Cosmological constraints are usually derived under the assumption of a $6$ parameters $\Lambda$-CDM theoretical framework or simple one-parameter extensions. In this paper we present, for the first time, cosmological constraints in a significantly extended scenario, varying up to $12$ cosmological parameters simultaneously, including the sum of neutrino masses, the neutrino effective number, the dark energy equation of state, the gravitational waves background and the running of the spectral index of primordial perturbations. Using the latest Planck 2015 data release (with polarization) we found no significant indication for extensions to the standard $\Lambda$-CDM scenario, with the notable exception of the angular power spectrum lensing amplitude, $A_{\rm lens}$ that is larger than the expected value at more than two standard deviations even when combining the Planck data with BAO and supernovae type Ia external datasets. In our extended cosmological framework, we find that a combined Planck+BAO analysis constrains the value of the r.m.s. density fluctuation parameter to $\sigma_8=0.781_{-0.063}^{+0.065}$ at $95 \%$ c.l., helping to relieve the possible tensions with the CFHTlenS cosmic shear survey. We also find a lower value for the reionization optical depth $\tau=0.058_{-0.043}^{+0.040}$ at $95$ \% c.l. respect to the one derived under the assumption of $\Lambda$-CDM. The scalar spectral index $n_S$ is now compatible with a Harrison-Zeldovich spectrum to within $2.5$ standard deviations. Combining the Planck dataset with the HST prior on the Hubble constant provides a value for the equation of state $w < -1$ at more than two standard deviations while the neutrino effective number is fully compatible with the expectations of the standard three neutrino framework.
[Abridged] We investigate the physical properties of a Lyman continuum emitter candidate at $z=3.212$ with photometric coverage from $U$ to MIPS 24$\mu$m band and VIMOS/VLT and MOSFIRE/Keck spectroscopy. Investigation of the UV spectrum confirms a direct spectroscopic detection of the Lyman continuum emission with $S/N>5$. Non-zero Ly$\alpha$ flux at the systemic redshift and high Lyman-$\alpha$ escape fraction suggest a low HI column density. The weak C and Si low-ionization absorption lines are also consistent with a low covering fraction along the line of sight. The [OIII]$\lambda\lambda4959,5007+\mathrm{H}\beta$ equivalent width is one of the largest reported for a galaxy at $z>3$ ($\mathrm{EW}([\mathrm{OIII}]\lambda\lambda4959,5007+\mathrm{H}\beta) \simeq 1600\AA$, rest-frame) and the NIR spectrum shows that this is mainly due to an extremely strong [OIII] emission. The large observed [OIII]/[OII] ratio ($>10$) and high ionization parameter are consistent with prediction from photoionization models in case of a density-bounded nebula scenario. Furthermore, the $\mathrm{EW}([\mathrm{OIII}]\lambda\lambda4959,5007+\mathrm{H}\beta)$ is comparable to recent measurements reported at $z\sim7-9$, in the reionization epoch. We also investigate the possibility of an AGN contribution to explain the ionizing emission but most of the AGN identification diagnostics suggest that stellar emission dominates instead. This source is currently the first high-$z$ example of a Lyman continuum emitter exhibiting indirect and direct evidences of a Lyman continuum leakage and having physical properties consistent with theoretical expectation from Lyman continuum emission from a density-bounded nebula.
The fundamental rovibrational band of CO near 4.7 $\mu$m is a sensitive tracer of the presence and location of molecular gas in the planet-forming region of protoplanetary disks at 0.01--10 AU. We present a new analysis of a high-resolution spectral survey (R$\,\sim\,$96,000, or $\sim3.2\,\rm km\,s^{-1}$) of CO rovibrational lines from protoplanetary disks spanning a wide range of stellar masses and of evolutionary properties. We find that the CO emission originates in two distinct velocity components. Line widths of both components correlate strongly with disk inclination, as expected for gas in Keplerian rotation. By measuring the line flux ratios between vibrational transitions $F_{v=2-1}/F_{v=1-0}$, we find that the two velocity components are clearly distinct in excitation. The broad component ($\rm FWHM=50-200\,km\,s^{-1}$) probes the disk region near the magnetospheric accretion radius at $\approx0.05$ AU, where the gas is hot ($800-1500$ K). The narrow component ($\rm FWHM=10-50 km\,s^{-1}$) probes the disk at larger radii of 0.1--10\,AU, where the gas is typically colder (200--700 K). CO excitation temperatures and orbital radii define an empirical temperature-radius relation as a power law with index $-0.3\pm0.1$ between 0.05--3 AU. The broad CO component, co-spatial with the observed orbital distribution of hot Jupiters, is rarely detected in transitional and Herbig Ae disks, providing evidence for an early dissipation of the innermost disk. An inversion in the temperature profile beyond 3 AU is interpreted as a tracer of a regime dominated by UV pumping in largely devoid inner disks, and may be a signature of the last stage before the disk enters the gas-poor debris phase.
We present measurements of positions and relative proper motions in the 30 Doradus region of the Large Magellanic Cloud (LMC). We detail the construction of a single-epoch astrometric reference frame, based on specially-designed observations obtained with the two main imaging instruments ACS/WFC and WFC3/UVIS onboard the Hubble Space Telescope (HST). Internal comparisons indicate a sub milli-arc-second (mas) precision in the positions and the presence of semi-periodic systematics with a mean amplitude of ~0.8 mas. We combined these observations with numerous archival images taken with WFPC2 and spanning 17 years. The precision of the resulting proper motions for well-measured stars around the massive cluster R 136 can be as good as ~20 microarcsec/yr, although the true accuracy of proper motions is generally lower due to the residual systematic errors. The observed proper-motion dispersion for our highest-quality measurements is ~0.1 mas/yr. Our catalog of positions and proper motions contains 86,590 stars down to V~25 and over a total area of ~70 square arcmin. We examined the proper motions of 105 relatively bright stars and identified a total of 6 candidate runaway stars. We are able to tentatively confirm the runaway status of star VFTS 285, consistent with the findings from line-of-sight velocities, and to show that this star has likely been ejected from R 136. This study demonstrates that with HST it is now possible to reliably measure proper motions of individual stars in the nearest dwarf galaxies such as the LMC.
We present a panoramic study of the Fornax dwarf spheroidal galaxy, using data obtained as part of the VLT Survey Telescope (VST) ATLAS Survey. The data presented here -- a subset of the full survey -- uniformly cover a region of 25 square degrees centred on the galaxy, in $g$, $r$ and $i$-bands. This large area coverage reveals two key differences to previous studies of Fornax. First, data extending beyond the nominal tidal radius of the dwarf highlight the presence of a second distinct red giant branch population. This bluer red giant branch appears to be coeval with the horizontal branch population. Second, a shell structure located approximately 1.4 degrees from the centre of Fornax is shown to be a mis-identified background overdensity of galaxies. This last result casts further doubt on the hypothesis that Fornax underwent a gas-rich merger in its relatively recent past.
We perform a detailed study of the weak interactions of standard model neutrinos with the primordial plasma and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in cosmological structure formation on small scales, and reported X-ray signals that could be due to sterile neutrino decay, we consider $7$ keV-scale sterile neutrinos. Oscillation-driven production of such sterile neutrinos occurs at temperatures $T \gtrsim 100$ MeV, where we study two significant effects of weakly charged species in the primordial plasma: (1) the redistribution of an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition, and match with lattice QCD calculations through the transition. We estimate opacities due to tree level processes involving leptons and quarks above the quark-hadron transition, and the most important mesons below the transition. We report final sterile neutrino dark matter phase space densities that are significantly influenced by these effects, and yet relatively robust to remaining uncertainties in the nature of the quark-hadron transition. We also provide transfer functions for cosmological density fluctuations with cutoffs at $k \simeq 10 \ h \ {\rm Mpc}^{-1}$, that are relevant to galactic structure formation.
We study the stellar halo color properties of six nearby massive highly inclined disk galaxies using Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3 observations in both F606W and F814W filters from the GHOSTS survey. The observed fields, placed both along the minor and major axis of each galaxy, probe the stellar outskirts out to projected distances of ~ 70 kpc from their galactic centre along the minor axis. The 50% completeness levels of the color magnitude diagrams are typically at two mag below the tip of the red giant branch. We find that all galaxies have extended stellar halos out to ~ 70 kpc. We determined the halo color distribution and color profile for each galaxy using the median colors of stars in the top ~ 0.7 mag of the RGB phase, where the data are at least 70% complete. Within each galaxy we find variations in the median colors as a function of radius which likely indicates population variations, reflecting that their outskirts were built from several small accreted objects. We find that half of the galaxies (NGC 0891, NGC 4565, and NGC 7814) present a clear negative color gradient, reflecting a declining metallicity in their halos; the other have no significant color or population gradient. In addition, notwithstanding the modest sample size of galaxies, there is no strong correlation between their halo color/metallicity or gradient with galaxy's properties such as rotational velocity or stellar mass. The diversity in halo color profiles observed in the GHOSTS Milky Way-mass galaxies qualitatively supports the predicted galaxy-to-galaxy scatter in halo stellar properties; a consequence of the stochasticity inherent in the merger and accretion history of galaxies.
After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from the optical V-band, up to the soft gamma-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20-40 keV) within 3 days. The flare recurrence can be as short as 20~min from peak to peak. A model-independent analysis shows that the >6 Crab flares have a hard spectrum. A preliminary 10-400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be due to variations of a cut-off power law component only. At X-ray and gamma-ray energies the flares are very well correlated. The optical activity is also correlated with the high energy one, although there is no one-to-one correlation. Instead the optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio.
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.
The red giant L2 Pup started a dimming event in 1994, which is considered to be caused by the ejection of dust clouds. We present near-IR aperture-synthesis imaging of L2 Pup achieved by combining data from VLT/NACO speckle observations and long-baseline interferometric observations with the AMBER instrument of the Very Large Telescope Interferometer (VLTI). We also extracted an 8.7 micron image from the mid-IR VLTI instrument MIDI. Our aim is to spatially resolve the innermost region of the circumstellar environment. The diffraction-limited image at 2.27 micron obtained by bispectrum speckle interferometry with NACO with a spatial resolution of 57 mas shows an elongated component. The aperture-synthesis imaging combining the NACO speckle data and AMBER data (2.2--2.29 micron) with a spatial resolution of 5.6x7.3 mas further resolves not only this elongated component, but also the central star. The reconstructed image reveals that the elongated component is a nearly edge-on disk with a size of ~180x50 mas lying in the E-W direction, and furthermore, that the southern hemisphere of the central star is severely obscured by the equatorial dust lane of the disk. The angular size of the disk is consistent with the distance that the dust clouds that were ejected at the onset of the dimming event should have traveled by the time of our observations, if we assume that the dust clouds moved radially. This implies that the formation of the disk may be responsible for the dimming event. The 8.7 micron image with a spatial resolution of 220 mas extracted from the MIDI data taken in 2004 (seven years before the AMBER and NACO observations) shows an approximately spherical envelope without a signature of the disk. This suggests that the mass loss before the dimming event may have been spherical.
Turbulence is thought to be a primary driving force behind the early stages of star formation. In this framework large, self gravitating, turbulent clouds fragment into smaller clouds which in turn fragment into even smaller ones. At the end of this cascade we find the clouds which collapse into protostars. Following this process is extremely challenging numerically due to the large dynamical range so in this paper we propose a semi analytic framework which is able to follow this process from the largest, giant molecular cloud (GMC) scale, to the final protostellar size scale. Due to the simplicity of the framework it is ideal for theoretical experimentation to find the principal processes behind different aspects of the star formation process. The basic version of the model discussed in this paper only contains turbulence, gravity and very crude assumptions about feedback, nevertheless it can reproduce the observed core mass function (CMF) and provide the protostellar system mass function (PSMF), which shows a striking resemblance to the observed IMF which implies that other physics do not change the IMF qualitatively. Furthermore we find that to produce a universal IMF protostellar feedback must be taken into account otherwise the PSMF peak shows a strong dependence on the background temperature.
We explore the ratio (C/M) of carbon-rich to oxygen-rich thermally pulsing asymptotic giant branch(TP-AGB) stars in the disk of M31 using a combination of moderate-resolution optical spectroscopy from the Spectroscopic Landscape of Andromeda's Stellar Halo (SPLASH) survey and six-filter Hubble Space Telescope photometry from the Panchromatic Hubble Andromeda Treasury (PHAT) survey.Carbon stars were identified spectroscopically. Oxygen-rich M-stars were identifed using three different photometric definitions designed to mimic, and thus evaluate, selection techniques common in the literature. We calculate the C/M ratio as a function of galactocentric radius, present-day gas-phase oxygen abundance, stellar metallicity, age (via proxy defined as the ratio of TP-AGB stars to red giant branch, RGB, stars), and mean star formation rate over the last 400 Myr. We find statistically significant correlations between log(C/M) and all parameters. These trends are consistent across different M-star selection methods, though the fiducial values change. Of particular note is our observed relationship between log(C/M) and stellar metallicity, which is fully consistent with the trend seen across Local Group satellite galaxies. The fact that this trend persists in stellar populations with very different star formation histories indicates that the C/M ratio is governed by stellar properties alone.
The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar mass, double detonation model for Type Ia supernovae, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code Maestro. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes including quasi-equilibrium, localized runaway, and nova-like runaway. Our results suggest the double detonation progenitor model is promising, that 3D, dynamic convection plays a key role, and that these systems warrant further study.
The nearest, youngest groups of stars to the Sun provide important samples of age-dated stars for studying circumstellar disk evolution, imaged exoplanets, and brown dwarfs. I briefly comment on the status of the known stellar groups within 100 pc: $\beta$ Pic, AB Dor, UMa, Car-Near, Tuc-Hor and $\beta$ Tuc nucleus, Hyades, Col, TW Hya, Car, Coma Ber, 32 Ori, $\eta$ Cha, and $\chi^1$ For. I also discuss some poorly characterized groups and "non-groups." Grades for 2015 of Pass, Satisfactory, or Fail are assigned to the groups for the purposes of age-dating stars and brown dwarfs. I speculate that Tuc-Hor could have provided a supernova ~60 pc away ~2.2 Myr ago which showered the Earth with traces of 60Fe-bearing dust.
We present calculations on the formation of massive black holes with 10^5 Msun at z > 6 that can be the seeds of supermassive black holes at z > 6. Under the assumption of compact star cluster formation in merging galaxies, star clusters in haloes of 10^8 ~ 10^9 Msun undergo rapid core-collapse leading to the formation of very massive stars (VMSs) with ~1000 Msun which directly collapse into black holes with similar masses. Star clusters in halos of > 10^9 Msun experience type-II supernovae before the formation of VMSs due to long core-collapse time scales. We also model the subsequent growth of black holes via accretion of residual stars in clusters. 2-body relaxation efficiently re-fills the loss cones of stellar orbits at larger radii and resonant relaxation at small radii is the main driver for accretion of stars onto black holes. As a result, more than ninety percent of stars in the initial cluster are swallowed by the central black holes before z=6. Using dark matter merger trees we derive black hole mass functions at z=6-20. The mass function ranges from 10^3 to 10^5 Msun at z <~ 15. Major merging of galaxies of >~ 4*10^8 Msun at z ~ 20 successfully leads to the formation of >~ 10^5 Msun BHs by z >~ 10 which can be the potential seeds of supermassive black holes seen today.
We explain the axisymmetric gaps seen in recent long-baseline observations of the HL Tau protoplanetary disc with the Atacama Large Millimetre/Submillimetre Array (ALMA) as being due to the different response of gas and dust to embedded planets in protoplanetary discs. We perform global, three dimensional dusty smoothed particle hydrodynamics calculations of multiple planets embedded in dust/gas discs which successfully reproduce most of the structures seen in the ALMA image. We find a best match to the observations using three embedded planets with masses of 0.2, 0.27 and 0.55 $M_{\rm J}$ in the three main gaps observed by ALMA, though there remain uncertainties in the exact planet masses from the disc model.
We report on the discovery and validation of Kepler-452b, a transiting planet identified by a search through the 4 years of data collected by NASA's Kepler Mission. This possibly rocky 1.63$^{+0.23}_{-0.20}$ R$_\oplus$ planet orbits its G2 host star every 384.843$^{+0.007}_{0.012}$ days, the longest orbital period for a small (R$_p$ < 2 R$_\oplus$) transiting exoplanet to date. The likelihood that this planet has a rocky composition lies between 49% and 62%. The star has an effective temperature of 5757$\pm$85 K and a log g of 4.32$\pm$0.09. At a mean orbital separation of 1.046$^{+0.019}_{-0.015}$ AU, this small planet is well within the optimistic habitable zone of its star (recent Venus/early Mars), experiencing only 10% more flux than Earth receives from the Sun today, and slightly outside the conservative habitable zone (runaway greenhouse/maximum greenhouse). The star is slightly larger and older than the Sun, with a present radius of 1.11$^{+0.15}_{-0.09}$ R$_\odot$ and an estimated age of 3 Gyr. Thus, Kepler-452b has likely always been in the habitable zone and should remain there for another 3 Gyr.
Line contribution functions are useful diagnostics for studying spectral line formation in stellar atmospheres. I derive an expression for the contribution function to the abso- lute flux depression that emerges from three-dimensional box-in-a-star model stellar atmospheres. I illustrate the result by comparing the local thermodynamic equilibrium (LTE) spectral line formation of the high-excitation permitted OI777nm lines with the non-LTE case.
The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25{\deg} < l < 100{\deg} and Galactic latitudes . The energy range covered by this analysis, from ~350 GeV to ~2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40{\deg} < l < 100{\deg} and 65{\deg} < l < 85{\deg} (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.
We have updated our analysis of the 9-year WMAP data using the collection of polarization maps looking for the presence of additional evidence for a finite 'cosmic ray foreground' for the CMB. We have given special attention to high Galactic latitudes, where the recent BICEP2 findings were reported. The method of examining the correlation with the observed gamma ray flux proposed in our earlier papers and applied to the polarization data shows that the foreground related to cosmic rays is still observed even at high Galactic altitudes and conclusions about gravitational waves are not yet secure. Theory has it that there is important information about inflationary gravitational waves in the fine structure of the CMB polarization properties (polarization vector and angle) and it is necessary to examine further the conclusions that can be gained from studies of the CMB maps, in view of the disturbing foreground effects.
We assemble 121 spectroscopically-confirmed halo carbon stars, drawn from the literature, exhibiting measurable variability in the Catalina Surveys. We present their periods and amplitudes, which are used to estimate distances from period-luminosity relationships. The location of the carbon stars - and their velocities when available - allow us to trace the streams of the Sagittarius (Sgr) dwarf spheroidal galaxy. These are compared to a canonical numerical simulation of the accretion of Sgr. We find that the data match this model well for heliocentric distances of 15-50 kpc, except for a virtual lack of carbon stars in the trailing arm just north of the Galactic Plane, and there is only tentative evidence of the leading arm south of the Plane. The majority of the sample can be attributed to the Sgr accretion. We also find groups of carbon stars which are not part of Sgr; most of which are associated with known halo substructures. A few have no obvious attribution and may indicate new substructure. We find evidence that there may be a structure behind the Sgr leading stream apocentre, at ~100 kpc, and a more distant extension to the Pisces Overdensity also at ~100 kpc. We study a further 75 carbon stars for which no good period data could be obtained, and for which NIR magnitudes and colours are used to estimate distances. These data add support for the features found at distances beyond 100 kpc.
X-ray observations are a direct diagnostic of fast electrons produced in solar flares, energized during the energy release process and directed towards the Sun. Since the properties of accelerated electrons can be substantially changed during their transport and interaction with the background plasma, a model must ultimately be applied to X-ray observations in order to understand the mechanism responsible for their acceleration. A cold thick target model is ubiquitously used for this task, since it provides a simple analytic relationship between the accelerated electron spectrum and the emitting electron spectrum in the X-ray source, with the latter quantity readily obtained from X-ray observations. However, such a model is inappropriate for the majority of solar flares in which the electrons propagate in a hot megaKelvin plasma, because it does not take into account the physics of thermalization of fast electrons. The use of a more realistic model, properly accounting for the properties of the background plasma, and the collisional diffusion and thermalization of electrons, can alleviate or even remove many of the traditional problems associated with the cold thick target model and the deduction of the accelerated electron spectrum from X-ray spectroscopy, such as the number problem and the need to impose an ad hoc low energy cut-off.
We estimate the accretion rates of 235 Classical T Tauri star (CTTS) candidates in the Lagoon Nebula using $ugri$H$\alpha$ photometry from the VPHAS+ survey. Our sample consists of stars displaying H$\alpha$-excess, the intensity of which is used to derive accretion rates. For a subset of 87 stars, the intensity of the $u$-band excess is also used to estimate accretion rates. We find the mean variation in accretion rates measured using H$\alpha$ and $u$-band intensities to be $\sim$ 0.17 dex, agreeing with previous estimates (0.04-0.4 dex) but for a much larger sample. The spatial distribution of CTTS align with the location of protostars and molecular gas suggesting that they retain an imprint of the natal gas fragmentation process. Strong accretors are concentrated spatially, while weak accretors are more distributed. Our results do not support the sequential star forming processes suggested in the literature.
The Interface Region Imaging Spectrograph (IRIS) of the recently commissioned NASA Small Explorer mission provides significantly more complete and higher resolution spectral coverage of the dynamical conditions inside the chromosphere and Transition Region (TR) than has heretofore been available. Near the solar limb high temporal, spatial (0''3) and spectral resolution observations from ultraviolet IRIS spectra reveal high-energy limb event brightenings (LEBs) at low chromospheric height, near 1 Mm height above the limb. They can be characterized as explosive events producing jets. We selected 2 events showing spectra of a confined eruption just off or near the quiet Sun limb, the jet part showing obvious moving material with short duration large Doppler shifts in three directions identified as macro- spicules on slit-jaw (SJ) images in SiIV and HeII 304. The events are analyzed from a sequence of very close rasters taken near the central meridian and the South Pole limb. The processed SJ images and the simultaneously observed fast spectral sequences with large Doppler shifts, with a pair of red shifted elements together with a faster blue shifted element from almost the same position, are analyzed. Shifts correspond to velocities up to 100 km/s in projection on the plane of the limb. The occurrence of erupting spicules and macrospicules from these regions is noticed from images taken before and after the spectra. The cool low-FIP element simultaneous line emissions of the MgII h & k resonance lines do not clearly show a similar signature due to optical thickness effects but SiIV broad band SJ images do. The bidirectional plasma jets ejected from a small reconnection site are interpreted as the result of coronal loop-loop interactions leading to reconnection in nearby sites.
This paper provides a detailed analysis of the main component of the slow neutron capture process (the s-process), which accounts for the solar abundances of half of the nuclei with 90 <~ A <~ 208. We examine the impact of the uncertainties of the two neutron sources operating in low-mass asymptotic giant branch (AGB) stars: the 13C(alpha, n)16O reaction, which releases neutrons radiatively during interpulse periods (kT ~ 8 keV), and the 22Ne(alpha, n)25Mg reaction, partially activated during the convective thermal pulses (TPs). We focus our attention on the branching points that mainly influence the abundance of s-only isotopes. In our AGB models, the 13C is fully consumed radiatively during interpulse. In this case, we find that the present uncertainty associated to the 13C(alpha, n)16O reaction has marginal effects on s-only nuclei. On the other hand, a reduction of this rate may increase the amount of residual (or unburned) 13C at the end of the interpulse: in this condition, the residual 13C is burned at higher temperature in the convective zone powered by the following TP. The neutron burst produced by the 22Ne(alpha, n)25Mg reaction has major effects on the branches along the s path. The contributions of s-only isotopes with 90 <~ A <= 204 are reproduced within solar and nuclear uncertainties, even if the 22Ne(alpha, n)25Mg rate is varied by a factor of two. Improved beta-decay and neutron capture rates of a few key radioactive nuclides would help to attain a comprehensive understanding of the solar main component.
Recent photometric space missions, such as CoRoT and Kepler revealed that many RR Lyrae stars pulsate -- beyond their main radial pulsation mode -- in low amplitude modes. Space data seem to indicate a clear trend, namely overtone (RRc) stars and modulated fundamental (RRab) RR Lyrae stars ubiquitously show additional modes, while non-Blazhko RRab stars never do. Two Kepler stars (V350 Lyr and KIC 7021124), however, apparently seemed to break this rule: they were classified as non-Blazhko RRab stars showing additional modes. We processed Kepler pixel photometric data of these stars. We detected small amplitude, but significant Blazhko effect for both stars by using the resulted light curves and O$-$C diagrams. This finding strengthens the apparent connection between the Blazhko effect and the excitation of additional modes. In addition, it yields a potential tool for detecting Blazhko stars through the additional frequency patterns even if we have only short but accurate time series observations. V350 Lyr shows the smallest amplitude multiperiodic Blazhko effect ever detected.
By considering $f(R)$ gravity models, the cosmic evolution is modified with respect to the standard $\Lambda$CDM scenario. In particular, the thermal history of particles results modified. In this paper, we derive the evolution of relics particles (WIMPs) assuming a reliable $f(R)$ cosmological solution and taking into account observational constraints. The connection to the PAMELA experiment is also discussed. Results are consistent with constraints coming from BICEP2 and PLANCK experiments.
Radio telescopes are used to accurately measure the time of arrival (ToA) of radio pulses in pulsar timing experiments that target mostly millisecond pulsars (MSPs) due to their high rotational stability. This allows for detailed study of MSPs and forms the basis of experiments to detect gravitational waves. Apart from intrinsic and propagation effects, such as pulse-to-pulse jitter and dispersion variations in the interstellar medium, timing precision is limited in part by the following: polarization purity of the telescope's orthogonally polarized receptors, the signal-to-noise ratio (S/N) of the pulsar profile, and the polarization fidelity of the system. Using simulations, we present how fundamental limitations in recovering the true polarization reduce the precision of ToA measurements. Any real system will respond differently to each source observed depending on the unique pulsar polarization profile. Using the profiles of known MSPs we quantify the limits of observing system specifications that yield satisfactory ToA measurements, and we place a practical design limit beyond which improvement of the system results in diminishing returns. Our aim is to justify limits for the front-end polarization characteristics of next generation radio telescopes, leading to the Square Kilometre Array (SKA).
Type III radio bursts are intense radio emissions triggered by beams of energetic electrons often associated with solar flares. These exciter beams propagate outwards from the Sun along an open magnetic field line in the corona and in the interplanetary (IP) medium. We performed a statistical survey of 29 simple and isolated IP type III bursts observed by STEREO/Waves instruments between January 2013 and September 2014. We investigated their time-frequency profiles in order to derive the speed and acceleration of exciter electron beams. We show these beams noticeably decelerate in the IP medium. Obtained speeds range from $\sim$ 0.02c up to $\sim$ 0.35c depending on initial assumptions. It corresponds to electron energies between tens of eV and hundreds of keV, and in order to explain the characteristic energies or speeds of type III electrons ($\sim 0.1$c) observed simultaneously with Langmuir waves at 1 au, the emission of type III bursts near the peak should be predominately at double plasma frequency. Derived properties of electron beams can be used as input parameters for computer simulations of interactions between the beam and the plasma in the IP medium.
The dark photon, an new hypothetical light spin 1 field, constitutes a well-motivated dark matter candidate. It manifests as an oscillating electric field with a fixed direction, which can be observed in magnetometric records. In this letter, we use magnetometer data from the Voyager probes to look for the dark photon in the 10^-24 eV to 10^-19 eV mass range, corresponding to frequencies between 10^-9 Hz and 10^-4 Hz. We also discuss the sensitivity of possible future SQUID magnetometry experiments.
The secular evolution of an infinitely thin tepid isolated galactic disc made
of a finite number of particles is investigated using the inhomogeneous
Balescu-Lenard equation expressed in terms of angle-action variables. The
matrix method is implemented numerically in order to model the induced
gravitational polarization. Special care is taken to account for the
amplification of potential fluctuations of mutually resonant orbits and the
unwinding of the induced swing amplified transients. Quantitative comparisons
with ${N-}$body simulations yield consistent scalings with the number of
particles and with the self-gravity of the disc: the fewer particles and the
colder the disc, the faster the secular evolution. Secular evolution is driven
by resonances, but does not depend on the initial phases of the disc. For a
Mestel disc with ${Q \sim 1.5}$, the polarization cloud around each star boosts
up its secular effect by a factor of the order of a thousand or more, promoting
accordingly the dynamical relevance of self-induced collisional secular
evolution. The position and shape of the induced resonant ridge are found to be
in very good agreement with the prediction of the Balescu-Lenard equation,
which scales with the square of the susceptibility of the disc.
In astrophysics, the inhomogeneous Balescu-Lenard equation may describe the
secular diffusion of giant molecular clouds in galactic discs, the secular
migration and segregation of planetesimals in proto-planetary discs, or even
the long-term evolution of population of stars within the Galactic centre. It
could be used as a valuable check of the accuracy of ${N-}$body integrators
over secular timescales.
The issues related to moving elements in space and instruments working in broader wavelength ranges lead to a need for robust polarimeters, efficient on a wide spectral domain, and adapted to space conditions. As part of the UVMag consortium, created to develop spectropolarimetric UV facilities in space, such as the Arago mission project, we present an innovative concept of static spectropolarimetry. We studied a static and polychromatic method for spectropolarimetry, applicable to stellar physics. Instead of modulating the polarization information temporally, as usually done in spectropolarimeters, the modulation is performed in a spatial direction, orthogonal to the spectral one. Thanks to the proportionality between phase retardance imposed by a birefringent material and its thickness, birefringent wedges can be used to create this spatial modulation. The light is then spectrally cross-dispersed, and a full-Stokes determination of the polarization over the whole spectrum can be obtained with a single-shot measurement. The use of Magnesium Fluoride wedges, for example, could lead to a compact, static polarimeter working at wavelengths from 0.115 mm up to 7 mm. We present the theory and simulations of this concept, as well as laboratory validation and a practical application to Arago.
Aims: We aimed to monitor the optical linear polarimetric signal of the
magnetized, rapidly rotating M8.5 dwarf TVLM 513$-$46546.
Methods: $R$- and $I$-band linear polarimetry images were collected with the
ALFOSC instrument of the 2.56-m Nordic Optical Telescope on two consecutive
nights covering about 0.5 and 4 rotation cycles in the $R$ and $I$ filters,
respectively. We also obtained simultaneous intensity curves by means of
differential photometry. The typical precision of the data is $\pm$0.46\%
($R$), $\pm$0.35\% ($I$) in the linear polarization degree and $\pm$9 mmag
($R$), $\pm$1.6 mmag ($I$) in the differential intensity curves.
Results: Strong and variable linear polarization is detected in the $R$ and
$I$ filters, with values of maximum polarization ($p^{*}$ = 1.30$\pm$0.35 \%)
similar for both bands. The intensity and the polarimetric curves present a
sinusoid-like pattern with a periodicity of $\sim$1.98 h, which we ascribe to
structures in TVLM 513$-$46's surface synchronized with rotation. We found that
the peaks of the intensity and polarimetric curves occur with a phase
difference of 0.18$\pm$0.01, and that the maximum of the linear polarization
happens nearly half a period (0.59$\pm$0.03) after the radio pulse. We
discussed different scenarios to account for the observed properties of the
light curves.
We derive the evolution equation for the second order curvature perturbation using standard techniques of cosmological perturbation theory. The result is valid at all scales and includes all contributions from scalar, vector and tensor perturbations, as well as anisotropic stress, writing all our results purely in terms of gauge invariant quantities. Taking the large-scale approximation, we find that a conserved quantity exists only if, in addition to the non-adiabatic pressure, the transverse traceless part of the anisotropic stress tensor is also negligible.
We describe the evolution of the carbon dust shells around Very Late Thermal Pulse (VLTP) objects as seen at infrared wavelengths. This includes a 20-year overview of the evolution of the dust around Sakurai's object (to which Olivier made a seminal contribution) and FG Sge. VLTPs may occur during the endpoint of as many as 25% of solar mass stars, and may therefore provide a glimpse of the possible fate of the Sun.
Evidence has been accumulated on the existence of a thermal-like component during the prompt phase of GRBs. This component, often associated with the GRB jet's photosphere, is usually subdominant compared to a much stronger non-thermal one. The prompt emission of Fermi GRB 131014A provides a unique opportunity to study this thermal-like component. Indeed, the thermal emission in GRB 131014A is much more intense than in other GRBs and a pure thermal episode is observed during the initial 0.16 s. The thermal-like component cools monotonically during the first second while the non-thermal emission kicks off. The intensity of the non-thermal component progressively increases until being energetically dominant at late time. This is a perfect scenario to disentangle the thermal component from the non-thermal one. A low-energy spectral index of +0.6 better fit the thermal component than the typical index value +1 corresponding to a pure Planck function. The non-thermal component is adequately fitted with a Band function whose low and high energy power law indices are ~-0.7 and <~-3, respectively; this is also statistically equivalent to a cutoff power law with a ~-0.7 index. This is in agreement with our previous results. Finally, a strong correlation is observed between the time-resolved luminosity of the non-thermal component, L$_i^{nTh}$, and its corresponding rest frame spectral peak energy, E$_{peak,i}^{rest,nTh}$, with a slope similar to the one reported in our previous articles. Assuming this relation to be universal for all GRBs we estimate a redshift of ~1.55 for GRB 131014A that is a typical value for long GRBs. These observational results are consistent with the models in which the non-thermal emission is produced well above the GRB jet photosphere but they may also be compatible with other scenarios (e.g., dissipative photosphere) that are not discussed in this article.
In this paper, we present a new hydrostatic equilibrium equation related to dilaton gravity. We consider a spherical symmetric metric to obtain the hydrostatic equilibrium equation of stars in $4$-dimensions, and generalize TOV equation to the case of regarding a dilaton field. Then, we calculate the structure properties of neutron star using our obtained hydrostatic equilibrium equation employing the modern equations of state of neutron star matter derived from microscopic calculations. We show that the maximum mass of neutron star depends on the parameters of dilaton field and cosmological constant. In other words, by setting the parameters of new hydrostatic equilibrium equation, we calculate the maximum mass of neutron star.
By invoking inverse temperature as a van Kampen-Isreal future-directed timelike 4-vector, this paper derives the Relativistic Blackbody Spectrum, the Relativistic Wien's Displacement Law, and the Relativistic Stefan-Boltzmann Law in inertial and non-inertial reference frames.
In this paper, we study the physical meaning of the wavefunction of the universe. With the continuity equation derived from the Wheeler-DeWitt (WDW) equation in the minisuperspace model, we show that the quantity $\rho(a)=|\psi(a)|^2$ for the universe is inversely proportional to the Hubble parameter of the universe. Thus, $\rho(a)$ represents the probability density of the universe staying in the state $a$ during its evolution, which we call the dynamical interpretation of the wavefunction of the universe. We demonstrate that the dynamical interpretation can predict the evolution laws of the universe in the classical limit as those given by the Friedmann equation. Furthermore, we show that the value of the operator ordering factor $p$ in the WDW equation can be determined to be $p=-2$.
We propose a non-thermal scenario for the generation of baryon number asymmetry in a radiative neutrino mass model which is modified to realize inflation at the early Universe. In this scenario, inflaton plays a crucial role in both generation of neutrino masses and lepton number asymmetry. Lepton number asymmetry is firstly generated in the dark matter sector through direct decay of inflaton. It is transferred to the lepton sector via the dark matter annihilation and then converted to the baryon number asymmetry due to the sphaleron interaction. All of the neutrino masses, the baryon number asymmetry and the dark matter are intimately connected to each other through the inflaton.
Links to: arXiv, form interface, find, astro-ph, recent, 1507, contact, help (Access key information)
We have searched a sample of 151 young, energetic pulsars for periodic variation in pulse time-of-arrival arising from the influence of planetary companions. We are sensitive to objects with masses two orders of magnitude lower than those detectable with optical transit timing, but we find no compelling evidence for pulsar planets. For the older pulsars most likely to host planets, we can rule out Mercury analogues in one third of our sample and planets with masses $>0.4 M_{\oplus}$ and periods $P_b<1$ yr in all but 5% of such systems. If pulsar planets form primarily from supernova fallback disks, these limits imply that such disks do not form, are confined to $<0.1$ AU radii, are disrupted, or form planets more slowly ($>2$ Myr) than their protoplanetary counterparts.
We study a novel electromagnetic signature of supermassive black hole binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disk in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond scale wiggles, and the conical surface of jet precession is twisted due to apparant superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a "chirp." This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 10^7--10^10 Msun at redshifts z<0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by eLISA and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometer Array will increase the potential usefulness of this technique.
We present a local sample (z<0.15) of 280 Star-Forming Compact Groups (SFCGs) of galaxies identified in the ultraviolet Galaxy Evolution EXplorer (GALEX) All-sky Imaging Survey (AIS). So far, just one prototypical example of SFCG, the Blue Infalling Group, has been studied in detail in the Local Universe. The sample of SFCGs is mainly the result of applying a Friends-of-Friends group finder in the space of celestial coordinates with a maximum linking-length of 1.5 arcmin and choosing groups with a minimum number of four members of bright UV-emitting 17<FUV<20.5 sources (mostly galaxies) from the GALEX/AIS catalogue. The result from the search are 280 galaxy groups composed by 226, 39, 11 and 4 groups of four, five, six and seven bright ultraviolet (UV) members, respectively. Only 59 of these 280 newly identified SFCGs have a previous catalogued group counterpart. Group redshifts are available for at least one member in 75% of the SFCGs, and over 40% of the SFCGs have redshifts measured for two or more galaxies. Twenty-six of the SFCGs appear to be located in the infalling regions of clusters with known redshift. The SFCG sample presents a combination of properties different from the group samples studied up to now, such as low velocity dispersions of $\sigma_{\rm{}l-o-s}$$\sim$120 km/s, small crossing-times ($H_{0}$$t_{c}$$\sim$0.05) and high star-formation content (95% of star-forming galaxies). This points to the SFCGs being in an evolutionary stage distinct from those groups selected in the optical and near-infrared ranges (see Fig. 6).
We report results for the alignments of galaxies in the EAGLE and cosmo-OWLS simulations as a function of galaxy separation and halo mass. The combination of these hydro-cosmological simulations enables us to span four orders of magnitude in halo mass ($10.7<log_{10}(M_{200}/[h^{-1}M_\odot])<15$) and a large range of separations ($-1<log_{10}(r/[h^{-1}Mpc])< 2$). We focus on two classes of alignments: the orientations of galaxies with respect to either the directions to, or the orientations of, surrounding galaxies. We find that the strength of the alignment is a strongly decreasing function of the distance between galaxies. The orientation-direction alignment can remain significant up to ~100 Mpc, for galaxies hosted by the most massive haloes in our simulations. Galaxies hosted by more massive subhaloes show stronger alignment. At a fixed halo mass, more aspherical or prolate galaxies exhibit stronger alignments. The spatial distribution of satellites is anisotropic and significantly aligned with the major axis of the main host halo. The major axis of satellite galaxies, when all stars are considered, are preferentially aligned towards the centre of the main host halo. The predicted projected direction-orientation alignment, $\epsilon_{g+}(r_{p})$, is in broad agreement with recent observations when only stars within the typical observable extent of a galaxy are used to define galaxy orientations. We find that the orientation-orientation alignment is weaker than the orientation-direction alignment on all scales. Overall, the strength of galaxy alignments depends strongly on the subset of stars that are used to measure the orientations of galaxies and it is always weaker than the alignment of the dark matter haloes. Thus, alignment models that use halo orientation as a direct proxy for galaxy orientation will overestimate the impact of intrinsic alignments on weak lensing analyses.
The Kepler mission's discovery of a number of circumbinary planets orbiting close (a_p < 1.1 au) to the stellar binary raises questions as to how these planets could have formed given the intense gravitational perturbations the dual stars impart on the disk. The gas component of circumbinary protoplanetary disks is perturbed in a similar manner to the solid, planetesimal dominated counterpart, although the mechanism by which disk eccentricity originates differs. This is the first work of a series that aims to investigate the conditions for planet formation in circumbinary protoplanetary disks. We present a number of hydrodynamical simulations that explore the response of gas disks around two observed binary systems: Kepler-16 and Kepler-34. We probe the importance of disk viscosity, aspect-ratio, inner boundary condition, initial surface density gradient, and self-gravity on the dynamical evolution of the disk, as well as its quasi steady-state profile. We find there is a strong influence of binary type on the mean disk eccentricity, e_d, leading to e_d = 0.02 - 0.08 for Kepler-16 and e_d = 0.10 - 0.15 in Kepler-34. The value of alpha-viscosity has little influence on the disk, but we find a strong increase in mean disk eccentricity with increasing aspect-ratio due to wave propagation effects. The choice of inner boundary condition only has a small effect on the surface density and eccentricity of the disk. Our primary finding is that including disk self-gravity has little impact on the evolution or final state of the disk for disks with masses less than 12.5 times that of the minimum-mass solar nebula. This finding contrasts with the results of self-gravity relevance in circumprimary disks, where its inclusion is found to be an important factor in describing the disk evolution.
Stationary density waves rotating at a constant pattern speed $\Omega_{\rm P}$ would produce age gradients across spiral arms. We test whether such age gradients are present in M81 by deriving the recent star formation histories (SFHs) of 20 regions around one of M81's grand-design spiral arms. For each region, we use resolved stellar populations to determine the SFH by modeling the observed color-magnitude diagram (CMD) constructed from archival Hubble Space Telescope (HST) F435W and F606W imaging. Although we should be able to detect systematic time delays in our spatially-resolved SFHs, we find no evidence of star formation propagation across the spiral arm. Our data therefore provide no convincing evidence for a stationary density wave with a single pattern speed in M81, and instead favor the scenario of kinematic spiral patterns that are likely driven by tidal interactions with the companion galaxies M82 and NGC 3077.
We perform a detailed quantitative analysis of the recent AMS-02 electron and positron data. We investigate the interplay between the emission from primary astrophysical sources, namely Supernova Remnants and Pulsar Wind Nebulae, and the contribution from a dark matter annihilation or decay signal. Our aim is to assess the information that can be derived on dark matter properties when both dark matter and primary astrophysical sources are assumed to jointly contribute to the leptonic observables measured by the AMS-02 experiment. We investigate both the possibility to set robust constraints on the dark matter annihilation/decay rate and the possibility to look for dark matter signals within realistic models that take into account the full complexity of the astrophysical background. Our results show that AMS-02 data enable to probe efficiently vast regions of the dark matter parameter space and, in some cases, to set constraints on the dark matter annihilation/decay rate that are comparable or even stronger with respect to the ones that can be derived from other indirect detection channels. For dark matter annihilation into muons, the bounds leave room for a possible joint DM+astro interpretation of the data, with a dark matter mass in the 50-80 GeV range (depending on the pulsars modeling) and an annihilation cross section in the range (0.7 {\div} 3) times the thermal cross section.
We present a suite of high-resolution cosmological galaxy re-simulations of a Milky-Way size halo with variety of star-formation and feedback models to investigate the effects of the specific details of the star formation-feedback loop modeling on the observable properties of the circumgalactic medium (CGM). We show that properties of the CGM are quite sensitive to the details of star formation-feedback loop. The simulation which produces a very realistic late-type central galaxy fails to reproduce existing observations of CGM. At the same time, variations of parameters of star formation recipe or feedback modeling, such as cosmic rays feedback, brings predicted CGM in better agreement with observations. The simulations show that the column density profiles of ions arising in such gas are well described by an exponential function of the impact parameter. Ions with higher ionization energy have more extended profiles with the scale height of the exponential distribution scaling as a power law of the ionization energy: hs~Eion^0.72. At z~0, the scale height of warm gas traced by low-ionization species, such as MgII and CIV, have scale heights of 0.2-0.4Rvir, while higher ionization species, such as OVI and NeVIII, have scale heights of 1.6-2.4Rvir. The predicted trend is in good qualitative and reasonable quantitative agreement with observations for ions, such as CIV and OVI. Simulations do produce a sharp turnover in the column density profiles and covering fraction distribution for different ions seen in observations. This turnover however does not correspond to a "boundary" of an ion, but reflects the underlying steep exponential column density profile. We also find that the scale height evolves slower than the virial radius at z<2, but similarly to the halo scale radius, rs. Thus, column density profiles of galaxies at different redshifts can be rescaled using rs of their halos.
We have identified a new class of Asymptotic Giant Branch (AGB) stars in the Small and Large Magellanic Clouds (SMC/LMC) using optical to infrared photometry, light curves, and optical spectroscopy. The strong dust production and long-period pulsations of these stars indicate that they are at the very end of their AGB evolution. Period-mass-radius relations for the fundamental-mode pulsators give median current stellar masses of 1.14 M_sun in the LMC and 0.94 M_sun in the SMC (with dispersions of 0.21 and 0.18 M_sun, respectively), and models suggest initial masses of <1.5 M_sun and <1.25 M_sun, respectively. This new class of stars includes both O-rich and C-rich chemistries, placing the limit where dredge-up allows carbon star production below these masses. A high fraction of the brightest among them should show S star characteristics indicative of atmospheric C/O ~ 1, and many will form O-rich dust prior to their C-rich phase. These stars can be separated from their less-evolved counterparts by their characteristically red J-[8] colors.
It is shown that compact bodies project out strands of concentrated dark matter filaments henceforth simply called hairs. These hairs are a consequence of the fine-grained stream structure of dark matter halos, and as such constitute a new physical prediction of $\Lambda$CDM. Using both an analytical model of planetary density and numerical simulations utilizing the {\it Fast Accurate Integrand Renormalization } (FAIR) algorithm (a fast geodesics calculator described below) with realistic planetary density inputs, dark matter streams moving through a compact body are shown to produce hugely magnified dark matter densities along the stream velocity axis going through the center of the body. Typical hair density enhancements are $10^7$ for Earth and $10^8$ for Jupiter. The largest enhancements occur for particles streaming through the core of the body that mostly focus at a single point called the root of the hair. For the Earth, the root is located at about $10^6$~km from the planetary center with a density enhancement of around $10^9$ while for a gas giant like Jupiter, the root is located at around $10^{5}$~km with a enhancement of around $10^{11}$.
The gas cloud G2 is currently being tidally disrupted by the Galactic Centre super-massive black hole, Sgr A*. The region around the black hole is populated by $\sim 30$ Wolf-Rayet stars, which produce strong outflows. We explore the possibility that gas clumps originate from the collision of stellar winds via the non-linear thin shell instability. We follow the thermal evolution of slabs formed at colliding symmetric winds, evaluate whether instabilities occur, and estimate the resulting clump masses. We find that the collision of relatively slow ($< 750$ km s$^{-1}$) and strong ($\sim 10^{-5}$ Msun yr$^{-1}$) stellar winds from stars at short separations ($< 1$ mpc) is a process that indeed could produce clumps of G2's mass and above. Encounters of single stars at such short separations are not common in the Galactic Centre, making this process a possible but unlikely origin for G2. We also discuss clump formation in close binaries such as IRS 16SW and in asymmetric encounters as promising alternatives that deserve further numerical study.
We present a new analysis of the infrared (IR) emission from the ejecta of SN1987A covering days 615, 775, 1144, 8515, and 9090 after the explosion. We show that the observations are consistent with the rapid formation of about 0.4 Msun of dust, consisting of mostly silicates, near day 615, and evolving to about 0.45 Msun of composite dust grains consisting of ~0.4 Msun of silicates and ~ 0.05 Msun of amorphous carbon after day ~8500. The proposed scenario challenges previous claims that dust in SN ejecta is predominantly carbon, and that it grew from an initial mass of ~1e-3 Msun, to over 0.5 Msun by cold accretion. It alleviates several problems with previous interpretations of the data: (1) it reconciles the abundances of silicon, magnesium, and carbon with the upper limits imposed by nucleosynthesis calculations; (2) it eliminates the requirement that most of the dust observed around day 9000 grew by cold accretion onto the1e-3 Msun of dust previously inferred for days 615 and 775 after the explosion; and (3) establishes the dominance of silicate over carbon dust in the SN ejecta. At early epochs, the IR luminosity of the dust is powered by the radioactive decay of 56Co, and at late times by at least (1.3-1.6)e-4 Msun 44Ti. Even if only a fraction greater than ~10% of the silicate dust survives the injection into the ISM, the observations firmly establish the role of core collapse SNe as the major source of thermally condensed silicate dust in the universe.
One of the major sources of X-ray emitting hot gas around galaxies is the feedback from supernovae (SNe), but most of this metal-enriched feedback material is often not directly detected in X-ray observations. This missing galactic feedback problem is extremely prominent in early-type galaxy bulges where there is little cool gas to make the SNe ejecta radiate at lower temperature beyond the X-ray domain. We herein present a deep Suzaku observation of an S0 galaxy NGC5866, which is relatively rich in molecular gas as an S0 galaxy and shows significant evidence of cool-hot gas interaction. By jointly analyzing the Suzaku and an archival Chandra data, we measure the Fe/O abundance ratio to be $7.63_{-5.52}^{+7.28}$ relative to solar values. This abundance ratio is much higher than those of spiral galaxies, and even among the highest ones of S0 and elliptical galaxies. NGC5866 also simultaneously has the highest Fe/O abundance ratio and molecular gas mass among a small sample of gas-poor early-type galaxies. An estimation of the Fe budget indicates that NGC5866 could preserve a larger than usual fraction, but far from the total amount of Fe injected by Type Ia SNe. We also find that the hot gas temperature increases from inner to outer halos, with the inner halo has a temperature of ~0.25keV, clearly lower than that expected from Type Ia SNe heating. This low temperature could be most naturally explained by additional cooling processes related to the cool-hot gas interaction as being indicated by the existence of many extraplanar dusty filaments. Our results indicate that the large cool gas content and the presence of cool-hot gas interaction in the inner region of NGC5866 have significantly reduced the specific energy of the SN ejecta and so the velocity of galactic outflow. The galaxy could thus preserve a considerable fraction of metal-enriched feedback material from being blown out.
We separate the extragalactic radio source population above ~50 uJy into active galactic nuclei (AGN) and star-forming sources. The primary method of our approach is to fit the infrared spectral energy distributions (SEDs), constructed using Spitzer/IRAC and MIPS and Herschel/SPIRE photometry, of 380 radio sources in the Extended Chandra Deep Field-South. From the fitted SEDs, we determine the relative AGN and star-forming contributions to their infrared emission. With the inclusion of other AGN diagnostics such as X-ray luminosity, Spitzer/IRAC colours, radio spectral index and the ratio of star-forming total infrared flux to k-corrected 1.4 GHz flux density, qIR, we determine whether the radio emission in these sources is powered by star formation or by an AGN. The majority of these radio sources (60 per cent) show the signature of an AGN at some wavelength. Of the sources with AGN signatures, 58 per cent are hybrid systems for which the radio emission is being powered by star formation. This implies that radio sources which have likely been selected on their star formation have a high AGN fraction. Below a 1.4 GHz flux density of 1 mJy, along with finding a strong contribution to the source counts from pure star-forming sources, we find that hybrid sources constitute 20-65 per cent of the sources. This result suggests that hybrid sources have a significant contribution, along with sources that do not host a detectable AGN, to the observed flattening of the source counts at ~1mJy for the extragalactic radio source population.
Matter mixing is one important topic in the study of core-collapse supernova (CCSN) explosions. In this paper, we perform two-dimensional hydrodynamic simulations to reproduce the high velocity $^{56}$Ni clumps observed in SN 1987A. This is the first time that large density perturbation is proposed in the CCSN progenitor to generate Rayleigh-Taylor (RT) instability and make the effective matter mixing. In the case of a spherical explosion, RT instability is efficient at both C+O/He and He/H interfaces of the SN progenitor. Radial coherent structures shown in perturbation patterns are important for obtaining high velocity $^{56}$Ni clumps. We can also obtain matter mixing features and high velocity $^{56}$Ni clumps in some cases of aspherical explosion. We find that one of the most favorable models in our work has a combination of bipolar and equatorially asymmetric explosions in which at least 25\% of density perturbation is introduced at different composition interfaces of the CCSN progenitor. These simulation results are comparable to the observational findings of SN 1987A.
The smallest of the four detectors which claim to have observed neutrinos from SN 1987a registered the events more than 4 h earlier than the other three ones. This claim is not usually accepted because it is difficult to understand that the other (and larger) detectors did not register any events at the same time. It is shown that microlensing of the neutrinos by a star in-between the supernova (SN) and Earth can enhance the neutrino intensity at the position of one detector by more than an order of magnitude with respect to the other detectors. Such a configuration is improbable but not impossible. Essential for this enhancement is the small source diameter, of order 100 km. So if two bursts of neutrinos were emitted by SN 1987a at a separation of about 4 h it could be explained easily that the smallest detector observed the first burst while the other ones missed it and vice versa.
An all-spherical catadioptic system made of glass of one type is proposed for the monitoring of large sky areas. We provide an example of such a system with the aperture of diameter 400 mm and the curved field of 30 degree in diameter.
Gamma-ray bursts (GRBs) are detectable out to very large distances and as such are potentially powerful cosmological probes. Historically, the angular distribution of GRBs provided important information about their origin and physical properties. As a general population, GRBs are distributed isotropically across the sky. However, there are published reports that once binned by duration or redshift, GRBs display significant clustering. We have studied the redshift- and duration-dependent clustering of GRBs using proximity measures and kernel density estimation. Utilizing bursts detected by BATSE, Fermi/GBM and Swift/BAT, we found marginal evidence for clustering in very short duration GRBs lasting less than 100 ms. Our analysis provides little evidence for significant redshift-dependent clustering of GRBs.
We investigate the spiral galaxy NGC 5394, which is strongly interacting with
the larger spiral NGC 5395 (the pair is Arp 84), using optical integral-field
spectroscopy from the CALIFA survey. Spatially-resolved equivalent-widths,
emission-line ratios and kinematics reveal many features related to the
interaction, which has reshaped the galaxy. $\rm H\alpha$ maps (with other
diagnostic emission lines) show a concentrated central ($r<1$ kpc) starburst
and three less luminous star-forming regions (one knot far out in the northern
arm), and we estimate the dust-corrected total star-formation rate as 3.39 $\rm
M_{\odot}yr^{-1}$.
However, much of the galaxy, especially the outer tidal arms, has a
post-starburst spectrum, evidence of a more extensive episode of star-formation
a few $\times 10^8$ yr ago, triggered by the previous perigalacticon. The $\rm
[NII]6584/H\alpha$ ratio is high in the nucleus, reaching 0.63 at the centre,
which we interpret as related to high electron density ($n_e\simeq 750$ $\rm
cm^{-3}$ from the $\rm [SII]{6717\over 6731}$ ratio). We find a central region
of strong and blueshifted NaI(5890,5896) absorption, indicative of a
starburst-driven outflow from the nucleus at an estimated velocity $\sim 223$
km $\rm s^{-1}$. The CALIFA data also show an annular region at radii 2.25--4
kpc from the nucleus, with elevated ratios of [NII], [OI]6300 etc. to the
Balmer lines -- this is evidence of shock excitation, which might be the result
of interaction-triggered gas inflow.
As part of our ongoing Wolf-Rayet (WR) Magellanic Cloud survey, we have discovered 13 new WRs. However, the most exciting outcome of our survey is not the number of new WRs, but their unique characteristics. Eight of our discoveries appear to belong to an entirely new class of WRs. While one might naively classify these stars as WN3+O3V binaries, such a pairing is unlikely. Preliminary CMFGEN modeling suggests physical parameters similar to early-type WNs in the Large Magellanic Cloud except with mass-loss rates three to five times lower and slightly higher temperatures. The evolution status of these stars remains an open question.
The state of cold bulk matter at around nuclear density depends on the fundamental strong interaction between quarks at low-energy scale, so-called non-perturbative quantum chromo-dynamics. Such kind of matter is conjectured to be condensed matter of 3-flavour (u, d and s) quark clusters in this note, being manifested in the form of compact stars, cosmic rays, and even dark matter.
GRB 060614 was a unique burst straddling both long- and short-duration gamma-ray bursts (GRBs) and its physical origin was heavily debated over the years. Recently, a distinct very-soft F814W-band excess at $t\sim 13.6$ days after the burst was identified in a joint-analysis of VLT and HST optical afterglow data of GRB~060614, which has been interpreted as evidence for an accompanying macronova (also called a kilonova). Under the assumption that the afterglow data in the time interval of $1.7-3$ days after the burst are due to the external forward shock emission it is found that there is an excess of flux in several multi-band photometric observations, not dissimilar to the flux excess interpreted as supernovae associated to GRBs. Taken at face value, these bumps represent the first time that a light curve of a macronova has been obtained (opposed to the single-epoch observation of GRB~130603B). The macronova associated with GRB 060614 peaked at $t<4$ days after the burst, which is significantly earlier than that ever observed for a GRB-associated supernova. Due to the limited data, no strong evidence for evolution of the temperature is found. A conservative estimate of the macronova rate is $\sim 14.8^{+14.8}_{-7.4}~{\rm Gpc^{-3}}{\rm yr^{-1}}$, implying a promising prospect for detecting the gravitational wave radiation from compact object mergers by upcoming Advanced LIGO/VIRGO/KAGRA detectors (i.e., the rate is ${\cal R}_{\rm GW} \sim 1.7^{+1.7}_{-0.85}(D/300~{\rm Mpc})^{3}~{\rm yr^{-1}}$).
We investigate dark and visible matter distribution in the Coma cluster in the case of the Navarro-Frenk-White (NFW) profile. A toy model where all galaxies in the cluster are concentrated inside a sphere of an effective radius $R_{eff}$ is considered. It enables to obtain the mean velocity dispersion as a function of $R_{eff}$. We show that, within the observation accuracy of the NFW parameters, the calculated value of $R_{eff}$ can be rather close to the observable cutoff of the galaxy distribution . Moreover, the comparison of our toy model with the observable data and simulations leads to the following preferable NFW parameters for the Coma cluster: $R_{200} \approx 1.77\,h^{-1} \, \mathrm{Mpc} = 2.61\, \mathrm{Mpc}$, $c=3\div 4$ and $M_{200}= 1.29 h^{-1}\times10^{15}M_{\odot}$. In the Coma cluster the most of galaxies are concentrated inside a sphere of the effective radius $R_{eff}\sim 3.7$ Mpc and the line-of-sight velocity dispersion is $1004\, \mathrm{km}\, \mathrm{s}^{-1}$.
We derive new constraints on the neutron lifetime based on the recent Planck 2015 observations of temperature and polarization anisotropies of the CMB. Under the assumption of standard Big Bang Nucleosynthesis, we show that Planck data constrains the neutron lifetime to $\tau_n=(907 \pm 69) \, [\text{s}]$ at $68 \%$ c.l.. Moreover, by including the direct measurements of primordial Helium abundance of Izotov et al. 2014 and Mucciarelli et al. 2014, we show that cosmological data provide the stringent constraint $\tau_n=(905.7 \pm 7.8) \, [\text{s}]$. This value is in tension with the most recent experimental value of $\tau_n^{\text{bottle}}=(879.6 \pm 0.8) \, [\text{s}]$ provided by the "bottle method" based on Ultra Cold Neutrons, but in agreement with the experimental value of $\tau_n^{\text{beam}}=(888.0 \pm 2.1) \, [\text{s}]$ based on the "beam method". Future CMB surveys as COrE+, in combination with a weak lensing survey as EUCLID, could constrain the neutron life time up to a $\sim 6$ s precision.
FeLoBALs are a rare class of quasar outflows with low-ionization broad absorption lines (BALs), large column densities, and potentially large kinetic energies that might be important for `feedback' to galaxy evolution. In order to probe the physical properties of these outflows, we conducted a multiple-epoch, absorption line variability study of 12 FeLoBAL quasars spanning a redshift range between 0.7 and 1.9 over rest frame time-scales of approximately 10 d to 7.6 yr. We detect absorption line variability with greater than 8 sigma confidence in 3 out of the 12 sources in our sample over time-scales of 0.6 to 7.6 yr. Variable wavelength intervals are associated with ground and excited state Fe II multiplets, the Mg II 2796, 2803 doublet, Mg I 2852, and excited state Ni II multiplets. The observed variability along with evidence of saturation in the absorption lines favors transverse motions of gas across the line of sight (LOS) as the preferred scenario, and allows us to constrain the outflow distance from the supermassive black hole (SMBH) to be less than 69, 7, and 60 pc for our three variable sources. In combination with other studies, these results suggest that the outflowing gas in FeLoBAL quasars resides on a range of scales and includes matter within tens of parsecs of the central source.
We report evidence for excess blue light from the Type Ia supernova SN~2012cg at fifteen and sixteen days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN~Ia. Sixteen days before maximum light, the B-V color of SN~2012cg is 0.2 mag bluer than for other normal SN~Ia. At later times, this supernova has a typical SN~Ia light curve, with extinction-corrected M_B = -19.62 \pm 0.02 mag and Delta m_{15}(B) = 0.86 \pm 0.02. Our data set is extensive, with photometry in 7 filters from 5 independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity v_{Si} = -10,500 km/s. Comparing the early data with models by Kasen (2010) favors a main-sequence companion of about 6 solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.
We present results from the first twelve months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170,000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses $1.4\,$GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at $3.4\,\mu$m from the {\it Wide-field Infrared Survey Explorer} (WISE) and at $3.6\,\mu$m from the {\it Spitzer Space Telescope}. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is $>\,75\%$ consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects (QSOs), and luminous infrared radio galaxies (LIRGs). We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission, and hybrid morphology radio sources.
An experiment at SLAC provides the first beam test of radio-frequency (RF) radiation from a charged particle cascade in the presence of a magnetic field (up to $\sim$1~kG), a model system for RF emission from a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of RF emission, which are relied upon in ultra-high-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm recent predictions that the magnetically induced emission forms a beam that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.
We summarize past and current surveys for Wolf-Rayet stars among the Local Group galaxies, emphasizing both the how and the why. Such studies are invaluable for helping us learn about massive star evolution, and for providing sensitive tests of the stellar evolution models. But for such surveys to be useful, the completeness limits must be well understood. We illustrate that point in this review by following the "evolution" of the observed WC/WN ratio in nearby galaxies. We end by examining our new survey for WR stars in the Magellanic Clouds, which has revealed a new type of WN star, never before seen.
The sudden spin-down event ('anti-glitch') observed in AXP 1E 2259+586 on 2012 April 21 was arguably caused by a decay of its internal toroidal magnetic field component, which turns a stable prolate configuration into an unstable one. We refine previous models of this process by modelling the star's magnetic field self-consistently as a 'twisted torus' configuration in non-barotropic equilibrium (which allows us to explore a greater range of equilibrium configurations). It is shown that, if the star's magnetic field is purely dipolar, the change in the toroidal field strength required to produce an anti-glitch of the observed size can be ~ 10 times larger than previously calculated. If the star has a quadrupolar magnetic field component, then an anti-glitch of similar magnitude can be produced via a decay of the quadrupole component, in addition to a decay of the toroidal component. We show that, if the quadrupole component decays, the minimum initial toroidal field strength and the change in toroidal field strength needed to produce the observed anti-glitch are lower than in the pure dipole twisted torus. In addition, we predict the maximum anti-glitch sizes, assuming that they are caused by a change in ellipticity, in four glitching magnetars and discuss the implications for energetics of accompanying X-ray bursts.
[abridged] We investigate the coevolution of galaxies and hosted supermassive black holes throughout the history of the Universe by a statistical approach based on the continuity equation and the abundance matching technique. Specifically, we present analytical solutions of the continuity equation without source term to reconstruct the supermassive black hole (BH) mass function from the AGN luminosity functions. Such an approach includes physically-motivated AGN lightcurves tested on independent datasets, which describe the evolution of the Eddington ratio and radiative efficiency from slim- to thin-disc conditions. We nicely reproduce the local estimates of the BH mass function, the AGN duty cycle as a function of mass and redshift, along with the Eddington ratio function and the fraction of galaxies with given stellar mass hosting an AGN with given Eddington ratio. We exploit the same approach to reconstruct the observed stellar mass function at different redshift from the UV and far-IR luminosity functions associated to star formation in galaxies. These results imply that the buildup of stars and BHs in galaxies occurs via in-situ processes, with dry mergers playing a marginal role at least for stellar masses < 3 10^11 M_sun and BH masses < 10^9 M_sun, where the statistical data are more secure and less biased by systematic errors. In addition, we develop an improved abundance matching technique to link the stellar and BH content of galaxies to the gravitationally dominant dark matter component. The resulting relationships constitute a testbed for galaxy evolution models, highlighting the complementary role of stellar and AGN feedback in the star formation process. Finally, the clustering properties of BHs and galaxies are found to be in full agreement with current observations, so further validating our results from the continuity equation.
The systems V949 Cen, V358 Pup, and V1055 Sco are triples comprised of an eclipsing binary orbiting with a distant visual component on a much longer orbit. The first detailed photometric analysis of these interesting systems was performed using also the archival data from Hipparcos, ASAS, SuperWASP, OMC, and Pi Of The Sky surveys. The system V358~Pup was also analysed using the archival ESO spectra and the radial velocities were derived. The analyses of their light curves revealed the physical properties of the eclipsing components, while the interferometric data for these systems obtained during the last century show that the binaries are also weakly gravitationally bounded with the third components on much longer orbits. The photometry was carried out with the robotic telescope FRAM (part of the Pierre Auger Cosmic Ray Observatory), located in Argentina. The BVRI light curves were analysed with the PHOEBE program, yielding the basic physical parameters of the systems and their orbits. V949 Cen and V358 Pup were found to be detached systems, while V1055 Sco is probably a semi-detached one. V358 Pup shows a slow apsidal motion, while for V1055 Sco we detected some period variation probably due to the third body in the system, which cannot easily be attributed to the close visual companion. Therefore, we speculate that V1055 Sco can be a quadruple system. For V949 Cen a new orbit was computed, having the orbital period of about 855 yr.
We present a new set of models for intermediate mass AGB stars (4.0, 5.0 and, 6.0 Msun) at different metallicities (-2.15<=Fe/H]<=+0.15). This integrates the existing set of models for low mass AGB stars (1.3<=M/M<=3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the Main Sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. The latter is due to the fact that the interpulse phases are short and, then, Thermal Pulses are weak. Moreover, the high temperature at the base of the convective envelope prevents it to deeply penetrate the radiative underlying layers. Depending on the initial stellar mass, the heavy elements nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the \nean~reaction, which is efficiently activated during Thermal Pulses. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the weight that intermediate mass models have on the carbon stars luminosity function. Finally, we present the upgrade of the FRUITY web interface, now also including the physical quantities of the TP-AGB phase of all the models included in the database (ph-FRUITY).
We present a weak gravitational lensing analysis of supergroup SG1120$-$1202,
consisting of four distinct X-ray-luminous groups, that will merge to form a
cluster comparable in mass to Coma at $z=0$. These groups lie within a
projected separation of 1 to 4 Mpc and within $\Delta v=550$ km s$^{-1}$ and
form a unique protocluster to study the matter distribution in a coalescing
system.
Using high-resolution {\em HST}/ACS imaging, combined with an extensive
spectroscopic and imaging data set, we study the weak gravitational distortion
of background galaxy images by the matter distribution in the supergroup. We
compare the reconstructed projected density field with the distribution of
galaxies and hot X-ray emitting gas in the system and derive halo parameters
for the individual density peaks.
We show that the projected mass distribution closely follows the locations of
the X-ray peaks and associated brightest group galaxies. One of the groups that
lies at slightly lower redshift ($z\approx 0.35$) than the other three groups
($z\approx 0.37$) is X-ray luminous, but is barely detected in the
gravitational lensing signal. The other three groups show a significant
detection (up to $5 \sigma$ in mass), with velocity dispersions between
$355^{+55}_{-70}$ and $530^{+45}_{-55}$ km s$^{-1}$ and masses between
$0.8^{+0.4}_{-0.3} \times 10^{14}$ and $1.6^{+0.5}_{-0.4}\times 10^{14} h^{-1}
M_{\odot}$, consistent with independent measurements. These groups are
associated with peaks in the galaxy and gas density in a relatively
straightforward manner. Since the groups show no visible signs of interaction,
this supports the picture that we are catching the groups before they merge
into a cluster.
The electron plasma frequency $\omega_{pe}$ and electron gyrofrequency $\Omega_e$ are two parameters that allow us to describe the properties of a plasma and to constrain the physical phenomena at play, for instance, whether a maser instability develops. In this paper, we aim to show that the maser instability can exist in the solar corona. We perform an in-depth analysis of the $\omega_{pe}$/$\Omega_e$ ratio for simple theoretical and complex solar magnetic field configurations. Using the combination of force-free models for the magnetic field and hydrostatic models for the plasma properties, we determine the ratio of the plasma frequency to the gyrofrequency for electrons. For the sake of comparison, we compute the ratio for bipolar magnetic fields containing a twisted flux bundle, and for four different observed active regions. We also study how $\omega_{pe}$/$\Omega_e$ is affected by the potential and non-linear force-free field models. We demonstrate that the ratio of the plasma frequency to the gyrofrequency for electrons can be estimated by this novel method combining magnetic field extrapolation techniques and hydrodynamic models. Even if statistically not significant, values of $\omega_{pe}$/$\Omega_e$ $\leq$ 1 are present in all examples, and are located in the low corona near to photosphere below one pressure scale-height and/or in the vicinity of twisted flux bundles. The values of $\omega_{pe}$/$\Omega_e$ are lower for non-linear force-free fields than potential fields, thus increasing the possibility of maser instability in the corona. From this new approach for estimating $\omega_{pe}$/$\Omega_e$, we conclude that the electron maser instability can exist in the solar corona above active regions. The importance of the maser instability in coronal active regions depends on the complexity and topology of the magnetic field configurations.
Galaxy scaling relations such as the Tully-Fisher relation (between maximum rotation velocity Vmax and luminosity) and the velocity-size relation (between Vmax and disk scale length) are powerful tools to quantify the evolution of disk galaxies with cosmic time. We took spatially resolved slit spectra of 261 field disk galaxies at redshifts up to z~1 using the FORS instruments of the ESO Very Large Telescope. The targets were selected from the FORS Deep Field and William Herschel Deep Field. Our spectroscopy was complemented with HST/ACS imaging in the F814W filter. We analyzed the ionized gas kinematics by extracting rotation curves from the 2-D spectra. Taking into account all geometrical, observational and instrumental effects, these rotation curves were used to derive the intrinsic Vmax. Neglecting galaxies with disturbed kinematics or insufficient spatial rotation curve extent, Vmax could be determined for 137 galaxies covering redshifts 0.05<z<0.97. This is one of the largest kinematic samples of distant disk galaxies to date. We compared this data set to the local B-band Tully-Fisher relation and the local velocity-size relation. The scatter in both scaling relations is a factor of ~2 larger at z~0.5 than at z~0. The deviations of individual distant galaxies from the local Tully-Fisher relation are systematic in the sense that the galaxies are increasingly overluminous towards higher redshifts, corresponding to an over-luminosity Delta_MB=-(1.1+-0.5) mag at z=1. This luminosity evolution at given Vmax is probably driven by younger stellar populations of distant galaxies with respect to their local counterparts. The analysis of the velocity-size relation reveals that disk galaxies of a given Vmax have grown in size by a factor of ~1.5 over the past ~8 Gyr, likely via accretion of cold gas and/or small satellites.
Rapid magnetic upflows in the quiet-Sun photosphere were recently uncovered from both SUNRISE/IMaX and Hinode/SOT observations. Here, we study magnetic upflow events (MUEs) from high-quality, high (spatial, temporal, and spectral) resolution, and full Stokes observations in four photospheric magnetically sensitive Fe I lines centered at 525.021 nm, 617.334 nm, 630.151 nm, and 630.250 nm acquired with SST/CRISP. We detect MUEs by subtracting in-line Stokes V signals from those in far-blue-wing whose signal-to-noise ratio >= 7. We find a larger number of MUEs at any given time (0.02 per square arcsec), larger by one to two orders of magnitude, than previously reported. The MUEs appear to fall into four classes presenting different shapes of Stokes V profiles with (I) asymmetric double lobes, (II) single lobes, (III) double-humped (two same-polarity lobes), and (IV) three lobes (extra blue-shifted bump in addition to a double-lobes), from which, only less than half of them are single-lobed. We also find that MUEs are almost equally distributed in network and internetwork areas and they appear in the interior or at the edge of granules in both regions. Distributions of physical properties, except that of horizontal velocity, of the MUEs (namely, Stokes V signal, size, line-of-sight velocity, and lifetime) are almost identical for the different spectral lines in our data. A bisector analysis of our spectrally resolved observations shows that these events host modest upflows, and do not show direct indication of the presence of supersonic upflows reported earlier. Our findings reveal that number, type (class), and properties of MUEs can strongly depend on detection techniques and properties of the employed data, namely, signal-to-noise ratio, resolutions, and wavelength.
Unified dark matter models are appealing in that they describe the dark sector in terms of a single component. They however face problems when attempting to account for structure formation: in the linear regime, density fluctuations can become Jeans stable and oscillate rather than collapse, though it is possible that this difficulty may be circumvented by invoking nonlinear clustering. Here we examine the behaviour in the fully nonlinear regime, of collapsed objects that should mimic standard dark matter haloes. It is shown that the pressure gradient associated with the unified dark matter fluid should be significant in the outer parts of galaxies and clusters, and its effects obervable. In this case, no flat or falling rotation curve is possible for any (barotropic) equation of state with associated sound speed decreasing with density (a necessary condition if the fluid is to behave as pressureless matter at high density). The associated density profile is therefore also incompatible with that inferred in the outer part of clusters. For the prototypical case of the generalised Chaplygin gas, it is shown that this limits the values of the equation of state index $\alpha$ that are compatible with observations to $\alpha \la 0.0001$ or $\alpha \ga 2$. This is in line from what is deduced from linear analysis. More generally, from the expected properties of dark matter haloes, constraints on the sound speed are derived. For the particular case of the generalised Chaplygin gas, this further constrains the index to $\alpha \la 10^{-9}$ or $\alpha \ga 6.7$. For a unified dark matter fluid to mimic dark halo properties, therefore, it needs to have an equation of state such that the pressure gradients are either minimal or which decrease fast enough so as to be negligible at densities characteristic of the outer parts of haloes.
The acoustic resonator is an important model for explaining the three-minute oscillations in the chromosphere above sunspot umbrae. The steep temperature gradients at the photosphere and transition region provide the cavity for the acoustic resonator, which allows waves to be both partially transmitted and partially reflected. In this paper, a new method of estimating the size and temperature profile of the chromospheric cavity above a sunspot umbra is developed. The magnetic field above umbrae is modelled numerically in 1.5D with slow magnetoacoustic wave trains travelling along magnetic fieldlines. Resonances are driven by applying the random noise of three different colours---white, pink and brown---as small velocity perturbations to the upper convection zone. Energy escapes the resonating cavity and generates wave trains moving into the corona. Line of sight (LOS) integration is also performed to determine the observable spectra through SDO/AIA. The numerical results show that the gradient of the coronal spectra is directly correlated with the chromosperic temperature configuration. As the chromospheric cavity size increases, the spectral gradient becomes shallower. When LOS integrations is performed, the resulting spectra demonstrate a broadband of excited frequencies that is correlated with the chromospheric cavity size. The broadband of excited frequencies becomes narrower as the chromospheric cavity size increases. These two results provide a potentially useful diagnostic for the chromospheric temperature profile by considering coronal velocity oscillations.
A wide range of exoplanet and exomoon models are characterized by a finite average rigidity and a viscosity much lower than the typical values for terrestrials. Such semiliquid bodies may or may not have rigid crusts with permanent figures. Unlike planets with solid mantles and Earth-like rheology, semiliquid bodies can be captured into stable pseudosynchronous spin resonance, where the average rate of rotation is higher than the synchronous 1:1 resonance. Two basic conditions are derived for capture of planets with a triaxial figure into pseudosynchronous rotation, one related to the characteristic tidal wave number (the product of the tidal frequency by the Maxwell time), and the other to the orbital eccentricity. If a semiliquid object does not satisfy either of the two conditions, it is captured into the synchronous resonance. For nearly axially symmetric bodies, only the first condition is in place, and the other is much relaxed, so they should predominantly be pseudosynchronous. It is also pointed out that the equilibrium pseudosychronous rotation rate can not reach the widely used asymptotic value from the constant time lag model but is in reality closer to the synchronous spin.
We propose a new type of Wave Front Sensor (WFS) derived from the Pyramid WFS (PWFS). This new WFS, called the Flattened Pyramid-WFS (FPWFS), has a reduced Pyramid angle in order to optically overlap the four pupil images into an unique intensity. This map is then used to derive the phase information. In this letter this new WFS is compared to three existing WFSs, namely the PWFS, the Modulated PWFS (MPWFS) and the Zernike WFS (ZWFS) following tests about sensitivity, linearity range and low photon flux behavior. The FPWFS turns out to be more linear than a modulated pyramid for the high-spatial order aberrations but it provides an improved sensitivity compared to the non-modulated pyramid. The noise propagation may even be as low as the ZWFS for some given radial orders. Furthermore, the pixel arrangement being more efficient than for the PWFS, the FPWFS seems particularly well suited for high-contrast applications.
LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of $2.6 \pm 0.2$, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper 'Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations' published in Astroparticle Physics 50-52 (2013) 76-91: With the revised calibration, LOPES measurements now are compatible with CoREAS simulations, but in tension with REAS 3.11 simulations. Since CoREAS is the latest version of the simulation code incorporating the current state of knowledge on the radio emission of air showers, this new result indicates that the absolute amplitude prediction of current simulations now is in agreement with experimental data.
We analyze the time series of Ca ii H-line obtained from Hinode/SOT on the solar limb. The time-distance analysis shows that the axis of spicule undergoes quasi-periodic transverse displacement. We determined the period of transverse displacement as ~40-150 s and the mean amplitude as ~ 0.1-0.5 arcsec. For the oscillation wavelength of $\lambda$ ~ 1/0.06 arcsec ~ 11500 km, the estimated kink speed is ~ 13-83 km/s. We obtained the magnetic field strength in spicules as B_0 = 2 - 12.5 G and the energy flux as 7 - 227 J/m^-2s.
We report on high-resolution spectroscopy of the 2009.0 spectroscopic event of $\eta$ Carinae collected via SMARTS observations using the CTIO 1.5 m telescope and echelle spectrograph. Our observations were made almost every night over a two-month interval around the photometric minimum of $\eta$ Car associated with the periastron passage of a hot companion. The photoionizing flux of the companion and heating related to colliding winds causes large changes in the wind properties of the massive primary star. Here we present an analysis of temporal variations in a sample of spectral lines that are clearly formed in the wind of the primary star. These lines are affected by a changing illumination of the flux of the secondary star during the periastron passage. We document the sudden onset of blue-shifted absorption that occurred in most of the lines near or slightly after periastron, and we argue that these absorption components are seen when we view the relatively undisturbed wind of the foreground primary star. We present time series measurements of the net equivalent width of the wind lines and of the radial velocities of the absorption trough minima and the emission peak midpoints. Most lines decrease in emission strength around periastron, and those high excitation lines formed close to the primary exhibit a red-ward velocity excursion. We show how these trends can be explained using an illuminated hemisphere model that is based on the idea that the emission originates primarily from the side of the primary facing the hot companion.
We measure primordial alignments for the red galaxies in the sample of eight massive galaxy clusters in the southern sky from the CLASH-VLT Large Programme, at a median redshift of 0.375. We find primordial alignment with about $3\sigma$ significance in the four dynamically young clusters, but null detection of primordial alignment in the four highly relaxed clusters. The observed primordial alignment is not dominated by any single one of the four dynamically young clusters, and is primarily due to a population of bright galaxies ($M_r<-20.5\ \rm{m}$) residing in the region 300 to 810 kpc from the cluster centers. For the first time, we point out that the combination of radial alignment and halo alignment can cause fake primordial alignment. Finally, we find that the detected alignment for the dynamically young clusters is real rather than fake primordial alignment.
Recent observations with the GISMO 2 mm camera revealed a detection 8" away from the lensed galaxy MACS1149-JD1 at z=9.6. Within the 17.5" FWHM GISMO beam, this detection is consistent with the position of the high-redshift galaxy and therefore, if confirmed, this object could be claimed to be the youngest galaxy producing significant quantities of dust. We present higher resolution (8.5") observations of this system taken with the AzTEC 1.1 mm camera mounted on the Large Millimeter Telescope Alfonso Serrano. Dust continuum emission at the position of MACS1149-JD1 is not detected with an r.m.s. of 0.17 mJy/beam. However, we find a detection ~ 11" away from MACS1149-JD1, still within the GISMO beam which is consistent with an association to the GISMO source. Combining the AzTEC and GISMO photometry, together with Herschel ancillary data, we derive a z_phot= 0.7-1.6 for the dusty galaxy. We conclude therefore that the GISMO and AzTEC detections are not associated with MACS1149-JD1. From the non-detection of MACS1149-JD1 we derive the following (3 \sigma) upper limits corrected for gravitational lensing magnification and for CMB effects: dust mass < 1.6 x 10^7 M_sun, IR luminosity < 8 x 10^10 L_sun, star formation rate < 14 M_sun/yr, and UV attenuation < 2.7 mag. These limits are comparable to those derived for other high-redshift galaxies from deep ALMA observations.
Minor bodies trapped in 1:1 co-orbital resonances with a host planet could be relevant to explain the origin of captured satellites. Among the giant planets, Uranus has one of the smallest known populations of co-orbitals, three objects, and all of them are short-lived. Asteroid 2015 DB216 has an orbital period that matches well that of Uranus, and here we investigate its dynamical state. Direct N-body calculations are used to assess the current status of this object, reconstruct its immediate dynamical past, and explore its future orbital evolution. A covariance matrix-based Monte Carlo scheme is presented and applied to study its short-term stability. We find that 2015 DB216 is trapped in a temporary co-orbital resonance with Uranus, the fourth known minor body to do so. A detailed analysis of its dynamical evolution shows that it is an unstable but recurring co-orbital companion to Uranus. It currently follows an asymmetric horseshoe trajectory that will last for at least 10 kyr, but it may remain inside Uranus' co-orbital zone for millions of years. As in the case of other transient Uranian co-orbitals, complex multibody ephemeral mean motion resonances trigger the switching between the various resonant co-orbital states. The new Uranian co-orbital exhibits a secular behaviour markedly different from that of the other known Uranian co-orbitals because of its higher inclination, nearly 38 degrees. Given its rather unusual discovery circumstances, the presence of 2015 DB216 hints at the existence of a relatively large population of objects moving in similar orbits.
We exploit a new numerical technique for evaluating the tree order contributions to the primordial scalar and tensor power spectra for scalar potential models of inflation. Among other things we develop a good analytic approximation for the nonlocal corrections from evolution before and after horizon crossing.
We investigate the density-shear instability in Hall-MHD via numerical simulation of the full non-linear problem, in the context of magnetar activity. We confirm the development of the instability of a plane-parallel magnetic field with an appropriate intensity and electron density profile, in accordance with analytic theory. We find that the instability also appears for a monotonically decreasing electron number density and magnetic field, a plane-parallel analogue of an azimuthal or meridional magnetic field in the crust of a magnetar. The growth rate of the instability depends on the Hall properties of the field (magnetic field intensity, electron number density and the corresponding scale-heights), while being insensitive to weak resistivity. Since the Hall effect is the driving process for the evolution of the crustal magnetic field of magnetars, we argue that this instability is critical for systems containing strong meridional or azimuthal fields. We find that this process mediates the formation of localised structures with much stronger magnetic field than the average, which can lead to magnetar activity and accelerate the dissipation of the field and consequently the production of Ohmic heating. Assuming a $5\times10^{14}$G magnetic field at the base of crust, we anticipate that magnetic field as strong as $10^{15}$G will easily develop in regions of typical size of a few $10^{2}$ meters, containing magnetic energy of $10^{43}$erg, sufficient to power magnetar bursts. These active regions are more likely to appear in the magnetic equator where the tangential magnetic field is stronger.
We present a grid of computed non-local thermodynamic equilibrium (NLTE) equivalent widths (EW) and NLTE abundance corrections for four Ba II lines: 4554, 5853, 6141, and 6496 A. The grid can be useful in deriving the NLTE barium abundance in stars having parameters in the following ranges: effective temperature from 4000 K to 6500 K, surface gravity log g from 0 to 5, microturbulent velocity 0 km s^-1 to 3 km s^-1, metallicity [Fe/H] from -2 to +0.5, and [Ba/Fe] from -0.4 to +0.6. The NLTE abundance can be either derived by EW interpolation (using the observed Ba II line EW) or by using the NLTE correction applied to a previously determined LTE abundance. Ba II line equivalent widths and the NLTE corrections were calculated using the updated MULTI code and the Ba II atomic model that was previously applied to determine the NLTE barium abundance in different types of stars. The grid is available on-line through the web, and we find that the grid Ba NLTE corrections are almost as accurate as direct NLTE profile fitting (to within 0.05-0.08 dex). For the weakest Ba II line (5853 A) the LTE abundances almost agree with the NLTE abundances, whereas the other three Ba II lines, 4554, 6141, and 6496 A, need NLTE corrections even at the highest metallicities tested here. The 4554 A line is extremely strong and should not be used for abundance analysis above [Fe/H]= -1. Furthermore, we tested the impact of different model atmospheres and spectrum synthesis codes and found average differences of 0.06 dex and 0.09 dex, respectively, for all four lines. At these metallicities we find an average Delta NLTE of +/-0.1 dex for the three useful Ba lines for subsolar cool dwarfs.
We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ~20 s with amplitudes of ~0.1-0.5 mag and additional large flare events on time-scales of ~5-60 min with amplitudes ~0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ~250 s and a median ingress/egress time of ~20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active' and `passive' luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive and active state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.
(Abridged*) Models of the young solar nebula assume a hot initial disk with most volatiles are in the gas phase. The question remains whether an actively accreting disk is warm enough to have gas-phase water up to 50 AU radius. No detailed studies have yet been performed on the extent of snowlines in an embedded accreting disk (Stage 0). Quantify the location of gas-phase volatiles in embedded actively accreting disk system. Two-dimensional physical and radiative transfer models have been used to calculate the temperature structure of embedded protostellar systems. Gas and ice abundances of H$_2$O, CO$_2$, and CO are calculated using the density-dependent thermal desorption formulation. The midplane water snowline increases from 3 to 55 AU for accretion rates through the disk onto the star between $10^{-9}$-$10^{-4} \ M_{\odot} \ {\rm yr^{-1}}$. CO$_2$ can remain in the solid phase within the disk for $\dot{M} \leq 10^{-5} \ M_{\odot} \ {\rm yr^{-1}}$ down to $\sim 20$ AU. Most of the CO is in the gas phase within an actively accreting disk independent of disk properties and accretion rate. The predicted optically thin water isotopolog emission is consistent with the detected H$_2^{18}$O emission toward the Stage 0 embedded young stellar objects, originating from both the disk and the warm inner envelope (hot core). An accreting embedded disk can only account for water emission arising from $R < 50$ AU, however, and the extent rapidly decreases for low accretion rates. Thus, the radial extent of the emission can be measured with ALMA observations and compared to this limit. Volatiles sublimate out to 50 AU in young disks and can reset the chemical content inherited from the envelope in periods of high accretion rates. A hot young solar nebula out to 30 AU can only have occurred during the deeply embedded Stage 0, not during the T-Tauri phase of our early solar system.
We use test-particle integrations to show that epicyclic motions excited by a pericentre passage of a dwarf galaxy could account for bulk vertical velocity streaming motions recently observed in the Galactic stellar disc near the Sun. We use fixed potential test-particle integrations to isolate the role of phase wrapping of epicyclic perturbations from bending and breathing waves or modes, which require self-gravity to oscillate. Perturbations from a fairly massive Sagittarius dwarf galaxy, $M_d \sim 2.5 \times 10^{10} M_\odot$, are required to account for the sizescale of the observed streaming motions from its orbital pericentre approximately a Gyr ago. A previous passage of the dwarf through the Galactic disc approximately 2.2 Gyr ago (with a then more massive dwarf galaxy) is less effective. If phase wrapping of epicyclic perturbations is responsible for stellar streaming motions in the Galactic disc, then there should be variations in velocity gradients on sizescales of a few kpc in the vicinity of the Sun.
We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the Universe on giga-parsec scales may be found through metre scale laboratory based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory.
Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, Low Frequency Array (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 hours. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz/s and a wide range of circular polarisation degrees (2-8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however they possess some of the characteristics of electron-cyclotron maser emission.
We investigate the star-formation rate (SFR) and stellar mass ($M_*$) relation of a star-forming (SF) galaxy sample in the XMM-LSS field to $z\sim 3.0$ using the near-infrared data from the VISTA Deep Extragalactic Observations (VIDEO) survey. Combining VIDEO with broad-band photometry, we use the SED fitting algorithm CIGALE to derive SFRs and $M_*$ and have adapted it to account for the full photometric redshift PDF uncertainty. Applying a SF selection using the D4000 index, we find evidence for strong evolution in the normalisation of the SFR-$M_*$ relation out to $z\sim 3$ and a roughly constant slope of (SFR $\propto M_*^{\alpha}$) $\alpha=0.69\pm0.02$ to $z\sim 1.7$. We find this increases close to unity toward $z\sim2.65$. Alternatively, if we apply a colour selection, we find a distinct turnover in the SFR-$M_*$ relation between $0.7\lesssim z\lesssim2.0$ at the high mass end, and suggest that this is due to an increased contamination from passive galaxies. We find evolution of the specific SFR $\propto(1+z)^{2.60}$ at $\log(M_*)\sim$10.5, out to $z\lesssim2.4$ with an observed flattening beyond $z\sim$ 2 with increased stellar mass. Comparing to a range of simulations we find the analytical scaling relation approaches, that invoke an equilibrium model, a good fit to our data, suggesting that a continual smooth accretion regulated by continual outflows may be a key driver in the overall growth of SFGs.
We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in 3 of 6 fuvAGB stars observed -- the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ~(0.002-0.2 ) Lsun, and the X-ray emitting plasma temperatures are ~(35-160) x 10^6 K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.
Recent work by Efstathiou (2014) highlighted the importance of outliers in the period-luminosity (PL) relation of Cepheid data on the distance ladder. We present a statistical framework designed to address this difficulty, and apply it to the Cepheid data from the Milky Way (MW), the Large Magellanic Cloud (LMC), and the Riess et al. (2011) (hereafter R11) dataset. We consider two possible models of the outlier population in the R11 Cepheid dataset. One of these models exhibits tension between the PL relation of the R11 cepheids and the MW+LMC cepheids, while the other does not. We extend our models to adequately account for tension between the cepheid data sets when appropriate. Our outlier treatment has a significant impact on the distance scales to Supernovae hosts with Cepheid distances, increasing the uncertainty in these distances by a median factor of ~30%. We further find that our Cepheid outlier treatment translates into a modest, but non-negligible increase in the statistical uncertainty of H0, adding in quadrature 1.2 km/s/Mpc. Combined with the increased scatter in the Hubble diagram reported by Jones et al. (2015), we find H0=72.6+/-2.8 km/s/Mpc, corresponding to a 3.8% uncertainty in H0 from local measurements. This value is fully consistent with both the Planck and inverse-distance ladder H0 constraints.
We investigate how the extragalactic proton component derived within the "escape model" can be explained by astrophysical sources. We consider as possible cosmic ray (CR) sources normal/starburst galaxies and radio-loud active galactic nuclei (AGN). We find that the contribution to the total extragalactic proton flux from normal and starburst galaxies is only subdominant and does not fit the spectral shape deduced in the escape model. In the case of radio-loud AGN, we show that the complete extragalactic proton spectrum can be explained by a single source population, BL Lac/FR I, for any of the potential acceleration sites in these sources. We calculate the diffuse neutrino and $\gamma$-ray fluxes produced by these CR protons interacting with gas inside their sources. For a spectral slope of CRs close to $\alpha=2.1-2.2$ as suggested by shock acceleration, we find that these UHECR sources contribute the dominant fraction of both the isotropic $\gamma$-ray background and of the extragalactic part of the astrophysical neutrino signal observed by IceCube.
We investigate the high-redshift evolution of the restframe UV-luminosity function (LF) of galaxies via hydrodynamical cosmological simulations, coupled with an emulated observational astronomy pipeline that provides a direct comparison with observations. We do this by creating mock images and synthetic galaxy catalogs of approximately 100 square arcminute fields from the numerical model at redshifts ~ 4.5 to 10.4. We include the effects of dust extinction and the point spread function (PSF) for the Hubble WFC3 camera for comparison with space observations. We also include the expected zodiacal background to predict its effect on space observations, including future missions such as the James Webb Space Telescope (JWST). When our model catalogs are fitted to Schechter function parameters, we predict that the faint-end slope alpha of the LF evolves as alpha = -1.16 - 0.12 z over the redshift range z ~ 4.5 to 7.7, in excellent agreement with observations from e.g., Hathi et al. (2010). However, for redshifts z ~ 6 to 10.4, alpha(z) appears to display a shallower evolution, alpha = -1.79 - 0.03 z. Augmenting the simulations with more detailed physics - specifically stellar winds and supernovae (SN) - produces similar results. The model shows an overproduction of galaxies, especially at faint magnitudes, compared with the observations, although the discrepancy is reduced when dust extinction is taken into account.
We propose a light dark matter search experiment using an SOI pixel detector (SOIPIX). The event-driven SOIPIX can be a powerful tool for detecting light WIMPs because of its low energy threshold (< 1 keV) and high timing resolution (few {\mu}s). In this study, we evaluate the performance of an SOIPIX prototype detector and we examine the required specifications of SOIPIX for our target sensitivity.
Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion $\omega\sim k^n$ ($n=2,3,\ldots$), whose naturalness is protected by polynomial shift symmetries. Here we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of $n$ changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.
In this work we consider how the appearance of pseudoscalar condensates in a star may possibly influence its cooling rate and other properties. We make no particular assumption on the origin and characteristics of these possible condensates; they can origin from a large concentration of axions or being due to more traditional pion-like condensates in compact neutron stars. We adopt the hypothesis that in regions where the pseudoscalar density gradient is large the properties of photons and fermions are governed by the usual Lagrangian extended with a Chern-Simons interaction for photons and a constant axial field for fermions. We find that these new interactions produce non-trivial reflection coefficients both for photons and fermions in regions where the pseudoscalar has a non-zero gradient. A varying pseudoscalar density may also lead to fermion instability and modify some properties of the Fermi sea. We speculate that some of these modifications could not only influence the star cooling rate but also have remarkable observable consequences. While quantitative results may depend on precise astrophysical details, most of the consequences are quite universal and consideration should be given to this possibility.
Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasi-equilibrium configurations and dynamical evolutions. In this article, we construct quasi-equilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the SGRID code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity reduced data; we present the possibility of computing data for significantly unequal-mass binaries; and we create equal-mass binaries with individual compactness up to 0.23. As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a $q=2.06$ mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. We find that mass transfer from the companion star sets in a few revolutions before merger and a rest mass of $\sim10^{-2}M_\odot$ is transferred between the two stars. This configuration also ejects a large amount of material during merger, imparting a substantial kick to the remnant. Second, we simulate the first merger of a precessing binary neutron star. We present the dominant modes of the gravitational waves for the precessing simulation, where a clear imprint of the precession is visible in the (2,1) mode. Finally, we quantify the effect of an eccentricity reduction procedure on the gravitational waveform. The procedure improves the waveform quality and should be employed in future precision studies, but also other errors, notably truncation errors, need to be reduced in order for the improvement due to eccentricity reduction to be effective. [abridged]
We report an improved low-energy extrapolation of the cross section for the process Beryllium-7+proton -> Boron-8+photon, which determines the Boron-8 neutrino flux from the Sun. Our extrapolant is derived from Halo Effective Field Theory (EFT) at next-to-leading order. We apply Bayesian methods to determine the EFT parameters and the low-energy S-factor, using measured cross sections and scattering lengths as inputs. Asymptotic normalization coefficients of Boron-8 are tightly constrained by existing radiative capture data, and contributions to the cross section beyond external direct capture are detected in the data at E < 0.5 MeV. Most importantly, the S-factor at zero energy is constrained to be S(0)= 21.3 + - 0.7 eV b, which is an uncertainty smaller by a factor of two than previously recommended. That recommendation was based on the full range for S(0) obtained among a discrete set of models judged to be reasonable. In contrast, Halo EFT subsumes all models into a controlled low-energy approximant, where they are characterized by nine parameters at next-to-leading order. These are fit to data, and marginalized over via Monte Carlo integration to produce the improved prediction for S(E).
In this paper, we explore a novel observational signature of gravitational corrections during slow-roll inflation. We study the coupling of the inflaton field to higher-curvature tensors in models with a minimal breaking of conformal symmetry. In that case, the most general correction to the tensor two-point function is captured by a coupling to the square of the Weyl tensor. We show that these scenarios lead to a correction to the tilt of the tensor power spectrum and hence a violation of the tensor consistency condition. We arrive at the same conclusion through an analysis in conformal perturbation theory.
This work addresses the question of the stability of stratified, spatially periodic shear flows at low P\'eclet number but high Reynolds number. This little-studied limit is motivated by astrophysical systems, where the Prandtl number is often very small. Furthermore, it can be studied using a reduced set of "low-P\'eclet-number equations" proposed by Lignieres [Astronomy & Astrophysics, 348, 933-939, 1999]. Through a linear stability analysis, we first determine the conditions for instability to infinitesimal perturbations. We formally extend Squire's theorem to the low-P\'eclet-number equations, which shows that the first unstable mode is always two-dimensional. We then perform an energy stability analysis of the low-P\'eclet-number equations and prove that for a given value of the Reynolds number, above a critical strength of the stratification, any smooth periodic shear flow is stable to perturbations of arbitrary amplitude. In that parameter regime, the flow can only be laminar and turbulent mixing does not take place. Finding that the conditions for linear and energy stability are different, we thus identify a region in parameter space where finite-amplitude instabilities could exist. Using direct numerical simulations, we indeed find that the system is subject to such finite-amplitude instabilities. We determine numerically how far into the linearly stable region of parameter space turbulence can be sustained.
R-process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are beta-decay half-lives of neutron rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. We use a fully self-consistent covariant density functional theory (CDFT) framework to provide a table of $\beta$-decay half-lives and $\beta$-delayed neutron emission probabilities, including first-forbidden transitions. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced, both for even-even, odd-A and odd-odd nuclei, in particular for short-lived nuclei.
For a large class of scalar-tensor-like modified gravity whose action contains nonminimal couplings between a scalar field $\phi(x^\alpha)$ and generic curvature invariants $\mathcal{R}$ beyond the Ricci scalar $R=R^\alpha_{\;\;\alpha}$, we prove the covariant invariance of its field equation and confirm/prove the local energy-momentum conservation. These $\phi(x^\alpha)-\mathcal{R}$ coupling terms break the symmetry of diffeomorphism invariance under a particle transformation, which implies that the solutions of the field equation should satisfy the consistency condition $\mathcal{R}\equiv 0$ when $\phi(x^\alpha)$ is nondynamical and massless. Following this fact and based on the accelerated expansion of the observable Universe, we propose a primary test to check the viability of the modified gravity to be an effective dark energy, and a simplest example passing the test is the "Weyl/conformal dark energy".
The proposed NEWS apparatus, a spherical detector with a small central electrode sensor operating as a proportional counter, promises to explore new swaths of the direct detection parameter space in the GeV and sub-GeV Dark Matter particle mass range by employing very light nuclear targets, such as H and He, and by taking advantage of a very low (sub-keV) energy threshold. Here we discuss and study two example classes of Dark Matter models that will be tested with NEWS: GeV-scale millicharged Dark Matter, and a GeV-Dirac Fermion Dark Matter model with a light (MeV-GeV) scalar or vector mediator, and indicate the physical regions of parameter space the experiment can probe.
Links to: arXiv, form interface, find, astro-ph, recent, 1507, contact, help (Access key information)
The chemical composition of multiple populations in the massive globular cluster (GC) NGC~2808 is addressed with the homogeneous abundance re-analysis of 140 red giant branch (RGB) stars. UVES spectra for 31 stars and GIRAFFE spectra for the other giants were analysed with the same procedures used for about 2500 giants in 23 GCs in our FLAMES survey, deriving abundances of Fe, O, Na, Mg, Si, Ca, Ti, Sc, Cr, Mn, and Ni. Iron, elements from alpha-capture, and in the Fe-group do not show intrinsic scatter. On our UVES scale the metallicity of NGC~2808 is [Fe/H]=-1.129+/-0.005+/-0.034$ (+/-statistical +/-systematic error) with sigma=0.030 (31 stars). Main features related to proton-capture elements are retrieved, but the improved statistics and the smaller associated internal errors allow to uncover five distinct groups of stars along the Na-O anticorrelation. We observe large depletions in Mg, anticorrelated with enhancements of Na and also Si, suggestive of unusually high temperatures for proton-captures. About 14% of our sample is formed by giants with solar or subsolar [Mg/Fe] ratios. Using the [Na/Mg] ratios we confirm the presence of five populations with different chemical composition, that we called P1, P2, I1, I2, and E in order of decreasing Mg and increasing Na abundances. Statistical tests show that the mean ratios in any pair of groups cannot be extracted from the same parent distribution. The overlap with the five populations recently detected from UV photometry is good but not perfect, confirming that more distinct components probably exist in this complex GC.
Panchromatic spectral energy distribution (SED) fitting is a critical tool for determining the physical properties of distant galaxies, such as their stellar mass and star formation rate. One widely used method is the publicly available MAGPHYS code. We build on our previous analysis (Hayward & Smith 2015) by presenting some modifications which enable MAGPHYS to automatically estimate galaxy star formation histories (SFHs), including uncertainties, based on ultra-violet to far-infrared photometry. We use state-of-the art synthetic photometry derived by performing three-dimensional dust radiative transfer on hydrodynamic simulations of isolated disc and merging galaxies to test how well the modified MAGPHYS is able to recover SFHs under idealised conditions, where the true SFH is known. We find that while the SFH of the model with the best fit to the synthetic photometry is a poor representation of the true SFH (showing large variations with the line-of-sight to the galaxy and spurious bursts of star formation), median-likelihood SFHs generated by marginalising over the default MAGPHYS libraries produce robust estimates of the smoothly-varying isolated disk simulation SFHs. This preference for the median-likelihood SFH is quantitatively underlined by our estimates of $\chi^2_{{\rm SFH}}$ (analogous to the $\chi^2$ goodness-of-fit estimator) and $\Delta M/M$ (the integrated absolute mass discrepancy between the model and true SFH) that strongly prefer the median-likelihood SFHs over those that best fit the UV-to-far-IR photometry. In contrast, we are unable to derive a good estimate of the SFH for the merger simulations (either best-fit or median-likelihood) despite being able to obtain a reasonable fit to the simulated photometry, likely because the analytic SFHs with bursts superposed in the standard MAGPHYS library are insufficiently general/realistic.
We combine deep X-ray survey data from the Chandra observatory and the wide-area/shallow XMM-XXL field to estimate the AGN X-ray luminosity function in the redshift range z=3-5. The sample consists of nearly 340 sources with either photometric (212) or spectroscopic (128) redshift in the above range. The combination of deep and shallow survey fields provides a luminosity baseline of three orders of magnitude, Lx(2-10keV)~1e43-1e46erg/s at z>3. We follow a Bayesian approach to determine the binned AGN space density and explore their evolution in a model-independent way. Our methodology accounts for Poisson errors in the determination of X-ray fluxes and uncertainties in photometric redshift estimates. We demonstrate that the latter is essential for unbiased measurement of space densities. We find that the AGN X-ray luminosity function evolves strongly between the redshift intervals z=3-4 and z=4-5. There is also suggestive evidence that the amplitude of this evolution is luminosity dependent. The space density of AGN with Lx<1e45erg/s drops by a factor of 5 between the redshift intervals above, while the evolution of brighter AGN appears to be milder. Comparison of our X-ray luminosity function with that of UV/optical selected QSOs at similar redshifts shows broad agreement at bright luminosities, Lx>1e45erg/s. The faint-end slope of UV/optical luminosity functions however, is steeper than for X-ray selected AGN. This implies that the type-I AGN fraction increases with decreasing luminosity at z>3, opposite to trends established at lower redshift. We also assess the significance of AGN in keeping the hydrogen ionised at high redshift. Our X-ray luminosity function yields ionising photon rate densities that are insufficient to keep the Universe ionised at redshift z>4. A source of uncertainty in this calculation is the escape fraction of UV photons for X-ray selected AGN.
We present a method to test the isotropy of the magnitude-redshift relation of Type Ia Supernovae (SNe Ia) and single out the most discrepant direction (in terms of the signal-to-noise ratio) with respect to the all-sky data. Our technique accounts for possible directional variations of the corrections for SNe Ia and yields all-sky maps of the best-fit cosmological parameters with arbitrary angular resolution. To show its potential, we apply our method to the recent Union2.1 compilation, building maps with three different angular resolutions. We use a Monte Carlo method to estimate the statistical significance with which we could reject the null hypothesis that the magnitude-redshift relation is isotropic based on the properties of the observed most discrepant directions. We find that, based on pure signal-to-noise arguments, the null hypothesis cannot be rejected at any meaningful confidence level. However, if we also consider that the strongest deviations in the Union2.1 sample closely align with the dipole temperature anisotropy of the cosmic microwave background, we find that the null hypothesis should be rejected at the $95-99$ per cent confidence level, slightly depending on the angular resolution of the study. If this result is not due to a statistical fluke, it might either indicate that the SN data have not been cleaned from all possible systematics or even point towards new physics. We finally discuss future perspectives in the field for achieving larger and more uniform data sets that will vastly improve the quality of the results and optimally exploit our method.
We use the Geneva Syclist isochrone models that include the effects of stellar rotation to investigate the role that rotation has on the resulting colour-magnitude diagram (CMD) of young and intermediate age clusters. We find that if a distribution of rotation velocities exists within the clusters, rotating stars will remain on the main sequence (MS) for longer, appearing to be younger than non-rotating stars within the same cluster. This results in an extended main sequence turn-off (eMSTO) that appears at young ages ($\sim30$~Myr) and lasts beyond 1~Gyr. If this eMSTO is interpreted as an age spread, the resulting age spread is proportional to the age of the cluster, i.e. young clusters ($<100$~Myr) appear to have small age spreads (10s of Myr) whereas older clusters ($\sim1$~Gyr) appear to have much larger spreads, up to a few hundred Myr. We compare the predicted spreads for a sample of rotation rates to observations of young and intermediate age clusters, and find a strong correlation between the measured 'age spread' and the age of the cluster, in good agreement with models of stellar rotation. This suggests that the 'age spreads' reported in the literature may simply be the result of a distribution of stellar rotation velocities within clusters.
Information on globular clusters (GC) formation mechanisms can be gathered by studying the chemical signature of the multiple populations that compose these stellar systems. In particular, we are investigating the anticorrelations among O, Na, Al, and Mg to explore the influence of cluster mass and environment on GCs in the Milky Way and in extragalactic systems. We present here the results obtained on NGC 6139 which, on the basis of its horizontal branch morphology, had been proposed to be dominated by first-generation stars. In our extensive study based on high resolution spectroscopy, the first for this cluster, we found a metallicity of [Fe/H]= -1.579 +/- 0.015 +/- 0.058 (rms=0.040 dex, 45 bona fide member stars) on the UVES scale defined by our group. The stars in NGC 6139 show a chemical pattern normal for GCs, with a rather extended Na-O (and Mg-Al) anticorrelation. NGC 6139 behaves like expected from its mass and contains a large fraction (about two thirds) of second-generation stars.
Stars born from the same molecular cloud should be nearly homogeneous in their element abundances. The concept of chemical tagging is to identify members of disrupted clusters by their clustering in element abundance space. Chemical tagging requires large samples of stars with precise abundances for many individual elements. With uncertainties of $\sigma_{[X/{\rm Fe}]}$ and $\sigma_{\rm [Fe/H]} \simeq 0.05$ for 10 elements measured for $> 10^4$ stars, the APOGEE DR12 spectra may be the first well-suited data set to put this idea into practice. We find that even APOGEE data offer only $\sim 500$ independent volume elements in the 10-dimensional abundance space, when we focus on the $\alpha$-enhanced Galactic disk. We develop and apply a new algorithm to search for chemically homogeneous sets of stars against a dominant background. By injecting star clusters into the APOGEE data set we show that chemically homogeneous clusters with masses $\gtrsim 3 \times 10^7 \, {\rm M}_\odot$ would be easily detectable and yet no such signal is seen in the data. By generalizing this approach, we put a first abundance-based constraint on the cluster mass function for the old disk stars in the Milky Way.
We present the discovery of three new Milky Way satellites from our search for compact stellar overdensities in the photometric catalog of the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS 1, or PS1) 3pi survey. The first satellite, Laevens 3, is located at a heliocentric distance of d=67+/-3 kpc. With a total magnitude of Mv=-4.4+/-0.3 and a half-light radius rh=7+/-2 pc, its properties resemble those of outer halo globular clusters. The second system, Draco II/Laevens 4 (Dra II), is a closer and fainter satellite (d~20 kpc, Mv =-2.9+/-0.8), whose uncertain size (rh = 19 +8/-6 pc) renders its classification difficult without kinematic information; it could either be a faint and extended globular cluster or a faint and compact dwarf galaxy. The third satellite, Sagittarius II/Laevens 5 (Sgr II), has an ambiguous nature as it is either the most compact dwarf galaxy or the most extended globular cluster in its luminosity range (rh = 37 +9/-8 pc and Mv=-5.2+/-0.4). At a heliocentric distance of 67+/-5 kpc, this satellite lies intriguingly close to the expected location of the trailing arm of the Sagittarius stellar stream behind the Sagittarius dwarf spheroidal galaxy (Sgr dSph). If confirmed through spectroscopic follow up, this connection would locate this part of the trailing arm of the Sagittarius stellar stream that has so far gone undetected. It would further suggest that Sgr II was brought into the Milky Way halo as a satellite of the Sgr dSph.
We present the first observations of H$^{13}$CN$(1-0)$, H$^{13}$CO$^+(1-0)$ and SiO$(2-1)$ in NGC 6240, obtained with the IRAM PdBI. Combining a Markov Chain Monte Carlo (MCMC) code with Large Velocity Gradient (LVG) modelling we derive posterior probability density functions (pdfs) for the dense gas parameters, including mass$-$luminosity conversion factors, finding a large amount of dense molecular gas $(\sim10^{10}M_\odot)$ in cold, dense clouds ($T_k\sim10$ K, $n_{{\rm H}_2}\sim10^6$ cm$^{-3}$) with a small volume filling factor $(<0.002)$. Including literature CO data we present simultaneously fitted multi-species, two phase models which spontaneously separate into a hot, diffuse phase ($\log_{10}\left(T_k / [{\rm K}]\right) = 3.2^{3.3}_{3.1}$, $\log_{10}\left(n_{{\rm H}_2} / [{\rm cm}^{-3}]\right)=3.6^{3.8}_{3.5}$) and a cold, dense phase ($\log_{10}\left(T_k / [{\rm K}]\right) = 0.9^{0.9}_{0.8}$, $\log_{10}\left(n_{{\rm H}_2} / [{\rm cm}^{-3}]\right)=6.6^{6.8}_{6.3}$). A restricted three phase model is used to include the ubiquitous diffuse, CO bearing gas phase and we derive a global $\alpha_{\rm CO}=1.5^{7.1}_{1.1}$ with gas masses $\log_{10}\left(M / [M_\odot]\right)=10.1_{10.0}^{10.8}$, dominated by the dense gas. We find that the [$^{12}$C]/[$^{13}$C] ratio is only slightly elevated ($98^{230}_{65}$), contrary to the very high [CO]/[$^{13}$CO] ratio (300-500) reported in the literature. The high [HCN]/[H$^{13}$CN] and [HCO$^+$]/[H$^{13}$CO$^+$] abundance ratios $(300^{500}_{200})$ we find are due to isotope fractionation in the cold, dense clouds.
We investigate whether the predictions of single-field models of inflation are robust under the introduction of additional scalar degrees of freedom, and whether these extra fields change the potentials for which the data show the strongest preference. We study the situation where an extra light scalar field contributes both to the total curvature perturbations and to the reheating kinematic properties. Ten reheating scenarios are identified, and all necessary formulas allowing a systematic computation of the predictions for this class of models are derived. They are implemented in the public library ASPIC, which contains more than 75 single-field potentials. This paves the way for a forthcoming full Bayesian analysis of the problem. A few representative examples are displayed and discussed.
ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density $\rho_{\mu} > 5.9~$m$^{-2}$. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above $10^{16}$ eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.
The two reaction wheel K2 mission promises and has delivered new discoveries in the stellar and exoplanet fields. However, due to the loss of accurate pointing, it also brings new challenges for the data reduction processes. In this paper, we describe a new reduction pipeline for extracting high precision photometry from the K2 dataset, and present public light curves for the K2 Campaign 1 target pixel dataset. Key to our reduction is the derivation of global astrometric solutions from the target stamps, from which accurate centroids are passed on for high precision photometry extraction. We extract target light curves for sources from a combined UCAC4 and EPIC catalogue -- this includes not only primary targets of the K2 campaign 1, but also any other stars that happen to fall on the pixel stamps. We provide the raw light curves, and the products of various detrending processes aimed at removing different types of systematics. Our astrometric solutions achieve a median residual of ~ 0.13". For bright stars, our best 6.5 hour precision for raw light curves is ~20 parts per million (ppm). For our detrended light curves, the best 6.5 hour precisions achieved is ~15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. Example light curves of transiting planets and a Cepheid variable candidate, are also presented. We make all light curves public, including the raw and de-trended photometry, at this http URL
The Integrated Sachs-Wolfe (ISW) effect predicts additional anisotropies in the Cosmic Microwave Background due to time variation of the gravitational potential when the expansion of the universe is not matter dominated. The ISW effect is therefore expected in the early universe, due to the presence of relativistic particles at recombination, and in the late universe, when dark energy starts to dominate the expansion. Deviations from the standard picture can be parameterized by $A_{eISW}$ and $A_{\ell ISW}$, which rescale the overall amplitude of the early and late ISW effects. Analyzing the most recent CMB temperature spectra from the Planck 2015 release, we detect the presence of the early ISW at high significance with $A_{eISW} = 1.06\pm0.04$ at 68% CL and an upper limit for the late ISW of $A_{\ell ISW} < 1.1$ at 95% CL. The inclusion of the recent polarization data from the Planck experiment erases such $1.5\sigma$ hint for $A_{eISW}\neq 1$. When considering the recent detections of the late ISW coming from correlations between CMB temperature anisotropies and weak lensing, a value of $A_{\ell ISW}=0.85\pm0.21$ is predicted at 68% CL, showing a $4\sigma$ evidence. We discuss the stability of our result in the case of an extra relativistic energy component parametrized by the effective neutrino number $N_{eff}$ and of a CMB lensing amplitude $A_L$.
We present the results of a survey for intervening HI 21-cm absorbers at intermediate and low redshift (0<z<1.2). For our total sample of 24 systems, we obtained high quality data for 17 systems, the other seven being severely affected by radio frequency interference (RFI). Five of our targets are low redshift (z<0.17) optical galaxies with small impact parameters (<20 kpc) toward radio-bright background sources. Two of these were detected in 21-cm absorption, showing narrow, high optical depth absorption profiles, the narrowest having a velocity dispersion of only 1.5 km/s, which puts an upper limit on the kinetic temperature of T_k<270 K. Combining our observations with results from the literature, we measure a weak anti-correlation between impact parameter and integral optical depth in local (z<0.5) 21-cm absorbers. Of eleven CaII and MgII systems searched, two were detected in 21-cm absorption, and six were affected by RFI to a level that precludes a detection. For these two systems at z~0.6 we measure spin temperatures of T_s=(65+/-17) K and T_s>180 K. A subset of our systems were also searched for OH absorption, but no detections were made.
We report on the first Interface Region Imaging Spectrograph (IRIS) study of cool transition region loops. This class of loops has received little attention in the literature. A cluster of such loops was observed on the solar disk in active region NOAA11934, in the Si IV 1402.8 \AA\ spectral raster and 1400 \AA\ slit-jaw (SJ) images. We divide the loops into three groups and study their dynamics and interaction. The first group comprises relatively stable loops, with 382--626\,km cross-sections. Observed Doppler velocities are suggestive of siphon flows, gradually changing from -10 km/s at one end to 20 km/s at the other end of the loops. Nonthermal velocities from 15 to 25 km/s were determined. These physical properties suggest that these loops are impulsively heated by magnetic reconnection occurring at the blue-shifted footpoints where magnetic cancellation with a rate of $10^{15}$ Mx/s is found. The released magnetic energy is redistributed by the siphon flows. The second group corresponds to two footpoints rooted in mixed-magnetic-polarity regions, where magnetic cancellation occurred at a rate of $10^{15}$ Mx/s and line profiles with enhanced wings of up to 200 km/s were observed. These are suggestive of explosive-like events. The Doppler velocities combined with the SJ images suggest possible anti-parallel flows in finer loop strands. In the third group, interaction between two cool loop systems is observed. Evidence for magnetic reconnection between the two loop systems is reflected in the line profiles of explosive events, and a magnetic cancellation rate of $3\times10^{15}$ Mx/s observed in the corresponding area. The IRIS observations have thus opened a new window of opportunity for in-depth investigations of cool transition region loops. Further numerical experiments are crucial for understanding their physics and their role in the coronal heating processes.
Hierarchical assembly models predict a population of supermassive black hole (SMBH) binaries. These are not resolvable by direct imaging but may be detectable via periodic variability (or nanohertz frequency gravitational waves). Following our detection of a 5.2 year periodic signal in the quasar PG 1302-102 (Graham et al. 2015), we present a novel analysis of the optical variability of 243,500 known spectroscopically confirmed quasars using data from the Catalina Real-time Transient Survey (CRTS) to look for close (< 0.1 pc) SMBH systems. Looking for a strong Keplerian periodic signal with at least 1.5 cycles over a baseline of nine years, we find a sample of 111 candidate objects. This is in conservative agreement with theoretical predictions from models of binary SMBH populations. Simulated data sets, assuming stochastic variability, also produce no equivalent candidates implying a low likelihood of spurious detections. The periodicity seen is likely attributable to either jet precession, warped accretion disks or periodic accretion associated with a close SMBH binary system. We also consider how other SMBH binary candidates in the literature appear in CRTS data and show that none of these are equivalent to the identified objects. Finally, the distribution of objects found is consistent with that expected from a gravitational wave-driven population. This implies that circumbinary gas is present at small orbital radii and is being perturbed by the black holes. None of the sources is expected to merge within at least the next century. This study opens a new unique window to study a population of close SMBH binaries that must exist according to our current understanding of galaxy and SMBH evolution.
Forbes et al. recently used the Hubble Space Telescope to localize hundreds of candidate star clusters in NGC 1023, an early-type galaxy at a distance of 11.1 Mpc. Old stars dominate the light of 92% of the clusters and intermediate-age stars dominate the light of the remaining 8%. Theory predicts that clusters with such ages can host intermediate-mass black holes (IMBHs) with masses M_BH \lesssim 10^5 M_sun. To investigate this prediction, we used 264 s of 5.5 GHz data from the Karl G. Jansky Very Large Array (VLA) to search for the radiative signatures of IMBH accretion from 337 candidate clusters in an image spanning 492 arcsec (26 kpc) with a resolution of 0.40 arcsec (22 pc). None of the individual clusters are detected, nor are weighted-mean image stacks of the 311 old clusters, the 26 intermediate-age clusters, and the 20 clusters with stellar masses M_star \gtrsim 7.5 x 10^5 M_sun. The clusters thus lack radio analogs of HLX-1, a strong IMBH candidate in a cluster in the early-type galaxy ESO 243-49. This suggests that HLX-1 is accreting gas related to its cluster's light-dominating young stars. Alternatively, the HLX-1 phenomenon could be so rare that no radio analog is expected in NGC 1023. Also, using a formalism heretofore applied to star clusters in the Milky Way, the radio-luminosity upper limit for the massive-cluster stack corresponds to a mean 3$\sigma$ IMBH mass of M_BH(massive) < 2.3 x 10^5 M_sun, suggesting mean black-hole mass fractions of M_BH(massive)/M_star < 0.05-0.29.
We investigate the non-spherical density structure of dark halos of the dwarf spheroidal (dSph) galaxies in the Milky Way and Andromeda galaxies, based on revised axisymmetric mass models from our previous work. The models we adopt here fully take into account velocity anisotropy of tracer stars confined within a flattened dark halo. Applying our models to the available kinematic data of the twelve bright dSphs, we find that these galaxies associate, in general, elongated dark halos even considering the effect of this velocity anisotropy of stars. We also find that the best-fit parameters, especially for the shapes of dark halos and velocity anisotropy, are susceptible to both the availability of velocity data in the outer regions and the effect of the lack of sample stars in each spatial bin. Thus, to obtain more realistic limits on dark halo structures, we require photometric and kinematic data over much larger areas in the dSphs than previously explored. The results obtained from the currently available data suggest that the shapes of dark halos in the dSphs are more elongated than those of $\Lambda$CDM subhalos. This mismatch needs to be solved by theory including baryon components and the associated feedback to dark halos as well as by further observational limits in larger areas of dSphs. It is also found that more diffuse dark halos may have undergone consecutive star-formation history, thereby implying that dark-halo structure plays an important role in star-formation activity.
Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact Array (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the radio with fluxes of 67+/-17 microJy and 77+/-16 microJy, respectively, and B5 is marginally detected at 3 sigma (51+/-16 microJy). For all detected sources, their radio positions are consistent with the central positions of the LABs. B6 and B7 are obviously also detected in the FIR. By fitting the data with different templates, we obtained redshifts of 2.20$^{+0.30}_{-0.35}$ for B6 and 2.20$^{+0.45}_{-0.30}$ for B7 which are consistent with the redshift of the lyman alpha emission within uncertainties, indicating that both FIR sources are likely associated with the LABs. The associated FIR emission in B6 and B7 and high star formation rates strongly favor star formation in galaxies as an important powering source for the lyman alpha emission in both LABs. However, the other two, B1 and B5, are predominantly driven by the active galactic nuclei or other sources of energy still to be specified, but not mainly by star formation. In general, the LABs are powered by quite diverse sources of energy.
Future large arrays of telescopes, used as intensity interferometers, can be used to image the surfaces of stars with unprecedented angular resolution. Fast-rotating, hot stars are particularly attractive targets for intensity interferometry since shorter (blue) wavelength observations do not pose additional challenges. Starting from realistic surface brightness simulations of fast-rotating stars, we discuss the capabilities of future intensity interferometers for imaging effects such as gravity darkening and rotational deformation. We find that two-telescope intensity correlation data allow reasonably good imaging of these phenomena, but can be improved with additional higher order (e.g. three-telescope) correlation data, which contain some Fourier phase information.
The smaller the angular scales on which the anisotropies of the cosmic microwave background (CMB) are probed the more important their distortion due to gravitational lensing becomes. Here we investigate the maxima and minima of the CMB lensing deflection field using general extreme value statistics. Since general extreme value statistics applies to uncorrelated data in first place we consider appropriately low-pass filtered deflection maps. Besides the suppression of correlations filtering is required for another reason: The lensing field itself is not directly observable but needs to be (statistically) reconstructed from the lensed CMB by means of a quadratic estimator. This reconstruction, though, is noise dominated and therefore requires smoothing, too. In idealized Gaussian realizations as well as in realistically reconstructed data we find that both maxima and minima of the deflection angle components follow consistently a general extreme value distribution of Weibull-type. However, its shape, location and scale parameters vary significantly between different realizations. The statistics' potential power to constrain cosmological models appears therefore rather limited.
Recently, S.W. Kahler studied the solar energetic particle (SEP) event timescales associated with coronal mass ejections (CMEs) from spacecraft data analysis. They obtained different timescales of SEP events, such as TO, the onset time from CME launch to SEP onset, TR, the rise time from onset to half the peak intensity (0.5Ip), and TD, the duration of the SEP intensity above 0.5Ip. In this work, we solve SEPs transport equation considering ICME shocks as energetic particle sources. Our simulations show similar results to Kahler's spacecraft data analysis that the weighted average of TD increases with both CME speed and width. Besides, our simulations show the results which were not achieved from the observation data analysis, i.e., TD is directly dependent on CME speed, but not dependent on CME width.
We have summarized the current understanding and recently obtained findings about WZ Sge-type dwarf novae. We also reviewed the historical development of the understanding of these objects, provided the modern criteria, and reviewed the past research in relation to superhumps, early superhumps and the outburst mechanism. We regard that the presence of early superhumps (reflecting the 2:1 resonance) and long or multiple rebrightenings are the best distinguishing properties of WZ Sge-type dwarf novae. We provided the updated list of nearly 100 WZ Sge-type dwarf novae mainly based on the data obtained by the VSNET Collaboration up to Kato et al. (2015, arXiv/1507.05610) and discussed the statistics. We could detect early superhumps with amplitude larger than 0.02 mag in 63% of the studied WZ Sge-type dwarf novae, which makes early superhumps a useful distinguishing feature for WZ Sge-type dwarf novae. Theoretical light curves of early superhumps generally appear to reproduce the existence of many low-amplitude objects, supporting the geometrical origin of early superhumps. Using the recently developed method of measuring mass ratios using developing phase of superhumps (stage A superhumps), we showed that there is a linear relation between the period variation of superhumps and the mass ratio in WZ Sge-type objects. By using this relation, we were able to draw an evolutionary picture of a large number of WZ Sge-type and identified the type of outburst to be an evolutionary sequence: type D->C->A->B->E, with some outliers for type-B objects. The duration of stage A (evolutionary phase) of superhumps is also well correlated with the estimated mass ratios. By using mass ratios from stage A superhumps and durarion of stage A, we have been able to identify best candidates for the period bouncer.
We assess a model of late cosmic reionization in which the ionizing background radiation arises entirely from high redshift quasars and other active galactic nuclei (AGNs). The low optical depth to Thomson scattering reported by the Planck Collaboration pushes the redshift of instantaneous reionization down to z=8.8^{+1.7}_{-1.4} and greatly reduces the need for significant Lyman-continuum emission at very early times. We show that, if recent claims of a numerous population of faint AGNs at z=4-6 are upheld, and the high inferred AGN comoving emissivity at these epochs persists to higher redshifts, then active galaxies may drive the reionization of hydrogen and helium with little contribution from normal star-forming galaxies. We discuss an AGN-dominated scenario that satisfies a number of observational constraints: the HI photoionization rate is relatively flat over the range 2<z<5, hydrogen gets fully reionized by z=5.7, and the integrated Thomson scattering optical depth is tau=0.056, in agreement with measurements based on the Lya opacity of the intergalactic medium (IGM) and Cosmic Microwave Background (CMB) polarization. It is a prediction of the model that helium gets doubly reionized before redshift 4, the heat input from helium reionization dominates the thermal balance of the IGM after hydrogen reionization, and z>5 AGNs provide a significant fraction of the unresolved X-ray background at 2 keV. Singly- and doubly-ionized helium contribute about 13% to tau, and the HeIII volume fraction is already 50% when hydrogen becomes fully reionized.
I first review the status of Digital Sky Surveys. The focus will be on extragalactic surveys with an area of more than 100 sq.deg. The Sloan Digital Sky Survey is the archetype of such imaging surveys and it is its great success that has prompted great activity in this field. The latest surveys explore wider, fainter and higher resolution and also a longer wavelength range than SDSS. Many of these surveys overlap particularly in the S Hemisphere where we now have Pan-STARRS, DES and the ESO VST surveys, and our aim here is to compare their properties. Since there is no dedicated article on the VST ATLAS in this symposium, we shall especially review the properties of this particular survey. This easily fits onto our other main focus which is to compare overlapping Southern Surveys and see how they best fit with the available NIR imaging data. We conclude that the Southern Hemisphere will soon overtake the North in terms of multiwavelength imaging. However we note that the South has more limited opportunities for spectroscopic follow-up and this weakness will persist during the LSST era. Some new perspectives are offered on this and other aspects of survey astronomy.
Nearly 50 post-common-envelope (post-CE) close binary central stars of planetary nebulae (CSPNe) are now known. Most contain either main sequence or white dwarf (WD) companions that orbit the WD primary in around 0.1-1.0 days. Only PN~G222.8-04.2 and NGC~5189 have post-CE CSPNe with a Wolf-Rayet star primary (denoted [WR]), the low-mass analogues of massive Wolf-Rayet stars. It is not well understood how H-deficient [WR] CSPNe form, even though they are relatively common, appearing in over 100 PNe. The discovery and characterisation of post-CE [WR] CSPNe is essential to determine whether proposed binary formation scenarios are feasible to explain this enigmatic class of stars. The existence of post-CE [WR] binaries alone suggests binary mergers are not necessarily a pathway to form [WR] stars. Here we give an overview of the initial results of a radial velocity monitoring programme of [WR] CSPNe to search for new binaries. We discuss the motivation for the survey and the associated strong selection effects. The mass functions determined for PN~G222.8-04.2 and NGC~5189, together with literature photometric variability data of other [WR] CSPNe, suggest that of the post-CE [WR] CSPNe yet to be found, most will have WD or subdwarf O/B-type companions in wider orbits than typical post-CE CSPNe (several days or months c.f. less than a day).
Nearly 50 post-common-envelope (post-CE) close binary central stars of planetary nebulae (CSPNe) are now known. Most contain either main sequence or white dwarf (WD) companions that orbit the WD primary in around 0.1-1.0 days. Only PN~G222.8-04.2 and NGC~5189 have post-CE CSPNe with a Wolf-Rayet star primary (denoted [WR]), the low-mass analogues of massive Wolf-Rayet stars. It is not well understood how H-deficient [WR] CSPNe form, even though they are relatively common, appearing in over 100 PNe. The discovery and characterisation of post-CE [WR] CSPNe is essential to determine whether proposed binary formation scenarios are feasible to explain this enigmatic class of stars. The existence of post-CE [WR] binaries alone suggests binary mergers are not necessarily a pathway to form [WR] stars. Here we give an overview of the initial results of a radial velocity monitoring programme of [WR] CSPNe to search for new binaries. We discuss the motivation for the survey and the associated strong selection effects. The mass functions determined for PN~G222.8-04.2 and NGC~5189, together with literature photometric variability data of other [WR] CSPNe, suggest that of the post-CE [WR] CSPNe yet to be found, most will have WD or subdwarf O/B-type companions in wider orbits than typical post-CE CSPNe (several days or months c.f. less than a day).
We present a spectral and imaging analysis of the XMM-Newton and Chandra observations of the Seyfert 2 galaxy ESO138-G001, with the aim of characterizing the circumnuclear material responsible for the soft (0.3-2.0 keV) and hard (5-10 keV) X-ray emission. We confirm that the source is absorbed by Compton-thick gas. However, if a self-consistent model of reprocessing from cold toroidal material is used (MYTorus), a possible scenario requires the absorber to be inhomogenous, its column density along the line of sight being larger than the average column density integrated over all lines- of-sight through the torus. The iron emission line may be produced by moderately ionised iron (FeXII-FeXIII), as suggested by the shifted centroid energy and the low K{\beta}/K{\alpha} flux ratio. The soft X-ray emission is dominated by emission features, whose main excitation mechanism appears to be photoionisation, as confirmed by line diagnostics and the use of self-consistent models (CLOUDY).
PSR J102347.6+003841 is a radio pulsar system with a spin period of 1.69 ms and an orbital period of 4.75 hours. Uniquely, it undergoes periods of transient accretion from its companion star: it occupies an important position in the evolutionary track from X-ray binary to isolated millisecond radio pulsar. Here we present a spectroscopic study of this system showing late-type absorption features which match those of a G2V star. We find a semiamplitude of $286 \pm 3$ kms$^{-1}$ and a best fit orbital period of 0.1980966(1) days. We combine these measurements with optical photometry which suggests the secondary star may be underfilling its Roche lobe by between 15\% and 20\%. We weakly constrain the mass of the neutron star to be $\leq$ 2.2 M$_\odot$ at the 2$\sigma$ level. We also discuss the possible origins of the H$\alpha$ emission line in our template subtracted, averaged spectrum. Finally we present and discuss new optical photometry of J1023 taken during the recent outburst of the system.
We obtained single-phase near-infrared (NIR) magnitudes in the $J$- and $K$-band for a sample of 33 RR Lyrae stars in the Carina dSph galaxy. Applying different theoretical and empirical calibrations of the NIR period-luminosity-metallicity relation for RR Lyrae stars, we find consistent results and obtain a true, reddening-corrected distance modulus of 20.118 $\pm$ 0.017 (statistical) $\pm$ 0.11 (systematic) mag. This value is in excellent agreement with the results obtained in the context of the Araucaria Project from NIR photometry of Red Clump stars (20.165 $\pm$ 0.015) and Tip of Red Giant Branch (20.09 $\pm$ 0.03 $\pm$ 0.12 mag in $J$-band, 20.14 $\pm$ 0.04 $\pm$ 0.14 mag in $K$-band), as well as with most independent distance determinations to this galaxy. The near-infrared RR Lyrae method proved to be a reliable tool for accurate distance determination at the 5 percent level or better, particularly for galaxies and globular clusters that lack young standard candles, like Cepheids.
Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued longitudinal wavenumber $k$ at given real angular frequencies $\omega$. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of $\omega_{\rm c}$, the critical angular frequency separating trapped from leaky waves. In contrast to the standing case, propagating sausage waves are allowed for $\omega$ much lower than $\omega_{\rm c}$. However, while able to direct their energy upwards, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for $\omega \lesssim 1.5 v_{\rm Ai}/a$, where $a$ and $v_{\rm Ai}$ are the cylinder radius and the Alfv\'en speed in the cylinder, respectively. We conclude that if a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.
We obtained SOAR telescope B and V photometry of 14 star clusters and 2 associations in the Bridge tidal structure connecting the LMC and SMC. These objects are used to study the formation and evolution of star clusters and associations under tidal stresses from the Clouds. Typical star clusters in the Bridge are not richly populated and have in general relatively large diameters (~30-35 pc), being larger than Galactic counterparts of similar age. Ages and other fundamental parameters are determined with field-star decontaminated photometry. A self-consistent approach is used to derive parameters for the most-populated sample cluster NGC 796 and two young CMD templates built with the remaining Bridge clusters. We find that the clusters are not coeval in the Bridge. They range from approximately a few Myr (still related to optical HII regions and WISE and Spitzer dust emission measurements) to about 100-200 Myr. The derived distance moduli for the Bridge objects suggests that the Bridge is a structure connecting the LMC far-side in the East to the foreground of the SMC to the West. Most of the present clusters are part of the tidal dwarf candidate D 1, which is associated with an H I overdensity. We find further evidence that the studied part of the Bridge is evolving into a tidal dwarf galaxy, decoupling from the Bridge.
The Pierre Auger Observatory is the currently largest experiment dedicated to unveil the nature and origin of the highest energetic cosmic rays. The software framework 'Offline' has been developed by the Pierre Auger Collaboration for joint analysis of data from different independent detector systems used in one observatory. While reconstruction modules are specific to the Pierre Auger Observatory components of the Offline framework are also used by other experiments. The software framework has recently been extended to incorporate data from the Auger Engineering Radio Array (AERA), the radio extension of the Pierre Auger Observatory. The reconstruction of the data of such radio detectors requires the repeated evaluation of complex antenna gain patterns which significantly increases the required computing resources in the joint analysis. In this contribution we explore the usability of massive parallelization of parts of the Offline code on the GPU. We present the result of a systematic profiling of the joint analysis of the Offline software framework aiming for the identification of code areas suitable for parallelization on GPUs. Possible strategies and obstacles for the usage of GPGPU in an existing experiment framework are discussed.
We present a spectral analysis of the binary G 224-58 AB that consists of the
coolest M extreme subdwarf (esdM5.5) and a brighter primary (esdK5). This
binary may serve as a benchmark for metallicity measurement calibrations and as
a test-bed for atmospheric and evolutionary models for esdM objects.
We determine abundances primarily using high resolution optical spectra of
the primary. Other parameters were determined from the fits of synthetic
spectra computed with these abundances to the observed spectra from 0.4 to 2.5
microns for both components.
We determine \Tef =4625 $\pm$ 100 K, \logg = 4.5 $\pm$ 0.5 for the A
component and \Tef = 3200 $\pm$ 100 K, \logg = 5.0 $\pm$ 0.5, for the B
component. We obtained abundances of [Mg/H]=$-$1.51$\pm$0.08,
[Ca/H]=$-$1.39$\pm$0.03, [Ti/H]=$-$1.37$\pm$0.03 for alpha group elements and
[CrH]=$-$1.88$\pm$0.07, [Mn/H]=$-$1.96$\pm$0.06, [Fe/H]=$-$1.92$\pm$0.02,
[Ni/H]=$-$1.81$\pm$0.05 and [Ba/H]W=$-$1.87$\pm$0.11 for iron group elements
from fits to the spectral lines observed in the optical and infrared spectral
regions of the primary. We find consistent abundances with fits to the
secondary albeit at lower signal-to-noise.
Abundances of elements in \ga and \gb atmospheres cannot be described by one
metallicity parameter. The offset of $\sim$ 0.4 dex between the abundances
derived from alpha element and iron group elements corresponds with our
expectation for metal-deficient stars. We thus clarify that some indices used
to date to measure metallicities for establishing esdM stars based on CaH, MgH
and TiO band system strength ratios in the optical and H$_2$O in the infrared
relate to abundances of alpha-element group rather than to iron peak elements.
For metal deficient M dwarfs with [Fe/H] < -1.0, this provides a ready
explanation for apparently inconsistent "metallicities" derived using different
methods.
In this work, we investigate the bifurcations of relative equilibria in the gravitational potential of asteroids. A theorem concerning a conserved quantity, which is about the eigenvalues and number of relative equilibria, is presented and proved. The conserved quantity can restrict the number of non-degenerate equilibria in the gravitational potential of an asteroid. It is concluded that the number of non-degenerate equilibria in the gravitational field of an asteroid varies in pairs and is an odd number. In addition, the conserved quantity can also restrict the kinds of bifurcations of relative equilibria in the gravitational potential of an asteroid when the parameter varies. Furthermore, studies have shown that there exist transcritical bifurcations, quasi-transcritical bifurcations, saddle-node bifurcations, saddle-saddle bifurcations, binary saddle-node bifurcations, supercritical pitchfork bifurcations, and subcritical pitchfork bifurcations for the relative equilibria in the gravitational potential of asteroids. It is found that for the asteroid 216 Kleopatra, when the rotation period varies as a parameter, the number of relative equilibria changes from 7 to 5 to 3 to 1, and the bifurcations for the relative equilibria are saddle-node bifurcations and saddle-saddle bifurcations.
Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross-sections above 6x10^(-35) cm^2 for particle masses of m_chi = 2 GeV/c^2. Independent of the dark matter halo, we exclude leptophilic models as explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4 sigma confidence level, mirror dark matter at 3.6 sigma, and luminous dark matter at 4.6 sigma.
We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.
We investigated the radio wavefront of cosmic-ray air showers with LOPES measurements and CoREAS simulations: the wavefront is of approximately hyperbolic shape and its steepness is sensitive to the shower maximum. For this study we used 316 events with an energy above 0.1 EeV and zenith angles below $45^\circ$ measured by the LOPES experiment. LOPES was a digital radio interferometer consisting of up to 30 antennas on an area of approximately 200 m x 200 m at an altitude of 110 m above sea level. Triggered by KASCADE-Grande, LOPES measured the radio emission between 43 and 74 MHz, and our analysis might strictly hold only for such conditions. Moreover, we used CoREAS simulations made for each event, which show much clearer results than the measurements suffering from high background. A detailed description of our result is available in our recent paper published in JCAP09(2014)025. The present proceeding contains a summary and focuses on some additional aspects, e.g., the asymmetry of the wavefront: According to the CoREAS simulations the wavefront is slightly asymmetric, but on a much weaker level than the lateral distribution of the radio amplitude.
The high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars. Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements in different gyrochronology relations. Multiple rotation periods are interpreted as surface differential rotation (DR). We re-analyze the sample of 24,124 Kepler stars from Reinhold et al. (2013) using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series, and different segments thereof are analyzed. For more than 18,500 stars our results are consistent with the rotation periods from McQuillan et al. (2014). Thereof, more than 12,300 stars show multiple significant peaks, which we interpret as DR. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17,000 stars using different gyrochronology relations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. The derived gyrochronology ages are well constrained since more than 93.0 % of the stars seem to be younger than the Sun where calibration is most reliable. Explaining the bimodality in the age distribution is challenging, and limits accurate stellar age predictions. The existence of cool stars with almost constant rotation period over more than three years of observation might be explained by synchronization with stellar companions, or a dynamo mechanism keeping the spot configurations extremely stable.
Over the past decade, radio detection of cosmic rays has matured from small-scale prototype experiments to installations spanning several km$^2$ with more than a hundred antennas. The physics of the radio signal is well understood and simulations and measurements are in good agreement. We have learned how to extract important cosmic ray parameters such as the geometry of the air shower and the energy of the primary particle from the radio signal, and have developed very promising approaches to also determine the mass of the primary particles. At the same time, limitations have become increasingly clear. I review the progress made in the past decade and provide a personal view on further potential for future development.
Digital radio detection of cosmic rays has made tremendous progress over the past decade. It has become increasingly clear where the potential --- but also the limitations --- of the technique lie. In this article, we discuss roads that could be followed in future radio detection efforts and try to evaluate the associated prospects and challenges.
Stars are not smooth. Their photosphere is covered by a granulation pattern
associated with the heat transport by convection. The convection-related
surface structures have different size, depth, and temporal variations with
respect to the stellar type. The related activity (in addition to other
phenomena such as magnetic spots, rotation, dust, etc.) potentially causes bias
in stellar parameters determination, radial velocity, chemical abundances
determinations, and exoplanet transit detections.
The role of long-baseline interferometric observations in this astrophysical
context is crucial to characterize the stellar surface dynamics and correct the
potential biases. In this Chapter, we present how the granulation pattern is
expected for different kind of stellar types ranging from main sequence to
extremely evolved stars of different masses and how interferometric techniques
help to study their photospheric dynamics.
Substellar Objects in Nearby Young Clusters -- SONYC -- is a survey program to investigate the frequency and properties of substellar objects in nearby star-forming regions. We present new spectroscopic follow-up of candidate members in Chamaeleon-I (~2 Myr, 160 pc) and Lupus 3 (~1 Myr, 200 pc), identified in our earlier works. We obtained 34 new spectra (1.5 - 2.4 mum, R~600), and identified two probable members in each of the two regions. These include a new probable brown dwarf in Lupus 3 (NIR spectral type M7.5 and Teff=2800 K), and an L3 (Teff=2200 K) brown dwarf in Cha-I, with the mass below the deuterium-burning limit. Spectroscopic follow-up of our photometric and proper motion candidates in Lupus 3 is almost complete (>90%), and we conclude that there are very few new substellar objects left to be found in this region, down to 0.01 - 0.02 MSun and Av \leq 5. The low-mass portion of the mass function in the two clusters can be expressed in the power-law form dN/dM \propto M^{-\alpha}, with \alpha~0.7, in agreement with surveys in other regions. In Lupus 3 we observe a possible flattening of the power-law IMF in the substellar regime: this region seems to produce fewer brown dwarfs relative to other clusters. The IMF in Cha-I shows a monotonic behavior across the deuterium-burning limit, consistent with the same power law extending down to 4 - 9 Jupiter masses. We estimate that objects below the deuterium-burning limit contribute of the order 5 - 15% to the total number of Cha-I members.
We present 1-D non-Local-Thermodynamic-Equilibrium time-dependent radiative-transfer simulations for supernovae (SNe) of type IIb, Ib, and Ic that result from the terminal explosion of the mass donor in a close-binary system. Here, we select three ejecta with a total kinetic energy of ~1.2e51erg, but characterised by different ejecta masses (2-5Msun), composition, and chemical mixing. The type IIb/Ib models correspond to the progenitors that have retained their He-rich shell at the time of explosion. The type Ic model arises from a progenitor that has lost its helium shell, but retains 0.32Msun of helium in a CO-rich core of 5.11Msun. We discuss their photometric and spectroscopic properties during the first 2-3 months after explosion, and connect these to their progenitor and ejecta properties including chemical stratification. For these three models, Arnett's rule overestimates the 56Ni mass by ~50% while the procedure of Katz et al., based on an energy argument, yields a more reliable estimate. The presence of strong CI lines around 9000A prior to maximum is an indicator that the pre-SN star was under-abundant in helium. As noted by others, the 1.08micron feature is a complex blend of CI, MgII, and HeI lines, which makes the identification of He uncertain in SNe Ibc unless other HeI lines can be identified. Our models show little scatter in (V-R) colour 10d after R-band maximum. We also address a number of radiative transfer properties of SNe Ibc, including the notion of a photosphere, the inference of a representative ejecta expansion rate, spectrum formation, blackbody fits and "correction factors".
We report on I band photometric observations of 21 stars with spectral types between M8 and L4 made using the Isaac Newton Telescope. The total amount of time for observations which had a cadence of <2.3 mins was 58.5 hrs, with additional data with lower cadence. We test for photometric variability using the Kruskal-Wallis H-test and find that 4 sources (2MASS J10224821+5825453, 2MASS J07464256+2000321, 2MASS J16262034+3925190 and 2MASS J12464678+4027150) were found to be significantly variable at least on one epoch. Three of these sources are reported as photometrically variable for the first time. If we include sources which were deemed marginally variable, the number of variable sources is 6 (29 percent). No flares were detected from any source. The percentage of sources which we found were variable is similar to previous studies. We summarise the mechanisms which have been put forward to explain the light curves of brown dwarfs.
We identify 885,503 type 1 quasar candidates to i<22 using the combination of optical and mid-IR photometry. Optical photometry is taken from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III/BOSS), while mid-IR photometry comes from a combination of data from the Wide-Field Infrared Survey Explorer (WISE) "ALLWISE" data release and several large-area Spitzer Space Telescope fields. Selection is based on a Bayesian kernel density algorithm with a training sample of 157,701 spectroscopically-confirmed type-1 quasars with both optical and mid-IR data. Of the quasar candidates, 733,713 lack spectroscopic confirmation (and 305,623 are objects that we have not previously classified as photometric quasar candidates). These candidates include 7874 objects targeted as high probability potential quasars with 3.5<z<5 (of which 6779 are new photometric candidates). Our algorithm is more complete to z>3.5 than the traditional mid-IR selection "wedges" and to 2.2<z<3.5 quasars than the SDSS-III/BOSS project. Number counts and luminosity function analysis suggests that the resulting catalog is relatively complete to known quasars and is identifying new high-z quasars at z>3. This catalog paves the way for luminosity-dependent clustering investigations of large numbers of faint, high-redshift quasars and for further machine learning quasar selection using Spitzer and WISE data combined with other large-area optical imaging surveys.
As recently shown, Fermi-LAT measurements of the diffuse gamma-ray emission from the Galaxy favor the presence of a smooth softening in the primary cosmic-ray spectrum with increasing Galactocentric distance. This result can be interpreted in terms of a spatial-dependent rigidity scaling of the diffusion coefficient. The DRAGON code was used to build a model based on such feature. That scenario correctly reproduces the latest Fermi-LAT results as well as local cosmic-ray measurements from PAMELA, AMS-02 and CREAM. Here we show that the model, if extrapolated at larger energies, grasps both the gamma-ray flux measured by MILAGRO at 15 TeV and the H.E.S.S. data from the Galactic ridge, assuming that the cosmic-ray spectral hardening found by those experiments at about 250 GeV/n is present in the whole inner Galactic plane region. Moreover, we show as that model also predicts a neutrino emission which may account for a significant fraction, as well as for the correct spectral shape, of the astrophysical flux measured by IceCube above 25 TeV.
Low-mass stars in the He-core-burning phase (HeCB) play a major role in stellar, galactic, and extragalactic astrophysics. The ability to predict accurately the properties of these stars, however, depends on our understanding of convection, which remains one of the key open questions in stellar modelling. We argue that the combination of the luminosity of the AGB bump (AGBb) and the period spacing of gravity modes (DP) during the HeCB phase, provides us with a decisive test to discriminate between competing models of these stars. We use the MESA, BaSTI, and PARSEC stellar evolution codes to model a typical giant star observed by Kepler. We explore how various near-core-mixing scenarios affect the predictions of the above-mentioned constraints, and we find that DP depends strongly on the prescription adopted. Moreover we show that the detailed behaviour of DP shows the signature of sharp variations in the Brunt-Vaisala frequency, which could potentially give additional information about near-core features. We find evidence for the AGBb among Kepler targets, and a first comparison with observations shows that, even if standard models are able to reproduce the luminosity distribution, no standard model can account for satisfactorily the period spacing of HeCB stars. Our analysis allows us to outline a candidate model to describe simultaneously the two observed distributions: a model with a moderate overshooting region characterized by an adiabatic thermal stratification. This prescription will be tested in the future on cluster stars, to limit possible observational biases.
In 1981, the production of the international Sunspot Number moved from the
Z\"{u}rich Observatory to the Royal Observatory of Belgium, marking a very
important transition in the history of the Sunspot Number. Those recent decades
are particularly important for linking recent modern solar indices and fluxes
and the past Sunspot Number series. However, large variations have been
recently identified in the scale of the Sunspot Number between 1981 and the
present.
Here, we reconstruct a new average Sunspot Number series $S_N$ using
long-duration stations between 1981 and 2015. We also extend this
reconstruction using long-time series from 35 stations over 1945-2015, which
includes the 1981 transition. In both reconstructions, we also derive a
parallel Group Number series $G_N$. Our results confirm the variable trends of
the Locarno pilot station. We also verify the scale of the resulting 1981-2015
correction factor relative to the preceding period 1945--1980. By comparing the
new $S_N$ and $G_N$ series, we find that a constant quadratic relation exists
between those two indices. This proxy relation leads to a fully constant and
cycle-independent $S_N/G_N$ ratio over cycles 19 to 23, with the exception of
cycle 24. We find a very good agreement between our reconstructed $G_N$ and the
new "backbone" Group Number but inhomogeneities in the original Group Number as
well as the $F_{10.7}$ radio flux and the American sunspot number $R_a$.
This analysis opens the way to the implementation of a more advanced method
for producing the Sunspot Number in the future. In particular, we identify the
existence of distinct subsets of observing stations sharing very similar
personal k factors, which may be a key element for building a future
multi-station reference in place of the past single pilot station.
Accurate modeling of nonlinearities in the galaxy bispectrum, the Fourier transform of the galaxy three-point correlation function, is essential to fully exploit it as a cosmological probe. In this paper, we present numerical and theoretical challenges in modeling the nonlinear bispectrum. First, we test the robustness of the matter bispectrum measured from N-body simulations using different initial conditions generators. We run a suite of N-body simulations using the Zel'dovich approximation and second-order Lagrangian perturbation theory (2LPT) at different starting redshifts, and find that transients from initial decaying modes systematically reduce the nonlinearities in the matter bispectrum. To achieve 1% accuracy in the matter bispectrum for $z\le3$ on scales $k<1$ $h$/Mpc, 2LPT initial conditions generator with initial redshift of $z\gtrsim100$ is required. We then compare various analytical formulas and empirical fitting functions for modeling the nonlinear matter bispectrum, and discuss the regimes for which each is valid. We find that the next-to-leading order (one-loop) correction from standard perturbation theory matches with N-body results on quasi-linear scales for $z\ge1$. The fitting formula given in Scoccimarro & Couchman (2001) extends the agreement to a wider range of scales and redshifts. However, we find that the fitting formula in Gil-Mar\'in et al. (2012) does not accurately predict the matter bispectrum outside of the regime for which the formula has been developed.
Following our previous work wherein the leading order effective action was computed in the covariant effective field theory of gravity, here we specialize the effective action to the FRW spacetime and obtain the effective Friedmann equations. In particular, we focus our attention on studying the cosmological implications of the non-local terms when each of them is combined with the Einstein-Hilbert action. We obtain both analytical and iterative solutions to the effective background equations in all the cases and also briefly comment on the consistency between the iterative and numerical solutions whenever possible. We find that among all the non-local terms, the imprints induced by $R\frac{1}{\square^2}R$ are very significant. Interpreting these corrections as an effective dark energy component characterized by an equation of state parameter, we find that the $R\frac{1}{\square^2}R$ correction can indeed lead to an accelerated expansion of the universe at the present epoch even in the absence of a cosmological constant. We briefly discuss some phenomenological consequences of our results.
The intrinsic alignments of galaxies are recognised as a contaminant to weak gravitational lensing measurements. In this work, we study the alignment of galaxy shapes and spins at low redshift (z~0.5) in Horizon-AGN, an adaptive-mesh-refinement hydrodynamical cosmological simulation box of 100 Mpc/h a side with AGN feedback implementation. We find that spheroidal galaxies in the simulation show a tendency to be aligned radially towards over-densities in the dark matter density field and other spheroidals. This trend is in agreement with observations, but the amplitude of the signal depends strongly on how shapes are measured and how galaxies are selected in the simulation. Disc galaxies show a tendency to be oriented tangentially around spheroidals in three-dimensions. While this signal seems suppressed in projection, this does not guarantee that disc alignments can be safely ignored in future weak lensing surveys. The shape alignments of luminous galaxies in Horizon-AGN are in agreement with observations and other simulation works, but we find less alignment for lower luminosity populations. We also characterize the systematics of galaxy shapes in the simulation and show that they can be safely neglected when measuring the correlation of the density field and galaxy ellipticities.
IceCube has observed neutrinos above 100 TeV at a level significantly above the steeply falling background of atmospheric neutrinos. The astrophysical signal is seen both in the high-energy starting event analysis from the whole sky and as a high-energy excess in the signal of neutrino-induced muons from below. No individual neutrino source, either steady or transient, has yet been identified. Several follow-up efforts are currently in place in an effort to find coincidences with sources observed by optical, X-ray and gamma-ray detectors. This paper, presented at the inauguration of HAWC, reviews the main results of IceCube and describes the status of plans to move to near-real time publication of high-energy events by IceCube.
Using ultra-precise data from space instrumentation we found that the underlying functions of stellar light curves from some AF pul- sating stars are non-analytic, and consequently their Fourier expansion is not guaranteed. This result demonstrates that periodograms do not provide a mathematically consistent estimator of the frequency content for this kind of variable stars. More importantly, this constitutes the first counterexample against the current paradigm which considers that any physical process is described by a contin- uous (band-limited) function that is infinitely differentiable.
The Euphrosyne asteroid family is uniquely situated at high inclination in the outer Main Belt, bisected by the nu_6 secular resonance. This large, low albedo family may thus be an important contributor to specific subpopulations of the near-Earth objects. We present simulations of the orbital evolution of Euphrosyne family members from the time of breakup to the present day, focusing on those members that move into near-Earth orbits. We find that family members typically evolve into a specific region of orbital element-space, with semimajor axes near ~3 AU, high inclinations, very large eccentricities, and Tisserand parameters similar to Jupiter family comets. Filtering all known NEOs with our derived orbital element limits, we find that the population of candidate objects is significantly lower in albedo than the overall NEO population, although many of our candidates are also darker than the Euphrosyne family, and may have properties more similar to comet nuclei. Followup characterization of these candidates will enable us to compare them to known family properties, and confirm which ones originated with the breakup of (31) Euphrosyne.
A brief review of recent work. I describe dynamical modelling of the Milky Way using action-angle coordinates. I explain what action-angle coordinates are, and what progress has been made in the past few years to ensuring they can be used in reasonably realistic Galactic potentials. I then describe recent modelling efforts, and progress they have made in constraining the potential of the Milky Way and the local dark matter density.
Lyman Break Analogs (LBA) are local proxies of high-redshift Lyman Break Galaxies (LBG). Studies of nearby starbursts have shown that Lyman continuum and line emission are absorbed by dust and that the Lyman-alpha is resonantly scattered by neutral hydrogen. A source of feedback is required to prevent scattering and allow the Lyman-alpha emission to escape. There are two X-ray point sources embedded in the Lyman Break Analog (LBA) galaxy Haro 11. Haro 11 X-1 is an extremely luminous (L$_{X} \sim 10^{41}$ ergs s$^{-1}$), spatially compact source with a hard X-ray spectrum. Haro 11 X-1 is similar to the extreme Black Hole Binary (BHB) M82 X-1. The hard X-ray spectrum indicates Haro 11 X-1 may be a Black Hole Binary (BHB) in a low accretion state. The very high X-ray luminosity suggests an intermediate mass black hole that could be the seed for formation of a supermassive black hole. Source Haro 11 X-2 has an X-ray luminosity L$_{X} \sim 5\times10^{40}$ ergs s$^{-1}$ and a soft X-ray spectrum. This strongly suggests that Haro 11 X-2 is an X-ray binary in the ultra luminous state. Haro 11 X-2 is coincident with the star forming knot that is the source of the Lyman-alpha emission, raising the possibility that strong winds from X-ray binaries play an important part in injecting mechanical power into the Interstellar Medium (ISM), thus blowing away neutral material from the starburst region and allowing the Lyman-alpha to escape. We suggest that feedback from X-ray binaries may play a significant role in allowing Lyman-alpha emission to escape from galaxies in the early universe.
We use single-dish radio spectra of known 22 GHz H$_2$O megamasers, primarily gathered from the large dataset observed by the Megamaser Cosmology Project, to identify Keplerian accretion disks and to investigate several aspects of the disk physics. We test a mechanism for maser excitation proposed by Maoz & McKee (1998), whereby population inversion arises in gas behind spiral shocks traveling through the disk. Though the flux of redshifted features is larger on average than that of blueshifted features, in support of the model, the high-velocity features show none of the predicted systematic velocity drifts. We find rapid intra-day variability in the maser spectrum of ESO 558-G009 that is likely the result of interstellar scintillation, for which we favor a nearby ($D \approx 70$ pc) scattering screen. In a search for reverberation in six well-sampled sources, we find that any radially-propagating signal must be contributing $\lesssim$10% of the total variability. We also set limits on the magnetic field strengths in seven sources, using strong flaring events to check for the presence of Zeeman splitting. These limits are typically 200--300 mG ($1\sigma$), but our most stringent limits reach down to 73 mG for the galaxy NGC 1194.
Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer solar system. These ices are continu- ously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2+, N2+ and O2+) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yield for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.
HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4$\pm$1V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semi-major axis of 100-200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5-10 years.
Sterile Neutrinos with a mass in the keV range form a good candidate for dark matter. They are naturally produced from neutrino oscillations via their mixing with the active neutrinos. However the production via non-resonant neutrino oscillations has recently been ruled out. The alternative production via Higgs decay is negligibly small compared to neutrino oscillations. We show that in the neutrino-phillic two Higgs doublet model, the contribution from Higgs decay can dominate over the contribution from neutrino oscillations and evade all constraints. We also study the free-streaming horizon and find that a sterile neutrino mass in the range of 4 to 53 keV leads to warm dark matter.
Self-induced flavor conversion of supernova (SN) neutrinos is a generic feature of neutrino-neutrino dispersion. The corresponding run-away modes in flavor space can spontaneously break the original symmetries of the neutrino flux and in particular can spontaneously produce small-scale features as shown in recent schematic studies. However, the unavoidable "multi-angle matter effect" shifts these small-scale instabilities into regions of matter and neutrino density which are not encountered on the way out from a SN. The traditional modes which are uniform on the largest scales are most prone for instabilities and thus provide the most sensitive test for the appearance of self-induced flavor conversion. As a by-product we clarify the relation between the time evolution of an expanding neutrino gas and the radial evolution of a stationary SN neutrino flux. Our results depend on several simplifying assumptions, notably stationarity of the solution, the absence of a "backward" neutrino flux caused by residual scattering, and global spherical symmetry of emission.
A class of dynamical dark energy models is constructed through an extended version of fermion fields called ELKO spinors, which are spin one half with mass dimension one. We find that if the ELKO spinor interacts with torsion fields in a homogeneous and isotropic universe, then it does not imply any future dark energy singularity or any abrupt event, though the fermion has a negative kinetic energy. In fact, the equation of state of this dark energy model will asymptotically approach the value $w=-1$ from above without crossing the phantom divide and inducing therefore a de Sitter state. Consequently, we expect the model to be stable because no phantom field will be created. At late time, the torsion fields will vanish as the ELKO spinors dilute. As would be expected intuitively, this result is unaffected by the presence of cold dark matter although the proof is not as straightforward as in general relativity.
We provide numerical evidence that the Richtmyer-Meshkov (RM) instability contributes to the cooling of a relativistic fluid. Due to the presence of jet particles traveling throughout the medium, shock waves are generated in the form of Mach cones. The interaction of multiple shock waves can trigger the RM instability, and we have found that this process leads to a down-cooling of the relativistic fluid. To confirm the cooling effect of the instability, shock tube Richtmyer-Meshkov instability simulations are performed. Additionally, in order to provide an experimental observable of the RM instability resulting from the Mach cone interaction, we measure the two particle correlation function and highlight the effects of the interaction. The simulations have been performed with an improved version of the relativistic lattice Boltzmann model, including general equations of state and external forces.
(abridged) Magnetic reconnection is the topological reconfiguration of the magnetic field in a plasma, accompanied by the violent release of energy and particle acceleration. Reconnection is as ubiquitous as plasmas themselves, with solar flares perhaps the most popular example. Over the last few years, the theoretical understanding of magnetic reconnection in large-scale fluid systems has undergone a major paradigm shift. The steady-state model of reconnection described by the famous Sweet-Parker (SP) theory, which dominated the field for ~50 years, has been replaced with an essentially time-dependent, bursty picture of the reconnection layer, dominated by the continuous formation and ejection of multiple secondary islands (plasmoids). Whereas in the SP model reconnection was predicted to be slow, a major implication of this new paradigm is that reconnection in fluid systems is fast (i.e., independent of the Lundquist number), provided that the system is large enough. This conceptual shift hinges on the realization that SP-like current layers are violently unstable to the plasmoid instability - implying, therefore, that such current sheets are super-critically unstable and thus can never form in the first place. This suggests that the formation of a current sheet and the subsequent reconnection process cannot be decoupled, as is commonly assumed. This paper provides an introductory-level overview of the recent developments in reconnection theory and simulations that led to this essentially new framework. We briefly discuss the role played by the plasmoid instability in selected applications, and describe some of the outstanding challenges that remain at the frontier of this subject. Amongst these are the analytical and numerical extension of the plasmoid instability to (i) 3D and (ii) non-MHD regimes. New results are reported in both cases.
The solar wind magnetic field contains rotations at a broad range of scales, which have been extensively studied in the MHD range. Here we present an extension of this analysis to the range between ion and electron kinetic scales. The distribution of rotation angles was found to be approximately log-normal, shifting to smaller angles at smaller scales almost self-similarly, but with small, statistically significant changes of shape. The fraction of energy in fluctuations with angles larger than $\alpha$ was found to drop approximately exponentially with $\alpha$, with e-folding angle $9.8^\circ$ at ion scales and $0.66^\circ$ at electron scales, showing that large angles ($\alpha > 30^\circ$) do not contain a significant amount of energy at kinetic scales. Implications for kinetic turbulence theory and the dissipation of solar wind turbulence are discussed.
Links to: arXiv, form interface, find, astro-ph, recent, 1507, contact, help (Access key information)
After a prolonged and deep solar minimum at the end of Cycle 23, the current Solar Cycle 24 is one of the lowest cycles. These two periods of deep minimum and mini maximum are separated by a period of increasing solar activity. We study the cosmic-ray intensity variation in relation with the solar activity, heliospheric plasma and field parameters, including the heliospheric current sheet, during these three periods (phases) of different activity level and nature: (a) a deep minimum, (b) an increasing activity period and (c) a mini maximum. We use neutron monitor data from stations located around the globe to study the rigidity dependence on modulation during the two extremes, i.e., minimum and maximum. We also study the time lag between the cosmic-ray intensity and various solar and interplanetary parameters separately during the three activity phases. We also analyze the role of various parameters, including the current sheet tilt, in modulating the cosmic-ray intensity during the three different phases. Their relative importance and the implications of our results are also discussed.
High redshift quasars can be used to trace the early growth of massive galaxies and may be triggered by galaxy-galaxy interactions. We present MUSE science verification data on one such interacting system consisting of the well-studied z=3.2 PKS1614+051 quasar, its AGN companion galaxy and bridge of material radiating in Lyalpha between the quasar and its companion. We find a total of four companion galaxies (at least two galaxies are new discoveries), three of which reside within the likely virial radius of the quasar host, suggesting that the system will evolve into a massive elliptical galaxy by the present day. The MUSE data are of sufficient quality to split the extended Lyalpha emission line into narrow velocity channels. In these the gas can be seen extending towards each of the three neighbouring galaxies suggesting that the emission-line gas originates in a gravitational interaction between the galaxies and the quasar host. The photoionization source of this gas is less clear but is probably dominated by the two AGN. The quasar's Lyalpha emission spectrum is double-peaked, likely due to absorbing neutral material at the quasar's systemic redshift with a low column density as no damping wings are present. The spectral profiles of the AGN and bridge's Lyalpha emission are also consistent with absorption at the same redshift indicating this neutral material may extend over > 50 kpc. The fact that the neutral material is seen in the line of sight to the quasar and transverse to it, and the fact that we see the quasar and it also illuminates the emission-line bridge, suggests the quasar radiates isotropically and any obscuring torus is small. These results demonstrate the power of MUSE for investigating the dynamics of interacting systems at high redshift.
The nearby, middle-aged PSR B1055-52 has many properties in common with the Geminga pulsar. Motivated by the Geminga's enigmatic and prominent pulsar wind nebula (PWN), we searched for extended emission around PSR B1055-52 with Chandra ACIS. For an energy range 0.3-1 keV, we found a 4 sigma flux enhancement in a 4.9-20 arcsec annulus around the pulsar. There is a slight asymmetry in the emission close, 1.5-4 arcsec, to the pulsar. The excess emission has a luminosity of about 10^{29} erg s^{-1} in an energy range 0.3-8 keV for a distance of 350 pc. Overall, the faint extended emission around PSR B1055-52 is consistent with a PWN of an aligned rotator moving away from us along the line of sight with supersonic velocity, but a contribution from a dust scattering halo cannot be excluded. Comparing the properties of other nearby, middle-aged pulsars, we suggest that the geometry -- the orientations of rotation axis, magnetic field axis, and the sight-line -- is the deciding factor for a pulsar to show a prominent PWN. For PSR B1055-52, we also report on a flux decrease of at least 30% between the 2000 XMM-Newton and our 2012 Chandra observation. We tentatively attribute this flux decrease to a cross-calibration problem, but further investigations of the pulsar are required to exclude actual intrinsic flux changes.
We explore whether protoplanetary disks with self-shadowing from puffed up inner rims exhibit observable features in scattered light images. We use both self-consistent hydrostatic equilibrium calculations and parameterized models to produce the vertically puffed up inner rims. We find that, in general, the transition between the shadowed and flared regions occurs in a smooth manner over a broad radius range, and no sudden jump exists at the outer edge of the shadow in either the disk temperature or density structures. As a result, a puffed up rim cannot create sharp ring/arc/spiral-arm-like features in the outer disk as have been detected in recent direct NIR imaging of disks. On the other hand, if the puffed up rim has a sharp edge in the vertical direction, the shadowing effect can produce a distinct 3-stage broken power law in the radial intensity profile of the scattered light, with 2 steep surface brightness radial profiles in the inner and outer disk joined by a shallow transition region around the shadow edge. These types of scattered light profiles may have already been observed, such as in the recent Subaru direct imaging of the TW Hydrae system.
[abridged] We explore the diversity of internal galaxy structures in the Coma cluster across a wide range of luminosities ($-17$\,$>$\,$M_g$\,$>$\,$-22$) and cluster-centric radii ($0$\,$<$\,$r_{\rm{cluster}}$\,$<$\,1.3 $r_{200}$) through analysis of deep Canada-France-Hawaii Telescope $i$ band imaging. We present 2D multi-component decomposition via GALFIT, encompassing a wide range of candidate model morphologies with up to three photometric components. Particular focus is placed on early-type galaxies with outer discs (i.e. S0s), and deviations from simple (`unbroken') exponential discs. Rigorous filtering ensures that each model component provides a statistically significant improvement to the goodness-of-fit. The majority of Coma cluster members in our sample (478 of 631) are reliably fitted by symmetric structural models. Of these, 134 ($28\%$) are single S\'{e}rsic objects, 143 ($30\%$) are well-described by 2 component structures, while 201 ($42\%$) require more complex models. Multi-component S\'{e}rsic galaxies resemble compact psuedobulges ($n\sim$\,2, $R_e \sim$\, 4 kpc) surrounded by extended Gaussian-like outer structures ($R_e > 10$ kpc). 11\% of galaxies ($N=52$) feature a break in their outer profiles, indicating `truncated' or `anti-truncated' discs. Beyond the break radius, truncated galaxies are structurally consistent with exponential discs, disfavouring physical truncation as their formation mechanism. Bulge luminosity in anti-truncated galaxies correlates strongly with galaxy luminosity, indicating a bulge-enhancing origin for these systems. Both types of broken disc are found overwhelmingly ($>70\%$) in `barred' galaxies, despite a low measured bar fraction for Coma ($20\pm2\%$). Thus, galaxy bars play an important role in formation of broken disc structures. No strong variation in galaxy structure is detected with projected cluster-centric radius.
We investigate the change in ionizing photons in galaxies between 0.2<z<0.6 using the F2 field of the SHELS complete galaxy redshift survey. We show, for the first time, that while the [OIII]/Hb and [OIII]/[OII] ratios rise, the [NII]/H-alpha and [SII]/H-alpha ratios fall significantly over the 0.2<z<0.35 redshift range for stellar masses between 9.2<log(M/Msun)<10.6. The [OIII]/H-beta and [OIII]/[OII] ratios continue to rise across the full 0.2<z<0.6 redshift range for stellar masses between 9.8<log(M/Msun)<10.0. We conclusively rule out AGN contamination, a changing ISM pressure, and a change in the hardness of the EUV radiation field as the cause of the change in the line ratios between 0.2<z<0.35. We find that the ionization parameter rises significantly with redshift (by 0.1 to 0.25 dex depending on the stellar mass of the sample). We show that the ionization parameter is strongly correlated with the fraction of young-to-old stars, as traced by the H-beta equivalent width. We discuss the implications of this result on higher redshift studies, and we consider the implications on the use of standard optical metallicity diagnostics at high redshift.
Spinning planetesimals in a gaseous protoplanetary disk may experience a hydrodynamical force perpendicular to their relative velocities. We examine the effect this force has on the dynamics of these objects using analytical arguments based on a simple laminar disk model and numerical integrations of the equations of motion for individual grains. We focus in particular on meter-sized boulders traditionally expected to spiral in to the central star in as little as 100 years from 1 A.U. We find that there are plausible scenarios in which this force extends the lifetime of these solids in the disk by a factor of several. More importantly the velocities induced by the Magnus force can prevent the formation of planetesimals via gravitational instability in the inner disk if the size of the dust particles is larger than of order 10 cm. We find that the fastest growing linear modes of the streaming instability may still grow despite the diffusive effect of the Magnus force, but it remains to be seen how the Magnus force will alter the non-linear evolution of these instabilities.
A statistical analysis of stacked Compton$-y$ maps of quasar hosts with a median redshift of $1.5$ using Millennium Simulation is performed to address two issues, one on the feedback energy from quasars and the other on testing dark matter halo models for quasar hosts. On the first, we find that, at the resolution of FWHM=$10$ arcmin obtained by Planck data, the observed thermal Sunyaev-Zeldovich (tSZ) effect can be entirely accounted for and explained by the thermal energy of halos sourced by gravitational collapse of halos, without a need to invoke additional, large energy sources, such as quasar or stellar feedback. Allowing for uncertainties of dust temperature in the calibration of observed Comton$-y$ maps, the maximum additional feedback energy is $\sim 25\%$ of that previously suggested. Second, we show that, with FWHM=$1$ arcmin beam, tSZ measurements will provide a potentially powerful test of quasar-hosting dark matter halo models, limited only by possible observational systematic uncertainties, not by statistical ones, even in the presence of possible quasar feedback.
Recent observations have constrained the orbit and structure of the Large Magellanic Cloud (LMC), implying a well-constrained pericentric passage about the Milky Way (MW) ~ 50 Myr ago. In this scenario, the LMC's gaseous disk has recently experienced maximal ram pressure stripping, suggesting the current extent of its HI disk directly probes the medium in which it is moving. From the observed stellar and HI distributions of the system we find evidence of a truncated gas profile along the windward ``leading edge' of the LMC disk, despite a far more extended stellar component. We explore the implications of this ram pressure stripping signature, using both analytic prescriptions and full 3-dimensional hydrodynamic simulations of the LMC. Our simulations subject the system to a headwind whose velocity components correspond directly to the recent orbital history of the LMC. We vary the density of this headwind, using a variety of sampled parameters for a Beta-profile for a theoretical MW circumgalactic medium (CGM), comparing the resulting HI morphology directly to observations of the LMC HI and stellar components. This model can match the radial extent of the LMC's leading (windward) edge only in scenarios where the MW CGM density at pericentric passage is n(R = 48.2 +/- 5 kpc) = 1.1 (+.44/-.45) x 1e-4 cm^-3. The implied pericentric density proves insensitive to both the broader CGM structure and temperature profile, thus providing a model-independent constraint on the local gas density. This result imposes an important constraint on the density profile of the MW's CGM, and thus the total baryon content of the MW. From our work, assuming a Beta-profile valid to ~ Rvir, we infer a total diffuse CGM mass M(300 kpc) = 2.6 +/- 1.4 x 1e10 Msun or approximately 15% of a 1e12 Msun MW's baryonic mass budget.
We disentangle two counter-rotating stellar components in NGC 4191 and characterize their physical properties (kinematics, morphology, age, metallicity, and abundance ratio). We performed a spectroscopic decomposition on integral field data to separate the contribution of two stellar components to the observed galaxy spectrum across the field of view. We also performed a photometric decomposition, modelling the galaxy with a S\'ersic bulge and two exponential disks of different scale length, with the aim of associating these structural components with the kinematic components. We measured the equivalent width of the absorption line indices on the best fit that represent the kinematic components and compared our measurements to the predictions of stellar population models. We have evidence that the line-of-sight velocity distributions (LOSVDs) are consistent with the presence of two distinct kinematic components. The combined information of the intensity of the LOSVDs and photometry allows us to associate the S\'ersic bulge and the outer disk with the main kinematic component, and the inner disk with the secondary kinematic component. The two kinematic stellar components counter-rotate with respect to each other. The main component is the most luminous and massive, and it rotates slower than the secondary component, which rotates along the same direction as the ionized gas. We also found that the two kinematic components have the same solar metallicity and sub-solar abundance ratio, without the presence of significant radial gradients. On the other hand, their ages show strong negative gradients and the possible indication that the secondary component is the youngest. We interpret our results in light of recent cosmological simulations and suggest gas accretion along two filaments as the formation mechanism of the stellar counter-rotating components in NGC 4191 (Abridged).
The combination of dynamical and strong gravitational lensing studies of massive galaxies shows that their total density profile in the central region (i.e. up to a few half-light radius) can be described by a power law, $\rho(r)\propto r^{-\gamma}$. Therefore, such a power-law model is employed for a large number of strong-lensing applications, including the so-called time-delay technique used to infer the Hubble constant $H_0$. However, since the radial scale at which strong lensing features are formed (i.e., the Einstein radius) corresponds to the transition from the dominance of baryonic matter to dark matter, there is no known reason why galaxies should follow a power law in density. The assumption of a power law artificially breaks the mass-sheet degeneracy, a well-known invariance transformation in gravitational lensing which affects the product of Hubble constant and time delay and can therefore cause a bias in the determination of $H_0$ from the time-delay technique. In this paper, we use the Illustris hydrodynamical simulations to estimate the amplitude of this bias, and to understand how it is related to observational properties of galaxies. Investigating a large sample of Illustris galaxies that have velocity dispersion $\sigma_{\rm SIE} \geqslant 160$ km/s at redshifts below $z=1$, we find that the bias on $H_0$ introduced by the power-law assumption can reach 20%-50%, with a scatter of 10%-30% (rms). However, we find that by selecting galaxies with an inferred power-law model slope close to isothermal, it is possible to reduce the bias on $H_0$ to <5%, and the scatter to <10%. This could potentially be used to form less biased statistical samples for $H_0$ measurements in the upcoming large survey era.
We present Star Formation Histories (SFHs) for a sample of 104 massive (M$>$10$^{10}$ M$\odot$) quiescent galaxies (MQGs) at $z=$1.0-1.5. The SFHs have been inferred from spectro-photometric data from the SHARDS and HST/WFC3 G102 and G141 surveys of the GOODS-N field and broad-band observations in the UV-to-FIR spectral range. The sample of MQGs is based on rest-frame $UVJ$ colors and specific star formation rates. The Spectral Energy Distributions (SEDs) of each galaxy have been compared to models assuming an exponentially declining SFH. The SED-fitting method includes a Montecarlo algorithm to characterize the degeneracies in this kind of study. Taking advantage of the SHARDS data resolution, we are able to break these degeneracies by measuring absorption indices (Mg$_{UV}$ and D4000). Most of the sample ($\sim$85$\%$) presents relatively young mass-weighted ages t$_M$ $<$2 Gyr, short star formation timescales $\tau$ $\sim$60-200 Myr and their average mass is log(M/M$\odot$)$\sim$10.5. There is also an older population of galaxies ($\sim$15 $\%$ of the sample) with t$_M$ $=$2-4 Gyr, larger star formation timescales $\tau$ $\sim$400 Myr, and more massive log(M/M$\odot$)=10.8. We find that the derived SFHs for our MQGs are consistent with the slope and the location of the Main Sequence of star-forming galaxies (MS) at $z>1.0$, when our galaxies were 0.5--1.0~Gyr old. According to the derived SFH, all of the MQGs experienced a Luminous Infrared Galaxy (LIRG) phase during typically $\sim$500 Myr and roughly half of them went through ULIRG phase for $\sim$100 Myr. Attending to the SFHs of MQGs at 1$<z<$1.5, we find that the build-up of the red sequence is continuous at least down to z$\sim$1, and only below that redshift the evolution of massive galaxies is dominated by quiescence.
In this paper, we present a comprehensive analysis of star-forming galaxies (SFGs) at intermediate redshifts (z~1). We combine the ultra-deep optical spectro-photometric data from the SHARDS survey with deep UV-to-FIR observations in the GOODS-N field to build and characterize a complete sample of SFGs at z~0.84 and z~1.23. Exploiting two of the 25 SHARDS medium-band filters, F687W17 and F823W17, we select [OII] emission line galaxies (ELGs) at z~0.84 and z~1.23 and characterize their physical properties. Their rest-frame equivalent widths (EWrf([OII])), line fluxes, luminosities, star formation rates (SFRs) and dust attenuation properties are investigated. The evolution of the EWrf([OII]) closely follows the SFR density evolution of the Universe, with a EWrf([OII])$\propto$(1+z)$^3$ trend up to redshift z~1, followed by a possible flattening. The SF properties of the galaxies selected on the basis of their [OII] emission are compared with complementary samples of SFGs selected by their MIR and FIR emission, and also with a general mass-selected sample of galaxies at the same redshifts. We observationally demonstrate that the UVJ diagram (or, similarly, a cut in the specific SFR) is only partially able to distinguish the quiescent galaxies from the SFGs. The SFR-M$_*$ relation is investigated for the different samples, finding a logarithmic slope ~1, in good agreement with previous results. The dust attenuations derived from different SFR indicators (UV(1600), UV(2800), [OII], IR) are compared, finding clear trends with respect to both the stellar mass and total SFR, with more massive and highly star-forming galaxies being affected by stronger dust attenuation. The full SHARDS dataset allows the extension of this study to other redshifts and emission lines, thus providing a powerful tool for the study of ELGs up to high redshifts. (Abridged)
We construct error distributions for a compilation of 232 Large Magellanic Cloud (LMC) distance moduli values from de Grijs et al. 2014 that give an LMC distance modulus of (m-M)_{0}=18.49 \pm 0.13 (median and 1\sigma symmetrized error). Central estimates found from weighted mean and median statistics are used to construct the error distributions. The weighted mean error distribution is non-Gaussian --- flatter and broader than Gaussian --- with more (less) probability in the tails (center) than is predicted by a Gaussian distribution; this could be the consequence of unaccounted-for systematic uncertainties. The median statistics error distribution, which does not make use of the individual measurement errors, is also non-Gaussian --- more peaked than Gaussian --- with less (more) probability in the tails (center) than is predicted by a Gaussian distribution; this could be the consequence of publication bias and/or the non-independence of the measurements.
Characterizing the bulk atmosphere of a terrestrial planet is important for determining surface pressure and potential habitability. Molecular nitrogen (N$_2$) constitutes the largest fraction of Earth$'$s atmosphere and is likely to be a major constituent of many terrestrial exoplanet atmospheres. Due to its lack of significant absorption features, N$_2$ is extremely difficult to remotely detect. However, N$_2$ produces an N$_2$-N$_2$ collisional pair, (N$_2$)$_2$, which is spectrally active. Here we report the detection of (N$_2$)$_2$ in Earth$'$s disk-integrated spectrum. By comparing spectra from NASA$'$s EPOXI mission to synthetic spectra from the NASA Astrobiology Institute$'$s Virtual Planetary Laboratory three-dimensional spectral Earth model, we find that (N$_2$)$_2$ absorption produces a ~35$\%$ decrease in flux at 4.15 $\mu$m. Quantifying N$_2$ could provide a means of determining bulk atmospheric composition for terrestrial exoplanets and could rule out abiotic O$_2$ generation, which is possible in rarefied atmospheres. To explore the potential effects of (N$_2$)$_2$ in exoplanet spectra, we used radiative transfer models to generate synthetic emission and transit transmission spectra of self-consistent N$_2$-CO$_2$-H$_2$O atmospheres, and analytic N$_2$-H$_2$ and N$_2$-H$_2$-CO$_2$ atmospheres. We show that (N$_2$)$_2$ absorption in the wings of the 4.3 $\mu$m CO$_2$ band is strongly dependent on N$_2$ partial pressures above 0.5 bar and can significantly widen this band in thick N$_2$ atmospheres. The (N$_2$)$_2$ transit transmission signal is up to 10 ppm for an Earth-size planet with an N$_2$-dominated atmosphere orbiting within the HZ of an M5V star and could be substantially larger for planets with significant H$_2$ mixing ratios.
We present a study of the environment of barred galaxies using galaxies drawn from the SDSS. We use several different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number count of neighbor galaxies, the overdensity of the local environment, the membership of our galaxies to galaxy groups to segregate central and satellite systems, and for central galaxies we estimate the stellar to halo mass ratio (M$_{\mathrm{*}}/$M$_{\mathrm{h}}$) . When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within $\sim50$ kpc around the barred galaxies when compared to unbarred galaxies from the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. For central late-type galaxies, bars are more common on galaxies with high M$_{\mathrm{*}}/$M$_{\mathrm{h}}$ values, as expected from early theoretical works which showed that systems with massive dark matter halos are more stable against bar instabilities. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.
Eta Carinae is the nearest example of a supermassive, superluminous, unstable star. Mass loss from the system is critical in shaping its circumstellar medium and in determining its ultimate fate. Eta Car currently loses mass via a dense, slow stellar wind and possesses one of the largest mass loss rates known. It is prone to episodes of extreme mass ejection via eruptions from some as-yet unspecified cause; the best examples of this are the large-scale eruptions which occurred in 19th century. Eta Car is a colliding wind binary in which strong variations in X-ray emission and in other wavebands are driven by the violent collision of the wind of eta Car-A and the fast, less dense wind of an otherwise hidden companion star. X-ray variations are the simplest diagnostic we have to study the wind-wind collision and allow us to measure the state of the stellar mass loss from both stars. We present the X-ray lightcurve over the last 20 years from ROSAT observations and monitoring with the Rossi X-ray Timing Explorer and the X-ray Telescope on the Swift satellite. We compare and contrast the behavior of the X-ray emission from the system over that timespan, including surprising variations during the 2014 X-ray minimum.
We analyse the origin of the magnetic field decay in normal radio pulsars found by us in a recent study. This decay has a typical time scale $\sim 4 \times 10^5$~yrs, and operates in the range $\sim 10^5$~--~few$\times 10^5$~yrs. We demonstrate that this field evolution may be either due to the Ohmic decay related to the scattering from phonons, or due to the Hall cascade which reaches the Hall attractor. According to our analysis the first possibility seems to be more reliable. So, we attribute the discovered field decay mainly to the Ohmic decay on phonons which is saturated at the age few$\times 10^5$~yrs, when a NS cools down to the critical temperature below which the phonon scattering does not contribute much to the resistivity of the crust. Some role of the Hall effect and attractor is not excluded, and will be analysed in our further studies.
Models of planet formation and evolution predict that giant planets form efficiently in protoplanetary disks, that most of these migrate rapidly to the disk's inner edge, and that, if the arriving planet's mass is $\lesssim$ Jupiter's mass, it could remain stranded near that radius. We argue that such planets would be ingested by tidal interaction with the host star on a timescale $\lesssim1\,$Gyr, and that, in the case of a solar-type host, this would cause the stellar spin to approach the direction of the ingested planet's orbital axis even if the two were initially highly misaligned. Primordially misaligned stars whose effective temperatures are $\gtrsim6250\,$K cannot be realigned in this way because, in contrast with solar-type hosts, their angular momenta are typically higher than the orbital angular momentum of the ingested planet as a result of inefficient magnetic braking and of a comparatively large moment of inertia. Hot Jupiters located farther out from the star can contribute to this process, but their effect is weaker because the tidal interaction strength decreases rapidly with increasing semimajor axis. We demonstrate that, if $\sim50\%$ of planetary systems harbored a stranded hot Jupiter, this scenario can in principle account for (1) the good alignment exhibited by planets around cool stars irrespective of the planet's mass or orbital period, (2) the prevalence of misaligned planets around hot stars, (3) the apparent upper bound on the mass of hot Jupiters on retrograde orbits, and (4) the inverse correlation between stellar spin periods and hot-Jupiter masses.
The Vector Spectromagnetograph (VSM) instrument on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope is designed to obtain high-quality magnetic field observations in both the photosphere and chromosphere by measuring the Zeeman-induced polarization of spectral lines. With 1$^{\prime \prime}$ spatial resolution (1.14$^{\prime \prime}$ before 2010) and 0.05\AA\ spectral resolution, the VSM provides, among other products, chromospheric full-disk magnetograms using the CaII 854.2 nm spectral line and both photospheric full-disk vector and longitudinal magnetograms using the FeI 630.15 nm line. Here we describe the procedure used to compute daily weighted averages of the photospheric radial polar magnetic field at different latitude bands from SOLIS/VSM longitudinal full-disk observations. Time series of these measurements are publicly available from the SOLIS website at this http URL Future plans include the calculation of the mean polar field strength from SOLIS/VSM chromospheric observations and the determination of the {\it true} radial polar field from SOLIS/VSM full-Stokes measurements.
We present the rest-frame near-ultraviolet (NUV) spectroscopy of star-forming galaxies (SFGs) at 0.6<z<1.2 from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) in SDSS-IV. One of the eBOSS programs is to obtain 2 arcsec (about 15 kpc) fiber spectra of about 200,000 emission-line galaxies (ELGs) at redshift z>0.6. We use the data from the pilot observations of this program, including 8620 spectra of SFGs at 0.6<z<1.2. The median composite spectra of these SFGs at 2200 Ang < \lambda < 4000 Ang feature asymmetric, preferentially blueshifted non-resonant emission, Fe II*, and blueshifted resonant absorption, e.g., Fe II and Mg II, indicating ubiquitous outflows driven by star formation at these redshifts. For the absorption lines, we find a variety of velocity profiles with different degrees of blueshift. Comparing our new observations with the literature, we do not observe the non-resonant emission in the small-aperture (<40 pc) spectra of local star-forming regions with the Hubble Space Telescope, and find the observed line ratios in the SFG spectra to be different from those in the spectra of local star-forming regions, as well as those of quasar absorption-line systems in the same redshift range. We introduce an outflow model that can simultaneously explain the multiple observed properties and suggest that the variety of absorption velocity profiles and the line ratio differences are caused by scattered fluorescent emission filling in on top of the absorption in the large-aperture eBOSS spectra. We develop an observation-driven, model-independent method to correct the emission-infill to reveal the true absorption profiles. Our results show that eBOSS and future dark-energy surveys (e.g., DESI and PFS) will provide rich datasets of NUV spectroscopy for astrophysical applications.
Understanding gas flows into and out of the most massive dark matter structures in our Universe, galaxy clusters, is fundamental to understanding their evolution. Gas in clusters is well studied in the hot ($>$ 10$^{6}$ K) and cold ($<$ 10$^{4}$ K) regimes, but the warm gas component (10$^{4}$ - 10$^{6}$ K) is poorly constrained. It is challenging to observe directly, but can be probed through Ly$\alpha$ absorption studies. We produce the first systematic study of the warm gas content of galaxy clusters through synthetic Ly$\alpha$ absorption studies using cosmological simulations of two galaxy clusters produced with Enzo. We explore the spatial and kinematic properties of our cluster absorbers, and show that the majority of the identified absorbers are due to fast moving gas associated with cluster infall from IGM filaments. Towards the center of the clusters, however, the warm IGM filaments are no longer dominant and the absorbers tend to have higher column densities and metallicities, representing stripped galaxy material. We predict that the absorber velocity distribution should generally be bi-modal and discuss the effects of cluster size, mass, and morphology on the properties of the identified absorbers, and the overall cluster warm gas content. We find tentative evidence for a change in the well known increasing N$_{HI}$ with decreasing impact parameter for the most massive dark matter halos. Our results are compared directly to observations of Ly$\alpha$ absorbers in the Virgo cluster, and provide predictions for future Ly$\alpha$ absorption studies.
Realistic numerical simulations, i.e., those that make minimal use of ad hoc modeling, are essential for understanding the complex turbulent dynamics of the interiors and atmospheres of the Sun and other stars and the basic mechanisms of their magnetic activity and variability. The goal of this paper is to present a detailed description and test results of a compressible radiative MHD code, `StellarBox', specifically developed for simulating the convection zones, surface, and atmospheres of the Sun and moderate-mass stars. The code solves the three-dimensional, fully coupled compressible MHD equations using a fourth-order Pad\'e spatial differentiation scheme and a fourth-order Runge-Kutta scheme for time integration. The radiative transfer equation is solved using the Feautrier method for bi-directional ray tracing and an opacity-binning technique. A specific feature of the code is the implementation of subgrid-scale MHD turbulence models. The data structures are automatically configured, depending on the computational grid and the number of available processors, to achieve good load balancing. We present test results and illustrate the code's capabilities for simulating the granular convection on the Sun and a set of main-sequence stars. The results reveal substantial changes in the near-surface turbulent convection in these stars, which in turn affect properties of the surface magnetic fields. For example, in the solar case initially uniform vertical magnetic fields tend to self-organize into compact (pore-like) magnetic structures, while in more massive stars such structures are not formed and the magnetic field is distributed more-or-less uniformly in the intergranular lanes.
We report the serendipitous discovery of several young mid-M stars found during a search for new members of the 30-40 Myr-old Octans Association. Only one of the stars may be considered a possible Octans(-Near) member. However, two stars have proper motions, kinematic distances, radial velocities, photometry and Li I 6708AA measurements consistent with membership in the 8-10 Myr-old TW Hydrae Association. Another may be an outlying member of TW Hydrae but has a velocity similar to that predicted by membership in Octans. We also identify two new lithium-rich members of the neighbouring Scorpius-Centaurus OB Association (Sco-Cen). Both exhibit large 12 and 22 micron excesses and strong, variable H-alpha emission which we attribute to accretion from circumstellar discs. Such stars are thought to be incredibly rare at the ~16 Myr median age of Sco-Cen and they join only one other confirmed M-type and three higher-mass accretors outside of Upper Scorpius. The serendipitous discovery of two accreting stars hosting large quantities of circumstellar material may be indicative of a sizeable age spread in Sco-Cen, or further evidence that disc dispersal and planet formation time-scales are longer around lower-mass stars. To aid future studies of Sco-Cen we also provide a newly-compiled catalogue of 305 early-type Hipparcos members with spectroscopic radial velocities sourced from the literature.
We have developed UFCORIN, a platform for studying and automating space weather prediction. Using our system we have tested 6,160 different combinations of SDO/HMI data as input data, and simulated the prediction of GOES X-ray flux for 2 years (2011-2012) with one-hour cadence. We have found that direct comparison of the true skill statistics (TSS) is ill-posed, and used the standard scores ($z$) of the TSS to compare the performance of the various prediction strategies. The best strategies we have found for predicting X, $\geq$M and $\geq$C class flares are better than the average of the 6,160 strategies by 2.3$\sigma$, 2.1$\sigma$, 3.8$\sigma$ confidence levels, respectively. The best three's TSS values were $0.745\pm0.072$, $0.481\pm0.017$, and $0.557\pm0.043$, respectively.
Due to its centrally bright X-ray morphology and limb brightened radio profile, MSH 11-61A (G290.1-0.8) is classified as a mixed morphology supernova remnant (SNR). H$\textsc{i}$ and CO observations determined that the SNR is interacting with molecular clouds found toward the north and southwest regions of the remnant. In this paper we report on the detection of $\gamma$-ray emission coincident with MSH 11-61A, using 70 months of data from the Large Area Telescope on board the \textit{Fermi Gamma-ray Space Telescope}. To investigate the origin of this emission, we perform broadband modelling of its non-thermal emission considering both leptonic and hadronic cases and concluding that the $\gamma$-ray emission is most likely hadronic in nature. Additionally we present our analysis of a 111 ks archival \textit{Suzaku} observation of this remnant. Our investigation shows that the X-ray emission from MSH 11-61A arises from shock-heated ejecta with the bulk of the X-ray emission arising from a recombining plasma, while the emission towards the east arises from an ionising plasma.
In this paper, we report the detections of stellar variabilities from the first 2-year observations of sky area of about 1300 square degrees from the Tsinghua University-NAOC Transient Survey (TNTS). A total of 1237 variable stars (including 299 new ones) were detected with brightness < 18.0 mag and magnitude variation >= 0.1 mag on a timescale from a few hours to few hundred days. Among such detections, we tentatively identified 661 RR Lyrae stars, 431 binaries, 72 Semiregular pulsators, 29 Mira stars, 11 slow irregular variables, 11 RS Canum Venaticorum stars, 7 Gamma Doradus stars, 5 long period variables, 3 W Virginis stars, 3 Delta Scuti stars, 2 Anomalous Cepheids, 1 Cepheid, and 1 nove-like star based on their time-series variability index Js and their phased diagrams. Moreover, we found that 14 RR Lyrae stars show the Blazhko effect and 67 contact eclipsing binaries exhibit the O'Connell effect. Since the period and amplitude of light variations of RR Lyrae variables depend on their chemical compositions, their photometric observations can be used to investigate distribution of metallicity along the direction perpendicular to the Galactic disk. We find that the metallicity of RR Lyrae stars shows large scatter at regions closer to the Galactic plane (e.g., -3.0 < [Fe/H] < 0) but tends to converge at [Fe/H]~ -1.7 at larger Galactic latitudes. This variation may be related to that the RRAB Lyrae stars in the Galactic halo come from globular clusters with different metallicity and vertical distances, i.e. OoI and OoII populations, favoring for the dual-halo model.
Using a void catalog from the SDSS survey, we present the first measurements of void clustering and the corresponding void bias. Over the range 30-200 Mpc/h the void auto-correlation is detected at 5-sigma significance for voids of radius 15-20 Mpc/h. We also measure the void-galaxy cross-correlation at higher signal-to-noise and compare the inferred void bias with the autocorrelation results. Void bias is constant with scale for voids of a given size, but its value falls from 5.6 +/- 1.0 to below zero as the void radius increases from 15 to 30 Mpc/h. The comparison of our measurements with carefully matched galaxy mock catalogs, with no free parameters related to the voids, shows that model predictions can be reliably made for void correlations. We study the dependence of void bias on tracer density and void size with a view to future applications. In combination with our previous lensing measurements of void mass profiles, these clustering measurements provide another step towards using voids as cosmological tracers.
Using the Low Dispersion Survey Spectrograph 3 at the Magellan II Clay Telescope in Chile, we target candidate absorption host galaxies detected in deep optical imaging (reaching limiting apparent magnitudes of 23.0-26.5 in g; r; i; and z filters) in the fields of three QSOs, each of which shows the presence of high metallicity, strong NHI absorption systems in their spectra (Q0826-2230: zabs=0.9110, Q1323-0021: zabs = 0.7160, Q1436-0051: zabs = 0.7377; 0.9281). We confirm host galaxies at redshifts 0.7387, 0.7401, and 0.9286 for two out of four of the Ly-alpha absorption systems. For these systems, we are able to determine the SFRs; impact parameters (known from previous imaging detections); the velocity shift between the absorption and emission redshifts; and, for one system, also the emission metallicity. Based on previous photometry, we find these galaxies have L>L*. The SFRs for these galaxies, based on [O II] emission, are in the range 11-25 M_sol/yr (uncorrected for dust), while the impact parameters lie in the range 35-54 kpc. Despite the fact that we have confirmed galaxies at 50 kpc from the QSO, the absorption metallicity along the QSO line of sight and the emission line metallicity in the galaxies are similar: no gradient in metallicity is indicated. In combining our results with the results in the literature, we confirm the anti-correlation between impact parameter and NHI. We find no correlation between SFR and impact parameter, nor between absorption metallicity and impact parameter. In addition to confirming three galaxies corresponding to two absorption systems (one with two galaxies interacting), we also report the emission redshift of five other galaxies. Three of these galaxies are at zem > zQSO, while two at zem < zQSO do not correspond to any known absorption systems and have L<L*.
We consider three samples of O- and B-type stars from the solar neighborhood 0.6--4 kpc for which we have taken the distances, line-of-sight velocities, and proper motions from published sources. The first sample contains 120 massive spectroscopic binaries. O stars with spectroscopic distances from Patriarchi et al. constitute the second sample. The third sample consists of 168 OB3 stars whose distances have been determined from interstellar calcium lines. The angular velocity of Galactic rotation at the solar distance $\Omega_0,$ its two derivatives $\Omega'_0$ and $\Omega"_0,$ and the peculiar velocity components of the Sun $(U,V,W)_\odot$ are shown to be well determined from all three samples of stars. They are determined with the smallest errors from the sample of spectroscopic binary stars and the sample of stars with the calcium distance scale. The fine structure of the velocity field associated with the influence of the Galactic spiral density wave clearly manifests itself in the radial velocities of spectroscopic binary stars and in the sample of stars with the calcium distance scale.
We investigate, using the Gaia-ESO Survey internal Data-Release 2, the
properties of the double sequence of the Milky Way discs (defined chemically as
the high-alpha and low-alpha populations), and discuss their compatibility with
discs defined by other means such as metallicity, kinematics or positions.
This investigation uses two different approaches: in velocity space for stars
located in the extended Solar neighbourhood, and in chemical space for stars at
different ranges of Galactocentric radii and heights from the plane. The
separation we find in velocity space allows us to investigate, in a novel
manner, the extent in metallicity of each of the two sequences, identifying
them with the two discs, without making any assumption about the shape of their
metallicity distribution functions. Then, using the separation in chemical
space, we characterise the spatial variation of the slopes of the [alpha/Fe] -
[Fe/H] sequences for the thick and thin discs and the way in which the relative
proportions of the two discs change across the Galaxy.
We find that the thick disc (high-alpha sequence), extends up to [Fe/H]~ +0.2
and the thin disc (low-alpha sequence), at least down to [Fe/H]~ -0.8. Radial
and vertical gradients in alpha-abundances are found for the thin disc, with
mild spatial variations in its [alpha/Fe] - [Fe/H] paths, whereas for the thick
disc we do not detect any such spatial variations.
The small variations in the spatial [alpha/Fe] - [Fe/H] paths of the thin
disc do not allow us to distinguish between formation models of this structure.
On the other hand, the lack of radial gradients and [alpha/Fe] - [Fe/H]
variations for the thick disc indicate that the mechanism responsible for the
mixing of the metals in the young Galaxy (e.g. radial stellar migration or
turbulent gaseous disc) was more efficient before the (present) thin disc
started forming.
Transmission spectroscopy is a powerful technique for probing exoplanetary atmospheres. A successful ground-based observational method uses a differential technique based on high-dispersion spectroscopy, but that only preserves narrow features in transmission spectra. Here we use the chromatic Rossiter-McLaughlin (RM) effect to measure the Rayleigh-scattering slope in the transmission spectrum of HD 189733b with the aim to show that it can be effectively used to measure broadband transmission features. The amplitude of the RM effects depends on the effective size of the planet, and in the case of an atmospheric contribution therefore depends on the observed wavelength. We analysed archival HARPS data of three transits of HD 189733b, covering a wavelength range of 400 to 700 nm. We measured the slope in the transmission spectrum of HD 189733b at a $2.5\sigma$ significance. Assuming it is due to Rayleigh scattering and not caused by stellar activity, it would correspond to an atmospheric temperature, as set by the scale height, of $T = 2300 \pm 900 \mathrm{K}$, well in line with previously obtained results. This shows that ground-based high-dispersion spectral observations can be used to probe broad-band features in the transmission spectra of extrasolar planets, by using the chromatic RM effect. This method will be particularly interesting in conjunction with the new echelle spectrograph ESPRESSO, which currently is under construction for ESOs Very Large Telescope and will provide a gain in signal-to-noise ratio of about a factor 4 compared to HARPS. This will be of great value because of the limited and uncertain future of the Hubble Space Telescope and because the future James Webb Space Telescope will not cover this wavelength regime.
We explore the possibility that the stellar relative abundances of different species can be used to constrain the bulk abundances of known transiting rocky planets. We use high resolution spectra to derive stellar parameters and chemical abundances for Fe, Si, Mg, O, and C in three stars hosting low mass, rocky planets: CoRoT-7, Kepler-10, and Kepler-93. These planets follow the same line along the mass-radius diagram, pointing toward a similar composition. The derived abundance ratios are compared with the solar values. With a simple stoichiometric model, we estimate the iron mass fraction in each planet, assuming stellar composition. We show that in all cases, the iron mass fraction inferred from the mass-radius relationship seems to be in good agreement with the iron abundance derived from the host star's photospheric composition. The results suggest that stellar abundances can be used to add constraints on the composition of orbiting rocky planets.
The formation of stellar mass black holes is still very uncertain. Two main uncertainties are the amount of mass ejected in the supernova event (if any) and the magnitude of the natal kick the black hole receives at birth (if any). Repetto et al. (2012), studying the position of Galactic X-ray binaries containing black holes, found evidence for black holes receiving high natal kicks at birth. In this Paper we extend that study, taking into account the previous binary evolution of the sources as well. The seven short-period black-hole X-ray binaries that we use, are compact binaries consisting of a low-mass star orbiting a black hole in a period less than $1$ day. We trace their binary evolution backwards in time, from the current observed state of mass-transfer, to the moment the black hole was formed, and we add the extra information on the kinematics of the binaries. We find that several systems could be explained by no natal kick, just mass ejection, while for two systems (and possibly more) a high kick is required. So unless the latter have an alternative formation, such as within a globular cluster, we conclude that at least some black holes get high kicks. This challenges the standard picture that black hole kicks would be scaled down from neutron star kicks. Furthermore, we find that five systems could have formed with a non-zero natal kick but zero mass ejected (i.e. no supernova) at formation, as predicted by neutrino-driven natal kicks.
The ultra-compact dipping source \object{XB 1916-053} has an orbital period of close to 50 min and a companion star with a very low mass (less than 0.1 M$_{\odot}$). The orbital period derivative of the source was estimated to be $1.5(3) \times 10^{-11}$ s/s through analysing the delays associated with the dip arrival times obtained from observations spanning 25 years, from 1978 to 2002. The known orbital period derivative is extremely large and can be explained by invoking an extreme, non-conservative mass transfer rate that is not easily justifiable. We extended the analysed data from 1978 to 2014, by spanning 37 years, to verify whether a larger sample of data can be fitted with a quadratic term or a different scenario has to be considered. We obtained 27 delays associated with the dip arrival times from data covering 37 years and used different models to fit the time delays with respect to a constant period model.We find that the quadratic form alone does not fit the data. The data are well fitted using a sinusoidal term plus a quadratic function or, alternatively, with a series of sinusoidal terms that can be associated with a modulation of the dip arrival times due to the presence of a third body that has an elliptical orbit. We infer that for a conservative mass transfer scenario the modulation of the delays can be explained by invoking the presence of a third body with mass between 0.10-0.14 M$_{\odot}$, orbital period around the X-ray binary system of close to 51 yr and an eccentricity of $0.28 \pm 0.15$. In a non-conservative mass transfer scenario we estimate that the fraction of matter yielded by the degenerate companion star and accreted onto the neutron star is $\beta = 0.08$, the neutron star mass is $\ge 2.2$ M$_{\odot}$, and the companion star mass is 0.028 M$_{\odot}$. (Abridged)
We calculate the running of the scalar index in the ekpyrotic and matter bounce cosmological scenarios, and find that it is typically negative for ekpyrotic models, while it is typically positive for realizations of the matter bounce where multiple fields are present. This can be compared to inflation, where the observationally preferred models typically predict a negative running. The magnitude of the running is expected to be between $10^{-4}$ and up to $10^{-2},$ leading in some cases to interesting expectations for near-future observations.
(Abridged) Binary systems with similar components are ideal laboratories which allow several physical processes to be tested, such as the possible chemical pattern imprinted by the planet formation process. Aims. We explore the probable chemical signature of planet formation in the remarkable binary system HD 80606 - HD 80607. The star HD 80606 hosts a giant planet with 4 MJup detected by both transit and radial velocity techniques, being one of the most eccentric planets detected to date. We study condensation temperature Tc trends of volatile and refractory element abundances to determine whether there is a depletion of refractories that could be related to the terrestrial planet formation. Methods. We carried out a high-precision abundance determination in both components of the binary system, using a line-by-line strictly differential approach, using the Sun as a reference and then using HD 80606 as reference. We used an updated version of the program FUNDPAR, together with ATLAS9 model atmospheres and the MOOG code. Conclusions. From the study of Tc trends, we concluded that the stars HD 80606 and HD 80607 do not seem to be depleted in refractory elements, which is different for the case of the Sun. Then, the terrestrial planet formation would have been less efficient in the components of this binary system than in the Sun. The lack of a trend for refractory elements with Tc between both stars implies that the presence of a giant planet do not neccesarily imprint a chemical signature in their host stars, similar to the recent result of Liu et al. (2014). This is also in agreement with Melendez et al. (2009), who suggest that the presence of close-in giant planets might prevent the formation of terrestrial planets. Finally, we speculate about a possible planet around the star HD 80607.
In this paper, we obtain the NIRB and SBGWs from the early stars, which are constrained by the observation of reionization and star formation rate. We study the transition from Pop III to Pop II stars via the star formation model of different population, which takes into account the reionization and the metal enrichment evolution. We calculate the two main metal pollution channels arising from the supernova-driven protogalactic outflows and "genetic channel". We obtain the SFRs of Pop III and Pop II and their NIRB and SBGWs radiation. We predict that the upper limit of metallicity in metal-enriched IGM (the galaxies whose polluted via "genetic channel") reaches $Z_{\rm crit}=10^{-3.5}Z_{\odot}$ at $z\sim13$ ($z\sim11$), which is consistent with our star formation model. We constrain on the SFR of Pop III stars from the observation of reionization. The peak intensity of NIRB is about $0.03-0.2~nW m^{-2}{sr}^{-1}$ at $\sim 1 \mu m$ for $z>6$. The prediction of NIRB signal is consistent with the metallicity evolution. We also obtain the gravitational wave background from the black holes formed by these early stars. The predicted gravitational wave background has a peak amplitude of $\Omega_{GW}\simeq8\times10^{-9}$ at $\nu=158$ Hz for Pop II star remnants. However, the background generated by Pop III.2 stars is much less than Pop II stars, with a peak amplitude of $\Omega_{GW}\simeq1.2\times10^{-11}$ at $\nu=28~Hz$. The background of Pop III.1 shifts to lower frequencies, and the amplitude of $\Omega _{GW}$ for Pop III.1 stars shows a minimum value at $\nu\simeq 10$ Hz, due to the lack of gravitational wave signals from the stars with $140~M_{\odot}<M_\ast<260~M_{\odot}$.
We analyse the relationship between two near filaments, which do not show any connection in H-alpha images but reveal close magnetic connectivity during filament activations in Extreme Ultraviolet (EUV) observations. A twisted flux rope, which connects a half of one filament with another filament, becomes visible during several activations but seems to exist all the time of the filaments presence on the disc. Solar Dynamic Observatory} (SDO) and Solar Terrestrial Relations Observatory (STEREO) observed the region with the filaments from two points of view separated by the angle of about 120 deg. On 2012 July 27, SDO observed the filament activation on disc, while for the STEREO B position the filaments were visible at the limb. Nearly identical interaction episode was observed on 2012 August 04 by STEREO A on disc and by SDO at the limb. This good opportunity allows us to disentangle the 3-D shape of the connecting flux rope and in particular to determine with high reliability the helicity sign of the flux rope, which looks ambiguous in preliminary inspections of on-disc EUV images only.} The complex magnetic structure of the region consists of three braided flux ropes in the vicinity of the coronal null point. Using observations of the flux rope fine structure and plasma motions within it from two points of view, we determine the negative sign of helicity of the flux rope, which corresponds to dextral chirality of the filaments. The observations, despite the tangled fine structure in some EUV images, support flux rope filament models. They give more evidence for the one-to-one relationship between the filament chirality and the flux rope helicity.
We present the extended source catalogue for the UKIRT Widefield Infrared Survey for H2 (UWISH2). The survey is unbiased along the inner Galactic Plane from l \approx 357deg to l \approx 65deg and |b| < 1.5deg and covers 209 square degrees. A further 42.0 and 35.5 square degrees of high dust column density regions have been targeted in Cygnus and Auriga. We have identified 33200 individual extended H2 features. They have been classified to be associated with about 700 groups of jets and outflows, 284 individual (candidate) Planetary Nebulae, 30 Supernova Remnants and about 1300 Photo-Dissociation Regions. We find a clear decline of star formation activity (traced by H2 emission from jets and photo-dissociation regions) with increasing distance from the Galactic Centre. More than 60% of the detected candidate Planetary Nebulae have no known counterpart and 25% of all Supernova Remnants have detectable H2 emission associated with them.
I review several scenarios of magnetar formation in binary systems via spin-up of a progenitor due to interaction with its companion. Mostly, these evolutionary channels lead to formation of isolated magnetars, and indeed, all well-established sources of this class are single objects. However, some binaries can survive, and several candidates to accreting magnetars have been proposed. I discuss this issue, and conclude that new accretion models can explain properties of the proposed candidates without large magnetic field in correspondence with models of magnetic field evolution.
We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron star matter and white dwarf material. We consider non-self annihilating dark matter with an equation-of-state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from few Km to few hundred Km for weakly interacting dark matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be formed primordially and accrete white dwarf material subsequently. They could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 ${\rm M}_{\odot}$ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, $10^{-6}{\rm M}_\odot$.
We present a model in which planetesimal disks are built from the combination of planetesimal formation and accretion of radially drifting pebbles onto existing planetesimals. In this model, the rate of accretion of pebbles onto planetesimals quickly outpaces the rate of direct planetesimal formation in the inner disk. This allows for the formation of a high mass inner disk without the need for enhanced planetesimal formation or a massive protoplanetary disk. Our proposed mechanism for planetesimal disk growth does not require any special conditions to operate. Consequently, we expect that high mass planetesimal disks form naturally in nearly all systems. The extent of this growth is controlled by the total mass in pebbles that drifts through the inner disk. Anything that reduces the rate or duration of pebble delivery will correspondingly reduce the final mass of the planetesimal disk. Therefore, we expect that low mass stars (with less massive protoplanetary disks), low metallicity stars and stars with giant planets should all grow less massive planetesimal disks. The evolution of planetesimal disks into planetary systems remains a mystery. However, we argue that late stage planet formation models should begin with a massive disk. This reinforces the idea that massive and compact planetary systems could form in situ but does not exclude the possibility that significant migration occurs post-planet formation.
We present observations of high-amplitude rapid (2 s) variability toward two bright, compact extragalactic radio sources out of several hundred of the brightest radio sources in one of the 30x30 deg MWA Epoch of Reionization fields using the Murchison Widefield Array (MWA) at 155 MHz. After rejecting intrinsic, instrumental, and ionospheric origins we consider the most likely explanation for this variability to be interplanetary scintillation (IPS), likely the result of a large coronal mass ejection propagating from the Sun. This is confirmed by roughly contemporaneous observations with the Ooty Radio Telescope. We see evidence for structure on spatial scales ranging from <1000 km to >1e6 km. The serendipitous night-time nature of these detections illustrates the new regime that the MWA has opened for IPS studies with sensitive night-time, wide-field, low-frequency observations. This regime complements traditional dedicated strategies for observing IPS and can be utilized in real-time to facilitate dedicated follow-up observations. At the same time, it allows large-scale surveys for compact (arcsec) structures in low-frequency radio sources despite the 2 arcmin resolution of the array.
Discoveries from the prime Kepler mission demonstrated that small planets (< 3 Earth-radii) are common outcomes of planet formation. While Kepler detected many such planets, all but a handful orbit faint, distant stars and are not amenable to precise follow up measurements. Here, we report the discovery of two small planets transiting EPIC-206011691, a bright (K = 9.4) M0 dwarf located 65$\pm$6 pc from Earth. We detected the transiting planets in photometry collected during Campaign 3 of NASA's K2 mission. Analysis of transit light curves reveals that the planets have small radii compared to their host star, 2.60 $\pm$ 0.14% and 3.15 $\pm$ 0.20%, respectively. We obtained follow up NIR spectroscopy of \epic to constrain host star properties, which imply planet sizes of 1.59 $\pm$ 0.43 Earth-radii and 1.92 $\pm$ 0.53 Earth-radii, respectively, straddling the boundary between high-density, rocky planets and low-density planets with thick gaseous envelopes. The planets have orbital periods of 9.32414 days and 15.50120 days, respectively, and have a period ratio of 1.6624, very near to the 5:3 mean motion resonance, which may be a record of the system's formation history. Transit timing variations (TTVs) due to gravitational interactions between the planets may be detectable using ground-based telescopes. Finally, this system offers a convenient laboratory for studying the bulk composition and atmospheric properties of small planets with low equilibrium temperatures.
We examine the production of dark matter by decaying topological defects in the high mass region $m_{\mathrm{DM}} \gg m_W$ of the Inert Doublet Model, extended with an extra U(1) gauge symmetry. The density of dark matter states (the neutral Higgs states of the inert doublet) is determined by the interplay of the freeze-out mechanism and the additional production of dark matter states from the decays of topological defects, in this case cosmic strings. These decays increase the predicted relic abundance compared to the standard freeze-out only case, and as a consequence the viable parameter space of the Inert Doublet Model can be widened substantially. In particular, for a given dark matter annihilation rate lower dark matter masses become viable. We investigate the allowed mass range taking into account constraints on the energy injection rate from the diffuse $\gamma$-ray background and Big Bang Nucleosynthesis, together with constraints on the dark matter properties coming from direct and indirect detection limits. For the Inert Doublet Model high-mass region, an inert Higgs mass as low as $\sim 200$ GeV is permitted. There is also an upper limit on string mass per unit length, and hence the symmetry breaking scale, from the relic abundance in this scenario. Depending on assumptions made about the string decays, the limits are in the range $10^{12}$ GeV to $10^{13}$ GeV.
Limits on dark matter spin dependent elastic scattering cross section on protons derived from IceCube data are obtained for different dark matter annihilation channels using micrOMEGAs. The uncertainty on the derived limits, estimated by using different neutrino spectra, can reach a factor two. For all dark matter annihilation channels except for quarks, the limits on the spin dependent cross section are more stringent than those obtained in direct detection experiments. The new functions that allow to derive those limits are described.
Photon motion around the black hole surrounded with a homogenous plasma is studied. It is shown that under influence of plasma the observed size of shadow of the spherical symmetric black hole becomes smaller than that in the vacuum case. However the photon sphere around the spherical symmetric black hole is left unchanged under the plasma influence. The energy emission from the black hole in plasma is also studied and it is shown that with the increase of the dimensionless plasma parameter the maximum value of energy emission rate from the black hole decreases.
The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, Gallium and LSND anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3+1 and 3+2 schemes are discussed, together with the implications for beta-decay and neutrinoless double-beta decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives.
Using superconformal methods we derive an explicit de Sitter supergravity action invariant under spontaneously broken local ${\cal N}=1$ supersymmetry. The supergravity multiplet interacts with a nilpotent goldstino multiplet. We present a complete locally supersymmetric action including the graviton and the fermionic fields, gravitino and goldstino, no scalars. In the global limit when supergravity multiplet decouples, our action reproduces the Volkov-Akulov theory. In the unitary gauge where goldstino vanishes we recover pure supergravity with the positive cosmological constant. The classical equations of motion, with all fermions vanishing, have a maximally symmetric solution: de Sitter space.
Links to: arXiv, form interface, find, astro-ph, recent, 1507, contact, help (Access key information)
The recently constructed Hubble diagram using a combined sample of SNLS and SDSS-II Type Ia SNe, and an application of the Alcock-Paczynski (AP) test using model-independent Baryon Acoustic Oscillation data, have suggested that the principal constraint underlying the cosmic expansion is the total equation-of-state of the cosmic fluid, rather than that of its dark energy. These studies have focused on the critical redshift range (0 < z < 2) within which the transition from decelerated to accelerated expansion is thought to have occurred, and they suggest that the cosmic fluid has zero active mass, consistent with a constant expansion rate. The evident impact of this conclusion on cosmological theory calls for an independent confirmation. In this paper, we carry out this crucial one-on-one comparison between the R_h=ct Universe (an FRW cosmology with zero active mass) and wCDM/LCDM, using the latest high-z measurements of H(z). Whereas the Type Ia SNe yield the integrated luminosity distance, while the AP diagnostic tests the geometry of the Universe, the Hubble parameter directly samples the expansion rate itself. We find that the model-independent cosmic chronometer data prefer R_h}=ct over wCDM/LCDM with a BIC likelihood of ~95% versus only ~5%, in strong support of the earlier SNeIa and AP results. This contrasts with a recent analysis of H(z) data based solely on BAO measurements which, however, strongly depend on the assumed cosmology. We discuss why the latter approach is inappropriate for model comparisons, and emphasize again the need for truly model-independent observations to be used in cosmological tests.
Studies of the diffuse Galactic radio emission are interesting both for better understanding the physical conditions in our Galaxy and for minimising the contamination in cosmological measurements. Motivated by this we present Cosmic Background Imager 31 GHz observations of the Galactic regions NGC 6357, NGC 6334, W51 and W40 at $\sim$4$'$.5 resolution and conduct an investigation of the spectral emission process in the regions at 4$'$.5 and 1$^{\circ}$ resolution. We find that most of the emission in the regions is due to optically thin free-free. For 2 sub-regions of NGC 6334 and for a sub-region of W51 though, at 4$'$.5 resolution and at 31 GHz we detect less emission than expected from extrapolation of radio data at lower frequencies assuming a spectral index of $-$0.12 for optically thin free-free emission, at 3.3$\sigma$, 3.7$\sigma$ and 6.5$\sigma$ respectively. We also detect excess emission in a sub-region of NCG 6334 at 6.4$\sigma$, after ruling out any possible contribution from Ultra Compact HII (UCHII) regions. At 1$^{\circ}$ resolution we detect a spinning dust component in the Spectral Energy Distribution (SED) of W40 that accounts for 18$\pm$7 % of the total flux density in the region at the peak frequency of 37 GHz. Comparison with 100 ${\rm \mu m}$ data indicate an average dust emissivity for the sub-regions of $0.5\pm4.4$ $\mu$K(MJy sr$^{-1}$)$^{-1}$. Finally we translate the excess emission in the regions to an Anomalous Microwave Emission (AME) emissivity relative to the optical depth at 250 ${\rm \mu m }$. We find that this form of emissivity is independent of the AME significance and has a value somewhere in the order of 10$^4$ Jy.
We use cosmological, hydrodynamical simulations from the EAGLE and OWLS projects to assess the significance of recycled stellar ejecta as fuel for star formation. The fractional contributions of stellar mass loss to the cosmic star formation rate (SFR) and stellar mass densities increase with time, reaching $35 \%$ and $19 \%$, respectively, at $z=0$. The importance of recycling increases steeply with galaxy stellar mass for $M_{\ast} < 10^{10.5}$ M$_{\odot}$, and decreases mildly at higher mass. This trend arises from the mass dependence of feedback associated with star formation and AGN, which preferentially suppresses star formation fuelled by recycling. Recycling is more important for satellites than centrals and its contribution decreases with galactocentric radius. The relative contribution of AGB stars increases with time and towards galaxy centers. This is a consequence of the more gradual release of AGB ejecta compared to that of massive stars, and the preferential removal of the latter by outflows and by lock up in stellar remnants. Recycling-fuelled star formation exhibits a tight, positive correlation with galaxy metallicity, with a secondary dependence on the relative abundance of alpha elements (which are predominantly synthesized in massive stars), that is insensitive to the subgrid models for feedback. Hence, our conclusions are directly relevant for the origin of the mass-metallicity relation and metallicity gradients. Applying the relation between recycling and metallicity to the observed mass-metallicity relation yields our best estimate of the mass-dependent contribution of recycling. For centrals with a mass similar to that of the Milky Way, we infer the contributions of recycled stellar ejecta to the SFR and stellar mass to be $35 \%$ and $20 \%$, respectively.
Feedback from super-massive black holes (SMBHs) is thought to play a key role in regulating the growth of host galaxies. Cosmological and galaxy formation simulations using smoothed particle hydrodynamics (SPH), which usually use a fixed mass for SPH particles, often employ the same sub-grid Active galactic nuclei (AGN) feedback prescription across a range of resolutions. It is thus important to ask how the impact of the simulated AGN feedback on a galaxy changes when only the numerical resolution (the SPH particle mass) changes. We present a suite of simulations modelling the interaction of an AGN outflow with the ambient turbulent and clumpy interstellar medium (ISM) in the inner part of the host galaxy at a range of mass resolutions. We find that, with other things being equal, degrading the resolution leads to feedback becoming more efficient at clearing out all gas in its path. For the simulations presented here, the difference in the mass of the gas ejected by AGN feedback varies by more than a factor of ten between our highest and lowest resolution simulations. This happens because feedback-resistant high density clumps are washed out at low effective resolutions. We also find that changes in numerical resolution lead to undesirable artifacts in how the AGN feedback affects the AGN immediate environment.
I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman.
The tidal disruption of a star by a massive black hole (MBH) is thought to produce a transient luminous event. Such tidal disruption events (TDEs) may play an important role in detecting and characterizing MBHs and probe the properties and dynamics of their nuclear stellar clusters (NSCs) hosts. Previous studies estimated the recent rates of TDEs in the local universe. However, the long-term evolution of the TDEs rate throughout the history of the universe have been hardly explored. Here we consider the TDEs history, using simple evolutionary models for the formation and evolution of galactic nuclei. We use a 1D Fokker-Planck approach to explore the evolution of MBH-hosting NSCs, and obtain the disruption rates of stars during their evolution. We complement these with an analysis of TDEs history based on N-body simulation data, and find them to be comparable. We consider NSCs that are built-up from close-in star formation or from star formation/clusters-dispersal far-out, a few pc from the MBH. We also explore cases where primordial NSCs exist and later further evolve through such additional star-formation/cluster-dispersal processes. We study the dependence of the TDE history on the type of galaxy (in terms of its star-formation history), as well as the dependence on the MBH mass. These provide several scenarios for the TDEs history, with a continuous increase of the TDE rates over time for cases of far-out star-formation and a more complex behavior for the close-in star formation cases. The total highest rates are found for the lowest mass MBHs, the highest star-formation rates and in elliptical galaxies, where the galaxy and NSC are assumed to have formed at early stages. Finally, we integrate the TDE histories of the various type of galaxies and MBHs to provide a total TDE history of the universe, which can be potentially probed with future large surveys (e.g. LSST).
We present here the first convincing observational manifestation of a magnetar-like magnetic field in an accreting neutron star in binary system - the first pulsating ultra-luminous X-ray source X-2 in the galaxy M82. Using the Chandra X-ray observatory data we show that the source exhibit the bimodal distribution of the luminosity with two well-defined peaks separated by a factor of 40. This behaviour can be interpreted as the action of the "propeller regime" of accretion. The onset of the propeller in a 1.37 s pulsar at luminosity of ~$10^{40}$ erg/s implies the dipole component of the neutron star magnetic field of ~$10^{14}$ G.
We estimate cluster masses and velocity dispersions for 123 clusters from optical spectroscopy to compare the Sunyaev-Zeldovich (SZ) mass proxy and dynamical masses. Our new survey, HeCS-SZ (Hectospec Cluster Survey of SZ-selected clusters), includes 7,721 new or remeasured redshifts from MMT/Hectospec observations of 24 SZ-selected clusters at redshifts $z$=0.05-0.20 and not in previous surveys. We supplement the Hectospec data with spectra from the Sloan Digital Sky Survey (SDSS) and cluster data from the Cluster Infall Regions in SDSS (CIRS) project and the Hectospec Cluster Survey (HeCS), our Hectospec survey of clusters selected by X-ray flux. We measure the scaling relation between velocity dispersion and SZ mass estimates from the integrated Compton parameter for an SZ complete sample of 83 clusters. The observed relation agrees very well with a simple virial scaling from mass (based on SZ) to velocity dispersion. The SZ mass estimates (calibrated with hydrostatic X-ray mass estimates) are not significantly biased. Further, the velocity dispersion of cluster galaxies is consistent with the expected velocity dispersion of dark matter particles, indicating that galaxies are good dynamical tracers (i.e., velocity bias is small). Significant mass bias in SZ mass estimates could relieve tension between cosmological results from Planck SZ cluster counts and Planck CMB data. However, the excellent agreement between our measured velocity dispersions and those predicted from a virial scaling relation suggests that any SZ mass bias is too small to reconcile SZ and CMB results. In principle, SZ mass bias and velocity bias of galaxies could conspire to yield good agreement, but the required velocity bias is $\sigma_{galaxy}\approx 0.77\sigma_{DM}$, outside the range of plausible models of velocity bias in the literature.
We report the discovery of a low-mass companion to the nearby (d = 47 pc) F7V star HD 984. The companion is detected 0.19" away from its host star in the L' band with the Apodizing Phase Plate on NaCo/VLT and was recovered by L'-band non-coronagraphic imaging data taken a few days later. We confirm the companion is co-moving with the star with SINFONI integral field spectrograph H+K data. We present the first published data obtained with SINFONI in pupil-tracking mode. HD 984 has been argued to be a kinematic member of the 30 Myr-old Columba group, and its HR diagram position is not altogether inconsistent with being a ZAMS star of this age. By consolidating different age indicators, including isochronal age, coronal X-ray emission, and stellar rotation, we independently estimate a main sequence age of 115$\pm$85 Myr (95% CL) which does not rely on this kinematic association. The mass of directly imaged companions are usually inferred from theoretical evolutionary tracks, which are highly dependent on the age of the star. Based on the age extrema, we demonstrate that with our photometric data alone, the companion's mass is highly uncertain: between 33 and 96 M$_{\rm Jup}$ (0.03-0.09 M$_{\odot}$) using the COND evolutionary models. We compare the companion's SINFONI spectrum with field dwarf spectra to break this degeneracy. Based on the slope and shape of the spectrum in the H-band, we conclude that the companion is an M$6.0\pm0.5$ dwarf. The age of the system is not further constrained by the companion, as M dwarfs are poorly fit on low-mass evolutionary tracks. This discovery emphasizes the importance of obtaining a spectrum to spectral type companions around F-stars.
Cosmic microwave background lensing has become a new cosmological probe, carrying rich information on the matter power spectrum and distances over the redshift range $z\approx1$-4. We investigate the role of scale dependent new physics, such as from modified gravity, neutrino mass, and cold (low sound speed) dark energy, and its signature on CMB lensing. The distinction between different scale dependences, and the different redshift dependent weighting of the matter power spectrum entering into CMB lensing and other power spectra, imply that CMB lensing can probe simultaneously a diverse range of physics. We highlight the role of arcminute resolution polarization experiments for distinguishing between physical effects.
According to the standard cosmological scenario, superclusters are objects that have just passed the turn around point and are collapsing. The dynamics of very few superclusters have been analysed up to now. In this paper we study the supercluster SC0028-0005, at redshift 0.22, identify the most prominent groups and/or clusters that make up the supercluster, and investigate the dynamic state of this structure. For the membership identification, we have used photometric and spectroscopic data from SDSS-DR10, finding 6 main structures in a flat spatial distribution. We have also used a deep multi-band observation with MegaCam/CFHT to estimate de mass distribution through the weak-lensing effect. For the dynamical analysis, we have determined the relative distances along the line of sight within the supercluster using the Fundamental Plane of early-type galaxies. Finally, we have computed the peculiar velocities of each of the main structures. The 3D distribution suggests that SC0028-005 is indeed a collapsing supercluster, supporting the formation scenario of these structures. Using the spherical collapse model, we estimate that the mass within $r = 10$~Mpc should lie between 4 and $16 \times 10^{15} M_\odot$. The farthest detected members of the supercluster suggest that within $\sim 60$~Mpc the density contrast is $\delta \sim 3$ with respect to the critical density at $z=0.22$, implying a total mass of $\sim 4.6$--$16 \times 10^{17} M_\odot$, most of which in the form of low-mass galaxy groups or smaller substructures.
Using our sample of the most metal-rich damped Lyman $\alpha$ systems (DLAs) at z$\sim2$, and two literature compilations of chemical abundances in 341 DLAs and 2818 stars, we present an analysis of the chemical composition of DLAs in the context of the Local Group. The metal-rich sample of DLAs at z$\sim2$ probes metallicities as high as the Galactic disc and the most metal-rich dwarf spheroidals (dSphs), permitting an analysis of many elements typically observed in DLAs (Fe, Zn, Cr, Mn, Si, and S) in comparison to stellar abundances observed in the Galaxy and its satellites (in particular dSphs). Our main conclusions are: (1) non-solar [Zn/Fe] abundances in metal-poor Galactic stars and in dSphs over the full metallicity range probed by DLAs, suggest that Zn is not a simple proxy for Fe in DLAs and therefore not a suitable indicator of dust depletion. After correcting for dust depletion, the majority of DLAs have subsolar [Zn/Fe] similar to dSphs; (2) at [Fe/H]$\sim-0.5$, a constant [Mn/Fe]$\sim-0.5$ and near-solar [$\alpha$/Fe] (requiring an assumption about dust depletion) are in better agreement with dwarf galaxies than Galactic disc stars; (3) [$\alpha$/Zn] is usually solar or subsolar in DLAs. However, although low ratios of [$\alpha$/Fe] are usually considered more `dwarf-like' than `Milky Way-like', subsolar [Zn/Fe] in Local Group dwarfs leads to supersolar [$\alpha$/Zn] in the dSphs, in contrast with the DLAs. Therefore, whilst DLAs exhibit some similarities with the Local Group dwarf population, there are also notable differences.
We report on candidate active galactic nuclei (AGN) discovered during the monitoring of $\sim$500 bright (r < 18 mag) galaxies over several years with the Kepler Mission. Most of the targets were sampled every 30 minutes nearly continuously for a year or more. Variations of 0.001 mag and often less could be detected reliably. About 4.0% (19) of our random sample continuously fluctuated with amplitudes increasing with longer timescales, but the majority are close to the limits of detectability with Kepler. We discuss our techniques to mitigate the long term instrumental trends in Kepler light curves and our resulting structure function curves. The amplitudes of variability over four month periods, as seen in the structure functions and PSDs, can dramatically change for many of these AGN candidates. Four of the candidates have features in their Structure Functions that may indicate quasi-periodic behavior, although other possibilities are discussed.
The IRAC ultradeep field (IUDF) and IRAC Legacy over GOODS (IGOODS) programs are two ultradeep imaging surveys at 3.6{\mu}m and 4.5{\mu}m with the Spitzer Infrared Array Camera (IRAC). The primary aim is to directly detect the infrared light of reionization epoch galaxies at z > 7 and to constrain their stellar populations. The observations cover the Hubble Ultra Deep Field (HUDF), including the two HUDF parallel fields, and the CANDELS/GOODS-South, and are combined with archival data from all previous deep programs into one ultradeep dataset. The resulting imaging reaches unprecedented coverage in IRAC 3.6{\mu}m and 4.5{\mu}m ranging from > 50 hour over 150 arcmin^2, > 100 hour over 60 sq arcmin2, to 200 hour over 5 - 10 arcmin$^2$. This paper presents the survey description, data reduction, and public release of reduced mosaics on the same astrometric system as the CANDELS/GOODS-South WFC3 data. To facilitate prior-based WFC3+IRAC photometry, we introduce a new method to create high signal-to-noise PSFs from the IRAC data and reconstruct the complex spatial variation due to survey geometry. The PSF maps are included in the release, as are registered maps of subsets of the data to enable reliability and variability studies. Simulations show that the noise in the ultradeep IRAC images decreases approximately as the square root of integration time over the range 20 - 200 hours, well below the classical confusion limit, reaching 1{\sigma} point source sensitivities as faint as of 15 nJy (28.5 AB) at 3.6{\mu}m and 18 nJy (28.3 AB) at 4.5{\mu}m. The value of such ultradeep IRAC data is illustrated by direct detections of z = 7 - 8 galaxies as faint as HAB = 28.
We derive an integral condition for core-collapse supernova explosions and use it to construct a new diagnostic of explodability. The fundamental challenge in core-collapse supernova theory is to explain how a stalled accretion shock revives to explode a star. In this manuscript, we assume that shock revival is initiated by the delayed-neutrino mechanism and derive an integral condition for shock expansion, $v_s > 0$. Assuming that $v_s > 0$ corresponds to explosion, we recast this integral condition as a dimensionless condition for explosion, $\Psi > 0$. Using 1D simulations, we confirm that $\Psi = 0$ during the stalled phase and $\Psi > 0$ during explosion. Having validated the integral condition, we use it to derive a useful explosion diagnostic. First, for a given set of parameters, we find the family of solutions to the steady-state equations, parameterized by shock radius $R_s$, yielding $\Psi(R_s)$. For any particular solution, $\Psi(R_s)$ may be negative, zero, or positive, and, since $\Psi \propto v_s$, this corresponds to a solution with a receding, stationary, or expanding shock, respectively. Within this family, there is always a solution with a minimum $\Psi$, $\Psi_{\rm min}$. When $\Psi_{\rm min} < 0$, there always exists a stalled accretion shock solution, but when $\Psi_{\rm min} > 0$, all solutions have $v_s > 0$. Therefore, $\Psi_{\rm min} = 0$ defines a critical hypersurface for explosion, and we show that the critical neutrino luminosity curve proposed by Burrows \& Goshy (1993) is a projection of this more general critical condition. Finally, we propose and verify with 1D simulations that $\Psi_{\rm min}$ is a reliable and accurate explosion diagnostic.
Accurate statistical measurement with large imaging surveys has traditionally
required throwing away a sizable fraction of the data. This is because most
measurements have have relied on selecting nearly complete samples, where
variations in the composition of the galaxy population with seeing, depth, or
other survey characteristics are small.
We introduce a new measurement method that aims to minimize this wastage,
allowing precision measurement for any class of stars or galaxies detectable in
an imaging survey. We have implemented our proposal in Balrog, a software
package which embeds fake objects in real imaging in order to accurately
characterize measurement biases.
We demonstrate this technique with an angular clustering measurement using
Dark Energy Survey (DES) data. We first show that recovery of our injected
galaxies depends on a wide variety of survey characteristics in the same way as
the real data. We then construct a flux-limited sample of the faintest galaxies
in DES, chosen specifically for their sensitivity to depth and seeing
variations. Using the synthetic galaxies as randoms in the standard
Landy-Szalay correlation function estimator suppresses the effects of variable
survey selection by at least two orders of magnitude. With this correction, our
measured angular clustering is found to be in excellent agreement with that of
a matched sample drawn from much deeper, higher-resolution space-based COSMOS
imaging; over angular scales of $0.004^{\circ} < \theta < 0.2^{\circ}$, we find
a best-fit scaling amplitude between the DES and COSMOS measurements of $1.00
\pm 0.09$.
We expect this methodology to be broadly useful for extending the statistical
reach of measurements in a wide variety of coming imaging surveys.
Astrophysical sources are now observed by many different instruments at different wavelengths, from radio to high-energy gamma-rays, with an unprecedented quality. Putting all these data together to form a coherent view, however, is a very difficult task. Each instrument has its own data format, software and analysis procedure, which are difficult to combine. It is for example very challenging to perform a broadband fit of the energy spectrum of the source. The Multi-Mission Maximum Likelihood framework (3ML) aims to solve this issue, providing a common framework which allows for a coherent modeling of sources using all the available data, independent of their origin. At the same time, thanks to its architecture based on plug-ins, 3ML uses the existing official software of each instrument for the corresponding data in a way which is transparent to the user. 3ML is based on the likelihood formalism, in which a model summarizing our knowledge about a particular region of the sky is convolved with the instrument response and compared to the corresponding data. The user can choose between a frequentist analysis, and a Bayesian analysis. In the former, parameters of the model are optimized in order to obtain the best match to the data (i.e., the maximum of the likelihood). In the latter, the priors specified by the user are used to build the posterior distribution, which is then sampled with Markov Chain Monte Carlo or Multinest. Our implementation of this idea is very flexible, allowing the study of point sources as well as extended sources with arbitrary spectra. We will review the problem we aim to solve, the 3ML concepts and its innovative potential.
We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than being only the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from colour-magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that started their evolution with a dominant and short star formation event, and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal vs dwarf irregular). Slow and fast dwarfs also differ in their inferred past location relative to the Milky Way and/or M31, which hints that slow dwarfs were generally assembled in lower density environments than fast dwarfs. We propose that the distinction between a fast and slow dwarf galaxy reflects primarily the characteristic density of the environment where they form. At a later stage, interaction with a large host galaxy may play a role in the final gas removal and ultimate termination of star formation.
We performed a search of star-forming sites influenced by external factors, such as SNRs, HII regions, and cloud-cloud collisions, to understand the star-forming activity in the Galactic center region using the NRO Galactic Center Survey in SiO $v=0, J=2-1$, H$^{13}$CO$^+ J=1-0$, and CS $J=1-0$ emission lines obtained by the Nobeyama 45-m telescope. We found a half-shell like feature (HSF) with a high integrated line intensity ratio of $ int T_{ mathrm B}$(SiO $v=0, J=2-1$)$dv$/$ int T_{ mathrm B}$(H$^{13}$CO$^+ J=1-0$)$dv sim6-8$ in the 50 km s$^{-1}$ molecular cloud, which is a most conspicuous molecular cloud in the region and harbors an active star-forming site seen as several compact HII regions. The high ratio in the HSF indicates that the cloud contains huge shocked molecular gas. The HSF is also seen as a half-shell feature in the position-velocity diagram. A hypothesis explaining the chemical and kinetic properties of the HSF is that the feature is originated by a cloud-cloud collision (CCC). We analyzed the CS $J=1-0$ emission line data obtained by Nobeyama Millimeter Array to reveal the relation between the HSF and the molecular cloud cores in the cloud. We made a cumulative core mass function (CMF) of the molecular cloud cores within the HSF. The CMF in the CCC region is not truncated at least up to $ sim2500M_ odot$ although the CMF of the non-CCC region reaches the upper limit of $ sim1500M_ odot$. Most massive molecular cores with $M_{ mathrm{gas}}>750 M_{ odot}$ are located only around the ridge of the HSF and adjoin the compact HII region. These may be a sign of massive star formation induced by CCC in the Galactic center region.
Spatially resolved polarized millimeter/submillimeter emission has been observed in the disk of HL Tau and two other young stellar objects. It is usually interpreted as coming from magnetically aligned grains, but can also be produced by dust scattering, as demonstrated explicitly by Kataoka et al. for face-on disks. We extend their work by including the polarization induced by disk inclination with respect to the line of sight. Using a physically motivated, semi-analytic model, we show that the polarization fraction of the scattered light increases with the inclination angle $i$, reaching $1/3$ for edge-on disks. The inclination-induced polarization can easily dominate that intrinsic to the disk in the face-on view. It provides a natural explanation for the two main features of the polarization pattern observed in the tilted disk of HL Tau ($i \sim 45^\circ$): the polarized intensity concentrating in a region elongated more or less along the major axis, and polarization in this region roughly parallel to the minor axis. This broad agreement provides support to dust scattering as a viable mechanism for producing, at least in part, polarized millimeter radiation. In order to produce polarization at the observed level ($\sim 1\%$), the scattering grains must have grown to a maximum size of tens of microns. However, such grains may be too small to produce the opacity spectral index of $\beta \lesssim 1$ observed in HL Tau and other sources; another population of larger, millimeter/centimeter-sized, grains may be needed to explain the bulk of the unpolarized continuum emission.
We consider a phenomenological model of monodromy inflation where the inflaton is the phase of a complex scalar field $\Phi$. Planck-suppressed operators of $\mathcal O(f^5/M_\mathrm{pl})$ modify the geometry of the vev $\left \langle \Phi \right \rangle$ at first order in the decay constant $f$, which adds a first-order periodic term to the definition of the canonically normalized inflaton $\phi$. This correction to the inflaton induces a fixed number of extra oscillatory terms in the monodromy potential $V \sim \theta^p$. We derive the same result in a toy scenario where the vacuum $\left \langle \Phi \right \rangle$ is an ellipse with an arbitrarily large eccentricity. These extra oscillations change the form of the power spectrum as a function of scale $k$ and provide a possible mechanism for differentiating EFT-motivated monodromy inflation from models where the angular shift symmetry is a gauge symmetry.
We measure the two-point clustering of spectroscopically confirmed quasars from the final sample of the Baryon Oscillation Spectroscopic Survey (BOSS) on comoving scales of 4 < s < 22 Mpc/h. The sample covers 6950 deg^2 (~ 19 (Gpc/h)^3) and, over the redshift range 2.2 < z < 2.8, contains 55,826 homogeneously selected quasars, which is twice as many as in any similar work. We deduce b_Q = 3.54 +/- 0.10 ; the most precise measurement of quasar bias to date at these redshifts. This corresponds to a host halo mass of ~ 2 x 10^12 ~ M_sun/h with an implied quasar duty cycle of ~1 percent. The real-space projected correlation function is well-fit by a power law of index -2 and correlation length r0 = (8.12 +/- 0.22), Mpc/h over scales of 4 < rp < 25 ~ Mpc/h. To better study the evolution of quasar clustering at moderate redshift, we extend the redshift range of our study to z ~ 3.4 and measure the bias and correlation length of three subsamples over 2.2 < z < 3.4. We find no significant evolution of r0 or bias over this range, implying that the host halo mass of quasars decreases somewhat with increasing redshift. We find quasar clustering remains similar over a decade in luminosity, contradicting a scenario in which quasar luminosity is monotonically related to halo mass at z ~ 2.5. Our results are broadly consistent with previous BOSS measurements, but they yield more precise constraints based upon a larger and more uniform data set.
We have worked out predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. Such predictions were obtained by coupling epoch dependent star formation rate (SFR) functions with relations between SFR and radio (synchrotron and free-free) emission. The SFR functions were derived taking into account both the dust obscured and the unobscured star-formation, by combining far-infrared (FIR), ultra-violet (UV) and H_alpha luminosity functions up to high redshifts. We have also revisited the South Pole Telescope (SPT) counts of dusty galaxies at 95\,GHz performing a detailed analysis of the Spectral Energy Distributions (SEDs). Our results show that the deepest SKA1-MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. We predict that a survey down to 0.25 microJy at 1.4 GHz will detect about 1200 strongly lensed galaxies per square degree, at redshifts of up to 10. For about 30% of them the SKA1-MID will detect at least 2 images. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys.
We analyse the OGLE-IV photometry of the first overtone and double-mode RR
Lyrae stars (RRc/RRd) in the two fields towards the Galactic bulge observed
with high cadence. In 27 per cent of RRc stars we find additional non-radial
mode, with characteristic period ratio, P x /P 1O \in (0.6, 0.64). It strongly
corroborates the conclusion arising from the analysis of space photometry of
RRc stars, that this form of pulsation must be common. In the Petersen diagram
the stars form three sequences. In 20 stars we find two or three close
secondary modes simultaneously. The additional modes are clearly
non-stationary. Their amplitude and/or phase vary in time. As a result, the
patterns observed in the frequency spectra of these stars may be very complex.
In some stars the additional modes split into doublets, triplets or appear as a
more complex bands of increased power. Subharmonics of additional modes are
detected in 20 per cent of stars. They also display a complex structure.
Including our previous study of the OGLE-III Galactic bulge data, we have
discovered 260 RRc and 2 RRd stars with the additional non-radial mode, which
is the largest sample of these stars so far. The additional mode is also
detected in two Blazhko RRc stars, which shows that the modulation and
additional non-radial mode are not exclusive.
We investigate the conditions under which small scale energy release events in the low corona gave rise to strong interplanetary (IP) type III bursts. We analyze observations of three tiny events, detected by the Nan\c cay Radio Heliograph (NRH), two of which produced IP type IIIs. We took advantage of the NRH positioning information and of the high cadence of AIA/SDO data to identify the associated EUV emissions. We measured positions and time profiles of the metric and EUV sources. We found that the EUV events that produced IP type IIIs were located near a coronal hole boundary, while the one that did not was located in a closed magnetic field region. In all three cases tiny flaring loops were involved, without any associated mass eruption. In the best observed case the radio emission at the highest frequency (435 MHz) was displaced by ~55" with respect to the small flaring loop. The metric type III emission shows a complex structure in space and in time, indicative of multiple electron beams, despite the low intensity of the events. From the combined analysis of dynamic spectra and NRH images we derived the electron beam velocity as well as the height, ambient plasma temperature and density at the level of formation of the 160 MHz emission. From the analysis of the differential emission measure derived from the AIA images we found that the first evidence of energy release was at the footpoints and this was followed by the development of flaring loops and subsequent cooling. We conclude that even small energy release events can accelerate enough electrons to give rise to powerful IP type III bursts. The proximity of the electron acceleration site to open magnetic field lines facilitates the escape of the electrons into the interplanetary space. The offset between the site of energy release and the metric type III location warrants further investigation.
The occurrence of low-amplitude flux variations in blazars on hourly timescales, commonly known as microvariability, is still a widely debated subject in high-energy astrophysics. Several competing scenarios have been proposed to explain such occurrences, including various jet plasma instabilities leading to the formation of shocks, magnetic reconnection sites, and turbulence. In this letter we present the results of our detailed investigation of a prominent, five-hour-long optical microflare detected during recent WEBT campaign in 2014, March 2-6 targeting the blazar 0716+714. After separating the flaring component from the underlying base emission continuum of the blazar, we find that the microflare is highly polarized, with the polarization degree $\sim (40-60)\%$$\pm (2-10)\%$, and the electric vector position angle $\sim (10 - 20)$deg$\pm (1-8)$deg slightly misaligned with respect to the position angle of the radio jet. The microflare evolution in the $(Q,\,U)$ Stokes parameter space exhibits a looping behavior with a counter-clockwise rotation, meaning polarization degree decreasing with the flux (but higher in the flux decaying phase), and approximately stable polarization angle. The overall very high polarization degree of the flare, its symmetric flux rise and decay profiles, and also its structured evolution in the $Q-U$ plane, all imply that the observed flux variation corresponds to a single emission region characterized by a highly ordered magnetic field. As discussed in the paper, a small-scale but strong shock propagating within the outflow, and compressing a disordered magnetic field component, provides a natural, though not unique, interpretation of our findings.
Quasi-periodic propagating disturbances (PDs) are ubiquitous in polar coronal holes on the Sun. It remains unclear as to what generates PDs. In this work, we investigate how the PDs are generated in the solar atmosphere by analyzing a fourhour dataset taken by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We find convincing evidence that spicular activities in the solar transition region as seen in the AIA 304 {\AA} passband are responsible for PDs in the corona as revealed in the AIA 171 {\AA} images. We conclude that spicules are an important source that triggers coronal PDs.
B[e] supergiants are evolved massive stars with a complex circumstellar environment. A number of important emission features probe the structure and the kinematics of the circumstellar material. In our survey of Magellanic Cloud B[e] supergiants we focus on the [OI] and [CaII] emission lines, which we identified in four more objects.
The known population of pulsars contains objects with four and five component profiles, for which the peak-to-peak separations between the inner and outer components can be measured. These Q and M type profiles can be interpreted as a result of sightline cut through a nested cone beam, or through a set of azimuthal fan beams. We show that the ratio R_W of the components' separations provides a useful measure of the beam shape, which is mostly independent of parameters that determine the beam scale and complicate interpretation of simpler profiles. In particular, the method does not depend on the emission altitude and the dipole tilt distribution. The different structures of the radio beam imply manifestly different statistical distributions of R_W, with the conal model being several orders of magnitude less consistent with data than the fan beam model. To bring the conal model into consistency with data, strong effects of observational selection need to be called for, with 80% of Q and M profiles assumed to be undetected because of intrinsic blending effects. It is concluded that the statistical properties of Q and M profiles are more consistent with the fan-shaped beams, than with the traditional nested cone geometry.
On 2010 October 13, the Apollo type 20-meter asteroid 2010 TB54 passed within
6.1 lunar distances from the Earth. On the same date, but 11.4 hours earlier,
exactly at 02:52:32 UT, the sky over central Poland was illuminated by -8.6
magnitude PF131010 Ciechanow fireball. The trajectory and orbit of the fireball
was computed using multi-station data of Polish Fireball Network (PFN). The
results indicate that the orbit of the meteoroid which caused the PF131010
fireball is similar to the orbit of 2010 TB54 asteroid and both bodies may be
related. Moreover, two days before appearance of Ciechanow fireball another
small asteroid denoted as 2010 SX11 passed close to the Earth-Moon system. Its
orbit is even more similar to the orbit of Ciechanow fireball parent body than
in case of 2010 TB54.
The PF131010 Ciechanow entered Earth's atmosphere with the velocity of 12.9
+\- 0.2 km/s and started to shine at height of 82.5 +\- 0.3 km. Clear
deceleration started after first three seconds of flight, and the terminal
velocity of the meteor was only 5.8 +\- 0.2 km/s at height of 29.3 +\- 0.1 km.
Such a low value of terminal velocity indicates that fragments with total mass
of around 2 kg could survive the atmospheric passage and cause fall of the
meteorites. The predicted area of possible meteorite impact is computed and it
is located near Grabowo village south of Ostroleka city.
We study the generation of sharp features in the primordial spectra within the framework of effective field theory of inflation, wherein curvature perturbations are the consequence of the dynamics of a single scalar degree of freedom. We identify two sources in the generation of features: rapid variations of the sound speed c_s (at which curvature fluctuations propagate) and rapid variations of the expansion rate H during inflation. With this in mind, we propose a non-trivial relation linking these two quantities that allows us to study the generation of sharp features in realistic scenarios where features are the result of the simultaneous occurrence of these two sources. This relation depends on a single parameter with a value determined by the particular model (and its numerical input) responsible for the rapidly varying background. As a consequence, we find a one-parameter consistency relation between the shape and size of features in the bispectrum and features in the power spectrum. To substantiate this result, we discuss several examples of models for which this one-parameter relation (between c_s and H) holds, including models in which features in the spectra are both sudden and resonant.
Context. When trying to derive the star cluster physical parameters of the
M33 galaxy using broad-band unresolved ground-based photometry, previous
studies mainly made use of simple stellar population models, shown in the
recent years to be oversimplified.
Aims. In this study, we aim to derive the star cluster physical parameters
(age, mass, and extinction; metallicity is assumed to be LMC-like for clusters
with age below 1\,Gyr and left free for older clusters) of this galaxy using
models that take stochastic dispersion of cluster integrated colors into
account.
Methods. We use three recently published M33 catalogs of cluster optical
broad-band photometry in standard $UBVRI$ and in CFHT/MegaCam $u^{*}g'r'i'z'$
photometric systems. We also use near-infrared $JHK$ photometry that we derive
from deep 2MASS images. We derive the cluster parameters using a method that
takes into account the stochasticity problem, presented in previous papers of
this series.
Results. The derived differential age distribution of the M33 cluster
population is composed of a two-slope profile indicating that the number of
clusters decreases when age gets older. The first slope is interpreted as the
evolutionary fading phase of the cluster magnitudes, and the second slope as
the cluster disruption. The threshold between these two phases occurs at
$\sim$300\,Myrs, comparable to what is observed in the M31 galaxy. We also
model by use of artificial clusters the ability of the cluster physical
parameter derivation method to correctly derive the two-slope profile for
different photometric systems tested.
We present the spatially-resolved observations of HCN J = 1 -- 0 emission in the nearby spiral galaxy M51 using the IRAM 30 m telescope. The HCN map covers an extent of $4\arcmin\times5\arcmin$ with spatial resolution of $28\arcsec$, which is, so far, the largest in M51. There is a correlation between infrared emission (star formation rate indicator) and HCN (1--0) emission (dense gas tracer) at kpc scale in M51, a natural extension of the proportionality between the star formation rate (SFR) and the dense gas mass established globally in galaxies. Within M51, the relation appears to be sub-linear (with a slope of 0.74$\pm$0.16) as $L_{\rm IR}$ rises less quickly than $L_{\rm HCN}$. We attribute this to a difference between center and outer disk such that the central regions have stronger HCN (1--0) emission per unit star formation. The IR-HCN correlation in M51 is further compared with global one from Milky Way to high-z galaxies and bridges the gap between giant molecular clouds (GMCs) and galaxies. Like the centers of nearby galaxies, the $L_{\rm IR}$/$L_{\rm HCN}$ ratio measured in M51 (particularly in the central regions), is slightly lower than what is measured globally in galaxies, yet is still within the scatter. This implies that though the $L_{\rm IR}$/$L_{\rm HCN}$ ratio varies as a function of physical environment in the different positions of M51, IR and HCN indeed show a linear correlation over 10 orders of magnitude.
Using an $N$-body evolution code that does not rely on softened potentials, I have created a suite of interacting binary cluster simulations. The motions of the centers-of-mass of the clusters have been tracked and compared to the trajectories of point masses interacting via one of four different softened potential prescriptions. There is a robust, nearly linear relationship between the impact parameter of the cluster interaction and the point-mass softening length that best approximates the cluster centers-of-mass motion. In an $N$-body simulation that adopts a fixed softening length, such a relationship leads to regimes where two-body effects, like dynamical friction, can be either larger or smaller than the corresponding cluster situation. Further consideration of more specific $N$-body simulations leads to an estimate that roughly 10 per cent of point-mass interactions in an $N$-body simulation will experience two-body effects larger than those for equivalent clusters.
We address the possibility that intelligent civilisations that destroy
themselves could present signatures observable by humanity. Placing limits on
the number of self-destroyed civilisations in the Milky Way has strong
implications for the final three terms in Drake's Equation, and would allow us
to identify which classes of solution to Fermi's Paradox fit with the evidence
(or lack thereof).
Using the Earth as an example, we consider a variety of scenarios in which
humans could extinguish their own technological civilisation. Each scenario
presents some form of observable signature that could be probed by astronomical
campaigns to detect and characterise extrasolar planetary systems. Some
observables are unlikely to be detected at interstellar distances, but some
scenarios are likely to produce significant changes in atmospheric composition
that could be detected serendipitously with next-generation telescopes. In some
cases, the timing of the observation would prove crucial to detection, as the
decay of signatures is rapid compared to humanity's communication lifetime. In
others, the signatures persist on far longer timescales.
We present here the detection of a system of four low-mass planets around the bright (V=5.5) and close-by (6.5 pc) star HD219134. This is the first result of the Rocky Planet Search program with HARPS-N on the TNG in La Palma. The inner planet orbits the star in 3.0937 +/-0.0004 days, on a quasi-circular orbit with a semi-major axis of 0.0382 +/- 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD219134b the nearest known transiting planet to date. From the amplitude of the radial-velocity variation (2.33 +/- 0.24 m/s) and observed depth of the transit (359 +/- 38 ppm), the planet mass and radius are estimated to be 4.46 +/- 0.47 M_{\oplus} and 1.606 +/- 0.086 R_{\oplus} leading to a mean density of 5.89 +/- 1.17 g/cc, suggesting a rocky composition. One additional planet with minimum mass of 2.67 +/- 0.59 M_{\oplus} moves on a close-in, quasi-circular orbit with a period of 6.765 +/- 0.005 days. The third planet in the system has a period of 46.78 +/- 0.16 days and a minimum mass of 8.7 +/- 1.1 M{\oplus}, at 0.234 +/- 0.002 AU from the star. Its eccentricity is 0.32 +/- 0.14. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 +/- 0.1 days). The planetary origin of the signal is, however, the preferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 62 +/- 6 M_{\oplus} orbits the star in 1190 days, on an eccentric orbit (e=0.27 +/- 0.11) at a distance of 2.14 +/- 0.27 AU.
Broad absorption line quasars (BAL QSOs) are objects showing absorption from relativistic outflows, with velocities up to 0.2c. These manifest, in about 15% of quasars, as absorption troughs on the blue side of UV emission lines, such as C iv and Mg ii. In this work, we complement the information collected in the cm band for our previously presented sample of radio loud BAL QSOs with new observations at m and mm bands. Our aim is to verify the presence of old, extended radio components in the MHz range, and probe the emission of dust (linked to star formation) in the mm domain. We observed 5 sources from our sample, already presenting hints of low-frequency emission, with the GMRT at 235 and 610 MHz. Other 17 sources (more than half the sample) were observed with bolometer cameras at IRAM-30m and APEX. All sources observed with the GMRT present extended emission at a scale of tens of kpc. In some cases these measurements allow us to identify a second component in the SED, at frequencies below 1.4 GHz, beyond the one already studied in the GHz domain. In the mm-band, only one source shows emission clearly ascribable to dust. Upper limits were obtained for the remaining targets. These findings confirm that BAL QSOs can also be present in old radio sources, or even in restarting ones, where favourable conditions for the outflow launching/acceleration are present. A suggestion that these outflows could be precursors of the jet comes from the fact that ~70% of our sample can be considered in a GigaHertz Peaked Spectrum (GPS) or Compact Steep Spectrum (CSS)+GPS phase. This would confirm the idea proposed by other authors that these outflows could be recollimated to form the jet. Comparing with previous works in the literature, dust emission seems to be weaker than the what expected in 'normal' QSOs, suggesting that a feedback mechanism could inhibit star formation in radio-loud BAL QSOs.
Context. The photolysis of hydrogenated amorphous carbon, a-C(:H), dust by UV photon-irradiation in the laboratory leads to the release of H2 as well as other molecules and radicals. This same process is also likely to be important in the interstellar medium. Aims. To investigate molecule formation arising from the photo-dissociatively-driven, regenerative processing of a-C(:H) dust. Methods. We explore the mechanism of a-C(:H) grain photolysis leading to the formation of H2 and other molecules/radicals. Results. The rate constant for the photon-driven formation of H2 from a-C(:H) grains is estimated to be 2x10^-17 cm^3 s^-1. In intense radiation fields photon-driven grain decomposition will lead to fragmentation into daughter species rather than H2 formation. Conclusions. The cyclic re-structuring of arophatic a-C(:H) nano-particles appears to be a viable route to formation of H2 for low to moderate radiation field intensities (1 < G_0 < 10^2), even when the dust is warm (T ~ 50 - 100 K).
(Abridged) Near- to mid-IR observations of protoplanetary disks show that the inner regions (<10AU) are rich in small organic volatiles (e.g., C2H2 and HCN). Trends in the data suggest that disks around cooler stars (~3000K) are potentially more carbon- and molecule-rich than their hotter counterparts. Our aims are to explore the composition of the planet-forming region of disks around stars from M dwarf to Herbig Ae and compare with the observed trends. Models of the disk physical structure are coupled with a gas-grain chemical network to map the abundances in the planet-forming zone. N2 self shielding, X-ray-induced chemistry, and initial abundances, are investigated. The composition in the 'observable' atmosphere is compared with that in the midplane where the planet-building reservoir resides. M dwarf disk atmospheres are relatively more molecule rich than those for T Tauri or Herbig Ae disks. The weak far-UV flux helps retain this complexity which is enhanced by X-ray-induced ion-molecule chemistry. N2 self shielding has only a small effect and does not explain the higher C2H2/HCN ratios observed towards cooler stars. The models underproduce the OH/H2O column density ratios constrained in Herbig Ae disks, despite reproducing the absolute value for OH: H2O self shielding only increases this discrepency. The disk midplane content is sensitive to the initial main elemental reservoirs. The gas in the inner disk is generally more carbon rich than the midplane ices and is most significant for disks around cooler stars. The atmospheric C/O ratio appears larger than it actually is when calculated using observable tracers only because gas-phase O2 is predicted to be a significant oxygen reservoir. The models suggest that the gas in the inner regions of disks around cooler stars is more carbon rich; however, calculations of the molecular emission are necessary to confirm the observed trends.
A two-dimensional hydrodynamics code for Type Ia supernovae (SNIa) simulations is presented. The code includes a fifth-order shock-capturing scheme WENO, detailed nuclear reaction network, flame-capturing scheme and sub-grid turbulence. For post-processing we have developed a tracer particle scheme to record the thermodynamical history of the fluid elements. We also present a one-dimensional radiative transfer code for computing observational signals. The code solves the Lagrangian hydrodynamics and moment-integrated radiative transfer equations. A local ionization scheme and composition dependent opacity are included. Various verification tests are presented, including standard benchmark tests in one and two dimensions. SNIa models using the pure turbulent deflagration model and the delayed-detonation transition model are studied. The results are consistent with those in the literature. We compute the detailed chemical evolution using the tracer particles' histories, and we construct corresponding bolometric light curves from the hydrodynamics results. We also use a Graphics Processing Unit (GPU) to speed up the computation of some highly repetitive subroutines. We achieve an acceleration of 50 times for some subroutines and a factor of 6 in the global run time.
We model the extinction profiles observed in the Small and Large Magellanic clouds with a synthetic population of dust grains consisting by core-mantle particles and a collection of free-flying polycyclic aromatic hydrocarbons. All different flavors of the extinction curves observed in the Magellanic Clouds can be described by the present model, that has been previously (successfully) applied to a large sample of diffuse and translucent lines of sight in the Milky Way. We find that in the Magellanic Clouds the extinction produced by classic grains is generally larger than absorption by polycyclic aromatic hydrocarbons. Within this model, the non-linear far-UV rise is accounted for by polycyclic aromatic hydrocarbons, whose presence in turn is always associated to a gap in the size distribution of classical particles. This hints either a physical connection between (e.g., a common cause for) polycyclic aromatic hydrocarbons and the absence of middle-sized dust particles, or the need for an additional component in the model, that can account for the non-linear far-UV rise without contributing to the UV bump at $\sim$217 nm, e.g., nanodiamonds.
Escape of an early atmosphere from Titan, during which time NH3 could be converted by photolysis into the present N2 dominated atmosphere, is an important problem in planetary science. Recently Gilliam and Lerman (2014) estimated escape driven by the surface temperature and pressure, which we show gave loss rates that are orders of magnitude too large. Their model, related to Jeans escape from an isothermal atmosphere, was used to show that escape driven only by surface heating would deplete the atmospheric inventory of N for a suggested Titan accretion temperature of ~355 K. Therefore, they concluded that the accretion temperature must be lower in order to retain the present Titan atmosphere. Here we show that the near surface atmospheric temperature is essentially irrelevant for determining the atmospheric loss rate from Titan and that escape is predominantly driven by solar heating of the upper atmosphere. We also give a rough estimate of the escape rate in the early solar system (~10^4 kg/s) consistent with an inventory of nitrogen being available over the time period suggested by Atreya et al. (1978) for conversion of NH3 into N2.
Over the past few years, there have been a few studies on the development of an interest in science and scientists' views on public outreach. Yet, to date, there has been no global study regarding astronomers' views on these matters. Through the completion of our survey by 155 professional astronomers online and in person during the 28th International Astronomical Union General Assembly in 2012, we explored their development of and an interest for astronomy and their views on time constraints and budget restriction regarding public outreach activities. We find that astronomers develop an interest in astronomy between the ages of 4-6 but that the decision to undertake a career in astronomy often comes during late adolescence. We also discuss the claim that education and public outreach is regarded an optional task rather than a scientist's duty. Our study revealed that many astronomers think there should be a larger percentage of their research that should be invested into outreach activities, calling for a change in grant policies.
In synchrotron radiation formulas it is always assumed that the pitch angle of a charged particle remains constant during the radiation process. The argument employed is that as the radiation is beamed along the instantaneous direction of motion of the charge, the momentum loss will also be along the direction of motion. Accordingly radiation reaction should not cause any change in the direction of the velocity vector, and the pitch angle of the charge would therefore remain constant during the radiation process. However, it turns out that this picture is not relativistically covariant and that in the case of synchrotron losses, the pitch angle in general varies. While the component of the velocity vector perpendicular to the magnetic field does reduce in magnitude due to radiative losses, the parallel component does not undergo any change during radiation. Therefore there is a change in the ratio of the two components, implying a change in the pitch angle. This apparent paradox gets resolved and one gets a consistent picture only when effects on the charge motion are calculated from the Lorentz's radiation reaction formula. We derive the exact formula for life times of radiating electrons in a relativistically covariant way, by taking into account the change of the pitch angle due to radiative losses. We then compare it with the existing formula to examine if any revision in the life times of radiating charges, as computed in the erstwhile literature, is required.
We present a new method for determining the local dark matter density using kinematic data for a population of tracer stars. The Jeans equation in the $z$-direction is integrated to yield an equation that gives the velocity dispersion as a function of the total mass density, tracer density, and terms describing the couplings of vertical-radial and vertical-axial motions. Using MultiNest we can then fit a dark matter mass profile to tracer density and velocity dispersion data, and derive credible regions on the dark matter density profile. Our method avoids numerical differentiation, leading to lower numerical noise, and is able to deal with the tilt term while remaining one dimensional. In this study we present the method and perform initial tests on idealised mock data. We also demonstrate the crucial importance of dealing with the tilt term for tracers that sample $\gtrsim 1$ kpc above the disc plane. If ignored, this results in a systematic overestimation of the dark matter density.
We observed NGC 1624-2, the O-type star with the largest known magnetic field
Bp~20 kG), in X-rays with the ACIS-S camera onboard the Chandra X-ray
Observatory. Our two observations were obtained at the minimum and maximum of
the periodic Halpha emission cycle, corresponding to the rotational phases
where the magnetic field is the closest to equator-on and pole-on,
respectively. With these observations, we aim to characterise the star's
magnetosphere via the X-ray emission produced by magnetically confined wind
shocks. Our main findings are:
(i) The observed spectrum of NGC 1624-2 is hard, similar to the magnetic
O-type star Theta 1 Ori C, with only a few photons detected below 0.8 keV. The
emergent X-ray flux is 30% lower at the Halpha minimum phase.
(ii) Our modelling indicated that this seemingly hard spectrum is in fact a
consequence of relatively soft intrinsic emission, similar to other magnetic
Of?p stars, combined with a large amount of local absorption (~1-3 x 10^22
cm^-2). This combination is necessary to reproduce both the prominent Mg and Si
spectral features, and the lack of flux at low energies. NGC 1624-2 is
intrinsically luminous in X-rays (log LX emission ~ 33.4) but 70-95% of the
X-ray emission produced by magnetically confined wind shocks is absorbed before
it escapes the magnetosphere (log LX ISM corrected ~ 32.5).
(iii) The high X-ray luminosity, its variation with stellar rotation, and its
large attenuation are all consistent with a large dynamical magnetosphere with
magnetically confined wind shocks.
The interaction of a rotating star's magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk-magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, L_j ~ Mdot^{4/7}, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.
We calculate the squeezed limit of the bispectrum produced by inflation with multiple light fields. To achieve this we allow for different horizon exit times for each mode and calculate the intrinsic field-space three-point function in the squeezed limit using soft-limit techniques. We then use the $\delta N$ formalism from the time the last mode exits the horizon to calculate the bispectrum of the primordial curvature perturbation. We apply our results to calculate the spectral index of the halo bias, $n_{\delta b}$, an important observational probe of the squeezed limit of the primordial bispectrum and compare our results with previous formulae. We give an example of a curvaton model with $n_{\delta b} \sim {\cal O}(n_s-1)$ for which we find a 20% correction to observable parameters for squeezings relevant to future experiments. For completeness, we also calculate the squeezed limit of three-point correlation functions involving gravitons for multiple field models.
The formation and evolution of a wide class of astrophysical objects is governed by turbulent, magnetized accretion disks. Understanding their secular dynamics is of primary importance. Apart from enabling mass accretion via the transport of angular momentum, the turbulence affects the long-term evolution of the embedded magnetic flux, which in turn regulates the efficiency of the transport. In this paper, we take a comprehensive next step towards an effective mean-field model for turbulent astrophysical disks by systematically studying the key properties of magnetorotational turbulence in vertically-stratified, isothermal shearing boxes. This allows us to infer emergent properties of the ensuing chaotic flow as a function of the shear parameter as well as the amount of net-vertical flux. Using the test-field method, we furthermore characterize the mean-field dynamo coefficients that describe the long-term evolution of large-scale fields. We simultaneously infer the vertical shape and the spectral scale dependence of these closure coefficients, with the latter describing non-local contributions to the turbulent electromotive force. Based on this, we infer a scale-separation ratio of about ten for the large-scale dynamo. We finally determine scaling properties of the mean-field dynamo coefficients. The relevant component of the dynamo {\alpha} effect is found to scale linearly with the shear rate, as is the corresponding turbulent diffusion, {\eta}. Together, these scalings allow us to predict, in a quantitative manner, the cycle period of the well-known butterfly diagram. This lends new support to the importance of the {\alpha}{\Omega} mechanism in determining the evolution of large-scale magnetic fields in turbulent accretion disks.
An air-to-ground free-space optical communication system has been designed and partially developed. The design covers both the communications between the airborne and the ground station, and the acquisition, tracking and pointing. A strong effort has been made in order to achieve the minimum payload power, size and weight, for which a MEMS modulating retroreflector has been chosen. In the ground station, a new technique for fine pointing, based on a liquid crystal device, is proposed and will be demonstrated, as well as other improvements with the aim of optimizing the ground station performance.
There exists a growing evidence for anomalous transparency of the Universe for energetic gamma rays. Popular explanations include conversion of photons into hypothetical axion-like particles (ALPs) and back in astrophysical magnetic fields. Two distinctive scenarios of this conversion have been put forward: either it happens in the (host galaxy of the) gamma-ray source and in the Milky Way, or the photon-ALP oscillations take place in the intergalactic magnetic fields all along the way between the source and the observer. These two mechanisms imply different ALP parameters. We discuss approaches to distinguish between the two and present some indications in favour of the galactic scenario.
We introduce a novel dark matter scenario where the visible sector and the dark sector share a common asymmetry. The two sectors are connected through an unstable mediator with baryon number one, allowing the standard model baryon asymmetry to be shared with dark matter via semi-annihilation. The present-day abundance of dark matter is then set by thermal freeze-out of this semi-annihilation process, yielding an asymmetric version of the WIMP miracle as well as promising signals for indirect detection experiments. As a proof of concept, we find a viable region of parameter space consistent with the observed Fermi excess of GeV gamma rays from the galactic center.
We study the superstring inspired $E_{6}$ model motivated $U(1)_{N}$ extension of the supersymmetric standard model to explore the possibility of explaining the recent excess CMS events and the baryon asymmetry of the universe in eight possible variants of the model. In light of the hints from short-baseline neutrino experiments at the existence of one or more light sterile neutrinos, we also study the neutrino mass matrices dictated by the field assignments and the discrete symmetries in these variants. We find that all the variants can explain the excess CMS events via the exotic slepton decay, while for a standard choice of the discrete symmetry four of the variants have the feature of allowing high scale baryogenesis (leptogenesis). For one other variant three body decay induced soft baryogenesis mechanism is possible which can induce baryon number violating neutron-antineutron oscillation. We also point out a new discrete symmetry which has the feature of ensuring proton stability and forbidding tree level flavor changing neutral current processes while allowing for the possibility of high scale leptogenesis for two of the variants. On the other hand, neutrino mass matrix of the $U(1)_{N}$ model variants naturally accommodates three active and two sterile neutrinos which acquire masses through their mixing with extra neutral fermions giving rise to interesting textures for neutrino masses.
We provide a systematic treatment of chemical equilibrium in the presence of
a specific type of time dependent background. The type of time dependent
background we consider appears, for example, in recently proposed axion/Majoron
leptogenesis models [1,2]. In describing the chemical equilibrium we use
quantities which are invariant under redefinition of fermion phases (we refer
to this redefinition as a change of basis for short), and therefore it is a
basis invariant treatment. The change of the anomaly terms due to the change of
the path integral measure [3,4] under a basis change is taken into account. We
find it is useful to go back and forth between different bases, and there are
insights which can be more easily obtained in one basis rather than another. A
toy model is provided to illustrate the ideas.
For the axion leptogenesis model [1], our result suggests that at $T >
10^{13}$ GeV , when sphaleron processes decouple, and $\Gamma_{B+L} << H <
\Gamma_L$ (where $H$ is the Hubble parameter at temperature $T$ and $\Gamma_L$
is the $\Delta L = 2$ lepton number violating interaction rate), the amount of
$B-L$ created is controlled by the smallness of the sphaleron interaction rate,
$\Gamma_{B+L}$. Therefore it is not as efficient as described. In addition, we
notice a modification of gauge boson dispersion relation at sub-leading order.
The field theoretic renormalization group and the operator product expansion are applied to the model of passive vector (magnetic) field advected by a random turbulent velocity field. The latter is governed by the Navier--Stokes equation for compressible fluid, subject to external random force with the covariance $\propto \delta(t-t') k^{4-d-y}$, where $d$ is the dimension of space and $y$ is an arbitrary exponent. From physics viewpoints, the model describes magnetohydrodynamic turbulence in the so-called kinematic approximation, where the effects of the magnetic field on the dynamics of the fluid are neglected. The original stochastic problem is reformulated as a multiplicatively renormalizable field theoretic model; the corresponding renormalization group equations possess an infrared attractive fixed point. It is shown that various correlation functions of the magnetic field and its powers demonstrate anomalous scaling behavior in the inertial-convective range already for small values of~$y$. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in $y$. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant.
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
In this paper we review a recently developed approximate method for investigation of dynamics of compressible ellipsoidal figures. Collapse and subsequent behaviour are described by a system of ordinary differential equations for time evolution of semi-axes of a uniformly rotating, three-axis, uniform-density ellipsoid. First, we apply this approach to investigate dynamic stability of non-spherical bodies. We solve the equations that describe, in a simplified way, the Newtonian dynamics of a self-gravitating non-rotating spheroidal body. We find that, after loss of stability, a contraction to a singularity occurs only in a pure spherical collapse, and deviations from spherical symmetry prevent the contraction to the singularity through a stabilizing action of nonlinear non-spherical oscillations. The development of instability leads to the formation of a regularly or chaotically oscillating body, in which dynamical motion prevents the formation of the singularity. We find regions of chaotic and regular pulsations by constructing a Poincare diagram. A real collapse occurs after damping of the oscillations because of energy losses, shock wave formation or viscosity. We use our approach to investigate approximately the first stages of collapse during the large scale structure formation. The theory of this process started from ideas of Ya. B. Zeldovich, concerning the formation of strongly non-spherical structures during nonlinear stages of the development of gravitational instability, known as 'Zeldovich's pancakes'. In this paper the collapse of non-collisional dark matter and the formation of pancake structures are investigated approximately. We estimate an emission of very long gravitational waves during the collapse, and discuss the possibility of gravitational lensing and polarization of the cosmic microwave background by these waves.
We perform a joint analysis of current data from cosmology and laboratory experiments to constrain the neutrino mass parameters in the framework of bayesian statistics, also accounting for uncertainties in nuclear modeling, relevant for neutrinoless double $\beta$ decay ($0\nu2\beta$) searches. We find that a combination of current oscillation, cosmological and $0\nu2\beta$ data constrains $m_{\beta\beta}~<~0.04\,(0.06)$ eV at 95\% C.L. for normal (inverted) hierarchy. This result is not affected by uncertainties in nuclear modeling. We then perform forecasts for forthcoming and next-generation experiments, and find that in the case of normal hierarchy, and given a total mass of $0.1\,$ eV, it will be possible to measure the total mass itself, the effective Majorana mass and the effective electron mass with an accuracy (at 95\% C.L.) of $0.05$, $0.015$, $0.02$ eV respectively, as well as to be sensitive to one of the Majorana phases. We argue that more precise nuclear modeling will be crucial to improve these sensitivities.
Recently, a novel mechanism to address the hierarchy problem has been proposed [1], where the hierarchy between weak scale physics and any putative `cutoff' $M$ is translated into a parametrically large field excursion for the so-called relaxion field, driving the Higgs mass to values much less than $M$ through cosmological dynamics. In its simplest incarnation, the relaxion mechanism requires nothing beyond the standard model other than an axion (the relaxion field) and an inflaton. In this note, we critically re-examine the requirements for successfully realizing the relaxion mechanism and point out that parametrically larger field excursions can be obtained for a given number of e-folds by simply requiring that the background break exact de Sitter invariance. We discuss several corollaries of this observation, including the interplay between the upper bound on the scale $M$ and the order parameter $\epsilon$ associated with the breaking of dS symmetry, and the possibility that the relaxion could play the role of a curvaton. We find that a successful realization of the mechanism is possible with as few as $\mathcal O (10^3)$ e-foldings, albeit with a reduced cutoff $M \sim 10^6$ GeV for a dark QCD axion and outline a minimal scenario that can be made consistent with CMB observations.
Links to: arXiv, form interface, find, astro-ph, recent, 1507, contact, help (Access key information)