The small subset of hyper-luminous X-ray sources with luminosities in excess of ~1E41 erg/s are hard to explain without the presence of an intermediate mass black hole, as significantly super-Eddington accretion and/or very small beaming angles are required. The recent discovery of HLX-1, the most luminous object in this class with a record breaking luminosity of ~1E42 erg/s in the galaxy ESO 243-49, therefore currently provides some of the strongest evidence for the existence of intermediate mass black holes. HLX-1 is almost an order of magnitude brighter than the other hyper-luminous sources, and appears to exhibit X-ray spectral and flux variability similar to Galactic stellar mass black hole X-ray binaries. In this paper we review the current state of knowledge on this intriguing source and outline the results of multi-wavelength studies from radio to ultra-violet wavelengths, including imaging and spectroscopy of the recently identified optical counterpart obtained with the Very Large Telescope. These results continue to support an intermediate mass black hole in excess of 500 Msun
Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty starforming galaxies. However the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.
Merging compact binaries are the most viable and best studied candidates for gravitational wave (GW) detection by the fully operational network of ground-based observatories. In anticipation of the first detections, the expected distribution of GW sources in the local universe is of considerable interest. Here we investigate the full phase space distribution of coalescing compact binaries at $z = 0$ using dark matter simulations of structure formation. The fact that these binary systems acquire large barycentric velocities at birth (``kicks") results in merger site distributions that are more diffusely distributed with respect to their putative hosts, with mergers occurring out to distances of a few Mpc from the host halo. Redshift estimates based solely on the nearest galaxy in projection can, as a result, be inaccurate. On the other hand, large offsets from the host galaxy could aid the detection of faint optical counterparts and should be considered when designing strategies for follow-up observations. The degree of isotropy in the projected sky distributions of GW sources is found to be augmented with increasing kick velocity and to be severely enhanced if progenitor systems possess large kicks as inferred from the known population of pulsars and double compact binaries. Even in the absence of observed electromagnetic counterparts, the differences in sky distributions of binaries produced by disparate kick-velocity models could be discerned by GW observatories, within the expected accuracies and detection rates of advanced LIGO--in particular with the addition of more interferometers.
We perform high resolution N-body simulations for f(R) gravity based on a self-adaptive particle- mesh code MLAPM. The Chameleon mechanism that recovers General Relativity on small scales is fully taken into account by self-consistently solving the non-linear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function and density profiles, obtained by Oyaizu et al. (Phys.Rev.D 78, 123524, 2008) and Schmidt et al. (Phys.Rev.D 79, 083518, 2009), and extend the resolution up to k~20 h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discuss how the Chameleon mechanism affects the clustering of dark matter and halos on full non-linear scales.
Context. Mass loss of ~0.1-0.3 M$_{\odot}$ from Population II red giant stars (RGB) is a requirement of stellar evolution theory in order to account for several observational evidences in globular clusters. Aims. The aim of this study is to detect the presence of outward velocity fields, which are indicative of mass outflow, in six luminous red giant stars of the stellar cluster {\omega} Cen. Methods. We compare synthetic line profiles computed using relevant model chromospheres to observed profiles of the H{\alpha} and Ca II K lines. The spectra were taken with UVES (R=45,000) and the stars were selected so that three of them belong to the metal-rich population and three to the metal-poor population, and sample as far down as 1 to 2.5 magnitudes fainter than the respective RGB tips. Results. We do indeed reveal the presence of low-velocity outward motions in four of our six targets, without any apparent correlation with astrophysical parameters. Conclusions. This provides direct evidence that outward velocity fields and mass motions exist in RGB stars as much as 2.5 mag fainter than the tip. On the assumption that the mass outflow may eventually lead to mass loss from the star, we estimate mass-loss rates of some 10^{-9}-10^{-10} M$_{\odot}$ yr^{-1} that are compatible with the stellar evolution requirements. These rates seem to be correlated with luminosity rather than metallicity.
We report that the reported sub-Eddington boundary in the quasar mass-luminosity plane (a departure from the Eddington luminosity limit for the highest quasar black hole masses at a given redshift) is an artifact due to biases in black hole mass measurements. The sub-Eddington boundary was initially found by Steinhardt & Elvis (2010a) using the FWHM-based black hole mass catalogue of Shen et al. (2008). However, the significance of the boundary is reduced when the FWHM-based mass-scaling relationship is recalibrated following Wang et al. (2009) and using the most updated reverberation mapping estimates of black hole masses. Furthermore, this boundary is not seen using mass estimates based on the line dispersion of the same quasars' MgII emission lines. Thus, the initial report of the sub-Eddington boundary was due to biases in estimating masses using the FWHM of a fit of one or two Gaussians to quasar MgII emission lines. We provide evidence that using the line dispersion of the MgII line produces less biased black hole mass estimates.
We determine the age and mass of the three best solar twin candidates in open cluster M67 through lithium evolutionary models. We computed a grid of evolutionary models with non-standard mixing at metallicity [Fe/H] = 0.01 with the Toulouse-Geneva evolution code for a range of stellar masses. We estimated the mass and age of 10 solar analogs belonging to the open cluster M67. We made a detailed study of the three solar twins of the sample, YPB637, YPB1194, and YPB1787. We obtained a very accurate estimation of the mass of our solar analogs in M67 by interpolating in the grid of evolutionary models. The three solar twins allowed us to estimate the age of the open cluster, which is 3.87+0.55-0.66 Gyr, which is better constrained than former estimates. Our results show that the 3 solar twin candidates have one solar mass within the errors and that M67 has a solar age within the errors, validating its use as a solar proxy. M67 is an important cluster when searching for solar twins.
Rest-frame UV spectral lines of star-forming galaxies are systematically offset from the galaxies’ systemic redshifts, probably because of large-scale outflows. We calibrate galaxy redshifts measured from rest-frame UV lines by utilizing the fact that the mean HI Ly-alpha absorption profiles around the galaxies, as seen in spectra of background objects, must be symmetric with respect to the true galaxy redshifts if the galaxies are oriented randomly with respect to the lines of sight to the background objects. We use 15 QSOs at z~2.5-3 and more than 600 foreground galaxies with spectroscopic redshifts at z~1.9-2.5. All galaxies are within 2 Mpc proper from the lines of sight to the background QSOs. We find that LyA emission and ISM absorption redshifts require systematic shifts of v_LyA=-295(+35)(-35) km/s and v_ISM=145(+70)(-35) km/s. Assuming a Gaussian distribution, we put 1-sigma upper limits on possible random redshift offsets of <220 km/s for LyA and <420 km/s for ISM redshifts. For the small subset (<10%) of galaxies for which near-IR spectra have been obtained, we can compare our results to direct measurements based on nebular emission lines which we confirm to mark the systemic redshifts. While our v_ISM agrees with the direct measurements, our v_LyA is significantly smaller. However, when we apply our method to the near-IR subsample which is characterized by slightly different selection effects, the best-fit velocity offset comes into agreement with the direct measurement. This confirms the validity of our approach, and implies that no single number appropriately describes the whole population of galaxies, in line with the observation that the line offset depends on galaxy spectral morphology. This method provides accurate redshift calibrations and will enable studies of circumgalactic matter around galaxies for which rest-frame optical observations are not available.
We estimated the dynamical surface mass density (Sigma) at the solar Galactocentric distance between 2 and 4 kpc from the Galactic plane, as inferred from the observed kinematics of the thick disk. We find Sigma(z=2 kpc)=57.6+-5.8 Mo pc^-2, and it shows only a tiny increase in the z-range considered by our investigation. We compared our results with the expectations for the visible mass, adopting the most recent estimates in the literature for contributions of the Galactic stellar disk and interstellar medium, and proposed models of the dark matter distribution. Our results match the expectation for the visible mass alone, never differing from it by more than 0.8 $Mo pc^-2 at any z, and thus we find little evidence for any dark component. We assume that the dark halo could be undetectable with our method, but the dark disk, recently proposed as a natural expectation of the LambdaCDM models, should be detected. Given the good agreement with the visible mass alone, models including a dark disk are less likely, but within errors its existence cannot be excluded. In any case, these results put constraints on its properties: thinner models (scale height lower than 4 kpc) reconcile better with our results and, for any scale height, the lower-density models are preferred. We believe that successfully predicting the stellar thick disk properties and a dark disk in agreement with our observations could be a challenging theoretical task.
Since 2004, Saturn Electrostatic Discharges (SEDs), which are the radio signatures of lightning in Saturn's atmosphere, have been observed by the Cassini Radio and Plasma Wave Science instrument (RPWS). Despite their important time coverage, these observations lack the resolution and positioning given by imaging around visible wavelengths. Amateur observations from Earth have been increasing in quality and coverage since a few years, bringing information on positions, drift rates and shape evolutions of large visible white spots in Saturn's atmosphere. Combining these two complementary sources has brought better analysis of Saturn's storms evolutions.
Since it is not possible to predict when a Gamma-Ray Burst (GRB) will occur or when Active Galactic Nucleus (AGN) flaring activity starts, follow-up/monitoring ground telescopes must be located as uniformly as possible all over the world in order to collect data simultaneously with Fermi and Swift detections. However, there is a distinct gap in follow-up coverage of telescopes in the eastern U.S. region based on the operations of Swift. Motivated by this fact, we have constructed a 14" fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up Swift/Fermi GRBs and 2) to perform the coordinated optical observations of Fermi Large Area Telescope (LAT) AGN. Our telescope system consists of off-the-shelf hardware. With the focal reducer, we are able to match the field of view of Swift narrow instruments (20' x 20'). We started scientific observations in mid-November 2008 and GRT has been fully remotely operated since August 2009. The 3 sigma upper limit in a 30-second exposure in the R filter is ~15.4 mag; however, we can reach to ~18 mag in a 600-second exposures. Due to the weather condition at the telescope site, our observing efficiency is 30-40% on average.
We report on the spectral cross-calibration results of the Konus-Wind, the Suzaku/WAM, and the Swift/BAT instruments using simultaneously observed gamma-ray bursts (GRBs). This is the first attempt to use simultaneously observed GRBs as a spectral calibration source to understand systematic problems among the instruments. Based on these joint spectral fits, we find that 1) although a constant factor (a normalization factor) agrees within 20% among the instruments, the BAT constant factor shows a systematically smaller value by 10-20% compared to that of Konus-Wind, 2) there is a systematic trend that the low-energy photon index becomes steeper by 0.1-0.2 and Epeak becomes systematically higher by 10-20% when including the BAT data in the joint fits, and 3) the high-energy photon index agrees within 0.2 among the instruments. Our results show that cross-calibration based on joint spectral analysis is an important step to understanding the instrumental effects which could be affecting the scientific results from the GRB prompt emission data.
Two distinct scenarios for the origin of the ~ 4 \times 10^8 M\odot of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae (SNe) could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass asymptotic giant branch (AGB) stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios, and observational consequences that can discriminate between the two. We show that AGB stars can produce the inferred mass of dust in this object, however, the final mass of surviving dust depends on the galaxy's star formation history (SFH). In general supernovae cannot produce the observed amount of dust unless the average SN event creates over ~ 1 M\odot of dust in its ejecta. However, special SFHs can be constructed in which SNe can produce the inferred dust mass with a reasonable average dust yield of ~ 0.15 M\odot. The two scenarios propose different origins for the galaxy's spectral energy distribution, different star formation efficiencies and stellar masses, and consequently different comoving number densities of J1148+5251-type hyperluminous infrared (IR) objects. The detection of diagnostic mid-IR fine structure lines, and more complete surveys determining the comoving number density of these objects can discriminate between the two scenarios.
The Multi-Epoch Nearby Cluster Survey (MENeaCS) has discovered twenty-two cluster Type Ia supernovae (SNe) in the 58 X-ray selected galaxy clusters (0.05 < z < 0.15) surveyed. Four of our SN Ia events have no host galaxy on close inspection, and are likely intracluster SNe. Deep image stacks at the location of the candidate intracluster SNe put upper limits on the luminosities of faint hosts, with $M_{r} > -13.0$ mag and $M_{g} > -12.5$ mag in all cases. For such limits, the fraction of the cluster luminosity in faint dwarfs below our detection limit is $\lesssim0.1%$, assuming a standard cluster luminosity function. All four events occurred within $\sim$600 kpc of the cluster center (projected), as defined by the position of the brightest cluster galaxy, and are more centrally concentrated than the cluster SN Ia population as a whole. After accounting for several observational biases that make intracluster SNe easier to discover and spectroscopically confirm, we calculate an intracluster stellar mass fraction of $0.17^{+0.14}_{-0.09}$ (68% confidence limit) for all objects within $R_{200}$. If we assume that the intracluster stellar population is exclusively old, and the cluster galaxies themselves have a mix of stellar ages, we derive an upper limit on the intracluster stellar mass fraction of $<0.47$ (84% one-sided confidence limit). When combined with the intragroup SNe results of McGee & Balogh, we confirm the declining intracluster stellar mass fraction as a function of halo mass reported by Gonzalez and collaborators. (Abridged)
Magneto-solid-mechanical model of two-component, core-crust, paramagnetic neutron star responding to quake-induced perturbation by differentially rotational, torsional, oscillations of crustal electron-nuclear solid-state plasma about axis of magnetic field frozen in the immobile paramagnetic core is developed. Particular attention is given to the node-free torsional crust-against-core vibrations under combined action of Lorentz magnetic and Hooke's elastic forces; the damping is attributed to Newtonian force of shear viscose stresses in crustal solid-state plasma. The spectral formulae for the frequency and lifetime of this toroidal mode are derived in analytic form and discussed in the context of quasi-periodic oscillations of the X-ray outburst flux from quaking magnetars. The application of obtained theoretical spectra to modal analysis of available data on frequencies of oscillating outburst emission suggests that detected variability is the manifestation of crustal Alfven's seismic vibrations restored by Lorentz force of magnetic field stresses.
Quasi-biennial oscillations (QBO) are frequently observed in the solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength > 10^5 G triggers the instability of the m=1 magnetic Rossby wave harmonic with a period of 2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and the magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in the solar activity features. The period of QBO may change throughout the cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.
The Interstellar Medium has a fractal structure, in the sense that gas and dust distribute in a hierarchical and self-similar manner. Stars in new-born cluster probably follow the same fractal patterns of their parent molecular clouds. Moreover, it seems that older clusters tend to distribute their stars with radial density profiles. Thus, it is expected that clusters form with an initial fractal distribution of stars that eventually evolves toward centrally concentrated distributions. Is this really the case? This simple picture on to the origin and early evolution of star clusters and associations is very far from being clearly understood. There can be both young clusters exhibiting radial patterns and evolved clusters showing fractal structure. Additionally, the fractal structure of some open clusters is very different from that of the Interstellar Medium in the Milky Way. Here we summarize and discuss observational and numerical evidences concerning this subject.
We present results from the PARallaxes of Southern Extremely Cool objects (PARSEC) program, an observational program begun in April 2007 to determine parallaxes for 122 L and 28 T southern hemisphere dwarfs using the Wide Field Imager on the ESO 2.2m telescope. The results presented here include parallaxes of 10 targets from observations over 18 months and a first version proper motion catalog. The proper motions were obtained by combining PARSEC observations astrometrically reduced with respect to the UCAC2 Catalog, and the 2MASS Catalog. The resulting median proper motion precision is 5mas/yr for 195,700 sources. The 140 0.3deg2 fields sample the southern hemisphere in an unbiased fashion with the exception of the galactic plane due to the small number of targets in that region. We present preliminary parallaxes with a 4.2 mas median precision for 10 brown dwarfs, 2 of which are within 10pc. These increase by 20% the present number of L dwarfs with published parallaxes. Of the 10 targets, 7 have been previously discussed in the literature: two were thought to be binary but the PARSEC observations show them to be single, one has been confirmed as a binary companion and another has been found to be part of a binary system, both of which will make good benchmark systems. Observations for the PARSEC program will end in early 2011 providing 3-4 years of coverage for all targets. The main expected outputs are: more than a 100% increase of the number of L dwarfs with parallaxes; to increment - in conjuction with published results - to at least 10 the number of objects per spectral subclass up to L9, and; to put sensible limits on the general binary fraction of brown dwarfs. We aim to contribute significantly to the understanding of the faint end of the H-R diagram and of the L/T transition region.
We present a theoretical study of CS line profiles in archetypal hot cores. We provide estimates of line fluxes from the CS(1-0) to the CS(15-14) transitions and present the temporal variation of these fluxes. We find that \textit{i)} the CS(1-0) transition is a better tracer of the Envelope of the hot core whereas the higher-J CS lines trace the ultra-compact core; \textit{ii)} the peak temperature of the CS transitions is a good indicator of the temperature inside the hot core; \textit{iii)} in the Envelope, the older the hot core the stronger the self-absorption of CS; \textit{iv)} the fractional abundance of CS is highest in the innermost parts of the ultra-compact core, confirming the CS molecule as one of the best tracers of very dense gas.
We present theoretical delay time distributions and rates of Type Ia SNe from the formation channels that are thought to lead to Type Ia supernovae, including the sub-Chandrasekhar mass model, using the population synthesis binary evolution code StarTrack. Though much uncertainty in white dwarf accretion physics still exists, we find that within our standard model, sub-Chandrasekhar mass SNe Ia are able to potentially account for the observed rate of SNe Ia. We find that the delay time distribution of sub-Chandrasekhar mass SNe Ia can be divided into two distinct formation channels: the 'prompt' helium-star channel with delay times < 500 Myr (10% of all sub-Chandras), and the 'delayed' double white dwarf channel, with delay times > 800 Myr spanning up to a Hubble time (90%). These encouraging findings coincide with recent observationally-derived delay time distributions, which predict that a large number of SNe Ia have delay times below 1 Gyr, with a non-negligible fraction having delay times below 500 Myr.
We have obtained sub-arcsec mid-IR images of a sample of debris disks within 100 pc. For our sample of nineteen A-type debris disk candidates chosen for their IR excess, we have resolved, for the first time, five sources plus the previously resolved disk around HD 141569. Two other sources in our sample have been ruled out as debris disks since the time of sample selection. Three of the six resolved sources have inferred radii of 1-4 AU (HD 38678, HD 71155, and HD 181869), and one source has an inferred radius ~10-30 AU (HD 141569). Among the resolved sources with detections of excess IR emission, HD 71155 appears to be comparable in size (r~2 AU) to the solar system's asteroid belt, thus joining Zeta Lep (HD 38678, reported previously) to comprise the only two resolved sources of that class. Two additional sources (HD 95418 and HD 139006) show spatial extent that implies disk radii of ~1-3 AU, although the excess IR fluxes are not formally detected with better than 2-sigma significance. For the unresolved sources, the upper limits on the maximum radii of mid-IR disk emission are in the range ~1-20 AU, four of which are comparable in radius to the asteroid belt. We have compared the global color temperatures of the dust to that expected for the dust in radiative equilibrium at the distances corresponding to the observed sizes or limits on the sizes. In most cases, the temperatures estimated via these two methods are comparable, and therefore, we see a generally consistent picture of the inferred morphology and the global mid-IR emission. Finally, while our sample size is not statistically significant, we notice that the older sources (>200 Myr) host much warmer dust (T > 400 K) than younger sources (in the 10s of Myr).
In two recent papers the mesoscale model Meso-NH, joint with the Astro-Meso-NH package, has been validated at Dome C, Antarctica, for the characterization of the optical turbulence. It has been shown that the meteorological parameters (temperature and wind speed, from which the optical turbulence depends on) as well as the Cn2 profiles above Dome C were correctly statistically reproduced. The three most important derived parameters that characterize the optical turbulence above the internal antarctic plateau: the surface layer thickness, the seeing in the free-atmosphere and in the total atmosphere showed to be in a very good agreement with observations. Validation of Cn2 has been performed using all the measurements of the optical turbulence vertical distribution obtained in winter so far. In this paper, in order to investigate the ability of the model to discriminate between different turbulence conditions for site testing, we extend the study to two other potential astronomical sites in Antarctica: Dome A and South Pole, which we expect to be characterized by different turbulence conditions. The optical turbulence has been calculated above these two sites for the same 15 nights studied for Dome C and a comparison between the three sites has been performed.
We analyze the masses and spatial distributions of fourteen young stellar groups in Taurus, Lupus3, ChaI, and IC348. These nearby groups, which typically contain 20 to 40 members, have membership catalogs complete to ~0.02 M_sun, and are sufficiently young that their locations should be similar to where they formed. These groups show five properties seen in clusters having many more stars and much greater surface density of stars: (1) a broad range of masses, (2) a concentration of the most massive star towards the centre of the group, (3) an association of the most massive star with a high surface density of lower-mass stars, (4) a correlation of the mass of the most massive star with the total mass of the group, and (5) the distribution of a large fraction of the mass in a small fraction of the stars.
42 RRab, 46 RRc and 7 previously unidentified double-mode RR Lyrae stars were found in the publicly available data of the WASP archive. The Galactic double-mode RR Lyrae stars appear to show a bimodal period distribution.
We suggest an empirical calibration for determination of oxygen and nitrogen abundances and electron temperature in HII regions where the [OII]3727+3729 line (R_2) is not available. The calibration is based on the strong emission lines of OIII, NII, and SII (NS calibration) and derived using the spectra of HII regions with measured electron temperatures as calibration datapoints. The NS calibration makes it possible to derive abundances for HII regions in nearby galaxies from the SDSS spectra where R_2 line is out of the measured wavelength range, but can also be used for the oxygen and nitrogen abundances determinations in any HII region independently whether the nebular oxygen line [OII]3727+3729 is available or not. The NS calibration provides reliable oxygen and nitrogen abundances for HII regions over the whole range of metallicities.
We have obtained new resolved images of the well-studied HR 4796A dust ring at 18 and 25 microns with the 8-meter Gemini telescopes. These images confirm the previously observed spatial extent seen in mid-IR, near-IR, and optical images of the source. We detect brightness and temperature asymmetries such that dust on the NE side is both brighter and warmer than dust in the SW. We show that models of so-called pericenter glow account for these asymmetries, thus both confirming and extending our previous analyses. In this scenario, the center of the dust ring is offset from the star due to gravitational perturbations of a body with an eccentric orbit that has induced a forced eccentricity on the dust particle orbits. Models with 2-micron silicate dust particles and a forced eccentricity of 0.06 simultaneously fit the observations at both wavelengths. We also show that parameters used to characterize the thermal-emission properties of the disk can also account for the disk asymmetry observed in shorter-wavelength scattered-light images.
If star formation proceeds by thermal fragmentation and the subsequent gravitational collapse of the individual fragments, how is it possible to form fragments massive enough for O and B stars in a typical star-forming molecular cloud where the Jeans mass is about 1Msun at the typical densities (10^4 cm^-3) and temperatures (10K)? We test the hypothesis that a first generation of low-mass stars may heat the gas enough that subsequent thermal fragmentation results in fragments >=10Msun, sufficient to form B stars. We combine ATCA and SMA observations of the massive star-forming region G8.68-0.37 with radiative transfer modeling to derive the present-day conditions in the region and use this to infer the conditions in the past, at the time of core formation. Assuming the current mass/separation of the observed cores equals the fragmentation Jeans mass/length and the region's average density has not changed, requires the gas temperature to have been 100K at the time of fragmentation. The postulated first-generation of low-mass stars would still be around today, but the number required to heat the cloud exceeds the limits imposed by the observations. Several lines of evidence suggest the observed cores in the region should eventually form O stars yet none have sufficient raw material. Even if feedback may have suppressed fragmentation, it was not sufficient to halt it to this extent. To develop into O stars, the cores must obtain additional mass from outside their observationally defined boundaries. The observations suggest they are currently fed via infall from the very massive reservoir (~1500Msun) of gas in the larger pc scale cloud around the star-forming cores. This suggests that massive stars do not form in the collapse of individual massive fragments, but rather in smaller fragments that themselves continue to gain mass by accretion from larger scales.
We perform a Bayesian analysis of the mass distribution of stellar-mass black holes using the observed masses of 15 low-mass X-ray binary systems undergoing Roche lobe overflow and five high-mass, wind-fed X-ray binary systems. Using MCMC calculations, we model the mass distribution both parametrically---as a power law, exponential, gaussian, combination of two gaussians, or log-normal distribution---and non-parametrically---as histograms with varying numbers of bins. We provide confidence bounds on the shape of the mass distribution in the context of each model and compare the models by calculating their Bayesian evidence. The mass distribution of the low-mass systems is best fit by a power-law, while the distribution of the combined sample is best fit by the exponential model. This difference indicates that the low-mass subsample is not consistent with being drawn from the distribution of the combined population. We examine the existence of a ``gap'' between the most massive neutron stars and the least massive black holes by considering the 1% quantile from each black hole mass distribution, M_1%. The best model (the power law) fitted to the low-mass systems gives a distribution with M_1% > 4.3 MSun with 90% confidence, while the best model (the exponential) fitted to all 20 systems has M_1% > 4.5 MSun with 90% confidence. We conclude that our sample of black hole masses provides strong evidence of a gap between the maximum neutron star mass and the minimum black hole mass. Our results on the low-mass sample are in qualitative agreement with those of Ozel et al (2010), although our broad model-selection analysis more reliably reveals the best-fit underlying mass distribution. The presence of a mass gap remains theoretically unexplained.
We present results of models of the physical space and parameters of the accretion disk of Sagittarius A*, as well as simulations of its emergent spectrum. This begins with HARM, a 2D general relativistic magneto-hydrodynamic (GRMHD) model, specifically set up to evolve the space around a black hole. Data from HARM are then fed into a 2D Monte-Carlo (MC) code which generates and tracks emitted photons, allowing for absorption and scattering before they escape the volume.
Both ground and space-based transit observatories are poised to significantly increase the number of known transiting planets and the number of precisely measured transit times. The variation in a planet's transit times may be used to infer the presence of additional planets. Deducing the masses and orbital parameters of such planets from transit time variations (TTVs) alone is a rich and increasingly relevant dynamical problem. In this work, we evaluate the extent of the degeneracies in this process, systematically explore the dependence of TTV signals on several parameters and provide phase space plots that could aid observers in planning future observations. Our explorations are focused on a likely-to-be prevalent situation: a known transiting short-period Neptune or Jupiter-sized planet and a suspected external low-mass perturber on a nearly-coplanar orbit. Through approximately 10^7 N-body simulations, we demonstrate how TTV signal amplitudes may vary by orders of magnitude due to slight variations in any one orbital parameter (0.001 AU in semimajor axis, 0.005 in eccentricity, or a few degrees in orbital angles), and quantify the number of consecutive transit observations necessary in order to obtain a reasonable opportunity to characterize the unseen planet (approximately greater or equal to 50 observations). Planets in or near period commensurabilities of the form p:q, where p < 21 and q < 4, produce distinct TTV signatures, regardless of whether the planets are actually locked in a mean motion resonance. We distinguish these systems from the secular systems in our explorations. Additionally, we find that computing the autocorrelation function of a TTV signal can provide a useful diagnostic for identifying possible orbits for additional planets and suggest that this method could aid integration of TTV signals in future studies of particular exosystems.
Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to hot Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS).
A new cosmic shear analysis pipeline SUNGLASS (Simulated UNiverses for Gravitational Lensing Analysis and Shear Surveys) is introduced. SUNGLASS is a pipeline that rapidly generates simulated universes for weak lensing and cosmic shear analysis. The pipeline forms suites of cosmological N-body simulations and performs tomographic cosmic shear analysis using line-of-sight integration through these simulations while saving the particle lightcone information. Galaxy shear and convergence catalogues with realistic 3D galaxy redshift distributions are produced for the purposes of testing weak lensing analysis techniques and generating covariance matrices for data analysis and cosmological parameter estimation. We present a suite of fast medium resolution simulations with shear and convergence maps for a generic 100 square degree survey out to a redshift of z = 1.5, with angular power spectra agreeing with the theory to better than a few percent accuracy up to l = 10^3 for all source redshifts up to z = 1.5 and wavenumbers up to l = 2000 for the source redshifts z > 1.1. At higher wavenumbers, there is a failure of the theoretical lensing power spectrum reflecting the known discrepancy of the Smith et al. (2003) fitting formula at high physical wavenumbers. A two-parameter Gaussian likelihood analysis of sigma_8 and Omega_m is also performed on the suite of simulations, demonstrating that the cosmological parameters are recovered from the simulations and the covariance matrices are stable for data analysis. We find no significant bias in the parameter estimation at the level of ~ 0.02. The SUNGLASS pipeline should be an invaluable tool in weak lensing analysis.
Pairs of migrating extrasolar planets often lock into mean motion resonance as they drift inward. This paper studies the convergent migration of giant planets (driven by a circumstellar disk) and determines the probability that they are captured into mean motion resonance. The probability that such planets enter resonance depends on the type of resonance, the migration rate, the eccentricity damping rate, and the amplitude of the turbulent fluctuations. This problem is studied both through direct integrations of the full 3-body problem, and via semi-analytic model equations. In general, the probability of resonance decreases with increasing migration rate, and with increasing levels of turbulence, but increases with eccentricity damping. Previous work has shown that the distributions of orbital elements (eccentricity and semimajor axis) for observed extrasolar planets can be reproduced by migration models with multiple planets. However, these results depend on resonance locking, and this study shows that entry into -- and maintenance of -- mean motion resonance depends sensitively on migration rate, eccentricity damping, and turbulence.
We present a new set of high resolution dust extinction maps of the nearby and essentially starless Pipe Nebula molecular cloud. The maps were constructed from a concerted deep near-infrared imaging survey with the ESO-VLT, ESO-NTT, CAHA 3.5m telescopes, and 2MASS data. The new maps have a resolution three times higher than the previous extinction map of this cloud by Lombardi et al. (2006) and are able to resolve structure down to 2600 AU. We detect 244 significant extinction peaks across the cloud. These peaks have masses between 0.1 and 18.4 M_sun, diameters between 1.2 and 5.7e4 AU (0.06 and 0.28 pc), and mean densities of about 1e4 cm${^-3}$, all in good agreement with previous results. From the analysis of the Mean Surface Density of Companions we find a well defined scale near 1.4e4 AU below which we detect a significant decrease in structure of the cloud. This scale is smaller than the Jeans Length calculated from the mean density of the peaks. The surface density of peaks is not uniform but instead it displays clustering. Extinction peaks in the Pipe Nebula appear to have a spatial distribution similar to the stars in Taurus, suggesting that the spatial distribution of stars evolves directly from the primordial spatial distribution of high density material.
A gedanken experiment in which a black hole is pushed to spin at its maximal rate by tossing into it a test body is considered. After demonstrating that this is kinematically possible for a test body made of reasonable matter, we focus on its implications for black hole thermodynamics and the apparent violation of the third law (unattainability of the extremal black hole). We argue that this is not an actual violation, due to subtleties in the absorption process of the test body by the black hole, which are not captured by the purely kinematic considerations.
We investigate thermal inflation in double-screen entropic cosmology. We find that its realization is general, resulting from the system evolution from non-equilibrium to equilibrium. Furthermore, going beyond the background evolution, we study the primordial curvature perturbations arising from the universe interior, as well as from the thermal fluctuations generated on the holographic screens. We show that the power spectrum is nearly scale-invariant with a red tilt, while the tensor-to-scalar ratio is in agreement with observations. Finally, we examine the non-Gaussianities of primordial curvature perturbations, and we find that a sizable value of the non-linearity parameter is possible due to holographic statistics on the outer screen.
The physical mechanisms responsible for pulsar timing glitches are thought to excite quasi-normal mode oscillations in their parent neutron star that couple to gravitational wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two co-located Hanford gravitational wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3e-21 to 1.4e-20 on the peak intrinsic strain amplitude of gravitational wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0e44 to 1.3e45 erg.
Links to: arXiv, form interface, find, astro-ph, recent, 1011, contact, help (Access key information)
We have employed emission-line diagnostics derived from DEIMOS and NIRSPEC spectroscopy to determine the origin of the [OII] emission line observed in six AGN hosts at z~0.9. These galaxies are a subsample of AGN hosts detected in the Cl1604 supercluster that exhibit strong Balmer absorption lines in their spectra and appear to be in a post-starburst or post-quenched phase, if not for their [OII] emission. Examining the flux ratio of the [NII] to Halpha lines, we find that in five of the six hosts the dominant source of ionizing flux is AGN continuum emission. Furthermore, we find that four of the six galaxies have over twice the [OII] line luminosity that could be generated by star formation processes alone given their Halpha line luminosities. This strongly suggests that AGN-excited narrow-line emission is contaminating the [OII] line flux. A comparison of star formation rates calculated from extinction-corrected [OII] and Halpha line luminosities indicates that the former yields a five-fold overestimate of current activity in these galaxies. Our findings reveal the [OII] line to be a poor indicator of star formation activity in a majority of these moderate-luminosity Seyferts. This result bolsters our previous findings that an increased fraction of AGN at high redshifts are hosted by galaxies in a post-starburst phase. The relatively high fraction of AGN hosts in the Cl1604 supercluster that show signs of recently truncated star formation activity suggest AGN feedback may play an increasingly important role in suppressing ongoing activity in large-scale structures at high redshift.
Protoplanetary disks are quasi-steady structures whose evolution and dispersal determine the environment for planet formation. I review the theory of protoplanetary disk evolution and its connection to observations. Substantial progress has been made in elucidating the physics of potential angular momentum transport processes - including self-gravity, the magnetorotational instability, baroclinic instabilities, and magnetic braking - and in developing testable models for disk dispersal via photoevaporation. The relative importance of these processes depends upon the initial mass, size and magnetization of the disk, and subsequently on its opacity, ionization state, and external irradiation. Disk dynamics is therefore indivisibly coupled to star formation, pre-main-sequence stellar evolution, and dust coagulation during the early stages of planet formation, and may vary dramatically from star to star. The importance of validating theoretical models is emphasized, with the key observations being those that probe disk structure on the scales, between 1 AU and 10 AU, where theory is most uncertain.
We consider the relationship between molecular-gas and star-formation surface densities in 19 morphologically defined E/S0s with stellar mass <~ 4x10^10 M_sun, paying particular attention to those found on the blue sequence in color vs. stellar mass parameter space, where spiral galaxies typically reside. While some blue-sequence E/S0s must be young major-merger remnants, many low-mass blue-sequence E/S0s appear much less disturbed, and may be experiencing the milder starbursts associated with inner-disk building as spirals (re)grow. For a sample of eight E/S0s (four blue-, two mid-, and two red-sequence) whose CARMA CO(1-0), Spitzer MIPS 24um, and GALEX FUV emission distributions are spatially resolved on a 750pc scale, we find roughly linear relationships between molecular-gas and star-formation surface densities within all galaxies, with power law indices N = 0.6-1.9 (median 1.2). Adding 11 more blue-sequence E/S0s whose CO(1-0) emission is not as well resolved, we find that most of our E/S0s have global 1-8 kpc aperture-averaged molecular-gas surface densities overlapping the range spanned by the disks and centers of spiral galaxies. While many of our E/S0s fall on the same Schmidt-Kennicutt relation as local spirals, ~80% (predominantly on the blue sequence) are offset towards apparently higher molecular-gas star formation efficiency (i.e., shorter molecular gas depletion time). Possible interpretations of the elevated efficiencies include bursty star formation similar to that in local dwarf galaxies, H2 depletion in advanced starbursts, or simply a failure of the CO(1-0) emission to trace all of the molecular gas.
We present a new proxy for the overdensity peak height for which the large-scale clustering of haloes of a given mass does not vary significantly with the assembly history. The peak height, usually taken to be well represented by the virial mass, can instead be approximated by the mass inside spheres of different radii, which in some cases can be larger than the virial radius and therefore include mass outside the individual host halo. The sphere radii are defined as r = $a$ delta_t + $b$ log_10(M_vir/M_nl), where delta_t is the age relative to the typical age of galaxies hosted by haloes with virial mass M_vir, M_nl is the non-linear mass, and $a$=0.2 and $b$=-0.02 are the free parameters adjusted to trace the assembly bias effect. Note that $r$ depends on both halo mass and age. In this new approach, some of the objects which were initially considered low-mass peaks belong to regions with higher overdensities. At large scales, i.e. in the two-halo regime, this model properly recovers the simple prescription where the bias responds to the height of the mass peak alone, in contrast to the usual definition (virial mass) that shows a strong dependence on additional halo properties such as formation time. The dependence on the age in the one-halo term is also remarkably reduced. The population of galaxies whose "peak height" changes with this new definition consists mainly of old stellar populations and are preferentially hosted by low-mass haloes located near more massive objects. The latter is in agreement with recent results which indicate that old, low-mass haloes would suffer truncation of mass accretion by nearby larger haloes or simply due to the high density of their surroundings, thus showing an assembly bias effect. The change in mass is small enough that the Sheth et al. (2001) mass function is still a good fit to the resulting distribution of new masses.
For early-type galaxies, the correlations between stellar mass and size, velocity dispersion, surface brightness, color, axis ratio and color-gradient all indicate that two mass scales, M* = 3 x 10^10 Msun and M* = 2 x 10^11 Msun, are special. The smaller scale could mark the transition between wet and dry mergers, or it could be related to the interplay between SN and AGN feedback, although quantitative measures of this transition may be affected by morphological contamination. At the more massive scale, mean axis ratios and color gradients are maximal, and above it, the colors are redder, the sizes larger and the velocity dispersions smaller than expected based on the scaling at lower M*. In contrast, the color-sigma relation, and indeed, most scaling relations with sigma, are not curved: they are well-described by a single power law, or in some cases, are almost completely flat. When major dry mergers change masses, sizes, axis ratios and color gradients, they are expected to change the colors or velocity dispersions much less. Therefore, the fact that scaling relations at sigma > 150 km/s show no features, whereas the size-M*, b/a-M*, color-M* and color gradient-M* relations do, suggests that M* = 2 x 10^11 Msun is the scale above which major dry mergers dominate the assembly histories of early-type galaxies.
We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilaton-like scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, alpha. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in alpha relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the ``contradiction'' between claims of a variation of alpha based on Keck/Hires data and of the constancy of alpha based on VLT data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of alpha. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.
We present deep and high-resolution HST/NIC2 F160W imaging at 1.6micron of six z~2 star-forming galaxies with existing near-IR integral field spectroscopy from SINFONI at the VLT. The unique combination of rest-frame optical imaging and nebular emission-line maps provides simultaneous insight into morphologies and dynamical properties. The overall rest-frame optical emission of the galaxies is characterized by shallow profiles in general (Sersic index n<1), with median effective radii of ~5kpc. The morphologies are significantly clumpy and irregular, which we quantify through a non-parametric morphological approach, estimating the Gini (G), Multiplicity (Psi), and M_20 coefficients. The strength of the rest-frame optical emission lines in the F160W bandpass indicates that the observed structure is not dominated by the morphology of line-emitting gas, and must reflect the underlying stellar mass distribution of the galaxies. The sizes and structural parameters in the rest-frame optical continuum and Halpha emission reveal no significant differences, suggesting similar global distributions of the on-going star formation and more evolved stellar population. While no strong correlations are observed between stellar population parameters and morphology within the NIC2/SINFONI sample itself, a consideration of the sample in the context of a broader range of z~2 galaxy types indicates that these galaxies probe the high specific star formation rate and low stellar mass surface density part of the massive z~2 galaxy population, with correspondingly large effective radii, low Sersic indices, low G, and high Psi and M_20. The combined NIC2 and SINFONI dataset yields insights of unprecedented detail into the nature of mass accretion at high redshift. [Abridged]
The bispectrum vanishes for linear Gaussian fields and is thus a sensitive probe of non-linearities and non-Gaussianities in the cosmic density field. Hence, a detection of the bispectrum in the halo density field would enable tight constraints on non-Gaussian processes in the early Universe and allow inference of the dynamics driving inflation. We present a tree level derivation of the halo bispectrum arising from non-linear clustering, non-linear biasing and primordial non-Gaussianity. A diagrammatic description is developed to provide an intuitive understanding of the contributing terms and their dependence on scale, shape and the non-Gaussianity parameter fNL. We compute the terms based on a multivariate bias expansion and the peak-background split method and show that non-Gaussian modifications to the bias parameters lead to amplifications of the tree level bispectrum that were ignored in previous studies. Our results are in a good agreement with published simulation measurements of the halo bispectrum. Finally, we estimate the expected signal to noise on fNL and show that the constraint obtainable from the bispectrum analysis significantly exceeds the one obtainable from the power spectrum analysis.
Context. One of the most striking discoveries of the INTEGRAL observatory is the existence of a previously unknown population of X-ray sources in the inner arms of the Galaxy. The investigations of the optical/NIR counterparts of some of them have provided evidence that they are highly absorbed high mass X-ray binaries hosting supergiants. Aims. We aim to identify the optical/NIR counterpart of one of the newly discovered INTEGRAL sources, IGR J16283-4838, and determine the nature of this system. Methods. We present optical and NIR observations of the field of IGR J16283-4838, and use the astrometry and photometry of the sources within it to identify its counterpart. We obtain its NIR spectrum, and its optical/NIR spectral energy distribution by means of broadband photometry. We search for the intrinsic polarization of its light, and its short and long-term photometric variability. Results. We demonstrate that this source is a highly absorbed HMXB located beyond the Galactic center, and that it may be surrounded by a variable circumstellar medium.
The chemical compositions of the stars in Milky Way (MW) satellite galaxies reveals the history of gas flows and star formation (SF) intensity. This talk presented a Keck/DEIMOS spectroscopic survey of the Fe, Mg, Si, Ca, and Ti abundances of nearly 3000 red giants in eight MW dwarf satellites. The metallicity and alpha-to-iron ratio distributions obey the following trends: (1) The more luminous galaxies are more metal-rich, indicating that they retained gas more efficiently than the less luminous galaxies. (2) The shapes of the metallicity distributions of the more luminous galaxies require gas infall during their SF lifetimes. (3) At [Fe/H] < -1.5, [alpha/Fe] falls monotonically with increasing [Fe/H] in all MW satellites. One interpretation of these trends is that the SF timescale in any MW satellite is long enough that Type Ia supernovae exploded for nearly the entire SF lifetime.
The emission mechanism of TeV blazar 3C 66A is studied by employing the multi-wavelength observational data. The GeV spectrum observed by Fermi-LAT can't be explained by pure synchrotron self-Compton (SSC) model. We adopt a multi-component leptonic jet model including the absorption of extragalactic background light (EBL) to reproduce the quasi-simultaneous spectral energy distribution (SED). It is found that the external Compton (EC) component of the broad line region (BLR) is important for emission above 10 GeV, whereas emission from 0.1 GeV to 10 GeV is dominated by SSC component. Our results indicate that the redshift of 3C 66A should be between 0.15 and 0.31, and the most possible value is 0.21. We also find that the {\gamma}-ray emission region is beyond the inner zone of BLR.
The measurement of relativistic effects around the galactic center may allow in the near future to strongly constrain the parameters of the supermassive black hole likely present at the galactic center (Sgr A*). As a by-product of these measurements it would be possible to severely constrain, in addition, also the parameters of the mass-density distributions of both the innermost star cluster and the dark matter clump around the galactic center.
Stellar structure and evolution can be studied in great detail by asteroseismic methods, provided data of high precision are available. We determine the effective temperature (Teff), surface gravity (log g), metallicity, and the projected rotational velocity (v sin i) of 44 Kepler asteroseismic targets using our high-resolution (R > 20,000) spectroscopic observations; these parameters will then be used to compute asteroseismic models of these stars and to interpret the Kepler light curves.We use the method of cross correlation to measure the radial velocity (RV) of our targets, while atmospheric parameters are derived using the ROTFIT code and spectral synthesis method. We discover three double-lined spectroscopic binaries, HIP 94924, HIP 95115, and HIP 97321 - for the last system, we provide the orbital solution, and we report two suspected single-lined spectroscopic binaries, HIP94112 and HIP 96062. For all stars from our sample we derive RV, v sin i, Teff, log g, and metallicity, and for six stars, we perform a detailed abundance analysis. A spectral classification is done for 33 targets. Finally, we show that the early-type star HIP 94472 is rotating slowly (v sin i = 13 kms/1) and we confirm its classification to the Am spectral type which makes it an interesting and promising target for asteroseismic modeling. The comparison of the results reported in this paper with the information in the Kepler Input Catalog (KIC) shows an urgent need for verification and refinement of the atmospheric parameters listed in the KIC. That refinement is crucial for making a full use of the data delivered by Kepler and can be achieved only by a detailed ground-based study.
Subject of this paper is a careful and detailed analysis of the PINOCCHIO algorithm for studying the relative velocity statistics of merging haloes in Lagrangian perturbation theory. Given a cosmological background model, a power spectrum of fluctuations as well as a Gaussian linear density contrast field $\delta_{\rm l}$ is generated on a cubic grid, which is then smoothed repeatedly with Gaussian filters. For each Lagrangian particle at position $\bmath{q}$ and each smoothing radius $R$, the collapse time, the velocities and ellipsoidal truncation are computed using Lagrangian Perturbation Theory. The collapsed medium is then fragmented into isolated objects by an algorithm designed to mimic the accretion and merger events of hierarchical collapse. Directly after the fragmentation process the mass function, merger histories of haloes and the statistics of the relative velocities at merging are evaluated. We reimplemented the algorithm in C++ and optimised the construction of halo merging histories. Comparing our results with the output of the Millennium simulation suggests that PINOCCHIO is well suited for studying relative velocities of merging haloes and is able to reproduce the pairwise velocity distribution.
We present 'BYTe', a comprehensive 'hot' line list for the ro-vibrational transitions of ammonia, 14NH3, in its ground electronic state. This line list has been computed variationally using the program suite TROVE, a new spectroscopically-determined potential energy surface and an ab initio dipole moment surface. BYTe, is designed to be used at all temperatures up to 1500K. It comprises 1137650964 transitions in the frequency range from 0 to 12000 cm-1, constructed from 1366519 energy levels below 18000 cm-1 having J values below 36. Comparisons with laboratory data confirm the accuracy of the line list which is suitable for modelling a variety of astrophysical problems including the atmospheres of extrasolar planets and brown dwarfs.
We observed comet C/2007 N3 (Lulin) twice on UT 28 January 2009, using the UV grism of the Ultraviolet and Optical Telescope (UVOT) on board the Swift Gamma Ray Burst space observatory. Grism spectroscopy provides spatially resolved spectroscopy over large apertures for faint objects. We developed a novel methodology to analyze grism observations of comets, and applied a Haser comet model to extract production rates of OH, CS, NH, CN, C3, C2, and dust. The water production rates retrieved from two visits on this date were $6.7 \pm 0.7$ and 7.9 $\pm$ 0.7 x 1E28 molecules s-1, respectively. Jets were sought (but not found) in the white-light and ‘OH’ images reported here, suggesting that the jets reported by Knight and Schleicher (2009) are unique to CN. Based on the abundances of its carbon-bearing species, comet Lulin is ‘typical’ (i.e., not ‘depleted’) in its composition.
Low- and intermediate-mass stars are one of the important dust sources in the
interstellar medium (ISM) of galaxies. The compositions of dust ejected from
these stars are likely to affect those in the ISM. We investigate dust in
post-Asymptotic Giant Branch (AGB) stars, which are in a late evolutionary
phase for low- and intermediate-mass stars, and which produce a wide variety of
dust grains. We are particularly targeting post-AGB stars in the Large
Magellanic Cloud (LMC), which has about half of the solar metallicity, to
investigate the effects of sub-solar metallicity on dust compositions.
Using the Spitzer Space Telescope, we obtained 5-30 micron spectra of 24
post-AGB candidates in the LMC. Five are C-rich post-AGB stars, and this
presentation focuses on spectra of these stars.
We found that rare dust features in the Milky Way, such as a 21 micron
unidentified feature are commonly found in LMC post-AGB stars. The 6-8 micron
spectra are compared with those of Galactic objects. Four spectra match the
Galactic templates of polycyclic aromatic hydrocarbon (PAH) features. However,
we found the three objects show 7.85 micron feature which have not found in
Galactic post-AGB stars. Low metallicity conditions definitely affect the dust
formation process and compositions.
It is still an unresolved problem how much AGB stars can contribute to the overall gas and dust enrichment processes in the interstellar medium within galaxies. We start tackling this problem, by using our test case observational data from the Large Magellanic Cloud (LMC), from which we obtain the global gas and dust budget. The photometric data from the LMC is obtained with the Spitzer Space Telescope. We established an infrared colour classification scheme to select AGB stars, which are based on spectroscopically identified AGB stars. We further confirm a correlation between the Spitzer colour and mass-loss rate, which leads to a measurement of the total mass-loss rate from the entire AGB population in the LMC. Indeed, AGB stars are an important gas and dust source.
We present the 2005-2010 outburst history of the SUUMa-type dwarf HS 0417+7445,along with a detailed analysis of extensive time-series photometry obtained in March 2008 during the second recorded superoutburst of the system. The mean outburst interval is 197 \pm 59 d, with a median of 193 d. The March 2008 superoutburst was preceeded by a precursor outburst, had an amplitude of 4.2 magnitudes, and the whole event lasted about 16 days. No superhumps were detected during the decline from the precursor outburst, and our data suggests instead that orbital humps were present during that phase. Early superhumps detected during the rise to the superoutburst maximum exhibited an unusually large fractional period excess of epsilon = 0.137 (Psh = 0.0856(88) d). Following the maximum, a linear decline in brightness followed, lasting at least 6 days. During this decline, a stable superhump period of Psh = 0.07824(2) d was measured. Superimposed on the superhumps were orbital humps, which allowed us to accurately measure the orbital period of HS 0417+7445, Porb = 0.07531(8) d, which was previously only poorly estimated. The fractional superhump period excess during the main phase of the outburst was epsilon = 0.037, which is typical for SU UMa dwarf novae with similar orbital period. Our observations are consistent with the predictions of the thermal-tidal instability model for the onset of superoutbursts,but a larger number of superoutbursts with extensive time-series photometry during the early phases of the outburst would be needed to reach a definite conclusion on the cause of superoutbursts.
Based on analysis of the annual averaged relative sunspot number (ASN) during 1700 -- 2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle (Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4, respectively since 1700); and 51.5-yr Cycle. From similarities, an extrapolation of forthcoming solar cycles is made, and found that the solar cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its apex around 2012-2014 in the vale between G3 and G4. Additionally, most Schwabe cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The comparisons between ASN and the annual flare numbers with different GOES classes (C-class, M-class, X-class, and super-flare, here super-flare is defined as $\geq$ X10.0) and the annal averaged radio flux at frequency of 2.84 GHz indicate that solar flares have a tendency: the more powerful of the flare, the later it takes place after the onset of the Schwabe cycle, and most powerful flares take place in the decay phase of Schwabe cycle. Some discussions on the origin of solar cycles are presented.
We report the discovery of a large amplitude outburst from the young star HBC 722 (LkHA 188 G4) located in the region of NGC 7000/IC 5070. On the basis of photometric and spectroscopic observations, we argue that this outburst is of the FU Orionis type. We gathered photometric and spectroscopic observations of the object both in the pre-outburst state and during a phase of increase in its brightness. The photometric BVRI data (Johnson-Cousins system) that we present were collected from April 2009 to September 2010. To facilitate transformation from instrumental measurements to the standard system, fifteen comparison stars in the field of HBC 722 were calibrated in the BVRI bands. Optical spectra of HBC 722 were obtained with the 1.3-m telescope of Skinakas Observatory (Crete, Greece) and the 0.6-m telescope of Schiaparelli Observatory in Varese (Italy). The pre-outburst photometric and spectroscopic observations of HBC 722 show both low amplitude photometric variations and an emission-line spectrum typical of T Tau stars. The observed outburst started before May 2010 and reached its maximum brightness in September 2010, with a recorded Delta V~4.7 mag. amplitude. Simultaneously with the increase in brightness the color indices changed significantly and the star became appreciably bluer. The light curve of HBC 722 during the period of rise in brightness is similar to the light curves of the classical FUors - FU Ori and V1057 Cyg. The spectral observations during the time of increase in brightness showed significant changes in both the profiles and intensity of the spectral lines. Only H alpha remained in emission, while the H beta, Na I 5890/5896, Mg I triplet 5174, and Ba II 5854/6497 lines were in strong absorption.
We present the results of spectroscopy of 71 objects with steep and ultra-steep spectra ($\alpha<-0.9$, $S\propto\nu^\alpha$) from the "Big Trio" (RATAN-600-VLA-BTA) project, performed with the "Scorpio" spectrograph on the 6-m telescope of the Special Astrophysical Observatory (Russian Academy of Sciences). Redshifts were determined for these objects. We also present several other parameters of the sources, such as their R-magnitudes, maximum radio sizes in seconds of arc, flux densities at 500, 1425, and 3940 MHz, radio luminosities at 500 and 3940 MHz, and morphology. Of the total number of radio galaxies studied, four have redshifts 1<z<2, three have 2<z<3, one has 3<z<4, and one has z=4.51. Thirteen sources have redshifts 0.7<z<1 and 15 have 0.2<z<0.7. Of all the quasars studied, five have redshifts 0.7<z<1, seven have 1<z<2, four have 2<z<3, and one has z=3.57. We did not detect any spectral lines for 17 objects.
Recent observations in X-rays and gamma-rays of nearby FRI radio galaxies have raised the question of the origin of the emission detected in the termination structures of their jets. The study of these structures can give information on the conditions for particle acceleration and radiation at the front shocks. In addition, an evolutionary scenario can help to disentangle the origin of the detected X-ray emission in young FRI sources, like some Gigahertz Peaked Spectrum AGNs. This work focuses on the nature and detectability of the radiation seen from the termination regions of evolving FRI jets. We use the results of a relativistic, two-dimensional numerical simulation of the propagation of an FRI jet, coupled with a radiation model, to make predictions for the spectra and lightcurves of the thermal and non-thermal emission at different stages of the FRI evolution. Our results show that under moderate magnetic fields, the synchrotron radiation would be the dominant non-thermal channel, appearing extended in radio and more compact in X-rays, with relatively small flux variations with time. The shocked jet synchrotron emission would dominate the X-ray band, although the shocked ISM/ICM thermal component alone may be significant in old sources. Inverse Compton scattering of CMB photons could yield significant fluxes in the GeV and TeV bands, with a non-negligible X-ray contribution. The IC radiation would present a bigger angular size in X-rays and GeV than in TeV, with fluxes increasing with time. We conclude that the thermal and non-thermal broadband emission from the termination regions of FRI jets could be detectable for sources located up to distances of a few 100 Mpc.
We present images of the Sagittarius (Sgr) B giant molecular cloud at 2368 and 1384 MHz obtained using new, multi-configuration Australia Telescope Compact Array (ATCA) observations. We have combined these observations with archival single-dish observations yielding images at resolutions of 47" by 14" and 27" by 8" at 1384 and 2368 MHz respectively. These observations were motivated by our theoretical work (Protheroe et al. 2008) indicating the possibility that synchrotron emission from secondary electrons and positrons created in hadronic cosmic ray (CR) collisions with the ambient matter of the Sgr B2 cloud could provide a detectable (and possibly linearly polarized) non-thermal radio signal. We find that the only detectable non-thermal emission from the Sgr B region is from a strong source to the south of Sgr B2, which we label Sgr B2 Southern Complex (SC). We find Sgr B2(SC) integrated flux densities of 1.2+/-0.2 Jy at 1384 MHz and 0.7+/-0.1 Jy at 2368 MHz for a source of FWHM size at 1384 MHz of ~54". Despite its non-thermal nature, the synchrotron emission from this source is unlikely to be dominantly due to secondary electrons and positrons. We use polarization data to place 5-sigma upper limits on the level of polarized intensity from the Sgr B2 cloud of 3.5 and 3 mJy/beam at 1384 and 2368 MHz respectively. We also use the angular distribution of the total intensity of archival 330 MHz VLA and the total intensity and polarized emission of our new 1384 MHz and 2368 MHz data to constrain the diffusion coefficient for transport of the parent hadronic CRs into the dense core of Sgr B2 to be no larger than about 1% of that in the Galactic disk. Finally, we have also used the data to perform a spectral and morphological study of the features of the Sgr B cloud and compare and contrast these to previous studies.
The spectrophotometric variability of the magnetic CP star 56 Arietis (56 Ari) in the ultraviolet spectral region from 1950 to 3200 A is investigated. This study is based on the archival International Ultraviolet Explorer data obtained at different phases of the rotational cycle. The brightness of 56 Ari is not constant in the investigated wavelengths over the whole rotational period. The monochromatic light curves continuously change their shape with wavelength. This indicates that we do not observe a truly 'null wavelength region' where the monochromatic light curve has a zero amplitude. Probably, an uneven surface distribution of silicon and iron mainly influences the flux redistribution from the far-UV to near-UV spectral regions, although additional sources of opacity may be involved. The redistribution of the flux at phase 0.25 is connected with the nonuniform distribution of silicon on the stellar surface of 56 Ari. On the other hand, the redistribution of the flux at phase 0.65 is quite complex, because there are additional blocking and redistribution of the flux by iron lines in the near-UV spectral region.
A complex of Halpha emitting blobs with strong FUV excess is associated to the dIrr galaxy VCC1217 / IC3418 (Hester et al. 2010), and extends up to 17 Kpc in the South-East direction. These outstanding features can be morphologically divided into diffuse filaments and compact knots, where most of the star formation activity traced by Halpha takes place. We investigate the properties of the galaxy and the blobs using a multiwavelength approach in order to constrain their origin. We collect publicly available data in UV and Halpha and observe the scene in the optical U,g,r,i bands with LBT. The photometric data allows to evaluate the star formation rate and to perform a SED fitting separately of the galaxy and the blobs in order to constrain their stellar population age. Moreover we analyze the color and luminosity profile of the galaxy and its spectrum to investigate its recent interaction with the Virgo cluster. Our analysis confirms that the most plausible mechanism for the formation of the blobs is ram pressure stripping by the Virgo cluster IGM. The galaxy colors, luminosity profile and SED are consistent with a sudden gas depletion in the last few hundred Myr. The SED fitting of the blobs constrains their ages in < 400 Myr.
The quantum theory of optical coherence is applied to the scrutiny of the statistical properties of the relic inflaton quanta. After adapting the description of the quantized scalar and tensor modes of the geometry to the analysis of intensity correlations, the normalized degrees of first-order and second-order coherence are computed in the concordance paradigm and are shown to encode faithfully the statistical properties of the initial quantum state. The strongly bunched curvature phonons are not only super-Poissonian but also super-chaotic. Testable inequalities are derived in the limit of large angular scales and can be physically interpreted in the light of the tenets of Hanbury Brown-Twiss interferometry. The quantum mechanical results are compared and contrasted with different situations including the one where intensity correlations are the result of a classical stochastic process. The survival of second-order correlations (not necessarily related to the purity of the initial quantum state) is addressed by defining a generalized ensemble where super-Poissonian statistics is an intrinsic property of the density matrix and turns out to be associated with finite volume effects which are expected to vanish in the thermodynamic limit.
AXPs and SGRs constitute a special population of young neutron stars, which are thought to be magnetars, i.e., neutron stars with super-strong magnetic fields (10^14 - 10^15 G). Assuming that AXPs and SGRs accrete matter from a fallback disk, we attempt to explain the energy-dependent pulse profiles of AXP 4U 0142+61, as well as its phase-dependent energy spectra. In the fallback disk model, the Thomson optical depth along the accretion funnel is significant and bulk-motion Comptonization operates efficiently. This is enhanced by resonant cyclotron scattering. The thus scattered photons escape mainly sideways and produce a fan beam, which is detected as a main pulse up to energies of ~160 keV. The approximately isotropic emission from the stellar surface (soft thermal photons and reflected hard X-ray ones) is detected as a secondary pulse. This secondary pulse shows a bump at an energy of ~60 keV, which may be interpreted as resonant cyclotron scattering of fan-beam photons at the neutron-star surface, implying a dipole magnetic field strength B ~7 x 10^12 (1+z) G, where z is the gravitational redshift. Our model explains the soft and hard X-ray spectra of 4U 0142+61 and its energy dependent pulse profiles of the quiescent emission, while the short bursts are due to magnetar-type processes taking place in superstrong multiple fields.
We study the bias and scatter in mass measurements of galaxy clusters resulting from fitting spherically-symmetric Navarro, Frenk & White (NFW) model to the reduced tangential shear profile measured in weak lensing observations. The reduced shear profiles are generated for ~10^4 cluster-sized halos formed in LCDM cosmology using a cosmological N-body simulation of a 1 Gpc/h box. In agreement with previous studies, we find that the scatter in the weak lensing masses derived using such fitting method has irreducible contributions from the triaxial shapes of cluster-sized halos and uncorrelated large-scale matter projections along the line-of-sight. Additionally, we find that correlated large-scale structure within several virial radii of clusters contributes a smaller, but nevertheless significant, amount to the scatter. The intrinsic scatter due to these physical sources is ~25-30% depending on the cluster mass and redshift. For current, ground-based observations, however, the total scatter should be dominated by shape noise from the finite number of background galaxies used to measure the shear. Importantly, we find that weak lensing mass measurements can have a small, ~5-10%, but non-negligible amount of bias. Given that weak lensing measurements of cluster masses are a powerful way to calibrate cluster mass-observable relations for precision cosmological constraints in the near future, we strongly emphasize that a robust calibration of the mean amount of bias requires detailed simulations which include more observational effects than we consider here. Such a calibration exercise needs to be carried out for each specific weak lensing mass estimation method, as the details of the method determine in part the expected scatter and bias.
In a two parameter phase transition model we fit the rate and several properties of type I supernovae and address the gap in the supermassive black hole mass distribution. One parameter is a critical density fit to about $3 \cdot 10^7$ g/cc while the other has the units of a space time volume. The model involves a phase transition to an exact supersymmetry in a small core of a dense star. In white dwarfs it is proposed to trigger an explosion. If this approach could be verified quantitatively, it would constitute observational support for the existence of two supersymmetric phases in nature.
Theoretical models of galaxy formation predict that galaxies acquire most of their baryons via cold mode accretion. Observations of high-redshift galaxies, while finding strong evidence for ubiquitous outflows, have so far not shown convincing traces of the predicted cold streams, which has been interpreted as a challenge for the current models. Using high-resolution, zoom-in smooth particle hydrodynamics simulations of a Milky Way progenitor (corresponding to a modest Lyman break galaxy [LBG] at z~2-3) and of an average-mass LBG, combined with ionizing radiative transfer, we quantify the covering factor of the cold streams at z=2-4. We focus specifically on Lyman limit systems and damped Lya absorbers (DLAs), which can be probed by absorption spectroscopy directly along the line of sight to the galaxy, or using a background galaxy or quasar sightline. We show that the covering factor of these systems is small and decreases rapidly with time. At z=2, the covering factor of DLAs within the virial radius of the simulated galaxies is ~2%, and only ~1% within twice this projected distance. Because of their small covering factor compared to the order unity covering fraction expected for galactic winds, the cold streams are naturally overwhelmed by outflows in absorption spectra. We conclude that the existing observations are consistent with the predictions of cold mode accretion, and outline promising kinematic and chemical diagnostics to separate out the signatures of galactic accretion and feedback.
Sagittarius A$^*$ in the Galactic center harbors a supermassive black hole and exhibits various active phenomena. Besides quiescent emission in radio and submillimeter radiation, flares in the near infrared (NIR) and X-ray bands are observed to occur frequently. We study a time-dependent model of the flares, assuming that the emission is from a blob ejected from the central object. Electrons obeying a power law with the exponential cutoff are assumed to be injected in the blob for a limited time interval. The flare data of 2007 April 4 were used to determine the values of model parameters. The spectral energy distribution of flare emission is explained by nonthermal synchrotron radiation in the NIR and X-ray bands. The model light curves suggest that electron acceleration is still underway during the rising phase of the flares. GeV gamma-rays are also emitted by synchrotron self-Compton scattering, although its luminosity is not strictly constrained by the current model. If the GeV emission is faint, the plasma blob is dominated by the magnetic energy density over the electron kinetic energy density. Observations in the GeV band will clarify the origin of the blob.
Three-dimensional studies of convection in deep spherical shells have been used to test the hypothesis that the strong jet streams on Jupiter, Saturn, Uranus, and Neptune result from convection throughout the molecular envelopes. Due to computational limitations, these simulations must adopt viscosities and heat fluxes many orders of magnitude larger than the planetary values. Several numerical investigations have identified trends for how the mean jet speed varies with heat flux and viscosity, but no previous theories have been advanced to explain these trends. Here, we show using simple arguments that if convective release of potential energy pumps the jets and viscosity damps them, the mean jet speeds split into two regimes. When the convection is weakly nonlinear, the equilibrated jet speeds should scale approximately with F/nu, where F is the convective heat flux and nu is the viscosity. When the convection is strongly nonlinear, the jet speeds are faster and should scale approximately as (F/nu)^{1/2}. We demonstrate how this regime shift can naturally result from a shift in the behavior of the jet-pumping efficiency with heat flux and viscosity. Moreover, the simulations hint at a third regime where, at sufficiently small viscosities, the jet speed becomes independent of the viscosity. We show based on mixing-length estimates that if such a regime exists, mean jet speeds should scale as heat flux to the 1/4 power. Our scalings provide a good match to the mean jet speeds obtained in previous Boussinesq and anelastic, three-dimensional simulations of convection within giant planets over a broad range of parameters. When extrapolated to the real heat fluxes, these scalings suggest that the mass-weighted jet speeds in the molecular envelopes of the giant planets are much weaker--by an order of magnitude or more--than the speeds measured at cloud level.
Elemental correlations and anti-correlations are known to be present in globular clusters (GCs) owing to pollution by CNO cycled gas. Because of its fragility Li is destroyed at the temperature at which the CNO cycling occurs, and this makes Li a crucial study for the nature of the contaminating stars. We observed 112 un-evolved stars at the Turnoff of the NGC6752 cluster with FLAMES at the VLT to investigate the presence and the extent of a Li-O correlation. This correlation is expected if there is a simple pollution scenario. Li (670.8 nm) and O triplet (771 nm) abundances are derived in NLTE. All stars belong to a very narrow region of the color-magnitude diagram, so they have similar stellar parameters (Teff, log g). We find that O and Li correlate, with a high statistical significance that confirms the early results for this cluster. At first glance this is what is expected if a simple pollution of pristine gas with CNO cycled gas (O-poor, Li-poor) occurred. The slope of the relationship, however, is about 0.4, and differs from unity by over 7 Sigma. A slope of one is the value predicted for a pure contamination model. We confirm an extended Li-O correlation in non evolved stars of NGC 6752. At the same time the characteristic of the correlation shows that a simple pollution scenario is not sufficient to explain the observations. Within this scenario the contaminant gas must have been enriched in Li. This would rule out massive stars as main polluters, and favor the hypothesis that the polluting gas was enriched by intermediate or high-mass AGB stars, unless the former can be shown to be able to produce Li. According to our observations, the fraction of polluting gas contained in the stars observed is a considerable fraction of the stellar mass of the cluster.
We study characters of recent type Ia supernova (SNIa) data using evolving dark energy models with changing equation of state parameter w. We consider sudden-jump approximation of w for some chosen redshift spans with double transitions, and constrain these models based on Markov Chain Monte Carlo (MCMC) method using the SNIa data (Constitution, Union, Union2) together with baryon acoustic oscillation A parameter and cosmic microwave background shift parameter in a flat background. In the double-transition model the Constitution data shows deviation outside 1\sigma from LCDM at low redshift whereas no such deviations are noticeable in the Union and Union2 data. By analyzing the Union members in the Constitution set we show that the difference is due to different calibration of the same Union sample in the Constitution set, and is not due to new data added in the Constitution set. All detected deviations are within 2\sigma from the LCDM world model. From the LCDM mock data analysis, we quantify biases in the dark energy equation of state parameters induced by not sufficient data with inhomogeneous distribution of data points in the redshift space and distance modulus errors. We demonstrate that location of peak in the distribution of arithmetic means (computed from the MCMC chain for each mock data) behaves as an unbiased estimator for the average bias, which is valid even for non-symmetric likelihood distributions.
We present comprehensive catalogs of hot star candidates in the Milky Way, selected from GALEX far-UV (FUV, 1344-1786 AA) and near-UV (NUV, 1771-2831 AA) imaging. The FUV and NUV photometry allows us to extract the hottest stellar objects, in particular hot white dwarfs (WD), which are elusive at other wavelengths because of their high temperatures and faint optical luminosities. We generated catalogs of UV sources from two GALEX's surveys: AIS (All-Sky Imaging Survey, depth ABmag~19.9/20.8 in FUV/NUV) and MIS (Medium-depth Imaging Survey, depth ~22.6/22.7mag). The two catalogs (from GALEX fifth data release) contain 65.3/12.6 million (AIS/MIS) unique UV sources with error(NUV)<0.5mag, over 21,435/1,579 square degrees. We also constructed subcatalogs of the UV sources with matched optical photometry from SDSS (7th data release): these contain 0.6/0.9million (AIS/MIS) sources with errors <0.3mag in both FUV and NUV, excluding sources with multiple optical counterparts, over an area of 7,325/1,103 square degrees. All catalogs are available online. We then selected 28,319(AIS)/9,028(MIS) matched sources with FUV-NUV<-0.13; this color cut corresponds to stellar Teff hotter than ~18,000 K. An additional color cut of NUV-r>0.1 isolates binaries with largely differing Teff's, and some intruding QSOs. Available spectroscopy for a subsample indicates that hot-star candidates with NUV-r<0.1 have negligible contamination by non-stellar objects. We discuss the distribution of sources in the catalogs, and the effects of error and color cuts on the samples. The density of hot-star candidates increases from high to low Galactic latitudes, but drops on the MW plane due to dust extinction. Our hot-star counts at all latitudes are better matched by Milky Way models computed with an initial-final mass relation that favours lower final masses. (ABRIDGED)
We investigate the morphology of the collision front between the stellar winds of binary components in two long-period binary systems, one consisting of a hydrogen rich Wolf-Rayet star (WNL) and an O-star and the other of a Luminous Blue Variable (LBV) and an O-star. Specifically, we follow the development and evolution of instabilities that form in such a shell, if it is sufficiently compressed, due to both the wind interaction and the orbital motion. We use MPI-AMRVAC to time-integrate the equations of hydrodynamics, combined with optically thin radiative cooling, on an adaptive mesh 3D grid. Using parameters for generic binary systems, we simulate the interaction between the winds of the two stars. The WNL+O star binary shows a typical example of an adiabatic wind collision. The resulting shell is thick and smooth, showing no instabilities. On the other hand, the shell created by the collision of the O star wind with the LBV wind, combined with the orbital motion of the binary components, is susceptible to thin shell instabilities, which create a highly structured morphology. We identify the nature of the instabilities as both linear and non-linear thin-shell instabilities, with distinct differences between the leading and the trailing parts of the collision front. We also find that for binaries containing a star with a (relatively) slow wind, the global shape of the shell is determined more by the slow wind velocity and the orbital motion of the binary, than the ram pressure balance between the two winds. The interaction between massive binary winds needs further parametric exploration, to identify the role and dynamical importance of multiple instabilities at the collision front, as shown here for an LBV+O star system.
Hipparcos photometric data for the massive O-type binary UW CMa were analysed within the framework of the Roche model. Photometric solutions were obtained for five mass ratios in the $q=M_2/M_1=0.5-1.5$ range. The system is found to be in a contact configuration. Independently of $q$, the best-fitting model solutions correspond to the orbital inclination $i \sim 71^\circ$ and the temperature of the secondary component $T_2 \sim 33500\,K$, at the fixed temperature of the primary $T_1=33750 K$. Considering that the spectrum of the secondary is very weak, photometric solutions corresponding to the contact configuration favor the mass ratio $q$ smaller than unity (in which case the luminosity of the secondary is smaller than that of the primary). The absolute parameters of the system are estimated for different values of the mass ratio.
We systematically analyzed the high-quality Suzaku data of 88 Seyfert galaxies. We obtained a clear relation between the absorption column density and the equivalent width of the 6.4 keV line above 10$^{23}$ cm$^{-2}$, suggesting a wide-ranging column density of $10^{23-24.5}$ cm$^{-2}$ with a similar solid and a Fe abundance of 0.7--1.3 solar for Seyfert 2 galaxies. The EW of the 6.4 keV line for Seyfert 1 galaxies are typically 40--120 eV, suggesting the existence of Compton-thick matter like the torus with a column density of $>10^{23}$ cm$^{-2}$ and a solid angle of $(0.15-0.4)*4pi$, and no difference of neutral matter is visible between Seyfert 1 and 2 galaxies. An absorber with a lower column density of $10^{21-23}$ cm$^{-2}$ for Compton-thin Seyfert 2 galaxies is suggested to be not a torus but an interstellar medium. These constraints can be understood by the fact that the 6.4 keV line intensity ratio against the 10--50 keV flux is almost identical within a range of 2--3 in many Seyfert galaxies. Interestingly, objects exist with a low EW, 10--30 eV, of the 6.4 keV line, suggesting that those torus subtends only a small solid angle of $<0.2*4pi$. Ionized Fe-K$\alpha$ emission or absorption lines are detected from several percents of AGNs. Considering the ionization state and equivalent width, emitters and absorbers of ionized Fe-K lines can be explained by the same origin, and highly ionized matter is located at the broad line region. The rapid increase in EW of the ionized Fe-K emission lines at $N_{H}>10^{23}$ cm$^{-2}$ is found, like that of the cold material. It is found that these features seem to change for brighter objects with more than several $10^{44}$ erg/s such that the Fe-K line features become weak. We discuss this feature, together with the torus structure.
Parallel analysis of the large-scale morphology and local environment of matched active and control galaxy samples plays an important role in studies of the fueling of active galactic nuclei. We carry out a detailed morphological characterization of a sample of 35 Seyfert galaxies and a matched sample of inactive galaxies in order to compare the evidence of non-axisymmetric perturbation of the potential and, in the second part of this paper, to be able to perform a multicomponent photometric decomposition of the Seyfert galaxies. We constructed contour maps, BVRcIc profiles of the surface brightness, ellipticity, and position angle, as well as colour index profiles. We further used colour index images, residual images, and structure maps, which helped clarify the morphology of the galaxies. We studied the presence of close companions using literature data. By straightening out the morphological status of some of the objects, we derived an improved morphological classification and built a solid basis for a further multicomponent decomposition of the Seyfert sample. We report hitherto undetected (to our knowledge) structural components in some Seyfert galaxies - a bar (Ark 479), an oval/lens (Mrk 595), rings (Ark 120, Mrk 376), a nuclear bar and ring (Mrk 352), and nuclear dust lanes (Mrk 590). We compared the large-scale morphology and local environment of the Seyfert sample to those of the control one and found that (1) the two samples show similar incidences of bars, rings, asymmetries, and close companions; (2) the Seyfert bars are generally weaker than the bars of the control galaxies; (3) the bulk of the two samples shows morphological evidence of non-axisymmetric perturbations of the potential or close companions; (4) the fueling of Seyfert nuclei is not directly related to the large-scale morphology and local environment of their host galaxies.
We have carried out numerical simulation based on the equations of radiation magnetohydrodynamics to study the interaction of solar granules and small-scale magnetic fields in photospheric regions with various magnetic fluxes. Four sequences of 2D time-dependent models were calculated for photospheric regions with average vertical magnetic fluxes of 0, 10, 20, and 30 mT. The models exhibit no substantial variations in their temperature structure with varying average field strength, while the density and gas pressure profiles display gross changes. The solar granulation brightness field also varies substantially with magnetic flux. The contribution of the small-scale component to the intensity power spectrum increases with average field strength, whereas the large-scale component (of about a granule size) contributes less, the total rms intensity fluctuations being approximately the same. Thus the observed decrease in rms intensity fluctuations with growing average magnetic flux can be interpreted as smoothing of the small-scale component in the power spectrum by the modulation transfer function of the telescope.
An unexpected distribution of temperatures in the Cosmic Microwave Background (CMB) could be a sign of new physics. In particular, the existence of cosmic defects could be indicated by temperature discontinuities via the Kaiser-Stebbins effect. In this letter, it is shown how performing finite differences on a CMB map, with the noise regularized in harmonic space, may expose such discontinuities, and report the results of this process on the 7-year WMAP data.
The oblique geometry of pulsar wind termination shock ensures that the Doppler beaming has a strong impact on the shock emission. We illustrate this using recent relativistic MHD simulations of the Crab Nebula and also show that the observed size, shape, and distance from the pulsar of the Crab Nebula inner knot are consistent with its interpretation as a Doppler-boosted emission from the termination shock. If the electrons responsible for the synchrotron gamma-rays are accelerated only at the termination shock then their short life-time ensures that these gamma-rays originate close to the shock and are also strongly effected by the Doppler beaming. As the result, bulk of the observed synchrotron gamma-rays of the Crab Nebula around 100 MeV may come from its inner knot. This hypothesis is consistent with the observed optical flux of the inner knot provided its optical-gamma spectral index is the same as the injection spectral index found in the Kennel & Coroniti model of the nebula spectrum. The observed variability of synchrotron gamma-ray emission can be caused by the instability of the termination shock discovered in recent numerical simulations. Given the small size of the knot, it is possible that the September 2010 gamma-ray flare of the Crab Nebula also came from the knot, though the actual mechanism remains unclear. The model predicts correlation of the temporal variability of the synchrotron gamma-ray flux in the Fermi and AGILE windows with the variability of the unpulsed optical flux from within 1 arcsec of the Crab pulsar.
Cosmological models where the standard Big Bang is replaced by a bounce have been studied for decades. The situation has however dramatically changed in the last years for two reasons. First, because new ways to probe the early Universe have emerged, in particular thanks to the Cosmic Microwave Background (CMB). Second, because some well grounded theories -- especially Loop Quantum Cosmology -- unambiguously predict a bounce, at least for homogeneous models. In this article, we investigate into the details the phenomenological parameters that could be constrained or measured by next-generation B-mode CMB experiments. We point out that an important observational window could be opened. We then show that those constraints can be converted into very meaningful limits on the fundamental Loop Quantum Cosmology (LQC) parameters. This establishes the early universe as an invaluable quantum gravity laboratory.
Connected radio interferometers are sometimes used in the tied-array mode: signals from antenna elements are coherently added and the sum signal applied to a VLBI backend or pulsar processing machine. Usually there is no computer-controlled amplitude weighting in the existing radio interferometer facilities. Radio frequency interference (RFI) mitigation with phase-only adaptive beamforming is proposed for this mode of observation. Small phase perturbations are introduced in each of the antenna's signal. The values of these perturbations are optimized in such a way that the signal from a radio source of interest is preserved and RFI signals suppressed. An evolutionary programming algorithm is used for this task. Computer simulations, made for both one-dimensional and two-dimensional array set-ups, show considerable suppression of RFI and acceptable changes to the main array beam in the radio source direction.
We report evidence for a fully established galaxy cluster at z=2.07, consisting in a ~20sigma overdensity of red, compact spheroidal galaxies which spatially coincides with an extended X-ray emission detected with XMM-Newton. We use VLT VIMOS and FORS2 spectra and deep Subaru, VLT and Spitzer imaging to estimate the redshift of the structure from a prominent z=2.07 spectroscopic redshift spike of emission-line galaxies, concordant with the accurate 12-band photometric redshifts of the red galaxies. Using NICMOS and Keck AO observations, we find that the red galaxies have elliptical morphologies and compact cores. While they do not form a tight red sequence, their colours are consistent with that of a >1.3 Gyr population observed at z~2.1. From an X-ray luminosity of 7.2*10^43 erg s^-1 and the stellar mass content of the red galaxy population, we estimate a halo mass of 5.3-8*10^13 Msun, comparable to the nearby Virgo cluster. These properties imply that this structure could be the most distant, mature cluster known to date and that X-ray luminous, elliptical-dominated clusters are already forming at substantially earlier epochs than what previously known.
We present and discuss new BVI CCD photometry in the field of the globular cluster Arp~2, which is considered a member of the Sagittarius Dwarf Spheroidal Galaxy. The main goal of this investigation is to study of the statistics and spatial distribution of blue straggler stars in the cluster. Blue stragglers are stars observed to be hotter and bluer than other stars with the same luminosity in their environment. As such, they appear to be much younger than the rest of the stellar population. Two main channels have been suggested to produce such stars: (1) collisions between stars in clusters or (2) mass transfer between, or merger of, the components of primordial short-period binaries. The spatial distribution of these stars inside a star cluster, compared with the distribution of stars in different evolutionary stages, can cast light on the most efficient production mechanism at work. In the case of Arp~2, we found that blue straggler stars are significantly more concentrated than main sequence stars, while they show the same degree of concentration as evolved stars (either red giants or horizontal branch stars). Since Arp~2 is not a very concentrated cluster, we suggest that this high central concentration is an indication that blue stragglers are mostly primordial binary stars.
Observations of SNRs in X-ray and gamma-ray bands promise to contribute with important information in our understanding on the nature of galactic cosmic rays. The analysis of SNRs images collected in different energy bands requires the support of theoretical modeling of synchrotron and inverse Compton (IC) emission. We develop a numerical code (REMLIGHT) to synthesize, from MHD simulations, the synchrotron radio, X-ray and IC gamma-ray emission from SNRs expanding in non-uniform interstellar medium (ISM) and/or non-uniform interstellar magnetic field (ISMF). As a first application, the code is used to investigate the effects of non-uniform ISMF on the SNR morphology in the non-thermal X-ray and gamma-ray bands. We perform 3D MHD simulations of a spherical SNR shock expanding through a magnetized ISM with a gradient of ambient magnetic field strength. The model includes an approximate treatment of upstream magnetic field amplification and the effect of shock modification due to back reaction of accelerated cosmic rays. From the simulations, we synthesize the synchrotron radio, X-ray and IC gamma-ray emission with REMLIGHT, making different assumptions about the details of acceleration and injection of relativistic electrons. A gradient of the ambient magnetic field strength induces asymmetric morphologies in radio, X-ray and gamma-ray bands independently from the model of electron injection if the gradient has a component perpendicular to the line-of-sight. The degree of asymmetry of the remnant morphology depends on the details of the electron injection and acceleration and is different in the radio, X-ray, and gamma-ray bands. The non-thermal X-ray morphology is the most sensitive to the gradient, showing the highest degree of asymmetry. The IC gamma-ray emission is weakly sensitive to the non-uniform ISMF, the degree of asymmetry of the SNR morphology being the lowest in this band.
The origin of ultracompact dwarf (UCD) galaxies, compact extragalactic stellar systems, is still a puzzle for present galaxy formation models. We present the comprehensive analysis of high resolution multi-object spectroscopic data for a sample of 24 Fornax cluster UCDs obtained with VLT FLAMES. It comprises previously published data for 19 objects (Mieske et al. 2008) which we re-analysed, including 13 with available HST photometric data. Using Virtual Observatory technologies we found archival HST images for two more UCDs and then determined their structural properties. For all objects we derived internal velocity dispersions, stellar population parameters, and stellar mass-to-light ratios (M/L)* by fitting individual simple stellar population (SSP) synthetic spectra convolved with a Gaussian against the observed spectra using the NBursts full spectral fitting technique. For 14 objects we estimated dynamical masses suggesting no dark matter (DM) in 12 of them and no more than 40 per cent DM mass fraction in the remaining two, in contrast to findings for several UCDs in the Virgo cluster. Some Fornax UCDs even have too high values of (M/L)* estimated using the Kroupa stellar initial mass function (IMF) resulting in negative formally computed DM mass fractions. The objects with too high (M/L)* ratios compared to the dynamical ones have relatively short dynamical relaxation timescales, close to the Hubble time or below. We therefore suggest that their lower dynamical ratios (M/L)dyn are caused by low-mass star depletion due to dynamical evolution. Overall, the observed UCD characteristics suggest at least two formation channels: tidal threshing of nucleated dwarf galaxies for massive UCDs (~10^8 M_sun), and a classical scenario of red globular cluster formation for lower-mass UCDs (< 10^7 M_sun).
The Genetic Algorithm is a heuristic that can be used to produce model independent solutions to an optimization problem, thus making it ideal for use in cosmology and more specifically in the analysis of type Ia supernovae data. In this work we use the Genetic Algorithms (GA) in order to derive a null test on the spatially flat cosmological constant model $\Lambda$CDM. This is done in two steps: first, we apply the GA to the Constitution SNIa data in order to acquire a model independent reconstruction of the expansion history of the Universe $H(z)$ and second, we use the reconstructed $H(z)$ in conjunction with the Om statistic, which is constant only for the $\Lambda$CDM model, to derive our constraints. We find that while $\Lambda$CDM is consistent with the data at the $2\sigma$ level, some deviations from $\Lambda$CDM model at low redshifts can be accommodated.
Quasi-periodic oscillations and dwarf nova oscillations occur in dwarf novae
and nova-like variables during outburst and occasionally during quiescence, and
have analogues in high-mass X-ray binaries and black-hole candidates. The
frequent low coherence of quasi-period oscillations and dwarf nova oscillations
can make detection with standard time-series tools such as periodograms
problematic. This paper develops tools to analyse quasi-periodic brightness
oscillations. We review the use of time-frequency representations in the
astronomical literature, and show that representations such as the
Choi-Williams Distribution and Zhao-Atlas-Marks Representation, which are best
suited to high signal-to-noise data, cannot be assumed a priori to be the best
techniques for our data, which have a much higher noise level and lower
coherence. This leads us to a detailed analysis of the time-frequency
resolution and statistical properties of six time-frequency representations. We
conclude that the wavelet scalogram, with the addition of wavelet ridges and
maxima points, is the most effective time-frequency representation for
analysing quasi-periodicities in low signal-to-noise data, as it has high
time-frequency resolution, and is a minimum variance estimator.
We use the wavelet ridges method to re-analyse archival data from VW Hyi, and
find 62 new QPOs and 7 new long-period DNOs. Relative to previous analyses, our
method substantially improves the detection rate for QPOs.
We present the main results on the energy spectrum and composition of the highest energy cosmic rays of energy exceeding 10$^{18}$ eV obtained by the High Resolution Fly's Eye and the Southern Auger Observatory. The current results are somewhat contradictory and raise interesting questions about the origin and character of these particles.
We present the current status of the IceTop air shower array on top of the IceCube neutrino detector that IceTop can use as a huge detector of TeV muons. We laos give a brief discussion of different types of air shower events that contain information on the spectrum and composition of the cosmic rays in a wide energy range.
In the first part of this manuscript, I present the results on the properties
of the interstellar medium and the stellar content of galaxies at z=0.6, from a
representative sample of distant galaxies observed with the long slit
spectrograph VLT/FORS2. This study has been realized in the framework of the
ESO large program IMAGES "Intermediate MAss Galaxy Evolution Sequences", which
aims to investigate the evolution of the main global properties of galaxies up
to z~0.9. I discuss the implications of the observed chemical enrichment of the
gas on the scenarios of galaxy formation. I also propose a new method to
estimate reliable stellar masses in starburst galaxies using broadband
photometry and their total star-formation rate.
In a second part, I present a new method to extract, with high accuracy, the
sky in spectra acquired with a fiber-fed instrument. I have developed this code
in the Framework of the phase A of an instrument proposed for the E-ELT:
OPTIMOS-EVE. This is a multi-fiber spectrograph able to observe at optical and
infrared wavelengths simultaneously.
In the third part, I show preliminary results from the CENTRA GEPI- survey at
Calar Alto Observatory to study nearby galaxies, hosts of type Ia supernovae,
using integral field spectroscopy. I present the first 2D maps of the gas and
stellar populations of SNe Ia hosts. The results allow us to directly access
the host properties in the immediate vicinity of the SNe Ia. This is a crucial
step to investigate eventual correlations between galaxy properties and SNe Ia
events and evolution, leading to systematic effects on the derivation of the
cosmological parameters.
Encoded in the time- and wavelength dependent properties of pulsating AGB stars are the underlying fundamental parameters of mass, composition and evolutionary state. However, the standard technique of placing stars on a HR diagram, even with the aid of pulsation periods, can not be done easily for extended AGB stars, because of the difficulty of defining a radius or temperature. The atmospheres of Mira variables are so extended that the optical depth unity radius can vary by a factor of ~3 over the energetically important region of the spectrum. Many important constituents in the radiative transfer are far from local thermodynamic equilibrium, and for the coolest stars, the process of dust formation and destruction requires a time-dependent model of grain growth. I will describe the challenges and some of the solutions to modeling these atmospheres, and describe the utility of different kinds of observations in helping understand both fundamental parameters and chaotic processes in complex AGB atmospheres.
We analyze the quantum Bianchi I model in the setting of the nonstandard loop quantum cosmology. Elementary observables are used to quantize the volume operator. The spectrum of the volume operator is bounded from below and discrete. The discreteness may imply a foamy structure of spacetime at semiclassical level. The results are described in terms of a free parameter specifying loop geometry to be determined in astro-cosmo observations. An evolution of the quantum model is generated by the so-called true Hamiltonian, which enables an introduction of a time parameter valued in the set of all real numbers.
Recent results from the CoGeNT collaboration (as well as the annual modulation reported by DAMA/LIBRA) point toward dark matter with a light (5-10 GeV) mass and a relatively large elastic scattering cross section with nucleons (\sigma ~ 10^{-40} cm^2). In order to possess this cross section, the dark matter must communicate with the Standard Model through mediating particles with small masses and/or large couplings. In this Letter, we explore with a model independent approach the particle physics scenarios that could potentially accommodate these signals. We also discuss how such models could produce the gamma rays from the Galactic Center observed in the data of the Fermi Gamma Ray Space Telescope. We find multiple particle physics scenarios in which each of these signals can be accounted for, and in which the dark matter can be produced thermally in the early Universe with an abundance equal to the measured cosmological density.
The inflationary paradigm has enjoyed phenomenological success, however, a compelling particle physics realization is still lacking. The key obstruction is that the requirement of a suitably flat scalar potential is sensitive to Ultra-Violet (UV) physics. Axions are among the best-motivated inflaton candidates, since the flatness of their potential is naturally protected by a shift symmetry. We re-consider the cosmological perturbations in axion inflation, consistently accounting for the coupling to gauge fields \phi F \tilde{F}, which is generically present in these models. This coupling leads to production of gauge quanta, which provide a new source of inflaton fluctuations, \delta\phi. For an axion decay constant < 10^{-2} M_p, this effect typically dominates over the standard fluctuations from the vacuum and dramatically modifies phenomenological predictions. For concrete realizations that admit a UV completion (such as N-flation and axion monodromy), this can be probed in the near future. We show that: (1) a large tensor-to-scalar ratio is not generic in large field inflation, and, (2) large nongaussianity is easily obtained in very minimal and natural realizations of inflation.
We report an experimental observation of an instability in gas of constant density (air) with an initial non-uniform seeding of small droplets that develops as a planar shock wave passes through the gas-droplet mix. The seeding non-uniformity is produced by vertical injection of a slow-moving jet of air pre-mixed with glycol droplets into the test section of a shock tube, with the plane of the shock parallel to the axis of the jet. After the shock passage, we observe development of two counter-rotating vortices in the plane normal to that axis. The physical mechanism of the instability we observe is peculiar to multiphase flow, where the shock acceleration causes the second (embedded) phase to move with respect to the embedding medium. With sufficient seeding concentration, this leads to entrainment of the embedding phase that acquires a relative velocity dependent on the initial seeding, resulting in vortex formation in the flow.
A method is developed for dealing with ultraviolet divergences in calculations of cosmological correlations, which does not depend on dimensional regularization. An extended version of the WKB approximation is used to analyze the divergences in these calculations, and these divergences are controlled by the introduction of Pauli--Villars regulator fields. This approach is illustrated in the theory of a scalar field with arbitrary self-interactions in a fixed flat-space Robertson--Walker metric with arbitrary scale factor $a(t)$. Explicit formulas are given for the counterterms needed to cancel all dependence on the regulator properties, and an explicit prescription is given for calculating finite regulator-independent correlation functions. The possibility of infrared divergences in this theory is briefly considered.
Links to: arXiv, form interface, find, astro-ph, recent, 1011, contact, help (Access key information)
Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically at large radii ($r\sim 10^{13}$--$10^{14}{\rm cm}$), by which the jet has obtained a high Lorentz factor ($\gamma\sim 100$--$1000$), is able to produce non-thermal or quasi-thermal emission while also being optically thin to very high-energy photons, has a gamma-ray luminosity of $L_\gamma \sim 10^{50}$--$10^{51}\ergs$, has observer variability timescales of order $1$s (ranging from $0.001$-$10$s), achieves $\gamma\theta_j\sim 10$--$20$ (for opening half-angle $\theta_j$) so able to produce jet breaks, and has potentially $5-10$ times more energy available for the prompt emission than for the afterglow emission. [abridged]
Over the past years observations of young and populous star clusters have shown that the stellar initial mass function (IMF) can be conveniently described by a two-part power-law with an exponent alpha_2 = 2.3 for stars more massive than about 0.5 Msol and an exponent of alpha_1 = 1.3 for less massive stars. A consensus has also emerged that most, if not all, stars form in stellar groups and star clusters, and that the mass function of these can be described as a power-law (the embedded cluster mass function, ECMF) with an exponent beta ~2. These two results imply that the integrated galactic IMF (IGIMF) for early-type stars cannot be a Salpeter power-law, but that they must have a steeper exponent. An application to star-burst galaxies shows that the IGIMF can become top-heavy. This has important consequences for the distribution of stellar remnants and for the chemo-dynamical and photometric evolution of galaxies. In this contribution the IGIMF theory is described, and the accompanying contribution by Pflamm-Altenburg, Weidner & Kroupa (this volume) documents the applications of the IGIMF theory to galactic astrophysics.
The existence of hot, X-ray luminous gaseous coronae surrounding present day L* galaxies is a generic prediction of galaxy formation theory in the cold dark matter cosmogony. While extended X-ray emission has been known to exist around elliptical galaxies for a long time, diffuse extra-planar emission has only recently been detected around disc galaxies. We compile samples of elliptical and disc galaxies that have Chandra and XMM-Newton measurements, and compare the scaling of the coronal X-ray luminosity (L_X) with both the K-band luminosity (L_K) and the coronal X-ray temperature (T_X). The X-ray flux measurements are corrected for non-thermal point source contamination by spatial excision and spectral subtraction for resolved and unresolved sources respectively. We find that the properties of the extended X-ray emission from galaxies of different morphological types are similar: for both elliptical and disc galaxies, the L_X - L_K and L_X - T_X relations have similar slope, normalisation and scatter. The observed universality of coronal X-ray properties suggests that the bulk of this emission originates from gas that has been accreted, shock-heated and compressed during the assembly of the galaxy and that outflows triggered by stellar processes make only a minor contribution to the X-ray emission. This reservoir of cooling gas is a potential source of morphological transformation; it provides a fresh supply of material for discs to grow around galaxies of all morphological types.
The effects of atomic diffusion on internal and surface abundances of A and F pre-main-sequence stars with mass loss are studied in order to determine at what age the effects materialize, as well as to further understand the processes at play in HAeBe and young ApBp stars. Self-consistent stellar evolution models of 1.5 to 2.8Msun with atomic diffusion (including radiative accelerations) for all species within the OPAL opacity database were computed and compared to observations of HAeBe stars. Atomic diffusion in the presence of weak mass loss can explain the observed abundance anomalies of pre-main-sequence stars, as well as the presence of binary systems with metal rich primaries and chemically normal secondaries such as V380 Ori and HD72106. This is in contrast to turbulence models which do not allow for abundance anomalies to develop on the pre-main-sequence. The age at which anomalies can appear depends on stellar mass. For A and F stars, the effects of atomic diffusion can modify both the internal and surface abundances before the onset of the MS. The appearance of important surface abundance anomalies on the pre-main-sequence does not require mass loss, though the mass loss rate affects their amplitude. Observational tests are suggested to decipher the effects of mass loss from those of turbulent mixing. If abundance anomalies are confirmed in pre-main-sequence stars they would severely limit the role of turbulence in these stars.
The transformation of atomic hydrogen to molecular hydrogen through three-body reactions is a crucial stage in the collapse of primordial, metal-free halos, where the first generation of stars (Population III stars) in the Universe are formed. However, in the published literature, the rate coefficient for this reaction is uncertain by nearly an order of magnitude. We report on the results of both adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) simulations of the collapse of metal-free halos as a function of the value of this rate coefficient. For each simulation method, we have simulated a single halo three times, using three different values of the rate coefficient. We find that while variation between halo realizations may be greater than that caused by the three-body rate coefficient being used, both the accretion physics onto Population III protostars as well as the long-term stability of the disk and any potential fragmentation may depend strongly on this rate coefficient.
We present the results on the star formation history and extinction in the disk of M82 over spatial scales of 10" (~180 pc). Multi-band photometric data covering from the far ultraviolet to the near infrared bands were fitted to a grid of synthetic spectral energy distributions. We obtained distribution functions of age and extinction for each of the 117 apertures analyzed, taking into account observational errors through Monte-Carlo simulations. These distribution functions were fitted with gaussian functions to obtain the mean ages and extinctions along with errors on them. The analyzed zones include the high surface brightness complexes defined by O'Connell & Mangano (1978). We found that these complexes share the same star formation history and extinction as the field stellar populations in the disk. There is an indication that the stellar populations are marginally older at the outer disk (450 Myr at ~3 kpc) as compared to the inner disk (100 Myr at 0.5 kpc). For the nuclear regions (radius less than 500 pc), we obtained an age of less than 10 Myr. The results obtained in this work are consistent with the idea that the 0.5-3 kpc part of the disk of M82 formed around 90% of the stellar mass in a star-forming episode that started around 450 Myr ago lasting for about 350 Myr. We found that field stars are the major contributors to the flux over the spatial scales analyzed in this study, with stellar cluster contribution being 7% in the nucleus and 0.7% in the disk.
The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlation of the PSF modulated by both atmospheric turbulence and optical aberrations. In this paper, we present a full FOV simulation of the LSST images by modeling both the atmosphere and the telescope optics with the most current data for the telescope specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer phase screens with the parameters estimated from the on-site measurements. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane data to introduce realistic aberrations and focal plane height fluctuations. Although this expected flatness deviation for LSST is small compared with that of other existing cameras, the fast f-ratio of the LSST optics makes this focal plane flatness variation and the resulting PSF discontinuities across the CCD boundaries significant challenges in our removal of the systematics. We resolve this complication by performing PCA CCD-by-CCD, and interpolating the basis functions using conventional polynomials. We demonstrate that this PSF correction scheme reduces the residual PSF ellipticity correlation below 10^-7 over the cosmologically interesting scale. From a null test using HST/UDF galaxy images without input shear, we verify that the amplitude of the galaxy ellipticity correlation function, after the PSF correction, is consistent with the shot noise set by the finite number of objects. Therefore, we conclude that the current optical design and specification for the accuracy in the focal plane assembly are sufficient to enable the control of the PSF systematics required for weak-lensing science with the LSST.
We investigate whether a circumbinary gas disc can coalesce a supermassive black hole binary system in the centre of a galaxy. This is known to be problematic for a prograde disc. We show that in contrast, interaction with a retrograde circumbinary disc is considerably more effective in shrinking the binary because there are no orbital resonances. The binary directly absorbs negative angular momentum from the circumbinary disc by capturing gas into a disc around the secondary black hole, or discs around both holes if the binary mass ratio is close to unity. In many cases the binary orbit becomes eccentric, shortening the pericentre distance as the eccentricity grows. In all cases the binary coalesces once it has absorbed the angular momentum of a gas mass comparable to that of the secondary black hole. Importantly, this conclusion is unaffected even if the gas inflow rate through the disc is formally super--Eddington for either hole. The coalescence timescale is therefore always $\sim M_2/\dot M$, where $M_2$ is the secondary black hole mass and $\dot M$ the inflow rate through the circumbinary disc.
A new numerical technique to identify the cosmic web is proposed. It is based on locating multi-stream flows, i.e. the places where the velocity field is multi-valued. The method is local in Eulerian space, simple and computaionally efficient. This technique uses the velocities of particles and thus takes into account the dynamical information. This is in contrast with the majority of standard methods that use the coordinates of particles only. Two quantities are computed in every mesh cell: the mean and variance of the velocity field. In the cells where the velocity is single-valued the variance must be equal to zero exactly, therefore the cells with non-zero variance are identified as multi-stream flows. The technique has been tested in a N-body simulation of the \L CDM model. The preliminary analysis has shown that numerical noise does not pose a significant problem. The web identified by the new method has been compared withthe web identified by the standard technique using only the particle coordinates. The comparison has shown overall similarity of two webs as expected, however they by no means are identical. For example, the isocontours of the corresponding fields have significantly different shapes and some density peaks of similar heights exhibit significant differences in the velocity variance and vice versa. This suggest that the density and velocity variance have a significant degree of independence. The shape of the two-dimensional pdf of density and velocity variance confirms this proposition. Thus, we conclude that the dynamical information probed by this technique introduces an additional dimension into analysis of the web.
We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, which is expected from hierarchical galaxy formation models, where most of the halo stars are still-detectable tidal debris from disrupted satellite galaxies. Using a cumulative "close pair distribution" (CPD) as a statistic in the 4-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock-observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellites debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located in the outer halo, beyond 10 kpc from the Galactic center, exhibit statistically stronger substructure signatures than at $\rm r_{gc} < 10$ kpc.
We describe a correlation function statistic that quantifies the amount of spatial and kinematic substructure in the stellar halo. We test this statistic using model stellar halo realizations constructed from the Aquarius suite of six high-resolution N-body simulations in combination with the Galform semi-analytic galaxy formation model. These simulations show considerable scatter in the properties of stellar haloes. We find that our statistic can distinguish between these plausible alternatives for the global structure of the Milky Way stellar halo. We compare with observational data and show that pencil beam surveys of ~100 tracer stars (such as the Spaghetti Survey) are not sufficient to constrain the degree of structure in the Milky Way halo with this statistic. Larger area surveys with >1000 tracer stars (such as BHB stars in the Sloan Digital Sky Survey) provide much tighter constraints on comparisons between models and data. In our simulations, we find examples of haloes with spatial and kinematic substructure consistent with the available Milky Way data.
The CoRoT and Kepler satellites have provided thousands of red-giant oscillation spectra. The analysis of these spectra requires efficient methods for identifying all eigenmode parameters. The assumption of new scaling laws allows us to construct a theoretical oscillation pattern. We then obtain a highly precise determination of the large separation by correlating the observed patterns with this reference. We demonstrate that this pattern is universal and are able to unambiguously assign the eigenmode radial orders and angular degrees. This solves one of the current outstanding problems of asteroseismology hence allowing precise theoretical investigation of red-giant interiors.
(Abridged) Ultracompact Minihaloes (UCMHs), which formed by dark matter accretion onto primordial black holes (PBHs) or initial dark matter overdensity produced by the primordial density perturbation, provide a new type of dark matter annihilation source to ionize and heat the IGM after matter-radiation equality z_eq, which is much earlier than the formation of the first cosmological dark halo structure and later first star radiation. We show that dark matter annihilation density contributed by UCMHs can totally dominated over that by the homogenous dark matter background, and provide a new gamma-ray background in the early Universe. The main constraint of UCMH abundance is given by the CMB optical depth measurement, under which UCMH annihilation can increase the gas reionization fraction by one order of magnitude higher, and the IGM temperature from adiabatic cooling T_m ~ (1+z)^{2} to T_m ~ (1+z). A small fraction of UCMHs are seeded by PBHs. The X-ray emission from accreting baryonic gas into PBHs may totally dominated over dark matter annihilation within the host UCMHs, but the constraints of gas accretion rate and X-ray absorption by the accumulated baryons within the UCMHs show the PBH radiation can only be a promising source much later than UCMH annihilation at z<z_m<<1000, where z_m depends on M_{PBH}, the initial minihalo mass and dark matter particle mass. The effects of pure UCMH annihilation on the structure evolution are obvious for the gas chemical quantities, but quite small for the temperature and structure formation. PBH host UCMHs, on the other hand, can significantly suppress the first baryonic structure formation, as they provide a much hotter IGM background before the structure formation.
Quasars that allow the study of IGM He II are very rare, since they must be at high redshift along sightlines free of substantial hydrogen absorption, but recent work has dramatically expanded the number of such quasars known. We analyze two dozen higher-redshift (z=3.1-3.9) low-resolution He II quasar spectra from HST and find that their He II Gunn-Peterson troughs suggest exclusion of very early and very late reionization models, favoring a reionization redshift of z~3. Although the data quality is not sufficient to reveal details such as the expected redshift evolution of helium opacity, we obtain the first ensemble measure of helium opacity at high redshift averaged over many sightlines: tau=4.90 at z~3.3. We also find that it would be very difficult to observe the IGM red wing of absorption from the beginning of He II reionization, but depending on the redshift of reionization and the size of ionization zones, it might be possible to do so in some objects with the current generation of UV spectrographs.
We present galaxy spectroscopic data on a pencil beam of $10.75' \times7.5'$ centered on the X-ray cluster RXJ0054.0-2823 at $z = 0.29$. We study the spectral evolution of galaxies from $z=1$ down to the cluster redshift in a magnitude-limited sample at $\rm R\leq23$, for which the statistical properties of the sample are well understood. We divide emission-line galaxies in star-forming galaxies, LINERs, and Seyferts by using emission-line ratios of [OII], $\rm H\beta$, and [OIII], and derive stellar fractions from population synthesis models. We focus our analysis on absorption and low-ionization galaxies. For absorption-line galaxies we recover the well known result that these galaxies have had no detectable evolution since $z\sim0.6-0.7$, but we also find that in the range $z=0.65-1$ at least 50% of the stars in bright absorption systems are younger than 2.5Gyr. Faint absorption-line galaxies in the cluster at $z = 0.29$ also had significant star formation during the previous 2-3Gyr, while their brighter counterparts seem to be composed only of old stars. At $z\sim0.8$, our dynamically young cluster had a truncated red-sequence. This result seems to be consistent with a scenario where the final assembly of E/S0 took place at $z<1$. In the volume-limited range $0.35\leq z\leq0.65$ we find that 23% of the early-type galaxies have LINER-like spectra with $\rm H\beta$ in absorption and a significant component of A stars. The vast majority of LINERs in our sample have significant populations of young and intermediate-aged stars and are thus not related to AGN, but to the population of `retired galaxies' recently identified by Cid-Fernandes et al. (2010) in the SDSS. Early-type LINERs with various fractions of A stars, and E+A galaxies appear to play an important role in the formation of the red sequence.
We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of $884,126$ SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: $14\le r\le21$ ($85.2%$) and $r\ge19$ ($82.1%$). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT and Ball et al. (2006). We find that our FT classifier is comparable or better in completeness over the full magnitude range $15\le r\le21$, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes ($r>19$), our classifier is the only one able to maintain high completeness ($>$80%) while still achieving low contamination ($\sim2.5%$). Finally, we apply our FT classifier to separate stars from galaxies in the full set of $69,545,326$ SDSS photometric objects in the magnitude range $14\le r\le21$.
Spatial inhomogeneities in the spectral shape of the ultra-violet background (UVB) at the tail-end of HeII reionisation are thought to be the primary cause of the large fluctuations observed in the HeII to HI Ly-a forest optical depth ratio, tau_HeII/tau_HI, at z~2-3. These spectral hardness fluctuations will also influence the ionisation balance of intergalactic metals; we extract realistic quasar absorption spectra from a large hydrodynamical simulation to examine their impact on intergalactic SiIV and CIV absorbers. Using a variety of toy UVB models, we find that while the predicted spatial inhomogeneities in spectral hardness have a significant impact on tau_HeII/tau_HI, the longer mean free path for photons with frequencies above and below the HeII ionisation edge means these fluctuations have less effect on the SiIV and CIV ionisation balance. Furthermore, UVB models which produce the largest fluctuations in specific intensity at the HeII ionisation edge also have the softest ionising spectra, and thus result in photo-ionisation rates which are too low to produce significant fluctuations in the observed tau_SiIV/tau_CIV. Instead, we find spatial variations in the IGM metallicity will dominate any scatter in tau_SiIV/tau_CIV. Our results suggest that observational evidence for homogeneity in the observed tau_SiIV/tau_CIV distribution does not rule out the possibility of significant fluctuations in the UVB spectral shape at z~2-3. On the other hand, the scatter in metallicity inferred from observations of intergalactic CIV and SiIV absorption using spatially uniform ionisation corrections is likely intrinsic, and therefore provides a valuable constraint on intergalactic metal enrichment scenarios at high redshift.
Low-luminosity active galactic nuclei (LLAGNs) are generally believed to be powered by an inner radiatively inefficient, advection-dominated accretion flow (ADAF), an outer truncated thin disk, and a jet. Maoz (2007) recently challenged this picture based on the observation that the strength of ultraviolet emission relative to the X-ray and radio bands does not depart from empirical trends defined by more luminous sources. He advocates that AGNs across all luminosities have essentially the same accretion and radiative processes, which in luminous sources are described by a standard optically thick, geometrically thin disk. We calculate ADAF models and demonstrate that they can successfully fit the observed spectral energy distributions of the LLAGNs in Maoz's sample. Our model naturally accommodates the radio and X-ray emission, and the ultraviolet flux is well explained by a combination of the first-order Compton scattering in the ADAF, synchrotron emission in the jet, and black body emission in the truncated thin disk. It is premature to dismiss the ADAF model for LLAGNs. The UV data can be fit equally well using a standard thin disk, but an additional corona and jet would be required to account for the X-ray and radio emission. We argue that there are strong theoretical reasons to prefer the ADAF model over the thin disk scenario. We discuss testable predictions that can potentially discriminate between the two accretion models.
Using deep Subaru/FOCAS spectra of 34 HII regions in both the inner and outer parts of the extended ultraviolet (XUV) disc galaxy NGC 4625 we have measured an abundance gradient out to almost 2.5 times the optical isophotal radius. We applied several strong line abundance calibrations to determine the HII region abundances, including R23, [NII]/[OII], [NII]/Ha as well as the [OIII]4363 auroral line, which we detected in three of the HII regions. We find that at the transition between the inner and outer disc the abundance gradient becomes flatter. In addition, there appears to be an abundance discontinuity in proximity of this transition. Several of our target HII regions appear to deviate from the ionisation sequence defined in the [NII]/Ha vs. [OIII]/Hb diagnostic diagram by bright extragalactic HII regions. Using theoretical models we conclude that the most likely explanations for these deviations are either related to the time evolution of the HII regions, or stochastic variations in the ionising stellar populations of these low mass HII regions, although we are unable to distinguish between these two effects. Such effects can also impact on the reliability of the strong line abundance determinations.
Radiative transfer equation in plane parallel geometry and Kompaneets equation is solved simultaneously to obtain theoretical spectrum of 1-125 KeV photon energy range. Diffuse radiation field is calculated using time-independent radiative transfer equation in plane parallel geometry, which is developed using discrete space theory (DST) of radiative transfer in a homogeneous medium for different optical depths. We assumed free-free emission and absorption and emission due to electron gas to be operating in the medium. The three terms $n, n^2$ and $\displaystyle \bigg({\frac {\partial n}{\partial x_k}}\bigg)$ where $n$ is photon phase density and $\displaystyle x_k= \bigg({\frac {h \nu} {k T_e}} \bigg) $, in Kompaneets equation and those due to free-free emission are utilized to calculate the change in the photon phase density in a hot electron gas. Two types of incident radiation are considered: (1) isotropic radiation with the modified black body radiation $I^{MB}$ [1] and (2) anisotropic radiation which is angle dependent. The emergent radiation at $\tau=0$ and reflected radiation $\tau=\tau_{max}$ are calculated by using the diffuse radiation from the medium. The emergent and reflected radiation contain the free-free emission and emission from the hot electron gas. Kompaneets equation gives the changes in photon phase densities in different types of media. Although the initial spectrum is angle dependent, the Kompaneets equation gives a spectrum which is angle independent after several Compton scattering times.
We propose a procedure for light-curve solution of eclipsing binary stars in the Small Magellanic Cloud for which photometric data have been obtained in the framework of the OGLE project as well as way of determination of the global stellar parameters on the basis of the obtained solutions, some empirical relations as well as the distance to the SMC. Several examples illustrate this procedure.
Abundance anomalies have been determined at the surface of many field and open cluster A and F dwarfs. These abundance anomalies are most likely caused by microscopic diffusion at work within the stable envelopes of A stars. However diffusion can be counteracted by several other mixing processes such as convection, rotational mixing and mass loss. We present a short review of the surface abundance patterns of A/F stars in the Pleiades (100 Myr), Coma Berenices (450 Myr) and Hyades (650 Myr) open clusters. Real star-to-star variations of the abundances were found for several chemical elements in the A dwarfs in these clusters. The derived abundances are then compared to evolutionary models from the Montreal group. These comparisons strongly suggest the occurence of hydrodynamical processes at play within the radiative zones of these stars and hindering the effects of microscopic diffusion (mixing processes/mass loss). In the frame of Gaia mission, simulations are presented that predict the number of A stars and open clusters that Gaia will observe in the Galaxy.
Studies of 22GHz H2O maser emission from the merging galaxy NGC 6240 with double nuclei are presented. Two epochs of Very Large Array (VLA) observations in the A-configuration in spectral-line mode were carried out at 0.1 arcsec resolution by covering the redshifted velocity range of ~ 300 km/s with respect to the systemic velocity of the galaxy. The purpose of these new observations is twofold: to detect an H2O maser that an earlier VLA observation pinpointed in the southern nucleus in the northern nucleus as well to clarify the kinematics of the double nuclei, and to understand the origin of the maser in the galaxy. In the second epoch, one velocity feature peaking at Vlsr=7491.1 km/s, redshifted by ~200 km/s relative to the systemic velocity, was detected only toward the southern nucleus. The detection of an H2O maser feature at or near this velocity had never been reported in earlier observations. However, including the known velocity features at redshifted velocities, no other velocity features were observed toward either nuclei throughout these epochs. The maser remains unresolved at an angular resolution of ~ 0".1, corresponding to a linear size of less than about 45 pc. The two epochs of VLA observations show that the maser intensity is variable on timescales of at least three months, while the correlation between the maser intensity and the radio continuum intensity is not certain from our data. It is plausible that the maser in NGC 6240 is associated with the activity of an active galactic nucleus in the southern nucleus. Alternatively, the maser can be explained by starforming activity at the site of massive starformation in the galaxy.
The binary system PSR B1259-63 consists of a 48 ms pulsar in a 3.4 year orbit around a Be star and unpulsed TeV gamma-ray emission has been detected near previous periastron passages. A likely source of the gamma-rays is the inverse Compton up-scattering of target photons from the Be star by the ultra-relativistic electron/positron pulsar wind in the region of the plerion shock front. In this study the effect of the infrared emission from the Be star's circumstellar disc on inverse Compton gamma-ray production in PSR B1259-63 is investigated by considering an isotropic photon/electron approximation. The modified photon density distribution is determined by using a curve of growth method fitted to previous optical and infrared observations. The inverse Compton scattering rate is calculated using the modified photon distribution and the exact scattering equation. It is shown that including the infrared emission increase the GeV gamma-ray flux by a factor $\ga 2$.
We study cosmological consequences of a kinetic braiding model, which is proposed as an alternative to the dark energy model. The kinetic braiding model we study is characterised by a parameter n, which corresponds to the original Galileon cosmological model for n=1. We find that the background expansion of the universe of the kinetic braiding model is the same as the Dvali-Turner's model. Then, we focus our study on the evolution of the linear density perturbation as well as the spherical collapse in the nonlinear regime of the density perturbations, which are important in order to distinguish between the kinetic braiding model and the Lambda cold dark matter (CDM) model. The theoretical prediction for the large scale structure is confronted with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky survey. We also discuss future prospects of constraining the kinetic braiding model using a future redshift survey like the WFMOS/SUMIRE as well as the cluster redshift distribution in the South Pole Telescope survey.
The past decade has seen a large progress in the X-ray investigation of early-type galaxies of the local universe, and first attempts have been made to reach redshifts z>0 for these objects, thanks to the high angular resolution and sensitivity of the satellites Chandra and XMM-Newton. Major advances have been obtained in our knowledge of the three separate contributors to the X-ray emission, that are the stellar sources, the hot gas and the galactic nucleus. Here a brief outline of the main results is presented, pointing out the questions that remain open, and finally discussing the prospects to solve them with a wide area X-ray survey mission such as WFXT.
Theoretical and observational investigations have indicated that the abundance of carbon monoxide (CO) is very sensitive to intrinsic properties of the gaseous medium, such as density, metallicity, and the background UV field. In order to accurately interpret CO observations, it is thus important to understand how well CO traces the gas, which in molecular clouds (MCs) is predominantly molecular hydrogen (H2). Recent hydrodynamic simulations by Glover & Mac Low have explicitly followed the formation and destruction of molecules in model MCs under varying conditions, confirming that CO formation strongly depends on the cloud properties. Conversely, the H2 formation is primarily determined by the age of the MC. We apply radiative transfer calculations to these MC models in order to investigate the properties of CO line emission. We focus on integrated CO (J=1-0) intensities emerging from individual clouds, including its relationship to the total, H2, and CO column densities, as well as the "X factor," the ratio of H2 column density to CO intensity. Models with high CO abundances have a threshold CO intensity ~65 K km/s at sufficiently large extinctions. Clouds with low CO abundances show no such intensity thresholds. The distribution of H2 column densities are well described as log-normal functions, though the distributions of CO intensities and column densities are usually not log-normal. In general, the PDFs of the integrated intensity do not follow the distribution functions of CO column densities. In the model with Milky Way-like conditions, the X factor is in agreement with the near constant value determined from observations. In clouds with lower CO abundances the X factor can vary appreciably - sometimes by > 4 orders of magnitude. In models with high densities, the CO line is fully saturated, so that the X factor is directly proportional to the molecular column density.
We present fitted UBVRI-ZY and u'g'r'i'z' magnitudes, spectral types and
distances for 2.4M stars, derived from synthetic photometry of a library
spectrum that best matches the Tycho2 BtVt, NOMAD Rn and 2MASS JHK_{2/S}
catalog magnitudes. We present similarly synthesized multi-filter magnitudes,
types and distances for 4.8M stars with 2MASS and SDSS photometry to g<16
within the Sloan survey region, for Landolt and Sloan primary standards, and
for Sloan Northern (PT) and Southern secondary standards.
The synthetic magnitude zeropoints for BtVt, UBVRI, ZvYv, JHK_{2/S},
JHK_{MKO}, Stromgren uvby, Sloan u'g'r'i'z' and ugriz are calibrated on 20
calspec spectrophotometric standards. The UBVRI and ugriz zeropoints have
dispersions of 1--3%, for standards covering a range of color from -0.3 < V-I <
4.6; those for other filters are in the range 2--5%.
The spectrally matched fits to Tycho2 stars provide estimated 1-sigma errors
per star of ~0.2, 0.15, 0.12, 0.10 and 0.08 mags respectively in either UBVRI
or u'g'r'i'z'; those for at least 70% of the SDSS survey region to g<16 have
estimated 1-sigma errors per star of ~0.2, 0.06, 0.04, 0.04, 0.05 in u'g'r'i'z'
or UBVRI.
The density of Tycho2 stars, averaging about 60 stars per square degree,
provides sufficient stars to enable automatic flux calibrations for most
digital images with fields of view of 0.5 degree or more. Using several such
standards per field, automatic flux calibration can be achieved to a few
percent in any filter, at any airmass, in most workable observing conditions,
to facilitate inter-comparison of data from different sites, telescopes and
instruments.
We reexamine the model-independent data analysis methods for extracting properties of Weakly Interacting Massive Particles (WIMPs) by using data (measured recoil energies) from direct Dark Matter detection experiments directly and, as a more realistic study, consider a small fraction of residue background events, which pass all discrimination criteria and then mix with other real WIMP-induced signals in the analyzed data sets. In this talk, the effects of residue backgrounds on the determination of the mass of halo Dark Matter particle as well as on the reconstruction of its one-dimensional velocity distribution function will be discussed.
We present a systematic analysis of the X-ray spectra of NGC 1313 X-1 and NGC 1313 X-2, using six years of XMM-Newton observations (17 observations). We fitted the continuum with a Comptonization model plus a multicolor blackbody disc, that describes the effects of an accretion disc plus an optically thick corona. We checked the consistency of this spectral model on the basis of the variability patterns of its spectral parameters. We found that the two sources show different spectral states. We tentatively interpret the observed behaviour of NGC 1313 X-1 within the framework of super-Eddington accretion and that of NGC 1313 X-2 within the framework of near Eddington accretion. We also attempted to determine the chemical abundances in the local environment of NGC 1313 X-1 and X-2, analyzing the RGS spectra of the longest observation available (122 ksec). The results appear to indicate solar metallicity for the local environment of NGC 1313 X-1 and sub-solar metallicity for NGC 1313 X-2.
Physical processes working in the stellar interiors as well as the evolution of stars depend on some fundamental stellar properties, such as mass, radius, luminosity, and chemical abundances. A classical way to test stellar interior models is to compare the predicted and observed location of a star on theoretical evolutionary tracks in a H-R diagram. This requires the best possible determinations of stellar mass, radius, luminosity and abundances. To derive its fundamental parameters, we observed the well-known rapidly oscillating Ap star, $\gamma$ Equ, using the visible spectro-interferometer VEGA installed on the optical CHARA array. We computed the calibrated squared visibility and derived the limb-darkened diameter. We used the whole energy flux distribution, the parallax and this angular diameter to determine the luminosity and the effective temperature of the star. We obtained a limb-darkened angular diameter of 0.564~$\pm$~0.017~mas and deduced a radius of $R$~=~2.20~$\pm$~0.12~${\rm R_{\odot}}$. Without considering the multiple nature of the system, we derived a bolometric flux of $(3.12\pm 0.21)\times 10^{-7}$ erg~cm$^{-2}$~s$^{-1}$ and an effective temperature of 7364~$\pm$~235~K, which is below the effective temperature that has been previously determined. Under the same conditions we found a luminosity of $L$~=~12.8~$\pm$~1.4~${\rm L_{\odot}}$. When the contribution of the closest companion to the bolometric flux is considered, we found that the effective temperature and luminosity of the primary star can be, respectively, up to $\sim$~100~K and up to $\sim$~0.8~L$_\odot$ smaller than the values mentioned above.These new values of the radius and effective temperature should bring further constraints on the asteroseismic modelling of the star.
Observations of molecular clouds in the gamma ray domain provide us with a tool to study the distribution of cosmic rays in the Galaxy. This is because cosmic rays can penetrate molecular clouds, undergo hadronic interactions in the dense gas, and produce neutral pions that in turn decay into gamma rays. The detection of this radiation allows us to estimate the spectrum and intensity of cosmic rays at the cloud's position. Remarkably, this fact can be used to constrain the cosmic ray diffusion coefficient at specific locations in the Galaxy.
The amount of data available for NGC 1313 X-2 make it a cornerstone for the study of ultraluminous X-ray sources (ULXs). We modelled the optical and X-ray data of this ULX with a binary evolution code that takes into account X-ray irradiation. We restricted the candidate binary system to be either a 50-100 Msun black hole (BH) accreting from a 12-15 Msun main sequence star or a 20 Msun BH with a 12-15 Msun giant donor. If the orbital period of the system is ~6 days, a 20 Msun BH model becomes unlikely and we are left with the only possibility that the compact accretor in NGC1313 X-2 is a massive BH of 50-100 Msun. We briefly discuss these results within the framework of an alternative scenario for the formation of ULXs, in which a portion of them may contain BHs of >~30-40 Msun formed from very massive stars in a low metallicity environment.
We analyzed the longest phase-connected photometric dataset available for NGC 1313 X-2, looking for the ~6 day modulation reported by Liu et al. (2009). The folded B band light curve shows a 6 days periodicity with a significance slightly larger than 3 sigma. The low statistical significance of this modulation, along with the lack of detection in the V band, make its identification uncertain.
Determining the evolution of the ejecta morphology of novae provides valuable information on the shaping mechanisms in operation at early stages of the nova outburst. Understanding such mechanisms has implications for studies of shaping for example in proto-Planetary Nebulae. Here we perform morpho-kinematical studies of V2491 Cyg using spectral data to determine the likely structure of the ejecta and its relationship to the central system and shaping mechanisms. We use Shape to model different morphologies and retrieve their spectra. These synthetic spectra are compared with observed spectra to determine the most likely morphology giving rise to them, including system inclination and expansion velocity of the nova ejecta. We find the best fit remnant morphology to be that of polar blobs and an equatorial ring with an implied inclination of 80$^{+3}_{-12}$ degrees and an maximum expansion velocity of the polar blobs of 3100$^{+200}_{-100}$ km/s and for the equatorial ring 2700$^{+200}_{-100}$ km/s. This inclination would suggest that we should observe eclipses which will enable us to determine more precisely important parameters of the central binary. We also note that the amplitude of the outburst is more akin to the found in recurrent nova systems.
The evolution of an inhomogeneous universe composed entirely of matter is followed from an early, nearly uniform state until the time when the inhomogeneities have begun to grow large. The particular distribution of matter studied in this article is chosen to have a periodic variation in only one of the directions, which is simple enough to allow the behavior of the metric to be solved analytically, well beyond a linear approximation based on the initial smallness of the fluctuation. This example provides an illustration of a universe where the inhomogeneities can affect its average expansion rate; and its simplicity allows a condition to be derived that tells when their presence should begin to become important. Since the averages of the non-uniform parts of the metric and the matter density grow faster than their uniform parts, the average expansion rate accelerates with the advent of the era governed by the inhomogeneities.
Complete census of wide visual companions to nearby G-dwarf stars can be achieved by selecting candidates from the 2MASS Point-Source Catalog and checking their status by second-epoch imaging. Such data are obtained for 124 candidates with separations up to 20", 47 of which are shown to be new physical low-mass stellar companions. A list of visual binaries with G-dwarf primaries is produced by combining newly found companions with historical data. Maximum likelihood analysis leads to the companion frequency of 0.13+-0.015 per decade of separation. The mass ratio is distributed almost uniformly, with a power-law index between -0.4 and 0. The remaining uncertainty in the index is related to modeling of the companion detection threshold in 2MASS. These findings are confirmed by alternative analysis of wider companions in 2MASS, removing the contamination by background stars statistically. Extension of this work will lead to a complete detection of visual companions - a necessary step towards reaching unbiased multiplicity statistics over the full range of orbital periods and, eventually, understanding the origin of multiple systems.
During the evolution on the AGB, S-type stars are the first objects to experience s-process nucleosynthesis and third dredge-ups, and therefore to exhibit sprocess signatures in their atmospheres. Their significant mass loss rates (10^-7 to 10^-6 M*/year) make them major contributors to the AGB nucleosynthesis yields at solar metallicity. Precise abundance determinations in S stars are of the utmost importance for constraining e.g. the third dredge-up luminosity and efficiency (which has been only crudely parameterized in all current nucleosynthetic models so far). Here, dedicated S-star model atmospheres are used to determine precise abundances of key s-process elements, and to set constraints on nucleosynthesis and stellar evolution models. A special interest is paid to technetium, an element with no stable isotopes (99Tc, the only isotope produced by the s-process in AGB stars, has a half-life of 2.1 x 10^5 years). Its detection is considered as the best signature that the star effectively populates the thermally-pulsing AGB phase of evolution. The derived Tc/Zr abundances are compared, as a function of the derived [Zr/Fe] overabundances, with AGB stellar model predictions. The [Zr/Fe] overabundances are in good agreement with the model predictions, while the Tc/Zr abundances are slightly overpredicted. This discrepancy can help to set better constraints on nucleosynthesis and stellar evolution models of AGB stars.
We develop a new method which measures the projected density distribution w_p(r_p)n of photometric galaxies surrounding a set of spectroscopically-identified galaxies, and simultaneously the projected cross-correlation function w_p(r_p) between the two populations. In this method we are able to divide the photometric galaxies into luminosity intervals even when redshift information is unavailable, enabling us to measure w_p(r_p)n and w_p(r_p) as a function of not only the luminosity of the spectroscopic galaxy, but also that of the photometric galaxy. We have applied our method to data from the Sloan Digital Sky Survey (SDSS) including a sample of 10^5 luminous red galaxies (LRGs) at z~0.4 and a sample of about half a million galaxies at z~0.1, both of which are cross-correlated with a deep photometric sample drawn from the SDSS. On large scales, the relative bias factor measured from w_p(r_p) for LRGs at z~0.4 depends on luminosity in a manner similar to what is found for galaxies at z~0.1, which are usually probed by autocorrelations of spectroscopic samples in previous studies. On scales smaller than a few Mpc and at both z~0.4 and z~0.1, the w_p(r_p)n and w_p(r_p) for central galaxies with fixed luminosity show quite similar slopes to each other, regardless which types of satellite galaxies we consider. This provides direct support for the assumption commonly-adopted in halo occupation distribution (HOD) models that satellite galaxies of different luminosities are distributed in a similar way, following the dark matter distribution within their host halos.
Short gamma-ray bursts are believed to originate from the merger of two compact objects. If this scenario is correct, these bursts will be accompanied by the emission of strong gravitational waves, detectable by current or planned GW detectors, such as LIGO and Virgo. No detection of a gravitational wave has been made up to date. In this paper I will use a set of observed redshift measurements of short gamma-ray bursts to fit a model in order to determine the rate of such merger events in the nearby universe. Various corrections will be included in that calculation, as the field-of-view of the satellite missions, the beaming factors of gamma-ray bursts and other parameters. The computed rate estimations will be compared to other rate estimations, based on observations on binary neutron stars and population synthesis models. Given the upper limit established by LIGO/Virgo measurements, it is possible to draw conclusions on the beaming angle of gamma-ray bursts.
We present angle-dependent, broad-band intensity spectra from accretion disks
around black holes of 10 M$_\odot$. In our computations disks are assumed to be
slim, which means that the radial advection is taken into account while
computing effective temperature of the disk. We attempt to reconstruct
continuum and line spectra of X-ray binaries in soft state, i.e. dominated by
the disk component of multitemperature shape.
We follow how the iron line complex depends on the external irradiation, an
accretion rate and a black hole spin. Full radiative transfer is solved
including effects of Compton scattering, free-free and all important bound-free
transitions of 10 main elements. Moreover, we include here the fundamental
series of iron lines from helium-like and hydrogen-like ions, and fluorescent
K$_{\alpha}$ and K$_{\beta}$ lines from low ionized iron. We consider two
cases: non-rotating black hole, and black hole rotating with almost maximum
spin a=0.98, and obtain spectra for five accretion disks from hard X-rays to
the infrared. In non irradiated disks, resonance lines from He-like and H-like
iron appear mostly in absorption. Such disk spectra exhibit limb-darkening in
the whole energy range. External irradiation causes that iron resonance lines
appear in emission. Furthermore, depending on disk effective temperature,
fluorescent iron K$_{\alpha}$ and K$_{\beta}$ lines are present in disk
emitting spectra.All models with irradiation exhibit limb-brightening in their
X-ray reflected continua. We show, that the disk around stellar black hole
itself is hot enought to produce strong absorption resonance lines of iron.
Emission lines can be observed only if heating by external X-rays dominates
over thermal processess in hot disk atmosphere. Irradiated disks are usually
brighter in X-ray continuum when seen edge on, and fainter when seen face on.
We present pre- and post-outburst observations of the new FU Orionis-like young stellar object Lk Halpha 188-G4 (also known as HBC 722 and PTF 10qpf). Prior to this outburst, Lk Halpha 188-G4 would have been classified as a classical T Tauri star on the basis of its optical emission-line spectrum superposed on a K8-type photosphere, and photometric variability. The mid-infrared spectral index of Lk Halpha 188-G4 indicates a Class II type object. Lk Halpha 188-G4 exhibited a steady rise by ~1 mag over ~11 months starting in Aug. 2009, before a subsequent more abrupt rise of >3 mag on a time scale of ~2 months. Observations taken during and after eruption exhibit all of the defining characteristics of FU Orionis variables: (i) Lk Halpha 188-G4 increased in brightness by >4 mag, (ii) a bright optical/near-infrared reflection nebula has now appeared (iii) optical spectra in the outburst phase are consistent with a G supergiant and dominated by absorption lines, the only exception being Halpha which is characterized by a P Cygni profile, (iv) near-infrared spectra in the outburst phase resemble late K--M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H_2O, and (v) outflow signatures in H, He, and low excitation metallic lines are seen in the form of blue-shifted absorption profiles. Lk Halpha 188-G4 is the first member of the FU Orionis class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with this previously identified classical T Tauri star provides strong evidence that FU Orionis eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk.
The S-type stars are believed to have a C/O-ratio close to unity (within a few percent). They are considered to represent an intermediate evolutionary stage as AGB stars evolve from oxygen-rich M-type stars into carbon stars. As possible transition objects the S-type stars could give important clues to the mass-loss mechanism(s) and to the chemical evolution along the AGB. Using observations of circumstellar radio line emission in combination with a detailed radiative transfer analysis, we have estimated mass-loss rates and abundances of chemically important molecules (SiO, HCN) for a sample of 40 S-type AGB stars. The results will be compared to previous results for M-type and carbon stars.
Mass loss is a fundamental, observationally well-established feature of AGB stars but many aspects of this process still remain to be understood. To date, self-consistent dynamical models of dust-driven winds reproducing the observed mass-loss rates seem only possible for M-type stars if the grains in the close circumstellar environment grow to larger sizes than previously assumed. In order to study the grain-size distribution where the mass loss is initiated, high-spatial-resolution interferometry observations are necessary. We have observed two M-type stars using the VLTI/MIDI instrument to constrain the dust-grain sizes through modeling the 10-micron silicate feature. Complementary observations are scheduled and we will present preliminary results.
Stellar light from an AGB star is scattered by the circumstellar dust and polarized in the direction perpendicular to the source. Therefore, images of circumstellar envelopes around AGB stars in polarized light traces the dust distribution and can be used to search for asymmetries, and to achieve a better understanding of the mechanisms at play when AGB stars are transformed into planetary nebulae. The PolCor instrument is a combined imager, polarimeter, and coronograph providing images with an angular resolution down to 0.2". We have used it to map the dust distribution around three AGB stars: W Aql, and the detached shell sources DR Ser, and U Cam. W Aql is a binary and we find indications of a bi-polar dust distribution around the star. The observations of the latter two sources clearly reveal the detached shells, likely the result of a brief, strongly enhanced mass-loss rate during the late evolution of these stars. Mapping the detached shells gives us clues to the symmetry of the mass loss and important evolutionary processes.
We suppose that linear optical polarization is due to multiple scattering in optically thick magnetized accretion disk around central black hole. The polarization degree is very sensitive to the spin of black hole - for Kerr rotating hole the polarization is higher than for Schwarzschild non-rotating one if both holes have the same luminosities and masses. The reason of this effect is that the radius of the first stable orbit for non-rotating hole is equal to three gravitational radiuses, and for fast rotating Kerr hole is approximately 6 times lesser. Magnetic field, decreasing from first stable orbits, is much larger in the region of escaping of optical radiation for the case of Schwarzschild hole than for Kerr one. Large magnetic field gives rise to large depolarization of radiation due to Faraday rotation effect. This explains the mentioned result. It seems that the ensemble of objects with observed polarization mostly consists of Kerr black holes.
The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three pulsar wind nebulae: the Crab Nebula, Vela-X and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates from ~3 \times 10^{33} erg s$^{-1}$ to 5 \times 10$^{38}$ erg s$^{-1}$ and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the gamma-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X and a new pulsar wind nebula candidate associated with the LAT pulsar PSR J1023-5746, coincident with the TeV source HESS J1023-575. We further explore the association between the H.E.S.S. and the Fermi source by modeling its spectral energy distribution. Flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.
We present the results of our numerical experiments on stellar scattering in
the galactic disc under the influence of the perturbed galactic gravitation
field connected with the spiral density waves and show that the point of view
according to which stars do not migrate far from their birthplace, in general,
is incorrect. Despite close initial locations and the same velocities after 4.6
Gyrs members of an open cluster are scattered over a very large part of the
galactic disc. If we adopt that the parental solar cluster had $\sim 10^3$
stars, it is unlikely to reveal the solar siblings within 100 pc from the Sun.
The problem stands a good chance to be solved if the cluster had $\sim 10^4$
stars.
We also demonstrate that unbound open clusters disperse off in a short period
of time under the influence of spiral gravitation field. Their stars became a
part of the galactic disc. We have estimated typical times of the cluster
disruption in radial and azimuth directions and the corresponding diffusion
coefficients.
S-type stars are late-type giants whose atmosphere is enriched in carbon and s-process elements because of either extrinsic pollution by a binary companion or intrinsic nucleosynthesis and dredge-up on the thermally-pulsing AGB. A large grid of S-star model atmospheres has been computed covering the range 2700 < Teff < 4000 K with 0.5 < C/O < 0.99. ZrO and TiO band strength indices as well as VJHKL photometry are needed to disentangle Teff, C/O and [s/Fe]. A "best-model finding tool" was developed using a set of well-chosen indices and checked against photometry as well as low- and high-resolution spectroscopy. It is found that applying M-star model atmospheres (i.e., with a solar C/O ratio) to S stars can lead to errors on Teff up to 400K. We constrain the parameter space occupied by S stars of the vast sample of Henize stars in terms of Teff, [C/O] and [s/Fe].
We investigate the properties and environments of Type Ia Supernova (SN Ia) host galaxies in the Stripe 82 of the Sloan Digital Sky Survey-II Supernova Survey centered on the celestial equator. Host galaxies are defined as the galaxy nearest to the supernova (SN) in terms of angular distance whose velocity difference from the SN is less than 1000 km s^{-1}. Eighty seven SN Ia host galaxies are selected from the SDSS Main galaxy sample with the apparent r-band magnitude m_r < 17.77, and compared with the SDSS Main galaxies. The SN Ia rates for early and late-type galaxies are 0.81 +- 0.19 SN (100yr)^{-1} and 0.99 +- 0.21 SN (100yr)^{-1}, respectively. We find that the host galaxies have a color distribution consistent with that of the Main galaxies, regardless of their morphology. However, host galaxies are on average brighter than the Main galaxies by ~ 0.3 mag over the range of -18.3 > M_r > -21.3. But the brighter ends of their luminosity distributions are similar. The distribution of the distance to the nearest neighbor galaxy shows that SNe Ia are more likely to occur in isolated galaxies without close neighbors. We also find that the SN Ia host galaxies are preferentially located in a region close to massive galaxy clusters compared to the Main galaxies.
Searching for extrasolar planets around stars of different metallicity may provide strong constraints to the models of planet formation and evolution. In this paper we present the overall results of a HARPS (a high-precision spectrograph mostly dedicated to deriving precise radial velocities) program to search for planets orbiting a sample of 104 metal-poor stars (selected [Fe/H] below -0.5). Radial velocity time series of each star are presented and searched for signals using several statistical diagnostics. Stars with detected signals are presented, including 3 attributed to the presence of previously announced giant planets orbiting the stars HD171028, HD181720, and HD190984. Several binary stars and at least one case of a coherent signal caused by activity-related phenomena are presented. One very promising new, possible giant planet orbiting the star HD107094 is discussed, and the results are analyzed in light of the metallicity-giant planet correlation. We conclude that the frequency of giant planets orbiting metal-poor stars may be higher than previously thought, probably reflecting the higher precision of the HARPS survey. In the metallicity domain of our sample, we also find evidence that the frequency of planets is a steeply rising function of the stellar metal content, as found for higher metallicity stars.
In this paper we discuss the results of a programme of spectral synthesis modelling of a sample of starburst radio galaxies in the context of scenarios for the triggering of the activity and the evolution of the host galaxies. The starburst radio galaxies -- comprising ~15 - 25% of all powerful extragalactic radio sources -- frequently show disturbed morphologies at optical wavelengths, and unusual radio structures, although their stellar masses are typical of radio galaxies as a class. In terms of the characteristic ages of their young stellar populations (YSP), the objects can be divided into two groups: those with YSP ages t_ysp < 0.1 Gyr, in which the radio source has been triggered quasi-simultaneously with the main starburst episode, and those with older YSP in which the radio source has been triggered or re-triggered a significant period after the starburst episode. Combining the information on the YSP with that on the optical morphologies of the host galaxies, we deduce that the majority of the starburst radio galaxies have been triggered in galaxy mergers in which at least one of the galaxies is gas rich. However, the triggering (or re-triggering) of the radio jets can occur immediately before, around, or a significant period after the final coalescence of the merging nuclei, reflecting the complex gas infall histories of the merger events. Overall, our results provide further evidence that powerful radio jet activity can be triggered via a variety of mechanisms, including different evolutionary stages of major galaxy mergers; clearly radio-loud AGN activity is not solely associated with a particular stage of a unique type of gas accretion event.
Previous surveys of outflows in low-redshift active galactic nuclei (AGN) have relied on the analysis of sources selected primarily for their optical/X-ray brightness, and are therefore biased. Towards determining the outflow properties of local AGN, we detect warm absorption signatures of O VII and O VIII absorption edges in the available Suzaku/XMM-Newton CCD spectra of an unbiased sample of 44 Seyfert 1-1.5 sources selected in the very hard X-rays (14-195 keV) with the Swift Burst Alert Telescope. From our analysis, we find that O VII and O VIII absorption edges are present in 41% of the sample. This fraction is dependent on luminosity, with outflow detections in 60% of low luminosity and 30% of high luminosity sources. However, grating spectroscopy of the highest luminosity sources reveals that ~ 80% of these sources have ionized absorbers, but that the ionization states are higher/lower than produces the O VII and O VIII edges. This suggests that ionized absorption may be present in all local Seyfert 1s.
We investigate the neutrino helicity-flip process under supernova core conditions, where the left-handed neutrinos being produced can be converted into right-handed neutrinos sterile with respect to the weak interaction due to the interaction of magnetic moments with plasma electrons and protons. Instead of the uniform ball model for the SN core used in previous analyses, realistic models for radial distributions and time evolution of physical parameters in the supernova core are considered. We have obtained new upper limits on the Dirac neutrino magnetic moment averaged over flavours and time from the condition that the influence of the right-handed neutrino emission on the total cooling time scale should be limited.
We explore the complementarity of weak lensing and galaxy peculiar velocity measurements to better constrain modifications to General Relativity. We find no evidence for deviations from GR on cosmological scales from a combination of peculiar velocity measurements (for Luminous Red Galaxies in the Sloan Digital Sky Survey) with weak lensing measurements (from the CFHT Legacy Survey). We provide a Fisher error forecast for a Euclid-like space-based survey including both lensing and peculiar velocity measurements, and show that the expected constraints on modified gravity will be at least an order of magnitude better than with present data, i.e. we will obtain 5% errors on the modified gravity parametrization described here. We also present a model--independent method for constraining modified gravity parameters using tomographic peculiar velocity information, and apply this methodology to the present dataset.
We assess the possibility to detect the warm-hot intergalactic medium (WHIM) in emission and to characterize its physical conditions and spatial distribution through spatially resolved X-ray spectroscopy, in the framework of the recently proposed DIOS, EDGE, Xenia, and ORIGIN missions, all of which are equipped with microcalorimeter-based detectors. For this purpose we analyze a large set of mock emission spectra, extracted from a cosmological hydrodynamical simulation. These mock X-ray spectra are searched for emission features showing both the OVII K alpha triplet and OVIII Ly alpha line, which constitute a typical signature of the warm hot gas. Our analysis shows that 1 Ms long exposures and energy resolution of 2.5 eV will allow us to detect about 400 such features per deg^2 with a significance >5 sigma and reveals that these emission systems are typically associated with density ~100 above the mean. The temperature can be estimated from the line ratio with a precision of ~20%. The combined effect of contamination from other lines, variation in the level of the continuum, and degradation of the energy resolution reduces these estimates. Yet, with an energy resolution of 7 eV and all these effects taken into account, one still expects about 160 detections per deg^2. These line systems are sufficient to trace the spatial distribution of the line-emitting gas, which constitute an additional information, independent from line statistics, to constrain the poorly known cosmic chemical enrichment history and the stellar feedback processes.
Noncommutative geometry can provide effective description of physics at very short distances taking into account generic effects of quantum gravity. Inflation amplifies tiny quantum fluctuations in the early universe to macroscopic scales and may thus imprint high energy physics signatures in the cosmological perturbations that could be detected in the CMB. It is shown here that this can give rise to parity-violating modulations of the primordial spectrum and odd non-Gaussian signatures. The breaking of rotational invariance of the CMB provides constraints on the scale of noncommutativity that are competitive with the existing noncosmological bounds, and could explain the curious hemispherical asymmetry that has been claimed to be observed in the sky. This introduces also non-Gaussianity with peculiar shape- and scale-dependence, which in principle allows an independent cross-check of the presence of noncommutativity at inflation.
We investigate the production of gamma-rays in the inner regions of SS 433 and in its interaction between its jets and the W50 nebula. We estimate the VHE emission that can be generated within the jets at distances above 1e+13 cm from the compact object. We also apply a theoretical model of the jet/medium interaction to SS 433/W50. We compare the predicted fluxes to observations of SS 433 at TeV energies, and derive new constraints of the physical properties of this system.
Due to the great contribution of the star activity in the measured radial velocities, the masses of CoRoT-7b and CoRoT 7c are very uncertain. Therefore, we are dealing with the typical problem that we can face every time super-Earths are discovered around active stars. This important problem was considered by the investigators of the CoRoT team and several solutions were proposed, all of them in the intervals [2.4-8] MEarth for CoRoT-7b and [7 - 13.5]MEarth for 7c. One of objectives of this investigation is to use CoRoT-7 observations, for which there is an excellent set of 109 HARPS measurements, to explore some techniques that can be used to determine the elements of Super-Earths discovered around active stars. The main technique used in this paper is a self-consistent version of the harmonic filter used by Queloz et al.(2009) to determine the mass and orbital parameters of CoRoT-7b and 7c. In addition, we use an alternative technique proposed by Hatzes et al.(2009) using the fact that in many nights 2 or 3 observations were done, and at last, the pure Fourier techniques. After applying the cited methods we infer that the more judicious values for the masses are ~ 8.5 \pm 1.5 MEarth for CoRoT-7b and ~ 13.5 \pm 1.5 MEarth for 7c .
We present the preliminary results of two Gemini campaigns to constrain the mass of the black hole in an ultraluminous X-ray source (ULX) via optical spectroscopy. Pilot studies of the optical counterparts of a number of ULXs revealed two candidates for further detailed study, based on the presence of a broad He II 4686 Angstrom emission line. A sequence of 10 long-slit spectra were obtained for each object, and the velocity shift of the ULX counterpart measured. Although radial velocity variations are observed, they are not sinusoidal, and no mass function is obtained. However, the broad He II line is highly variable on timescales shorter than a day. If associated with the reprocessing of X-rays in the accretion disc, its breadth implies that the disc must be close to face-on.
We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that a so-called small-scale dynamo is occurring in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field, and the time scale of magnetic-field growth depends on the shock strength.
We present a catalogue of about 8.6 million unresolved photometric detections in the Sloan Digital Sky Survey Seventh Data Release classifying them into stars, galaxies and quasars using a machine learning classifier trained on a subset of spectroscopically confirmed objects. Our catalogue consists of 4,046,117 quasars, 3,922,329 stars and 656,456 unresolved galaxies from 17th to 24th magnitude in the SDSS $i$-band. This has enabled us to identify $\sim$ 4 times more quasar candidates than the largest photometric quasar catalogue presently available. The quasar surface density in our catalogue is expected to have a completeness of more than 90 per cent up to 24th magnitude within the colour window we have studied.
We provide a brief overview of recent advances and outstanding issues in simulations of interstellar turbulence, including isothermal models for interior structure of molecular clouds and larger-scale multiphase models designed to simulate the formation of molecular clouds. We show how self-organization in highly compressible magnetized turbulence in the multiphase ISM can be exploited in simple numerical models to generate realistic initial conditions for star formation.
A great deal of our understanding of star formation in the local universe has been built upon an extensive foundation of H-alpha observational studies. However, recent work in the ultraviolet (UV) with GALEX has shown that star formation rates (SFRs) inferred from H-alpha in galactic environments characterized by low stellar and gas densities tend to be less than those based on the UV luminosity. The origin of the discrepancy is actively debated because one possible explanation is that the stellar initial mass function is systematically deficient in high mass stars in such environments. In this contribution, we summarize our work on this topic using a dwarf galaxy dominated sample of ~300 late-type galaxies in the 11 Mpc Local Volume. The sample allows us to examine the discrepancy between H-alpha and UV SFRs using a statistical number of galaxies with activities less than 0.1 Msun/yr. A range of potential causes for such an effect are reviewed. We find that while the IMF hypothesis is not inconsistent with our observations, alternate explanations remain that must be investigated further before a final conclusion can be drawn.
First results of our 3D numerical simulations of thermohaline convection driven by 3He burning in a low-mass RGB star at the bump luminosity are presented. They confirm our previous conclusion that this convection has a mixing rate which is a factor of 50 lower than the observationally constrained rate of RGB extra-mixing. It is also shown that the large-scale instabilities of salt-fingering mean field (those of the Boussinesq and advection-diffusion equations averaged over length and time scales of many salt fingers), which have been observed to increase the rate of oceanic thermohaline mixing up to one order of magnitude, do not enhance the RGB thermohaline mixing. We speculate on possible alternative solutions of the problem of RGB extra-mixing, among which the most promising one that is related to thermohaline mixing is going to take advantage of the shifting of salt-finger spectrum towards larger diameters by toroidal magnetic field.
We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy population inhabiting clusters. We confirm that dEs are not dark matter dominated galaxies, at least up to the half-light radius. We also find that the observed galaxies in the outer parts of the cluster are mostly rotationally supported systems with disky morphological shapes. Rotationally supported dEs have rotation curves similar to those of star forming galaxies of similar luminosity and follow the Tully-Fisher relation. This is expected if dE galaxies are the descendant of low luminosity star forming systems which recently entered the cluster environment and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming into quiescent systems, but conserving their angular momentum.
Underground searches for dark matter involve a complicated interplay of particle physics, nuclear physics, atomic physics and astrophysics. We attempt to remove the uncertainties associated with astrophysics by developing the means to map the observed signal in one experiment directly into a predicted rate at another. We argue that it is possible to make experimental comparisons that are completely free of astrophysical uncertainties by focusing on {\em integral} quantities, such as $g(v_{min})=\int_{v_{min}} dv\, f(v)/v $ and $\int_{v_{thresh}} dv\, v g(v)$. Direct comparisons are possible when the $v_{min}$ space probed by different experiments overlap. As examples, we consider the possible dark matter signals at CoGeNT, DAMA and CRESST-Oxygen. We find that expected rate from CoGeNT in the XENON10 experiment is higher than observed, unless scintillation light output is low. Moreover, we determine that S2-only analyses are constraining, unless the charge yield $Q_y< 2.4 {\, \rm electrons/keV}$. For DAMA to be consistent with XENON10, we find for $q_{Na}=0.3$ that the modulation rate must be extremely high ($\gsim 70%$ for $m_\chi = 7\, \gev$), while for higher quenching factors, it makes an explicit prediction (0.8 - 0.9 cpd/kg) for the modulation to be observed at CoGeNT. Finally, we find CDMS-Si, even with a 10 keV threshold, as well as XENON10, even with low scintillation, would have seen significant rates if the excess events at CRESST arise from elastic WIMP scattering, making it very unlikely to be the explanation of this anomaly.
We numerically investigate the impact of the General Theory of Relativity (GTR) on the satellite-to-satellite range \rho and range-rate \dot\rho of the twin GRACE A/B spacecrafts through their dynamical equations of motion. The present-day accuracies in measuring such observables are \sigma_\rho <= 1-10 micron, \sigma_\dot\rho <= 1 micron s^-1. Studies for a follow-on of such a mission points toward a range-rate accuracy of the order of \sigma_\dot\rho = 1 nm s^-1 or better. We also compute the dynamical range and range-rate perturbations caused by the first six zonal harmonic coefficients J_L, L=2,3,4,5,6,7$ of the classical multipolar expansion of the terrestrial gravitational potential in order to evaluate their aliasing impact on the relativistic effects. Conversely, we also quantitatively assessed the possible a-priori \virg{imprinting} of GTR itself, not solved-for in all the GRACE-based Earth's gravity models produced so far, on the estimated values of the low degree zonals of the geopotential. The present analysis can also be extended, in principle, to different orbital configurations in order to design a suitable dedicated mission able to accurately measure the relativistic effects considered. Moreover, also other non-classical dynamical features of motion, caused by, e.g., modified models of gravity, can be considered in further studies.
This paper discusses the methodology necessary to measure the Hubble constant
Ho to a high degree of accuracy based upon Doppler tracking of spacecraft in
the solar system. Using this methodology with available published data we
determine a model independent value of the Hubble constant for the current
epoch in the solar system to be Ho = 2.59 \pm 0.05 x 10^-18 (s^-1) or as 79.8
\pm 1.7 (km/s/Mpc).
We calculate the direct effect of the Cosmic Redshift on Doppler tracking of
spacecraft in the solar system. It is shown that with current tracking systems,
such as NASA's Deep Space Tracking Network, when the return trip light time of
the Doppler signal exceeds a certain threshold, imposed by the stability of the
frequency standard, the effect of the Cosmic Redshift is coherently conserved
in the returning Doppler signal.
We demonstrate that in an underdetermined orbit, one determined by line of
sight Doppler alone, that if this Cosmic Redshift term is not accounted for,
the orbit determination program (ODP) miscalculates the actual recessional
velocity of the spacecraft from the measured recessional velocity causing a
mismatch between the actual and the predicted trajectory of the spacecraft. One
consequence is that the ODP will generate Doppler residuals, the difference
between the actual trajectory and the predicted trajectory which show an
anomalous force. When this effect is integrated in long arc solutions, it can
grow to considerable magnitude. We show that the ODP residuals uniquely
separate the Cosmic Redshift term from velocity Doppler sources and that the
solution can provide an accurate determination of Ho.
In this Letter, by reconstructing the $Om$ diagnostic and the deceleration parameter $q$ from the latest Union2 Type Ia supernova sample with and without the systematic error along with the baryon acoustic oscillation (BAO) and the cosmic microwave background (CMB), we study the cosmic expanding history, using the Chevallier-Polarski-Linder (CPL) parametrization. We obtain that Union2+BAO favor an expansion with a decreasing of the acceleration at $z<0.3$. However, once the CMB data is added in the analysis, the cosmic acceleration is found to be still increasing, indicating a tension between low redshift data and high redshift. In order to reduce this tension significantly, two different methods are considered and thus two different subsamples of Union2 are selected. We then find that two different subsamples+BAO+CMB give completely different results on the cosmic expanding history when the systematic error is ignored, with one suggesting a decreasing cosmic acceleration, the other just the opposite, although both of them alone with BAO support that the cosmic acceleration is slowing down. However, once the systematic error is considered, two different subsamples of Union2 along with BAO and CMB all favor an increasing of the present cosmic acceleration. Therefore a clear-cut answer on whether the cosmic acceleration is slowing down calls for more consistent data and more reliable methods to analyze them.
Continuing work initiated in an earlier publication [Yamada, Asada, Phys. Rev. D 82, 104019 (2010)], we investigate collinear solutions to the general relativistic three-body problem. We prove the uniqueness of the configuration for given system parameters (the masses and the largest separation among them). First, we show that the equation determining the distance ratio among the three masses, which has been obtained as a seventh-order polynomial in the previous paper, has at most three positive roots, which apparently provide three cases of the distance ratio. It is found, however, that, even for such cases, there exists one physically reasonable root and only one, because the remaining two positive roots do not satisfy the slow motion assumption in the post-Newtonian approximation and are thus discarded. This means that, especially for the restricted three-body problem, exactly three positions of a third body are true even at the post-Newtonian order. They are relativistic counterparts of the Newtonian Lagrange points L1, L2 and L3. We show also that, for given system parameters, the angular velocity of the post-Newtonian collinear configuration is smaller than that for the Newtonian case.
We study the cosmic expansion history by reconstructing the deceleration parameter $q(z)$ from the SDSS-II type Ia supernova sample (SNIa) with two different light curve fits (MLCS2k2 and SALT-II), the baryon acoustic oscillation (BAO) distance ratio, the cosmic microwave background (CMB) shift parameter, and the lookback time-redshift (LT) from the age of old passive galaxies. Three parametrization forms for the equation of state of dark energy (CPL, JBP, and UIS) are considered. Our results show that, for the CPL and the UIS forms, MLCS2k2 SDSS-II SNIa+BAO+CMB and MLCS2k2 SDSS-II SNIa+BAO+CMB+LT favor a currently slowing-down cosmic acceleration, but this does not occur for all other cases, where an increasing cosmic acceleration is still favored. Thus, the reconstructed evolutionary behaviors of dark energy and the course of the cosmic acceleration are highly dependent both on the light curve fitting method for the SNIa and the parametrization form for the equation of state of dark energy.
In this work we provide the fitting formula valid for the simulated photon spectra from WIMP annihilation into light quark-anti quark (qq-) channels in a wide range of WIMP masses. We illustrate our results for the cc- channel.
Links to: arXiv, form interface, find, astro-ph, recent, 1011, contact, help (Access key information)
This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise SN detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with > 8{\sigma} detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events, and via the training and improvement of existing machine classifier algorithms.
The functional form of the galaxy-wide stellar initial mass function is of fundamental importance for understanding galaxies. So far this stellar initial mass function has been assumed to be identical to the IMF observed directly in star clusters. But because stars form predominantly in embedded groups rather than uniformly distributed over the whole galaxy, the galaxy-wide IMF needs to be calculated by adding all IMFs of all embedded groups. This integrated galactic stellar initial mass function (IGIMF) is steeper than the canonical IMF and steepens with decreasing SFR, leading to fundamental new insights and understanding of star forming properties of galaxies. This contribution reviews the existing applications of the IGIMF theory to galactic astrophysics, while the parallel contribution by Weidner, Pflamm-Altenburg & Kroupa (this volume) introduces the IGIMF theory.
At wide separations, planetary-mass and brown dwarf companions to solar type stars occupy a curious region of parameters space not obviously linked to binary star formation or solar-system scale planet formation. These companions provide insight into the extreme case of companion formation (either binary or planetary), and due to their relative ease of observation when compared to close companions, they offer a useful template for our expectations of more typical planets. We present the results from an adaptive optics imaging survey for wide (50-500 AU) companions to solar type stars in Upper Scorpius. We report one new discovery of a ~14 M_J companion around GSC 06214-00210, and confirm that the candidate planetary mass companion 1RXS J160929.1-210524 detected by Lafreniere et al (2008) is in fact co-moving with its primary star. In our survey, these two detections correspond to ~4% of solar type stars having companions in the 6-20 M_J mass and 200-500 AU separation range. This figure is higher than would be expected if brown dwarfs and planetary mass companions were drawn from an extrapolation of the binary mass function. Finally, we discuss implications for the formation of these objects.
We present a new measurement of the mass of the Milky Way (MW) based on observed properties of its largest satellite galaxies, the Magellanic Clouds (MCs), and an assumed prior of a {\Lambda}CDM universe. A large, high resolution cosmological simulation of this universe provides a means to statistically sample the dynamical properties of bright satellite galaxies in a large population of dark matter halos. The observed properties of the MCs, including their circular velocity, distance from the center of the MW, and velocity within the MW halo, are used to evaluate the likelihood that a given halo would have each or all of these properties; the posterior PDF for any property of the MW system can thus be constructed. This method provides a constraint on the MW virial mass, 1.2^{+0.7}_{-0.4}x10^12 M0 (68% confidence), which is consistent with recent determinations that involve very different assumptions. In addition, we calculate the posterior PDF for the density profile of the MW and its satellite accretion history. Although typical satellites of 1e12 M_\bigodot halos are accreted over a wide range of epochs over the last 10 Gyr, we find a 72% probability that the Magellanic Clouds were accreted within the last Gyr, and a 50% probability that they were accreted together.
Despite numerous efforts to better understand binary star evolution, some aspects of it remain poorly constrained. In particular, the evolution of eccentric binaries has remained elusive mainly because the Roche lobe formalism derived for circular binaries does not apply. Here, we report the results of our Smoothed Particle Hydrodynamics simulations of mass transfer in eccentric binaries using an alternate method in which we model only the outermost layers of the stars with appropriate boundary conditions. Using this technique, along with properly relaxed model stars, we characterize the mass transfer episodes of binaries with various orbital parameters. In particular, we show that these episodes can be described by Gaussians with a FWMH of ~0.12 P_orb and that the peak rates occur after periastron, at an orbital phase of ~0.58, independently of the eccentricity and mass of the stars. The accreted material is observed to form a rather sparse envelope around either or both stars. Although the fate of this envelope is not modeled in our simulations, we show that a constant fraction (~5%) of the material transferred is ejected from the systems. We discuss this result in terms of the non-conservative mass transfer scenario. We suggest our results could be incorporated in analytical and binary population synthesis studies to help better understand the evolution of eccentric binaries and the formation of exotic stellar populations.
We present new results from Monte Carlo calculations of the flux and equivalent width (EW) of the Ni Kalpha fluorescent emission line in the toroidal X-ray reprocessor model of Murphy & Yaqoob (2009, MNRAS, 397, 1549). In the Compton-thin regime, the EW of the Ni Kalpha line is a factor of ~22 less than that of the Fe Kalpha line but this factor can be as low as ~6 in the Compton-thick regime. We show that the optically-thin limit for this ratio depends only on the Fe to Ni abundance ratio, it being independent of the geometry and covering factor of the reprocessor, and also independent of the shape of the incident X-ray continuum. We give some useful analytic expressions for the absolute flux and the EW of the Ni Kalpha line in the optically-thin limit. When the reprocessor is Compton-thick and the incident continuum is a power-law with a photon index of 1.9, the Ni Kalpha line EW has a maximum value of ~3 eV and ~250 eV for non-intercepting and intercepting lines-of-sight respectively. Larger EWs are obtained for flatter continua. We have also studied the Compton shoulder of the Ni Ka line and find that the ratio of scattered to unscattered flux in the line has a maximum value of 0.26, less than the corresponding maximum for the Fe Kalpha line. However, we find that the shape of the Compton shoulder profile for a given column density and inclination angle of the torus is similar to the corresponding profile for the Fe Ka line. Our results will be useful for interpreting X-ray spectra of active galactic nuclei (AGNs) and X-ray binary systems in which the system parameters are favorable for the Ni Kalpha line to be detected.
Close interactions and mass transfer in binary stars can lead to the formation of many different exotic stellar populations, but detailed modeling of mass transfer is a computationally challenging problem. Here, we present an alternate Smoothed Particle Hydrodynamics approach to the modeling of mass transfer in binary systems that allows a better resolution of the flow of matter between main-sequence stars. Our approach consists of modeling only the outermost layers of the stars using appropriate boundary conditions and ghost particles. We arbitrarily set the radius of the boundary and find that our boundary treatment behaves physically and conserves energy well. In particular, when used with our binary relaxation procedure, our treatment of boundary conditions is also shown to evolve circular binaries properly for many orbits. The results of our first simulation of mass transfer are also discussed and used to assess the strengths and limitations of our method. We conclude that it is well suited for the modeling of interacting binary stars. The method presented here represents a convenient alternative to previous hydrodynamical techniques aimed at modeling mass transfer in binary systems since it can be used to model both the donor and the accretor while maintaining the density profiles taken from realistic stellar models.
Using a semi-analytical model developed by Choudhury & Ferrara (2005) we study the observational constraints on reionization via a principal component analysis (PCA). Assuming that reionization at z>6 is primarily driven by stellar sources, we decompose the unknown function N_{ion}(z), representing the number of photons in the IGM per baryon in collapsed objects, into its principal components and constrain the latter using the photoionization rate obtained from Ly-alpha forest Gunn-Peterson optical depth, the WMAP7 electron scattering optical depth and the redshift distribution of Lyman-limit systems at z \sim 3.5. The main findings of our analysis are: (i) It is sufficient to model N_{ion}(z) over the redshift range 2<z<14 using 5 parameters to extract the maximum information contained within the data. (ii) All quantities related to reionization can be severely constrained for z<6 because of a large number of data points whereas constraints at z>6 are relatively loose. (iii) The weak constraints on N_{ion}(z) at z>6 do not allow to disentangle different feedback models with present data. There is a clear indication that N_{ion}(z) must increase at z>6, thus ruling out reionization by a single stellar population with non-evolving IMF, and/or star-forming efficiency, and/or photon escape fraction. The data allows for non-monotonic N_{ion}(z) which may contain sharp features around z \sim 7. (iv) The PCA implies that reionization must be 99% completed between 5.8<z<10.3 (95% confidence level) and is expected to be 50% complete at z \approx 9.5-12. With future data sets, like those obtained by Planck, the z>6 constraints will be significantly improved.
We evaluate the orbital evolution and several plausible origins scenarios for the mutually inclined orbits of Upsilon Andromedae c and d. These two planets have orbital elements that oscillate with large amplitudes and lie close to the stability boundary. This configuration, and in particular the observed mutual inclination, demands an explanation. The planetary system may be influenced by a nearby low-mass star, Upsilon And B, which could perturb the planetary orbits, but we find it cannot modify two coplanar orbits into the observed mutual inclination of ~30 deg. However, it could incite ejections or collisions between planetary companions that subsequently raise the mutual inclination to >30 deg. Our simulated systems with large mutual inclinations tend to be further from the stability boundary than Upsilon And, but we are able to produce similar systems. We conclude that scattering is a plausible mechanism to explain the observed orbits of Upsilon And c and d, but we cannot determine whether the scattering was caused by instabilities among the planets themselves or by perturbations from Upsilon And B. We also develop a procedure to quantitatively compare numerous properties of the observed system to our numerical models. Although we only implement this procedure to Upsilon And, it may be applied to any exoplanetary system.
We study the scale and redshift dependence of the power spectra for density perturbations and peculiar velocities, and the evolution of a coarse grained phase space density for (WDM) particles that decoupled during the radiation dominated stage. The (WDM) corrections are obtained in a perturbative expansion valid in the range of redshifts at which N-body simulations set up initial conditions, and for a wide range of scales. The redshift dependence is determined by the kurtosis $\beta_2$ of the distribution function at decoupling. At large redshift there is an enhancement of peculiar velocities for $\beta_2 > 1$ that contributes to free streaming and leads to further suppression of the matter power spectrum and an enhancement of the peculiar velocity autocorrelation function at scales smaller than the free streaming scale. Statistical fluctuations of peculiar velocities are also suppressed on these scales by the same effect. In the linearized approximation, the coarse grained phase space density features redshift dependent (WDM) corrections from gravitational perturbations determined by the power spectrum of density perturbations and $\beta_2$. For $\beta_2 > 25/21$ it \emph{grows logarithmically} with the scale factor as a consequence of the suppression of statistical fluctuations. Two specific models for WDM are studied in detail. The (WDM) corrections relax the bounds on the mass.
It has been recently proposed that the interpretation of gravity as an emergent, entropic force might have nontrivial implications to cosmology. Here two approaches are investigated: in one, the Friedman equation receives entropic contributions from the usually neglected surface terms, and in another, the extra terms are derived from quantum corrections to the entropy formula. UV terms may drive inflation, avoiding a recently derived no-go theorem, though in some cases leading to a graceful exit problem. IR terms can generate dark energy, alleviating the cosmological constant problem. The quantum corrections are bounded by their implications to the BBN, and the surface terms are constrained in addition by their effect upon the behavior of matter. Likelihood analyses are performed to constrain the modifications by the SNeIa, BAO and CMB data. It is found that a monomial correction to the area-entropy formula results in late acceleration in very good agreement with observations, which then turn out to be compatible with positive curvature. The evolution of perturbations is deduced by assuming the Jebsen-Birkhoff theorem. Distinct signatures can then be identified in the large scale structure formation. Furthermore, it is shown that the visible universe satisfies the Bekenstein bound.
As part of the NASA EPOXI Mission of Opportunity, we observed seven known transiting extrasolar planet systems in order to construct time series photometry of extremely high phase coverage and precision. Here we present the results for four "hot-Jupiter systems" with near-solar stars - HAT-P-4, TrES-3, TrES-2 and WASP-3. We observe ten transits of HAT-P-4, estimating the planet radius Rp = 1.332 \pm 0.052 RJup, the stellar radius R \star = 1.602 \pm 0.061 R \odot, the inclination i = 89.67 \pm 0.30 degrees and the transit duration from first to fourth contact T = 255.6 \pm 1.9 minutes. For TrES-3, we observe seven transits, and find Rp = 1.320 \pm 0.057 RJup, R\star = 0.817 \pm 0.022 R\odot, i = 81.99 \pm 0.30 degrees and T = 81.9 \pm 1.1 minutes. We also note a long term variability in the TrES-3 light curve, which may be due to star spots. We observe nine transits of TrES-2, and find Rp = 1.169 \pm 0.034 RJup, R\star = 0.940 \pm 0.026 R\odot, i = 84.15 \pm 0.16 degrees and T = 107.3 \pm 1.1 minutes. Finally we observe eight transits of WASP-3, finding Rp = 1.385 \pm 0.060 RJup, R\star = 1.354 \pm 0.056 R\odot, i = 84.22 \pm 0.81 degrees and T = 167.3 \pm 1.3 minutes. We present refined orbital periods and times of transit for each target. We state 95% confidence upper limits on the secondary eclipse depths in our broadband visible bandpass centered on 650 nm. These limits are 0.073% for HAT-P-4, 0.062% for TrES-3, 0.16% for TrES-2 and 0.11% for WASP-3. We combine the TrES-3 secondary eclipse information with the existing published data and confirm that the atmosphere likely does not have a temperature inversion.
The ultraluminous X-ray source (ULX) Holmberg II X-1 has been observed over 4 months in 2009/2010 by the Swift observatory. The source luminosity varied by a factor of up to 14, reaching a maximum 0.3-10 keV luminosity of ~3.0E40 erg/s. The spectral properties do not vary much over these 4 months, with only a slight monotonic increase of the hardness ratio with the count rate. This means that the erratic flaring activity of the source is not associated with spectral changes, as seen in other ULXs. Conversely, comparison with data obtained by Swift in 2006 shows a completely different picture: while at a luminosity also seen in the 2009/2010 data, the source appears with a hard spectrum. Thus, it appears that, as in Galactic black hole binaries, spectral states in this ULX are not determined only by the X-ray luminosity.
We analyze our accurate kinematical data for the old clusters in the inner regions of M31. These velocities are based on high S/N Hectospec data (Caldwell et al 2010). The data are well suited for analysis of M31's inner regions because we took particular care to correct for contamination by unresolved field stars from the disk and bulge in the fibers. The metal poor clusters show kinematics which are compatible with a pressure-supported spheroid. The kinematics of metal-rich clusters, however, argue for a disk population. In particular the innermost region (inside 2 kpc) shows the kinematics of the x2 family of bar periodic orbits, arguing for the existence of an inner Lindblad resonance in M31.
In this paper we investigate the thermal evolution of hybrid stars, objects composed of a quark matter core, enveloped by ordinary hadronic matter. Our purpose in this paper is to investigate how important is the quark core size to the thermal evolution of the star. In order to do that we use a simple MIT bag model for the quark core, and a relativistic mean field model for the hadronic envelope. By choosing different values for the bag constant ($B$) we are able to change the phase transition point, which in turn yields hybrid stars with different quark core sizes. We also consider the possibility of color superconductivity in the quark core. Our results indicate that hybrid stars with quark-hadron phase transitions happening between $1.5\rho_0 - 2.0\rho_0$, and with superconductivity gaps ($\Delta$) between 0.1$-$1.0 MeV are in good agreement with the observed temperature of pulsars.
The GGD27 complex includes the HH 80-81-80N system, which is one of the most
powerful molecular outflows associated with a high mass star-forming region
observed up to now. This outflow is powered by the star associated with the
source IRAS 18162-2048. Here we report the detection of continuum emission at
sub-arcsec/arcsec resolution with the Submillimeter Array at 1.36mm and
456microns, respectively. We detected dust emission arising from two compact
cores, MM1 and MM2, separated by about 7" (~12000AU in projected distance). MM1
spatially coincides with the powerful thermal radio continuum jet that powers
the very extended molecular outflow, while MM2 is associated with the protostar
that drives the compact molecular outflow recently found in this region.
High angular resolution obervations at 1.36mm show that MM1 is unresolved and
that MM2 splits into two subcomponents separated by ~1". The mass of MM1 is
about 4Msun and it has a size of <300AU. This is consistent with MM1 being
associated with a massive and dense (n(H2)>10^9cm-3) circumstellar dusty disk
surrounding a high-mass protostar, which has not developed yet a compact HII
region. On the other hand, the masses of the two separate components of MM2 are
about 2Msun each. One of these components is a compact core with an
intermediate-mass young protostar inside and the other component is probably a
pre-stellar core.
MM1 is the brigthest source at 1.36mm, while MM2 dominates the emission at
456microns. These are the only (sub)millimeter sources detected in the SMA
observations. Hence, it seems that both sources may contribute significantly to
the bolometric luminosity of the region. Finally, we argue that the
characteristics of these two sources indicate that MM2 is probably in an
earlier evolutionary stage than MM1.
The uncertainty in the redshift distributions of galaxies has a significant potential impact on the cosmological parameter values inferred from multi-band imaging surveys. The accuracy of the photometric redshifts measured in these surveys depends not only on the quality of the flux data, but also on a number of modeling assumptions that enter into both the training set and SED fitting methods of photometric redshift estimation. In this work we focus on the latter, considering two types of modeling uncertainties: uncertainties in the SED template set and uncertainties in the magnitude and type priors used in a Bayesian photometric redshift estimation method. We find that SED template selection effects dominate over magnitude prior errors. We introduce a method for parameterizing the resulting ignorance of the redshift distributions, and for propagating these uncertainties to uncertainties in cosmological parameters.
The "cosmological principle" was set up early without realizing its implications for the horizon problem, and almost entirely without support from observational data. Consistent signals of anisotropy have been found in data on electromagnetic propagation, polarizations of QSOs and $CMB$ temperature maps. The axis of Virgo is found again and again in signals breaking isotropy, from independent observables in independent energy regimes. There are no satisfactory explanations of these effects in conventional astrophysics. Axion-photon mixing and propagation in axion condensates are capable of encompassing the data.
Spectral observations of molecular line profiles reveal the so-called `blue profiles' for double-peaked molecular lines with stronger blue and weaker red peaks as notable features for star-forming cloud core collapses under the self-gravity. In contrast, 25-30 per cent of observed molecular spectral line profiles in star-forming clouds or cores also show the so-called double-peaked `red profiles' with red peaks stronger than blue peaks. Gao & Lou (2010) show that these unexplained `red profiles' can be signatures of global dynamics for envelope expansion with core collapse (EECC) within star-forming molecular clouds or cores. We demonstrate here that spatially-resolved `red profiles' of HCO+ (J=1-0) and CS (J=2-1) molecular transitions from the low-mass star-forming cloud core FeSt 1-457 together with its radial profile of column density inferred from dust extinction observations appear to reveal a self-similar hydrodynamic shock phase for global EECC. Observed spectral profiles of C18O (J=1-0) are also fitted by the same EECC model. For further observational tests, the spatially-resolved profiles of molecular transitions HCO+ (J=3-2) and CS (J=3-2) as well as the radial profiles of (sub)millimetre continuum emissions at three wavelengths of 1.2mm, 0.85mm and 0.45mm from FeSt 1-457 are also predicted.
We introduce a probabilistic approach to the problem of counting dwarf satellites around host galaxies in databases with limited redshift information. This technique is used to investigate the occurrence of satellites with luminosities similar to the Magellanic Clouds around hosts with properties similar to the Milky Way in the object catalog of the Sloan Digital Sky Survey. Our analysis uses data from SDSS Data Release 7, selecting candidate Milky-Way-like hosts from the spectroscopic catalog and candidate analogs of the Magellanic Clouds from the photometric catalog. Our principal result is the probability for a Milky-Way-like galaxy to host N_{sat} close satellites with luminosities similar to the Magellanic Clouds. We find that 81 percent of galaxies like the Milky Way are have no such satellites within a radius of 150 kpc, 11 percent have one, and only 3.5 percent of hosts have two. The probabilities are robust to changes in host and satellite selection criteria, background-estimation technique, and survey depth. These results demonstrate that the Milky Way has significantly more satellites than a typical galaxy of its luminosity; this fact is useful for understanding the larger cosmological context of our home galaxy.
We report the discovery of the first new ultra-cool brown dwarf found with the Wide-field Infrared Survey Explorer (WISE). The object's preliminary designation is WISEPC J045853.90+643451.9. Follow-up spectroscopy with the LUCIFER instrument on the Large Binocular Telescope indicates that it is a very late-type T dwarf with a spectral type approximately equal to T9. Fits to an IRTF/SpeX 0.8-2.5 micron spectrum to the model atmospheres of Marley and Saumon indicate an effective temperature of approximately 600 K as well as the presence of vertical mixing in its atmosphere. The new brown dwarf is easily detected by WISE, with a signal-to-noise ratio of ~36 at 4.6 microns. Current estimates place it at a distance of 6 to 10 pc. This object represents the first in what will likely be hundreds of nearby brown dwarfs found by WISE that will be suitable for follow up observations, including those with the James Webb Space Telescope. One of the two primary scientific goals of the WISE mission is to find the coolest, closest stars to our Sun; the discovery of this new brown dwarf proves that WISE is capable of fulfilling this objective.
We searched for quasars that are ~ 3 mag fainter than the SDSS quasars in the redshift range 3.7 < z < 4.7 in the COSMOS field to constrain the faint end of the quasar luminosity function. Using optical photometric data, we selected 31 quasar candidates with 22 < i' < 24 at z ~ 4. We obtained optical spectra for most of these candidates using FOCAS on the Subaru telescope, and identified 8 low-luminosity quasars at z ~ 4. In order to derive the quasar luminosity function (QLF) based on our spectroscopic follow-up campaign, we estimated the photometric completeness of our quasar survey through detailed Monte Carlo simulations. Our QLF at z ~ 4 has a much shallower faint-end slope beta = -1.67^{+0.11}_{-0.17} than that obtained by other recent surveys in the same redshift. Our result is consistent with the scenario of downsizing evolution of active galactic nuclei inferred by recent optical and X-ray quasar surveys at lower redshifts.
Using a sample of 30,000 quasars from SDSS-DR7, we explore the range of properties exhibited by high-ionization, broad emission lines, such as CIV 1549. Specifically we investigate the anti-correlation between L_UV and emission line EQW (the Baldwin Effect) and the "blueshifting" of high-ionization emission lines. The blueshift of the CIV emission line is nearly ubiquitous, with a mean shift of 810 km/s for radio-quiet (RQ) quasars and 360 km/s for radio-loud (RL) quasars, and the Baldwin Effect is present in both RQ and RL samples. Composite spectra are constructed as a function of CIV emission line properties in attempt to reveal empirical relationships between different line species and the SED. Within a two-component disk+wind model of the broad emission line region (BELR), where the wind filters the continuum seen by the disk component, we find that RL quasars are consistent with being dominated by the disk component, while BALQSOs are consistent with being dominated by the wind component. Some RQ objects have emission line features similar to RL quasars; they may simply have insufficient black hole (BH) spin to form radio jets. Our results suggest that there could be significant systematic errors in the determination of L_bol and BH mass that make it difficult to place these findings in a more physical context. However, it is possible to classify quasars in a paradigm where the diversity of BELR parameters are due to differences in an accretion disk wind between quasars (and over time); these differences are underlain primarily by the SED, which ultimately must be tied to BH mass and accretion rate.
We combine the GALFORM semi-analytical model of galaxy formation, which predicts the star formation and merger histories of galaxies, the GRASIL spectro-photometric code, which calculates the spectral energy distributions (SEDs) of galaxies self-consistently including reprocessing of radiation by dust, and artificial neural networks (ANN), to investigate the clustering properties of galaxies selected by their emission at submillimetre wavelengths (SMGs). We use the Millennium Simulation to predict the spatial and angular distribution of SMGs. At redshift z = 2, we find that these galaxies are strongly clustered, with a comoving correlation length of r0 = 5.6 \pm 0.9 Mpc/h for galaxies with 850{\mu}m flux densities brighter than 5 mJy, in agreement with observations. We predict that at higher redshifts these galaxies trace denser and increasingly rarer regions of the universe. We present the predicted dependence of the clustering on luminosity, submillimetre colour, halo and total stellar masses. Interestingly, we predict tight relations between correlation length and halo and stellar masses, independent of sub-mm luminosity.
The EDELWEISS-II experiment uses cryogenic heat-and-ionization detectors in order to detect the rare interactions from possible WIMP dark matter particles on Germanium nuclei. Recently, new-generation detectors with an interleaved electrode geometry were developped and validated, enabling an outstanding rejection of gamma-rays and surface interactions. We present here preliminary results of a one-year WIMP search carried out with ten of such detectors in the Laboratoire Souterrain de Modane. A sensitivity to the spin-independent WIMP-nucleon cross-section of 5 \times 10-8 pb was achieved using a 322 kg
Measurement of redshifted 21-cm emission from neutral hydrogen promises to be the most effective method for studying the reionisation history of hydrogen and, indirectly, the first galaxies. These studies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. In addition, leakage due to gain errors and non-ideal feeds conspire to further contaminate low-frequency radio obsevations. This leakage leads to a portion of the complex linear polarisation signal finding its way into Stokes I, and inhibits the detection of the non-polarised cosmological signal from the epoch of reionisation. In this work, we show that rotation measure synthesis can be used to recover the signature of cosmic hydrogen reionisation in the presence of contamination by polarised foregrounds. To achieve this, we apply the rotation measure synthesis technique to the Stokes I component of a synthetic data cube containing Galactic foreground emission, the effect of instrumental polarisation leakage, and redshifted 21-cm emission by neutral hydrogen from the epoch of reionisation. This produces an effective Stokes I Faraday dispersion function for each line of sight, from which instrumental polarisation leakage can be fitted and subtracted. Our results show that it is possible to recover the signature of reionisation in its late stages (z ~ 7) by way of the 21-cm power spectrum, as well as through tomographic imaging of ionised cavities in the intergalactic medium.
Evolution of grain mantles in various interstellar environment is studied. We concentrate mainly on water, methanol, carbon di-oxide, which constitute nearly 90% of the grain mantle. We investigate how the production rates of these molecules depend on the relative gas phase abundances of oxygen and carbon monoxide and constrain the relevant parameter space which reproduces these molecules closed to the observed abundances. Allowing to accrete only H, O and CO on the grains and using the Monte-Carlo method we follow the chemical processes for a few million years. We allow formation of multi-layers on the grains and incorporate the freeze-out effects of accreting O and CO. We find that the formation of these molecules depends on the initial conditions as well as the average cloud density. Specifically, when the number density of accreting O is less than 3 times more than that of CO, methanol is always over-produced. Using available reaction pathways it appears to be difficult to match the exact observed abundances of all the three molecules simultaneously. Only in a narrow region of parameter space all these three molecules are produced within the observed limit. In addition to this, we found that the incorporation of the freeze-outs of O and CO leads to almost steady state on the grain surface. The mantle thickness grows anywhere between 60 to 500 layers in a period of two million years. In addition, we consider a case where the gas number density changes with time due to gradual collapse of the molecular cloud and present the evolution of composition of different species as a function of radius of the collapsing cloud.
We have investigated the molecular gas environment of the semicircular composite supernova remnant (SNR) 3C 396 in multiwavelengths and performed a Chandra spatially resolved thermal X-ray spectroscopic study of this young SNR. With our CO millimeter observations toward 3C 396, we find that the molecular gas at V(LSR)~84km/s can better explain the multiwavelength properties of the remnant than the V(LSR)=67-72km/s molecular gas that is suggested by Lee et al. (2009). At 84km/s, the western boundary of the SNR is perfectly confined by the western molecular wall. The CO emission fades out from west to east, indicating that the eastern region is of low gas density. In particular, a finger/pillar-like molecular cloud (MC) intruding inside the SNR border is revealed in the southwest (SW). The shock interaction with the "pillar tip" can well explain the X-ray and radio enhancement in the SW and some infrared filaments there. The SNR-MC interaction is also favored by the relatively elevated 12CO J=2-1/J=1-0 line ratios in the southwestern "pillar tip" and the molecular patch on the northwestern boundary. The redshifted 12CO (J=1-0 and J=2-1) wings (86-90km/s) of an eastern 81km/s molecular patch may be the kinematic evidence for shock-MC interaction. We suggest that the 69km/s MC is in the foreground based on HI self-absorption while the 84km/s MC is in physical contact with SNR 3C 396. Such a contact places 3C 396 at a distance of 6.2 kpc. The X-ray spectral analysis suggests an SNR age of ~3kyr. The metal enrichment of the X-ray emitting gas in the north and south implies a 13-15Msun B1-B2 progenitor star.
We observed VB 10 in August and September 2009 using the FORS2 camera of the VLT with the aim of measuring its astrometric motion and of probing the presence of the announced planet VB 10b. We used the published STEPS astrometric positions of VB 10 over a time-span of 9 years, which allowed us to compare the expected motion of VB 10 due to parallax and proper motion with the observed motion and to compute precise deviations. The achieved single-epoch precisions of our observations are about 0.1 mas and the data showed no significant residual trend, while the presence of the planet should have induced an apparent proper motion larger than 10 mas/yr. Subtraction of the predicted orbital motion from the observed data produces a large trend in position residuals of VB 10. We estimated the probability that this trend is caused by random noise. Taking all the uncertainties into account and using Monte-Carlo resampling of the data, we are able to reject the existence of VB 10b with the announced mass of 6.4 M_J with the false alarm probability of only 0.0005. A 3.2 M_J planet is also rejected with a false alarm probability of 0.023.
We consider the Einstein equations within the DBI scenario for a spatially flat Friedmann-Robertson-Walker (FRW) spacetime without a cosmological constant. We derive the inflationary scenario by applying the symmetry transformations which preserve the form of the Friedmann and conservation equations. These form invariance transformations generate a symmetry group parametrized by the Lorentz factor $\ga$. We explicitly obtain an inflationary scenario by the cooperative effect of adding energy density into the Friedmann equation. For the case of a constant Lorentz factor, and under the slow roll assumption, we find the transformation rules for the scalar and tensor power spectra of perturbations as well as their ratio under the action of the form invariance symmetry group. Within this case and due to its relevance for the inflationary paradigm, we find the general solution of the dynamical equations for a DBI field driven by an exponential potential and show a broad set of inflationary solutions. The general solution can be split into three subsets and all these behave asymptotically as a power law solution at early and at late times.
We present a series of colour evolution models for Luminous Red Galaxies (LRGs) in the 7th spectroscopic data release of the Sloan Digital Sky Survey (SDSS), computed using the full-spectrum fitting code VESPA on high signal-to-noise stacked spectra. The colour-evolution models are computed as a function of colour, luminosity and redshift, and we do not a-priori assume that LRGs constitute a uniform population of galaxies in terms of stellar evolution. By computing star-formation histories from the fossil record, the measured stellar evolution of the galaxies is decoupled from the survey's selection function, which also evolves with redshift. We present these evolutionary models computed using three different sets of Stellar Population Synthesis (SPS) codes. We show that the traditional fiducial model of purely passive stellar evolution of LRGs is broadly correct, but it is not sufficient to explain the full spectral signature. We also find that higher-order corrections to this model are dependent on the SPS used, particularly when calculating the amount of recent star formation. The amount of young stars can be non-negligible in some cases, and has important implications for the interpretation of the number density of LRGs within the selection box as a function of redshift. Dust extinction, however, is more robust to the SPS modelling: extinction increases with decreasing luminosity, increasing redshift, and increasing r-i colour. We are making the colour evolution tracks publicly available at this http URL
To study the crucial range of Galactocentric distances between 12 and 16 kpc, where little information is available, we have obtained VI CCD imaging of Berkeley 20 and BVI CCD imaging of Berkeley 66 and Tombaugh 2, three distant, old open clusters. Using the synthetic colour magnitude diagram (CMD) technique with three types of evolutionary tracks of different metallicities, we have determined age, distance, reddening and indicative metallicity of these systems. The CMD of Be 20 is best reproduced by stellar models with a metallicity about half of solar (Z=0.008 or 0.01), in perfect agreement with high resolution spectroscopic estimates. Its age is between 5 and 6 Gyr from stellar models with overshooting and between 4.3 and 4.5 Gyr from models without it. The distance modulus from the best fitting models is always (m-M)0=14.7 (corresponding to a Galactocentric radius of about 16 kpc), and the reddening E(B-V) ranges between 0.13 and 0.16. A slightly lower metallicity (Z ~ 0.006) appears to be more appropriate for Be 66. This cluster is younger, (age of 3 Gyr), and closer, (m-M)0=13.3 (i.e., at 12 kpc from the Galactic centre), than Be 20, and suffers from high extinction, 1.2 < E(B-V) < 1.3, variable at the 2-3 per cent level. Finally, the results for To 2 indicate that it is an intermediate age cluster, with an age of about 1.4 Gyr or 1.6-1.8 Gyr for models without and with overshooting, respectively. The metallicity is about half of solar (Z=0.006 to 0.01), in agreement with spectroscopic determinations. The distance modulus is (m-M)0=14.5, implying a distance of about 14 kpc from the Galactic centre; the reddening E(B-V) is 0.31-0.4, depending on the model and metallicity, with a preferred value around 0.34.
We present here evidence for the observation of the magneto-hydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 {\AA} 'blue continuum' filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magneto-acoustic sausage oscillations. Multiple signatures of the magneto-acoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magneto-acoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage type magneto-acoustic MHD wave modes in pores.
We study non-axisymmetric oscillations of a straight magnetic tube with an elliptic cross-section and density varying along the tube. The governing equations for kink and fluting modes in the thin tube approximation are derived. We found that there are two kink modes, polarised along the large and small axes of the elliptic cross-section. We have shown that the ratio of frequencies of the first overtone and fundamental harmonic is the same for both kink modes and independent of the ratio of the ellipse axes. On the basis of this result we concluded that the estimates of the atmospheric scale height obtained using simultaneous observations of the fundamental harmonic and first overtone of the coronal loop kink oscillations are independent of the ellipticity of the loop cross-section.
In this paper I review the recent progress in understanding the physics of the gas outflowing from active galactic nuclei and its impact on the surrounding environment, using the combined information provided by multiwavelength Ultraviolet-X-ray campaigns.
Aims: We aim to develop a method to determine distances to molecular clouds using JHK near-infrared photometry. Methods: The method is based on a technique that aids spectral classification of stars lying towards the fields containing the clouds into main sequence and giants. In this technique, the observed (J-H) and (H-K_s) colours are dereddened simultaneously using trial values of A V and a normal interstellar extinction law. The best fit of the dereddened colours to the intrinsic colours giving a minimum value of Chi^2 then yields the corresponding spectral type and A_V for the star. The main sequence stars, thus classified, are then utilized in an A V versus distance plot to bracket the cloud distances. Results: We applied the method to four clouds, L1517, Chamaeleon I, Lupus 3 and NGC 7023 and estimated their distances as 167+-30, 151+-28, 157+-29 and 408+-76 pc respectively, which are in good agreement with the previous distance estimations available in the literature
Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4GHz, but that are invisible at 3.6um when using sensitive Spitzer observations with uJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. We imaged a sample of 17 IFRS at 4.8GHz and 8.6GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4GHz flux density to 3.6um flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.
Wide-field surveys are a commonly-used method for studying thousands of objects simultaneously, to investigate, e.g., the joint evolution of star-forming galaxies and active galactic nuclei. VLBI observations can yield valuable input to such studies because they are able to identify AGN. However, VLBI observations of large swaths of the sky are impractical using standard methods, because the fields of view of VLBI observations are of the order of 10" or less. We have embarked on a project to carry out Very Long Baseline Array (VLBA) observations of all 96 known radio sources in one of the best-studied areas in the sky, the Chandra Deep Field South (CDFS). The challenge was to develop methods which could significantly reduce the amount of observing (and post-processing) time. We have developed an extension to the DiFX software correlator which allows one to correlate hundreds of positions within the primary beams. This extension enabled us to target many sources, at full resolution and high sensitivity, using only a small amount of observing time. The combination of wide fields-of-view and high sensitivity across the field in this survey is unprecedented. We have observed with the VLBA a single pointing containing the Chandra Deep Field South, in which 96 radio sources were known from previous observations with the ATCA. From our input sample, 20 were detected with the VLBA. The majority of objects have flux densities in agreement with arcsec-scale observations, implying that their radio emission comes from very small regions. One VLBI-detected object had earlier been classified as a star-forming galaxy. Comparing the VLBI detections to sources found in sensitive, co-located X-ray observations we find that X-ray detections are not a good indicator for VLBI detections. Wide-field VLBI survey science is now coming of age.
VLBI observations are a reliable method to identify AGN, since they require high brightness temperatures for a detection to be made. However, because of the tiny fields of view it is unpractical to carry out VLBI observations of many sources using conventional methods. We used an extension of the DiFX software correlator to image with high sensitivity 96 sources in the Chandra Deep Field South, using only 9h of observing time with the VLBA. We detected 20 sources, 8 of which had not been identified as AGN at any other wavelength, despite the comprehensive coverage of this field. The lack of X-ray counterparts to 1/3 of the VLBI-detected sources, despite the sensitivity of co-located X-ray data, demonstrates that X-ray observations cannot be solely relied upon when searching for AGN activity. Surprisingly, we find that sources classified as type 1 QSOs using X-ray data are always detected, in contrast to the 10% radio-loud objects which are found in optically-selected QSOs. We present the continuation of this project with the goal to image 1450 sources in the Lockman Hole/XMM region.
There is a continued debate as to the form of the outer disc of the Milky Way galaxy, which has important implications for its formation. Stars are known to exist at a galacto-centric distance of at least 20 kpc. However, there is much debate as to whether these stars can be explained as being part of the disc or whether another extra galactic structure, the so called Monoceros ring/stream, is required. To examine the outer disc of the Galaxy toward the anti-centre to determine whether the star counts can be explained by the thin and thick discs alone. Using Sloan star counts and extracting the late F and early G dwarfs it is possible to directly determine the density of stars out to a galacto-centric distance of about 25 kpc. These are then compared with a simple flared disc model. A flared disc model is shown to reproduce the counts along the line of sights examined, if the thick disc does not have a sharp cut off. The flare starts at a Galacto-centric radius of 16 kpc and has a scale length of 4.5+/-1.5 kpc. Whilst the interpretation of the counts in terms of a ring/stream cannot be definitely discounted, it does not appear to be necessary, at least along the lines of sight examined towards the anti centre.
We investigate the interaction of a fluctuating alpha-effect with large-scale shear in a simple nonlinear 1-dimensional dynamo wave model. We firstly extend the calculations of Proctor (2007, MNRAS, 41, L39-L42) to include spatial variation of the fluctuations, and find that there can be a mechanism for magnetic field generation, even when the mean alpha is zero, provided the spatiotemporal spectrum of the fluctuations has an appropriate form. We investigate mean-field dynamo action when the new term arising from the fluctuations is non-zero, and present results concerning the stability and frequency of the solutions and parity selection in the nonlinear regime. The relation between the asymptotic theory and explicit simulation of a traditional mean-field model with a fluctuating function for the alpha-effect term is discussed.
Theories of planet formation predict the birth of giant planets in the inner, dense, and gas-rich regions of the circumstellar disks around young stars. These are the regions from which strong CO emission is expected. Observations have so far been unable to confirm the presence of planets caught in formation. We have developed a novel method to detect a giant planet still embedded in a circumstellar disk by the distortions of the CO molecular line profiles emerging from the protoplanetary disk's surface. The method is based on the fact that a giant planet significantly perturbs the gas velocity flow in addition to distorting the disk surface density. We have calculated the emerging molecular line profiles by combining hydrodynamical models with semianalytic radiative transfer calculations. Our results have shown that a giant Jupiter-like planet can be detected using contemporary or future high-resolution near-IR spectrographs such as VLT/CRIRES or ELT/METIS. We have also studied the effects of binarity on disk perturbations. The most interesting results have been found for eccentric circumprimary disks in mid-separation binaries, for which the disk eccentricity - detectable from the asymmetric line profiles - arises from the gravitational effects of the companion star. Our detailed simulations shed new light on how to constrain the disk kinematical state as well as its eccentricity profile. Recent findings by independent groups have shown that core-accretion is severely affected by disk eccentricity, hence detection of an eccentric protoplanetary disk in a young binary system would further constrain planet formation theories.
The arrival directions of ultrahigh energy extensive air showers (EAS) by Yakutsk, AGASA and P. Auger data are considered. It is found that the arrival directions of EAS in the Yakutsk and AGASA data are correlated with pulsars from the side Input, and in the P. Auger data are correlated with pulsars from the Output of the Local Arm of Orion. It is shown that the majority of these pulsars have a short rotation period around their axes, than expected by the pulsar catalogue.
Cosmological observations on the largest scales exhibit a solid record of unexpected anomalies and alignments, apparently pointing towards a large scale violation of statistical isotropy. These include a variety of CMB measurements, as well as alignments of quasar polarisation vectors. In this paper we explore the possibility that several of the aforementioned large scale correlations are in fact not independent, and can be understood in a coherent way within the framework of a parity odd local Universe, and ultimately related to the nature of Dark Energy and its interactions with light.
We have derived colour gradients for a sample of 20 early-type galaxies (ETGs) at 1 < z_spec < 2 selected from the GOODS-South field. The sample includes both normal ETGs (13) having effective radii comparable to the mean radius of local ones and compact ETGs (7) having effective radii from two to six times smaller. Colour gradients have been derived in the F606W-F850LP bands (UV-U rest-frame) taking advantage of the ultradeep HST-ACS observations covering this field and providing a spatial resolution of about 0.8 kpc at the redshift of the galaxies. Despite of the narrow wavelength baseline covered (1000 Angstrom), sampling approximatively the emission dominated by the same stellar population, we detect significant radial colour variations in 50 per cent of our sample. In particular, we find five ETGs with positive colour gradients (cores bluer than the external regions), and five galaxies with negative colour gradients (cores redder than the external regions), as commonly observed in the local Universe. These results show that at 1 < z < 2, when the Universe was only 3-4 Gyr old, ETGs constituted a composite population of galaxies whose different assembly histories have generated different stellar distributions with the bluest stellar population either in the center or in the outskirts as well as throughout the whole galaxy. Moreover, we find that compact galaxies seem to preferentially show a blue cores while moving towards normal galaxies, central stellar populations become progressively redder. Nonetheless, the narrow baseline covered together with the low statistics still prevent us to be conclusive about a possible physical connection between colour gradients and the degree of compactness of high-z ETGs.
Although magnetic fields have been discovered in ten massive O-type stars during the last years, the origin of their magnetic fields remains unknown. Among the magnetic O-type stars, two stars, HD36879 and HD57682, were identified as candidate runaway stars in the past, and theta^1 Ori C was reported to move rapidly away from its host cluster. We search for an explanation for the occurrence of magnetic fields in O-type stars by examining the assumption of their runaway status. We use the currently best available astrometric, spectroscopic, and photometric data to calculate the kinematical status of seven magnetic O-type stars with previously unknown space velocities. The results of the calculations of space velocities suggest that five out of the seven magnetic O-type stars can be considered as candidate runaway stars. Only two stars, HD155806 and HD164794, with the lowest space velocities, are likely members of Sco OB4 and NGC6530, respectively. However, the non-thermal radio emitter HD164794 is a binary system with colliding winds, for which the detected magnetic field has probably a different origin in comparison to other magnetic O-type stars.
We have carried out a narrow-band survey of the Local Group galaxy, M33, in the HeII4686 emission line, to identify HeII nebulae in this galaxy. With spectroscopic follow-up observations, we confirm three of seven candidate objects, including identification of two new HeII nebulae, BCLMP651, HBW673. We also obtain spectra of associated ionizing stars for all the HII regions, identifying two new WN stars. We demonstrate that the ionizing source for the known HeII nebula, MA 1, is consistent with being the early-type WN star MC8 (M33-WR14), by carrying out a combined stellar and nebular analysis of MC8 and MA1. We were unable to identify the helium ionizing sources for HBW 673 and BCLMP 651, which do not appear to be Wolf-Rayet stars. According to the [OIII]5007/Hbeta vs [NII]6584/Halpha diagnostic diagram, excitation mechanisms apart from hot stellar continuum are needed to account for the nebular emission in HBW 673, which appears to have no stellar source at all.
We construct new galaxy angular power spectra based on the extended, updated and final SDSS II Luminous Red Galaxy (LRG) photometric redshift survey: MegaZ DR7. Encapsulating 7746 deg^{2} we utilise 723,556 photometrically determined LRGs between 0.45 < z < 0.65 in a 3.3 (Gpc h^{-1})^3 spherical harmonic analysis of the galaxy distribution. By combining four photometric redshift bins we find preliminary parameter constraints of f_{b} = \Omega_{b}/\Omega_{m} = 0.173 +/- 0.046 and \Omega_{m} = 0.260 +/- 0.035 assuming H_{0} = 75 km s^{-1} Mpc^{-1}, n_{s}=1 and \Omega_{k} = 0. These limits are consistent with the CMB and the previous data release (DR4). The C_{\ell} are sensitive to redshift space distortions and therefore we also recast our constraints into a measurement of \beta ~ \Omega_{m}^{0.55}/b in different redshift shells. The robustness of these power spectra with respect to a number of potential systematics such as extinction, photometric redshift and ANNz training set extrapolation are examined. The latter includes a cosmological comparison of available photometric redshift estimation codes where we find excellent agreement between template and empirical estimation methods. MegaZ DR7 represents a methodological prototype to next generation surveys such as the Dark Energy Survey (DES) and, furthermore, is a photometric precursor to the spectroscopic BOSS survey. Our galaxy catalogue and all power spectra data can be found at this http URL
The highest-mass stars have the lowest frequency in the stellar IMF, and they are also the most easily observed stars. Thus, the counting statistics for OB stars provide important tests for the fundamental nature and quantitative parameters of the IMF. We first examine some local statistics for the stellar upper-mass limit itself. Then, we examine the parameter space and statistics for extremely sparse clusters that contain OB stars, in the SMC. We find that thus far, these locally observed counting statistics are consistent with a constant stellar upper-mass limit. The sparse OB star clusters easily fall within the parameter space of Monte Carlo simulations of cluster populations. If the observed objects are representative of their cluster birth masses, their existence implies that the maximum stellar mass is largely independent of the parent cluster mass.
We present precise phase-connected pulse timing solutions for 16 gamma-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multi-wavelength follow up. We also present deep searches for radio pulsations from each of these pulsars.
Understanding the physical processes responsible for accelerating the solar wind requires detailed measurements of the collisionless plasma in the extended solar corona. Some key clues about these processes have come from instruments that combine the power of an ultraviolet (UV) spectrometer with an occulted telescope. This combination enables measurements of ion emission lines far from the bright solar disk, where most of the solar wind acceleration occurs. Although the UVCS instrument on SOHO made several key discoveries, many questions remain unanswered because its capabilities were limited. This white paper summarizes these past achievements and also describes what can be accomplished with next-generation instrumentation of this kind.
Sagittarius A*, the ~4 x 10^6 solar mass black hole candidate at the Galactic Center, can be studied on Schwarzschild radius scales with (sub)millimeter wavelength Very Long Baseline Interferometry (VLBI). We report on 1.3 mm wavelength observations of Sgr A* using a VLBI array consisting of the JCMT on Mauna Kea, the ARO/SMT on Mt. Graham in Arizona, and two telescopes of the CARMA array at Cedar Flat in California. Both Sgr A* and the quasar calibrator 1924-292 were observed over three consecutive nights, and both sources were clearly detected on all baselines. For the first time, we are able to extract 1.3 mm VLBI interferometer phase information on Sgr A* through measurement of closure phase on the triangle of baselines. On the third night of observing, the correlated flux density of Sgr A* on all VLBI baselines increased relative to the first two nights, providing strong evidence for time-variable change on scales of a few Schwarzschild radii. These results suggest that future VLBI observations with greater sensitivity and additional baselines will play a valuable role in determining the structure of emission near the event horizon of Sgr A*.
We show that redshift-space distortions of galaxy correlations have a strong effect on correlation functions with distinct, localized features, like the signature of the Baryon Acoustic Oscillations (BAO). Near the line of sight, the features become sharper as a result of redshift-space distortions. We demonstrate this effect by measuring the correlation function in Gaussian simulations and the Millennium Simulation. We also analyze the SDSS DR7 main-galaxy sample (MGS), splitting the sample into slices 2.5 degrees on the sky in various rotations. Measuring 2D correlation functions in each slice, we do see a sharp bump along the line of sight. Using Mexican-hat wavelets, we localize it to (110 +/- 10) Mpc/h. At a particular wavelet scale and location, employing the variance of the wavelet transform, we estimate its significance at about 4 sigma. We estimate that there is about a 0.2% chance of getting such a signal anywhere in the vicinity of the BAO scale from a power spectrum lacking a BAO feature. However, these estimates of the significances make some use of idealized Gaussian simulations, and thus are likely a bit optimistic.
We report results from a reanalysis of data from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken between October 2006 and September 2008 using eight germanium detectors are reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below ~10 GeV/c^2. This analysis provides stronger constraints than previous CDMS II results for WIMP masses below 9 GeV/c^2 and excludes parameter space associated with possible low-mass WIMP signals from the DAMA/LIBRA and CoGeNT experiments.
Strongly damped Doppler shift oscillations are observed frequently associated with flarelike events in hot coronal loops. In this paper, a review of the observed properties and the theoretical modeling is presented. Statistical measurements of physical parameters (period, decay time, and amplitude) have been obtained based on a large number of events observed by SOHO/SUMER and Yohkoh/BCS. Several pieces of evidence are found to support their interpretation in terms of the fundamental standing longitudinal slow mode. The high excitation rate of these oscillations in small- or micro-flares suggest that the slow mode waves are a natural response of the coronal plasma to impulsive heating in closed magnetic structure. The strong damping and the rapid excitation of the observed waves are two major aspects of the waves that are poorly understood, and are the main subject of theoretical modeling. The slow waves are found mainly damped by thermal conduction and viscosity in hot coronal loops. The mode coupling seems to play an important role in rapid excitation of the standing slow mode. Several seismology applications such as determination of the magnetic field, temperature, and density in coronal loops are demonstrated. Further, some open issues are discussed.
We review the developments in modeling gravitational recoil from merging black-hole binaries and introduce a new set of simulations to test our previously proposed empirical formula for the recoil. The configurations are chosen to represent generic binaries with unequal masses and precessing spins. Results of these simulations indicate that the recoil formula is accurate to within a few km/s in the similar mass-ratio regime for the out-of-plane recoil.
The warm inflation paradigm considers the continuous production of radiation during inflation due to dissipative effects. In its strong dissipation limit, warm inflation gives way to a radiation dominated Universe. High scale inflation then yields a high reheating temperature, which then poses a severe gravitino overproduction problem for the supersymmetric realisations of warm inflation. In this paper we show that in certain class of supersymmetric models the dissipative dynamics of the inflaton is such that the field can avoid its complete decay after inflation. In some cases, the residual energy density stored in the field oscillations may come to dominate over the radiation bath at a later epoch. If the inflaton field finally decays much later than the onset of the matter dominated phase, the entropy produced in its decay may be sufficient to counteract the excess of gravitinos produced during the last stages of warm inflation.
Links to: arXiv, form interface, find, astro-ph, recent, 1011, contact, help (Access key information)
(Abridged) We study the rate at which gas accretes on to galaxies and haloes and investigate whether the accreted gas was shocked to high temperatures before reaching a galaxy. For this purpose we use a suite of large cosmological, hydrodynamical simulations from the OWLS project. We improve on previous work by considering a wider range of halo masses and redshifts, by distinguishing accretion on to haloes and galaxies, by including important feedback processes, and by comparing simulations with different physics. The specific rate of gas accretion on to haloes is, like that for dark matter, only weakly dependent on halo mass. For halo masses Mhalo>>10^11 Msun it is relatively insensitive to feedback processes. In contrast, accretion rates on to galaxies are determined by radiative cooling and by outflows driven by supernovae and active galactic nuclei. Galactic winds increase the halo mass at which the central galaxies grow the fastest by about two orders of magnitude to Mhalo~10^12 Msun. Gas accretion is bimodal, with maximum past temperatures either of order the virial temperature or <~10^5 K. The fraction of gas accreted on to haloes in the hot mode is insensitive to feedback and metal-line cooling. It increases with redshift, but is mostly determined by halo mass, increasing gradually from less than 10% for ~10^11 Msun to greater than 90% at 10^13 Msun. In contrast, for accretion on to galaxies the cold mode is always significant and the relative contributions of the two accretion modes are more sensitive to feedback and metal-line cooling. On average, the majority of stars present in any mass halo at any redshift were formed from gas accreted in the cold mode, although the hot mode contributes typically over 10% for Mhalo>~10^11 Msun. Galaxies, but not their gaseous haloes, are predominantly fed by gas that did not experience an accretion shock when it entered the host halo.
Recent studies emphasize that an empirical relation between the stellar mass of galaxies and the mass of their host dark matter subhaloes can predict the clustering of galaxies and its evolution with cosmic time. In this paper we study the assumptions made by this methodology using a semi-analytical model (SAM). To this end, we randomly swap between the locations of model galaxies within a narrow range of subhalo mass (M_infall). We find that shuffled samples of galaxies have different auto-correlation functions in comparison with the original model galaxies. This difference is significant even if central and satellite galaxies are allowed to follow a different relation between M_infall and stellar mass, and can reach a factor of 2 for massive galaxies at redshift zero. We analyze three features within SAMs that contribute to this effect: a) The relation between stellar mass and subhalo mass evolves with redshift for central galaxies, affecting satellite galaxies at the time of infall. b) The stellar mass of galaxies falling into groups and clusters at high redshift is different from the mass of central galaxies at the same time. c) The stellar mass growth for satellite galaxies after infall can be significant and depends on the infall redshift and the group mass. We show that the above is true for differing SAMs, and that the effect is sensitive to the treatment of dynamical friction and stripping of gas in satellite galaxies. We find that by using the FoF group mass at redshift zero in addition to M_infall, an empirical model is able to accurately reproduce the clustering properties of galaxies. On the other hand, using the infall redshift as a second parameter does not yield as good results because it is less correlated with stellar mass. Our analysis indicates that environmental processes are important for modeling the clustering and abundance of galaxies. (Abridged)
We use two cosmological simulations of structure formation to study the conditions under which dark matter haloes emerge from the linear density field. Our analysis focuses on matching sites of halo collapse to local density maxima, or "peaks", in the initial conditions of the simulations and provides a crucial test of the central ansatz of the peaks formalism. By identifying peaks on a variety of smoothed, linearly extrapolated density fields we demonstrate that as many as ~70% of well-resolved dark matter haloes form preferentially near peaks whose characteristic masses are similar to that of the halo, with more massive haloes showing a stronger tendency to reside near peaks initially. We identify a small but significant fraction of haloes that appear to evolve from peaks of substantially lower mass than that of the halo itself. We refer to these as "peakless haloes" for convenience. By contrasting directly the properties of these objects with the bulk of the proto-halo population we find two clear differences: 1) their initial shapes are significantly flatter and more elongated than the predominantly triaxial majority, and 2) they are, on average, more strongly compressed by tidal forces associated with their surrounding large scale structure. Using the two-point correlation function we show that peakless haloes tend to emerge from highly clustered regions of the initial density field implying that, at fixed mass, the accretion geometry and mass accretion histories of haloes in highly clustered environments differ significantly from those in the field. This may have important implications for understanding the origin of the halo assembly bias, of galaxy properties in dense environments and how environment affects the morphological transformation of galaxies near groups and rich galaxy clusters.
We perform a statistical analysis of the peculiar velocity field around dark matter haloes in numerical simulations. We examine different properties of the infall of material onto haloes and its relation to central halo shapes and the shape of the large scale surrounding regions (LSSR). We find that the amplitude of the infall velocity field along the halo shape minor axis is larger than that along the major axis. This is consistent for general triaxial haloes, and for both prolate and oblate systems. We also report a strong anisotropy of the velocity field along the principal axes of the LSSR. The infall velocity field around dark matter haloes reaches a maximum value along the direction of the minor axis of the LSSR, whereas along the direction of its major axis, it exhibits the smallest velocities. We also analyse the dependence of the matter velocity field on the local environment. The amplitude of the infall velocity at high local density regions is larger than at low local density regions. The velocity field tends to be more laminar along the direction towards the minor axis of the LSSR, where the mean ratio between flow velocity and velocity dispersion is of order unity and nearly constant up to scales of 15 Mpc/h. We also detect anisotropies in the outflowing component of the velocity field, showing a maximum amplitude along the surrounding LSSR major axis.
We investigate the star formation history and metallicity of the Local Group irregular dwarf galaxy WLM using wide-field JHK near-infrared imaging, spanning a region of approximately 1 sq. degree, obtained with WFCAM on UKIRT. JHK photometry clearly reveals the tip of the red giant branch, allowing a new estimate of the distance, and allows ready identification of C-type and M-type AGB stars. The C/M ratio was used to produce a surface map of the metallicity distribution which is compared to previous studies. Multi-wavelength spectral energy distributions (SEDs) were constructed for some AGB stars.
The debris disk known as "The Moth" is named after its unusually asymmetric surface brightness distribution. It is located around the ~90 Myr old G8V star HD 61005 at 34.5 pc and has previously been imaged by the HST at 1.1 and 0.6 microns. Polarimetric observations suggested that the circumstellar material consists of two distinct components, a nearly edge-on disk or ring, and a swept-back feature, the result of interaction with the interstellar medium. We resolve both components at unprecedented resolution with VLT/NACO H-band imaging. Using optimized angular differential imaging techniques to remove the light of the star, we reveal the disk component as a distinct narrow ring at inclination i=84.3 \pm 1.0{\deg}. We determine a semi-major axis of a=61.25 \pm 0.85 AU and an eccentricity of e=0.045 \pm 0.015, assuming that periastron is located along the apparent disk major axis. Therefore, the ring center is offset from the star by at least 2.75 \pm 0.85 AU. The offset, together with a relatively steep inner rim, could indicate a planetary companion that perturbs the remnant planetesimal belt. From our imaging data we set upper mass limits for companions that exclude any object above the deuterium-burning limit for separations down to 0.3". The ring shows a strong brightness asymmetry along both the major and minor axis. A brighter front side could indicate forward-scattering grains, while the brightness difference between the NE and SW components can be only partly explained by the ring center offset, suggesting additional density enhancements on one side of the ring. The swept-back component appears as two streamers originating near the NE and SW edges of the debris ring.
High-spatial resolution near-infrared (NIR) images of the central 24 x 24 arcsec^2 (~ 2 x 2 kpc^2) of the elliptical galaxy NGC 1052 reveal a total of 25 compact sources randomly distributed in the region. Fifteen of them exhibit Halpha luminosities an order of magnitude above the estimate for an evolved population of extreme horizontal branch stars. Their Halpha equivalent widths and optical-to-NIR spectral energy distributions are consistent with them being young stellar clusters aged < 7 Myr. We consider this to be the first direct observation of spatially resolved star-forming regions in the central kiloparsecs of an elliptical galaxy. The sizes of these regions are ~< 11 pc and their median reddening is E(B - V) ~ 1 mag. According to previous works, NGC 1052 may have experienced a merger event about 1 Gyr ago. On the assumption that these clusters are spreaded with similar density over the whole galaxy, the fraction of galaxy mass (5 x 10^{-5}) and rate of star formation (0.01 Msun/yr) involved, suggest the merger event as the possible cause for the star formation we see today.
The search for extra-solar planets has led to the surprising discovery of many Jupiter-like planets in very close proximity to their host star, the so-called "hot Jupiters." Even more surprisingly, many of these hot Jupiters have orbits that are eccentric or highly inclined with respect to the equator of the star, and some (about 25%) appear to be in retrograde orbits. How they get so close to the star in such orbits remains an open question. Slow migration though a protoplanetary disk would produce orbits with low eccentricities and inclinations. Some models invoke a companion star in the system, which perturbs the inner orbit and can produce increases in eccentricity and inclination but not retrograde orbits. Here we show that the presence of an additional, moderately inclined and eccentric massive planet in the system can naturally explain close, inclined, eccentric, and even retrograde orbits. We provide a complete and ac- curate treatment of the secular dynamics including both the key octupole-order effects and tidal friction. The flow of angular momentum from the inner orbit to the orbit of the perturber can lead to both high eccentricities and inclinations, and even flip the inner orbit. Previous treatments of the secular dynamics focusing on stellar-mass perturbers would not allow for such an outcome. In our treatment the component of the inner orbit's angular momentum perpendicular to the stellar equatorial plane can change sign; a brief excursion to very high eccentricity during the chaotic evolution of the inner orbit can then lead to rapid "tidal capture," forming a retrograde hot Jupiter.
Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of gamma = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six 4-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is gamma = 0.05 (ranging from 0.01 to 0.14), indicating that line-of-sight contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the line of sight, particularly those bright (I < 21.5) galaxies projected within 5' of the lens.
The spectral slope of strong MHD turbulence has recently been a matter of controversy. While Goldreich-Sridhar model (1995) predicts Kolmogorov's -5/3 slope of turbulence, shallower slopes were often reported by numerical studies. We argue that earlier numerics was affected by driving due to a diffuse locality of energy transfer in MHD case. Our highest-resolution simulation (3072^2x1024) has been able to reach the asymptotic -5/3 regime of the energy slope. Additionally, we found that so-called dynamic alignment, proposed in the model with -3/2 slope, saturates and therefore can not affect asymptotic slope. The observation of the asymptotic regime allowed us to measure Kolmogorov constant C_KA=3.2+-0.2 for purely Alfv\'enic turbulence and C_K=4.1+-0.3 for full MHD turbulence. These values are much higher than the hydrodynamic value of 1.64. The larger value of Kolmogorov constant is an indication of a fairly inefficient energy transfer and, as we show in this Letter, is in theoretical agreement with our observation of diffuse locality. We also explain what has been missing in numerical studies that reported shallower slopes.
We investigate the large-scale influence of outflows from AGNs in enriching the IGM with metals in a cosmological context. We combine cosmological simulations of large scale structure formation with a detailed model of metal enrichment, in which outflows expand anisotropically along the direction of least resistance, distributing metals into the IGM. The metals carried by the outflows are generated by two separate stellar populations: stars located near the central AGN, and stars located in the greater galaxy. Using this algorithm, we performed a series of 5 simulations of the propagation of AGN-driven outflows in a cosmological volume of size (128/h Mpc)^3 in a Lambda-CDM universe, and analyze the resulting metal enrichment of the IGM. We found that the metallicity induced in the IGM is greatly dominated by AGNs having bolometric luminosity L > 10^9 L_sun, sources with 10^8 < L / L_sun < 10^9 having a negligible contribution. Our simulations produced an average IGM metallicity of [O/H] = -5 at z = 5.5, which then rises gradually, and remains relatively flat at a value [O/H] = -2.8 between z = 2 and z = 0. The ejection of metals from AGN host galaxies by AGN-driven outflows is found to enrich the IGM to > 10 - 20% of the observed values, the number dependent on redshift. The enriched IGM volume fractions are small at z > 3, then rise rapidly to the following values at z = 0: 6 - 10% of the volume enriched to [O/H] > -2.5, 14 - 24% volume to [O/H] > -3, and 34 - 45% volume to [O/H] > -4. At z > 2, there is a gradient of the induced enrichment, the metallicity decreasing with increasing IGM density, enriching the underdense IGM to higher metallicities, a trend more prominent with increasing anisotropy of the outflows. This can explain observations of metal-enriched low-density IGM at z = 3 - 4.
The galaxy NGC2770 hosted two core-collapse supernova explosions, SN2008D and SN2007uy, within 10 days of each other and 9 years after the first supernova of the same type, SN1999eh, was found in that galaxy. In particular SN2008D attracted a lot of attention due to the detection of an X-ray outburst, which has been hypothesized to be caused by either a (mildly) relativistic jet or the supernova shock breakout. We present an extensive study of the radio emission from SN2008D and SN2007uy: flux measurements with the Westerbork Synthesis Radio Telescope and the Giant Metrewave Radio Telescope, covering ~600 days with observing frequencies ranging from 325 MHz to 8.4 GHz. The results of two epochs of global Very Long Baseline Interferometry observations are also discussed. We have examined the molecular gas in the host galaxy NGC2770 with the Arizona Radio Observatory 12-m telescope, and present the implications of our observations for the star formation and seemingly high SN rate in this galaxy. Furthermore, we discuss the near-future observing possibilities of the two SNe and their host galaxy at low radio frequencies with the Low Frequency Array.
Cosmological observations indicate that our universe is flat and dark energy (DE) dominated at present. The luminosity distance plays an important role in the investigation of the evolution and structure of the universe. Nevertheless, the evaluation of the luminosity distance d_L is associated computationally heavy numerical quadratures in practice. In this Letter we find a series solution of the luminosity distance in a spatially flat LCDM cosmological model. And it is further shown that the series solution has a relative error of less than 0.36% for any relative parameter \beta (\beta = Omega_m / Omega_L) from zero to four, i.e. 0.2 < Omega_L < 1 and redshift z > 0.1 when the order of the series is n = 100.
We propose a simple model for dark energy useful for comparison with observations.This is based on the idea that dark energy and inflation should be caused by exactly the same physical process. Linde's simple chaotic inflation V=\frac{1}{2}m^{2}\phi^{2} produces values of n_{s}=0.967 and r=0.13 which are consistent with the WMAP 1{\sigma} error bars. We therefore propose V=\frac{1}{2}m_{2}^{2}\phi_{2}^{2}+\frac{1}{2}m_{1}^{2}\phi_{1}^{2} with m_{1}\sim10^{-5} and m_{2}\leq10^{-60}. The fine tuning problem is thus only half as bad as if one wanted dark energy to be produced by a constant V_{0}\sim10^{-120}. For comparison, neutrino masses are of order 10^{-29}. The field \phi_{1} drives inflation and has damped by now (\phi_{1,0}=0), while \phi_{2} in slow roll produces dark energy with values today of \delta w_{0}\equiv w_{0}+1\approx4/(3\phi_{2,0}^{2}+2). Our numerical results are well fit by \delta w(z)\approx\delta w_{0}\left(H_{0}/H(z)\right)^{2}. This should be true in any slow roll inflation. Our potential can be easily realized in N-flation models with many fields. This model is easily falsifiable by upcoming experiments-for example, if Linde's chaotic inflation is ruled out. But if r values consistent with Linde's chaotic inflation are detected then one should take this model seriously indeed.
We have selected a sample of 30 normal (non-cD) early type galaxies, for all of which optical spectroscopy is available, and which have been observed with Chandra to a depth such to insure the detection of bright low-mass X-ray binaries (LMXBs) with Lx>1e38 erg/s. This sample includes a larger fraction of gas-poor galaxies than previously studied samples, and covers a wide range of stellar luminosity, velocity dispersion, GC specific frequency, and stellar age. We derive X-ray luminosities (or upper limits) from the different significant X-ray components of these galaxies: nuclei, detected and undetected LMXBs, coronally active binaries (ABs), cataclysmic variables (CVs), and hot gas. The ABs and CVs contribution is estimated from the Lx-LK scaling relation of M31 and M32. The contribution of undetected LMXBs is estimated both by fitting the spectra of the unresolved X-ray emission and by extrapolating the LMXB X-ray luminosity function. The results for the nuclei are consistent with those discussed by Pellegrini (2010). We derive a revised scaling relation between the integrated X-ray luminosity of LMXBs in a galaxy and the LK luminosity of the host galaxy: Lx(LMXB)/LK ~ 1e29 erg s-1 LK-1 with 50% 1sigma rms; moreover, we also obtain a tighter LX(LMXB)/LK - SN relation than previously published. We revisit the relations between hot gas content and other galaxy parameters. finding a steeper LX(gas)-LK relation with larger scatter than reported in the literature. We find a positive correlation between the luminosity and temperature of the hot ISM, significantly tighter than reported by earlier studies.[abridged]
Context: The baryonic dark matter dominating the structures of galaxies is widely considered as mysterious, but hints for it have been in fact detected in several astronomical observations at optical, infrared, and radio wavelengths. We call attention to the nature of galaxy merging, the observed rapid microlensing of a quasar, the detection of "cometary knots" in planetary nebulae, and the Lyman-alpha clouds as optical phenomena revealing the compact objects. Radio observations of "extreme scattering events" and "parabolic arcs" and microwave observations of "cold dust cirrus" clouds are observed at 15 - 20 K temperatures are till now not considered in a unifying picture. Aims: The theory of gravitational hydrodynamics predicts galactic dark matter arises from Jeans clusters that are made up of almost a trillion micro brown dwarfs (mBDs) of earth weight. It is intended to explain the aforementioned anomalous observations and to make predictions within this framework. Methods: We employ analytical isothermal modeling to estimate various effects. Results: Estimates of their total number show that they comprise enough mass to constitute the missing baryonic matter. Mysterious radio events are explained by mBD pair merging in the Galaxy. The "dust" temperature of cold galaxy halos arises from a thermostat setting due to a slow release of latent heat at the 14 K gas to solid transition at the mBD surface. The proportionality of the central black hole mass of a galaxy and its number of globular clusters is explained. The visibility of an early galaxy at redshift 8.6 is obvious with most hydrogen locked up in mBDs. Conclusions: Numerical simulations of various steps would further test the approach. It looks promising to redo MACHO searches against the Magellanic clouds.
During a synoptic survey of the North American Nebula region, the Palomar Transient Factory (PTF) detected an optical outburst (dubbed PTF10nvg) associated with the previously unstudied flat or rising spectrum infrared source IRAS 20496+4354. The PTF R-band light curve reveals that PTF10nvg brightened by more than 5 mag during the current outburst, rising to a peak magnitude of R~13.5 in 2010 Sep. Follow-up observations indicate PTF10nvg has undergone a similar ~5 mag brightening in the K band, and possesses a rich emission-line spectrum, including numerous lines commonly assumed to trace mass accretion and outflows. Many of these lines are blueshifted by ~175 km/s from the North American Nebula's rest velocity, suggesting that PTF10nvg is driving an outflow. Optical spectra of PTF10nvg show several TiO/VO bandheads fully in emission, indicating the presence of an unusual amount of dense (> 10^10 cm^-3), warm (1500-4000 K) circumstellar material. Near-infrared spectra of PTF10nvg appear quite similar to a spectrum of McNeil's Nebula/V1647 Ori, a young star which has undergone several brightenings in recent decades, and 06297+1021W, a Class I protostar with a similarly reach near--infrared emission line spectrum. While further monitoring is required to fully understand this event, we conclude that the brightening of PTF10nvg is indicative of enhanced accretion and outflow in this Class-I-type protostellar object, similar to the behavior of V1647 Ori in 2004-2005.
We study non-linear contributions to the power spectrum of the curvature perturbation on super-horizon scales, produced during slow-roll inflation driven by a canonical single scalar field. We find that on large scales the linear power spectrum completely dominates and leading non-linear corrections remain totally negligible, indicating that we can safely rely on linear perturbation theory to study inflationary power spectrum. We also briefly comment on the infrared and ultraviolet behaviour of the non-linear corrections.
We present a detailed light curve analysis of publicly available V band observations of 62 binary stars, mostly contact binaries, obtained by the All Sky Automated Survey (ASAS)-3 project between 2000 and 2009. Eclipsing binaries are important astronomical targets for determining the physical parameters of component stars from the geometry. They provide an independent direct method of measuring the radii of stars. We improved the ASAS determined periods, ephemeris and obtained the Fourier parameters from the phased light curves of these 62 stars. These Fourier parameters were used for preliminary classification of the stars in our sample. The phased light curves were then analysed with the aid of the Wilson-Devinney light curve modelling technique in order to obtain various geometrical and physical parameters of these binaries. The spectroscopic mass ratios as determined from the the radial velocity measurements available in the literature were used as one of the inputs to the light curve modelling. Thus reliable estimations of parameters of these binaries were obtained with combined photometric and spectroscopic data and error estimates were made using the heuristic scan method.
Thermal conduction between a cool accretion disk and a hot inner corona can result in either evaporation of the disk or condensation of the hot corona. At low mass accretion rates, evaporation dominates and can completely remove the inner disk. At higher mass accretion rates, condensation becomes more efficient in the very inner regions, so that part of the mass accretes via a weak (initially formed) inner disk which is separated from the outer disk by a fully evaporated region at mid radii. At still higher mass accretion rates, condensation dominates everywhere, so there is a continuous cool disk extending to the innermost stable circular orbit. We extend these calculations by including the effect of irradiation by the hot corona on the disk structure. The flux which is not reflected is reprocessed in the disk, adding to the intrinsic thermal emission from gravitational energy release. This increases the seed photons for Compton cooling of the hot corona, enhancing condensation of the hot flow and re-inforcing the residual inner disk rather than evaporating it. Our calculations confirm that a residual inner disk can co-exist with a hard, coronally dominated, spectrum over a range of $0.006<\dot m<0.016$ (for $\alpha=0.2$). This provides an explanation for the weak thermal component seen recently in the low/hard state of black hole X-ray binary systems.
Energy loss through optically thin radiative cooling plays an important part in the evolution of astrophysical gas dynamics and should therefore be considered a necessary element in any numerical simulation. Although the addition of this physical process to the equations of hydrodynamics is straightforward, it does create numerical challenges that have to be overcome in order to ensure the physical correctness of the simulation. First, the cooling has to be treated (semi-)implicitly, owing to the discrepancies between the cooling timescale and the typical timesteps of the simulation. Secondly, because of its dependence on a tabulated cooling curve, the introduction of radiative cooling creates the necessity for an interpolation scheme. In particular, we will argue that the addition of radiative cooling to a numerical simulation creates the need for extremely high resolution, which can only be fully met through the use of adaptive mesh refinement.
Aims. We report on a detailed study of the optical afterglow of GRB 061121 with our original time-series photometric data. In conjunction with X-ray observations, we discuss the origin of its optical and X-ray afterglows. Methods. We observed the optical afterglow of Swift burst GRB 061121 with the Kanata 1.5-m telescope at Higashi-Hiroshima Observatory. Our observation covers a period just after an X-ray plateau phase. We also performed deep imaging with the Subaru telescope in 2010 in order to estimate the contamination of the host galaxy. Results. In the light curve, we find that the optical afterglow also exhibited a break as in the X-ray afterglow. However, our observation suggests a possible hump structure or a flattening period before the optical break in the light curve. There is no sign of such a hump in the X-ray light curve. Conclusions. This implies that the emitting region of optical was distinct from that of X-rays. The hump in the optical light curve was possibly caused by the passage of the typical frequency of synchrotron emission from another forward shock distinct from the early afterglow. The observed decay and spectral indices are inconsistent with the standard synchrotron-shock model. Hence, the observation requires a change in microphysical parameters in the shock region or a prior activity of the central engine. Alternatively, the emission during the shallow decay phase may be a composition of two forward shock emissions, as indicated by the hump structure in the light curve.
We investigate the propagation of MHD waves in a homogenous, magnetized plasma in a weakly stratified atmosphere, representing hot coronal loops. In most of earlier studies a time-independent equilibrium is considered. Here we abandon this restriction and allow the equilibrium to develop as function of time. In particular, the background plasma is assumed to be cooling due to thermal conduction. The cooling is assumed to be on a time scale greater than the characteristic travel times of the perturbations. We investigate the influence of cooling of the background plasma on the properties of magneto-acoustic waves. The MHD equations are reduced to a 1-D system modelling magneto-acoustic modes progressing along a dynamically cooling coronal loop. A time dependent dispersion relation which describes the propagation of the magneto-acoustic waves is derived by using the WKB theory. An analytic solution for the time-dependent amplitude of waves is obtained and the method of characteristics is used to find an approximate analytical solution. Numerical calculations are applied to the analytically derived solutions to obtain further insight into the behavior of the MHD waves in a system with variable, time-dependent background. The results show that there is a strong damping of MHD waves that can be linked to the widely observed damping of hot coronal loop oscillations. The damping also appears to be independent of position along the loop. Studies of MHD wave behaviour in time-dependent background seem to be a fundamental and very important next step in developing MHD wave theory applicable to a wide range in solar physics.
Millisecond x-ray pulsars have weak magnetic dipole moments of $\sim 10^{16}$\,T\,m$^3$ compared to ordinary X-ray pulsars with dipole moments of $10^{20}$\,T\,m$^3$. For this reason a surrounding accretion disc can extend closer to the neutron star, and thus reach a higher temperature, at which the opacity is dominated by electron scattering and radiation pressure is strong. We compute the self-similar structure of such a geometrically thin axisymmetric accretion disc with an internal dynamo. Such models produce significantly stronger torques on the neutron star than models without dynamos, and can explain the strong spin variations in some millisecond X-ray pulsars.
New grids of Atlas9 models have been calculated using revised convection parameters and updated opacity-distribution functions, for chemical compositions intended to be representative of solar, [M/H] = +0.3, +0.5, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) abundances. The grids cover T(eff) = 3.5-50kK, from log(g) = 5.0 to the effective Eddington limit. Limb-darkening coefficients and synthetic photometry are presented in the UBVRIJHKLM, uvby, ugriz, WFCAM, Hipparcos/Tycho, and Kepler passbands for these models, and for Castelli's comparable `new-ODF' grids. Flux distributions are given for the new models. The sensitivity of limb-darkening coefficients to the adopted physics is illustrated.
Population III stars first form in dark matter halos with masses around 10^6 Msun. By definition, they are metal-free, and their protostellar collapse is driven by molecular hydrogen cooling in the gas-phase, leading to a massive characteristic mass ~100 Msun and suppressed fragmentation. Population II stars with lower characteristic masses form when the star-forming gas reaches a critical metallicity of 10^{-6} - 10^{-3.5} Zsun, depending on whether dust cooling is important. We present adaptive mesh refinement radiation hydrodynamics simulations that follows the transition from Population III to II star formation. We model stellar radiative feedback with adaptive ray tracing. A top-heavy initial mass function for the Population III stars is considered, resulting in a plausible distribution of pair-instability supernovae and associated metal enrichment. We find that the gas fraction recovers from 5 percent to nearly the cosmic fraction in halos with merger histories rich in halos above 10^7 Msun. A single pair-instability supernova is sufficient to enrich the host halo to a metallicity floor of 10^{-3} Zsun and to transition to Population II star formation. This provides a natural explanation for the observed floor on damped Lyman alpha (DLA) systems metallicities reported in the literature, which is of this order. We find that stellar metallicities do not necessarily trace stellar ages, as mergers of halos with established stellar populations can create superpositions of t-Z evolutionary tracks. A bimodal metallicity distribution is created after a starburst occurs when the halo can cool efficiently through atomic line cooling.
Cosmic ray antiprotons provide an important probe for the study of cosmic ray propagation in the interstellar space and to investigate the existence of Galactic dark matter. The ARGO-YBJ experiment is observing the Moon shadow with high statistical significance at an energy threshold of a few hundred GeV. Using all the data collected until November 2009, we set two upper limits on the antip/p flux ratio: 5% at an energy of 1.4 TeV and 6% at 5 TeV with a confidence level of 90%. In the few-TeV range the ARGO-YBJ results are the lowest available, useful to constrain models for antiproton production in antimatter domains.
A new mechanism for the formation of cometary tails behind dense clouds or globules is discussed. Numerical hydrodynamical models show that when a dense shell of swept-up matter overruns a cloud, material in the shell is focussed behind the cloud to form a tail. This mode of tail formation is completely distinct from other methods, which involve either the removal of material from the cloud, or shadowing from a strong, nearby source of ionization. This mechanism is relevant to the cometary tails seen in planetary nebulae and to the interaction of superbubble shells with dense clouds.
In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, $G\mu$, a simulated pure Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with $G\mu\gtrsim 4\times 10^{-9}$ in the simulated map without instrumental noise and the resolution $R=1'$ could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to $G\mu\gtrsim 5.8\times 10^{-9}$.
In recent years the possibility of measuring the temporal change of radial and transverse position of sources in the sky in real time have become conceivable thanks to the thoroughly improved technique applied to new astrometric and spectroscopic experiments, leading to the research domain we call Real-time cosmology. We review for the first time great part of the work done in this field, analysing both the theoretical framework and some endeavor to foresee the observational strategies and their capability to constrain models. We firstly focus on real time measurements of the overall redshift drift and angular separation shift in distant source, able to trace background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper acceleration in clustered systems and therefore the gravitational potential. The last two sections are devoted to the short time future change of the cosmic microwave background, as well as to the temporal shift of the temperature anisotropy power spectrum and maps. We conclude revisiting in this context the effort made to forecast the power of upcoming experiments like CODEX, GAIA and PLANCK in providing these new observational tools.
Recent observational results provide possible evidence that binary black holes (BBHs) exist in the center of giant galaxies and may merge to form a supermassive black hole in the process of their evolution. We first detected a periodic flux variation on a cycle of $93\pm1$ days from the 3-mm monitor observations of a giant elliptical galaxy \object{3C 66B} for which an orbital motion with a period of $1.05\pm0.03$ years had been already observed. The detected signal period being shorter than the orbital period can be explained by taking into consideration the Doppler-shifted modulation due to the orbital motion of a BBH. Assuming that the BBH has a circular orbit and that the jet axis is parallel to the binary angular momentum, our observational results demonstrate the presence of a very close BBH that has the binary orbit with an orbital period of $1.05\pm0.03$ years, an orbital radius of $(3.9\pm1.0) \times 10^{-3}$ pc, an orbital separation of $(6.1^{+1.0}_{-0.9}) \times 10^{-3}$ pc, the larger black hole mass of $(1.2^{+0.5}_{-0.2}) \times 10^9$ $M_{\sun}$, and the smaller black hole mass of $(7.0^{+4.7}_{-6.4}) \times 10^8$ $M_{\sun}$. The BBH decay time of $(5.1^{+60.5}_{-2.5})\times 10^2$ years provides evidence for the occurrence of black hole mergers. This Letter will demonstrate the interesting possibility of black hole collisions to form a supermassive black hole in the process of evolution, one of the most spectacular natural phenomena in the universe.
In this concise, albeit subjective review of structure formation, I shall introduce the cosmological standard model and its theoretical and observational underpinnings. I will focus on recent results and current issues in theoretical cosmology, in particular in cosmological perturbation theory and its applications.
HD 46375 is known to host a Saturn-like exoplanet orbiting at 0.04 AU from its host star. Stellar light reflected by the planet was tentatively identified in the 34-day CoRoT run acquired in October-November 2008. We constrain the properties of the magnetic field of HD 46375 based on spectropolarimetric observations with the NARVAL spectrograph at the Pic du Midi observatory. In addition, we use a high-resolution NARVAL flux spectrum to contrain the atmospheric parameters. With these constraints, we perform an asteroseismic analysis and modelling of HD 46375 using the frequencies extracted from the CoRoT light curve. We used Zeeman Doppler imaging to reconstruct the magnetic map of the stellar surface. In the spectroscopic analysis we fitted isolated lines using 1D LTE atmosphere models. This analysis was used to constrain the effective temperature, surface gravity, and chemical composition of the star. To extract information about the p-mode oscillations, we used a technique based on the envelope autocorrelation function (EACF). From the Zeeman Doppler imaging observations, we observe a magnetic field of ~5 gauss. From the spectral analysis, HD 46375 is inferred to be an unevolved K0 type star with high metallicity [Fe/H]=+0.39. Owing to the relative faintness of the star (m_hip=8.05), the signal-to-noise ratio is too low to identify individual modes. However, we measure the p-mode excess power and large separation Delta nu_0=153.0 +/- 0.7 muHz. We are able do constrain the fundamental parameters of the star thanks to spectrometric and seismic analyses. We conclude that HD 46375 is similar to a young version of Alpha-CenB. This work is of special interest because of its combination of exoplanetary science and asteroseismology, which are the subjects of the current Kepler mission and the proposed PLATO mission.
The energy spectrum, composition and arrival directions of ultrahigh energy cosmic rays (UHECRs) with energy above the cosmic ray ankle, measured by the Pierre Auger Observatory, are inconsistent if their origin is assumed to be extragalactic. Their observed properties, however, are those expected from UHECRs accelerated by the highly relativistic jets emitted in Galactic gamma ray bursts, most of which are beamed away from Earth. If this alternative interpretation is correct, the observed break in the energy spectrum of UHECRs around 50 EeV is not the Greisen-Zatsepin-Kuzmin cutoff but the energy threshold for free escape of ultrahigh energy iron cosmic rays from the Galaxy. Above their free-escape threshold-energy, UHECR nuclei should point back to their Galactic sources or their remnants.
We investigate the asteroseismology of two solar-like targets as observed with the CoRoT satellite, with particular attention paid to the mode fitting. HD 181420 and HD 49933 are typical CoRoT solar-like targets (156 and 60-day runs). The low signal-to-noise ratio (SNR) of about 3-10 prevents us from unambiguously identifying the individual oscillation modes. In particular, convergence problems appear at the edges of the oscillation spectrum. HD 181420 and HD 49933 are typical CoRoT solar-like targets (156 and 60-day runs). The low signal-to-noise ratio (SNR) of about 3-10 prevents us from unambiguously identifying the individual oscillation modes. In particular, convergence problems appear at the edges of the oscillation spectrum. We apply a Bayesian approach to the analysis of these data. We compare the global fitting of the power spectra of this time series, obtained by the classical maximum likelihood (MLE) and the maximum a posteriori (MAP) estimators. We examine the impact of the choice of the priors upon the fitted parameters. We also propose to reduce the number of free parameters in the fitting, by replacing the individual estimate of mode height associated with each overtone by a continuous function of frequency (Gaussian profile). The MAP appears as a powerful tool to constrain the global fits, but it must be used carefully and only with reliable priors. The mode width of the stars increases with the frequency over all the oscillation spectrum.
We suggest that three-body chemistry may occur in warm high density gas evaporating in transient co\textendash desorption events on interstellar ices. Using a highly idealised computational model we explore the chemical conversion from simple species of the ice to more complex species containing several heavy atoms, as a function of density and of adopted three body rate coefficients. We predict that there is a wide range of densities and rate coefficients in which a significant chemical conversion may occur. We discuss the implications of this idea for the astrochemistry of hot cores.
Solar light gets scattered at cloud top level in Venus' atmosphere, in the visible range, which corresponds to the altitude of 67 km. We present Doppler velocity measurements performed with the high resolution spectrometer MTR of the Solar telescope THEMIS (Teide Observatory, Canary Island) on the sodium D2 solar line (5890 \AA). Observations lasted only 49 min because of cloudy weather. However, we could assess the instrumental velocity sensitivity, 31 m/s per pixel of 1 arcsec, and give a value of the amplitude of zonal wind at equator at 151 +/- 16 m/s.
The possible role of magneto-rotational instability (MRI) and its driven MHD turbulence in the solar interior is studied on the basis of the linear and nonlinear theories coupling with physical parameters, providing solar rotation profile inverted from the helioseismic observation and a standard model for the internal structure of the sun. We find that the MRI venue is confined to the higher-latitude tachocline and lower-latitude near-surface shear layer. It is especially interesting that the MRI-active region around the tachocline closely overlaps with the area indicating a steep entropy rise which is required from the thermal wind balance in the sun. This suggests that the MRI-driven turbulence plays a crucial role in maintaining the thermal wind balance in the sun via the exceptional turbulent heating and equatorward angular momentum transports. The warm pole existing around the tachocline might be a natural outcome of the turbulent activities energized by the MRI.
Ap star magnetism is often attributed to fossil magnetic fields which have not changed much since the pre-main-sequence epoch of the stars. Stable magnetic field configurations are known which could persist probably for the entire main-sequence life of the star, but they may not show the complexity and diversity exhibited by the Ap stars observed. We suggest that the Ap star magnetism is not a result of stable configurations, but is the result of an instability based on strong toroidal magnetic fields buried in the stars. The highly nonaxisymmetric remainders of the instability are reminiscent of the diversity of fields seen on Ap stars. The strengths of these remnant magnetic fields is actually between a few per cent up to considerable fractions of the internal toroidal field; this means field strengths of the order of kGauss being compatible with what is observed. The magnetic fields emerge at the surface rather quickly; rough estimates deliver time-scales of the order of a few years. Since rotation stabilizes the instability, normal A stars may still host considerable, invisible toroidal magnetic fields.
The present work deals with the detection of phase changes in an exoplanetary system. HD 46375 is a solar analog known to host a non-transiting Saturn-mass exoplanet with a 3.0236 day period. It was observed by the CoRoT satellite for 34 days during the fall of 2008. We attempt to identify at optical wavelengths, the changing phases of the planet as it orbits its star. We then try to improve the star model by means of a seismic analysis of the same light curve and the use of ground-based spectropolarimetric observations. The data analysis relies on the Fourier spectrum and the folding of the time series. We find evidence of a sinusoidal signal compatible in terms of both amplitude and phase with light reflected by the planet. Its relative amplitude is Delta Fp/F* = [13.0, 26.8] ppm, implying an albedo A=[0.16, 0.33] or a dayside visible brightness temperature Tb ~ [1880,2030] K by assuming a radius R=1.1 R_Jup and an inclination i=45 deg. Its orbital phase differs from that of the radial-velocity signal by at most 2 sigma_RV. However, the tiny planetary signal is strongly blended by another signal, which we attribute to a telluric signal with a 1 day period. We show that this signal is suppressed, but not eliminated, when using the time series for HD 46179 from the same CoRoT run as a reference. This detection of reflected light from a non-transiting planet should be confirmable with a longer CoRoT observation of the same field. In any case, it demonstrates that non-transiting planets can be characterized using ultra-precise photometric lightcurves with present-day observations by CoRoT and Kepler. The combined detection of solar-type oscillations on the same targets (Gaulme et al. 2010a) highlights the overlap between exoplanetary science and asteroseismology and shows the high potential of a mission such as Plato.
We study the motion of charged test particles around a Kerr black hole immersed in the asymptotically uniform magnetic field, concluding that off-equatorial stable orbits are allowed in this system. Being interested in dynamical properties of these astrophysically relevant orbits we employ rather novel approach based on the analysis of recurrences of the system to the vicinity of its previous states. We use recurrence plots (RPs) as a tool to visualize recurrences of the trajectory in the phase space. Construction of RPs is simple and straightforward regardless of the dimension of the phase space, which is a major advantage of this approach when compared to the "traditional" methods of the numerical analysis of dynamical systems (for instance the visual survey of Poincar\'{e} surfaces of section, evaluation of the Lyapunov spectra etc.). We show that RPs and their quantitative measures (obtained from recurrence quantification analysis -- RQA) are powerful tools to detect dynamical regime of motion (regular vs. chaotic) and precisely locate the transitions between these regimes.
The census of young moving groups in the solar neighborhood is significantly incomplete in the low-mass regime. We have developed a new selection process to find these missing members based on the GALEX All-Sky Imaging Survey (AIS). For stars with spectral types later than K5 (R - J >= 1.5) and younger than ~300 Myr, we show that near-UV (NUV) and far-UV (FUV) emission is greatly enhanced above the quiescent photosphere, analogous to the enhanced X-ray emission of young low-mass stars seen by ROSAT but detectable to much larger distances with GALEX. By combining GALEX data with optical (HST Guide Star Catalog) and near-IR (2MASS) photometry, we identified an initial sample of 34 young M dwarf candidates in a 1000 sq. deg. region around the 10-Myr TW Hydra Association (TWA). Low-resolution spectroscopy of 30 of these found 16 which had H_alpha in emission, which were then followed-up at high resolution to search for spectroscopic evidence of youth and to measure their radial velocities. Four objects have low surface gravities, photometric distances and space motions consistent with TWA, but the non-detection of Li indicates they may be too old to belong to this moving group. One object (M3.5, 93\pm19 pc) appears to be the first known accreting low-mass member of the 15-Myr Lower Centaurus Crux OB association. Two objects exhibit all the characteristics of the known TWA members, and thus we designate them as TWA 31 (M4.2, 110\pm11 pc) and TWA 32 (M6.3, 53\pm5 pc). TWA 31 shows extremely broad (447 km/s) H_alpha emission, making it the fifth member of TWA found to have ongoing accretion. TWA 32 is resolved into a 0.6" binary in Keck laser guide star adaptive optics imaging.
Terrestrial planets, with silicate mantles and metallic cores, are likely to obtain water and carbon compounds during accretion. Here I examine the conditions that allow early formation of a surface water ocean (simultaneous with cooling to clement surface conditions), and the timeline of degassing the planetary interior into the atmosphere. The greatest fraction of a planet's initial volatile budget is degassed into the atmosphere during the end of magma ocean solidification, leaving only a small fraction of the original volatiles to be released into the atmosphere through later volcanism. Rocky planets that accrete with water in their bulk mantle have two mechanisms for producing an early water ocean: First, if they accrete with at least 1 to 3 mass% of water in their bulk composition, liquid water may be extruded onto the planetary surface at the end of magma ocean solidification. Second, at initial water contents as low as 0.01 mass% or lower, during solidification a massive supercritical fluid and steam atmosphere is produced that collapses into a water ocean upon cooling. The low water contents required for this process indicate that rocky super-Earth exoplanets may be expected to commonly produce water oceans within tens to hundreds of millions of years of their last major accretionary impact, through collapse of their atmosphere.
We review the various theories which have been proposed along the years to explain the origin of the stellar initial mass function. We pay particular attention to four models, namely the competitive accretion and the theories based respectively on stopped accretion, MHD shocks and turbulent dispersion. In each case, we derive the main assumptions and calculations that support each theory and stress their respective successes and failures or difficulties.
Recent publications claim that there is no convincing evidence for measurements of the baryonic acoustic (BAO) feature in galaxy samples using either monopole or radial information. Different claims seem contradictory: data is either not consistent with the BAO model or data is consistent with both the BAO model and featureless models without BAO. We investigate this point with a set of 216 realistic mock galaxy catalogs extracted from MICE7680, one of the largest volume dark matter simulation run to date, with a volume of 1300 cubical gigaparsecs. Our mocks cover similar volume, densities and bias as the real galaxies and provide 216 realizations of the Lambda or w=-1 Cold Dark Matter (wCDM) BAO model. We find that only 20% of the mocks show a statistically significant (3 sigma) preference for the true (input) wCDM BAO model as compared to a featureless (non-physical) model without BAO. Thus the volume of current galaxy samples is not yet large enough to claim that the BAO feature has been detected. Does this mean that we can not locate the BAO position? Using a simple (non optimal) algorithm we show that in 50% (100%) of the mocks we can find the BAO position within 5% (20%) of the true value. These two findings are not in contradiction: the former is about model selection, the later is about parameter fitting within a model. We conclude that current monopole and radial BAO measurements can be used as standard rulers if we assume wCDM type of models.
Around the world, several scientific projects share the interest of a global network of small Cherenkov telescopes for monitoring observations of the brightest blazars - the DWARF network. A small, ground based, imaging atmospheric Cherenkov telescope of last generation is intended to be installed and operated in Romania as a component of the DWARF network. To prepare the construction of the observatory, two support projects have been initiated. Within the framework of these projects, we have assessed a number of possible sites where to settle the observatory. In this paper we submit a brief report on the general characteristics of the best four sites selected after the local infrastructure, the nearby facilities and the social impact criteria have been applied.
Star formation rate and accummulated stellar mass are two fundamental physical quantities that describe the evolutionary state of a forming galaxy. Two recent attempts to determine the relationship between these quantities, by interpreting a sample of star-forming galaxies at redshift of z~4, have led to opposite conclusions. We use a model galaxy population to investigate possible causes for this discrepancy and conclude that minor errors in the conversion from observables to physical quantities can lead to major misrepresentation when applied without awareness of sample selection. We also investigate, in a general way, the physical origin of the correlation between star formation rate and stellar mass within hierarchical galaxy formation theory.
The Sloan Digital Sky Survey III/Apache Point Observatory Galactic Evolution Experiment (SDSS-III/APOGEE) is a large-scale spectroscopic survey of Galactic stars and star clusters. The SDSS-III/APOGEE survey is designed to produce high-S/N, R = 27,500-31,000 spectra that cover a wavelength range of 1.51 to 1.68 microns. By utilizing APOGEE's excellent kinematics (error <= 0.5 km/s) and abundances (errors ~ 0.1 dex), we will be able to study star cluster kinematics and chemical properties in detail. Over the course of the 3-year survey beginning in 2011, APOGEE will target 25-30 key open and globular clusters. In addition, the large area coverage of the SDSS focal plane will also allow us to target stars in 100-200 additional star clusters during the main survey observations. We present the strength of APOGEE for both open and globular star cluster studies and the methods of identifying probable clusters members utilizing 2MASS and IRAC/WISE data.
Einstein-aether theory is general relativity coupled to a dynamical, unit timelike vector. If this vector is restricted in the action to be hypersurface orthogonal, the theory is identical to the IR limit of the extension of Horava gravity proposed by Blas, Pujol\`{a}s and Sibiryakov. Hypersurface orthogonal solutions of Einstein-aether theory are solutions to the IR limit of this theory, hence numerous results already obtained for Einstein-aether theory carry over.
We find the canonical and Belinfante energy-momentum tensors and their nonzero traces. We note that the dilatation symmetry is broken and the divergence of the dilatation current is proportional to the topological mass of the gauge field. It was demonstrated that the gauge field possesses the `scale dimensionality' d=1/2. Maxwell - Chern - Simons topologically massive gauge field theory in 2+1 dimensions is formulated in the first-order formalism. It is shown that 6x6-matrices of the relativistic wave equation obey the Duffin - Kemmer - Petiau algebra. The Hermitianizing matrix of the relativistic wave equation is given. The projection operators extracting solutions of field equations for states with definite energy-momentum and spin are obtained. The 5x5-matrix Schrodinger form of the equation is derived after the exclusion of non-dynamical components, and the quantum-mechanical Hamiltonian is obtained. Projection operators extracting physical states in the Schrodinger picture are found.
In this article we give a brief review of the fundamental physics that can be done with the future space-based gravitational wave detector LISA. This includes detection of gravitational wave bursts coming from cosmic strings, measuring a stochastic gravitational wave background, mapping spacetime around massive compact objects in galactic nuclei with extreme-mass-ratio inspirals and testing the predictions of General Relativity for the strong dynamical fields of inspiralling binaries. We give particular attention to new results which show the capability of LISA to constrain cosmological parameters using observations of coalescing massive Black Hole binaries.
The high energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high energy neutrino telescopes. Currently there are several approaches which predict different behaviours for its magnitude for ultrahigh energies. In this paper we present a comparison between the predictions based on linear DGLAP dynamics, non-linear QCD and in the imposition of a Froissart-like behaviour at high energies. In particular, we update the predictions based on the Color Glass Condensate, presenting for the first time the results for $\sigma_{\nu N}$ using the solution of the running coupling Balitsky-Kovchegov equation. Our results demonstrate that the current theoretical uncertainty for the neutrino-nucleon cross section reaches a factor three for neutrinos energies around $10^{11}$ GeV and increases to a factor five for $10^{13}$ GeV.
Links to: arXiv, form interface, find, astro-ph, recent, 1011, contact, help (Access key information)