The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, X-ray binaries and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. Over seventy per cent of all massive stars will exchange mass with a companion, leading to a binary merger in one third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.
We present a kinematic analysis of the globular cluster (GC) system of the giant elliptical galaxy NGC 4365 and find several distinct kinematic substructures. This analysis is carried out using radial velocities for 269 GCs, obtained with the DEIMOS instrument on the Keck II telescope as part of the SAGES Legacy Unifying Globulars and Galaxies Survey (SLUGGS). We find that each of the three (formerly identified) GC colour subpopulations reveal distinct rotation properties. The rotation of the green GC subpopulation is consistent with the bulk of NGC 4365's stellar light, which `rolls' about the photometric major axis. The blue and red GC subpopulations show `normal' rotation about the minor axis. We also find that the red GC subpopulation is rotationally dominated beyond 2.5 arcmin (~17 kpc) and that the root mean squared velocity of the green subpopulation declines sharply with radius suggesting a possible bias towards radial orbits relative to the other GC subpopulations. Additionally, we find a population of low velocity GCs that form a linear structure running from the SW to the NE across NGC 4365 which aligns with the recently reported stellar stream towards NGC 4342. These low velocity GCs have g'-i' colours consistent with the overall NGC 4365 GC system but have velocities consistent with the systemic velocity of NGC 4342. We discuss the possible formation scenarios for the three GC subpopulations as well as the possible origin of the low velocity GC population.
We have searched for prompt radio emission from nine Gamma Ray Bursts (GRBs) with a 12 m telescope at 1.4 GHz, with a time resolution of 64 us to 1 s. We detected single dispersed radio pulses with significances >6 sigma in the few minutes following two GRBs. The dispersion measures of both pulses are well in excess of the expected Galactic values, and the implied rate is incompatible with known sources of single dispersed pulses. The arrival times of both pulses also coincide with breaks in the GRB X-ray light curves. A null trial and statistical arguments rule out random fluctuations as the origin of these pulses with >95% and 97% confidence, respectively, although a simple population argument supports a GRB origin with confidence of only 2%. We caution that we cannot rule out RFI as the origin of these pulses. If the single pulses are not related to the GRBs we set an upper limit on the flux density of radio pulses emitted between 200 to 1800 s after a GRB of 1.27 w^{-1/2} Jy, where 64 us < w < 32 ms is the pulse width. We set a limit of less than 760 Jy for long timescale (>1 s) variations. These limits are some of the most constraining at high time resolution and GHz frequencies in the early stages of the GRB phenomenon.
We investigate the interplay between the ionization radiation from massive stars and the turbulence inside the surrounding molecular gas thanks to 3D numerical simulations. We used the 3D hydrodynamical code HERACLES to model an initial turbulent medium that is ionized and heated by an ionizing source. Three different simulations are performed with different mean Mach numbers (1, 2 and 4). A non-equilibrium model for the ionization and the associated thermal processes was used. This revealed to be crucial when turbulent ram pressure is of the same order as the ionized-gas pressure. The density structures initiated by the turbulence cause local curvatures of the dense shell formed by the ionization compression. When the curvature of the shell is sufficient, the shell collapse on itself to form a pillar while a smaller curvature leads to the formation of dense clumps that are accelerated with the shell and therefore remain in the shell during the simulation. When the turbulent ram pressure of the cold gas is sufficient to balance the ionized-gas pressure, some dense-gas bubbles have enough kinetic energy to penetrate inside the ionized medium, forming cometary globules. This suggests a direct relation in the observations between the presence of globules and the relative importance of the turbulence compared to the ionized-gas pressure. The probability density functions present a double peak structure when the turbulence is low relative to the ionized-gas pressure. This could be used in observations as an indication of the turbulence inside molecular clouds.
A star orbiting a supermassive black hole can be tidally disrupted if the black hole's gravitational tidal field exceeds the star's self gravity at pericenter. Some of stellar tidal debris can become gravitationally bound to the black hole and be subsequently accreted, leading to a bright electromagnetic flare. In the Newtonian limit, this flare will have a light curve that scales as t^-5/3 if the tidal debris has a flat distribution in binding energy. We investigate the time dependence of the black-hole mass accretion rate when tidal disruption occurs close enough the black hole that relativistic effects are significant. We find that for orbits with pericenters comparable to the radius of the marginally bound circular orbit, relativistic effects can double the peak accretion rate and halve the time it takes to reach this peak accretion rate. The accretion rate depends on both the magnitude of the black-hole spin and its orientation with respect to the stellar orbit; for orbits with a given pericenter radius in Boyer-Lindquist coordinates, a maximal black-hole spin anti-aligned with the orbital angular momentum leads to the largest peak accretion rate.
Although the colour distribution of globular clusters in massive galaxies is well known to be bimodal, the spectroscopic metallicity distribution has been measured in only a few galaxies. After redefining the calcium triplet index-metallicity relation, we use our relation to derive the metallicity of 903 globular clusters in 11 early-type galaxies. This is the largest sample of spectroscopic globular cluster metallicities yet assembled. We compare these metallicities with those derived from Lick indices finding good agreement. In 6 of the 8 galaxies with sufficient numbers of high quality spectra we find bimodality in the spectroscopic metallicity distribution. Our results imply that most massive early-type galaxies have bimodal metallicity, as well as colour, distributions. This bimodality suggests that most massive galaxies early-type galaxies experienced two periods of star formation.
The parallel code NMAGIC is an implementation of a particle-based method to create made-to-measure models in agreement with observations of galaxies. It works by slowly correcting the particle weights of an evolving N-body system, until a satisfactory compromise is achieved between the goodness of the fit to a given set of observational data, and some degree of smoothness (regularization) of the underlying particle model. We briefly describe the method together with a new regularization scheme in phase-space, which improves recovering the correct orbit structure in the models. We also mention some practical applications showing the power of the technique in investigating the dynamics of galaxies.
The 21 cm signal produced by non-evaporating primordial black holes (PBHs) is investigated. X-ray photons emitted by the accretion to a PBH ionize and heat intergalactic medium (IGM) gas near a PBH. Using a simple analytic model, we show that this x-ray heating can produce an observable differential 21 cm brightness temperature. The region of the observable 21 cm brightness temperature can extend to 1-10 Mpc comoving distance from a PBH with depending on the PBH mass. The angular power spectrum of 21 cm fluctuations due to PBHs is also calculated. The peak position of the angular spectrum depends on the PBH mass, while the amplitude is independent. Comparing it with the angular power spectrum caused by primordial density fluctuations, it is found that both of them become comparable if \Omega_{PBH} \sim 10^{-12} at z=30 and 10^{-13} at z=20 for the PBH mass from 10 M_\odot to 10^8 M_\odot. Finally we find that the Square Kilometer Array can detect the signal due to PBHs up to \Omega_{PBH}=10^{-9} at z=30 and 10^{-10} at z=20 for PBHs with mass from 10^2 M_\odot to 10^8 M_\odot.
It is believed that first order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase that greatly enhances this radiation even in the absence of turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.
The underlying physics of giant radio halos and mini halos in galaxy clusters is still an open question, which becomes more pressing with the growing number of detections. In this paper, we explore the possibility that radio-emitting electrons are generated in hadronic cosmic ray (CR) proton interactions with ambient thermal protons of the intra-cluster medium. Our CR model derives from cosmological hydrodynamical simulations of cluster formation and additionally accounts for CR transport in the form of CR streaming and diffusion. This opens the possibility of changing the radio halo luminosity by more than an order of magnitude on a dynamical time scale. We build a mock galaxy cluster catalog from the large MultiDark N-body LCDM simulation by adopting a phenomenological gas density model for each cluster based on X-ray measurements that matches Sunyaev-Zel'dovich (SZ) and X-ray scaling relations and luminosity function. Using magnetic field strength estimates from Faraday rotation measure studies, our model successfully reproduces the observed surface brightness profiles of giant radio halos (Coma, A2163) as well as radio mini-halos (Perseus, Ophiuchus), while obeying upper limits on the gamma-ray emission in these clusters. Our model is also able to simultaneously reproduce the observed bimodality of radio-loud and radio-quiet clusters at the same L_X as well as the unimodal distribution of radio-halo luminosity versus the SZ flux Y; thereby suggesting a physical solution to this apparent contradiction. For a plausible fraction of 10% radio-loud clusters, our model matches the NVSS radio-halo luminosity function. Constructing an analytical radio-halo luminosity function, we demonstrate the unique prospects for low-frequency radio surveys (such as the LOFAR Tier 1 survey) to detect ~3500 radio halos back to redshift two and to probe the underlying physics of radio halos. [abridged]
Using high resolution off-band \ha\ data from the New Solar Telescope and Morlet wavelet analysis technique, we analyzed transverse motions of type II spicules observed near the North Pole of the Sun. Our new findings are that i) some of the observed type II spicules display kink or an inverse "Y" features, suggesting that their origin may be due to magnetic reconnection, and ii) type II spicules tend to display coherent transverse motions/oscillations. Also, the wavelet analysis detected significant presence of high frequency oscillations in type II spicules, ranging from 30 to 180 s with the the average period of 90 s. We conclude that at least some of type II spicules and their coherent transverse motions may be caused by reconnection between large scale fields rooted in the intergranular lanes and and small-scale emerging dipoles, a process that is know to generate high frequency kink mode MHD waves propagating along the magnetic field lines.
We used photospheric intensity images and magnetic field measurements from the New Solar Telescope in Big Bear and Helioseismic Magnetic Imager on board Solar Dynamics Observatory (SDO) to study the the effect that the new small-scale emerging flux induces on solar granulation. We report that emerging flux appears to leave different types of footprint on solar granulation: i) diffuse irregular patches of increased brightness, ii) well defined filament-like structures and accompanied bright points, and iii) bright point-like features that appear inside granules. We suggest that the type of the footprint depends on the intensity of emerging fields. Stronger fields, emerging as a part of large magnetic structure, create on the solar surface a well defined filamentary pattern with bright points at the ends of the filaments, while weak turbulent fields are associated with bright patches inside the host granule.
We consider the implications of Lorentz-invariance violation (LIV) on cosmogenic neutrino observations, with particular focus on the constraints imposed on several well-developed models for ultra-high energy cosmogenic neutrino production by recent results from the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, and Radio Ice Cherenkov Experiment (RICE) at the South Pole. Under a scenario proposed originally by Coleman and Glashow, each lepton family may attain maximum velocities that can exceed the speed of light, leading to energy-loss through several interaction channels during propagation. We show that future observations of cosmogenic neutrinos will provide by far the most stringent limit on LIV in the neutrino sector. We derive the implied level of LIV required to suppress observation of predicted fluxes from several mainstream cosmogenic neutrino models, and specifically those recently constrained by the ANITA and RICE experiments. We simulate via detailed Monte Carlo code the propagation of cosmogenic neutrino fluxes in the presence of LIV-induced energy losses. We show that this process produces several detectable effects in the resulting attenuated neutrino spectra, even at LIV-induced neutrino superluminality of (u_{\nu}-c)/c ~ 10^{-26}$, about 13 orders of magnitude below current bounds.
We construct a new three-dimensional general relativistic magnetohydrodynamics code, in which a fixed mesh refinement technique is implemented. To ensure the divergence-free condition as well as the magnetic flux conservation, we employ the method by Balsara (2001). Using this new code, we evolve differentially rotating magnetized neutron stars, and find that a magnetically driven outflow is launched from the star exhibiting a kink instability. The matter ejection rate and Poynting flux are still consistent with our previous finding (Shibata et al., 2011) obtained in axisymmetric simulations.
In this paper we solve the hydrodynamical equations of optically thin, steady state accretion disks around Kerr black holes. Here, fully general relativistic equations are used. We use a new method to calculate the shear tensor in the LNRF (Locally Non-Rotating Frame), BLF (Boyer-Lindquist Frame) and FRF (Fluid Rest Frame). We show that two components of shear tensor in the FRF are nonzero (in previous works only one nonzero component was assumed). We can use these tensors in usual transonic solutions and usual causal viscosity, but we derive solutions analytically by some simplifications. Then we can calculate the four velocity and density in all frames such as the LNRF, BLF and FRF.
Context.Transition disks are believed to be the final stages of
protoplanetary disks, during which a forming planetary system or
photoevaporation processes open a gap in the inner disk, drastically changing
the disk structure. From theoretical arguments it is expected that dust growth,
fragmentation and radial drift are strongly influenced by gas disk structure,
and pressure bumps in disks have been suggested as key features that may allow
grains to converge and grow efficiently.
Aims. We want to study how the presence of a large planet in a disk
influences the growth and radial distribution of dust grains, and how
observable properties are linked to the mass of the planet.
Methods. We combine two-dimensional hydrodynamical disk simulations of
disk-planet interactions with state-of-the-art coagulation/fragmentation models
to simulate the evolution of dust in a disk which has a gap created by a
massive planet. We compute images at different wavelengths and illustrate our
results using the example of the transition disk LkCa15.
Results. The gap opened by a planet and the long-range interaction between
the planet and the outer disk create a single large pressure bump outside the
planetary orbit. Millimeter-sized particles form and accumulate at the pressure
maximum and naturally produce ring-shaped sub-millimeter emission that is
long-lived because radial drift no longer depletes the large grain population
of the disk. For large planet masses around 9 $M_{\mathrm{Jup}}$, the pressure
maximum and, therefore, the ring of millimeter particles is located at
distances that can be more than twice the star-planet separation, creating a
large spatial separation between the gas inner edge of the outer disk and the
peak millimeter emission. Smaller grains do get closer to the gap and we
predict how the surface brightness varies at different wavelengths.
We study how to recover the full 3D clustering information of P(\vec{k},z), including redshift space distortions (RSD), from 2D tomography using the angular auto and cross spectra of different redshift bins C_\ell(z,z'). We focus on quasilinear scales where the minimum scale \lambda_{min} or corresponding maximum wavenumber k_{max}= 2\pi/\lambda_{min} is targeted to be between k_{max}={0.05-0.2} h/Mpc. For spectroscopic surveys, we find that we can recover the full 3D clustering information when the redshift bin width \Delta z used in the 2D tomography is similar to the targeted minimum scale, i.e. \Delta z ~ {0.6-0.8} \lambda_{min} H(z)/c which corresponds to \Delta z ~ 0.01-0.05 for z<1. This value of \Delta z is optimal in the sense that larger values of \Delta z lose information, while smaller values violate our minimum scale requirement. For a narrow-band photometric survey, with photo-z error \sigma_z=0.004, we find almost identical results to the spectroscopic survey because the photo-z error is smaller than the optimal bin width \sigma_z<\Delta z. For a typical broad-band photometric survey with \sigma_z=0.1, we have that \sigma_z>\Delta z and most radial information is intrinsically lost. The remaining information can be recovered from the 2D tomography if we use \Delta z ~ 2\sigma_z. While 3D and 2D analysis are shown here to be equivalent, the advantage of using angular positions and redshifts is that we do not need a fiducial cosmology to convert to 3D coordinates. This avoids assumptions and marginalization over the fiducial model. In addition, it becomes straight forward to combine RSD, clustering and weak lensing in 2D space.
From a dynamical analysis of the orbital elements of transneptunian objects (TNOs), Ragozzine & Brown reported a list of candidate members of the first collisional family found among this population, associated with (136108) Haumea (a.k.a. 2003 EL61). We aim to distinguish the true members of the Haumea collisional family from interlopers. We search for water ice on their surfaces, which is a common characteristic of the known family members. The properties of the confirmed family are used to constrain the formation mechanism of Haumea, its satellites, and its family. Optical and near-infrared photometry is used to identify water ice. We use in particular the CH4 filter of the Hawk-I instrument at the European Southern Observatory Very Large Telescope as a short H-band (Hs), the (J-Hs) colour being a sensitive measure of the water ice absorption band at 1.6 {\mu}m. Continuing our previous study headed by Snodgrass, we report colours for 8 candidate family members, including near-infrared colours for 5. We confirm one object as a genuine member of the collisional family (2003 UZ117), and reject 5 others. The lack of infrared data for the two remaining objects prevent any conclusion from being drawn. The total number of rejected members is therefore 17. The 11 confirmed members represent only a third of the 36 candidates. The origin of Haumea's family is likely to be related to an impact event. However, a scenario explaining all the peculiarities of Haumea itself and its family remains elusive.
We study the impulsively generated non-linear Alfv\'en waves in the solar atmosphere, and describe their most likely role in the observed non-thermal broadening of some spectral lines in solar coronal holes. We solve numerically the time-dependent magnetohydrodynamic equations to find temporal signatures of large-amplitude Alfv\'en waves in the model atmosphere of open and expanding magnetic field configuration, with a realistic temperature distribution. We calculate the temporally and spatially averaged, instantaneous transversal velocity of non-linear Alfv\'en waves at different heights of the model atmosphere, and estimate its contribution to the unresolved non-thermal motions caused by the waves. We find that the pulse-driven nonlinear Alfv\'en waves with the amplitude $A_{\rm v}$=50 km s$^{-1}$ are the most likely candidates for the non-thermal broadening of Si VIII $\lambda$1445.75 \AA\ line profiles in the polar coronal hole as reported by Banerjee et al. (1998). We also demonstrate that the Alfv\'en waves driven by comparatively smaller velocity pulse with its amplitude $A_{\rm v}$=25 km s$^{-1}$ may contribute to the spectral line width of the same line at various heights in coronal hole without any significant broadening. The main conclusion of this paper is that non-linear Alfv\'en waves excited impulsively in the lower solar atmosphere are responsible for the observed spectral line broadening in polar coronal holes. This is an important result as it allows us to conclude that such large amplitude and pulse-driven Alfv\'en waves do indeed exist in solar coronal holes. The existence of these waves and their undamped growth may impart the required momentum to accelerate the solar wind.
The NEAT (Nearby Earth Astrometric Telescope) mission is a proposal submitted to ESA for its 2010 call for M-size mission within the Cosmic Vision 2015-2025 plan. The main scientific goal of the NEAT mission is to detect and characterize planetary systems in an exhaustive way down to 1 Earth mass in the habitable zone and further away, around nearby stars for F, G, and K spectral types. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to that mass limit. NEAT will continue the work performed by Hipparcos and Gaia by reaching a precision that is improved by two orders of magnitude on pointed targets.
We describe a simple method for estimating the vertical column density in Smoothed Particle Hydrodynamics (SPH) simulations of discs. As in the method of Stamatellos et al. (2007), the column density is estimated using pre-computed local quantities and is then used to estimate the radiative cooling rate. The cooling rate is a quantity of considerable importance, for example, in assessing the probability of disc fragmentation. Our method has three steps: (i) the column density from the particle to the mid plane is estimated using the vertical component of the gravitational acceleration, (ii) the "total surface density" from the mid plane to the surface of the disc is calculated, (iii) the column density from each particle to the surface is calculated from the difference between (i) and (ii). This method is shown to greatly improve the accuracy of column density estimates in disc geometry compared with the method of Stamatellos. On the other hand, although the accuracy of our method is still acceptable in the case of high density fragments formed within discs, we find that the Stamatellos method performs better than our method in this regime. Thus, a hybrid method (where the method is switched in regions of large over-density) may be optimal.
Recent results from short--baseline neutrino oscillation experiments and Cosmic Microwave Background anisotropy measurements suggest the presence of additional sterile neutrinos. In this paper we properly combine these data sets to derive bounds on the sterile neutrino masses in the 3+1 and 3+2 frameworks, finding a potentially good agreement between the two datasets. However, when galaxy clustering is included in the analysis a tension between the oscillation and cosmological data is clearly present.
(Abridged) We present an overview of the sample of high-mass star and cluster forming regions observed as part of the Earliest Phases of Star Formation (EPoS) Herschel Guaranteed Time Key Program. A sample of 45 infrared-dark clouds (IRDCs) were mapped at PACS 70, 100, and 160 micron and SPIRE 250, 350, and 500 micron. In this paper, we characterize a population of cores which appear in the PACS bands and place them into context with their host cloud and investigate their evolutionary stage. We construct spectral energy distributions (SEDs) of 496 cores which appear in all PACS bands, 34% of which lack counterparts at 24 micron. From single-temperature modified blackbody fits of the SEDs, we derive the temperature, luminosity, and mass of each core. These properties predominantly reflect the conditions in the cold, outer regions. Taking into account optical depth effects and performing simple radiative transfer models, we explore the origin of emission at PACS wavelengths. The core population has a median temperature of 20K and has masses and luminosities that span four to five orders of magnitude. Cores with a counterpart at 24 micron are warmer and bluer on average than cores without a 24 micron counterpart. We conclude that cores bright at 24 micron are on average more advanced in their evolution, where a central protostar(s) have heated the outer bulk of the core, than 24 micron-dark cores. The 24 micron emission itself can arise in instances where our line of sight aligns with an exposed part of the warm inner core. About 10% of the total cloud mass is found in a given cloud's core population. We uncover over 300 further candidate cores which are dark until 100 micron. These are candidate starless objects, and further observations will help us determine the nature of these very cold cores.
The paper contains the summary of the First Stars IV 2012 Conference held in Kyoto, Japan
We present a detailed photometric study of the peculiar double ringed galaxy ESO474-G26. Near-Infrared (NIR) and optical data have been used, with the main goal to constrain the formation history of ESO474-G26. NIR photometry is fundamental in this kind of study, because gives better constraints on the Spectral Energy Distribution (SED) and well traces the older stellar population of the galaxy. This galaxy presents a very complex structure, with two almost orthogonal rings, one in the equatorial and another in the polar plane, around an elliptical-like object. Due to the peculiar morphology of ESO474-G26, we used both NIR images (J and K bands) to derive accurate analysis of the stellar light distribution, and optical images (in the B, V and R bands) to derive color profiles and color maps to study the structure of the rings. The observational characteristic of ESO474-G26 are typical of galaxies which have experienced some kind of interactions during their evolution. We investigated two alternatives: a merging process and an accretion event.
The forest of Lyman-alpha absorption lines seen in the spectra of distant quasars has become an important probe of the distribution of matter in the Universe. We use large, hydrodynamical simulations from the OWLS project to investigate the effect of feedback from galaxy formation on the probability distribution function and the power spectrum of the Lyman-alpha transmitted flux. While metal-line cooling is unimportant, both galactic outflows from massive galaxies driven by active galactic nuclei and winds from low-mass galaxies driven by supernovae have a substantial impact on the flux statistics. At redshift z=2.25, the effects on the flux statistics are of a similar magnitude as the statistical uncertainties of published data sets. The changes in the flux statistics are not due to differences in the temperature-density relation of the photo-ionised gas. Instead, they are caused by changes in the density distribution and in the fraction of hot, collisionally ionised gas. It may be possible to disentangle astrophysical and cosmological effects by taking advantage of the fact that they induce different scale and redshift dependencies. In particular, the magnitude of the feedback effects appears to decrease rapidly with increasing redshift. Analyses of Lyman-alpha forest data from surveys that are currently in process, such as BOSS/SDSS-III and X-Shooter/VLT, must take galactic winds into account.
The centers of stellar spheroids are often marked by the presence of nucleated central regions, called nuclear star clusters (NSCs). The origin of NSCs is still unclear. Here we investigate the possibility that NSCs originate from the migration and merger of stellar clusters at the center of galaxies where a massive black hole (MBH) may sit. We show that the observed relation between NSC masses and the velocity dispersion of their host spheroids cannot be reconciled with a purely in-situ formation scenario. On the other hand, the observed relation appears to be in agreement with the predictions of the cluster merger model which also reproduces the observed relation between the size of NSCs and their total luminosity. We evolve through dynamical friction a population of stellar clusters in a model of a galactic bulge taking into account dynamical dissolution, starting from a power-law cluster initial mass function and a total mass in stellar clusters consistent with the cluster formation efficiency of the Milky Way (MW). The most massive clusters reach the center of the galaxy and merge to form a compact nucleus; after 10 Gyr, the resulting NSC has properties that are consistent with the observed distribution of stars in the MW NSC. When a MBH is included at the center of a galaxy, globular clusters are tidally disrupted during inspiral, resulting in NSCs with lower densities than those of NSCs forming in galaxies with no MBHs. We suggest this as a possible explanation for the lack of NSCs in galaxies containing MBHs more massive than ~10^8M_Sun. Finally, we investigate the orbital evolution of globular clusters in giant elliptical galaxies which are believed to always host a MBH at their center rather than a NSC. In these systems an additional mechanism can prevent a NSC from forming: the time for globular clusters to reach the center of the galaxy is much longer than the Hubble time.
We show how an appropriate stationary crystalline structure of the magnetic field can induce a partial fragmentation of the accretion disk, generating an axial jet composed of hot rising plasma twisted in a funnel-like structure by the rotation of the system. The most important feature of the obtained jet is its high degree of collimation, naturally arising from the condition for its existence. The presence of non-zero dissipative effects allows the plasma ejection throughout the axial jet and the predicted values of the accretion rate are in agreement with observations.
A fraction of multiple planet candidate systems discovered from transits by the Kepler mission contain pairs of planet candidates that are in orbital resonance or are spaced slightly too far apart to be in resonance. We focus here on the four planet system, KOI 730, that has planet periods satisfying the ratios 8:6:4:3. By numerically integrating four planets initially in this resonant configuration in proximity to an initially exterior cold planetesimal disk, we find that of the order of a Mars mass of planet-orbit-crossing planetesimals is sufficient to pull this system out of resonance. Approximately one Earth mass of planet-orbit-crossing planetesimals increases the interplanetary spacings sufficiently to resemble the multiple planet candidate Kepler systems that lie just outside of resonance. This suggests that the closely spaced multiple planet Kepler systems, host only low mass debris disks or their debris disks have been extremely stable. We find that the planetary inclinations increase as a function of the mass in planetesimals that have crossed the orbits of the planets. If systems are left at zero inclination and in resonant chains after depletion of the gas disk then we would expect a correlation between distance to resonance and mutual planetary inclinations. This may make it possible to differentiate between dynamical mechanisms that account for the fraction of multiple planet systems just outside of resonance.
This paper presents and examines new near-infrared integral field observations of the three so-called 'embedded star clusters' located in the nuclear region of NGC1365. Adaptive-optics- corrected K-band data cubes were obtained with the ESO/VLT instrument SINFONI. The continuum in the K-band and emission lines such as HeI, Bracket-gamma, and several H2 lines were mapped at an achieved angular resolution of 0.2arcsec over a field of 3x3arcsec^2 around each source. We find that the continuum emission of the sources is spatially resolved. This means that they are indeed cluster complexes confined to regions of about 50pc extension. We performed robust measurements of the equivalent width of the CO absorption band at 2.3micro and of Bracket-gamma. For the main mid-infrared bright sources, the data only allow us to determine an upper limit to the equivalent width of the CO bands. Under the assumption of an instantaneously formed standard initial mass function Starburst99 model, the new measurements are found to be incompatible with previously published mid-infrared line ratios. We show that an upper mass limit of 25 to 30 solar masses, lower than the typically assumed 100solar masses, allows one to simply remove this inconsistency. For such a model, the measurements are consistent with ages in the range of 5.5Myr to 6.5Myr, implying masses in the range from 3 to 10 x 10^6 solar masses. We detect extended gas emission both in HII and H2. We argue that the central cluster complexes are the sources of excitation for the whole nebulae, through ionisation and shock heating. We detect a blue wing on the Bracket-gamma emission profile, suggesting the existence of gas outflows centred on the cluster complexes. We do not find any evidence for the presence of a lower mass cluster population, which would fill up a 'traditional' power law cluster mass function.
To image faint substellar companions obscured by the stellar halo and speckles, scattered light from the bright primary star must be removed in hardware or software. We apply the "locally-optimized combination of images" (LOCI) algorithm to 1-minute Keck Observatory snapshots of GKM dwarfs in the Hyades using source diversity to determine the most likely PSF. We obtain a mean contrast of 10^{-2} at 0.01", 10^{-4} at <1", and 10^{-5} at 5". New brown dwarf and low-mass stellar companions to Hyades primaries are found in a third of the 84 targeted systems. This campaign shows the efficacy of LOCI on snapshot imaging as well as on bright wide binaries with off-axis LOCI, reaching contrasts sufficient for imaging 625-Myr late-L/early-T dwarfs purely in post-processing.
Whereas current cosmological observations suggest that the universe is dominated by a positive cosmological constant ($\Lambda > 0$), the AdS/CFT correspondence tells us that the case $\Lambda<0$ is still worthy of consideration. In this paper we study the McVittie solution with $\Lambda<0$. Following a related study, the solution is understood here by way of a systematic construction of conformal diagrams based on detailed numerical integrations of the null geodesic equations. As in the pure Robertson - Walker case, we find that $\Lambda<0$ ensures collapse to a Big Crunch, a feature which completely dominates the global structure.
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars' angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, $cJ/GM^2$, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method of constructing filter banks for advanced-detector searches, which can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.
In this paper we show that the flat space Galilean theories with up to three scalars in the equation of motion (the quartic Galileons) are recovered in the decoupling limit of certain scalar theories non-minimally coupled to gravity, the so-called "Slotheonic" theories. These theories are also invariant under the generalized Galilean shifts in curved spacetime. While Galilean self-(derivative)couplings are not explicit in the action, they appear after integrating out gravity. In turn, we show that the quintic Galilean theory cannot be enhanced to be invariant under curved spacetime Galilean shifts. We then argue that Galilean supersymmetric theories up to the quartic, may only be found in the context of supergravity. Finally, we discuss on the possibility that Slotheonic theories are the effective four dimensional theories of consistent DGP-like models with self-accelerating cosmological solutions. Moreover, we show that the quartic and cubic Galileon in consistent DGP models cannot be decoupled.
During Cassini flyby of Saturn at a radial distance 6.18R_s (Saturn Radius), a signal was detected from about 200 to 430 Hz that had the proper dispersion characteristics to be a whistler. The frequency-time dispersion of the whistler was found to be 81 Hz1/2s. Based on this dispersion constant, we determined, from a travel time computation, that the whistler must have originated from lightning in the northern hemisphere of Saturn. Using a simple centrifugal potential model consisting of water group ions, and hydrogen ions we also determine the fractional concentration and scale height that gave the best fit to the observed dispersion.
Links to: arXiv, form interface, find, astro-ph, recent, 1207, contact, help (Access key information)
For the first time, we study the evolution of the stellar mass-size relation for star-forming galaxies from z ~ 4 to z ~ 7 from Hubble-WFC3/IR camera observations of the HUDF and Early Release Science (ERS) field. The sizes are measured by determining the best fit model to galaxy images in the rest-frame 2100 \AA \ with the stellar masses estimated from SED fitting to rest-frame optical (from Spitzer/IRAC) and UV fluxes. We show that the stellar mass-size relation of Lyman-break galaxies (LBGs) persists, at least to z ~ 5, and the median size of LBGs at a given stellar mass increases towards lower redshifts. For galaxies with stellar masses of 9.5<Log(M*/Msun)<10.4 sizes evolve as $(1+z)^{-1.20\pm0.11}$. This evolution is very similar for galaxies with lower stellar masses of 8.6<Log(M*/Msun)<9.5 which is $r_{e} \propto (1+z)^{-1.18\pm0.10}$, in agreement with simple theoretical galaxy formation models at high z. Our results are consistent with previous measurements of the LBGs mass-size relation at lower redshifts (z ~ 1-3).
We present the scientific performance results of PynPoint, our Python-based software package that uses principle component analysis to detect and estimate the flux of exoplanets in two dimensional imaging data. Recent advances in adaptive optics and imaging technology at visible and infrared wavelengths have opened the door to direct detections of planetary companions to nearby stars, but image processing techniques have yet to be optimized. We show that the performance of our approach gives a marked improvement over what is presently possible using existing methods such as LOCI. To test our approach, we use real angular differential imaging (ADI) data taken with the adaptive optics assisted high resolution near-infrared camera NACO at the VLT. These data were taken during the commissioning of the apodising phase plate (APP) coronagraph. By inserting simulated planets into these data, we test the performance of our method as a function of planet brightness for different positions on the image. We find that in all cases PynPoint has a detection threshold that is superior to that given by our LOCI analysis when assessed in a common statistical framework. We obtain our best improvements for smaller inner working angles (IWA). For an IWA of ~ 0.29" we find that we achieve a detection sensitivity that is a factor of 5 better than LOCI. We also investigate our ability to correctly measure the flux of planets. Again, we find improvements over LOCI, with PynPoint giving more stable results. Finally, we apply our package to a non-APP dataset of the exoplanet beta Pictoris b and reveal the planet with high signal-to-noise. This confirms that PynPoint can potentially be applied with high fidelity to a wide range of high-contrast imaging datasets.
(Abridged) We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out with GTC/OSIRIS. SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field (130 arcmin^2) at wavelengths 500 to 950 nm and using 24 contiguous medium-band filters (spectral resolution R 50). The data reach 26.5 mag (>3-sigma level) with sub-arcsec seeing in all bands. SHARDS main goal is obtaining accurate physical properties of interm- and high-z galaxies using well-sampled optical SEDs with sufficient spectral resolution to measure absorption and emission features. Among the different populations of high-z galaxies, SHARDS principal targets are massive quiescent galaxies at z>1. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures applied to the GTC/OSIRIS data. We present science demonstration results about the detection and study of emission-line galaxies (star-forming and AGN) at z=0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies at 1.0<z<1.4. We discuss on the improvements introduced by the SHARDS dataset in the analysis of their SFH and stellar properties. We discuss the systematics arising from the use of different stellar population libraries. We find that the UV-to-MIR SEDs of the massive quiescent galaxies at z=1.0-1.5 are well described by an exponential decaying SFH with scale tau=100-200 Myr, age 1.5-2.0 Gyr, solar or slightly sub-solar metallicity, and moderate extinction, A(V)~0.5 mag. We also find that galaxies with masses above M* are typically older than lighter galaxies, as expected in a downsizing scenario of galaxy formation. This trend is, however, model dependent, i.e., it is significantly more evident in the results obtained with some stellar population synthesis libraries and almost absent in others.
Cosmological Birefringence (CB), a rotation of the polarization plane of radiation coming to us from distant astrophysical sources, may reveal parity violation in either the electromagnetic or gravitational sectors of the fundamental interactions in nature. Until only recently this phenomenon could be probed with only radio observations or observations at UV wavelengths. Recently, there is a substantial effort to constrain such non-standard models using observations of the rotation of the polarization plane of cosmic microwave background (CMB) radiation. This can be done via measurements of the $B$-modes of the CMB or by measuring its TB and EB correlations which vanish in the standard model. In this paper we show that $EB$ correlations-based estimator is the best for upcoming polarization experiments. The $EB$ based estimator surpasses other estimators because it has the smallest noise and of all the estimators is least affected by systematics. Current polarimeters are optimized for the detection of $B$-mode polarization from either primordial gravitational waves or by large scale structure via gravitational lensing. In the paper we also study optimization of CMB experiments for the detection of cosmological birefringence, in the presence of instrumental systematics, which by themselves are capable of producing $EB$ correlations; potentially mimicking CB.
We calculate numerical solutions and analytic approximations for the intermediate-type spectral distortions. Detection of a \mu-type distortion (saturated comptonization) in the CMB will constrain the time of energy injection to be at a redshift 2x10^6> z > 2x10^5, while a detection of a y-type distortion (minimal comptonization) will mean that there was heating of CMB at redshift z< 1.5x10^4. We point out that the partially comptonized spectral distortions, generated in the redshift range 1.5x10^4 < z x 2x10^5, are much richer in information than the pure y and \mu-type distortions. The spectrum created during this period is intermediate between y and \mu-type distortions and depends sensitively on the redshift of energy injection. These intermediate-type distortions cannot be mimicked by a mixture of y and \mu-type distortions at all frequencies and vice versa. The measurement of these intermediate-type CMB spectral distortions has the possibility to constrain precisely not only the amount of energy release in the early Universe but also the mechanism, for example, particle annihilation and Silk damping can be distinguished from particle decay.
Magnetic loops are building blocks of the closed-field corona. While active region loops are readily seen in images taken at EUV and X-ray wavelengths, quiet Sun loops are seldom identifiable and therefore difficult to study on an individual basis. The first analysis of solar minimum (Carrington Rotation 2077) quiet Sun (QS) coronal loops utilizing a novel technique called the Michigan Loop Diagnostic Technique (MLDT) is presented. This technique combines Differential Emission Measure Tomography (DEMT) and a potential field source surface (PFSS) model, and consists of tracing PFSS field lines through the tomographic grid on which the Local Differential Emission Measure (LDEM) is determined. As a result, the electron temperature Te and density Ne at each point along each individual field line can be obtained. Using data from STEREO/EUVI and SOHO/MDI, the MLDT identifies two types of QS loops in the corona: so-called "up" loops in which the temperature increases with height, and so-called "down" loops in which the temperature decreases with height. Up loops are expected, however, down loops are a surprise, and furthermore, they are ubiquitous in the low-latitude corona. Up loops dominate the QS at higher latitudes. The MLDT allows independent determination of the empirical pressure and density scale heights, and the differences between the two remain to be explained. The down loops appear to be a newly discovered property of the solar minimum corona that may shed light on the physics of coronal heating. The results are shown to be robust to the calibration uncertainties of the EUVI instrument.
We combine a N-body simulation algorithm with a subgrid treatment of galaxy formation, mergers, and tidal destruction, and an observed conditional luminosity function Phi(L|M), to study the origin and evolution of galactic and extragalactic light inside a cosmological volume of size (100 Mpc)^3, in a concordance LCDM model. This algorithm simulates the growth of large-scale structures and the formation of clusters, the evolution of the galaxy population in clusters, the destruction of galaxies by mergers and tides, and the evolution of the intracluster light. We find that destruction of galaxies by mergers dominates over destruction by tides by about an order of magnitude at all redshifts. However, tidal destruction is sufficient to produce intracluster light fractions f_ICL that are sufficiently high to match observations. The bulk of the intracluster light (60%) is provided by intermediate galaxies of total masses 10^11 Msun-10^12 Msun and stellar masses 6x10^8 Msun-3x10^10 Msun that were tidally destroyed by even more massive galaxies. The contribution of low-mass galaxies to the intracluster light is small and the contribution of dwarf galaxies is negligible, even though, by numbers, most galaxies that are tidally destroyed are dwarfs. Tracking clusters back in time, we find that their values of f_ICL tend to increase over time, but can experience sudden changes that are sometimes non-monotonic. These changes occur during major mergers involving clusters of comparable masses but very different intracluster luminosities. Most of the tidal destruction events take place in the central regions of clusters. As a result, the intracluster light is more centrally concentrated than the galactic light. Our results support tidal destruction of intermediate-mass galaxies as a plausible scenario for the origin of the intracluster light.
In this paper, we report the results of constraining the holographic dark energy model with spatial curvature and massive neutrinos, based on a Markov Chain Monte Carlo global fit technique. The cosmic observational data include the full WMAP 7-yr temperature and polarization data, the type Ia supernova data from Union2.1 sample, the baryon acoustic oscillation data from SDSS DR7 and WiggleZ Dark Energy Survey, and the latest measurements of $H_0$ from HST. To deal with the perturbations of dark energy, we adopt the parameterized post-Friedmann method. We find that, for the simplest holographic dark energy model without spatial curvature and massive neutrinos, the phenomenological parameter $c<1$ at more than $4\sigma$ confidence level. The inclusion of spatial curvature enlarges the error bars and leads to $c<1$ only in about $2.5\sigma$ range; in contrast, the inclusion of massive neutrinos does not have significant influence on $c$. We also find that, for the holographic dark energy model with spatial curvature but without massive neutrinos, the $3\sigma$ error bars of the current fractional curvature density $\Omega_{k0}$ are still in order of $10^{-2}$; for the model with massive neutrinos but without spatial curvature, the $2\sigma$ upper bound of the total mass of neutrinos is $\sum m_{\nu} < 0.48$ eV. Moreover, there exists clear degeneracy between spatial curvature and massive neutrinos in the holographic dark energy model, which enlarges the upper bound of $\sum m_{\nu}$ by more than 2 times. In addition, we demonstrate that, making use of the full WMAP data can give better constraints on the holographic dark energy model, compared with the case using the WMAP "distance priors".
We investigate molecular evolution from a molecular cloud core to a first hydrostatic core in three spatial dimensions. We perform a radiation hydrodynamic simulation in order to trace fluid parcels, in which molecular evolution is investigated, using a gas-phase and grain-surface chemical reaction network. We derive spatial distributions of molecular abundances and column densities in the core harboring the first core. We find that the total of gas and ice abundances of many species in a cold era (10 K) remain unaltered until the temperature reaches ~500 K. The gas abundances in the warm envelope and the outer layer of the first core (T < 500 K) are mainly determined via the sublimation of ice-mantle species. Above 500 K, the abundant molecules, such as H2CO, start to be destroyed, and simple molecules, such as CO, H2O and N2 are reformed. On the other hand, some molecules are effectively formed at high temperature; carbon-chains, such as C2H2 and cyanopolyynes, are formed at the temperature of >700 K. We also find that large organic molecules, such as CH3OH and HCOOCH3, are associated with the first core (r < 10 AU). Although the abundances of these molecules in the first core stage are comparable or less than in the protostellar stage (hot corino), reflecting the lower luminosity of the central object, their column densities in our model are comparable to the observed values toward the prototypical hot corino, IRAS 16293-2422. We propose that these large organic molecules can be good tracers of the first cores.
We introduce an improved code for simulations of star clusters, called MOCCA.
It combines the Monte Carlo method for star cluster evolution and the Fewbody
code to perform scattering experiments. The Fewbody was added in order to track
more precisely dynamical interactions between objects which can lead to
creations of various exotic objects observed in the star clusters, like Blue
Stragglers Stars (BSS). The MOCCA code is currently one of the most advanced
codes for simulating real size star clusters. It follows the star cluster
evolution closely to N-body codes but is much faster. We show that the MOCCA
code is able to follow the evolution of BSS with details. It is a suitable tool
to perform full scale evolution of real star clusters and detail comparison
with observations of exotic star cluster objects like BSS.
This paper is the first one of the series of papers about properties of BSS
in star clusters. This type of stars is particularly interesting today, because
by studying them one can get important constrains on a link between the stellar
and dynamical evolution of star clusters. We discuss here first results
concerning BSS for an arbitrary chosen test model. We investigate properties of
BSS which characterize different channels of formation like masses, semi-major
axes, eccentricities, and orbital periods. We show how BSS from different
channels change their types, and discuss initial and final positions of BSS,
their bimodal distribution in the star cluster, lifetimes and more.
We study the generation of primordial fluctuations in pure de Sitter inflation where the quantum scalar field dynamics are governed by polymer (not Schrodinger) quantization. This quantization scheme is related to, but distinct from, the structures employed in Loop Quantum Gravity; and it modifies standard results above a polymer energy scale $M_{\star}$. We recover the scale invariant Harrison Zel'dovich spectrum for modes that have wavelengths bigger than $M_{\star}^{-1}$ at the start of inflation. The primordial spectrum for modes with initial wavelengths smaller than $M_{\star}^{-1}$ exhibits oscillations superimposed on the standard result. The amplitude of these oscillations is proportional to the ratio of the inflationary Hubble parameter $H$ to the polymer energy scale. For reasonable choices of $M_{\star}$, we find that polymer effects are likely unobservable in CMB angular power spectra due to cosmic variance uncertainty, but future probes of baryon acoustic oscillations may be able to directly constrain the ratio $H/M_{\star}$.
The radio-quiet quasar BR1202-0725 (z=4.695) is a remarkable source with a bright Northwest (NW) companion detected at submm and radio wavelengths but invisible in the optical. In the absence of amplification by gravitational lensing, BR1202-0725 would be the most luminous binary CO and FIR source in the Universe. In this paper, we report observations with the IRAM Plateau de Bure interferometer of BR1202-0725 in the redshifted emission of the CO(5-4) and (7-6) lines, the [C I](3P2-3P1) line, a high angular resolution (0.3 x 0.8 arcsec) 1.3 mm map of the rest-frame, far-IR dust continuum, and a search for the CO(11-10) line. We compare these results with recent ALMA data in the [C II] line. Both the quasar host galaxy and its NW companion are spatially resolved in the molecular line emission and the dust continuum. The CO profile of the NW companion is very broad with a full width at half maximum of 1000 +/- 130 km/s, compared to 360 +/- 40 km/s for the quasar host galaxy to the Southeast (SE). The difference in linewidths and center velocities, and the absence of any lens candidate or arc-like structure in the field, at any wavelength, show that the obscured NW galaxy and the SE quasar host galaxy cannot be lensed images of the same object. Instead, we find morphological and kinematic evidence for sub-structures in both the NW and SE sources. We interpret these results as strong indications that the BR1202-0725 complex is a group of young, interacting, and highly active starburst galaxies.
The impactor flux early in Mars history was much higher than today, so sedimentary sequences include many buried craters. In combination with models for the impactor flux, observations of the number of buried craters can constrain sedimentation rates. Using the frequency of crater-river interactions, we find net sedimentation rate \lesssim 20-300 {\mu}m/yr at Aeolis Dorsa. This sets a lower bound of 1-15 Myr on the total interval spanned by fluvial activity around the Noachian-Hesperian transition. We predict that Gale Crater's mound (Aeolis Mons) took at least 10-100 Myr to accumulate, which is testable by the Mars Science Laboratory.
Cold dark matter models predict the existence of a large number of substructures within dark matter halos. If the cold dark matter consists of weakly interacting massive particles, their annihilation within these substructures could lead to diffuse GeV emission that would dominate over the annihilation signal of the host halo. In this work we search for GeV emission from three nearby galaxy clusters: Coma, Virgo and Fornax. We first remove known extragalactic and galactic diffuse gamma-ray backgrounds and point sources from the Fermi 2-year catalog and find a significant residual diffuse emission in all three clusters. We then investigate whether this emission is due to (i) unresolved point sources; (ii) dark matter annihilation; or (iii) cosmic rays (CR). Using 45 months of Fermi-LAT data we detect several new point sources (not present in the Fermi 2-year point source catalogue) which contaminate the signal previously analyzed by Han et al.(arxiv:1201.1003). Including these and accounting for the effects of undetected point sources, we find no significant detection of extended emission from the three clusters studied. Instead, we determine upper limits on emission due to dark matter annihilation and cosmic rays. For Fornax and Virgo the limits on CR emission are consistent with theoretical models, but for Coma the upper limit is a factor of 2 below the theoretical expectation. Allowing for systematic uncertainties associated with the treatment of CR, the upper limits on the cross section for dark matter annihilation from our clusters are more stringent than those from analyses of dwarf galaxies in the Milky Way. We rule out the thermal cross section for supersymmetric dark matter particles for masses as large as 100 GeV (depending on the annihilation channel).
This review summarizes a few of the frontiers of Galactic center research that are currently the focus of considerable activity and attention. It is aimed at providing a necessarily incomplete sketch of some of the timely work being done on phenomena taking place in, or originating in, the central few parsecs of the Galaxy, with particular attention to topics related to the Galactic black hole (GBH). We have chosen to expand on the following exciting topics: 1) the characterization and the implications for the variability of emission from the GBH, 2) the strong evidence for a powerful X-ray flare in the Galactic center within the past few hundred years, and the likelihood that the GBH is implicated in that event, 3) the prospects for detecting the "shadow" of the GBH, 4) an overview of the current state of research on the central S-star cluster, and what has been learned from the stellar orbits within that cluster, and 5) the current hypotheses for the origin of the G2 dust cloud that is projected to make a close passage by the GBH in 2013.
We present a first-stage study of the effect of using knowledge from electromagnetic (EM) observations in the gravitational wave (GW) data analysis of Galactic binaries that are predicted to be observed by the new \textit{Laser Interferometer Space Antenna} in the low-frequency range, $10^{-4} \mathrm{Hz}<f<1 \mathrm{Hz}$. In particular, we examine the extent to which the accuracy of GW parameter estimation improves if we use available information from EM data. We do this by investigating whether correlations exist between the GW parameters that describe these binaries and whether some of these parameters are also available from EM observations. We used verification binaries, which are known as the guaranteed sources for \emph{eLISA} and will test the functioning of the instrument. We find that of the seven parameters that characterise such a binary, only a few are correlated. The most useful result is the strong correlation between amplitude and inclination, which can be used to constrain the parameter uncertainty in amplitude by making use of the constraint of inclination from EM measurements. The improvement can be up to a factor of $\sim6.5$, but depends on the signal-to-noise ratio of the source data. Moreover, we find that this strong correlation depends on the inclination. For mildly face-on binaries ($\iota \lesssim 45^{\circ}$), EM data on inclination can improve the estimate of the GW amplitude by a significant factor. However, for edge-on binaries ($\iota \sim 90^{\circ}$), the inclination can be determined accurately from GW data alone, thus GW data can be used to select systems that will likely be eclipsing binaries for EM follow-up.
It is believed that the majority of stars form in clusters. Therefore it is likely that the gas physical conditions that prevail in forming clusters, largely determine the properties of stars that form and in particular the initial mass function. We develop an analytical model to account for the formation of low mass clusters and the formation of stars within clusters. The formation of clusters is determined by an accretion rate, the virial equilibrium and energy as well as thermal balance. For this latter both molecular and dust cooling are considered using published rates. The star distribution is computed within the cluster using the physical conditions inferred from this model and the Hennebelle & Chabrier theory. Our model reproduces well the mass-size relation of low mass clusters (up to few $\simeq 10^3$ M$_\odot$ of stars corresponding to about 5 times more gas) and an initial mass function which is $i)$ very close to the Chabrier's IMF, $ii)$ weakly dependent on the mass of the clusters, $iii)$ relatively robust to (i.e. not too steeply dependent on) variations of physical quantities as accretion rate, radiation and cosmic rays abundances. The weak dependence of the mass distribution of stars with the cluster mass results from the compensation between varying clusters densities, velocity dispersions and temperatures all inferred from first physical principles. This constitutes a possible explanation for the apparent universality of the IMF within the Galaxy though variations with the local conditions could certainly be observed.
Major advances in state-of-the-art theoretical methods coupled with advances in computational architectures have opened the doorway to large-scale computations on elements across the periodic table, allowing the inclusion of fully relativistic effects. Whenever possible results have been benchmarked against high resolution measurements obtained from either synchrotron radiation facilities or satellite observations. Various stages of ionization, necessary for the many applications in astrophysics, can be studied in the absence of experimental values to obtain the necessary data. A simple review is presented of photoionization, fluorescence and inner-shell process recently investigated.
We present the results of single-dish and VLBI observations for the water-vapor masers at the nucleus of the Seyfert 2, IC 2560. We monitored velocities of the maser features with the 45-m telescope of the Nobeyama Radio Observatory. Using the data of 1995--2006, the velocity drift rate was detected to be a = +2.57 +/- 0.04 km/s/yr on the average for 6 systemic features. The Very Long Baseline Array (VLBA) with the Very Large Array (VLA) firstly detected a red-shifted and a blue-shifted maser features of IC 2560, in addition to systemic maser features and a continuum component. We propose a maser disk in the nuclear region. The systemic and red-shifted features are emitted from a nearly edge-on disk with the position angle of PA = -46 deg, which is almost perpendicular to the galactic disk. Assuming the Keplerian rotation, the radii of the maser disk are r = 0.087--0.335 pc, and the thickness is 2H <= 0.025 pc. The binding mass is 3.5 x 10^6 Msun at a distance of D = 26 Mpc, and the mean volume density within the inner radius is 1.3 x 10^9 Msun/pc^3, strongly suggesting a massive black hole at the center. A continuum component was detected at the 0.2 pc southwest of the disk center, and considered as a jet ejected from the nucleus, with an angle of 70 deg from the disk. The blue-shifted maser feature is located on the continuum component, being interpreted to be a "jet maser". The distance to IC 2560 is estimated to be D = 31^{+12}_{-14} Mpc from the geometry of the maser disk and the velocity drift rate.
Mid-infrared (MIR) shells or bubbles around expanding H II regions have received much attention due to their ability to initiate a new generation of star formation. We present multi-wavelength observations around two bubbles associated with a southern massive star-forming (MSF) region G8.14+0.23, to investigate the triggered star formation signature on the edges of the bubbles by the expansion of the H II region. We have found observational signatures of the collected molecular and cold dust material along the bubbles and the 12CO(J=3-2) velocity map reveals that the molecular gas in the bubbles is physically associated around the G8.14+0.23 region. We have detected 244 young stellar objects (YSOs) in the region and about 37% of these YSOs occur in clusters. Interestingly, these YSO clusters are associated with the collected material on the edges of the bubbles. We have found good agreement between the dynamical age of the H II region and the kinematical time scale of bubbles (from the 12CO(J=3-2) line data) with the fragmentation time of the accumulated molecular materials to explain possible "collect-and-collapse" process around the G8.14+0.23 region. However, one can not entirely rule out the possibility of triggered star formation by compression of the pre-existing dense clumps by the shock wave. We have also found two massive embedded YSOs (about 10 and 22 Msolar) which are associated with the dense fragmented clump at the interface of the bubbles. We conclude that the expansion of the H II region is also leading to the formation of these two young massive embedded YSOs in the G8.14+0.23 region.
In the course of our VLTI young stellar object PIONIER imaging program, we have identified a strong visibility chromatic dependency that appeared in certain sources. This effect, rising value of visibilities with decreasing wavelengths over one base, is also present in previous published and archival AMBER data. For Herbig AeBe stars, the H band is generally located at the transition between the star and the disk predominance in flux for Herbig AeBe stars. We believe that this phenomenon is responsible for the visibility rise effect. We present a method to correct the visibilities from this effect in order to allow "gray" image reconstruction software, like Mira, to be used. In parallel we probe the interest of carrying an image reconstruction in each spectral channel and then combine them to obtain the final broadband one. As an illustration we apply these imaging methods to MWC158, a (possibly Herbig) B[e] star intensively observed with PIONIER. Finally, we compare our result with a parametric model fitted onto the data.
Generation of radio bursts in CME foreshock regions and turbulent cascades in the solar wind are assumed to be results of three-wave interaction processes of dispersive plasma modes. Using our Particle in Cell code ACRONYM, we have studied the behaviour of kinetic wavemodes in the presence of beamed electron populations, with a focus on type II radio burst emission processes. We discuss the numerical challenges in generating and analyzing self-consistently evolving wave coupling processes with a PiC-Code and present preliminary results of said project.
We present the results of 12CO J = 1-0 line observations of eleven Galactic supernova remnants (SNRs) obtained using the Seoul Radio Astronomy Observatory (SRAO) 6-m radio telescope. The observation was made as a part of the SRAO CO survey of SNRs between l = 70 and 190 deg, which is intended to identify SNRs interacting with molecular clouds. The mapping areas for the individual SNRs are determined to cover their full extent in the radio continuum. We used halfbeam grid spacing (60") for 9 SNRs and full-beam grid spacing (120") for the rest. We detected CO emission towards most of the remnants. In six SNRs, molecular clouds showed a good spatial relation with their radio morphology, although no direct evidence for the interaction was detected. Two SNRs are particularly interesting: G85.4+0.7, where there is a filamentary molecular cloud along the radio shell, and 3C434.1, where a large molecular cloud appears to block the western half of the remnant. We briefly summarize the results obtained for individual SNRs.
We present the detection of sodium absorption in the atmosphere of the extrasolar planet WASP-17b, an inflated 'hot-Jupiter' in a tight orbit around an F6 dwarf. In-transit observations of WASP-17 made with the MIKE spectrograph on the 6.5-m Magellan Telescope were analysed for excess planetary atmospheric absorption in the sodium I 'D' doublet spectral region. Using the interstellar sodium absorption lines as reference, we detect an excess 0.58 \pm 0.13 per cent transit signal, with 4.5{\sigma} confidence, at 1.5 {\AA} bandwidth around the stellar sodium absorption feature. This result is consistent with the previous VLT detection of sodium in WASP-17b, confirming that the planet has a highly inflated atmosphere.
The character of radiation of relativistic charged particles in strong magnetic fields largely depends on the disposition of particle trajectories relative to the field lines. The motion of particles with trajectories close to the curved magnetic lines is usually referred to the so-called curvature radiation. The latter is treated within the formalism of synchrotron radiation by replacing the particle Larmor radius with the curvature radius of the field lines. However, even at small pitch angles, the curvatures of the particle trajectory and the field line may differ significantly. Moreover, as we show in this paper the trajectory curvature varies with time, i.e. the process has a stochastic character. Therefore for calculations of observable characteristics of radiation by an ensemble of particles, the radiation intensities should be averaged over time. In this paper, for determination of particle trajectories we use the Hamiltonian formalism, and show that that close to curved magnetic lines, for the given configuration of the magnetic field, the initial point and particle energy, always exist a smooth trajectory without fast oscillations of the curvature radius. This is the trajectory which is responsible for the curvature radiation. The realization of this regime requires the initial particle velocity to be directed strictly along the smooth trajectory. This result might have direct relation to the recent spectral measurements of gamma-radiation of pulsars by the Fermi Gamma-ray Space Telescope.
We present a method for the computation of the variance of cosmic microwave background (CMB) temperature maps on azimuthally symmetric patches using a fast convolution approach. As an example of the application of the method, we show results for the search for concentric rings with unusual variance in the 7-year WMAP data. We re-analyse claims concerning the unusual variance profile of rings centred at two locations on the sky that have recently drawn special attention in the context of the conformal cyclic cosmology scenario proposed by Penrose (2009). We extend this analysis to rings with larger radii and centred on other points of the sky. Using the fast convolution technique enables us to perform this search with higher resolution and a wider range of radii than in previous studies. We show that for one of the two special points rings with radii larger than 10 degrees have systematically lower variance in comparison to the concordance LambdaCDM model predictions. However, we show that this deviation is caused by the multipoles up to order l=7. Therefore, the deficit of power for concentric rings with larger radii is yet another manifestation of the well-known anomalous CMB distribution on large angular scales. Furthermore, low variance rings can be easily found centred on other points in the sky. In addition, we show also the results of a search for extremely high variance rings. As for the low variance rings, some anomalies seem to be related to the anomalous distribution of the low order multipoles of the WMAP CMB maps. As such our results are not consistent with the conformal cyclic cosmology scenario.
We introduce a novel approach, a Dense Shell Method (DSM), for measuring distances for cosmology. It is based on original Baade idea to relate absolute difference of photospheric radii with photospheric velocity. We demonstrate that this idea works: the new method does not rely on the Cosmic Distance Ladder and gives satisfactory results for the most luminous Type IIn Supernovae. This allows one to make them good primary distance indicators for cosmology. Fixing correction factors for illustration, we obtain with this method the median distance of 68^{+19}_{-15} (68%CL) Mpc to SN 2006gy and median Hubble parameter 79^{+23}_{-17} (68%CL) km/s/Mpc.
Aims: We aim at characterizing the inward transition from convective to radiative energy transport at the base of the convective envelope of the solar-like oscillator HD 52265 recently observed by the CoRoT satellite. Methods: We investigated the origin of one specific feature found in the HD 52265 frequency spectrum. We modelled the star to derive the internal structure and the oscillation frequencies that best match the observations and used a seismic indicator sensitive to the properties of the base of the envelope convection zone. Results: The seismic indicators clearly reveal that to best represent the observed properties of HD 52265, models must include penetrative convection below the outer convective envelope. The penetrative distance is estimated to be $\sim0.95 H_P$, which corresponds to an extent over a distance representing 6.0 per cents of the total stellar radius, significantly larger than what is found for the Sun. The inner boundary of the extra-mixing region is found at $0.800\pm0.004 R$ where $R=1.3 R_\odot$ is the stellar radius. Conclusions: These results contribute to the tachocline characterization in stars other than the Sun.
In this paper we study possible signatures of binary planets or exomoons on the Rossiter-McLaughlin (R-M) effect. Our analyses show that the R-M effect for a binary planet or exomoon during its complete transit phase can be divided into two parts. The first is the conventional one similar to the R-M effect from the transit of a single planet, of which the mass and the projected area are the combinations of the binary components; and the second is caused by the orbital rotation of the binary components, which may add a sine- or linear-mode deviation to the stellar radial velocity curve. We find that the latter effect can be up to several or several ten m/s. By doing numerical simulations as well as analytical analyses, we illustrate that the distribution and dispersion of the latter effects obtained from multiple transit events can be used to constrain the dynamical configuration of the binary planet, such as, how the inner orbit of the binary planet is inclined to its orbit rotating around the central star. We find that the signatures caused by the orbital rotation of the binary components are more likely to be revealed if the two components of binary planet have different masses and mass densities, especially if the heavy one has a high mass density and the light one has a low density. Similar signature on the R-M effect may also be revealed in a hierarchical triple star system containing a dark compact binary and a tertiary star.
New CCD photometric observations of BX Dra were obtained for 26 nights from 2009 April to 2010 June. The long-term photometric behaviors of the system are presented from detailed studies of the period and light variations, based on the historical data and our new observations. All available light curves display total eclipses at secondary minima and inverse O'Connell effects with Max I fainter than Max II, which are satisfactorily modeled by adding the slightly time-varying hot spot on the primary star. A total of 87 times of minimum light spanning over about 74 yrs, including our 22 timing measurements, were used for ephemeris computations. Detailed analysis of the O-C diagram showed that the orbital period has changed in combinations with an upward parabola and a sinusoidal variation. The continuous period increase with a rate of +5.65 \times 10^-7 d yr^-1 is consistent with that calculated from the Wilson-Devinney synthesis code. It can be interpreted as a mass transfer from the secondary to the primary star at a rate of 2.74 \times 10^-7 M\odot yr^-1, which is one of the largest rates for contact systems. The most likely explanation of the sinusoidal variation with a period of 30.2 yrs and a semi-amplitude of 0.0062 d is a light-traveltime effect due to the existence of a circumbinary object. We suggest that BX Dra is probably a triple system, consisting of a primary star with a spectral type of F0, its secondary component of spectral type F1-2, and an unseen circumbinary object with a minimum mass of M3 = 0.23 M\odot.
We present the results of a deep (J=19.1 mag) infrared (ZYJHK) survey over the full Alpha Persei open cluster extracted from the Data Release 9 of the UKIRT Infrared Deep Sky Survey Galactic Clusters Survey. We have selected ~700 cluster member candidates in ~56 square degrees in \APer{} by combining photometry in five near-infrared passbands and proper motions derived from the multiple epochs provided by the UKIDSS GCS DR9. We also provide revised membership for all previously published APer low-mass stars and brown dwarfs recovered in GCS based on the new photometry and astrometry provided by DR9. We find no evidence of $K$-band variability in members of APer with dispersion less than 0.06-0.09 mag. We employed two independent but complementary methods to derive the cluster luminosity and mass functions: a probabilistic analysis and a more standard approach consisting of stricter astrometric and photometric cuts. We find that the resulting luminosity and mass functions obtained from both methods are consistent. We find that the shape of the APer mass function is similar to that of the Pleiades although the characteristic mass may be higher after including higher mass data from earlier studies (the dispersion is comparable). We conclude that the mass functions of APer, the Pleiades, and Praesepe are best reproduced by a log-normal representation similar to the system field mass function although with some variation in the characteristic mass and dispersion values.
This paper investigates the hydrodynamic performances of an SPH code incorporating an artificial heat conductivity term in which the adopted signal velocity is applicable when gravity is present. In accordance with previous findings it is shown that the performances of SPH to describe the development of Kelvin-Helmholtz instabilities depend strongly on the consistency of the initial condition set-up and on the leading error in the momentum equation due to incomplete kernel sampling. An error and stability analysis shows that the quartic B-spline kernel (M_5) possesses very good stability properties and we propose its use with a large neighbor number, between ~50 (2D) to ~ 100 (3D), to improve convergence in simulation results without being affected by the so-called clumping instability. SPH simulations of the blob test show that in the regime of strong supersonic flows an appropriate limiting condition, which depends on the Prandtl number, must be imposed on the artificial conductivity SPH coefficients in order to avoid an unphysical amount of heat diffusion. Results from hydrodynamic simulations that include self-gravity show profiles of hydrodynamic variables that are in much better agreement with those produced using mesh-based codes. In particular, the final levels of core entropies in cosmological simulations of galaxy clusters are consistent with those found using AMR codes. Finally, results of the Rayleigh-Taylor instability test demonstrate that in the regime of very subsonic flows the code has still several difficulties in the treatment of hydrodynamic instabilities. These problems being intrinsically due to the way in which in standard SPH gradients are calculated and not to the implementation of the artificial conductivity term.
We present a broadband (radio - X-rays) spectral model for black hole
binaries (BHBs) in the low/hard state (LHS). We model the accretion flow as a
disc which is replaced in the inner regions by a radiatively inefficient hot
flow. The flow emits cyclo-synchrotron radiation, which produces another source
of seed photons for Compton scattering as well as those intercepted from the
outer disc. We balance heating with Compton cooling to derive the electron
temperature self-consistently, and find the dominant source of seed photons
changes from disc to cyclo-synchrotron emission as accretion rate drops and the
disc recedes. This reproduces the observed behaviour of the X-ray spectral
index, which initially hardens with decreasing accretion rate, and then softens
again.
We include a conical synchrotron jet of constant bulk Lorentz factor with
parameters based on those observed from a bright low/hard state in GX339-4.
This model reproduces the observed $L_R\propto L_X^{0.7}$ radio-X-ray
correlation as expected for a jet where the magnetic energy density and
particle density scale with $\propto\dot{m}$. The kinetic energy of the jet
also scales as $\propto\dot{m}$, but its optically thin synchrotron luminosity
scales as $\propto\dot{m}^2$ as it is determined by the product of the electron
and magnetic energy densities. Thus the X-rays from the jet are as radiatively
inefficient as the X-rays from the hot flow and there is no transition from an
accretion flow dominated state to a jet dominated state in the X-ray emission
in these models.
The O9IV star HD 57682, discovered to be magnetic within the context of the MiMeS survey in 2009, is one of only eight convincingly detected magnetic O-type stars. Among this select group, it stands out due to its sharp-lined photospheric spectrum. Since its discovery, the MiMeS Collaboration has continued to obtain spectroscopic and magnetic observations in order to refine our knowledge of its magnetic field strength and geometry, rotational period, and spectral properties and variability. In this paper we report new ESPaDOnS spectropolarimetric observations of HD 57682, which are combined with previously published ESPaDOnS data and archival H{\alpha} spectroscopy. This dataset is used to determine the rotational period (63.5708 \pm 0.0057 d), refine the longitudinal magnetic field variation and magnetic geometry (dipole surface field strength of 880\pm50 G and magnetic obliquity of 79\pm4\circ as measured from the magnetic longitudinal field variations, assuming an inclination of 60\circ), and examine the phase variation of various lines. In particular, we demonstrate that the H{\alpha} equivalent width undergoes a double-wave variation during a single rotation of the star, consistent with the derived magnetic geometry. We group the variable lines into two classes: those that, like H{\alpha}, exhibit non-sinusoidal variability, often with multiple maxima during the rotation cycle, and those that vary essentially sinusoidally. Based on our modelling of the H{\alpha} emission, we show that the variability is consistent with emission being generated from an optically thick, flattened distribution of magnetically-confined plasma that is roughly distributed about the magnetic equator. Finally, we discuss our findings in the magnetospheric framework proposed in our earlier study.
Dust and gas energetics are incorporated into a cluster-scale simulation of star formation in order to study the effect of heating and cooling on the star formation process. We build on our previous work by calculating separately the dust and gas temperatures. The dust temperature is set by radiative equilibrium between heating by embedded stars and radiation from dust. The gas temperature is determined using an energy-rate balance algorithm which includes molecular cooling, dust-gas collisional energy transfer, and cosmic-ray ionization. The fragmentation proceeds roughly similarly to simulations in which the gas temperature is set to the dust temperature, but there are differences. The structure of regions around sink particles have properties similar to those of Class 0 objects, but the infall speeds and mass accretion rates were, on average, higher than those seen for regions forming only low-mass stars. The gas and dust temperature have complex distributions not well modeled by approximations that ignore the detailed thermal physics. There is no simple relationship between density and kinetic temperature. In particular, high density regions have a large range of temperatures, determined by their location relative to heating sources. The total luminosity underestimates the star formation rate at these early stages, before ionizing sources are included, by an order of magnitude. As predicted in our previous work, a larger number of intermediate mass objects form when improved thermal physics is included, but the resulting IMF still has too few low mass stars. However, if we consider recent evidence on core-to-star efficiencies, the match to the IMF is improved.
The spatial distribution of 3.3 \mum PAH and associated emission in the 3.3" x 6.0" inner region of the Red Rectangle nebula has been determined using the UIST imager-spectrometer at the United Kingdom Infrared Telescope (UKIRT). Interpretation of the 3.3 \mum feature as comprising two spectroscopic components centred at 3.30 \mum and 3.28 \mum, as put forward by Song et al. (2003, 2007), is supported by these data which reveal that they have different spatial distributions. It is deduced that there are two classes of 3.3 \mum band carrier with a peak wavelength separation of ~0.02 \mum. From comparison of the 3.3 \mum observations with laboratory and theoretical spectra for a range of PAH molecules it is proposed that the 3.28 \mum and 3.30 \mum components arise from 'bay' and 'non-bay' hydrogen sites, respectively, on the periphery of small neutral PAHs. Observational data are also obtained for L-band continuum emission and for the Pfund \epsilon hydrogen recombination line.
We study the primordial density perturbations and non-Gaussianities generated from the combined effects of an inhomogeneous end of inflation and curvaton decay in hybrid inflation. This dual role is played by a single isocurvature field which is massless during inflation but acquire a mass at the end of inflation via the waterfall phase transition. We calculate the resulting primordial non-Gaussianity characterized by the non-linearity parameter, $f_{NL}$, recovering the usual end-of-inflation result when the field decays promptly and the usual curvaton result if the field decays sufficiently late.
The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm \times 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per arm, making the design affordable.
We present a concept for a 4000-fibre positioner for DESpec, based on the Echidna 'tilting spine' technology. The DESpec focal plane is 450mm across and curved, and the required pitch is ~6.75mm. The size, number of fibers and curvature are all comparable with various concept studies for similar instruments already undertaken at the AAO, but present new challenges in combination. A simple, low-cost, and highly modular design is presented, consisting of identical modules populated by identical spines. No show-stopping issues in accommodating either the curvature or the smaller pitch have been identified, and the actuators consist largely of off-the-shelf components. The actuators have been prototyped at AAO, and allow reconfiguration times of ~15s to reach position errors 7 microns or less. Straightforward designs for metrology, acquisition, and guiding are also proposed. The throughput losses of the entire positioner system are estimated to be ~15%, of which 6.3% is attributable to the tilting-spine technology.
Taking advantage of the ultra-deep near-infrared imaging obtained with the HST on the Hubble Ultra Deep Field, we detect and explore for the first time the properties of the stellar haloes of two Milky-Way like galaxies at z~1. We find that the structural properties of those haloes (size and shape) are similar to the ones found in the local universe. However, these high-z stellar haloes are ~3 magnitudes brighter and present bluer colors ((g-r)<0.4 mag) than their local counterparts. The stellar populations of z~1 stellar haloes are compatible with having ages <1 Gyr. This implies that the stars in those haloes were formed basically at 1<z<2. This result matches very well the theoretical predictions that locate most of the formation of the stellar haloes at those early epochs. We note, however, that high-z stellar haloes are slightly (0.5-1 mag) brighter than what a simple passive evolution of their stars would require to evolve them into the local haloes. That suggests that some accretion/star formation is still active at z~1.
We report the discovery of two previously unknown WN3 stars in the Large Magellanic Cloud. Both are bright (15th magnitude), isolated, and located in regions covered in earlier surveys, although both are relatively weak-lined. We suggest that there may be $\mathcal{O}(10)$ remaining undiscovered WNE stars in the LMC.
We present new orbital measurements of the pre-main sequence triple system, V807 Tau, using adaptive optics imaging at the Keck Observatory. We computed an orbit for the close pair, V807 Tau Ba-Bb, with a period of 12.312 +/- 0.058 years and a semi-major axis of 38.59 +/- 0.16 mas. By modeling the center of mass motion of the components in the close pair relative to the wide component, V807 Tau A, we measured a mass ratio of 0.843 +/- 0.050 for Bb/Ba. Combined with the total mass from the relative orbit, we derived individual masses of M_Ba = 0.564 +/- 0.018 (d/140 pc)^3 Msun and M_Bb = 0.476 +/- 0.017 (d/140 pc)^3 Msun at an average distance of 140 pc to the Taurus star forming region. We computed spectral energy distributions to determine the luminosities of the three components. We also measured their spectral types, effective temperatures, and rotational velocities based on spatially resolved spectra obtained at the Keck Observatory. If the rotational axes are aligned, then the projected rotational velocities imply that V807 Tau Ba and Bb are rotating much faster than V807 Tau A. The uncertainty in the stellar effective temperatures and distance to the system currently limit the comparison of our dynamical mass measurements with predictions based on evolutionary tracks for pre-main sequence stars. We also report preliminary results from a program to map the 3.6 cm radio emission from V807 Tau using the Very Long Baseline Array. With continued monitoring, these observations will provide a precise parallax for placing the dynamical masses on an absolute scale.
Outflows from active galactic nuclei may be produced by absorption of continuum radiation by UV resonance lines of abundant metal ions, as observed in broad absorption line quasars (BALQs). The radiation pressure exerted on the metal ions is coupled to the rest of the gas through Coulomb collisions of the metal ions. We calculate the photon density and gas density which allow decoupling of the metal ions from the rest of the gas. These conditions may lead to an outflow composed mostly of the metal ions. We derive a method to constrain the metals/H ratio of observed UV outflows, based on the Ly {\alpha} and Si iv {\lambda}{\lambda}1394, 1403 absorption profiles. We apply this method to an SDSS sample of BALQs to derive a handful of candidate outflows with a higher than solar metal/H ratio. This mechanism can produce ultra fast UV outflows, if a shield of the continuum source with a strong absorption edge is present.
We examine the suggestion that most of the hot plasma in the Sun's corona comes from type II spicule material that is heated as it is ejected from the chromosphere. This contrasts with the traditional view that the corona is filled via chromospheric evaporation that results from coronal heating. We explore the observational consequences of a hypothetical spicule dominated corona and conclude from the large discrepancy between predicted and actual observations that only a small fraction of the hot plasma can be supplied by spicules (<2% in active regions and <5% in the quiet Sun). The red-blue asymmetries of EUV spectral lines and the ratio of lower transition region (LTR; T<0.1 MK) to coronal emission measures are both predicted to be 2 orders of magnitude larger than observed. Furthermore, hot spicule material would cool dramatically by adiabatic expansion as it rises into the corona, so coronal heating would be required to maintain the high temperatures that are seen at all altitudes. The necessity of coronal heating is inescapable. Traditional coronal heating models predict far too little emission from the LTR, and we suggest that this emission comes primarily from the bulk of the spicule material that is heated to <0.1 MK and is visible in He II (304 A) as it falls back to the surface.
Gamma ray emission from dark matter subhalos in the Milky Way has long been sought as a sign of dark matter particle annihilation. So far, searches for gamma-ray continuum from subhalos have been unsuccessful, and line searches are difficult without prior knowledge of the line energies. Guided by recent claims of line emission at 111 GeV and 129 GeV in the Galactic center, we examine the co-added gamma-ray spectrum of unassociated point sources in the Second Fermi-LAT catalog (2FGL) using 3.9 years of LAT data. Using the SOURCE event class, we find evidence for lines at 111 GeV and 129 GeV with a local significance of 3.3 sigma based on a conservative estimate of the background at E>135 GeV. Other 2FGL sources analyzed in the same way do not show line emission at 111 GeV and 129 GeV. The line-emitting sources are mostly within 30 degrees of the Galactic plane, although this anisotropy may be a selection effect. If the double-line emission from these objects is confirmed with future data, it will provide compelling support for the hypothesis that the Galactic center line signal is indeed from dark matter annihilation.
We present the simplest model for classical transitions in flux vacua. A complex field with a spontaneously broken U(1) symmetry is embedded in $M_2\times S_1$. We numerically construct different winding number vacua, the vortices interpolating between them, and simulate the collisions of these vortices. We show that classical transitions are generic at large boosts, independent of whether or not vortices miss each other in the compact $S_1$.
Black hole accretion disks can form through the collapse of rotating massive stars. These disks produce large numbers of neutrinos and antineutrinos of electron flavor that can influence energetics and nucleosynthesis. Neutrinos are produced in sufficient numbers that, after they are emitted, they can undergo flavor transformation facilitated by the neutrino self interaction. We show that some of the neutrino flavor transformation phenomenology for accretion disks is similar to that of the supernova case, but also, we find the disk geometry lends itself to different transformation behaviors. These transformations strongly influence the nucleosynthetic outcome of disk winds.
As soon as the geometry expands quasi-exponentially the plasma sources are customarily tuned to zero as if the duration of the inflationary phase was immaterial for the gauge field fluctuations at large-scale. The serendipitous disappearance of the plasma (or even the partial neglect of its effects) depends on the symmetries of the system which are, in four space-time dimensions and in the simplest Abelian case, the invariance under Weyl rescaling and the electromagnetic duality symmetry. The quantum, thermal and conducting initial conditions of inflationary magnetogenesis are classified and discussed with the aim of determining when plasma effects can be effectively disregarded. The speculative implications of a non-degenerate monopole plasma for the conservation of the large-scale electric flux are briefly examined.
We present a study of the acceleration of electrons at a perpendicular shock that propagates through a turbulent magnetic field. The energization process of electrons is investigated by utilizing a combination of hybrid (kinetic ions and fluid electron) simulations and test-particle electron simulations. In this method, the motions of the test-particle electrons are numerically integrated in the time-dependent electric and magnetic fields generated by two-dimensional hybrid simulations. We show that large-scale magnetic fluctuations effect electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to interact with the shock front and get accelerated multiple times. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The acceleration efficiency is critically dependent on the turbulence amplitude and coherence length. We also discuss the implication of this study for solar energetic particles (SEPs) by comparing the acceleration of electrons with that of protons. Their correlation indicates that perpendicular shocks play an important role in SEP events.
We investigate the cosmological dynamics of non-minimally coupled scalar field system described by $F(\phi)R$ coupling with $F(\phi)=(1-\xi\phi^N)R$($N\ge2$) and the field potential, $V(\phi)=V_0\phi^n$. We use a generic set of dynamical variables to bring out new asymptotic regimes of the underlying dynamics. However, our dynamical variables miss the most important fixed point$-$ the de Sitter solution. We make use of the original form of system of equations to investigate the issues related to this important solution. In particular, we show that the de-Sitter solution which is a dynamical attractor of the system lies in the region of negative effective gravitational constant $G_N$ thereby leading to a ghost dominated universe in future and a transient quintessence(phantom) phase with $G_N>0 $ at present. We also carry out comparison of the model with other competing models of dark energy such as galileon modified gravity and others.
We study the prospects for studying line features in gamma-ray spectra with upcoming gamma-ray experiments, such as HESS-II, the Cherenkov Telescope Array (CTA), and the GAMMA-400 satellite. As an example we use the narrow feature at 130 GeV seen in public data from the Fermi-LAT satellite. We found that all three experiments should be able to confidently confirm or rule out the presence of this 130 GeV feature. If it is real, it should be confirmed with a confidence level higher than 5 sigma. Assuming it to be a spectral signature of dark matter origin, GAMMA-400, thanks to a projected energy resolution of about 1.5% at 100 GeV, should also be able to resolve both the \gamma\gamma-line and a corresponding Z\gamma- or H\gamma-feature, if the corresponding branching ratio is comparable to that into two photons. It will also allow to distinguish between a gamma-ray line and the similar feature resulting from internal bremsstrahlung photons.
Radiative transfer models explain and predict interaction between solar radiation and the different elements present in the atmosphere, which are responsible for energy attenuation. In Colombia there have been neither measurements nor studies of atmospheric components such as gases and aerosols that can cause turbidity and pollution. Therefore satellite images cannot be corrected radiometrically in a proper way. When a suitable atmospheric correction is carried out, loss of information is avoided, which may be useful for discriminating image land cover. In this work a computational model was used to find radiative atmospheric attenuation (300 1000nm wavelength region) on an equatorial tropical desert (La Tatacoa, Colombia) in order to conduct an adequate atmospheric correction.
We compute the divergent contributions to the one-loop action of the U(1) Abelian Higgs model. The calculation allows for a Friedmann-Lemaitre-Robertson-Walker space-time and a time-dependent expectation value for the scalar field. Treating the time-dependent masses as two-point interactions, we use the in-in formalism to compute the first, second and third order graphs that contribute quadratic and logarithmic divergences to the effective scalar action. Working in R-xi gauge we show that the result is gauge invariant upon using the equations of motion.
The OSE (Offline Simulations Environment) simulator of the LPF (LISA Pathfinder) mission is intended to simulate the different experiments to be carried out in flight. Amongst these, the thermal diagnostics experiments are intended to relate thermal disturbances and interferometer readouts, thereby allowing the subtraction of thermally induced interferences from the interferometer channels. In this paper we report on the modelling of these simulated experiments, including the parametrisation of different thermal effects (radiation pressure effect, radiometer effect) that will appear in the Inertial Sensor environment of the LTP (LISA Technology Package). We report as well how these experiments are going to be implemented in the LTPDA toolbox, which is a dedicated tool for LPF data analysis that will allow full traceability and reproducibility of the analysis thanks to complete recording of the processes.
Galaxies and galaxy clusters have rotational velocities apparently too fast to allow them to be gravitationally bound by their visible matter. This has been attributed to the presence of invisible (dark) matter, but so far this has not been directly detected. Here, it is shown that a new model that modifies inertial mass by assuming it is caused by Unruh radiation, which is subject to a Hubble-scale (Theta) Casimir effect predicts the rotational velocity (v) to be: v^4=2GMc^2/Theta (the Tully-Fisher relation) where G is the gravitational constant, M is the baryonic mass and c is the speed of light. The model predicts the outer rotational velocity of dwarf and disk galaxies, and galaxy clusters, within error bars, without dark matter or adjustable parameters, and makes a prediction that local accelerations should remain above 2c^2/Theta at a galaxy's edge.
Links to: arXiv, form interface, find, astro-ph, recent, 1207, contact, help (Access key information)