A generic prediction in the paradigm of weakly interacting dark matter is the production of relativistic particles from dark matter pair-annihilation in regions of high dark matter density. Ultra-relativistic electrons and positrons produced in the center of the Galaxy by dark matter annihilation should produce a diffuse synchrotron emission. While the spectral shape of the synchrotron dark matter haze depends on the particle model (and secondarily on the galactic magnetic fields), the morphology of the haze depends primarily on (1) the dark matter density distribution, (2) the galactic magnetic field morphology, and (3) the diffusion model for high-energy cosmic-ray leptons. Interestingly, an unidentified excess of microwave radiation with characteristics similar to those predicted by dark matter models has been claimed to exist near the galactic center region in the data reported by the WMAP satellite, and dubbed the "WMAP haze". In this study, we carry out a self-consistent treatment of the variables enumerated above, enforcing constraints from the available data on cosmic rays, radio surveys and diffuse gamma rays. We outline and make predictions for the general morphology and spectral features of a "dark matter haze" and we compare them to the WMAP haze data. We also characterize and study the spectrum and spatial distribution of the inverse Compton emission resulting from the same population of energetic electrons and positrons. We point out that the spectrum and morphology of the radio emission at different frequencies is a powerful diagnostics to test whether a galactic synchrotron haze indeed originates from dark matter annihilation.
We present high resolution (R=55,000) optical spectra obtained with MIKE on the 6.5 m Magellan Clay Telescope as well as Spitzer MIPS photometry and IRS low resolution (R~60) spectroscopy of the close (14 AU separation) binary, HD 101088, a member of the ~12 Myr old southern region of the Lower Centaurus Crux (LCC) subgroup of the Scorpius-Centaurus OB association. We find that the primary and/or secondary is accreting from a tenuous circumprimary and/or circumsecondary disk despite the apparent lack of a massive circumbinary disk. We estimate a lower limit to the accretion rate of > 1x10^-9 solar masses per year, which our multiple observation epochs show varies over a timescale of months. The upper limit on the 70 micron flux allows us to place an upper limit on the mass of dust grains smaller than several microns present in a circumbinary disk of 0.16 moon masses. We conclude that the classification of disks into either protoplanetary or debris disks based on fractional infrared luminosity alone may be misleading.
We have detected the CO(2-1) transition from the submillimetre galaxy (SMG) LESSJ033229.4-275619 at z=4.755 using the new Compact Array Broadband Backend system on the Australian Telescope Compact Array. These data have identified a massive gas reservoir available for star formation for the first time in an SMG at z~5. We use the luminosity and velocity width (FWHM of 160 km/s) of the CO(2--1) line emission to constrain the gas and dynamical mass of Mgas~1.6x10^10 Msun and Mdyn(<2kpc)~5x10^10 (0.25/sin^2(i)) Msun, respectively, similar to that observed for SMGs at lower redshifts of z~2-4, although we note that our observed CO FWHM is a factor of ~3 narrower than typically seen in SMGs. Together with the stellar mass we estimate a total baryonic mass of Mbary~1x10^11 Msun, consistent with the dynamical mass for this young galaxy within the uncertainties. Dynamical and baryonic mass limits of high-redshift galaxies are useful tests of galaxy formation models: using the known z~4-5 SMGs as examples of massive baryonic systems, we find that their space density is consistent with that predicted by current galaxy formation models. In addition, these observations have helped to confirm that z~4-5 SMGs possess the baryonic masses and gas consumption timescales necessary to be the progenitors of the luminous old red galaxies seen at z~3. Our results provide a preview of the science that ALMA will enable on the formation and evolution of the earliest massive galaxies in the Universe.
We report on new measurements of the luminosity function (LF) and mass function (MF) of field low-mass dwarfs derived from Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6) photometry. The analysis incorporates ~15 million low-mass stars (0.1 Msun < M < 0.8 Msun), spread over 8,400 square degrees. Stellar distances are estimated using new photometric parallax relations, constructed from ugriz photometry of nearby low-mass stars with trigonometric parallaxes. We use a technique that simultaneously measures Galactic structure and the stellar LF from 7 < M_r < 16. We compare the LF to previous studies and convert to a MF using the mass-luminosity relations of Delfosse et al., 2000. The system MF, measured over -1.0 < log M/Msun < -0.1, is well-described by a log-normal distribution with Mo = 0.25 Msun. We stress that our results should not be extrapolated to other mass regimes. Our work generally agrees with prior low-mass stellar MFs and places strong constraints on future star-formation studies of the Milky Way.
We study resolution effects in numerical simulations of gas-rich and gas-poor major mergers, and show that the formation of slowly-rotating elliptical galaxies often requires a resolution that is beyond the present-day standards to be properly modelled. Our sample of equal-mass merger models encompasses various masses and spatial resolutions, ranging from about 200pc and 10^5 particles per component, typical of some recently published major merger simulations, to up to 32pc and 10^3 M_sun in simulations using 2.4 x 10^7 collisionless particles and 1.2 x 10^7 gas particles, among the highest resolutions reached so far for gas-rich major merger of massive disc galaxies. We find that the formation of fast-rotating early-type galaxies, that are flattened by a significant residual rotation, is overall correctly reproduced at all such resolutions. However, the formation of slow-rotating early-type galaxies, which have a low residual angular momentum and are supported mostly by anisotropic velocity dispersions, is strongly resolution-dependent. The evacuation of angular momentum from the main stellar body is largely missed at standard resolution, and systems that should be slow rotators are then found to be fast rotators. The effect is most important for gas-rich mergers, but is also witnessed in mergers with an absent or modest gas component. The effect is robust with respect to our initial conditions and interaction orbits, and originates in the physical treatment of the relaxation process during the coalescence of the galaxies. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of gas-rich mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated.
We report the discovery of HI 21-cm absorption towards the well-studied GHz Peaked-Spectrum source CTA 21 (4C 16.09) using the Arecibo Telescope on 2009 September 20 and 21. Recently, the frequency band between 700 and 800 MHz was temporarily opened up to radio astronomy when US TV stations were mandated to switch from analog to digital transmissions, with new frequency allocations. The redshifted HI frequency for CTA 21 falls within this band. CTA 21 has a complex radio structure on a range of scales. The innermost prominent components are separated by ~12 mas while weak diffuse emission extends for up to ~300 mas. The HI absorption profile that we find has two main components, one narrow, the other wider and blue-shifted. The total HI column density is 7.9 x 10^20 cm^-2, assuming a covering factor of unity and a spin temperature of 100 K. This HI absorption confirms the recently determined optical redshift of this faint galaxy of z ~ 0.907. We discuss this new detection in the light of HI absorption studies towards compact radio sources, and also the possibility that CTA 21 may be exhibiting multiple cycles of nuclear activity. This new detection in CTA 21 is consistent with a strong trend for detection of HI absorption in radio galaxies with evidence of episodic nuclear/jet activity.
Beginning with a geometric motivation for dark matter going back to the axioms of general relativity, we show how scalar field dark matter, which naturally forms dark matter density waves due to its wave nature, may cause the observed barred spiral pattern density waves in many disk galaxies and triaxial shapes with plausible brightness profiles in many elliptical galaxies. If correct, this would provide a unified explanation for spirals and bars in spiral galaxies and for the brightness profiles of elliptical galaxies. We compare the results of preliminary computer simulations with photos of actual galaxies.
Recent infrared spectroscopy of hot exoplanets is beginning to reveal their atmospheric composition. Deep with in the planetary atmosphere, the composition is controlled by thermochemical equilibrium. Photochemistry becomes important higher in the atmosphere, at levels above ~1 bar. These two chemistries compete between ~1-10 bars in hot Jupiter-like atmospheres, depending on the strength of the eddy mixing and temperature. HD189733b provides an excellent laboratory in which to study the consequences of chemistry of hot atmospheres. The recent spectra of HD189733b and HD209458b contain signatures of CH4, CO2, CO and H2O. Here we identify the primary chemical pathways that govern the abundances of CH4, CO2, CO and H2O in the cases of thermochemical equilibrium chemistry, photochemistry, and their combination. Our results suggest that the abundance of these species can be photochemically enhanced above or below the thermochemical equilibrium value, so some caution must be taken when assuming that an atmosphere is in strict thermochemical equilibrium.
We present results on the Soft Gamma Repeater (SGR) 0501+4516, discovered by the SWIFT Burst Alert Telescope (BAT) on 2008 August 22. More than 50 bursts were identified from this source, out of which 18 bursts had enough counts to carry out spectral analysis. We performed time-averaged spectral analysis on these 18 bursts using 8 models, among which the cut-off powerlaw and the two-blackbody models provided the best fit in the 15-150 keV energy range. The cut-off powerlaw model fit yields a mean photon index Gamma_{CPL} = 0.54+/-0.11 and a cut-off energy E_C = 19.1+/-1.8 keV for the bursts. The mean hard and soft blackbody temperatures are found to be kT_{BB_h} = 12.8+/-0.7 keV and kT_{BB_s} = 4.6+/-0.5 keV, respectively, and are anti-correlated with the square of the radii of the hard and soft emitting regions (R_{BB_h} and R_{BB_s}) as R_{BB_h}^2 $\propto$ kT^{-5.8} and R_{BB_s}^2 $\propto$ kT^{-2.7}, respectively. The soft and hard component temperatures with different indices support the idea of two distinct emitting regions with the hard component corresponding to a smaller radius and the soft component corresponding to a larger radius, which further corroborate the idea of the propagation of extraordinary (E) and ordinary (O) mode photons across the photosphere, as predicted in the magnetar model. We notice strong burst fluence-duration correlation as well as hardness ratio-duration and hardness ratio-fluence anti-correlations for the SGR 0501+4516 bursts. The burst fluences range from ~ 4.4\times10^{-9} ergs/cm^-2 to ~ 2.7\times10^{-6} ergs/cm^{-2}, consistent with those observed for typical short SGR bursts.
Linearly polarized Galactic synchrotron emission provides valuable information about the properties of the Galactic magnetic field and the interstellar magneto-ionic medium, when Faraday rotation along the line of sight is properly taken into account. We aim to survey the Galactic plane at 6 cm including linear polarization. At such a short wavelength Faraday rotation effects are in general small and the Galactic magnetic field properties can be probed to larger distances than at long wavelengths. The Urumqi 25-m telescope is used for a sensitive 6 cm survey in total and polarized intensities. WMAP K-band (22.8 GHz) polarization data are used to restore the absolute zero-level of the Urumqi U and Q maps by extrapolation. Total intensity and polarization maps are presented for a Galactic plane region of 129 degree < l < 230 degree and |b| < 5 degree in the anti-centre with an angular resolution of 9'5 and an average sensitivity of 0.6 mK and 0.4 mK Tb in total and polarized intensity, respectively. We briefly discuss the properties of some extended Faraday Screens detected in the 6 cm polarization maps. The Sino-German 6 cm polarization survey provides new information about the properties of the magnetic ISM. The survey also adds valuable information for discrete Galactic objects and is in particular suited to detect extended Faraday Screens with large rotation measures hosting strong regular magnetic fields.
We report results of the INTEGRAL Target of Opportunity observations of the transient X-ray burster XTE J1810-189. The observations were performed on April 3--6, 2008, soon after the discovery of the source and near the peak of its outburst. That time the source had a flux of about 50 mCrab and exhibited a hard Comptonized X-ray spectrum extending well above 100 keV. Being approximated by a power law with an exponetial cut-off in the broad 3--100 keV energy band it gave the average photon index $\Gamma\simeq 1.6$ and $kT_{cutoff}\simeq 67$ keV. We found only slight indications for changes in the index during the observation ($\Gamma$ first steady decreased from $\sim 2.0$ to $\sim1.3$ and then increased back to $\sim 2.0$). However the $N_{\rmn H}$ value measured by absorption in the low energy part of the spectrum changed drastically and very irregularly (from $\sim 4\times 10^{22}$ till $\sim 100\times 10^{22}$ cm$^{-2}$). There were 10 type I X-ray bursts detected from the source during these TOO observations. Assuming that the Eddington luminosity was reached during the burst with the highest peak flux we get an upper estimate for a distance to the source $D=6.4\pm0.6$ kpc. From the X-ray burst parameters we conclude that this LMXB harboures an evolved star.
We have created synthetic neutral hydrogen (HI) Galactic Plane Survey data cubes covering 90 degrees < l < 180 degrees, using a model spiral galaxy from SPH simulations and the radiative transfer code TORUS. The density, temperature and other physical parameters are fed from the SPH simulation into TORUS, where the HI emissivity and opacity are calculated before the 21-cm line emission profile is determined. Our main focus is the observation of Outer Galaxy `Perseus Arm' HI, with a view to tracing atomic gas as it encounters shock motions as it enters a spiral arm interface, an early step in the formation of molecular clouds. The observation of HI self-absorption features at these shock sites (in both real observations and our synthetic data) allows us to investigate further the connection between cold atomic gas and the onset of molecular cloud formation.
The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is discovering a large number of new hard X-ray sources, many of them being HMXBs. The identification and spectral characterization of their optical/infrared counterparts is a necessary step in undertaking a detailed study of these systems. In a previous paper, we presented spectral analyses and classifications of six newly discovered INTEGRAL sources. In this paper, we extend the analysis to IGR J16493-4348. We used the ESO/VLT ISAAC spectrograph to observe the proposed IR counterpart to the source, obtaining a Ks medium-resolution spectrum (R = 500) with a signal-to-noise ratio (S/N) >150. We classified the source by comparing with published atlases. We spectrally classified the source as a B0.5-1 supergiant and estimated its interstellar extinction. We compared the extinction derived from X-ray data with effective interstellar extinction obtained from our data, discussing the absorption component associated with the circumstellar environment.
Following an extremely interesting idea \cite{R1}, published long ago, the work function associated with the emission of ultra-relativistic electrons from magnetically deformed metallic crystal of astrophysical relevance is obtained using relativistic version of Thomas-Fermi type model. In the present scenario, surprisingly, the work function becomes anisotropic; the longitudinal part is an increasing function of magnetic field strength, whereas the transverse part diverges.
We use N-body simulations to find the effect of neutrino masses on halo properties, and investigate how the density profiles of both the neutrino and the dark matter components change as a function of the neutrino mass. We compare our neutrino density profiles with results from the N-one-body method and find good agreement. We also show and explain why the Tremaine-Gunn bound for the neutrinos is not saturated. Finally we study how the halo mass function changes as a function of the neutrino mass and compare our results with the Sheth-Tormen semi-analytic formulae. Our results are important for surveys which aim at probing cosmological parameters using clusters, as well as future experiments aiming at measuring the cosmic neutrino background directly.
In the optical, the spectrum of symbiotic binaries consists of contributions from the cool giant, symbiotic nebula and the hot star. Strong emission lines are superposed on the continuum. In this paper we introduce a simple method to extract individual components of radiation from photometric UBV magnitudes. We applied the method to classical symbiotic stars AX Per, AG Dra, AG Peg and Z And, the symbiotic novae RR Tel and V1016 Cyg and the classical nova V1974 Cyg during its nebular phase. We estimated the electron temperature and emission measure of the nebula in these systems and the V magnitude of the giant in the symbiotic objects. Our results are in a good agreement with those obtained independently by a precious modelling the UV-IR SED.
The mechanisms giving rise to diffuse radio emission in galaxy clusters, and in particular their connection with cluster mergers, are still debated. We aim to obtain new insights into the internal dynamics of the cluster Abell 2294, recently shown to host a radio halo. Our analysis is mainly based on redshift data for 88 galaxies acquired at the Telescopio Nazionale Galileo. We also use new photometric data acquired at the Isaac Newton Telescope and X-ray data from the Chandra archive. We re-estimate the redshift of the large, brightest cluster galaxy (BCG) obtaining <z>=0.1690. We estimate a quite large LOS velocity dispersion sigma_V about 1400 km/s and X-ray temperature T_X about 10 keV. Our optical and X-ray analysis detects evidence for substructure. Our results are consistent with the presence of two massive subclusters separated by a LOS rest frame velocity difference V_rf about 2000 km/s, very closely projected in the plane of sky along the SE-NW direction. The observational picture, interpreted through the analytical two-body model, suggests that Abell 2294 is a cluster merger elongated mainly in the LOS direction and catched during the bound outgoing phase, a few fractions of Gyr after the core crossing. We find Abell 2294 is a very massive cluster with a range of M=2-4 10E15 M_sun. Moreover, contradicting previous findings, our new data do exclude the presence of the H$\alpha$ emission in the spectrum of the BCG galaxy. The outcoming picture of Abell 2294 is that of a massive, quite "normal" merging cluster, as found for many clusters showing diffuse radio sources.
We propose a method to be able to decide whether the planets of CoRoT-7 are moving on mutually inclined orbits in the order of i > 10 degree. The extrasolar system CoRoT-7 is very special with respect to the closeness of the planets to the host star, which results in a fast dynamical development. It would therefore be possible to determine the change in the inclination of the innermost planet CoRoT-7b with respect to the observer after an observation of at least three years from space with the satellite CoRoT with sufficient precision. Different inclinations would cause different duration of the transit times of a planet in front of the star and would therefore give us a better knowledge of the architecture of this system. With the aid of numerical integrations we computed how inclined orbits of additional planets would change the inclination and therefore the transit duration of CoRoT-7b. If at least one additional planet would be on a slightly inclined orbit with respect to the transiting planet CoRoT-7b (i_mutual > 10 degree), after three years of space-based observation an increase of the transit duration in the order of minutes could be observed. If the inclination of the transiting planet reaches 76.1 degree, a transit of CoRoT-7b would not be observable anymore.
We report on the discovery of X-ray--emitting O-Ne-Mg-rich ejecta in the middle-aged Galactic O-rich supernova remnant Puppis A with Chandra and XMM-Newton. We use line ratios to identify a low-ionization filament running parallel to the northeastern edge of the remnant that requires supersolar abundances, particularly for O, Ne, and Mg, which we interpret to be from O-Ne-Mg-rich ejecta. Abundance ratios of Ne/O, Mg/O, and Fe/O are measured to be ~2, ~2, and <0.3 times the solar values. Our spatially-resolved spectral analysis from the northeastern rim to the western rim otherwise reveals sub-solar abundances consistent with those in the interstellar medium. The filament is coincident with several optically emitting O-rich knots with high velocities. If these are physically related, the filament would be a peculiar fragment of ejecta. On the other hand, the morphology of the filament suggests that it may trace ejecta heated by a shock reflected strongly off the dense ambient clouds near the northeastern rim.
A method based on Monte Carlo techniques is presented for evaluating thermonuclear reaction rates. We begin by reviewing commonly applied procedures and point out that reaction rates that have been reported up to now in the literature have no rigorous statistical meaning. Subsequently, we associate each nuclear physics quantity entering in the calculation of reaction rates with a specific probability density function, including Gaussian, lognormal and chi-squared distributions. Based on these probability density functions the total reaction rate is randomly sampled many times until the required statistical precision is achieved. This procedure results in a median (Monte Carlo) rate which agrees under certain conditions with the commonly reported recommended "classical" rate. In addition, we present at each temperature a low rate and a high rate, corresponding to the 0.16 and 0.84 quantiles of the cumulative reaction rate distribution. These quantities are in general different from the statistically meaningless "minimum" (or "lower limit") and "maximum" (or "upper limit") reaction rates which are commonly reported. Furthermore, we approximate the output reaction rate probability density function by a lognormal distribution and present, at each temperature, the lognormal parameters miu and sigma. The values of these quantities will be crucial for future Monte Carlo nucleosynthesis studies. Our new reaction rates, appropriate for bare nuclei in the laboratory, are tabulated in the second paper of this series (Paper II). The nuclear physics input used to derive our reaction rates is presented in the third paper of this series (Paper III). In the fourth paper of this series (Paper IV) we compare our new reaction rates to previous results.
Planet migration is the process by which a planet's orbital radius changes in time. The main agent for causing gas giant planet migration is the gravitational interaction of the young planet with the gaseous disk from which it forms. We describe the migration rates resulting from these interactions based on a simple model for disk properties. These migration rates are higher than is reasonable for planet survival. We discuss some proposed models for which the migration rates are lower. There are major uncertainties in migration rates due to a lack of knowledge about the detailed physical properties of disks. We also describe some additional forms of migration.
The distribution of chemical abundances and their variation in time are important tools to understand the chemical evolution of galaxies: in particular, the study of chemical evolution models can improve our understanding of the basic assumptions made for modelling our Galaxy and other spirals. To test a standard chemical evolution model for spiral disks in the Local Universe and study the influence of a threshold gas density and different efficiencies in the star formation rate (SFR) law on radial gradients (abundance, gas and SFR). We adopt a one-infall chemical evolution model where the Galactic disk forms inside-out by means of infall of gas, and we test different thresholds and efficiencies in the SFR. The model is scaled to the disk properties of three Local Group galaxies (the Milky Way, M31 and M33) by varying its dependence on the star formation efficiency and the time scale for the infalling gas into the disk. Using this simple model we are able to reproduce most of the observed constraints available in the literature for the studied galaxies. The radial oxygen abundance gradients and their time evolution are studied in detail. The present day abundance gradients are more sensitive to the threshold than to other parameters, while their temporal evolutions are more dependent on the chosen SFR efficiency. The most massive disks seem to have evolved faster (i.e. with more efficient star formation) than the less massive ones, thus suggesting a downsizing in star formation for spirals. The threshold and the efficiency of star formation play a very important role in the chemical evolution of spiral disks and an efficiency varying with radius can be used to regulate the star formation. The oxygen abundance gradient can steepen or flatten in time depending on the choice of this parameter
In the distant past, astronomy was often intertwined with religion into a unified cosmos. As science became a distinct cultural enterprise, astronomy has witnessed a variety of rich interactions with other fields. Mathematical statistics was stimulated in the 19th century by astronomical problems, and today astrostatistics is a small but growing cross-disciplinary field advancing methodology to address challenges in astronomical data analysis. Throughout the 20th century, astronomy became closely allied with physics such that astronomy and astrophysics are now profoundly intertwined. Physical chemistry played a major role in the identification of molecules in the Milky Way Galaxy, and astrochemistry is now an active subfield giving insights into cosmic molecular processes. The importance of cross-disciplinary interactions with engineering (for instrumentation), Earth sciences (for planetary studies), computer science (for astroinformatics) and life sciences (for astrobiology) is also growing. Cross-disciplinary research has been essential both for crucial discoveries in astronomy and for improving the quality of astronomical research. It should be fostered with increased flexibility in the training of young astronomers and with sufficient funding to nurture these fields.
The nuclear physics input used to compute the Monte Carlo reaction rates and probability density functions that are tabulated in the second paper of this series (Paper II) is presented. Specifically, we publish the input files to the Monte Carlo reaction rate code RatesMC, which is based on the formalism presented in the first paper of this series (Paper I). This data base contains overwhelmingly experimental nuclear physics information. The survey of literature for this review was concluded in November 2009.
We compare our Monte Carlo reaction rates (see Paper II of this series) to previous results that were obtained by using the classical method of computing thermonuclear reaction rates. For each reaction, the comparison is presented using two types of graphs: the first shows the change in reaction rate uncertainties, while the second displays our new results normalized to the previously recommended reaction rate. We find that the rates have changed significantly for almost all reactions considered here. The changes are caused by (i) our new Monte Carlo method of computing reaction rates (see Paper I of this series), and (ii) newly available nuclear physics information (see Paper III of this series).
We consider discs that orbit a central object and are tidally perturbed by a circular orbit companion. Such discs are sometimes subject to an eccentric instability due to the effects of certain resonances. Eccentric instabilities may be present in planetary rings perturbed by satellites, protostellar discs perturbed by planets, and discs in binary star systems. Although the basic mechanism for eccentric instability is well understood, the detailed response of a gaseous disc to such an instability is not understood. We apply a linear eccentricity evolution equation developed by Goodchild and Ogilvie. We explore how the eccentricity is distributed in such a disc and how the distribution in turn affects the instability growth rate for a range of disc properties. We identify a disc mode, termed the superhump mode, that is likely at work in the superhump binary star case. The mode results from the excitation of the fundamental free precession mode. We determine an analytic expression for the fundamental free mode precession rate that is applicable to a sufficiently cool disc. Depending on the disc sound speed and disc edge location, other eccentric modes can grow faster than the superhump mode and dominate.
Globular clusters were thought to be simple stellar populations, but recent photometric and spectroscopic evidence suggests that the clusters' early formation history was more complicated. In particular, clusters show star-to-star abundance variations, and multiple sequences in their colour-magnitude diagrams. These effects seem to be restricted to globular clusters, and are not found in open clusters or the field. In this paper, we combine the two competing models for these multiple populations and include a consideration of the effects of stellar collisions. Collisions are one of the few phenomena which occur solely in dense stellar environments like (proto-)globular clusters. We find that runaway collisions between massive stars can produce material which has abundances comparable to the observed second generations, but that very little total mass is produced by this channel. We then add the contributions of rapidly-rotating massive stars (under the assumption that massive stars are spun up by collisions and interactions), and the contribution of asymptotic giant branch stars. We find that collisions can help produce the extreme abundances which are seen in some clusters. However, the total amount of material produced in these generations is still too small (by at least a factor of 10) to match the observations. We conclude with a discussion of the additional effects which probably need to be considered to solve this particular problem.
We revisit the constraints that the non-observation of ultra-high-energy photons due to the GZK cutoff can impose on models of Lorentz violation in photon propagation, following recent work by Maccione, Liberati and Sigl [arXiv:1003.5468] that carries further an earlier analysis by the present authors (Phys. Rev. D 63,12402 (2001), [hep-th/0012216]). We argue that the GZK cutoff constraint is naturally evaded in the D-brane model of space-time foam presented recently by the present authors (Phys. Lett. B 665, 412 (2008) [arXiv:0804.3566]), in which Lorentz-violating effects on photon propagation are independent of possible effects during interactions. We also note a novel absorption mechanism that could provide a GZK-like cutoff for photons in low-scale string models.
The Eurybates family is a compact core inside the Menelaus clan, located in the L4 swarm of Jupiter Trojans. Fornasier et al. (2007) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and C-type main belt asteroids. On the basis of the visible spectra available in literature, Eurybates family's members seemed to be good candidates for having on their surfaces water/water ice or aqueous altered materials. To improve our knowledge of the surface composition of this peculiar family, we carried out an observational campaign at the Telescopio Nazionale Galileo (TNG), obtaining near-infrared spectra of 7 members. Our data show a surprisingly absence of any spectral feature referable to the presence of water, ices or aqueous altered materials on the surface of the observed objects. Models of the surface composition are attempted, evidencing that amorphous carbon seems to dominate the surface composition of the observed bodies and some amount of silicates (olivine) could be present.
We review the statistical properties of stars and brown dwarfs obtained from the first hydrodynamical simulation of star cluster formation to produce more than a thousand stars and brown dwarfs while simultaneously resolving the lowest mass brown dwarfs (those with masses set by the opacity limit for fragmentation), binaries with separations down to 1 AU, and discs with radii greater than 10 AU. In particular, we present the eccentricity distribution of the calculation's very-low-mass and brown dwarf binaries which has not been previously published.
We use thermodynamic calculations to model atmospheric chemistry on terrestrial exoplanets that are hot enough for chemical equilibira between the atmosphere and lithosphere, as on Venus. The results of our calculations place constraints on abundances of spectroscopically observable gases, the surface temperature and pressure, and the mineralogy of the surface. These results will be useful in planning future observations of the atmospheres of terrestrial-sized exoplanets by current and proposed space observatories such as the Hubble Space Telescope (HST), Spitzer, James Webb Space Telescope (JWST), Terrestrial Planet Finder, and Darwin.
Motivated by the possible extension into a supersymmetric Randall-Sundrum (RS) model, we investigate the properties of the vacuum expectation value (VEV) of the stress-energy tensor for a quantized bulk Dirac spinor field in the RS geometry and compare it with that for a real scalar field. This is carried out via the Green function method based on first principles without invoking the degeneracy factor, whose validity in a warp geometry is a priori unassured. In addition, we investigate the local behavior of the Casimir energy near the two branes. One salient feature we found is that the surface divergences near the two branes have opposite signs. We argue that this is a generic feature of the fermionic Casimir energy density due to its parity transformation in the fifth dimension. Furthermore, we investigate the self-consistency of the RS metric under the quantum correction due to the stress-energy tensor. It is shown that the VEV of the stress-energy tensor and the classical one become comparable near the visible brane if k ~ M ~ M_Pl (the requirement of no hierarchy problem), where k is the curvature of the RS warped geometry and M the 5-dimensional Planck mass. In that case the self-consistency of RS model that includes bulk ?elds is in doubt. If, however, k <~ M, then an approximate self-consistency of the RS-type metric may still be satisfied.
We propose an explicit non-linear realization of massive gravity, which relies on the introduction of a spurious compact extra dimension, on which we impose half-Newmann and half-Dirichlet boundary conditions. At the linearized level, we recover the expected gravitational exchange amplitude between two sources mediated by a massive Fierz-Pauli spin-2 field, while cubic interactions in the additional helicity-0 mode give rise to the expected Vainsthein mechanism. We also show that this framework can accommodate for a flat four-dimensional geometry in the presence of a cosmological constant, putting this framework on a good footing for the study of degravitation.
The CDMS Collaboration has reported two candidate events for dark matter. If the events are due to the elastic scattering of dark matter, the dark matter would be a WIMP dark matter with its mass of the order of 10-100GeV and its scattering cross section with a nucleon is about 10^-43cm^2. We show that such a dark matter is properly realized as a neutralino dark matter in the light higgs boson scenario of the MSSM. The lightest higgs boson mass can be lighter than 114.4GeV in the scenario because of a suppressed interaction between higgs boson and Z bosons. As a result, a large scattering cross section between the dark matter and ordinary matter is obtained.
Generic cosmological models derived from higher dimensional theories with warped extra dimensions have a nonzero cosmological constant-like term induced on the 3+1 space-time, or a physical 3-brane. In the scenario where this 3+1 space-time is an inflating de Sitter "brane" embedded in a higher-dimensional space-time, described by warped geometry, the 4D cosmological term is determined in terms of two length scales: one is a scale associated with the size of extra dimension(s) and the other is a scale associated with the warping of extra space(s). The existence of this term in four dimensions provides a tantalizing possibility of explaining the observed accelerating expansion of the universe from fundamental theories of gravity, e.g. string theory.
We study the classical and quantum models of a Friedmann-Robertson-Walker (FRW) cosmology, coupled to a perfect fluid, in the context of the scalar-metric gravity. Using the Schutz' representation for the perfect fluid, we show that, under a particular gauge choice, it may lead to the identification of a time parameter for the corresponding dynamical system. It is shown that the evolution of the universe based on the classical cosmology represents a late time power law expansion coming from a big-bang singularity in which the scale factor goes to zero while the scalar field blows up. Moreover, this formalism gives rise to a Schr\"{o}dinger-Wheeler-DeWitt (SWD) equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave function in order to investigate the possibility of the avoidance of classical singularities due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.
Dynamical Chern-Simons gravity is an extension of General Relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard General Relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun for Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.
Plasma magnetosphere surrounding rotating magnetized neutron star in the braneworld has been studied. For the simplicity of calculations Goldreich-Julian charge density is analyzed for the aligned neutron star with zero inclination between magnetic field and rotation axis. From the system of Maxwell equations in spacetime of slowly rotating star in braneworld, second-order differential equation for electrostatic potential is derived. Analytical solution of this equation indicates the general relativistic modification of an accelerating electric field and charge density along the open field lines by brane tension. The implication of this effect to the magnetospheric energy loss problem is underlined. It was found that for initially zero potential and field on the surface of a neutron star, the amplitude of the plasma mode created by Goldreich-Julian charge density will increase in the presence of the negative brane charge. Finally we derive the equations of motion of test particles in magnetosphere of slowly rotating star in the braneworld. Then we analyze particle motion in the polar cap and show that brane tension can significantly change conditions for particle acceleration in the polar cap region of the neutron star.
We compare Newtonian and general relativistic descriptions of the stationary accretion of self-gravitating fluids onto compact bodies. Spherical symmetry and thin gas approximation are assumed. Luminosity depends, amongst other factors, on the temperature and the contribution of gas to the total mass, in both -- general relativistic ($L_{GR}$) and Newtonian ($L_N$) -- models. We discover a remarkable universal behaviour for transonic flows: the ratio of respective luminosities $L_{GR}/L_N$ is independent of the fractional mass of the gas and depends on asymptotic temperature. It is close to 1 in the regime of low asymptotic temperatures and can grow by one order of magnitude for high temperatures. These conclusions are valid for a wide range of polytropic equations of state.
The design, optimisation and construction of an anti-coincidence veto detector to complement the ZEPLIN-III direct dark matter search instrument is described. One tonne of plastic scintillator is arranged into 52 bars individually read out by photomultipliers and coupled to a gadolinium-loaded passive polypropylene shield. Particular attention has been paid to radiological content. The overall aim has been to achieve a veto detector of low threshold and high efficiency without the creation of additional background in ZEPLIN-III, all at a reasonable cost. Extensive experimental measurements of the components have been made, including radioactivity levels and performance characteristics. These have been used to inform a complete end-to-end Monte Carlo simulation that has then been used to calculate the expected performance of the new instrument, both operating alone and as an anti-coincidence detector for ZEPLIN-III. The veto device will be capable of rejecting over 65% of coincident nuclear recoil events from neutron background in the energy range of interest in ZEPLIN-III. This will reduce the background in ZEPLIN-III from \approx0.4 to \approx0.14 events per year in the WIMP acceptance region, a significant factor in the event of a non-zero observation. Furthermore, in addition to providing valuable diagnostic capabilities, the veto is capable of tagging over 15% for gamma-ray rejection, all whilst contributing no significant additional background. In conjunction with the replacement of the internal ZEPLIN-III photomultiplier array, the new veto is expected to improve significantly the sensitivity of the ZEPLIN-III instrument to dark matter, allowing spin independent WIMP-nucleon cross sections below 1E-8 pb to be probed.
Links to: arXiv, form interface, find, astro-ph, recent, 1004, contact, help (Access key information)
We present new measurements of dark matter distributions in 25 X-ray luminous clusters by making a full use of the two-dimensional (2D) weak lensing signals obtained from high-quality Subaru/Suprime-Cam imaging data. Our approach to directly compare the measured lensing shear pattern with elliptical model predictions allows us to extract new information on the mass distributions of individual clusters, such as the halo ellipticity and mass centroid. We find that these parameters on the cluster shape are little degenerate with cluster mass and concentration parameters. By combining the 2D fitting results for a subsample of 18 clusters, the elliptical shape of dark matter haloes is detected at 7\sigma significance level. The mean ellipticity is found to be e = 0.46 \pm 0.04 (1\sigma), which is in excellent agreement with the standard collisionless CDM model prediction. The mass centroid can be constrained with a typical accuracy of ~20" (~50 kpc/h) in radius for each cluster with some significant outliers, enabling to assess one of the most important systematic errors inherent in the stacked cluster weak lensing technique, the mass centroid uncertainty. In addition, the shape of the dark mass distribution is found to be only weakly correlated with that of the member galaxy distribution. We carefully examine possible sources of systematic errors in our measurements, finding none of them to be significant. Our results demonstrate the power of high-quality imaging data for exploring the detailed spatial distribution of dark matter (Abridged).
A small fraction of core collapse supernovae (SNe) show evidence that the outgoing blast wave has encountered a substantial mass ~ 1-10 M_sun of circumstellar matter (CSM) at radii ~100-1000 AU, much more than can nominally be explained by pre-explosion stellar winds. In extreme cases this interaction may power the most luminous, optically-energetic SNe yet discovered. Interpretations for the origin of the CSM have thus far centered on explosive eruptions from the star just ~ years to decades prior to the core collapse. Here we consider an alternative possibility that the inferred CSM is a relic disk left over from stellar birth. We investigate this hypothesis by calculating the evolution of proto-stellar disks around massive stars following their early embedded phase using a self-similar accretion model. We identify an initial gravitationally-unstable ("gravito-turbulent") phase, followed by a much longer period of irradiation-supported accretion during which less effective non-gravitational forms of angular momentum transport dominate. Although external influences, such as the presence of a wide binary companion, may preclude disk survival in many systems, we find that massive (~1-10 M_sun) disks can preferentially survive around the most massive stars. Reasons for this perhaps counterintuitive include (1) the shorter stellar lifetimes and (2) large photo-evaporation radii (~ 1000 AU) of very massive stars; (3) suppression of the magneto-rotational instability due to the shielding from external sources of ionization; and (4) relative invulnerability of massive disks to lower mass stellar collisions and luminous blue variable eruptions. Because very luminous SNe are rare, testing the relic disk model requires constraining the presence of long-lived disks around a small fraction of very massive stars.
Fermi Gamma ray Space Telescope measurements of spectra, variability time scale, and maximum photon energy give lower limits to the apparent jet powers and the bulk Lorentz factors of relativistic jets from gamma-gamma opacity arguments. The maximum cosmic-ray particle energy is limited by these two quantities in Fermi acceleration scenarios. Recent data are used to constrain the maximum energies of cosmic-ray protons and Fe nuclei accelerated in colliding shells of GRBs and blazars. The Fermi results indicate that Fe rather than protons are more likely to be accelerated to ultra-high energies in AGNs, whereas powerful GRBs can accelerate both protons and Fe to >~ 10^{20} eV. Emissivity of nonthermal radiation from radio galaxies and blazars is estimated from the First Fermi AGN Catalog, and shown to favor BL Lac objects and FR1 radio galaxies over flat spectrum radio quasars and FR2 radio galaxies as the sources of UHECRs.
Recently Knutson et al. (2010) have demonstrated a correlation between the presence of temperature inversions in the atmospheres of hot Jupiters, and the chromospheric activity levels of the host stars. Here we show that there is also a correlation, with greater than 99.5% confidence, between the surface gravity of hot Jupiters and the activity levels of the host stars, such that high surface gravity planets tend be found around high activity stars. We also find a less significant positive correlation between planet mass and chromospheric activity, but no significant correlation is seen between planet radius and chromospheric activity. We consider the possibility that this may be due to an observational bias against detecting lower mass planets around higher activity stars, but conclude that this bias is only likely to affect the detection of planets much smaller than those considered here. Finally, we speculate on physical origins for the correlation, including the possibility that the effect of stellar insolation on planetary radii has been significantly underestimated, that strong UV flux evaporates planetary atmospheres, or that high mass hot Jupiters induce activity in their host stars, but do not find any of these hypotheses to be particularly compelling.
We study a composition of normal and exotic matter which is required for a flat Emergent Universe scenario permitted by the equation of state (EOS)($p=A\rho-B\rho^{1/2}$) and predict the range of the permissible values for the parameters $A$ and $B$ to explore a physically viable cosmological model. The permitted values of the parameters are determined taking into account the $H(z)-z$ data obtained from observations, a model independent BAO peak parameter and CMB shift parameter (WMAP7 data). It is found that although $A$ can be very close to zero, most of the observations favours a small and negative $A$. As a consequence, the effective Equation of State parameter for this class of Emergent Universe solutions remains negative always. We also compared the magnitude ($\mu (z)$) vs. redshift($z$) curve obtained in the model with that obtained from the union compilation data. According to our analysis the class of Emergent Universe solutions considered here is not ruled out by the observations.
We report on G-band emission observed by the Solar Optical Telescope onboard the Hinode satellite in association with the X1.5-class flare on 2006 December 14. The G-band enhancements originate from the footpoints of flaring coronal magnetic loops, coinciding with non-thermal hard X-ray bremsstrahlung sources observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager. At the available 2 minute cadence, the G-band and hard X-ray intensities are furthermore well correlated in time. Assuming that the G-band enhancements are continuum emission from a blackbody, we derived the total radiative losses of the white-light flare (white-light power). If the G-band enhancements additionally have a contribution from lines, the derived values are overestimates. We compare the white-light power with the power in hard X-ray producing electrons using the thick target assumption. Independent of the cutoff energy of the accelerated electron spectrum, the white-light power and the power of accelerated electrons are roughly proportional. Using the observed upper limit of ~30 keV for the cutoff energy, the hard X-ray producing electrons provide at least a factor of 2 more power than needed to produce the white-light emission. For electrons above 40 keV, the powers roughly match for all four of the time intervals available during the impulsive phase. Hence, the flare-accelerated electrons contain enough energy to produce the white-light flare emissions. The observed correlation in time, space, and power strongly suggests that electron acceleration and white-light production in solar flares are closely related. However, the results also call attention to the inconsistency in apparent source heights of the hard X-ray (chromosphere) and white-light (upper photosphere) sources.
Technology leads discovery in astronomy, as in all other areas of science, so growth in technology leads to the continual stream of new discoveries which makes our field so fascinating. Derek de Solla Price had analysed the discovery process in science in the 1960s and he introduced the terms 'Little Science' and 'Big Science' as part of his discussion of the role of exponential growth in science. I will show how the development of astronomical facilities has followed this same trend from 'Little Science' to 'Big Science' as a field matures. We can see this in the discoveries resulting in Nobel Prizes in astronomy. A more detailed analysis of discoveries in radio astronomy shows the same effect. I include a digression to look at how science progresses, comparing the roles of prediction, serendipity, measurement and explanation. Finally I comment on the differences between the 'Big Science' culture in Physics and in Astronomy.
We describe the results of a search for the remnants of the Sun's birth cluster among stars in the Hipparcos Catalogue. This search is based on the predicted phase space distribution of the Sun's siblings from simple simulations of the orbits of the cluster stars in a smooth Galactic potential. For stars within 100 pc the simulations show that it is interesting to examine those that have small space motions relative to the Sun. From amongst the candidate siblings thus selected there are six stars with ages consistent with that of the Sun. Considering their radial velocities and abundances only one potential candidate, HIP 21158, remains but essentially the result of the search is negative. This is consistent with predictions by Portegies Zwart (2009) on the number of siblings near the Sun. We discuss the steps that should be taken in anticipation of the data from the Gaia mission in order to conduct fruitful searches for the Sun's siblings in the future.
We derive distributions of dust temperature and dust opacity across M31 at 45" resolution using the Spitzer data. With the opacity map and a standard dust model we de-redden the Ha emission yielding the first de-reddened Ha map of M31. We compare the emissions from dust, Ha, HI and H2 by means of radial distributions, pixel-to-pixel correlations and wavelet cross-correlations. The dust temperature steeply decreases from 30K near the center to 15K at large radii. The mean dust optical depth at the Ha wavelength along the line of sight is about 0.7. The radial decrease of the dust-to-gas ratio is similar to that of the oxygen abundance. On scales<2kpc, cold dust emission is best correlated with that of neutral gas and warm dust emission with that of ionized gas. Ha emission is slightly better correlated with emission at 70um than at 24um. In the area 6kpc<R< 17kpc, the total SFR is ~0.3Msun/yr. The Kennicutt-Schmidt law between SFR and total gas has a power-law index of 1.30+-0.05 in the radial range of R=7-11kpc increasing by about 0.3 for R=11-13kpc. The lack of H2 in the central region could be related to the lack of HI and the low opacity/high temperature of the dust. Since neither SFR nor SFE is well correlated with the surface density of H2 or total gas, other factors than gas density must play an important role in the formation of massive stars in M31. The molecular depletion time scale of 1.1 Gyr indicates that M31 is about three times less efficient in forming young massive stars than M33.
A data and computation center for helioseismology has been set up at the Max Planck Institute for Solar System Research in Germany to prepare for the SDO mission. Here we present the system infrastructure and the scientific aims of this project, which is funded through grants from the German Aerospace Center and the European Research Council.
We present rest-frame optical images and spectra of the gravitationally lensed, star-forming galaxy J0900+2234 (z=2.03). The observations were performed with the newly commissioned LUCIFER1 near-infrared instrument mounted on the Large Binocular Telescope (LBT). We fit lens models to the rest-frame optical images and find the galaxy has an intrinsic effective radius of 7.4 kpc with a lens magnification factor of about 5 for the A and B components. We also discovered a new arc belonging to another lensed high-z source galaxy, which makes this lens system a potential double Einstein ring system. Using the high S/N rest-frame spectra covering H+K band, we detected Hbeta, OIII, Halpha, NII and SII emission lines. Detailed physical properties of this high-z galaxy were derived. The extinction towards the ionized HII regions (E_g(B-V)) is computed from the flux ratio of Halpha and Hbeta and appears to be much higher than that towards stellar continuum (E_s(B-V)), derived from the optical and NIR broad band photometry fitting. The metallicity was estimated using N2 and O3N2 indices. It is in the range of 1/5-1/3 solar abundance, which is much lower than the typical z~2 star-forming galaxies. From the flux ratio of SII 6717 and 6732, we found that the electron number density of the HII regions in the high-z galaxy were >1000 cm^-3, consistent with other z~2 galaxies but much higher than that in local HII regions. The star-formation rate was estimated via the Halpha luminosity, after correction for the lens magnification, to be about 116\pm16 Msun/yr. Combining the FWHM of Halpha emission lines and the half-light radius, we found the dynamical mass of the lensed galaxy is 7.2x10^10 Msun.
We study the star formation histories (SFH) and stellar populations of 213 red and 226 blue nearly face-on low surface brightness disk galaxies (LSBGs), which are selected from the main galaxy sample of Sloan Digital Sky Survey (SDSS) Data Release Seven (DR7). We also want to compare the stellar populations and SFH between the two groups. The sample of both red and blue LSBGs have sufficient signal-to-noise ratio in the spectral continua. We obtain their absorption-line indices (e.g. Mg_2, H\delta_A), D_n(4000) and stellar masses from the MPA/JHU catalogs to study their stellar populations and SFH. Moreover we fit their optical spectra (stellar absorption lines and continua) by using the spectral synthesis code STARLIGHT on the basis of the templates of Simple Stellar Populations (SSPs). We find that red LSBGs tend to be relatively older, higher metallicity, more massive and have higher surface mass density than blue LSBGs. The D_n(4000)-H\delta_A plane shows that perhaps red and blue LSBGs have different SFH: blue LSBGs are more likely to be experiencing a sporadic star formation events at the present day, whereas red LSBGs are more likely to form stars continuously over the past 1-2 Gyr. Moreover, the fraction of galaxies that experienced recent sporadic formation events decreases with increasing stellar mass. Furthermore, two sub-samples are defined for both red and blue LSBGs: the sub-sample within the same stellar mass range of 9.5 <= log(M_\star/M_\odot) <= 10.3, and the surface brightness limiting sub-sample with \mu_0(R) <= 20.7 mag arcsec^{-2}. They show consistent results with the total sample in the corresponding relationships, which confirm that our results to compare the blue and red LSBGs are robust.
Even 100 years after the discovery of cosmic rays their origin remains a mystery. In recent years, TeV gamma-ray detectors have discovered and investigated many Galactic sources where particles are accelerated up to energies of 100 TeV. However, it has not been possible up to now to identify these sites unambiguously as sources of hadronic acceleration. The observation of cosmic high-energy neutrinos from these or other sources will be a smoking-gun evidence for the sites of the acceleration of cosmic rays.
We consider large-scale collective motion of flat edge-on spiral galaxies from the Revised Flat Galaxy Catalogue (RFGC) taking into account the curvature of space-time in the Local Universe at the scale 100h^{-1} Mpc. We analyse how the relativistic model of collective motion should be modified to provide the best possible values of parameters, the effects that impact these parameters and ways to mitigate them. Evolution of galactic diameters, selection effects, and difference between isophotal and angular diameter distances are inadequate to explain this impact. At the same time, measurement error in HI line widths and angular diameters can easily provide such an impact. This is illustrated in a toy model, which allows analytical consideration, and then in the full model using Monte Carlo simulations. The resulting velocity field is very close to that provided by the non-relativistic model of motion. The obtained bulk flow velocity is consistent with {\Lambda}CDM cosmology.
The cosmological model of dark energy interacting with cold dark matter without coupling to the baryonic matter, is studied in the background of both classical Einstein and loop quantum cosmology. We consider two types of interacting models. In the former model, the interaction is a linear combination of the densities of two dark sectors, while in the latter model, the interaction with a constant transfer rate depends only on the density of cold dark matter. It is shown that the dynamical results in loop quantum cosmology are different from those in classical Einstein cosmology for both two kinds of interacting models. Moreover, the form of the interaction affects significantly the dynamical results in both kinds of cosmology.
ALMA will become fully operational in a few years and open a new window on primordial galaxies. The mm and submm domain is privileged, since the peak of dust emission between 60 and 100 microns is redshifted there for z= 5-10, and the continuum benefits from a negative K-correction. At least 100 times more sources than with present instruments could be discovered, so that more normal galaxies, with lower luminosities than huge starbursts and quasars will be surveyed. The high spatial resolution will suppress the confusion, which plagues today single dish bolometer surveys. Several CO lines detected in broad-band receivers will determine the redshift of objects too obscured to be seen in the optical. With the present instrumentation, only the most massive and gas rich objects have been detected in CO at high z, most of them being ultra-luminous starbursts with an extremely high star formation efficiency. However, selection biases are omni-present in this domain, and ALMA will statistically clarify the evolution of star formation efficiency, being fully complementary to JWST and ELTs.
We present the results of a baryonic Tully-Fisher relation (BTFR) study for a local sample of relatively isolated disk galaxies. We derive a BTFR with a slope near 3 measured over about 4 dex in baryon mass for our combined \textrm{H\,\scriptsize{I}} and bright spiral disk samples. This BTFR is significantly flatter and has less scatter than the TFR (stellar mass only) with its slope near 4 reported for other samples and studies. A BTFR slope near 3 is in better agreement with the expected slope from simple $\Lambda$CDM cosmological simulations that include both stellar and gas baryons. The scatter in the TFR/BTFR appears to depend on $W_{20}$: galaxies that rotate slower have more scatter. The atomic gas--to--stars ratio shows a break near $W_{20} = 250$ \kms\, probably associated with a change in star formation efficiency. In contrast the absence of such a break in the BTFR suggests that this relation was probably set at the main epoch of baryon dissipation rather than as a product of later galactic evolution.
A Bayesian approach to the determination of stellar distances from photometric and spectroscopic data is presented and tested both on pseudodata, designed to mimic data for stars observed by the RAVE survey, and on the real stars from the Geneva-Copenhagen survey. It is argued that this method is optimal in the sense that it brings to bear all available information and that its results are limited only by observational errors and the underlying physics of stars. The method simultaneously returns the metallicities, ages and masses of programme stars. Remarkably, the uncertainty in the output metallicity is typically 44 per cent smaller than the uncertainty in the input metallicity.
After several generations of interferometers in radioastronomy, wide-field imaging at high angular resolution is today a major goal for trying to match optical wide-field performances. All the radio-interferometric, wide-field imaging methods currently belong to the mosaicking family. Based on a 30 years old, original idea from Ekers & Rots, we aim at proposing an alternate formalism. Starting from their ideal case, we successively evaluate the impact of the standard ingredients of interferometric imaging. A comparison with standard nonlinear mosaicking shows that both processing schemes are not mathematically equivalent, though they both recover the sky brightness. In particular, the weighting scheme is very different in both methods. Moreover, the proposed scheme naturally processes the short spacings from both single-dish antennas and heterogeneous arrays. Finally, the sky gridding of the measured visibilities, required by the proposed scheme, may potentially save large amounts of hard-disk space and cpu processing power over mosaicking when handling data sets acquired with the on-the-fly observing mode. We propose to call this promising family of imaging methods wide-field synthesis because it explicitly synthesizes visibilities at a much finer spatial frequency resolution than the one set by the diameter of the interferometer antennas.
The OH molecule, found abundantly in the Milky Way, has four transitions at the ground state rotational level(J = 3/2) at cm wavelengths. These are E1 transitions between the F+ and F- hyperfine levels of the Lambda doublet of the J=3/2 state. There are also forbidden M1 transitions between the hyperfine levels within each of the doublet states occuring at frequencies 53.171 MHz and 55.128 MHz. These are extremely weak and hence difficult to detect. However there is a possibility that the level populations giving rise to these lines are inverted under special conditions, in which case it may be possible to detect them through their maser emission. We describe the observational diagnostics for determining when the hyperfine levels are inverted, and identify a region near W44 where these conditions are satisfied. A high-velocity-resolution search for these hyperfine OH lines using the low frequency feeds on four antennas of the GMRT and the new GMRT Software Backend(GSB) was performed on this target near W44. We place a 3-sigma upper limit of ~17.3 Jy (at 1 km/s velocity resolution) for the 55 MHz line from this region. This corresponds to an upper limit of 3 X 10^8 for the amplification of the Galactic synchrotron emission providing the background.
We present the results of our stellar photometry and spectroscopy for the new Local Group galaxy VV 124 (UGC 4879) obtained with the 6-m BTA telescope. The presence of a few bright supergiants in the galaxy indicates that the current star formation process is weak. The apparent distribution of stars with different ages in VV 124 does not differ from the analogous distributions of stars in irregular galaxies, but the ratio of the numbers of young and old stars indicates that VV 124 belongs to the rare Irr/Sph type of galaxies. The old stars (red giants) form the most extended structure, a thick disk with an exponential decrease in the star number density to the edge. Definitely, the young population unresolvable in images makes a great contribution to the background emission from the central galactic regions. The presence of young stars is also confirmed by the [O III] emission line visible in the spectra that belongs to extensive diffuse galactic regions. The mean radial velocity of several components (two bright supergiants, the unresolvable stellar population, and the diffuse gas) is v_h = -70+/-15 km/s and the velocity with which VV 124 falls into the Local Group is v_LG = -12+/-15 km/s. We confirm the distance to the galaxy D = 1.1+/-0.1 Mpc and the metallicity of red giants ([Fe/H] = -1.37) found by Kopylov et al. (2008).VV 124 is located on the periphery of the Local Group approximately at the same distance from M 31 and our Galaxy and is isolated from other galaxies. The galaxy LeoA nearest to it is 0.5 Mpc away.
Access to astronomical data through archives and VO is essential but does not solve all problems. Availability of appropriate software for analyzing the data is often equally important for the efficiency with which a researcher can publish results. A number of legacy systems (e.g. IRAF, MIDAS, Starlink, AIPS, Gipsy), as well as others now coming online are available but have very different user interfaces and may no longer be fully supported. Users may need multiple systems or stand-alone packages to complete the full analysis which introduces significant overhead. The OPTICON Network on `Future Astronomical Software Environments' and the USVAO have discussed these issues and have outlined a general architectural concept that solves many of the current problems in accessing software packages. It foresees a layered structure with clear separation of astronomical code and IT infrastructure. By relying on modern IT concepts for messaging and distributed execution, it provides full scalability from desktops to clusters of computers. A generic parameter passing mechanism and common interfaces will offer easy access to a wide range of astronomical software, including legacy packages, through a single scripting language such as Python. A prototype based upon a proposed standard architecture is being developed as a proof-of-concept. It will be followed by definition of standard interfaces as well as a reference implementation which can be evaluated by the user community. For the long-term success of such an environment, stable interface specifications and adoption by major astronomical institutions as well as a reasonable level of support for the infrastructure are mandatory. Development and maintenance of astronomical packages would follow an open-source, Internet concept.
[Abridged]. We present SEDs for single-age, single-metallicity stellar populations (SSPs) covering the optical range at resolution 2.3A (FWHM). These SEDs constitute our base models, as they combine scaled-solar isochrones with MILES empirical stellar library, which follows the chemical evolution pattern of the solar neighbourhood. The models rely as much as possible on empirical ingredients, not just on the stellar spectra, but also on extensive photometric libraries. The unprecedented stellar parameter coverage of MILES allowed us to safely extend our optical SSP SED predictions from intermediate- to very-old age regimes, and the metallicity coverage of the SSPs from super-solar to [M/H]=-2.3. SSPs with such low metallicities are particularly useful for globular cluster studies. Observed spectra can be studied by means of full spectrum fitting or line-strengths. For the latter we propose a new Line Index System (LIS) to avoid the intrinsic uncertainties associated with the popular Lick/IDS system and provide more appropriate, uniform, spectral resolution. Apart from constant resolution as function of wavelength the system is also based on flux-calibrated spectra. Data can be analyzed at three different resolutions: 5A, 8.4A and 14A (FWHM), which are appropriate for studying globular cluster, low and intermediate-mass galaxies, and massive galaxies, respectively. Polynomials to transform current Lick/IDS line index measurements to the new system are provided. A web-page with a suite of on-line tools to facilitate the handling and transformation of the spectra is available at this http URL
We observed the new X-ray transient and black-hole candidate XTE J1652-453 simultaneously with XMM-Newton and the Rossi X-ray Timing Explorer (RXTE). The observation was done during the decay of the 2009 outburst, when XTE J1652-453 was in the hard-intermediate state. The spectrum shows a strong and broad iron emission line with an equivalent width of ~ 450 eV. The profile is consistent with that of a line being produced by reflection off the accretion disk, broadened by relativistic effects close to the black hole. The best-fitting inner radius of the accretion disk is ~ 4 gravitational radii. Assuming that the accretion disk is truncated at the radius of the innermost stable circular orbit, the black hole in XTE J1652-453 has a spin parameter of ~ 0.5. The power spectrum of the RXTE observation has an additional variability component above 50 Hz, which is typical for the hard-intermediate state. No coherent quasi-periodic oscillations at low frequency are apparent in the power spectrum, which may imply that we view the system at a rather low inclination angle.
An analysis of the fluorine abundance in Galactic AGB carbon stars (24 N-type, 5 SC-type and 5 J-type) is presented. This study uses the state- of-the-art carbon rich atmosphere models and improved atomic and molecular line lists in the 2.3 {\mu}m region. F abundances significantly lower are obtained in comparison to previous study in the literature. The main reason of this difference is due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low- mass AGB stars, solving the long standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.
There is observational evidence of propagating kink waves driven by photospheric motions. These disturbances, interpreted as kink magnetohydrodynamic (MHD) waves are attenuated as they propagate upwards in the solar corona. In this paper we show that resonant absorption provides a simple explanation to the spatial damping of these waves. Kink MHD waves are studied using a cylindrical model of solar magnetic flux tubes which includes a non-uniform layer at the tube boundary. Assuming that the frequency is real and the longitudinal wavenumber complex, the damping length and damping per wavelength produced by resonant absorption are analytically calculated. The damping length of propagating kink waves due resonant absorption is a monotonically decreasing function of frequency. For kink waves with low frequencies the damping length is exactly inversely proportional to frequency and we denote this as the TGV relation. When moving to high frequencies the TGV relation continues to be an exceptionally good approximation of the actual dependency of the damping length on frequency. This dependency means that resonant absorption is selective as it favours low frequency waves and can efficiently remove high frequency waves from a broad band spectrum of kink waves. It is selective as the damping length is inversely proportional to frequency so that the damping becomes more severe with increasing frequency. This means that radial inhomogeneity can cause solar waveguides to be a natural low-pass filter for broadband disturbances. Hence kink wave trains travelling along, e.g., coronal loops, will have a greater proportion of the high frequency components dissipated lower down in the atmosphere. This could have important consequences with respect to the spatial distribution of wave heating in the solar atmosphere.
We examine how the uncertainties involved in supernova dynamics as well as in nuclear reactions affect the nup-process in the neutrino-driven winds of core-collapse supernovae. For the supernova dynamics, we find that the wind-termination by the preceding outgoing supernova ejecta, as well as the electron fraction at the onset of the nup-process, Y_{e, 3} (at 3 x 10^9 K), plays a crucial role. The wind-termination within the temperature range of (1.5-3) x 10^9 K greatly enhances the efficiency of the nup-process. This implies that the early wind phase when the innermost layer of the preceding supernova ejecta is still 200-1000 km from the center is most relevant to the p-nuclei production. The outflows with Y_{e, 3} = 0.50-0.60 result in the production of the p-nuclei up to A = 108 (108Cd) with interesting amounts, which fill the gap that cannot be accounted for by the gamma-process scenario. Furthermore, the p-nuclei up to A = 152 (152Gd) can be produced if Y_{e, 3} = 0.65 is achieved. For the nuclear reactions, we test the sensitivity to the rates relevant to the breakout from the pp-chain region (triple-alpha, 7Be(alpha, gamma)11C, and 10B(alpha, p)13C), and to the (n, p) rates on some iron-group nuclei (56Ni, 60Zn, and 64Ge). We find that a small variation of triple-alpha as well as of 56Ni(n, p)56Co leads to a substantial change in the p-nuclei production, although the others also have non-negligible effects.
We report sub-arcsecond scale radio continuum observations of a field of 35 by 22 arcmin centred in NGC3351 obtained with the Multi-Element Radio Linked Interferometer Network (MERLIN). We found 23 radio sources in this field, 6 of which are projected within the D$_{25}$ isophote of the galaxy, and 3 are located inside the central 100 arcsec in radius. Two of these three are significantly extended, while the third one is relatively compact. This one is the only source with a previously detected counterpart at other wavelengths and could constitute the radio counterpart of a young supernova remnant. The other two are probably related to jets from a background AGN. We are not able to detect individual supernovae or SNRs in the central region ($r<600$ pc) of the galaxy. This could imply that the ionising populations of the circumnuclear star-forming regions (CNSFRs) are too young (less than a few Myr) to host supernovae. Also the diffusion length of the relativistic electrons in the ISM associated with the SN from previous events of star formation seems to be larger than our maximum resolution of 50 pc in radius. Detecting the thermal bremsstrahlung emission from the circumnuclear HII regions probably requires deeper observations.
High deuterium fractionation is observed in various types of environment such as prestellar cores, hot cores and hot corinos. It has proven to be an efficient probe to study the physical and chemical conditions of these environments. The study of the deuteration of different molecules helps us to understand their formation. This is especially interesting for complex molecules such as methanol and bigger molecules for which it may allow to differentiate between gas-phase and solid-state formation pathways. Methanol exhibits a high deuterium fractionation in hot corinos. Since CH3OH is thought to be a precursor of methyl formate we expect that deuterated methyl formate is produced in such environments. We have searched for the singly-deuterated isotopologue of methyl formate, DCOOCH3, in IRAS 16293-2422, a hot corino well-known for its high degree of methanol deuteration. We have used the IRAM/JCMT unbiased spectral survey of IRAS 16293-2422 which allows us to search for the DCOOCH3 rotational transitions within the survey spectral range (80-280 GHz, 328-366 GHz). The expected emission of deuterated methyl formate is modelled at LTE and compared with the observations.} We have tentatively detected DCOOCH3 in the protostar IRAS 16293-2422. We assign eight lines detected in the IRAM survey to DCOOCH3. Three of these lines are affected by blending problems and one line is affected by calibration uncertainties, nevertheless the LTE emission model is compatible with the observations. A simple LTE modelling of the two cores in IRAS 16293-2422, based on a previous interferometric study of HCOOCH3, allows us to estimate the amount of DCOOCH3 in IRAS 16293-2422. Adopting an excitation temperature of 100 K and a source size of 2\arcsec and 1\farcs5 for the A and B cores, respectively, we find that N(A,DCOOCH3) = N(B,DCOOCH3) ~ 6.10^14 /cm2. The derived deuterium fractionation is ~ 15%, consistent with values for other deuterated species in this source and much greater than that expected from the deuterium cosmic abundance. DCOOCH3, if its tentative detection is confirmed, should now be considered in theoretical models that study complex molecule formation and their deuteration mechanisms. Experimental work is also needed to investigate the different chemical routes leading to the formation of deuterated methyl formate.
We describe and use two different statistical approaches to try and detect low-frequency solar oscillations in Sun-as-a-star data: a frequentist approach and a Bayesian approach. We have used frequentist statistics to search contemporaneous Sun-as-a-star data for coincident, statistically-prominent features. However, we find that this approach leads to numerous false detections. We have also used Bayesian statistics to search for evidence of low-frequency p modes and g modes in Sun-as-a-star data. We describe how Bayesian statistics can be used to search near-contemporaneous data for coincident prominent features. Near-contemporaneous data were used to circumvent the difficulties in deriving probabilities that occur when common noise is present in the data. We find that the Bayesian approach, which is reliant on the assumptions made when determining the posterior probability, leads to significantly fewer false detections and those that are observed can be discredited using a priori knowledge. Therefore, we have more confidence in the mode candidates found with Bayesian statistics.
About 70-80% of the previously estimated WMAP CMB quadrupole signal would be an artefact of incorrect Doppler dipole subtraction if the hypothesis of a small timing interpolation error were correct. Observations of bright foreground objects constitute part of the time-ordered-data (TOD). Scans of an object in different directions should be shifted by the would-be timing error, causing a blurring effect. Three half-years of the calibrated, filtered WMAP TOD are compiled individually for the four W band differencing assemblies (DA's), with no masking of bright objects, giving 12 maps for each timing offset. Percentiles of the temperature-fluctuation distribution in each map at HEALPix resolution N_side=2048 are used to determine the dependence of all-sky image sharpness on the timing offset. In the W band, the 99.999% percentile, i.e. the temperature fluctuation in the approx 503-rd brightest pixel, is the least noisy percentile. Using this statistic, the hypothesis that a -25.6 ms offset relative to the timing adopted by the WMAP collaboration gives a focus at least as sharp as the uncorrected timing is rejected at 4.6\sigma significance. The Q and V band maps also reject the -25.6 ms offset hypothesis at high statistical significance. The requirement that the correct choice of timing offset must maximise image sharpness implies that the hypothesis of a timing error in the WMAP collaboration's compilation of the WMAP calibrated, filtered TOD is rejected at high statistical significance in each of the Q, V and W wavebands. However, the hypothesis that a timing error was applied during calibration of the raw TOD, inducing a dipole difference signal, is not excluded by this method.
Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this series (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, "lower limit", "nominal value" and "upper limit" of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters {\mu} and {\sigma} at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rate probability density functions directly in a stellar model code for studies of stellar energy generation and nucleosynthesis. For each reaction, the Monte Carlo reaction rate probability density functions, together with their lognormal approximations, are displayed graphically for selected temperatures in order to provide a visual impression. Our new reaction rates are appropriate for bare nuclei in the laboratory. The nuclear physics input used to derive our reaction rates is presented in the subsequent paper of this series (Paper III). In the fourth paper of this series (Paper IV) we compare our new reaction rates to previous results.
In the early days of April 2010, the blazar 3C 454.3 (z=0.859) underwent a strong gamma-ray outburst, reaching fluxes (E > 100 MeV) in excess of 10^-5 ph cm^-2 s^-1. The Fermi Gamma ray Space Telescope performed a 200 ks long pointed observation starting from 5 April 2010 19:38 UTC. This allowed us to try probing the variability of the gamma-ray emission on timescales of hours or less. We found the variability on a few hours timescale. On sub-hour timescale we found no evidence of significant variability, although the present statistics is not yet conclusive and further observations are needed.
We discuss the formation of supermassive black holes in the early universe, and how to probe their subsequent evolution with the upcoming mm/sub-mm telescope ALMA. We first focus on the chemical and radiative conditions for black hole formation, in particular considering radiation trapping and molecular dissociation effects. We then turn our attention towards the magnetic properties in the halos where the first black holes form, and show that the presence of turbulence may lead to a magnetic dynamo, which could support the black hole formation process by providing an efficient means of transporting the angular momentum. We finally focus on observable properties of high-redshift black holes with respect to ALMA, and discuss how to distinguish between chemistry driven by the starburst and chemistry driven by X-rays from the black hole.
I highlight the synergies of the Wide Field X-ray Telescope (WFXT) with the next generation radio surveys, including those to be obtained with the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array, and discuss the overlap between the X-ray and radio source populations. WFXT will benefit greatly from the availability of deep radio catalogues with very high astrometric precision, while on the other hand WFXT data will be vital for the identification of faint radio sources down to ~ 50 microJy.
Some established views of the solar magnetic cycle are discussed critically, with focus on two aspects at the core of most models: the role of convective turbulence, and the role of the `tachocline' at the base of the convection zone. The standard view which treats the solar cycle as a manifestation of the interaction between convection and magnetic fields is shown to be misplaced. The main ingredient of the solar cycle, apart from differential rotation, is instead buoyant instability of the magnetic field itself. This view of the physics of the solar cycle was already established in the 1950s, but has been eclipsed mathematically by mean field turbulence formalisms which make poor contact with observations and have serious theoretical problems. The history of this development in the literature is discussed critically. The source of the magnetic field of the solar cycle is currently assumed to be located in the `tachocline': the shear zone at the base of the convection zone. While the azimuthal field of the cycle is indeed most likely located at the base of the convection zone, it cannot be powered by the radial shear of the tachocline as assumed in these models, since the radiative interior does not support significant shear stresses. Instead, it must be the powered by the latitudinal gradient in rotation rate in the convection zone, as in early models of the solar cycle. Possible future directions for research are briefly discussed.
Fitting synthetic spectral energy distributions (SED) to the multi-band photometry of galaxies to derive their star formation rates (SFR), stellar masses, ages, etc. requires making a priori assumptions about their star formation histories (SFH). A widely adopted parameterization of the SFH, the so-called tau-models where SFR goes as e^{-t/tau) is shown to lead to unrealistically low ages when applied to star forming galaxies at z ~ 2, a problem shared by other SFHs when the age is left as a free parameter in the fitting. This happens because the SED of such galaxies, at all wavelengths, is dominated by their youngest stellar populations, which outshine the older ones. Thus, the SED of such galaxies conveys little information on the beginning of star formation. To cope with this problem, we explore a variety of SFHs, such as constant SFR and inverted-tau models - with SFR as e^{+t/tau) - along with various priors on age, including assuming that star formation started at high redshift in all the galaxies. We find that inverted-tau models with such latter assumption give SFRs and extinctions in excellent agreement with the values derived using only the UV part of the SED. These models are also shown to accurately recover the SFRs and masses of mock galaxies at z ~ 2 constructed from semi-analytic models. All other explored SFH templates do not fulfil these two test. In particular, direct-tau models with unconstrained age in the fitting procedure overstimate SFRs and underestimate stellar mass, and would exacerbate an apparent mismatch between the cosmic evolution of the volume densities of SFR and stellar mass. We conclude that for high-redshift star forming galaxies an exponentially increasing SFR with a high formation redshift is preferable to other forms of the SFH so far adopted in the literature.
Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the lightcurve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33; V=8.3, v sin i = 86 km/sec). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit we directly derive the size of the planet, the inclination and obliquity of its orbital plane, and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1 Jupiter masses on the planet. We also find evidence of a third body of sub-stellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars.
In this paper, we present an automated system, which has the capability to catch and track solar limb prominences based on observations from EUV 304 passband. The characteristic parameters and their evolution, including height, position angle, area, length and brightness, are obtained without manual interventions. By applying the system to the STEREO-B/SECCHI/EUVI 304 data during 2007 April -2009 October, we obtain a total of 9477 well-tracked prominences and a catalog of these events available online at this http URL A detailed analysis of these prominences suggests that the system has a rather good performance. We have obtained several interesting statistical results based on the catalog. Most prominences appear below the latitude of 60 degrees and at the height of about 26 Mm above the solar surface. Most of them are quite stable during the period they are tracked. Nevertheless, some prominences have an upward speed of more than 100 km/s, and some others show significant downward and/or azimuthal speeds. There are strong correlations among the brightness, area and height. The expansion of a prominence is probably one major cause of its fading during the rising or erupting process.
We report radial velocities (RVs), projected equatorial velocities (v sin i) and CaII triplet (CaT) chromospheric activity indices for 237 late-K to mid-M candidate members of the young open cluster NGC 2516. These stars have rotation periods between 0.1 and 15 days. Intermediate resolution spectra were obtained using the Giraffe spectrograph at the Very Large Telescope. Membership was confirmed on the basis of RVs for 210 targets. We see a marked increase in the fraction of rapidly rotators as we move to cooler spectral types. About 20 per cent of M0-M1 stars have v sin i >15km/s, increasing to 90 per cent of M4 stars. Activity indices derived from the first two lines of the CaT (8498A and 8542A) show differing dependencies on rotation period and mass for stars lying above and below the fully convective boundary. Higher mass stars, of spectral type K3-M2.5, show chromospheric activity which increases with decreasing Rossby number (the ratio of period to convective turnover time), saturating for Rossby numbers <0.1. For cooler stars, which are probably fully convective and almost all of which have Rossby numbers <0.1, there is a clear decrease in chromospheric activity as (V-I)_0 increases, amounting to a fall of about a factor of 2-3 between spectral types M2.5 and M4. This decrease in activity levels at low Rossby numbers is not seen in X-ray observations of the coronae of cluster M-dwarfs or of active field M-dwarfs. There is no evidence for supersaturation of chromospheric activity for stars of any spectral type at Rossby numbers <0.01. We suggest that the fall in the limiting level of chromospheric emission beyond spectral type M3 in NGC~2516 is, like the simultaneous increase in rotation rates in field stars, associated with a change in the global magnetic topology as stars approach the fully convective boundary and not due to any decrease in dynamo-generated magnetic flux.
In this work Gamma Ray Burst (GRB) data is used to place constraints on a putative coupling between dark energy and dark matter. Type Ia supernovae (SNe Ia) constraints from the Sloan Digital Sky Survey II (SDSS-II) first-year results, the cosmic microwave background radiation (CMBR) shift parameter from WMAP seven year results and the baryon acoustic oscillation (BAO) peak from the Sloan Digital Sky Survey (SDSS) are also discussed. The prospects for the field are assessed, as more GRB events become available.
We study time evolutions of superfluid neutron stars, focussing on the nature of the oscillation spectrum, the effect of mutual friction force on the oscillations and the hydrodynamical spin-up phase of pulsar glitches. We linearise the dynamical equations of a Newtonian two-fluid model for rapidly rotating backgrounds. In the axisymmetric equilibrium configurations, the two fluid components corotate and are in beta-equilibrium. We use analytical equations of state that generate stratified and non-stratified stellar models, which enable us to study the coupling between the dynamical degrees of freedom of the system. By means of time evolutions of the linearised dynamical equations, we determine the spectrum of axisymmetric and non-axisymmetric oscillation modes, accounting for the contribution of the gravitational potential perturbations, i.e. without adopting the Cowling approximation. We study the mutual friction damping of the superfluid oscillations and consider the effects of the non-dissipative part of the mutual friction force on the mode frequencies. We also provide technical details and relevant tests for the hydrodynamical model of pulsar glitches discussed by Sidery, Passamonti and Andersson (2010). In particular, we describe the method used to generate the initial data that mimic the pre-glitch state, and derive the equations that are used to extract the gravitational-wave signal.
We present an updated dynamical and statistical analysis of outer Oort cloud cometary evidence suggesting the sun has a wide-binary Jovian mass companion. The results support a conjecture that there exists a companion of mass ~ 1-4 M_Jup orbiting in the innermost region of the outer Oort cloud. Our most restrictive prediction is that the orientation angles of the orbit normal in galactic coordinates are centered on the galactic longitude of the ascending node Omega = 319 degree and the galactic inclination i = 103 degree (or the opposite direction) with an uncertainty in the normal direction subtending ~ 2% of the sky. A Bayesian statistical analysis suggests that the probability of the companion hypothesis is comparable to or greater than the probability of the null hypothesis of a statistical fluke. Such a companion could also have produced the detached Kuiper Belt object Sedna. The putative companion could be easily detected by the recently launched Wide-field Infrared Survey Explorer (WISE).
We present the results of simulations of forced turbulence in a slab where the mean kinetic helicity has a maximum near the mid-plane, generating gradients of magnetic helicity of both large and small-scale fields. We also study systems that have poorly conducting buffer zones away from the midplane in order to assess the effects of boundaries. The dynamical alpha quenching phenomenology requires that the magnetic helicity in the small-scale fields approaches a nearly static, gauge independent state. To stress-test this steady state condition we choose a system with a uniform sign of kinetic helicity, so that the total magnetic helicity can reach a steady state value only through fluxes through the boundary, which are themselves suppressed by the velocity boundary conditions. Even with such a set up, the small-scale magnetic helicity is found to reach a steady state. In agreement with earlier work, the magnetic helicity fluxes of small-scale fields are found to be turbulently diffusive. By comparing results with and without halos, we show that artificial constraints on magnetic helicity at the boundary do not have a significant impact on the evolution of the magnetic helicity, except that "softer" (halo) boundary conditions give a lower energy of the saturated mean magnetic field.
A new harassment model is presented that models the complex, and dynamical tidal field of a Virgo like galaxy cluster. The model is applied to small, late-type dwarf disc galaxies (of substantially lower mass than in previous harassment simulations) as they infall into the cluster from the outskirts. These dwarf galaxies are only mildly affected by high speed tidal encounters with little or no observable consequences; typical stellar losses are $<10\%$, producing very low surface brightness streams ($\mu_B > 31$ mag arcsec$^{-2}$), and a factor of two drop in dynamical mass-to-light ratio. Final stellar discs remain disc-like, and dominated by rotation although often with tidally induced spiral structure. By means of Monte-Carlo simulations, the statistically likely influences of harassment on infalling dwarf galaxies are determined. The effects of harassment are found to be highly dependent on the orbit of the galaxy within the cluster, such that newly accreted dwarf galaxies typically suffer only mild harassment. Strong tidal encounters, that can morphologically transform discs into spheroidals, are rare occurring in $<15 \%$ of dwarf galaxy infalls for typical orbits of sub-structure within $\Lambda$CDM cluster mass halos. For orbits with small apocentric distances ($<$250 kpc), harassment is significantly stronger resulting in complete disruption or heavy mass loss ($>90 \%$ dark matter and $> 50 \%$ stellar), however, such orbits are expected to be highly improbable for newly infalling galaxies due to the deep potential well of the cluster.
The Rastall's theory is a modification of the General Relativity theory leading to a different expression for the conservation law in the matter sector compared with the usual one. It has been argued recently that such a theory may have applications to the dark energy problem, since a pressureless fluid may lead to an accelerated universe. In the present work we confront the Rastall's theory with the power spectrum data. The results indicate a configuration that essentially reduces the Rastall's theory to General Relativity, unless the non-usual conservation law refers to a scalar field, situation where other configurations are eventually possible.
Precision radial velocities from Keck/HIRES reveal a Saturn-mass planet orbiting the nearby M4V star HIP 57050. The planet has a minimum mass of 0.3 Jupiter-mass, an orbital period of 41.4 days, and an orbital eccentricity of 0.31. V-band photometry reveals a clear stellar rotation signature of the host star with a period of 98 days, well separated from the period of the radial velocity variations and reinforcing a Keplerian origin for the observed velocity variations. The orbital period of this planet corresponds to an orbit in the habitable zone of HIP 57050, with an expected planetary temperature of approximately 230 K. The star has a metallicity of [Fe/H] = 0.32+/-0.06 dex, of order twice solar and among the highest metallicity stars in the immediate solar neighborhood. This newly discovered planet provides further support that the well-known planet-metallicity correlation for F, G, and K stars also extends down into the M-dwarf regime. The a priori geometric probability for transits of this planet is only about 1%. However, the expected eclipse depth is ~7%, considerably larger than that yet observed for any transiting planet. Though long on the odds, such a transit is worth pursuing as it would allow for high quality studies of the atmosphere via transmission spectroscopy with HST. At the expected planetary effective temperature, the atmosphere may contain water clouds.
X-rays from very young stars are powerful probes to investigate the mechanisms at work in the very first stages of the star formation and the origin of X-ray emission in very young stars. We present results from a 500 ks long observation of the Rho Ophiuchi cloud with a XMM-Newton large program named DROXO, aiming at studying the X-ray emission of deeply embedded Young Stellar Objects (YSOs). The data acquired during the DROXO program were reduced with SAS software, and filtered in time and energy to improve the signal to noise of detected sources; light curves and spectra were obtained. We detected 111 sources, 61 of them associated with rho Ophiuchi YSOs as identified from infrared observations with ISOCAM. Specifically, we detected 9 out of 11 Class I, 31 out of 48 Class II and 15 out 16 Class III objects. Six objects out of 21 classified Class III candidates are also detected. At the same time we suggest that 15 Class III candidates that remain undetected at log Lx < 28.3 are not related to the cloud population. The global detection rate is ~64%. We have achieved a flux sensitivity of ~5 x 10^{-15} erg s^{-1} cm^{-2}. The Lx to L_bol ratio shows saturation at a value of ~ -3.5 for stars with T_eff <= 5000 K or 0.7 M_sun as observed in the Orion Nebula. The plasma temperatures and the spectrum absorption show a decline with YSO class, with Class I YSOs being hotter and more absorbed than Class II and III YSOs. In one star (GY~266) with infrared counterpart in 2MASS and Spitzer catalogs we have detected a soft excess in the X-ray spectrum which is best fitted by a cold thermal component less absorbed than the main thermal component of the plasma. Such a soft component hints to the presence of plasma heated by shocks due to jets outside the dense circumstellar material.
The stability of stably stratified flow was investigated by analyzing the Taylor-Goldstein equation theoretically. According to the analysis, the stably stratification is a destabilization mechanism, and the flow is always unstable given a modified Richardson number $Ris\geq 1$. Besides, the unstable perturbation must be long-wave scale. This result extends the Rayleight's, Fj{\o}rtoft's, Sun's and Arnol'd's criteria for the inviscid homogenous fluid, but contradicts the well-known Miles and Howard theorems.
Light gravitinos, with mass in the eV to MeV range, are well-motivated in particle physics, but their status as dark-matter candidates is muddled by early-Universe uncertainties. We investigate how upcoming data from colliders may clarify this picture. Light gravitinos are produced primarily in the decays of the next-to-lightest supersymmetric particle, resulting in spectacular signals, including di-photons, delayed and non-pointing photons, kinked charged tracks, and heavy metastable charged particles. We find that the Tevatron with 20/fb and the 7 TeV LHC with 1/fb may both see evidence for hundreds of light-gravitino events. Remarkably, this collider data is also well suited to distinguish between currently viable light-gravitino scenarios, with striking implications for structure formation, inflation, and other early-Universe cosmology.
Nonsingular cosmologies are investigated in the framework of f(R) gravity within the first order formalism. General conditions for bounces in isotropic and homogeneous cosmology are presented. It is shown that only a quadratic curvature correction is needed to predict a bounce in a flat or to describe cyclic evolution in a curved dust-filled universe. Formalism for perturbations in these models is set up. In the simplest cases, the perturbations diverge at the turnover. Conditions to obtain smooth evolution are derived.
Using the Hugenholtz-Van Hove theorem, we derive general expressions for the quadratic and quartic symmetry energies in terms of single-nucleon potentials in isospin asymmetric nuclear matter. These analytical relations are useful for gaining deeper insights into the microscopic origins of the uncertainties in our knowledge on nuclear symmetry energies especially at supra-saturation densities. As examples, the formalism is applied to two model single-nucleon potentials that are widely used in transport model simulations of heavy-ion reactions.
The viability of a possible cosmological scenario is investigated. The theoretical framework is the constrained next-to-minimal supersymmetric standard model (cNMSSM), with a gravitino playing the role of the lightest supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest supersymmetric particle (NLSP). All the necessary constraints from colliders and cosmology have been taken into account. For gravitino we have considered the two usual production mechanisms, namely out-of equillibrium decay from the NLSP, and scattering processes from the thermal bath. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determined.
We investigate the prospects for indirect detection of fermion WIMPless dark matter at the neutrino telescopes IceCube and DeepCore. The dark matter annihilating in the Sun is a hidden sector Majorana fermion that couples through Yukawa couplings to a connector particle and a visible sector particle, and it exhibits only spin-dependent scattering with nuclei. We consider cases where the annihilation products are taus, staus, or sneutrinos of the three generations. To evaluate the muon fluxes incident at the detector, we propagate the neutrino spectra through the solar medium and to the Earth and account for the effects of neutrino oscillations, energy losses due to neutral- and charged-current interactions, and tau regeneration. We find that for the stau and sneutrino channels, a five-year 3$\sigma$-detection of dark matter lighter than about 300 GeV is possible at IceCube for large Yukawa couplings or for dark matter and connector particles with similar masses. The tau-channel offers far better detection prospects. However, due to its lower energy threshold and better muon background rejection capability, DeepCore is able to detect signals in all annihilation channels and for a wider range of dark matter masses.
The solar minimum of 2008 was exceptionally quiet, with sunspot numbers at their lowest in 75 years. During this unique solar minimum epoch, however, solar wind high - speed streams emanating from near-equatorial coronal holes occurred frequently and were the primary contributor to the recurrent geomagnetic activity at Earth. These conditions enabled the isolation of forcing by geomagnetic activity on the preconditioned solar minimum state of the upper atmosphere caused by Corotating Interaction Regions (CIRs). Thermosphere density observations around 400 km from the CHAMP satellite are used to study the thermosphere density response to solar wind high - speed streams/CIRs. Superposed epoch results show that thermosphere density responds to high - speed streams globally, and the density at 400 km changes by 75% on average. The relative changes of neutral density are comparable at different latitudes, although its variability is largest at high latitudes. In addition, the response of thermosphere density to high - speed streams is larger at night than in daytime, indicating the preconditioning effect of the thermosphere response to storms. Finally, the thermosphere density variations at the periods of 9 and 13.5 days associated with CIRs are linked to the spatial distribution of low - middle latitude coronal holes on the basis of the EUVI observations from the STEREO.
Effects of quantized free scalar fields in cosmological spacetimes with Big Rip singularities are investigated. The energy densities for these fields are computed at late times when the expansion is very rapid. For the massless minimally coupled field it is shown that an attractor state exists in the sense that, for a large class of states, the energy density of the field asymptotically approaches the energy density it would have if it was in the attractor state. Results of numerical computations of the energy density for the massless minimally coupled field and for massive fields with minimal and conformal coupling to the scalar curvature are presented. For the massive fields the energy density is seen to always asymptotically approach that of the corresponding massless field. The question of whether the energy densities of quantized fields can be large enough for backreaction effects to remove the Big Rip singularity is addressed.
Links to: arXiv, form interface, find, astro-ph, recent, 1004, contact, help (Access key information)
Context: Chemical element abundances for distant Galactic globular clusters (GCs) hold important clues to the origin of the Milky Way halo and its substructures. Aims: We study the chemical composition of red giant stars in Pal 4 - one of the most remote GCs in the Milky Way - and compare our abundance measurements to those for both low surface brightness dwarf galaxies, and GCs in the inner and the outer halo. Methods: By co-adding high-resolution, low-S/N Keck/HIRES spectra of 19 stars along the red giant branch, we estimate chemical abundance ratios of 20 alpha-, iron peak-, and neutron-capture elements. Our method gives total uncertainties on most element-to-iron ratios of typically 0.2 dex. Results: We measure [Fe/H] = -1.41 +- 0.04 (statistical) +- 0.17 (systematic) and an alpha-enhancement of [alpha/Fe] = +0.38 +- 0.11 dex, which is consistent with the canonical value of +0.4 dex found for Galactic halo field stars and most halo GCs at this metallicity. Although Pal 4 has higher enhancements in the heavier elements with respect to the halo, the majority of the element ratios are, within the measurement errors, consistent with those for local halo field stars. We find, however, evidence for a lower [Mg/Ca] ratio than in other halo clusters. Conclusions: Based on the available evidence, we conclude that the material from which Pal 4 and the Galactic halo formed experienced similar enrichment processes, despite the apparently younger age of this cluster. Within the limitations of our methodology we find no significant indication of an iron spread, as is typical of genuine GCs of the Milky Way. However, abundance ratios for individual stars in Pal 4 and other distant satellites are urgently needed to understand the relationship, if any, between remote GCs and other halo substructures (i.e., luminous and ultra-faint dwarf spheroidal galaxies).
Using estimates of dark halo masses from satellite kinematics, weak gravitational lensing, and halo abundance matching, combined with the Tully-Fisher and Faber-Jackson relations, we derive the mean relation between the optical, V_opt, and virial, V_200, circular velocities of early- and late-type galaxies at redshift z~0. For late-type galaxies V_opt ~ V_200 over the velocity range V_opt=90-260 km/s, and is consistent with V_opt = V_maxh (the maximum circular velocity of NFW dark matter haloes in the concordance LCDM cosmology). However, for early-type galaxies V_opt \ne V_200, with the exception of early-type galaxies with V_opt simeq 350 km/s. This is inconsistent with early-type galaxies being, in general, globally isothermal. For low mass (V_opt < 250 km/s) early-types V_opt > V_maxh, indicating that baryons have modified the potential well, while high mass (V_opt > 400 km/s) early-types have V_opt < V_maxh. Folding in measurements of the black hole mass - velocity dispersion relation, our results imply that the supermassive black hole - halo mass relation has a logarithmic slope which varies from ~1.4 at halo masses of ~10^{12} Msun/h to ~0.65 at halo masses of 10^{13.5} Msun/h. The values of V_opt/V_200 we infer for the Milky Way and M31 are lower than the values currently favored by direct observations and dynamical models. This offset is due to the fact that the Milky Way and M31 have higher V_opt and lower V_200 compared to typical late-type galaxies of the same stellar masses. We show that current high resolution cosmological hydrodynamical simulations are unable to form galaxies which simultaneously reproduce both the V_opt/V_200 ratio and the V_opt-M_star (Tully-Fisher/Faber-Jackson) relation.
We present new results from our search for Giant H\,{\sc ii} Regions in galaxies visible from the southern hemisphere. In this work we study two galaxies: NGC\,7479 and NGC\,6070. Using high-resolution spectra, obtained with different instruments at Las Campanas Observatory, we are able to resolve the emission-line profile widths and determine the intrinsic velocity dispersion of the ionised gas. We detect profile widths corresponding to supersonic velocity dispersions in the six observed H\,{\sc ii} regions. We find that all of them show at least two distinct kinematical components: a relatively narrow feature (between ~11 and ~22\kms) and a broader (between ~31 and ~77\kms) component. Two of the regions show a complex narrow profile in all ion lines, which can be further split into two components with different radial velocities. Whereas the wing broadening of the overall profile can be fitted with a low-intensity broad component for almost all profiles, in one region it was better reproduced by two separate shell-like wings. We have analysed the impact that the presence of multiple components has on the location of the H{\sc ii} regions in the $\log(L) - \log(\sigma)$ plane. Although the overall distribution confirms the presence of a regression, the precise location of the regions in the plane is strongly dependent on the components derived from the profile fitting.
It is shown that, the wavelet regression detrended fluctuations of the monthly sunspot number for 1749-2009 years exhibit strong periodicity with a period approximately equal to 3.7 years. The wavelet regression method detrends the data from the approximately 11-years period. Therefore, it is suggested that the one-third subharmonic resonance can be considered as a background for the 11-years solar cycle. Relation of the driving period of the subharmonic resonance (3.7-years) to the active longitude flip-flop phenomenon, in which the dominant part of the sunspot activity changes the longitude every 3.7 years on average, has been briefly discussed.
Near future cosmology will see the advent of wide area photometric galaxy surveys, like the Dark Energy Survey (DES), that extent to high redshifts (z ~ 1 - 2) but with poor radial distance resolution. In such cases splitting the data into redshift bins and using the angular correlation function $w(\theta)$, or the $C_{\ell}$ power spectrum, will become the standard approach to extract cosmological information or to study the nature of dark energy through the Baryon Acoustic Oscillations (BAO) probe. In this work we present a detailed model for $w(\theta)$ at large scales as a function of redshift and bin width, including all relevant effects, namely nonlinear gravitational clustering, bias, redshift space distortions and photo-z uncertainties. We also present a model for the full covariance matrix characterizing the angular correlation measurements, that takes into account the same effects as for $w(\theta)$ and also the possibility of a shot-noise component and partial sky coverage. Provided with a large volume N-body simulation from the MICE collaboration we built several ensembles of mock redshift bins with a sky coverage and depth typical of forthcoming photometric surveys. The model for the angular correlation and the one for the covariance matrix agree remarkably well with the mock measurements in all configurations. The prospects for a full shape analysis of $w(\theta)$ at BAO scales in forthcoming photometric surveys such as DES are thus very encouraging.
In this work, we present results for the photometric and clustering properties of galaxies that arise in a LambdaCDM hydrodynamical simulation of the local Universe. The present-day distribution of matter was constructed to match the observed large scale pattern of the IRAS 1.2-Jy galaxy survey. Our simulation follows the formation and evolution of galaxies in a cosmological sphere with a volume of ~130^3 (Mpc/h)^3 including supernova feedback, galactic winds, photoheating due to an uniform meta-galactic background and chemical enrichment of the gas and stellar populations. However, we do not consider AGNs. In the simulation, a total of ~20000 galaxies are formed above the resolution limit, and around 60 haloes are more massive than ~10^14 M_sun. Luminosities of the galaxies are calculated based on a stellar population synthesis model including the attenuation by dust, which is calculated from the cold gas left within the simulated galaxies. Environmental effects like colour bi-modality and differential clustering power of the hydrodynamical galaxies are qualitatively similar to observed trends. Nevertheless, the overcooling present in the simulations lead to too blue and overluminous brightest cluster galaxies (BCGs). To overcome this, we mimic the late-time suppression of star formation in massive halos by ignoring recently formed stars with the aid of a simple post-processing recipe. In this way we find luminosity functions, both for field and group/cluster galaxies, in better agreement with observations. Specifically, the BCGs then follow the observed luminosity-halo mass relation. However, in such a case, the colour bi-modality is basically lost, pointing towards a more complex interplay of late suppression of star formation than what is given by the simple scheme adopted.
As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s and 1 SB4, increasing the number of known low-mass SBs by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass EBs, bringing the count of known M dwarf EBs to 15. BD -22 5866, the SB4, is fully described in Shkolnik et al. 2008 and CCDM J04404+3127 B consists of a two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P_rot to determine the true orbital parameters. For those with no P_rot, we use differential radial velocities to set upper limits on orbital periods and semi-major axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased towards tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems.
One of the great endeavors of the past decade has been the evaluation of different observational techniques for measuring dark energy properties and of theoretical techniques for constraining models of cosmic acceleration given cosmological data. This chapter reviews a few of the key developments, promises, and cautions for revealing dark energy. We also present a few new calculations, on direct detection of acceleration through redshift drift, the minimum uncertainty in the equation of state, and testing gravity.
The relative distribution of abundances of refractory, intermediate, and volatile elements in stars with planets can be an important tool for investigating the internal migration of a giant planet. This migration can lead to the accretion of planetesimals and the selective enrichment of the star with these elements. We report on a spectroscopic determination of the atmospheric parameters and chemical abundances of the parent stars in transiting planets CoRoT-2b and CoRoT-4b. Adding data for CoRoT-3 and CoRoT-5 from the literature, we find a flat distribution of the relative abundances as a function of their condensation temperatures. For CoRoT-2, the relatively high lithium abundance and intensity of its Li I resonance line permit us to propose an age of 120 Myr, making this stars one of the youngest stars with planets to date. We introduce a new methodology to investigate a relation between the abundances of these stars and the internal migration of their planets. By simulating the internal migration of a planet in a disk formed only by planetesimals, we are able to separate the stellar fractions of refractory (R), intermediate (I), and volatile (V) rich planetesimals accreting onto the central star. Intermediate and volatile element fractions enriching the star are similar and much larger than those of pure refractory ones. We also show that these results are highly dependent on the model adopted for the disk distribution regions in terms of R, I, and V elements and other parameters considered. We note however, that this self-enrichment mechanism is only efficient during the first 20-30 Myr or later in the lifetime of the disk when the surface convection layers of the central star for the first time attain its minimum size configuration.
Through a detailed numerical investigation in three spatial dimensions, we demonstrate that long-lived time-dependent field configurations emerge dynamically during symmetry breaking in an expanding de Sitter spacetime. We investigate two situations: a single scalar field with a double-well potential and the bosonic sector of an SU(2) non-Abelian Higgs model. For the single scalar, we show that large-amplitude oscillon configurations emerge spontaneously and persist to contribute about 1.2% of the energy density of the universe. We also show that for a range of parameters, oscillon lifetimes are enhanced by the expansion and that this effect is a result of parametric resonance. For the SU(2) case, we see about 3% of the final energy density in oscillons.
The inner mass-profile of the relaxed cluster Abell 1703 is analysed by two very different strong-lensing techniques applied to deep ACS and WFC3 imaging. Our parametric method has the accuracy required to reproduce the many sets of multiple images, based on the assumption that mass approximately traces light. We test this assumption with a fully non-parametric, adaptive grid method, with no knowledge of the galaxy distribution. Differences between the methods are seen on fine scales due to member galaxies which must be included in models designed to search for lensed images, but on the larger scale the general distribution of dark matter is in good agreement, with very similar radial mass profiles. We add undiluted weak-lensing measurements from deep multi-colour Subaru imaging to obtain a fully model-independent mass profile out to the virial radius and beyond. Consistency is found in the region of overlap between the weak and strong lensing, and the full mass profile is well-described by an NFW model of a concentration parameter, $c_{\rm vir}\simeq 7.15\pm0.5$ (and $M_{vir}\simeq 1.22\pm0.15 \times 10^{15}M_{\odot}/h$). Abell 1703 lies above the standard $c$--$M$ relation predicted for the standard $\Lambda$CDM model, similar to other massive relaxed clusters with accurately determined lensing-based profiles.
We present a second paper of fully characterization of a sample of stars whose low-depth transits were discovered by the OGLE-III campaign in order to select the most promising candidates for spectroscopic confirmation, following the same analysis done in Gallardo et al. (2005). We present new optical and near-IR photometry, deriving physical parameters like effective temperature (Teff), distance (d), the stellar radii (R*) and the companion radii (Rc). We selected eight M (2800 K \le Teff \le 3850 K) or K (3850 K \le Teff \le 5150 K) spectral type stellar objects as potential candidates to host exoplanets, even though, considering the radii of their companions, only stars OGLE-TR-61, OGLE-TR-74, OGLE-TR-123 and OGLE-TR-173 are the most promising M-type transit candidates to host planets. Confirmation of the planetary nature of any of these objects will yield another transiting extrasolar planet orbiting a M-type star, or even more interesting, the first extrasolar planets orbiting a late M-type dwarf of effective temperature about 2900 K.
We present 1D numerical simulations, which consider the effects of radiative
cooling and gravity on the hydrodynamics of the matter reinserted by stellar
winds and supernovae within young nuclear starbursts with a central
supermassive black hole (SMBH). The simulations confirm our previous
semi-analytic results for low energetic starbursts, evolving in a
quasi-adiabatic regime, and extend them to more powerful starbursts evolving in
the catastrophic cooling regime. The simulations show a bimodal hydrodynamic
solution in all cases. They present a quasi-stationary accretion flow onto the
black hole, defined by the matter reinserted by massive stars within the
stagnation volume and a stationary starburst wind, driven by the high thermal
pressure acquired in the region between the stagnation and the starburst radii.
In the catastrophic cooling regime, the stagnation radius rapidly approaches
the surface of the starburst region, as one considers more massive starbursts.
This leads to larger accretion rates onto the SMBH and concurrently to powerful
winds able to inhibit interstellar matter from approaching the nuclear
starburst.
Our self-consistent model thus establishes a direct physical link between the
SMBH accretion rate and the nuclear star formation activity of the host galaxy
and provides a good upper limit to the accretion rate onto the central black
hole.
We present a statistically complete sample of very X-ray luminous galaxy clusters detected in the MAssive Cluster Survey (MACS). This second MACS release comprises all 34 MACS clusters with nominal X-ray fluxes in excess of 2x10^(-12) erg/s/cm^2 (0.1-2.4 keV) in the ROSAT Bright Source Catalogue; two thirds of them are new discoveries. Extending over the redshift range from 0.3 to 0.5, this subset complements the complete sample of the 12 most distant MACS clusters (z>0.5) published in 2007 and further exemplifies the efficacy of X-ray selection for the compilation of samples of intrinsically massive galaxy clusters. Extensive follow-up observations with Chandra/ACIS led to three additional MACS cluster candidates being eliminated as (predominantly) X-ray point sources. For another four clusters --- which, however, remain in our sample of 34 --- the point-source contamination was found to be about 50%. The median X-ray luminosity of 1.3x10^45 erg/s (0.1-2.4 keV, Chandra, within r_500) of the clusters in this subsample demonstrates the power of the MACS survey strategy to find the most extreme and rarest clusters out to significant redshift. A comparison of the optical and X-ray data for all clusters in this release finds a wide range of morphologies with no obvious bias in favour of either relaxed or merging systems.
Globular clusters have proven to be essential to our understanding of many important astrophysical phenomena. Here we analyse spectroscopic observations of ten Halo globular clusters to determine their dark matter content, their tidal heating by the Galactic disc and halo, describe their metallicities and the likelihood that Newtonian dynamics explain their kinematics. We analyse a large number of members in all clusters, allowing us to address all these issues together, and we have included NGC 288 and M30 to overlap with previous studies. We find that any flattening of the velocity dispersion profiles in the outer regions of our clusters can be explained by tidal heating. We also find that all our GCs have M/L_V < 5, therefore, we infer the observed dynamics do not require dark matter, or a modification of gravity. We suggest that the lack of tidal heating signatures in distant clusters indicates the Halo is not triaxial. The isothermal rotations of each cluster are measured, with M4 and NGC 288 exhibiting rotation at a level of 0.9 +/- 0.1 km/s and 0.25 +/- 0.15 km/s, respectively. We also indirectly measure the tidal radius of NGC 6752, determining a more realistic figure for this cluster than current literature values. Lastly, an unresolved and intriguing puzzle is uncovered with regard to the cooling of the outer regions of all ten clusters.
Greaves (2006) proposed that three red, high proper motion stars within 10 degrees of 51 Peg (NLTT 54007, 54064, & 55547) are co-moving companions to this famous exoplanet host star. While the stars clearly have proper motions similar to 51 Peg, the inferred kinematic parallaxes for these stars produce extremely inconsistent color-magnitude positions 2 to 4 magnitudes below the main sequence. All three stars are likely to be background stars unrelated to 51 Peg.
Recent observations of the supernova remnant W44 by the Fermi spacecraft observatory strongly support the idea that the bulk of the galactic cosmic rays is accelerated in such remnants by a Fermi mechanism, also known as diffusive shock acceleration. However, the W44 expands into weakly ionized dense gas, and so a significant revision of the mechanism is required. In this paper we provide the necessary modifications and demonstrate that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by exactly one power. The spectral break is caused by Alfven wave evanescence leading to the fractional particle losses. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is also calculated and successfully fitted to the Fermi data. The parent proton spectrum is best represented by a classical test particle power law $\propto E^{-2}$, steepening to $E^{-3}$ at $E_{br}\approx7GeV$ due to the deteriorated particle confinement.
The pulse profiles of the transient Be/X-ray binary EXO 2030+375 show strong dependence on energy, as well as on its luminosity state, and are asymmetric in shape. We want to identify the emission components of the two magnetic poles in the pulsed emission to understand the geometry of the neutron star and its beam pattern. We utilize a pulse-profile decomposition method that enables us to find two symmetric pulse profiles from the magnetic poles of the neutron star. The symmetry characteristics of these single-pole pulse profiles give information about the position of the magnetic poles of the neutron star relative to its rotation axis. We find a possible geometry for the neutron star in EXO 2030+375 through the decomposition of the pulse profiles, which suggests that one pole gets closer to the line of sight than the other and that, during the revolution of the neutron star, both poles disappear behind the horizon for a short period of time. A considerable fraction of the emission arises from a halo while the pole is facing the observer and from the accretion stream of the other pole while it is behind the neutron star, but the gravitational line bending makes the emission visible to us.
In this review I concentrate on three areas related to structure of disks in spiral galaxies. First I will review the work on structure, kinematics and dynamics of stellar disks. Next I will review the progress in the area of flaring of HI layers. These subjects are relevant for the presence of dark matter and lead to the conclusion that disk are in general not `maximal', have lower M/L ratios than previously suspected and are locally stable w.r.t. Toomre's Q criterion for local stability. I will end with a few words on `truncations' in stellar disks.
We investigate the performance of the parametric Maximum Likelihood component separation method in the context of the CMB B-mode signal detection and its characterization by small-scale CMB suborbital experiments. We consider high-resolution (FWHM=8') balloon-borne and ground-based observatories mapping low dust-contrast sky areas of 400 and 1000 square degrees, in three frequency channels, 150, 250, 410 GHz, and 90, 150, 220 GHz, with sensitivity of order 1 to 10 micro-K per beam-size pixel. These are chosen to be representative of some of the proposed, next-generation, bolometric experiments. We study the residual foreground contributions left in the recovered CMB maps in the pixel and harmonic domain and discuss their impact on a determination of the tensor-to-scalar ratio, r. In particular, we find that the residuals derived from the simulated data of the considered balloon-borne observatories are sufficiently low not to be relevant for the B-mode science. However, the ground-based observatories are in need of some external information to permit satisfactory cleaning. We find that if such information is indeed available in the latter case, both the ground-based and balloon-borne experiments can detect the values of r as low as ~0.04 at 95% confidence level. The contribution of the foreground residuals to these limits is found to be then subdominant and these are driven by the statistical uncertainty due to CMB, including E-to-B leakage, and noise. We emphasize that reaching such levels will require a sufficient control of the level of systematic effects present in the data.
Abridged. The feedback between massive stars and the interstellar medium is one of the most important processes in the evolution of dwarf galaxies. This interaction results in numerous neutral and ionised gas structures that have been found both in the disc and in the halo of these galaxies. However, their origin and fate are still poorly understood. We here present new HI and optical data of two nearby irregular dwarf galaxies: IC 4662 and NGC 5408. The HI line data were obtained with the ATCA and are part of the Local Volume HI Survey. They are complemented by optical images and spectroscopic data obtained with the ESO NTT and the ESO 3.6m telescope. Our main aim is to study the kinematics of the neutral and ionised gas components in order to search for outflowing gas structures and to make predictions about their fate. We find the HI gas envelopes of both galaxies to extend well beyond the optical discs. The optical disc is embedded into the central HI maximum in both galaxies. However, higher resolution HI maps show that the HI intensity peaks are typically offset from the prominent HII regions. While NGC 5408 shows a fairly regular HI velocity field, which allows us to derive a rotation curve, IC 4662 reveals a rather twisted HI velocity field, possibly caused by a recent merger event. We detect outflows with velocities between 20 and 60 km/s in our Halpha spectra of both galaxies, sometimes with HI counterparts of similar velocity. We suggest the existence of expanding superbubbles, especially in NGC 5408. This is also supported by the detection of FWHMs as high as 70 km/s in Halpha. In case of NGC 5408, we compare our results with the escape velocity of the galaxy, which shows that the measured expansion velocities are in all cases too low to allow the gas to escape from the gravitational potential of NGC 5408. This result is consistent with studies of other dwarf galaxies.
We examine the temperature structure of the intergalactic medium IGM) surounding a hard radiation source, such as a Quasi-Stellar Object (QSO), as it responds to the onset of helium reionization by the source. We model the reionization using a radiative transfer (RT) code coupled to a particle-mesh (PM) N-body code. Neutral hydrogen and helium are initially ionized by a starburst spectrum, which is allowed to gradually evolve into a power law spectrum (fnu ~ nu^(-0.5)). Multiple simulations were performed with different times for the onset and dominance of the hard spectrum, with onset redshifts ranging from z = 3.5 to 5.5. The source is placed in a high-density region to mimic the expected local environment of a QSO. Simulations with the source placed in a low-density environment were also performed as control cases to explore the role of the environment on the properties of the surrounding IGM. We find in both cases that the IGM temperature within the HeIII region produced exceeds the IGM temperature before full helium reionization, resulting in a "thermal proximity effect", but that the temperature in the HeIII region increases systematically with distance from the source. With time the temperature relaxes with a reduced spread as a function of impact parameter along neighbouring lines of sight, although the trend continues to persist until z = 2. Such a trend could be detected using the widths of intervening metal absorption systems using high resolution, high signal-to-noise ratio spectra.
Polarimetry is widely considered a powerful observational technique in X-ray astronomy, useful to enhance our understanding of the emission mechanisms, geometry and magnetic field arrangement of many compact objects. However, the lack of suitable sensitive instrumentation in the X-ray energy band has been the limiting factor for its development in the last three decades. Up to now, polarization measurements have been made exclusively with Bragg diffraction at 45 degrees or Compton scattering at 90 degrees and the only unambiguous detection of X-ray polarization has been obtained for one of the brightest object in the X-ray sky, the Crab Nebula. Only recently, with the development of a new class of high sensitivity imaging detectors, the possibility to exploit the photoemission process to measure the photon polarization has become a reality. We will report on the performance of an imaging X-ray polarimeter based on photoelectric effect. The device derives the polarization information from the track of the photoelectrons imaged by a finely subdivided Gas Pixel Detector. It has a great sensitivity even with telescopes of modest area and can perform simultaneously good imaging, moderate spectroscopy and high rate timing. Being truly 2D it is non-dispersive and does not require any rotation. This device is included in the scientific payload of many proposals of satellite mission which have the potential to unveil polarimetry also in X-rays in a few years.
Two new luminosity functions of galaxies can be built starting from three and four parameter generalized gamma distributions. In the astrophysical conversion, the number of parameters increases by one, due to the addition of the overall density of galaxies. A third new galaxy luminosity function is built starting from a three parameter generalized gamma distribution for the mass of galaxies once a simple nonlinear relationship between mass and luminosity is assumed; in this case the number of parameters is five because the overall density of galaxies and a parameter that regulates mass and luminosity are added. The three new galaxy luminosity functions were tested on the Sloan Digital Sky Survey (SDSS) in five different bands; the results always produce a "better fit" than the Schechter function. The formalism that has been developed allows to analyze the Schechter function with a transformation of location. A test between theoretical and observed number of galaxies as a function of redshift was done on data extracted from a two-degree field galaxy redshift survey.
The collision of two white dwarfs is a quite frequent event in dense stellar systems, like globular clusters and galactic nuclei. In this paper we present the results of a set of simulations of the close encounters and collisions of two white dwarfs. We use an up- to-date smoothed particle hydrodynamics code that incorporates very detailed input physics and an improved treatment of the artificial viscosity. Our simulations have been done using a large number of particles (~ 4 \times 10^5) and covering a wide range of velocities and initial distances of the colliding white dwarfs. We discuss in detail when the initial eccentric binary white dwarf survives the closest approach, when a lateral collision in which several mass transfer episodes occur is the outcome of the newly formed binary system, and which range of input parameters leads to a direct collision, in which only one mass transfer episode occurs. We also discuss the characteristics of the final configuration and we assess the possible observational signatures of the merger, such as the associated gravitational waveforms and the fallback luminosities. We find that the overall evolution of the system and the main characteristics of the final object agree with those found in previous studies. We also find that the fallback luminosities are close to 10^48 erg/s. Finally, we find as well that in the case of lateral and direct collisions the gravitational waveforms are characterized by large-amplitude peaks which are followed by a ring-down phase, while in the case in which the binary white dwarf survives the closest approach, the gravitational pattern shows a distinctive behavior, typical of eccentric systems.
In this paper we summarise the status of single field models of inflation in light of the WMAP 7 data release. We find little has changed since the 5 year release, and results are consistent with previous findings. The increase in the upper bound on the running of the spectral index impacts on the status of the production of Primordial Black Holes from single field models. The lower bound on the equilateral configuration of the non-gaussianity parameter is reduced and thus the bounds on the theoretical parameters of (UV) DBI single brane models are weakened. In the case of multiple coincident branes the bounds are also weakened and the two, three or four brane cases will produce a tensor-signal that could possibly be observed in the future.
We have recently confirmed the planetary nebula (PN)nature of PM1-242, PM1-318 and PM1-322. Here we present high-resolution long-slit spectra of these three PNe in order to analyze their internal kinematics and to investigate their physical structure. PM1-242 is a tilted ring and not an elliptical PN as suggested by direct images. The object is probably related to ring-like PNe and shows an unusual point-symmetric brightness distribution in the ring. PM1-318 is a pole-on elliptical PN, instead of a circular one as suggested by direct images. PM1-322 is spatially unresolved and its spectrum shows large differences between the forbidden lines and H$\alpha$ profiles, with the latter showing a double-peaked profile and relatively extended wings (FWZI $\sim$ 325 km\,s$^{-1}$). These properties are found in other PNe that are suspected to host a symbiotic central star.
We study evolution of isolated neutron stars on long time scale and calculate distribution of these sources in the main evolutionary stages: Ejector, Propeller, Accretor, and Georotator. We compare different initial magnetic field distributions taking into account a possibility of magnetic field decay, and include in our calculations the stage of subsonic Propeller. It is shown that though the subsonic propeller stage can be relatively long, initially highly magnetized neutron stars ($B_0\ga 10^{13}$ G) reach the accretion regime within the Galactic lifetime if their kick velocities are not too large. The fact that in previous studies made $>$10 years ago, such objects were not considered results in a slight increase of the Accretor fraction in comparison with earlier conclusions. Most of the neutron stars similar to the Magnificent seven are expected to become accreting from the interstellar medium after few billion years of their evolution. They are the main predecestors of accreting isolated neutron stars.
One of the most pressing issues in cosmology is whether general relativity (GR) plus a dark sector is the underlying physical theory or whether a modified gravity model is needed. Upcoming dark energy experiments designed to probe dark energy with multiple methods can address this question by comparing the results of the different methods in constraining dark energy parameters. Disagreement would signal the breakdown of the assumed model (GR plus dark energy). We study the power of this consistency test by projecting constraints in the w_0-w_a plane from the four different techniques of the Dark Energy Survey in the event that the underlying true model is modified gravity. We find that the standard technique of looking for overlap has some shortcomings, propose as an alternative the Multi-dimensional Consistency Test, and introduce the methodology for projecting whether a given experiment will be able to distinguish a modified gravity model from GR.
We present a survey of the mass surface-density of spiral disks, motivated by outstanding uncertainties in rotation-curve decompositions. Our method exploits integral-field spectroscopy to measure stellar and gas kinematics in nearly face-on galaxies sampled at 515, 660, and 860 nm, using the custom-built SparsePak and PPak instruments. A two-tiered sample, selected from the UGC, includes 146 nearly face-on galaxies, with B<14.7 and disk scale-lengths between 10 and 20 arcsec, for which we have obtained H-alpha velocity-fields; and a representative 46-galaxy subset for which we have obtained stellar velocities and velocity dispersions. Based on re-calibration of extant photometric and spectroscopic data, we show these galaxies span factors of 100 in L(K) (0.03 < L/L(K)* < 3), 8 in L(B)/L(K), 10 in R-band disk central surface-brightness, with distances between 15 and 200 Mpc. The survey is augmented by 4-70 micron Spitzer IRAC and MIPS photometry, ground-based UBVRIJHK photometry, and HI aperture-synthesis imaging. We outline the spectroscopic analysis protocol for deriving precise and accurate line-of-sight stellar velocity dispersions. Our key measurement is the dynamical disk-mass surface-density. Star-formation rates and kinematic and photometric regularity of galaxy disks are also central products of the study. The survey is designed to yield random and systematic errors small enough (i) to confirm or disprove the maximum-disk hypothesis for intermediate-type disk galaxies, (ii) to provide an absolute calibration of the stellar mass-to-light ratio well below uncertainties in present-day stellar-population synthesis models, and (iii) to make significant progress in defining the shape of dark halos in the inner regions of disk galaxies.
Coalescing binary systems, consisting of two collapsed objects, are among the most promising sources of high frequency gravitational waves signals detectable, in principle, by ground-based interferometers. Binary systems of Neutron Star or Black Hole/Neutron Star mergers should also give rise to short Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most short Gamma Ray Bursts originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we outline here the possibility to associate short Gamma Ray Bursts as electromagnetic counterpart of coalescing binary systems.
The direct detection of exoplanets has been the subject of intensive research in the recent years. Data obtained with future high-contrast imaging instruments optimized for giant planets direct detection are strongly limited by the speckle noise. Specific observing strategies and data analysis methods, such as angular and spectral differential imaging, are required to attenuate the noise level and possibly detect the faint planet flux. Even though these methods are very efficient at suppressing the speckles, the photometry of the faint planets is dominated by the speckle residuals. The determination of the effective temperature and surface gravity of the detected planets from photometric measurements in different bands is then limited by the photometric error on the planet flux. In this work we investigate this photometric error and the consequences on the determination of the physical parameters of the detected planets. We perform detailed end-to-end simulation with the CAOS-based Software Package for SPHERE to obtain realistic data representing typical observing sequences in Y, J, H and Ks bands with a high contrast imager. The simulated data are used to measure the photometric accuracy as a function of contrast for planets detected with angular and spectral+angular differential methods. We apply this empirical accuracy to study the characterization capabilities of a high-contrast differential imager. We show that the expected photometric performances will allow the detection and characterization of exoplanets down to the Jupiter mass at angular separations of 1.0" and 0.2" respectively around high mass and low mass stars with 2 observations in different filter pairs. We also show that the determination of the planets physical parameters from photometric measurements in different filter pairs is essentialy limited by the error on the determination of the surface gravity.
A precise electromagnetic measurement of the sky coordinates and redshift of a coalescing black hole binary holds the key for using its gravitational wave (GW) signal to constrain cosmological parameters and to test general relativity. Here we show that the merger of ~10^{6-8}M_sun black holes is generically followed over a period of years by multiple electromagnetic flares from tidally disrupted stars. The sudden recoil imparted to the merged black hole by GW emission results promptly in a tidal disruption rate of stars as high as ~0.1-1 per year. The sequential disruption of stars within a single galaxy over a short period provides a unique electromagnetic flag of a recent black hole coalescence event, and can be used on its own to calibrate the expected rate of GW sources for pulsar timing arrays or the proposed Laser Interferometer Space Antenna (LISA).
We present results of 6 years of observations, reduced and analyzed with the same tools in a systematic way. We report completely new data for 15 objects, for 5 objects we present a new analysis of previously published results plus additional data and for 9 objects we present a new analysis of data already published. Lightcurves, possible rotation periods and photometric amplitudes are reported for all of them. The photometric variability is smaller than previously thought: the mean amplitude of our sample is 0.1mag and only around 15% of our sample has a larger variability than 0.15mag. The smaller variability than previously thought seems to be a bias of previous observations. We find a very weak trend of faster spinning objects towards smaller sizes, which appears to be consistent with the fact that the smaller objects are more collisionally evolved, but could also be a specific feature of the Centaurs, the smallest objects in our sample. We also find that the smaller the objects, the larger their amplitude, which is also consistent with the idea that small objects are more collisionally evolved and thus more deformed. Average rotation rates from our work are 7.5h for the whole sample, 7.6h for the TNOs alone and 7.3h for the Centaurs. All of them appear to be somewhat faster than what one can derive from a compilation of the scientific literature and our own results. Maxwellian fits to the rotation rate distribution give mean values of 7.5h (for the whole sample) and 7.3h (for the TNOs only). Assuming hydrostatic equilibrium we can determine densities from our sample under the additional assumption that the lightcurves are dominated by shape effects, which is likely not realistic. The resulting average density is 0.92g/cm^3 which is not far from the density constraint that one can derive from the apparent spin barrier that we observe.
During the solar minimum STEREO observations show that the three-dimensional structure of the solar corona can be described well by a tilted bi-polar magnetic configuration. The slow solar wind is modeled using three-fluid model that includes heavy ions, such as He II and O VI. The model is initialized with dipole magnetic field and spherically symmetric density. The resulting steady state non-potential and non-uniform streamer configuration calculated with this model is compared to STEREO observations of the streamer density structure. SOHO/UVCS observations are used to compare the O VI emission to model results. We discuss the unique properties of the solar wind produced in this configuration.
Using the method of integral-field (3D) spectroscopy, we have investigated the kinematics and distribution of the gas and stars at the center of the early-type spiral galaxy with a medium scale bar NGC 7177 as well as the change in the mean age of the stellar population along the radius. A classical picture of radial gas inflow to the galactic center along the shock fronts delineated by dust concentration at the leading edges of the bar has been revealed. The gas inflow is observed down to a radius R = 1".5 -- 2", where the gas flows at the inner Lindblad resonance concentrate in an azimuthally highly inhomogeneous nuclear star formation ring. The bar in NGC 7177 is shown to be thick in z coordinate; basically, it has already turned into a pseudo-bulge as a result of secular dynamical evolution. The mean stellar age inside the star formation ring, in the galactic nucleus, is old, ~10 Gyr. Outside, at a distance R = 6" - 8" from the nucleus, the mean age of the stellar population is ~2 Gyr. If we agree that the bar in NGC 7177 is old, then, obviously, the star formation ring has migrated radially inward in the last 1-2 Gyr, in accordance with the predictions of some dynamical models.
Thermal emission during X-ray bursts is a powerful tool to determine neutron star masses and radii, if the Eddington flux and the apparent radius in the cooling tail can be measured accurately, and distances to the sources are known. We propose here an improved method of determining the basic stellar parameters using the data from the cooling phase of long, photospheric radius expansion bursts covering a large range of luminosities. For this purpose, we computed a large set of atmosphere models for burst luminosities varying by two orders of magnitude and for various chemical compositions and surface gravities. We show that the variation of the inverse square root of the apparent blackbody radius with the flux, observed during the photospheric radius expansion burst from 4U 1724-307 located in globular cluster Terzan 2, is entirely consistent with the theoretical expectations of the color-correction factor evolution. Our method allows us to determine both the Eddington flux and the ratio of the stellar apparent radius to the distance much more reliably. We then find a lower limit on the neutron star radius of 13 km, independently of the chemical composition. These results suggest that the matter inside neutron stars is characterized by a stiff equation of state. We also find evidences in favor of hydrogen rich accreting matter and obtain an upper limit to the distance of 7 kpc. Our approach improves the old way of distances determination to X-ray bursters using Eddington fluxes.
In a density-stratified turbulent medium the cross helicity <u'.B'> is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations we find the cross helicity and the mean vertical magnetic field anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface exceeds the value of 1 Gauss km/s. Its sign is anti-correlated with that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.
We present an analytical model which reproduces measured galaxy number counts from surveys in the wavelength range of 500 micron to 2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function which has been gravitationally lensed by galaxy clusters in the mass range 10^13 to 10^15 Msun. This simple model reproduces both the low flux and the high flux end of the number counts reported by the BLAST, SCUBA, AzTEC and the SPT surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submillimeter galaxies detected at wavelengths larger than 500 micron lie at redshifts greater than 2.
The CoRoT mission is in its third year of observation and the data from the second long run in the galactic centre direction are being analysed. The solar-like oscillating stars that have been observed up to now have given some interesting results, specially concerning the amplitudes that are lower than predicted. We present here the results from the analysis of the star HD 170987.The goal of this research work is to characterise the global parameters of HD 170987. We look for global seismic parameters such as the mean large separation, maximum amplitude of the modes, and surface rotation because the signal-to-noise ratio in the observations do not allow us to measure individual modes. We also want to retrieve the stellar parameters of the star and its chemical composition.We have studied the chemical composition of the star using ground-based observations performed with the NARVAL spectrograph. We have used several methods to calculate the global parameters from the acoustic oscillations based on CoRoT data. The light curve of the star has been interpolated using inpainting algorithms to reduce the effect of data gaps. We find power excess related to p modes in the range [400 - 1200]\,$\mu$Hz with a mean large separation of 55.2\,$\pm$\,0.8\,$\mu$Hz with a probability above 95\,% that increases to 55.9 $\pm$\,0.2\,$\mu$Hz in a higher frequency range [500 - 1250] \,$\mu$Hz and a rejection level of 1\,$%$. A hint of the variation of this quantity with frequency is also found. The rotation period of the star is estimated to be around 4.3 days with an inclination axis of $i$\,=\,$50\degr \;^{+20}_{-13}$. We measure a bolometric amplitude per radial mode in a range [2.4 - 2.9] ppm around 1000 $\mu$Hz. Finally, using a grid of models, we estimate the stellar mass, M\,=\,1.43 $\pm$\,0.05 $M_\odot$, the radius, R\,=\,1.96 $\pm$\,0.046 $R_\odot$, and the age $\sim$2.4 Gyr.
The existence of low frequency waveguide modes of ion acoustic waves is demonstrated in magnetized plasmas for electron temperature striated along the magnetic field lines. At higher frequencies, in a band between the ion cyclotron and the ion plasma frequency, radiative modes develop and propagate obliquely to the field away from the striation. Arguments for the subsequent formation and propagation of electrostatic shock are presented and demonstrated numerically. For such plasma conditions, the dissipation mechanism is the "leakage" of the harmonics generated by the wave steepening.
The study of the hydrodynamics of bubble growth in first-order phase transitions is very relevant for electroweak baryogenesis, as the baryon asymmetry depends sensitively on the bubble wall velocity, and also for predicting the size of the gravity wave signal resulting from bubble collisions, which depends on both the bubble wall velocity and the plasma fluid velocity. We perform such study in different bubble expansion regimes, namely deflagrations, detonations, hybrids (steady states) and runaway solutions (accelerating wall), without relying on a specific particle physics model. We compute the efficiency of the transfer of vacuum energy to the bubble wall and the plasma in all regimes. We clarify the condition determining the runaway regime and stress that in most models of strong first-order phase transitions this will modify expectations for the gravity wave signal. Indeed, in this case, most of the kinetic energy is concentrated in the wall and almost no turbulent fluid motions are expected since the surrounding fluid is kept mostly at rest.
A quasiblack hole is an object in which its boundary is situated at a surface called the quasihorizon, defined by its own gravitational radius. We elucidate under which conditions a quasiblack hole can form under the presence of matter with nonzero pressure. It is supposed that in the outer region an extremal quasihorizon forms, whereas inside, the quasihorizon can be either non-extremal or extremal. It is shown that in both cases, non-extremal or extremal inside, a well-defined quasiblack hole always admits a continuous pressure at its own quasihorizon. Both the non-extremal and extremal cases inside can be divided into two situations, one in which there is no electromagnetic field, and the other in which there is an electromagnetic field. The situation with no electromagnetic field requires a negative matter pressure (tension) on the boundary. On the other hand, the situation with an electromagnetic field demands zero matter pressure on the boundary. So in this situation an electrified quasiblack hole can be obtained by the gradual compacting of a relativistic star with the usual zero pressure boundary condition. For the non-extremal case inside the density necessarily acquires a jump on the boundary, a fact with no harmful consequences whatsoever, whereas for the extremal case the density is continuous at the boundary. For the extremal case inside we also state and prove the proposition that such a quasiblack hole cannot be made from phantom matter at the quasihorizon. The regularity condition for the extremal case, but not for the non-extremal one, can be obtained from the known regularity condition for usual black holes.
Expressing explicitly the Skyrme interaction parameters in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. Combining constraints on the value $E_{sym}({\rho_{0}})$ and density slope $L$ of the nuclear symmetry energy at saturation density obtained from the application of this novel correlation analysis to existing data on the neutron skin thickness of Sn isotopes with those from recent analyses of isospin diffusion and double neutron/proton ratio in heavy ion collisions at intermediate energies leads to a value of $L=58\pm 18$ MeV approximately independent of $E_{sym}({\rho_{0}})$.
If dark matter in the galactic halo is composed of bosons that form a Bose-Einstein condensate then it is likely that the rotation of the halo will lead to the nucleation of vortices. After a review of the Gross-Pitaevskii equation, the Thomas-Fermi approximation and vortices in general, we consider vortices in detail. We find strong bounds for the boson mass, interaction strength, the shape and quantity of vortices in the halo, the critical rotational velocity for the nucleation of vortices and, in the Thomas-Fermi regime, an exact solution for the mass density of a single, axisymmetric vortex.
We show that the inclusion of simple anisotropic pressures stops the isotropic Friedmann universe being a stable attractor as an initial or final singularity is approached when pressures can exceed the energy density. This shows that the situation with isotropic pressures, studied earlier in the context of cyclic and ekpyrotic cosmologies, is not generic, and Kasner-like behaviour occurs when simple pressure anisotropies are present. We find all the asymptotic behaviours and determine the dynamics when the anisotropic principal pressures are proportional to the density. We expect distortions and anisotropies to be significantly amplified through a simple cosmological bounce in cyclic or ekpyrotic cosmologies when ultra-stiff pressures are present.
Links to: arXiv, form interface, find, astro-ph, recent, 1004, contact, help (Access key information)
We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR1=HD4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P=16.9$^{+0.6}_{-0.3}$ days. The same period is also found in our spectral data. The light-curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light-curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely Co-rotating Interaction Regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR6, WR134 and WR137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out; i.e. v$_{rot}$=6.5, 40, 70 and 275 km/s for WR1, WR6, WR134 and WR137, respectively.
We analyze the color gradients (CGs) of ~50000 nearby SDSS galaxies. From synthetic spectral models based on a simplified star formation recipe, we derive the mean spectral properties, and explain the observed radial trends of the color as gradients of the stellar population age and metallicity (Z). The most massive ETGs (M_* > 10^{11} Msun) have shallow CGs in correspondence of shallow (negative) Z gradients. In the stellar mass range 10^(10.3-10.5) < M_* < 10^(11) Msun, the Z gradients reach their minimum of ~ -0.5 dex^{-1}. At M_* ~ 10^{10.3-10.5} Msun, color and Z gradient slopes suddenly change. They turn out to anti-correlate with the mass, becoming highly positive at the very low masses. We have also found that age gradients anti-correlate with Z gradients, as predicted by hierarchical cosmological simulations for ETGs. On the other side, LTGs have gradients which systematically decrease with mass (and are always more negative than in ETGs), consistently with the expectation from gas infall and SN feedback scenarios. Z is found to be the main driver of the trend of color gradients, especially for LTGs, but age gradients are not negligible and seem to play a significant role too. We have been able to highlight that older galaxies have systematically shallower age and Z gradients than younger ones. Our results for high-mass galaxies are in perfect agreement with predictions based on the merging scenario, while the evolution of LTGs and younger and less massive ETGs seems to be mainly driven by infall and SN feedback. (Abridged)
We report new cm-wave measurements at five frequencies between 15 and 18GHz of the continuum emission from the reportedly anomalous "region 4" of the nearby galaxy NGC6946. We find that the emission in this frequency range is significantly in excess of that measured at 8.5GHz, but has a spectrum from 15-18GHz consistent with optically thin free-free emission from a compact HII region. In combination with previously published data we fit four emission models containing different continuum components using the Bayesian spectrum analysis package radiospec. These fits show that, in combination with data at other frequencies, a model with a spinning dust component is slightly preferred to those that possess better-established emission mechanisms.
We conduct numerical experiments by evolving gaseous/stellar disks embedded in live dark matter halos aiming at quantifying the effect of gas spatial resolution and gas content on the bar evolution. Model sequences have been constructed using different resolution, and gas fraction has been varied along each sequence within fgas=0%-50%, keeping the disk and halo properties unchanged. We find that the spatial resolution becomes important with an increase in `fgas'. For the higher resolution model sequences, we observe a bimodal behavior in the bar evolution with respect to the gas fraction, especially during the secular phase of this evolution. The switch from the gas-poor to gas-rich behavior is abrupt and depends on the resolution used. The diverging evolution has been observed in nearly all basic parameters characterizing bars, such as the bar strength, central mass concentration, vertical buckling amplitude, size, etc. We find that the presence of the gas component severely limits the bar growth and affects its pattern speed evolution. Gas-poor models display rapidly decelerating bars, while gas-rich models exhibit bars with constant or even slowly accelerating tumbling. The gas-rich models have bar corotation (CR) radii within the disk at all times, in constrast with gas-poor and purely stellar disks. The CR-to-bar size ratio is less than 2 for gas rich-models. We have confirmed that the disk angular momentum within the CR remains unchanged in the gas-poor models, as long as the CR stays within the disk, but experiences a sharp drop before leveling off in the gas-rich models. Finally, we discuss a number of observed correlations between various parameters of simulated bars, e.g., bar sizes and gas fractions, bar strength and buckling amplitude, bar strength and its size, etc.
V1408 Aql (= 4U 1957+115) is a low mass X-ray binary whose compact star is a black hole (BH) candidate. We obtained new optical photometry of this system in 2008. From this data we derive an improved optical orbital ephemeris and a new geometric model for the system. The model uses only a simple thin disk without the need for a warped disk or a large disk rim. The orbital variation is produced by the changing aspect of the irradiated secondary star with orbital phase. The new model leaves the orbital inclination unconstrained and allows for inclinations as low as 20 degrees.
We revisit the growth of perturbations in scalar-tensor (ST) cosmologies. We show that on large subhorizon scales, in the Newtonian gauge, the usual subhorizon growth equation does not describe the growth of perturbations accurately, as a result of scale-dependent relativistic corrections to the Poisson equation. We derive a scale-dependent version of the growth equation which is in excellent agreement with exact numerical results. Based on this equation, we propose an accurate scale dependent parameterization for the growth of perturbations in these models.
I review what we have learned about the old stellar population of NGC 5128, the only large E galaxy close enough that we can currently observe individual stars as faint as the horizontal branch. Although its galaxy type is still a matter of debate for some, the uncertainties over distance are now largely resolved; comparison of five stellar distance indicators gives d=3.8 +- 0.1 Mpc. The globular cluster system, which was once perplexingly invisible, is now known to be predominantly old with a substantial metal-rich component. The GCS total population and luminosity function are normal and the clusters follow the same fundamental plane relation as those in the Milky Way and M31. Finally, the halo out to at least ~7r_{eff} is dominated by metal-rich stars which are also predominantly old, with age and metallicity tantalizingly similar to the majority of globular clusters.
We have investigated the oxygen and nitrogen chemical abundances in extremely compact star-forming galaxies with redshifts between $\sim$0.11-0.35, popularly referred to as "green peas". Direct and strong-line methods sensitive to the N/O ratio applied to their SDSS spectra reveals that these systems are genuine metal-poor galaxies, with mean oxygen abundances 20% solar. At a given metallicity these galaxies display systematically large N/O ratios compared to normal galaxies, which can explain the strong difference between our metallicities measurements and previous ones. While their N/O ratios follow the relation with stellar mass of local star-forming galaxies in the SDSS, we find that the mass--metallicity relation of the "green peas" is offset $\ga$0.3 dex to lower metallicities. We argue that recent interaction-induced inflow of gas, possibly coupled with a selective metal-rich gas loss, driven by supernova winds, may explain our findings and the known galaxy properties, namely high specific star formation rates, extreme compactness, and disturbed optical morphologies. The "green pea" galaxy properties seem to be not common in the nearby Universe, suggesting a short and extreme stage of their evolution. Therefore, these galaxies may allow us to study in great detail many processes, such as starburst activity and chemical enrichment, under physical conditions approaching those in galaxies at higher redshifts.
Although they are but a small fraction of the mass ejected in core-collapse supernovae, neutrino-driven winds (NDWs) from nascent proto-neutron stars (PNSs) have the potential to contribute significantly to supernova nucleosynthesis. In previous works, the NDW has been implicated as a possible source of r-process and light p-process isotopes. In this paper we present time-dependent hydrodynamic calculations of nucleosynthesis in the NDW which include accurate weak interaction physics coupled to a full nuclear reaction network. Using two published models of PNS neutrino luminosities, we predict the contribution of the NDW to the integrated nucleosynthetic yield of the entire supernova. For the neutrino luminosity histories considered, no true r-process occurs in the most basic scenario. The wind driven from an older $1.4 M_\odot$ model for a PNS is moderately neutron-rich at late times however, and produces $^{87}$Rb, $^{88}$Sr, $^{89}$Y, and $^{90}$Zr in near solar proportions relative to oxygen. The wind from a more recently studied $1.27 M_\odot$ PNS is proton-rich throughout its entire evolution and does not contribute significantly to the abundance of any element. It thus seems very unlikely that the simplest model of the NDW can produce the r-process. At most, it contributes to the production of the N = 50 closed shell elements and some light p-nuclei. In doing so, it may have left a distinctive signature on the abundances in metal poor stars, but the results are sensitive to both uncertain models for the explosion and the masses of the neutron stars involved.
Conventional techniques that measure rapid time variations are inefficient or inadequate to discover and observe rapidly pulsating astronomical sources. It is therefore conceivable that there exist some classes of objects pulsating with extremely short periods that have not yet been discovered. This article starts from the fact that rapid flux variations generate a spectral modulation that can be detected in the beat spectrum of the output current fluctuations of a quadratic detector. The telescope could observe at any frequency, although shorter frequencies would have the advantage of lower photon noise. The techniques would allow us to find and observe extremely fast time variations, opening up a new time window in Astronomy. The current fluctuation technique, like intensity interferometers, uses second-order correlation effects and fits into the current renewal of interest in intensity interferometry. An interesting aspect it shares with intensity interferometry is that it can use inexpensive large telescope that have low-quality mirrors, like Cherenkov telescopes. It has other advantages over conventional techniques that measure time variations, foremost of which is its simplicity. Consequently, it could be used for extended monitoring of astronomical sources, something that is difficult to do with conventional telescopes. Arguably, the most interesting scientific justification for the technique comes from Serendipity
We investigate the recently quantified misalignment of $\alpha_{mis} \approx 20^\circ-40^\circ$ between the 3-D geometry of stereoscopically triangulated coronal loops observed with STEREO/EUVI (in four active regions) and theoretical (potential or nonlinear force-free) magnetic field models extrapolated from photospheric magnetograms. We develop an efficient method of bootstrapping the coronal magnetic field by forward-fitting a parameterized potential field model to the STEREO-observed loops. The potential field model consists of a number of unipolar magnetic charges that are parameterized by decomposing a photospheric magnetogram from MDI. The forward-fitting method yields a best-fit magnetic field model with a reduced misalignment of $\alpha_{PF} \approx 13^\circ-20^\circ$. We evaluate also stereoscopic measurement errors and find a contribution of $\alpha_{SE}\approx 7^\circ-12^\circ$, which constrains the residual misalignment to $\alpha_{NP}=\alpha_{PF}-\alpha_{SE}\approx 5^\circ -9^\circ$, which is likely due to the nonpotentiality of the active regions. The residual misalignment angle $\alpha_{NP}$ of the potential field due to nonpotentiality is found to correlate with the soft X-ray flux of the active region, which implies a relationship between electric currents and plasma heating.
The flux and line shape of the fine-structure transitions of \NeII\ and \NeIII\ at 12.8 and 15.55\,$\mu$m and of the forbidden transitions of \OI\ $\lambda6300$ are calculated for young stellar objects with a range of mass-loss rates and X-ray luminosities using the X-wind model of jets and the associated wide-angle winds. For moderate and high accretion rates, the calculated \NeII\ line luminosity is comparable to or much larger than produced in X-ray irradiated disk models. All of the line luminosities correlate well with the main parameter in the X-wind model, the mass-loss rate, and also with the assumed X-ray luminosity --- and with one another. The line shapes of an approaching jet are broad and have strong blue-shifted peaks near the effective terminal velocity of the jet. They serve as a characteristic and testable aspect of jet production of the neon fine-structure lines and the \OI\ forbidden transitions.
In the present work, by the help of the newly released Union2 compilation which consists of 557 Type Ia supernovae (SNIa), we calibrate 109 long Gamma-Ray Bursts (GRBs) with the well-known Amati relation, using the cosmology-independent calibration method proposed by Liang {\it et al.}. We have obtained 59 calibrated high-redshift GRBs which can be used to constrain cosmological models without the circularity problem (we call them "Hymnium" GRBs sample for convenience). Then, we consider the joint constraints on 7 cosmological models from the latest observational data, namely, the combination of 557 Union2 SNIa dataset, 59 calibrated Hymnium GRBs dataset (obtained in this work), the shift parameter $R$ from the WMAP 7-year data, and the distance parameter $A$ of the measurement of the baryon acoustic oscillation (BAO) peak in the distribution of SDSS luminous red galaxies. We also briefly consider the comparison of these 7 cosmological models.
The binding energy parameter $\lambda$ plays an important role in common envelope (CE) evolution. Previous works have already pointed out that $\lambda$ varies throughout the stellar evolution, though it has been adopted as a constant in most of the population synthesis calculations. We have systematically calculated the binding energy parameter $\lambda$ for both Population I and Population II stars of masses $1-20 M_{\sun}$, taking into account the contribution from the internal energy of stellar matter. We present fitting formulae for $\lambda$ that can be incorporated into future population synthesis investigations. We also briefly discuss the possible applications of the results in binary evolutions.
We study the line widths in the [\ion{O}{3}]$\lambda$5007 and H$\alpha$ lines for two groups of planetary nebulae in the Milky Way bulge based upon spectroscopy obtained at the Observatorio Astron\'omico Nacional in the Sierra San Pedro M\'artir (OAN-SPM) using the Manchester Echelle Spectrograph. The first sample includes objects early in their evolution, having high H$\beta$ luminosities, but [\ion{O}{3}]$\lambda 5007/\mathrm H\beta < 3$. The second sample comprises objects late in their evolution, with \ion{He}{2} $\lambda 4686/\mathrm H\beta > 0.5$. These planetary nebulae represent evolutionary phases preceeding and following those of the objects studied by Richer et al. (2008). Our sample of planetary nebulae with weak [\ion{O}{3}]$\lambda$5007 has a line width distribution similar to that of the expansion velocities of the envelopes of AGB stars, and shifted to systematically lower values as compared to the less evolved objects studied by Richer et al. (2008). The sample with strong \ion{He}{2} $\lambda 4686$ has a line width distribution indistinguishable from that of the more evolved objects from Richer et al. (2008), but a distribution in angular size that is systematically larger and so they are clearly more evolved. These data and those of Richer et al. (2008) form a homogeneous sample from a single Galactic population of planetary nebulae, from the earliest evolutionary stages until the cessation of nuclear burning in the central star. They confirm the long-standing predictions of hydrodynamical models of planetary nebulae, where the kinematics of the nebular shell are driven by the evolution of the central star.
We model the formation of the Galactic stellar halo via the accretion of satellite galaxies onto a time-dependent semi-cosmological galactic potential. Our goal is to characterize the substructure left by these accretion events in a close manner to what may be possible with the {\it Gaia} mission. We have created a synthetic {\it Gaia} Solar Neighbourhood catalogue by convolving the 6D phase-space coordinates of stellar particles from our disrupted satellites with the latest estimates of the {\it Gaia} measurement errors, and included realistic background contamination due to the Galactic disc(s) and bulge. We find that, even after accounting for the expected observational errors, the resulting phase-space is full of substructure. We are able to successfully isolate roughly 50% of the different satellites contributing to the `Solar Neighbourhood' by applying the Mean-Shift clustering algorithm in energy-angular momentum space. Furthermore, a Fourier analysis of the space of orbital frequencies allows us to obtain accurate estimates of time since accretion for approximately 30% of the recovered satellites.
Acetic acid (CH$_3$COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is co-spatial within the telescope beam. Previous work has presumed that similar cores with co-spatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations become available of large O and N-containing molecules? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at 3 mm wavelengths towards G19.61-0.23, G29.96-0.02 and IRAS 16293-2422. We have successfully detected CH$_3$COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH$_3$COOH is 2.0(1.0)$\times 10^{16}$ cm$^{-2}$ and the abundance ratio of CH$_3$COOH to methyl formate (HCOOCH$_3$) is 2.2(0.1)$\times 10^{-1}$ toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH$_3$COOH is $\sim$ 1.6 $\times 10^{15}$ cm$^{-2}$ and the abundance ratio of CH$_3$COOH to methyl formate (HCOOCH$_3$) is $\sim$ 1.0 $\times 10^{-1}$ both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1-2$\sigma$ detection limit.
(abridged) The three most iron poor stars presently known ([Fe/H] equal to -5.96, -5.4 and -4.75) are carbon-rich, they are called C-Rich Ultra-Metal Poor Stars (CRUMPS). The origin of their peculiar surface abundances is not understood. We propose a synthetic view of the different models so far proposed to explain the peculiar abundances observed at the surface of the CRUMP stars. We deduce some expected trends based on nucleosynthetic arguments and look for signatures allowing to discriminate among models. We discuss the conditions for having CRUMP stars which are He-rich, i.e. with a mass fraction of helium greater than 0.30 and up to 0.60. We discuss the chemical composition of stars made of interstellar medium mixed with wind material of very metal poor massive stars, with wind plus supernova ejecta and with material extracted from the envelope of early AGB stars. Rotating and non-rotating models are considered. CRUMP stars formed from wind material of massive stars mixed with small amounts of pristine interstellar medium are He-rich (helium mass fraction between 0.30 and 0.60), Li-depleted and present low $^{12}$C/$^{13}$C ratios (inferior to 10 in number). Such He-rich stars, if discovered, would confirm that the most metal poor CRUMPs formed from essentially pure wind/envelope material. They would provide the most direct way to probe the nucleosynthetic outputs of the first generations of stars. We show that rotation is a key ingredient to explain the abundance patterns of CRUMPS stars.
We derive accurate proper motions of the CH3OH 12 GHz masers towards the W3(OH) UCHII region, employing seven epochs of VLBA observations spanning a time interval of about 10 yr. The achieved velocity accuracy is of the order of 0.1 km/s, adequate to precisely measure the relative velocities of most of the 12 GHz masers in W3(OH), with amplitude varying in the range 0.3 - 3 km/s. Towards W3(OH), the most intense 12 GHz masers concentrate in a small area towards the north (the northern clump) of the UCHII region. We have compared the proper motions of the CH3OH 12 GHz masers with those (derived from literature data) of the OH 6035 MHz masers, emitting from the same region of the methanol masers. In the northern clump, the two maser emissions emerge from nearby (but likely distinct) cloudlets of masing gas with, in general, a rather smooth variation of line-of-sight and sky-projected velocities, which suggests some connection of the environments and kinematics traced by both maser types. The conical outflow model, previously proposed to account for the 12 GHz maser kinematics in the northern clump, does not reproduce the new, accurate measurements of 12 GHz maser proper motions and has to be rejected. We focus on the subset of 12 GHz masers of the northern clump belonging to the "linear structure at P.A. = 130-140 degree", whose regular variation of LSR velocities with position presents evidence for some ordered motion. We show that the 3-dimensional velocities of this "linear distribution" of 12GHz masers can be well fitted considering a flat, rotating disk, seen almost edge-on.
We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface-density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio, and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find a disk inclination range of 25-35 degrees is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale-heights are significant, but can be estimated from radial scale-lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction (F_b) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially-extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error-budget for the key quantities: dynamical disk mass surface-density, disk stellar mass-to-light ratio, and disk maximality (V_disk / V_circular). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.
CONTEXT. Massive stars have high-multiplicity fractions, and many of them have still undetected components, thus hampering the study of their properties. AIMS. I study a sample of massive stars with high angular resolution to better characterize their multiplicity. METHODS. I observed 138 fields that include at least one massive star with AstraLux, a lucky imaging camera at the 2.2 m Calar Alto telescope. I also used observations of 3 of those fields with ACS/HRC on HST to obtain complementary information and to calibrate the AstraLux data. The results were compared with existing information from the Washington Double Star Catalog, Tycho-2, 2MASS, and other literature results. RESULTS. I discover 16 new optical companions of massive stars, the majority of which are likely to be physically bound to their primaries. I also improve the accuracy for the separation and magnitude difference of many previously known systems. In a few cases the orbital motion is detected when comparing the new data with existing ones and constraints on the orbits are provided. CONCLUSIONS. The analysis indicate that the majority of the AstraLux detections are bound pairs. For a range of separations of 0.1"-14" and magnitude differences lower than 8, I find that the multiplicity fraction for massive stars is close to 50%. When objects outside those ranges are included, the multiplicity fraction should be considerably higher.
Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical ring forms when material collects near a resonance, set up by the pattern speed of a bar or bar-like perturbation. Our goal in this paper is to examine whether the ring star formation properties are related to the non-axisymmetric gravity potential in general. For this purpose, we obtained H{\alpha} emission line images and calculated the line fluxes and star formation rates (SFRs) for 16 nonbarred SA galaxies and four weakly barred SAB galaxies with rings. For comparison, we combine our observations with a re-analysis of previously published data on five SA, seven SAB, and 15 SB galaxies with rings, three of which are duplicates from our sample. With these data, we examine what role a bar may play in the star formation process in rings. Compared to barred ringed galaxies, we find that the inner ring SFRs and H{\alpha}+[N ii] equivalent widths in nonbarred ringed galaxies show a similar range and trend with absolute blue magnitude, revised Hubble type, and other parameters. On the whole, the star formation properties of inner rings, excluding the distribution of H ii regions, are independent of the ring shapes and the bar strength in our small samples. We confirm that the deprojected axis ratios of inner rings correlate with maximum relative gravitational force Q_g; however, if we consider all rings, a better correlation is found when local bar forcing at the radius of the ring, Q_r, is used. Individual cases are described and other correlations are discussed. By studying the physical properties of these galaxies, we hope to gain a better understanding of their placement in the scheme of the Hubble sequence and how they formed rings without the driving force of a bar.
NGC 2903 is a nearby barred spiral with an active starburst in the center and Hii regions distributed along its bar. We aim to analyse the star formation properties in the bar region of NGC 2903 and study the links with the typical bar morphological features. A combination of space and ground-based data from the far-ultraviolet to the sub-millimeter spectral ranges is used to create a panchromatic view of the NGC 2903 bar. We produce two catalogues: one for the current star formation regions, as traced by the halpha compact emission, and a second one for the ultraviolet (UV) emitting knots, containing positions and luminosities. From them we have obtained ultraviolet colours, star formation rates, dust attenuation and halpha EWs, and their spatial distribution have been analysed. Stellar cluster ages have been estimated using stellar population synthesis models (Starburst99). NGC 2903 is a complex galaxy, with a very different morphology on each spectral band. The CO(J=1-0) and the 3.6 micron emission trace each other in a clear barred structure, while the halpha leads both components and it has an s-shape distribution. The UV emission is patchy and does not resemble a bar. The UV emission is also characterised by a number of regions located symmetrically with respect to the galaxy center, almost perpendicular to the bar, in a spiral shape covering the inner ~2.5 kpc. These regions do not show a significant halpha nor 24 micron emission. We have estimated ages for these regions ranging from 150 to 320 Myr, being older than the rest of the UV knots, which have ages lower than 10 Myr. The SFR calculated from the UV emission is ~0.4 M$_{\odot}$/yr, compatible with the SFR as derived from halpha calibrations (M$_{\odot}$/yr).
We have used the Extreme Ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft to observe large areas of outflow near an active region. These outflows are seen to persist for at least 6 days. The emission line profiles suggest that the outflow region is composed of multiple outflowing components, Doppler-shifted with respect to each other. We have modeled this scenario by imposing a double-Gaussian fit to the line profiles. These fits represent the profile markedly better than a single Gaussian fit for Fe XII and XIII emission lines. For the fastest outflowing components, we find velocities as high as 200 km/s. However, there remains a correlation between the fitted line velocities and widths, suggesting that the outflows are not fully resolved by the double-Gaussian fit and that the outflow may be comprised of further components.
Gravitational waves from the final stages of inspiralling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution during which tidal effects provide small correction; however, during this phase the signal is relatively clean. The accumulated phase shift due to tidal corrections is characterized by a single quantity, the Love number, which is sensitive to the compactness parameter M/R and the star's internal structure, and its determination could constrain the star's radius. We show that the Love number of normal neutron stars are much different from those of self-bound strange quark matter stars and could therefore provide an important way to distinguish between these two classes of stars.
GRB 090926A was detected by both the GBM and LAT instruments on-board the Fermi Gamma-Ray Space Telescope. Swift follow-up observations began ~13 hours after the initial trigger. The optical afterglow was detected for nearly 23 days post trigger, placing it in the long lived category. The afterglow is of particular interest due to its brightness at late times, as well as the presence of optical flares at T0+10^5 s and later, which may indicate late-time central engine activity. The LAT has detected a total of 16 GRBs; 9 of these bursts, including GRB 090926A, also have been observed by Swift. Of the 9 Swift observed LAT bursts, 6 were detected by UVOT, with 5 of the bursts having bright, long-lived optical afterglows. In comparison, Swift has been operating for 5 years and has detected nearly 500 bursts, but has only seen ~30% of bursts with optical afterglows that live longer than 10^5 s. We have calculated the predicted gamma-ray fluence, as would have been seen by the BAT on-board Swift, of the LAT bursts to determine whether this high percentage of long-lived optical afterglows is unique, when compared to BAT-triggered bursts. We find that, with the exception of the short burst GRB 090510A, the predicted BAT fluences indicate the LAT bursts are more energetic than 88% of all Swift bursts, and also have brighter than average X-ray and optical afterglows.
A didactic introduction to current thinking on some aspects of the solar dynamo is given for geophysicists and planetary scientists.
We discuss a possible generation of radio bursts preceding final stages of binary neutron star mergings which can be accompanied by short gamma-ray bursts. Detection of such bursts appear to be advantageous in the low-frequency radio band due to a time delay of ten to several hundred seconds required for radio signal to propagate in the ionized intergalactic medium. This delay makes it possible to use short gamma-ray burst alerts to promptly monitor specific regions on the sky by low-frequency radio facilities, especially by LOFAR. To estimate the strength of the radio signal, we assume a power-law dependence of the radio luminosity on the total energy release in a magnetically dominated outflow, as found in millisecond pulsars. Based on the planned LOFAR sensitivity at 120 MHz, we estimate that the LOFAR detection rate of such radio transients could be about several events per month from redshifts up to $z\sim1.3$ in the most optimistic scenario. The LOFAR ability to detect such events would crucially depend on exact efficiency of low-frequency radio emission mechanism.
We present a detailed analysis of the day-side atmosphere of the hot Neptune GJ~436b, based on recent Spitzer observations. We report statistical constraints on the thermal and chemical properties of the planet atmosphere, study correlations between the various molecular species, and discuss scenarios of equilibrium and non-equilibrium chemistry in GJ~436b. We model the planet atmosphere with a 1-D line-by-line radiative transfer code with parametrized molecular abundances and temperature structure. We explore the model parameter space with 10^6 models, using a Markov chain Monte Carlo scheme. Our results encompass previous findings, indicating a paucity of methane, an over-abundance of CO and CO2, and a slight under-abundance of H2O, as compared to equilibrium chemistry with solar metallicity. The concentrations of the species are highly correlated. Our best-fit constraints require a methane (CH4) mixing ratio between 1.0e-7 - 1.0e-6, with CO > 1.0E-3, CO2 between 1.0e-6 - 1.0e-4, and H2O < 1.0E-4; higher CH4 would require much higher CO and CO2. Using calculations of equilibrium and non-equilibrium chemistry, we find that the observed high CO abundance can be explained with a combination of high metallicity (30 x solar) and eddy mixing (with Kzz ~ 10^6-10^7), whereas the low CH4 abundance can potentially be explained by photochemistry. Our constraints rule out a day-side thermal inversion in GJ~436b. We emphasize that the constraints reported in this work depend crucially on the observations in the two Spitzer channels at 3.6 micron and 4.5 micron. Future observations with warm Spitzer and JWST will be extremely important to improve upon the present constraints on the abundances of carbon species in the dayside atmosphere of GJ~436b.
We consider models of inflection point inflation. The main drawback of such models is that they suffer from the overshoot problem. Namely the initial condition should be fine tuned to be near the inflection point for the universe to inflate. We show that stringy realizations of inflection point inflation are common and offer a natural resolution to the overshoot problem.
The transition density $n_t$ and pressure $P_t$ at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: $0.086 \ {\rm fm}^{-3} \leq n_t < 0.090 \ {\rm fm}^{-3}$ and $0.3\ {\rm MeV \ fm}^{-3} < P_t \leq 0.76 \ {\rm MeV \ fm}^{-3}$.
It was recently realized that matter modeled by the scalar field sector of the Lee-Wick Standard Model yields, in the context of a homogeneous and isotropic cosmological background, a bouncing cosmology. However, bouncing cosmologies induced by pressure-less matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add not only radiation, but also its Lee-Wick partner, to the matter sector. We find that, in general, no bounce occurs. The only way to obtain a bounce is to choose initial conditions with very special phases of the radiation field and its Lee-Wick partner.
We study a noninteracting supersymmetric model in de Sitter spacetime. Supersymmetry breaking induces a nonzero vacuum energy density. A short distance cut-off of the order of Planck length provides a matching between the vacuum energy density and the cosmological constant related to the de Sitter expansion parameter.
A variant of the accelerating cosmology reconstruction program is developed for $f(R)$ gravity and for a modified Yang-Mills/Maxwell theory. Reconstruction schemes in terms of e-foldings and by using an auxiliary scalar field are developed for the two theories. An example of a model with a transient phantom behavior without real matter is explicitly discussed in both schemes. Further, the two reconstruction procedures are applied to the more physically interesting case of a Yang-Mills/Maxwell theory, again with explicit examples. Detailed comparison of the two schemes for reconstruction is presented in all these cases. It seems to support physical non-equivalence of the two frames.
This thesis will try to contribute to the understanding of open issues in
cosmology by considering f(R) and brane-world theories. In Chapter 1, we shall
summarise the main features of f(R) gravities in the metric formalism and we
shall introduce both the notion of brane excitations, the branons and the
brane-skyrmions. We shall finish the chapter by providing some insight about
the possibility of mini black holes detection in the LHC as a signature for the
validity of these modified gravity theories.
The Chapter 2 will deal with f(R) theories able to mimic Einstein-Hilbert
plus cosmological constant solutions and f(R) theories will be shown to be able
to mimic the cosmological evolution generated by any perfect fluid with
constant equation of state.
The Chapter 3 will be devoted to the computation of cosmological
perturbations for f(R) theories. Special attention will be paid here to obtain
a completely general differential equation for the evolution of perturbations
and its particularization for the so-called sub-Hubble scales will be
explicitly shown.
In the Chapter 4 we shall focus on the study of black holes in f(R) gravities
in an arbitrary number of dimensions. With this purpose we shall study constant
curvature solutions for f(R) theories as well as perturbative solutions around
the standard SAdS geometry. An important part of this chapter will be then
devoted to the thermodynamics of SAdS black holes in f(R) theories.
In the Chapter 5 we will thoroughly study brane-skyrmions. In this context,
the recent claim of detection of an unexpected feature in the CMB, referred to
as the cold spot, will be explained as a topological defect on the brane in
complete agreement with those calculations in the literature that tried to
explain that cold spot as a texture of a NLSM.
Main conclusions are summarized all together in Chapter 6 .
Links to: arXiv, form interface, find, astro-ph, recent, 1004, contact, help (Access key information)
(Abridged) Based on UV to X-ray and radio to UV flux ratios, some argue that low ionization emission line regions (LINERs) and low luminosity AGN (LLAGN) are a scaled-down version of their more luminous predecessors Seyfert galaxies. Others, based on the lack of X-ray short (hours) time-scale variability, the non-detection of an iron line at 6.4 keV, and the faint UV emission, suggest the truncation of the classical thin accretion disk in the inner regions of the AGN where a radiatively inefficient accretion flow (RIAF) structure forms. We investigate the LINER-Seyfert connection by studying the unabsorbed, AGN powered, LINER galaxy NGC 4278. We analyzed one XMM-Newton and seven Chandra X-ray observations of NGC 4278 spread over a three year period. We detected a flux increase by a factor of ~3 on a ~3 months time-scale and by a factor of 5 between the faintest and the brightest observation separated by ~3 years. During only the XMM-Newton observation, where the highest flux level is detected, we found a 10% flux increase on a ~1 hour time-scale. A combination of an absorbed power law (N(H)~10^20 cm^-2, Gamma~2.2) plus a thermal component (kT~0.6 keV) were able to fit the Chandra spectra. The XMM-Newton spectra, where the highest X-ray flux is detected, are well fitted with a single absorbed power-law. No Fe K(alpha) emission line is detected at 6.4 keV. We constructed SEDs based on simultaneous or quasi simultaneous observations and compared them to LINER, radio-loud, and radio-quiet quasar SEDs. We find that at a low X-ray flux the NGC 4278 SED resembles that of typical LINER sources where the radio to X-ray emission can be considered as originating from a jet and/or RIAF, whereas at a high X-ray flux, NGC 4278 SED is more like a low luminosity Seyfert SED. Consequently, NGC 4278 could exhibit both LINER and Seyfert nuclear activity depending on the strength of its X-ray emission.
We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. Our deepest field reaches the red clump and main-sequence stars with ages <500 Myr. Although we detect trace amounts of star formation at times more recent than 10 Gyr for all fields, the proportion of red giant stars to asymptotic giants and main sequence stars suggests that the disk is dominated by an ancient (>10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that ~70% of the stellar mass in the NGC 404 disk formed by z~2 (10 Gyr ago) and at least ~90% formed prior to z~1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early and late type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in GALEX images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mass within individual regions. Finally, we use our measurements to infer the relationship between the star formation rate and the gas density of the disk at previous epochs. We find that most of the history of the NGC 404 disk is consistent with star formation that has decreased with the gas density according to the Schmidt law. However, 0.5-1 Gyr ago, the star formation rate was unusually low for the inferred gas density, consistent with the possibility that there was a gas accretion event that reignited star formation ~0.5 Gyr ago. Such an event could explain why this S0 galaxy hosts an extended gas disk.
The issue of giant planet formation by core instability (CI) far from the central star is rather controversial because the growth of massive solid core necessary for triggering the CI can take longer than the lifetime of the protoplanetary disk. In this work we assess the range of separations at which the CI may operate by (1) allowing for arbitrary (physically meaningful) rate of planetesimal accretion by the core and (2) properly taking into account the dependence of the critical mass for the CI on the planetesimal accretion luminosity. This self-consistent approach distinguishes our work from similar studies in which only a specific planetesimal accretion regime was explored and/or the critical core mass was fixed at some arbitrary level. We demonstrate that the largest separation at which the CI can occur within 3 Myr corresponds to the surface density of solids in the disk higher than 0.1 g cm^{-2} and is 40-50 AU in the minimum mass Solar nebula. This limiting separation is achieved when the planetesimal accretion proceeds at the fastest possible rate, even though the high associated accretion luminosity increases the critical core mass delaying the onset of the CI. Our constraints are independent of the mass of the central star and vary only weakly with the core density and its atmospheric opacity. We also discuss various factors which can strengthen or weaken our limits on the operation of the CI.
We combine new high sensitivity ultraviolet (UV) imaging from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) with existing deep HST/Advanced Camera for Surveys (ACS) optical images from the Great Observatories Origins Deep Survey (GOODS) program to identify UV-dropouts, which are Lyman break galaxy (LBG) candidates at z~1-3. These new HST/WFC3 observations were taken over 50 sq.arcmin in the GOODS-South field as a part of the Early Release Science program. The uniqueness of these new UV data is that they are observed in 3 UV/optical (WFC3 UVIS) channel filters (F225W, F275W and F336W), which allows us to identify three different sets of UV-dropout samples. We apply Lyman break dropout selection criteria to identify F225W-, F275W- and F336W-dropouts, which are z~1.7, 2.1 and 2.7 LBG candidates, respectively. We use multi-wavelength imaging combined with available spectroscopic and photometric redshifts to carefully access the validity of our UV-dropout candidates. Our results are as follows: (1) these WFC3 UVIS filters are very reliable in selecting LBGs with z~2.0, which will reduce the gap between the well studied z~>3 and z~0 regimes, (2) the combined number counts agrees very well with the observed evolution in number counts when compared with higher redshift LBG samples, and (3) the best-fit Schechter function parameters from the rest-frame UV luminosity functions at three different redshifts fit very well with the evolutionary trend of the characteristic absolute magnitude, and the faint-end slope, as a function of redshift. This is the first study to illustrate the usefulness of the WFC3 UVIS channel observations to select z<3 LBGs. The addition of the new WFC3 on the HST has made it possible to uniformly select LBGs from z~1 to z~9, and significantly enhance our understanding of these galaxies using HST sensitivity and resolution.
Scattered light from terrestrial exoplanets provides valuable information about the planetary surface. Applying the surface reconstruction method proposed by Fujii et al. (2010) to both diurnal and annual variations of the scattered light, we develop a reconstruction method of land distribution with both longitudinal and latitudinal resolutions. We find that one can recover a global map of an idealized Earth-like planet without clouds on a face-on circular orbit. Using the dependence of light curves on the planetary obliquity, we also show that the obliquity can be measured by adopting the chi-square minimization or the extended information criterion. We demonstrate a feasibility of our methodology by applying it to a multi-band photometry of a cloudless model Earth with future space missions such as the occulting ozone observatory (O3). We conclude that future space missions can estimate both the surface distribution and the obliquity at least for cloudless Earth-like planets within $\sim$ 5 - 10 pc.
We present a vector formulation of an interferometric observation of a star, including the effects of the barycentric motion of the observatory, the proper motions of the star, and the reflex motions of the star due to orbiting planets. We use this model to empirically determine the magnitude and form of the signal due to a single Earth-mass planet orbiting about a sun-mass star. Using bounding values for the known components of the model, we perform a series of expansions, comparing the residuals to this signal. We demonstrate why commonly used first order linearizations of similar measurement models are insufficient for signals of the magnitude of the one due to an Earth-mass planet, and present a consistent expansion which is linear in the unknown quantities, with residuals multiple orders of magnitude below the Earth-mass planet signal. We also discuss numerical issues that can arise when simulating or analyzing these measurements.
The knowledge of accurate stellar parameters is a keystone in several fields of stellar astrophysics, such as asteroseismology and stellar evolution. Although the fundamental parameters can be derived both from spectroscopy and multicolour photometry, the results obtained are sometimes affected by systematic uncertainties. In this paper, we present a self-consistent spectral analysis of the pulsating star RR Lyr, which is the primary target for our study of the Blazhko effect. We used high-resolution and high signal-to-noise ratio spectra to carry out a consistent parameter determination and abundance analysis for RR Lyr. We provide a detailed description of the methodology adopted to derive the fundamental parameters and the abundances. Stellar pulsation attains high amplitudes in RR Lyrae stars, and as a consequence the stellar parameters vary significantly over the pulsation cycle. The abundances of the star, however, are not expected to change. From a set of available high-resolution spectra of RR Lyr we selected the phase of maximum radius, at which the spectra are least disturbed by the pulsation. Using the abundances determined at this phase as a starting point, we expect to obtain a higher accuracy in the fundamental parameters determined at other phases. The set of fundamental parameters obtained in this work fits the observed spectrum accurately. Through the abundance analysis, we find clear indications for a depth-dependent microturbulent velocity, that we quantified. We confirm the importance of a consistent analysis of relevant spectroscopic features, application of advanced model atmospheres, and the use of up-to-date atomic line data for the determination of stellar parameters. These results are crucial for further studies, e.g., detailed theoretical modelling of the observed pulsations.
Scalar fields with a "chameleon" property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the "afterglow" effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling excluding values between 2*10^9 and 5*10^14 for effective chameleon masses between 1.9510 and 1.9525 micro-eV.
We analyze large scale mapping observations of the molecular lines in the 12CO (J=2-1), 12CO (J=3-2), 13CO (J=2-1), and 13CO (J=3-2) transition emissions toward the Cepheus B molecular cloud with the KOSMA 3m-telescope. The integrated intensity map of the 12CO (J=2-1) transition has shown a structure with a compact core and a compact ridge extended in the north-west of the core. The cloud is surrounded by an optically bright rim, where the radiation-driven implosion (RDI) may greatly change the gas properties. The intensities of the CO (J=3-2) transition are higher than those of the CO (J=2-1) transition along the rim area.We find characteristic RDI structure in positionvelocity diagrams. Non-LTE Large velocity gradient (LVG) model analysis shows that the density and temperature at the edge are higher than that in the center. Our results provide evidences that RDI is taking place in Cepheus B molecular cloud.
We have derived the temporal power spectra of the horizontal velocity of the solar photosphere. The data sets for 14 quiet regions observed with the Gband filter of Hinode/SOT are analyzed to measure the temporal fluctuation of the horizontal velocity by using the local correlation tracking (LCT) method. Among the high resolution (~0.2") and seeing-free data sets of Hinode/SOT, we selected the observations whose duration is longer than 70 minutes and cadence is about 30 s. The so-called k-{\omega} diagrams of the photospheric horizontal velocity are derived for the first time to investigate the temporal evolution of convection. The power spectra derived from k-omega diagrams typically have a double power law shape bent over at a frequency of 4.7 mHz. The power law index in the high frequency range is -2.4 while the power law index in the low frequency range is -0.6. The root mean square of the horizontal speed is about 1.1 km/s when we use a tracer size of 0.4" in LCT method. Autocorrelation functions of intensity fluctuation, horizontal velocity, and its spatial derivatives are also derived in order to measure the correlation time of the stochastic photospheric motion. Since one of possible energy sources of the coronal heating is the photospheric convection, the power spectra derived in the present study will be of high value to quantitatively justify various coronal heating models.
Several independent cosmological tests have shown evidences that the energy density of the Universe is dominated by a dark energy component, which cause the present accelerated expansion. The large scale structure formation can be used to probe dark energy models, and the mass function of dark matter haloes is one of the best statistical tools to perform this study. We present here a statistical analysis of mass functions of galaxies under a homogeneous dark energy model, proposed in the work of Percival (2005), using an observational flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our analysis, the standard Press-Schechter (PS) approach (where a Gaussian distribution is used to describe the primordial density fluctuation field of the mass function), and the PL (Power Law) mass function (where we apply a nonextensive q-statistical distribution to the primordial density field). We conclude that the PS mass function cannot explain at the same time the X-ray and the CMB data (even at 99% confidence level), and the PS best fit dark energy equation of state parameter is $\omega=-0.58$, which is distant from the cosmological constant case. The PL mass function provides better fits to the HIFLUGCS X-ray galaxy data and the CMB data; we also note that the $\omega$ parameter is very sensible to modifications in the PL free parameter, $q$, suggesting that the PL mass function could be a powerful tool to constrain dark energy models.
CCD BVRI photometry is presented for type Ia supernova 2008gy. The light curves match the template curves for fast-declining SN Ia, but the colors appear redder than average, and the SN may also be slightly subluminous. SN 2008gy is found to be located far outside the boundaries of three nearest galaxies, each of them has nearly equal probability to be the host galaxy.
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) isthe core instrument on the Russian Spektrum-Roentgen-Gamma (SRG) mission which is scheduled for launch in late 2012. eROSITA is fully approved and funded by the German Space Agency DLR and the Max-Planck-Society. The design driving science is the detection of 50 - 100 thousands Clusters of Galaxies up to redshift z ∼1.3 in order to study the large scale structure in the Universe and test cosmological models, especially Dark Energy. This will be accomplished by an all-sky survey lasting for four years plus a phase of pointed observations. eROSITA consists of seven Wolter-I telescope modules, each equipped with 54 Wolter-I shells having an outer diameter of 360 mm. This would provide and effective area at 1.5 keV of ∼ 1500 cm2 and an on axis PSF HEW of 15" which would provide an effective angular resolution of 25"-30". In the focus of each mirror module, a fast frame-store pn-CCD will provide a field of view of 1 deg in diameter for an active FOV of ∼0.83 deg^2. At the time of writing the instrument development is currently in phase C/D.
We consider dark masses measured from kinematic tracers at discrete radii in galaxies for which baryonic contributions to overall potentials are either subtracted or negligible. Recent work indicates that rotation curves due to dark matter (DM) halos at intermediate radii in spiral galaxies are remarkably similar, with a mean rotation curve given by $\log_{10}[V_{c,\mathrm{DM}}/(\mathrm{km s^{-1}})]=1.47_{-0.19}^{+0.15}+0.5\log_{10}[r/\mathrm{kpc}]$. Independent studies show that while estimates of the dark mass of a given dwarf spheroidal (dSph) galaxy are robust only near the half-light radius, data from the Milky Way's (MW's) dSph satellites are consistent with a narrow range of mass profiles. Here we combine published constraints on the dark halo masses of spirals and dSphs and include available measurements of low surface brightness galaxies for additional comparison. We find that most measured MW dSphs lie on the extrapolation of the mean rotation curve due to DM in spirals. The union of MW-dSph and spiral data appears to follow a mass-radius relation of the form $M_{\mathrm{DM}}(r)/M_{\odot}=200_{-120}^{+200}(r/\mathrm{pc})^2$, or equivalently a constant acceleration $g_{\mathrm{DM}}=3_{-2}^{+3}\times 10^{-9}\mathrm{cm s^{-2}}$, spanning $0.02\la r \la 75$ kpc. Evaluation at specific radii immediately generates two results from the recent literature: a common mass for MW dSphs at fixed radius and a constant DM central surface density for galaxies ranging from MW dSphs to spirals. However, recent kinematic measurements indicate that M31's dSph satellites are systematically less massive than MW dSphs of similar size. Such deviations from what is otherwise a surprisingly uniform halo relation presumably hold clues to individual formation and evolutionary histories.
There are a total of 1451 gamma-ray emitting objects in the Fermi Large Area Telescope First Source Catalogue. The point source location accuracy of typically a few arcminutes has allowed the counterparts for many of these sources to be found at other wavelengths, but even so there are 630 which are described as having no plausible counterpart at 80% confidence. In order to help identify the unknown objects, we have cross-correlated the positions of these sources with the Rosat All Sky Survey Bright Source Catalogue. In this way, for Fermi sources which have a possible counterpart in soft X-rays, we can use the, much smaller, Rosat error box to search for identifications. We find a strong correlation between the two samples and calculate that there are about 60 sources with a Rosat counterpart. Using the Rosat error boxes we provide tentative associations for half of them, demonstrate that the majority of these are either blazars or blazar candidates and give evidence that most belong to the BL Lac class. Given that they are X-ray selected and most are high synchrotron peaked objects, which indicates the presence of high energy electrons, these sources are also good candidates for TeV emission, and therefore good probes of the extragalactic background light.
Nanometer- and micrometer-sized solid particles play an important role in the
evolutionary cycle of stars and interstellar matter. The optical properties of
cosmic grains determine the interaction of the radiation field with the solids,
thereby regulating the temperature structure and spectral appearance of dusty
regions. Radiation pressure on dust grains and their collisions with the gas
atoms and molecules can drive powerful winds. The analysis of observed spectral
features, especially in the infrared wavelength range, provides important
information on grain size, composition and structure as well as temperature and
spatial distribution of the material.
The relevant optical data for interstellar, circumstellar, and protoplanetary
grains can be obtained by measurements on cosmic dust analogs in the laboratory
or can be calculated from grain models based on optical constants. Both
approaches have made progress in the last years, triggered by the need to
interpret increasingly detailed high-quality astronomical observations. The
statistical theoretical approach, spectroscopic experiments at variable
temperature and absorption spectroscopy of aerosol particulates play an
important role for the successful application of the data in dust astrophysics.
Observations and theory both suggest that star clusters form sub-virial (cool) with highly sub-structured distributions. We perform a large ensemble of N-body simulations of moderate-sized (N=1000) cool, fractal clusters to investigate their early dynamical evolution. We find that cool, clumpy clusters dynamically mass segregate on a short timescale, that Trapezium-like massive higher-order multiples are commonly formed, and that massive stars are often ejected from clusters with velocities > 10 km/s (c.f. the average escape velocity of 2.5 km/s). The properties of clusters also change rapidly on very short timescales. Young clusters may also undergo core collapse events, in which a dense core containing massive stars is hardened due to energy losses to a halo of lower-mass stars. Such events can blow young clusters apart with no need for gas expulsion. The warmer and less substructured a cluster is initially, the less extreme its evolution.
The primary goal of this paper is to provide the evidence that can either
prove or falsify the hypothesis that dark matter in the Galactic halo can clump
into stellar-mass compact objects. If such objects existed, they would act as
lenses to external sources in the Magellanic Clouds, giving rise to an
observable effect of microlensing. We present the results of our search for
such events, based on the data from the second phase of the OGLE survey
(1996-2000) towards the SMC. The data set we used is comprised of 2.1 million
monitored sources distributed over an area of 2.4 square degrees. We found only
one microlensing event candidate, however its poor quality light curve limited
our discussion on the exact distance to the lensing object.
Given a single event, taking the blending (crowding of stars) into account
for the detection efficiency simulations, and deriving the HST-corrected number
of monitored stars, the microlensing optical depth is tau=(1.55+-1.55)10e-7.
This result is consistent with the expected SMC self-lensing signal, with no
need of introducing dark matter microlenses. Rejecting the unconvincing event
leads to the upper limit on the fraction of dark matter in the form of MACHOs
to f<20 per cent for deflectors' masses around 0.4 Msun and f<11 per cent for
masses between 0.003 and 0.2 Msun (95 per cent confidence limit). Our result
indicates that the Milky Way's dark matter is unlikely to be clumpy and form
compact objects in the sub-solar-mass range.
We have performed a comprehensive multiwavelength analysis of a sample of 20 starburst galaxies that show a substantial population of very young massive stars, most of them classified as Wolf-Rayet (WR) galaxies. We have analysed optical/NIR colours, physical and chemical properties of the ionized gas, stellar, gas and dust content, star-formation rate and interaction degree (among many other galaxy properties) of our galaxy sample using multi-wavelength data. We compile 41 independent star-forming regions --with oxygen abundances between 12+log(O/H) = 7.58 and 8.75--, of which 31 have a direct estimate of the electron temperature of the ionized gas. This paper, only submitted to astro-ph, compiles the most common empirical calibrations to the oxygen abundance, and presents the comparison between the chemical abundances derived in these galaxies using the direct method with those obtained through empirical calibrations, as it is published in Lopez-Sanchez & Esteban (2010b). We find that (i) the Pilyugin method (Pilyugin 2001a,b; Pilyugin & Thuan 2005) which considers the R23 and the P parameters, is the best suited empirical calibration for these star-forming galaxies, (ii) the relations between the oxygen abundance and the N2 or the O3N2 parameters provided by Pettini & Pagel (2004) give acceptable results for objects with 12+log(O/H)>8.0, and (iii) the results provided by empirical calibrations based on photoionization models (McGaugh, 1991; Kewley & Dopita, 2002; Kobulnicky & Kewley, 2004) are systematically 0.2 -- 0.3 dex higher than the values derived from the direct method. These differences are of the same order that the abundance discrepancy found between recombination and collisionally excited lines. This may suggest the existence of temperature fluctuations in the ionized gas, as exists in Galactic and other extragalactic HII regions.
Various possibilities are currently under discussion to explain the observed weakness of the intrinsic magnetic field of planet Mercury. One of the possible dynamo scenarios is a dynamo with feedback from the magnetosphere. Due to its weak magnetic field Mercury exhibits a small magnetosphere whose subsolar magnetopause distance is only about 1.7 Hermean radii. We consider the magnetic field due to magnetopause currents in the dynamo region. Since the external field of magnetospheric origin is antiparallel to the dipole component of the dynamo field, a negative feedback results. For an alpha-omega-dynamo two stationary solutions of such a feedback dynamo emerge, one with a weak and the other with a strong magnetic field. The question, however, is how these solutions can be realized. To address this problem, we discuss various scenarios for a simple dynamo model and the conditions under which a steady weak magnetic field can be reached. We find that the feedback mechanism quenches the overall field to a low value of about 100 to 150 nT if the dynamo is not driven too strongly.
Recently, several papers have appeared that examine the process of capturing dark-matter particles from the Galactic halo to orbits bound to the Solar System. The authors of these papers predict large enhancements to the local dark-matter density via gravitational three-body interactions with planets. However, these conclusions are wrong; these papers do not include the inverse process to capture, namely the ejection of dark-matter particles by three-body gravitational encounters. We emphasize previous work that shows that by including both capture and ejection of dark matter from the Solar System, the density of dark matter bound to the Solar System is small compared to the local Galactic dark-matter density.
X-ray Flash (XRF) 100316D, a nearby super-long under-luminous burst with a peak energy E_p \sim 20 keV, was detected by Swift and was found to be associated with an energetic supernova SN 2010bh. Both the spectral and the temporal behavior of this burst are rather similar to that of XRF 060218, except that the latter was associated with a "less energetic" SN 2006aj and had a prominent soft thermal emission component in the spectrum. We analyze the spectral and temporal properties of this burst, and interpret the prompt gamma-ray emission and the early X-ray plateau emission as synchrotron emission from a dissipating Poynting-flux-dominated outflow, probably powered by a magnetar with a spin period of $P \sim 10$ ms and the polar cap magnetic field $B_{\rm p} \sim 3\times 10^{15}$ G. The energetic supernova SN 2010bh associated with this burst is, however, difficult to interpret within the slow magnetar model, which implies that the nascent magnetar may spin much faster with an initial rotation period $\sim 1$ ms, and thus suggests a delay between the core collapse and the emergence of the relativistic magnetar wind from the star. The diverse behaviors of low-luminosity GRBs and their associated SNe may be understood within a unified picture that invokes different initial powers of the central engine and different delay times between the core collapse and the emergence of the relativistic jet from the star.
Astronomical observations toward Sagittarius B2(M) as well as other sources with APEX have recently suggested that the rest frequency of the J = 1 - 0 transitions of 13CH+ is too low by about 80 MHz. Improved rest frequencies of isotopologs of methylidynium should be derived to support analyses of spectral recording obtained with the ongoing Herschel mission or the upcoming SOFIA. Laboratory electronic spectra of four isotopologs of CH+ have been subjected to one global least-squares fit. Laboratory data for the J = 1 - 0 ground state rotational transitions of CH+, 13CH+, and CD+, which became available during the refereeing process, have been included in the fit as well. An accurate set of spectroscopic parameters has been obtained together with equilibrium bond lengths and accurate rest frequencies for six CH+ isotopologs: CH+, 13CH+, 13CD+, CD+, 14CH+, and CT+. The present data will be useful for the analyses of $Herschel$ or SOFIA observations of methylidynium isotopic species.
Where does solar flare energy come from? More specifically, assuming that the ultimate source of flare energy is mechanical energy in the convection zone, how is this translated into energy dissipated or stored in the corona? This question appears to have been given relatively little thought, as attention has been focussed predominantly on mechanisms for the rapid dissipation of coronal magnetic energy by way of MHD instabilities and plasma micro instabilities. We consider three types of flare theory: the steady state "photospheric dynamo" model in which flare power represents coronal dissipation of currents generated simultaneously by sub-photospheric flows; the "magnetic energy storage" model where sub-photospheric flows again induce coronal currents but which in this case are built up over a longer period before being released suddenly; and "emerging flux" models, in which new magnetic flux rising to the photosphere already contains free energy, and does not require subsequent stressing by photospheric motions. We conclude that photospheric dynamos can power only very minor flares; that coronal energy storage can in principle meet the requirements of a major flare, although perhaps not the very largest flares, but that difficulties in coupling efficiently to the energy source may limit this mechanism to moderate sized flares; and that emerging magnetic flux tubes, generated in the solar interior, can carry sufficient free energy to power even the largest flares ever observed.
We compare mid-infrared emission-line properties, from high-resolution Spitzer spectra of a hard X-ray (14 -- 195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 micron, [Ne II] 12.81 micron, [Ne III] 15.56 micron and [Ne V] 14.32/24.32 micron, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, however six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT fluxes and luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compare the mid-infrared emission-lines in the BAT AGNs with those from published studies of ULIRGs, PG QSOs, star-forming galaxies and LINERs. We find that the BAT AGN sample fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] ratios. These line ratios are lower in sources that have been previously classified in the mid-infrared/optical as AGN than those found for the BAT AGN, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. These ratios represent a new emission line diagnostic for distinguishing between AGN and star forming galaxies.
We calculate the most massive object in the Universe, finding it to be a cluster of galaxies with total mass M_200=3.8e15 Msun at z=0.22, with the 1 sigma marginalized regions being 3.3e15 Msun<M_200<4.4e15 Msun and 0.12<z<0.36. We restrict ourselves to self-gravitating bound objects, and base our results on halo mass functions derived from N-body simulations. Since we consider the very highest mass objects, the number of candidates is expected to be small, and therefore each candidate can be extensively observed and characterized. If objects are found with excessively large masses, or insufficient objects are found near the maximum expected mass, this would be a strong indication of the failure of LambdaCDM. The expected range of the highest masses is very sensitive to redshift, providing an additional evolutionary probe of LambdaCDM. We find that the three most massive clusters in the recent SPT 178 deg^2 catalog match predictions, while XMMU J2235.3--2557 is roughly 3 sigma inconsistent with LambdaCDM. These results are robust; 15% errors in the mass measurements do not qualitatively alter our conclusions. Our findings motivate further observations of the highest mass end of the mass function. Future surveys will explore much larger volumes, and the most massive object in the Universe may be identified within the next decade. The mass distribution of the largest objects in the Universe is a potentially powerful test of LambdaCDM, probing non-Gaussianity and the behavior of gravity on large scales.
We present near-infrared (NIR) broadband (0.80--2.42 $\mu$m) spectroscopy of two low mass X-ray binaries: V404 Cyg and Cen X-4. One important parameter required in the determination of the mass of the compact objects in these systems is the binary inclination. We can determine the inclination by modeling the ellipsoidal modulations of the Roche-lobe filling donor star, but the contamination of the donor star light from other components of the binary, particularly the accretion disk, must be taken into account. To this end, we determined the donor star contribution to the infrared flux by comparing the spectra of V404 Cyg and Cen X-4 to those of various field K-stars of known spectral type. For V404 Cyg, we determined that the donor star has a spectral type of K3 III. We determined the fractional donor contribution to the NIR flux in the H- and K-bands as $0.98 \pm .05$ and $0.97 \pm .09$, respectively. We remodeled the H-band light curve from \citet{sanwal1996} after correcting for the donor star contribution to obtain a new value for the binary inclination. From this, we determined the mass of the black hole in V404 Cyg to be $M_{BH}= 9.0^{+.2}_{-.6}M_{\odot}$. We performed the same spectral analysis for Cen X-4 and found the spectral type of the donor star to be in the range K5 -- M1V. The donor star contribution in Cen X-4 is $0.94\pm.14$ in the H-band while in the K-band, the accretion disk can contribute up to 10% of the infrared flux. We remodeled the H-band light curve from \citet{shahbaz1993}, again correcting for the fractional contribution of the donor star to obtain the inclination. From this, we determined the mass of the neutron star as $M_{NS}= 1.5^{+.1}_{-.4}M_{\odot}$. However, the masses obtained for both systems should be viewed with some caution since contemporaneous light curve and spectral data are required to obtain definitive masses.
We make use of a 500ks Chandra HRC-S/LETG spectrum of the blazar H2356-309, combined with a lower S/N spectrum of the same target, to search for the presence of warm-hot absorbing gas associated with two Large-Scale Structures (LSSs) crossed by this sightline at z=0.062 (the Pisces-Cetus Supercluster, PCS) and at z=0.128 ("Farther Sculptor Wall", FSW). No statistically significant (>=3sigma) individual absorption is detected from any of the strong He- or H-like transitions of C, O and Ne at the redshifts of the structures. However we are still able to constrain the physical and geometrical parameters of the associated putative absorbing gas, by performing joint spectral fit of marginal detections and upper limits of the strongest expected lines with our self-consistent hybrid ionization WHIM spectral model. At the redshift of the PCS we identify a warm phase with logT=5.35_-0.13^+0.07 K and log N_H =19.1+/-0.2 cm^-2 possibly coexisting with a hotter and less significant phase with logT=6.9^+0.1_-0.8 K and log N_H=20.1^+0.3_-1.7 cm^-2 (1sigma errors). For the FSW we estimate logT=6.6_-0.2^+0.1 K and log N_H=19.8_-0.8^+0.4 cm^-2. Our constraints allow us to estimate the cumulative number density per unit redshifts of OVII WHIM absorbers. We also estimate the cosmological mass density obtaining Omega_b(WHIM)=(0.021^+0.031_-0.018) (Z/Z_sun)^-1, consistent with the mass density of the intergalactic 'missing baryons' for high metallicities.
We study the statistical descriptors for some cosmological inflationary models that allow us to get large levels of non-gaussianity and violations of statistical isotropy. Basically, we study two different class of models: a model that include only scalar field perturbations, specifically a subclass of small-field slow-roll models of inflation with canonical kinetic terms, and models that admit both vector and scalar field perturbations. We study the former to show that it is possible to attain very high, including observable, values for the levels of non-gaussianity f_{NL} and \tao_{NL} in the bispectrum B_\zeta and trispectrum T_\zeta of the primordial curvature perturbation \zeta respectively. Such a result is obtained by taking care of loop corrections in the spectrum P_\zeta, the bispectrum B_\zeta and the trispectrum T_\zeta . Sizeable values for f_{NL} and \tao_{NL} arise even if \zeta is generated during inflation. For the latter we study the spectrum P_\zeta, bispectrum B_\zeta and trispectrum $T_\zeta of the primordial curvature perturbation when \zeta is generated by scalar and vector field perturbations. The tree-level and one-loop contributions from vector field perturbations are worked out considering the possibility that the one-loop contributions may be dominant over the tree level terms. The levels of non-gaussianity f_{NL} and \tao_{NL}, are calculated and related to the level of statistical anisotropy in the power spectrum, g_\zeta . For very small amounts of statistical anisotropy in the power spectrum, the levels of non-gaussianity may be very high, in some cases exceeding the current observational limit.
The standard model of elementary particle physics and the theory of general relativity can be extended by the introduction of a vacuum variable which is responsible for the near vanishing of the present cosmological constant (vacuum energy density). The explicit realization of this vacuum variable can be via a three-form gauge field, an aether-type velocity field, or any other field appropriate for the description of the equilibrium state corresponding to the Lorentz-invariant quantum vacuum. The extended theory has, without fine-tuning, a Minkowski-type solution of the field equations with spacetime-independent fields and provides, therefore, a possible solution of the main cosmological constant problem.
We give an explicit realization of the "String Axiverse" discussed in Arvanitaki et. al \cite{Arvanitaki:2009fg} by extending our previous results on moduli stabilization in $M$ theory to include axions. We extend the analysis of \cite{Arvanitaki:2009fg} to allow for high scale inflation that leads to a moduli dominated pre-BBN Universe. We demonstrate that an axion which solves the strong-CP problem naturally arises and that both the axion decay constants and GUT scale can consistently be around $2\times 10^{16}$ GeV with a much smaller fine tuning than is usually expected. Constraints on the Axiverse from cosmological observations, namely isocurvature perturbations and tensor modes are described. Extending work of Fox et. al \cite{Fox:2004kb}, we note that {\it the observation of tensor modes at Planck will falsify the Axiverse completely.} Finally we note that Axiverse models whose lightest axion has mass of order $10^{-15}$ eV and with decay constants of order $5\times 10^{14}$ GeV require no (anthropic) fine-tuning, though standard unification at $10^{16}$ GeV is difficult to accommodate.
We propose a non-local scalar-tensor model of gravity with pseudo-differential operators inspired by the effective action of p-adic string and string field theory on flat spacetime. An infinite number of derivatives act both on the metric and scalar field sector. The system is localized via the diffusion equation approach and its cosmology is studied. We find several exact dynamical solutions which are stationary in the diffusion flow. In particular, and contrary to standard general relativity, there exist de Sitter and power-law solutions also in an open universe, as well as solutions with sudden future singularities. Also, from the point of view of quantum field theory, spontaneous symmetry breaking can be naturally realized in the class of actions we consider.
Several scenarios have been proposed in which the orbits of binary black holes enter the band of a gravitational wave detector with significant eccentricity. To avoid missing these signals or biasing the parameter estimation it is important that we consider waveform models that account for eccentricity. The ingredients needed to compute post-Newtonian (PN) waveforms produced by spinning black holes inspiralling on quasi-eccentric orbits have been available for almost two decades at 2 PN order, and this work has recently been extended to 2.5 PN order. However, the computational cost of directly implementing these waveforms is high, requiring many steps per orbit to evolve the system of coupled differential equations. Here we employ a separation of timescales and a generalized Keplarian parameterization of the orbits to produce efficient waveforms describing spinning black hole binaries with arbitrary spin orientations on quasi-eccentric orbits to 1.5 PN order. Our solution includes the spin contributions to the decay of the semi-major axis and eccentricity. We outline a scheme for extending our approach to higher post-Newtonian order.
In paper the closed Friedmann-Robertson-Walker model with quantization in presence of the positive cosmological constant, radiation and Chaplygin gas is studied. For analysis of tunneling probability for birth of an asymptotically deSitter, inflationary Universe as a function of the radiation energy a new definition of a "free" wave propagating inside strong fields is introduced. Vilenkin's tunneling boundary condition is corrected, penetrability and reflection are calculated in fully quantum stationary approach.
Primordial black hole (PBH) abundance limits constrain the primordial power spectrum, and hence models of inflation, on scales far smaller than those probed by cosmological observations. Single field inflation models which are compatible with all cosmological data can have large enough perturbations on small scales to overproduce PBHs, and hence be excluded. The standard formulae for the amplitude of perturbations do not hold for modes that exit the horizon close to the end of inflation however. We use a modified flow analysis to identify models of inflation where the amplitude of perturbations on small scales is large. For these models we then carry out a numerical evolution of the perturbations and use the PBH constraints on the power spectrum to eliminate models which overproduce PBHs. Significant PBH formation can occur in models in which inflation can continue indefinitely and is ended via a secondary mechanism. We demonstrate that PBHs constrain these types of inflation models and show that a numerical evaluation of the power spectrum decreases the number of otherwise viable models of inflation.
Links to: arXiv, form interface, find, astro-ph, recent, 1004, contact, help (Access key information)