately aligned with the remnant BH spin for i_tilt,0 = 30[deg.]. On the other hand, the disk axis is misaligned initially with ~ 30[deg.] for i_tilt,0 = 60[deg.], and the alignment with the remnant BH spin is achieved at ~ 50--60 ms after the onset of merger. The accretion time scale of the remnant disk is typically ~ 100 ms and depends only weakly on the misalignment angle and the EOS. (iii) The ejecta velocity is typically ~ 0.2--0.3c and depends only weakly on i_tilt,0 and the EOS of the NS, while the morphology of the ejecta depends on its mass. (iv) The gravitational-wave spectra contains the information of the NS compactness in the cutoff frequency for i_tilt,0 < 60[deg.].
Dust-Obscured galaxies (DOGs) are bright 24 um-selected sources with extreme obscuration at optical wavelengths. They are typically characterized by a rising power-law continuum of hot dust (T_D ~ 200-1000K) in the near-IR indicating that their mid-IR luminosity is dominated by an an active galactic nucleus (AGN). DOGs with a fainter 24 um flux display a stellar bump in the near-IR and their mid-IR luminosity appears to be mainly powered by dusty star formation. Alternatively, it may be that the mid-IR emission arising from AGN activity is dominant but the torus is sufficiently opaque to make the near-IR emission from the AGN negligible with respect to the emission from the host component. In an effort to characterize the astrophysical nature of the processes responsible for the IR emission in DOGs, this paper exploits Herschel data (PACS + SPIRE) on a sample of 95 DOGs within the COSMOS field. We derive a wealth of far-IR properties (e.g., total IR luminosities; mid-to-far IR colors; dust temperatures and masses) based on SED fitting. Of particular interest are the 24 um-bright DOGs (F_24um > 1mJy). They present bluer far-IR/mid-IR colors than the rest of the sample, unveiling the potential presence of an AGN. The AGN contribution to the total 8-1000 um flux increases as a function of the rest-frame 8 um-luminosity irrespective of the redshift. This confirms that faint DOGs (L_8 um< 10^12 L_sun) are dominated by star-formation while brighter DOGs show a larger contribution from an AGN.
In the standard model of cosmology, the Universe is static in comoving coordinates; expansion occurs homogeneously and is represented by a global scale factor. The baryon acoustic oscillation (BAO) peak location is a statistical tracer that represents, in the standard model, a fixed comoving-length standard ruler. Recent gravitational collapse should modify the metric, rendering the effective scale factor, and thus the BAO standard ruler, spatially inhomogeneous. Using the Sloan Digital Sky Survey, we show to high significance (P < 0.001) that the spatial compression of the BAO peak location increases as the spatial paths' overlap with superclusters increases. Detailed observational and theoretical calibration of this BAO peak location environment dependence will be needed when interpreting the next decade's cosmological surveys.
The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.
Leo P is a low-luminosity dwarf galaxy discovered through the blind HI Arecibo Legacy Fast ALFA (ALFALFA) survey. The HI and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with active star formation, an underlying older population, and an extremely low oxygen abundance. We have obtained optical imaging from the Hubble Space Telescope to study the evolution of Leo P. We refine the distance measurement to Leo~P to be 1.62+/-0.15 Mpc, based on the luminosity of the horizontal branch stars and 10 newly identified RR Lyrae candidates. This places the galaxy at the edge of the Local Group, ~0.4 Mpc from the loose association of dwarfs that includes Sextans A, Sextans B, Antlia, and NGC 3109. The star responsible for ionizing the HII region is most likely an O7V or O8V spectral type, with a stellar mass >25 Msun. The presence of this star provides observational evidence that massive stars at the upper-end of the initial mass function are capable of being formed at star formation rates as low as ~10^-5 Msun/yr. The best-fitting star formation history derived from the resolved stellar populations of Leo P using the latest PARSEC models shows a relatively constant star formation rate over the lifetime of the galaxy. The modeled luminosity characteristics of Leo P at early times are consistent with low-luminosity dSph Milky Way satellites, suggesting that Leo P is what a low-mass dSph would look like if it evolved in isolation and retained its gas. Despite the very low mass of Leo P, the imprint of reionization on its star formation history is subtle at best, and consistent with being totally negligible. The isolation of Leo P, and the total quenching of star formation of Milky Way satellites of similar mass, implies that local environment dominates the quenching of the Milky Way satellites.
We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets. Starting from the first law of thermodynamics, we demonstrate that the van't Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients) and procedures associated with the Gibbs free energy (minimisation, rescaling) have a common physical and mathematical origin. We correct an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and rigorously derive its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. To avoid confusion, we simply term them the dimensionless and dimensional equilibrium constants. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously thought without recourse to tagging on ad hoc functional forms. Our formulation of the evolution equations for chemical kinetics correctly enforces the book-keeping of elemental abundances, reproduces chemical equilibrium in the steady-state limit and is able to explain why photochemistry is an intrinsically disequilibrium effect. Finally, we derive analytical models of chemical systems with only hydrogen and with carbon, hydrogen and oxygen. For the latter, we include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.
Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222127, in the supernova remnant IC443 reveal an ~5$^{\prime\prime}$-radius ring-like structure surrounding the pulsar and a jet-like feature oriented roughly north-south across the ring and through the pulsar's location at 06$^{\rm h}$17$^{\rm m}$5.200$^{\rm s}$ +22$^{\circ}$21$^{\prime}$27.52$^{\prime\prime}$ (J2000.0 coordinates). The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind and, (3) the spectrum at greater distances is consistent with thermal emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest, appears to be subsonic: There is no evidence either spectrally or morphologically for a bow shock or contact discontinuity; the nearly circular ring is not distorted by motion through the ambient medium; and the shape near the apex of the nebula is narrow. Comparing this observation with previous observations of the same target, we set a 99% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 44 mas/yr (310 km/s for a distance of 1.5 kpc), with the best-fit (but not statistically significant) projected direction toward the west.
Planetary nebulae had a double anniversary in 2014, 250 year since their discovery and 150 year since the correct spectroscopic identification. This paper gives an overview of planetary nebula research published in 2014. Topics include surveys, central stars, abundances, morphologies, magnetic fields, stellar population and galactic dynamics. An important continuing controversy is the discrepancy between recombination-line and forbidden-line abundances. A new controversy is the relation between symbiotic stars and [WC] stars. PN of the year is undoubtedly CRL 618, with papers on its binary symbiotic/[WC] nucleus, rapid stellar evolution, expanding jets and magnetic fields.
High-resolution X-ray spectrometers onboard suborbital sounding rockets can search for dark matter candidates that produce X-ray lines, such as decaying keV-scale sterile neutrinos. Even with exposure times and effective areas far smaller than XMM-Newton and Chandra observations, high-resolution, wide field-of-view observations with sounding rockets have competitive sensitivity to decaying sterile neutrinos. We analyze a subset of the 2011 observation by the X-ray Quantum Calorimeter instrument centered on Galactic coordinates l = 165, b = -5 with an effective exposure of 106 seconds, obtaining a limit on the sterile neutrino mixing angle of sin^2(2 theta) < 7.2e-10 at 95% CL for a 7 keV neutrino. Better sensitivity at the level of sin^2(2 theta) ~ 2.1e-11 at 95\% CL for a 7 keV neutrino is achievable with future 300-second observations of the galactic center by the Micro-X instrument, providing a definitive test of the sterile neutrino interpretation of the reported 3.56 keV excess from galaxy clusters.
Aims: We characterize a sample of Gamma-Ray Bursts with low luminosity X-ray afterglows (LLA GRBs), and study their properties. Method: We select a sample consisting of the 12\% faintest X-ray afterglows from the total population of long GRBs (lGRBs) with known redshift. We study their intrinsic properties (spectral index, decay index, distance, luminosity, isotropic radiated energy and peak energy) to assess whether they belong to the same population than the brighter afterglow events. Results: We present strong evidences that these events belong to a population of nearby events, different from that of the general population of lGRBs. These events are faint during their prompt phase, and include the few possible outliers of the Amati relation. Out of 14 GRB-SN associations, 9 are in LLA GRB sample, prompting for caution when using SN templates in observational and theoretical models for the general lGRBs population.
This Letter proposes that dark energy in the form of a scalar field could effectively couple to dark matter perturbations. The idea is that dark matter particles could annihilate/interact inside dense clumps and transfer energy to the scalar field, which would then enter an accelerated regime. This hypothesis appears interesting as it provides a natural trigger for the onset of the acceleration of the universe as dark energy starts driving the expansion of the universe when matter perturbations become sufficiently dense. In other words, this proposal does not suffer from the so-called "coincidence problem" and its related fine tuning of initial conditions. Here we study a possible realization of this general idea by coupling dark energy to dark matter via the linear growth function of matter perturbations. The numerical results show that it is indeed possible to obtain a viable cosmology free from the fine-tuning problem typical of dark energy models.
The multiple star system of delta Orionis is one of the closest examples of a system containing a luminous O-type, bright giant star (component Aa1). It is often used as a spectral-type standard and has the highest observed X-ray flux of any hot-star binary. The main component Aa1 is orbited by two lower mass stars, faint Aa2 in a 5.7 day eclipsing binary, and Ab, an astrometric companion with an estimated period of 346 years. Generally the flux from all three stars is recorded in ground-based spectroscopy, and the spectral decomposition of the components has proved difficult. Here we present HST/STIS ultraviolet spectroscopy of delta Ori A that provides us with spatially separated spectra of Aa and Ab for the first time. We measured radial velocities for Aa1 and Ab in two observations made near the velocity extrema of Aa1. We show tentative evidence for the detection of the Aa2 component in cross-correlation functions of the observed and model spectra. We discuss the appearance of the UV spectra of Aa1 and Ab with reference to model spectra. Both stars have similar effective temperatures, but Ab is fainter and is a rapid rotator. The results will help in the interpretation of ground-based spectroscopy and in understanding the physical and evolutionary parameters of these massive stars.
We study the impact of baryons on the distribution of dark matter in a Milky Way-size halo by comparing a high-resolution, moving-mesh cosmological simulation with its dark matter-only counterpart. We identify three main processes related to baryons -- adiabatic contraction, tidal disruption and reionization -- which jointly shape the dark matter distribution in both the main halo and its subhalos. The relative effect of each baryonic process depends strongly on the subhalo mass. For massive subhalos with maximum circular velocity $v_{\rm max} > 35 km/s$, adiabatic contraction increases the dark matter concentration, making these halos less susceptible to tidal disruption. For low-mass subhalos with $v_{\rm max} < 20 km/s$, reionization effectively reduces their mass on average by $\approx$ 30% and $v_{\rm max}$ by $\approx$ 20%. For intermediate subhalos with $20 km/s < v_{\rm max} < 35 km/s$, which share a similar mass range as the classical dwarf spheroidals, strong tidal truncation induced by the main galaxy reduces their $v_{\rm max}$. Moreover, the stellar disk of the main galaxy effectively depletes subhalos near the central region. As a combined result of reionization and increased tidal disruption, the total number of low-mass subhalos in the hydrodynamic simulation is nearly halved compared to that of the $\textit{N-}$body simulation. We do not find dark matter cores in dwarf galaxies, unlike previous studies that employed bursty feedback-driven outflows. The substantial impact of baryons on the abundance and internal structure of subhalos suggests that galaxy formation and evolution models based on $\textit{N}$-body simulations should include these physical processes as major components.
Recent research has demonstrated that the number of sunspots per group ('active region') has been decreasing over the last two or three solar cycles and that the classical Relative Sunspot Number (SSN) no longer is a good representation of solar magnetic activity such as revealed by e.g. the F10.7 cm microwave flux. The SSN is derived under the assumption that the number of spots per group is constant (in fact, nominally equal to 10). When this is no longer the case (the ratio is approaching 5, only half of its nominal value) the question arises how to construct a sunspot number series that takes that into account. We propose to harmonize the SSN with the sunspot Group Count that has been shown to follow F10.7 very well, but also to include the day-to-day variations of the spot count in order to preserve both long-term and short-term variability.
We present a model for gamma-ray bursts where a dissipative photosphere provides the usual spectral peak around MeV energies accompanied by a subdominant thermal component. We treat the initial acceleration of the jet in a general way, allowing for magnetic field- and baryon dominated outflows. In this model, the GeV emission associated with GRBs observed by Fermi LAT, arises as the interaction of photospheric radiation and the shocked electrons at the deceleration radius. Through recently discovered correlations between the thermal and non-thermal peaks within individual bursts, we are able to infer whether the jet was Poynting flux or baryon dominated.
The peak bagging analysis, namely the fitting and identification of single oscillation modes in stars' power spectra, coupled to the very high-quality light curves of red giant stars observed by Kepler, can play a crucial role for studying stellar oscillations of different flavor with an unprecedented level of detail. A thorough study of stellar oscillations would thus allow for deeper testing of stellar structure models and new insights in stellar evolution theory. However, peak bagging inferences are in general very challenging problems due to the large number of observed oscillation modes, hence of free parameters that can be involved in the fitting models. Effciency and robustness in performing the analysis is what may be needed to proceed further. For this purpose, we developed a new code implementing the Nested Sampling Monte Carlo (NSMC) algorithm, a powerful statistical method well suited for Bayesian analyses of complex problems. In this talk we show the peak bagging of a sample of high signal-to-noise red giant stars by exploiting recent Kepler datasets and a new criterion for the detection of an oscillation mode based on the computation of the Bayesian evidence. Preliminary results for frequencies and lifetimes for single oscillation modes, together with acoustic glitches, are therefore presented.
We have constructed a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of 3 basic clocks of the periods P1=19000 d, P2=1943 d and P3=722 d. These periods can plausibly, and consistently with the observations, be attributed to 3 physical mechanisms in the system. They are, respectively, the working of a solar-like magnetic dynamo cycle in the outer layers of the giant star of the system, the binary orbit cycle and the sidereal rotation cycle of the giant star. MWC 560 is the 7th symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems.
We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
We report high spatial resolution observations of Giant Molecular Clouds (GMCs) in the nearby spiral galaxies NGC 6946, M101 and NGC 628 obtained with the CARMA telescope. We observed CO(1-0) over regions with active star formation, and higher resolution observations of CO(2-1) have allowed us to resolve some of the largest GMCs. Using a Bayesian fitting approach, we generate scaling relations for the sizes, line widths, and virial masses of the structures identified in this work. We do not find evidence for a tight power law relation between size and line width, although the limited dynamic range in cloud size remains a clear issue in our analysis. Additionally, we use a Bayesian approach to analyze the Kennicutt-Schmidt (K-S) relation for the identified structures. We find that the distribution of slopes are broadly distributed, mainly due to the limited dynamic range of our measured H2 mass surface density, and being most consistent with super-linear relations. On the other hand, when we use the Bayesian approach to analyze the K-S relation for a uniform grid, the distributions of slopes is consistent with sub-linear relations. On-arm regions tend to have higher star formation rates than inter-arm regions. As in NGC 6946, in M101 we find regions where the star formation efficiency shows marked peaks at specific galoctocentric radii. On the other hand, the distribution of SFE in NGC 628 is more contiguous. We hypothesize that differences in the distribution of SFE may be indicative of different processes driving the spiral structure.
Brightest Cluster Galaxies (BCGs) show exceptional properties over the whole electromagnetic spectrum. Their special location at the centres of galaxy clusters raises the question of the role of the environment on their radio properties. To decouple the effect of the galaxy mass and of the environment in their statistical radio properties, we investigate the possible dependence of the occurrence of radio loudness and of the fractional radio luminosity function on the dynamical state of the hosting cluster. We studied the radio properties of the BCGs in the Extended GMRT Radio Halo Survey (EGRHS). We obtained a statistical sample of 59 BCGs, which was divided into two classes, depending on the dynamical state of the host cluster, i.e. merging (M) and relaxed (R). Among the 59 BCGs, 28 are radio-loud, and 31 are radio--quiet. The radio-loud sources are located favourably located in relaxed clusters (71\%), while the reverse is true for the radio-quiet BCGs, mostly located in merging systems (81\%). The fractional radio luminosity function (RLF) for the BCGs is considerably higher for BCGs in relaxed clusters, where the total fraction of radio loudness reaches almost 90\%, to be compared to the $\sim$30\% in merging clusters. For relaxed clusters, we found a positive correlation between the radio power of the BCGs and the strength of the cool core, consistent with previous studies on local samples. Our study suggests that the radio loudness of the BCGs strongly depends on the cluster dynamics, their fraction being considerably higher in relaxed clusters. We compared our results with similar investigations, and briefly discussed them in the framework of AGN feedback.
We determine the radial abundance gradient of Cl in the Milky Way from HII regions spectra. For the first time, the Cl/H ratios are computed by simply adding ionic abundances and not using an ionization correction factor (ICF). We use a collection of published very deep spectra of Galactic HII regions. We have re-calculated the physical conditions, ionic and total abundances of Cl and O using the same methodology and updated atomic data for all the objects. We find that the slopes of the radial gradients of Cl and O are identical within the uncertainties: -0.043 dex/kpc. This is consistent with a lockstep evolution of both elements. We obtain that the mean value of the Cl/O ratio across the Galactic disc is log(Cl/O) = -3.42 +/- 0.06. We compare our Cl/H ratios with those determined from Cl++ abundances and using some available ICF schemes of the literature. We find that our total Cl abundances are always lower than the values determined using ICFs, indicating that those correction schemes systematically overestimate the contribution of Cl+ and Cl+++ species to the total Cl abundance. Finally, we propose an empirical ICF(Cl++) to estimate the Cl/H ratio in HII regions.
Since radio continuum observations are not affected by dust obscuration, they are of immense potential diagnostic power as cosmological probes and for studying galaxy formation and evolution out to high redshifts. However, the power-law nature of radio frequency spectra ensures that ancillary spectroscopic information remains critical for studying the properties of the faint radio sources being detected in rapidly-increasing numbers on the pathway to the Square Kilometre Array. In this contribution, I present some of the key scientific motivations for exploiting the immense synergies between radio continuum observations and multi-object spectroscopic surveys. I review some of the ongoing efforts to obtain the spectra necessary to harness the huge numbers of star-forming galaxies and AGN that current and future radio surveys will detect. I also touch on the WEAVE-LOFAR survey, which will use the WEAVE spectrograph currently being built for the William Herschel Telescope to target hundreds of thousands of low frequency sources selected from the LOFAR continuum surveys.
We study the complex structure of the Bullet cluster radio halo to determine the Dark Matter (DM) contribution to the emission observed in the different subhalos corresponding to the DM and baryonic dominated regions. We use different non-thermal models to study the different regions, and we compare our results with the available observations in the radio, X-ray and gamma-ray bands, and the Sunyaev-Zel'dovich (SZ) effect data. We find that the radio emission coming from the main DM subhalo can be produced by secondary electrons produced by DM annihilations. In this scenario there are however some open issues, like the difficulty to explain the observed flux at 8.8 GHz, the high value of the required annihilation cross section, and the lack of observed emission coming from the minor DM subhalo. We also find that part of the radio emission originated by DM annihilation could be associated with a slightly extended radio source present near the main DM subhalo. Regarding the baryonic subhalos, the radio measurements do not allow to discriminate between a primary or secondary origin of the electrons, while the SZ effect data point towards a primary origin for the non-thermal electrons in the Main Subcluster. We conclude that in order to better constrain the properties of the DM subhalos, it is important to perform detailed measurements of the radio emission in the regions where the DM halos have their peaks, and that the separation of the complex radio halo in different subhalos is a promising technique to understand the properties of each specific subhalo.
The reionization of helium describes the transition from its singly ionized state to a doubly-ionized state in the intergalactic medium (IGM). This process is important for the thermal evolution of the IGM and influences the mean free path of photons with energies above $54.4$~eV. While it is well-known that helium reionization is mostly driven by the contribution of energetic quasars at $z<6$, we study here how helium reionization proceeds if there is an additional contribution due to the annihilation of dark matter. We explore the effects of different dark matter profiles for the dark matter clumping factor, which can significantly enhance the annihilation rate at late times. We find that the presence of dark matter annihilation enhances the He$^{++}$ abundance at early stages where it would be zero within the standard model, and it can further increase during structure formation, reflecting the increase of the dark matter clumping factor. The latter is, however, degenerate with the build-up of the quasar contribution, and we therefore expect no significant changes at late times. We expect that future studies of the He$^+$ Lyman $\alpha$ forest may help to assess whether the evolution is consistent with the contribution from quasars alone, or if an additional component may be required.
We report on the observations of two ultra metal-poor (UMP) stars with [Fe/H]~-4.0 including one new discovery. The two stars are studied in the on-going and quite efficient project to search for extremely metal-poor (EMP) stars with LAMOST and Subaru. Detailed abundances or upper limits of abundances have been derived for 15 elements from Li to Eu based on high-resolution spectra obtained with Subaru/HDS. The abundance patterns of both UMP stars are consistent with the "normal-population" among the low-metallicity stars. Both of the two program stars show carbon-enhancement without any excess of heavy neutron-capture elements, indicating that they belong to the subclass of CEMP-no stars, as is the case of most UMP stars previously studied. The [Sr/Ba] ratios of both CEMP-no UMP stars are above [Sr/Ba]~-0.4, suggesting the origin of the carbon-excess is not compatible with the mass transfer from an AGB companion where the s-process has operated. Lithium abundance is measured in the newly discovered UMP star LAMOST J125346.09+075343.1, making it the second UMP turnoff star with Li detection. The Li abundance of LAMOST J125346.09+075343.1 is slightly lower than the values obtained for less metal-poor stars with similar temperature, and provides a unique data point at [Fe/H]~-4.2 to support the "meltdown" of the Li Spite-plateau at extremely low metallicity. Comparison with the other two UMP and HMP (hyper metal-poor with [Fe/H]<-5.0) turnoff stars suggests that the difference in lighter elements such as CNO and Na might cause notable difference in lithium abundances among CEMP-no stars.
We observed the Saturn-mass and Jupiter-sized exoplanet HAT-P-19b to refine its transit parameters and ephemeris as well as to shed first light on its transmission spectrum. We monitored the host star over one year to quantify its flux variability and to correct the transmission spectrum for a slope caused by starspots. A transit of HAT-P-19b was observed spectroscopically with OSIRIS at the Gran Telescopio Canarias in January 2012. The spectra of the target and the comparison star covered the wavelength range from 5600 to 7600 AA. One high-precision differential light curve was created by integrating the entire spectral flux. This white-light curve was used to derive absolute transit parameters. Furthermore, a set of light curves over wavelength was formed by a flux integration in 41 wavelength channels of 50 AA width. We analyzed these spectral light curves for chromatic variations of transit depth. The transit fit of the combined white-light curve yields a refined value of the planet-to-star radius ratio of 0.1390 pm 0.0012 and an inclination of 88.89 pm 0.32 degrees. After a re-analysis of published data, we refine the orbital period to 4.0087844 pm 0.0000015 days. We obtain a flat transmission spectrum without significant additional absorption at any wavelength or any slope. However, our accuracy is not sufficient to significantly rule out the presence of a pressure-broadened sodium feature. Our photometric monitoring campaign allowed for an estimate of the stellar rotation period of 35.5 pm 2.5 days and an improved age estimate of 5.5^+1.8_-1.3 Gyr by gyrochronology.
The results of speckle interferometric observations at the SOAR telescope in 2014 are given. A total of 1641 observations were taken, yielding 1636 measurements of 1218 resolved binary and multiple stars and 577 non-resolutions of 441 targets. We resolved for the first time 56 pairs, including some nearby astrometric or spectroscopic binaries and ten new subsystems in previously known visual binaries. The calibration of the data is checked by linear fits to the positions of 41 wide binaries observed at SOAR over several seasons. The typical calibration accuracy is 0.1deg in angle and 0.3% in pixel scale, while the measurement errors are on the order of 3mas. The new data are used here to compute 194 binary-star orbits, 148 of which are improvements on previous orbital solutions and 46 are first-time orbits.
We present a method of constraining the properties of the $\gamma$-ray emitting region in flat spectrum radio quasars (FSRQs) in the one-zone proton synchrotron model, where the $\gamma$-rays are produced by synchrotron radiation of relativistic protons. We show that for low enough values of the Doppler factor $\delta$, the emission from the electromagnetic (EM) cascade which is initiated by the internal absorption of high-energy photons from photohadronic interactions may exceed the observed $\sim$GeV flux. We use that effect to derive an absolute lower limit of $\delta$; first, an analytical one, in the asymptotic limit where the external radiation from the broad line region (BLR) is negligible, and then a numerical one in the more general case that includes BLR radiation. As its energy density in the emission region depends on $\delta$ and the region's distance from the galactic center, we use the EM cascade to determine a minimum distance for each value of $\delta$. We complement the EM cascade constraint with one derived from variability arguments and apply our method to the FSRQ 3C 273. We find that $\delta \gtrsim 18-20$ for $B \lesssim 30$ G and $\sim$day timescale variability; the emission region is located outside the BLR, namely at $r \gtrsim 10 R_{\rm BLR} \sim 3$ pc; the model requires at pc-scale distances stronger magnetic fields than those inferred from core shift observations; while the jet power exceeds by at least one order of magnitude the accretion power. In short, our results disfavour the proton synchrotron model for the FSRQ 3C 273.
We study the short-periodic component of stellar activity with a cycle periods Pcyc up to 1000 days using the Kepler mission photometry of fast-rotating (rotational periods from 1 to 4 days) stars with spectra of M4V to F3V. Applying the originally developed two non-spectral methods, we measured the effective period of stellar cycles in 462 objects. The obtained results are in accordance with previous measurements by Vida et al. (2014), do not seem to result from a beating effect. The performed measurements of Pcyc cluster in a specific branch which covers the previously unstudied region in the Saar-Brandenburg (1999) diagram, and connects the branch of inactive stars with the area populated by super-active objects. It is shown that the formation of the discovered branch is due to the alpha-quenching effect, which saturates the magnetic dynamo and decreases the cycle periods with the increase of inverted Rossby number. This finding is important in the context of the discussion on catastrophic quenching and other heuristic approximations of the non-linear alpha-effect.
We present the results of two Chandra X-ray Observatory ( CXO) observations of TeV gamma-ray source HESS J1741-302A/B. Our analysis also includes GeV gamma-ray and radio data. We investigate whether there is any connection between HESS~J1741-302A/B and the sources seen at lower energies. One of the brightest X-ray sources in the HESS J1741-302B field, CXOU~J174112.1-302908, appears to be associated with a low-mass star (possibly representing a quiescent LMXB or CV), hence, it is unlikely to be a source of TeV gamma-rays. In the same field we detected X-rays from WR 98a, which is likely to be a colliding wind binary with massive stars, however, no TeV emission has been reported so far from such systems although a predictions have been made. Finally, Suzaku source J1740.5-3014 (which is not covered by the CXO observations) appears to be a hard X-ray source detected by INTERGAL ISGRI which supports the magnetized CV classification and also makes its association with the TeV emission unlikely. The young pulsar, undetected in X-rays and located near the CV, may be the contributor of relativistic particles responsible for the TeV emission. Alternatively, HESS J1741-302 could be a new type of accelerator, which is dark at lower energies.
We report the discovery of a large, sudden, and persistent increase in the spin-down rate of B0540-69, a young pulsar in the Large Magellanic Cloud, using observations from the Swift and RXTE satellites. The relative increase in the spin-down rate of 36% is unprecedented for B0540-69. No accompanying change in the spin rate is seen, and no change is seen in the pulsed X-ray emission from B0540-69 following the change in the spin-down rate. Such large relative changes in the spin-down rate are seen in the recently discovered class of 'intermittent pulsars', and we compare the properties of B0540-69 to such pulsars. We consider possible changes in the magnetosphere of the pulsar that could cause such a large change in the spin-down rate.
This paper examines the behaviour of closed `lattice universes' wherein masses are distributed in a regular lattice on the Cauchy surfaces of closed vacuum universes. Such universes are approximated using a form of Regge calculus originally developed by Collins and Williams to model closed FLRW universes. We consider two types of lattice universes, one where all masses are identical to each other and another where one mass gets perturbed in magnitude. In the unperturbed universe, we consider the possible arrangements of the masses in the Regge Cauchy surfaces and demonstrate that the model will only be stable if each mass lies within some spherical region of convergence. We also briefly discuss the existence of Regge models that are dual to the ones we have considered. We then model a perturbed lattice universe and demonstrate that the model's evolution is well-behaved, with the expansion increasing in magnitude as the perturbation is increased.
We investigate simplified dark matter models where the dark matter candidate is a Dirac fermion charged only under a new gauge symmetry. In this context one can understand dynamically the stability of the dark matter candidate and the annihilation through the new gauge boson is not velocity suppressed. The relic density constraints and the predictions for direct detection experiments are investigated. We discuss in great detail the theoretical predictions for the annihilation into two photons, into the Standard Model Higgs and a photon, and into the Z gauge boson and a photon. Our analytical results can be used for any Dirac dark matter model charged under an Abelian gauge symmetry. The numerical results are shown in a simple extension of the Standard Model where the dark matter is charged under the local B-L symmetry. We discuss the correlation between the constraints on the model from collider searches and dark matter experiments.
In this paper we consider the $\alpha-$attractor model and study inflation under a generalization of slow-roll dynamics. We follow the recently proposed Gong \& Sasaki approach \cite{Gong:2015ypa} of assuming $N=N\left(\phi\right)$. We relax the requirement of inflaton potential flatness and consider a sufficiently steep one to support 60-efoldings. We find that this type of inflationary scenario predicts an attractor at $n_{s}\approx0.967$ and $r\approx5.5\times10^{-4}$ which are very close to the predictions of the first chaotic inflationary model in supergravity (Goncharov-Linde model) \cite{Goncharov:1983mw}. We show that even with non-slow-roll dynamics, the $\alpha-$attractor model is compatible with any value of $r<0.1$. In addition, we emphasize that in this particular inflationary scenario, the standard consistency relation $\left(r\simeq-8n_{t}\right)$ is significantly violated and we find an attractor for tensor tilt at $n_{t}\approx-0.034$ as $r\rightarrow0$. Any prominent detection of the tilt of gravitational waves from future observations can test this non-slow-roll inflationary scenario for $\alpha-$attractors. In addition, we also comment on the stabilization of the inflaton's trajectory in the supergravity embedding of this model.
It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio $\tau_{\text{gap}}/\tau_{\text{emission}}=O(1)$, where $\tau_{\text{gap}}$ is the average time gap between the emission of successive Hawking quanta and $\tau_{\text{emission}}$ is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process.
We carry out a systematic study of the dispersion relation for linear electrostatic waves in an arbitrarily degenerate quantum electron plasma. We solve for the complex frequency spectrum for arbitrary values of wavenumber $k$ and level of degeneracy $\mu$. Our finding is that for large $k$ and high $\mu$ the real part of the frequency $\omega_{r}$ grows linearly with $k$ and scales with $\mu$ only because of the scaling of the Fermi energy. In this regime the relative Landau damping rate $\gamma/\omega_{r}$ becomes independent of $k$ and varies inversly with $\mu$. Thus, damping is weak but finite at moderate levels of degeneracy for short wavelengths.
Modeling a promising carrier of the astronomically observed polycyclic aromatic hydrocarbon (PAH), infrared (IR) spectra of ionized molecules (C9H7) n+ were calculated based on density functional theory (DFT). In a previous study, it was found that void induced coronene C23H12++ could reproduce observed spectra from 3 to 15 micron, which has carbon two pentagons connected with five hexagons. In this paper, we tried to test the simplest model, that is, one pentagon connected with one hexagon, which is indene like molecule (C9H7) n+ (n=0 to 4). DFT based harmonic frequency analysis resulted that observed spectrum could be almost reproduced by a suitable sum of ionized C9H7n+ molecules. Typical example is C9H7++. Calculated peaks were 3.2, 7.4, 7.6, 8.4, and 12.7 micron, whereas observed one 3.3, 7.6, 7.8, 8.6 and 12.7 micron. By a combination of different degree of ionized molecules, we can expect to reproduce total spectrum. For a comparison, hexagon-hexagon molecule naphthalene (C10H8) n+ was studied. Unfortunately, ionized naphthalene shows little coincidence with observed one. Carbon pentagon- hexagon molecules may play an important role as interstellar molecular dust.
We construct the equation of state (EoS) for neutron stars explicitly including hyperons and quarks. Using the quark-meson coupling model with relativistic Hartree-Fock approximation, the EoS for hadronic matter is derived by taking into account the strange ($\sigma^{\ast}$ and $\phi$) mesons as well as the light non-strange ($\sigma$, $\omega$, $\vec{\pi}$ and $\vec{\rho}$) mesons. Relevant coupling constants are determined to reproduce the experimental data of nuclear matter and hypernuclei in SU(3) flavor symmetry. For quark matter, we employ the MIT bag model with one-gluon-exchange interaction, and Gibbs criteria for chemical equilibrium in the phase transition from hadrons to quarks. We find that the strange vector ($\phi$) meson and the Fock contribution make the hadronic EoS stiff, and that the maximum mass of a neutron star can be consistent with the observed mass of heavy neutron stars even if the coexistence of hadrons and quarks takes place in the core. However, in the present calculation the transition to pure quark matter does not occur in stable neutron stars. Furthermore, the lower bound of the critical chemical potential of the quark-hadron transition at zero temperature turns out to be around 1.5 GeV in order to be consistent with the recent observed neutron star data.
We study neutralino dark matter (DM) with large singlino fractions in the next-to-minimal supersymmetric Standard Model (NMSSM). We perform a detailed analysis of the parameter space regions of the model that yield such DM while satisfying the constraints from the Higgs boson searches at the Large Electron Proton (LEP) collider and the Large Hadron Collider (LHC) as well as from b-physics experiments. We find that this DM can yield a thermal relic density consistent with the Planck measurement in mass regions where the lightest neutralino of the minimal supersymmetric Standard Model (MSSM) generally cannot. This is particularly true for lighter DM masses, either less than 10 GeV or between 60 -100 GeV, and for heavier DM masses, between 500 - 1000 GeV. We then analyse the prospects for indirect detection of such DM at the IceCube neutrino telescope, assuming the complete 86-string configuration including DeepCore. We also consider the added sensitivity to low-mass DM with the proposed PINGU extension. We find that IceCube is sensitive to some regions of the NMSSM parameter space containing singlino-dominated DM and that a subset of such model points are already ruled out by the IceCube one-year data. IceCube will also be sensitive to some parameter space regions that will not be probed by the upcoming ton-scale direct detection experiments.
We obtain bounds on the stability of various self-gravitating astrophysical objects using a new measure of shape complexity known as configurational entropy. We apply the method to Newtonian polytropes, neutron stars with an Oppenheimer-Volkoff equation of state, and to self-gravitating configurations of complex scalar field (boson stars) with different self-couplings, showing that the critical stability region of these stellar configurations obtained from traditional perturbation methods correlates well with critical points of the configurational entropy with accuracy of a few percent or better.
A generic feature of inflationary models in supergravity/string constructions is vacuum misalignment for the moduli fields. The associated production of moduli particles leads to an epoch in the post-inflationary history in which the energy density is dominated by cold moduli particles. This modification of the post-inflationary history implies that the preferred range for the number of e-foldings between horizon exit of the modes relevant for CMB observations and the end of inflation $(N_k)$ depends on moduli masses. This in turn implies that the precision CMB observables $n_s$ and $r$ are sensitive to moduli masses. We analyse this sensitivity for some representative models of inflation and find the effect to be highly relevant for confronting inflationary models with observations.
Recently there have been claims on model-independent evidence of dynamical dark energy. Herein we consider a fairly general class of cosmological models with a time-evolving cosmological term of the form $\Lambda(H)=C_0+C_H H^2+C_{\dot{H}} \dot{H}$, where $H$ is the Hubble rate. These models are well motivated from the theoretical point of view since they can be related to the general form of the effective action of quantum field theory in curved spacetime. Consistency with matter conservation can be achieved by letting the Newtonian coupling $G$ change very slowly with the expansion. We solve these dynamical vacuum models and fit them to the wealth of expansion history and linear structure formation data. The results of our analysis show a significantly better agreement as compared to the concordance $\Lambda$CDM model, thus supporting the possibility of a dynamical cosmic vacuum.
Links to: arXiv, form interface, find, astro-ph, recent, 1506, contact, help (Access key information)