We have discovered a ~45 kpc Lya nebula (or Lya ``blob'') at z~1.67 which exhibits strong, spatially-extended HeII emission and very weak CIV and CIII] emission. This is the first spatially-extended Lya+HeII emitter observed and the lowest redshift Lya blob yet found. Strong Lya and HeII-1640 emission in the absence of metal lines has been proposed as a unique observational signature of primordial galaxy formation (e.g., from gravitational cooling radiation or Population III star formation), but no convincing examples of spatially-extended Lya+HeII emitters have surfaced either in Lya-emitting galaxy surveys at high redshifts (z > 4) or in studies of Lya nebulae at lower redshifts. From comparisons with photoionization models, we find that the observed line ratios in this nebula are consistent with low metallicity gas (Z < 10^-2 - 10^-3 Z_sun), but that this conclusion depends on the unknown ionization parameter of the system. The large HeII equivalent width (~37+/-10A) and the large HeII/Lya ratio (0.12+/-0.04) suggest that the cloud is being illuminated by a hard ionizing continuum, either an AGN or very low metallicity stars, or perhaps powered by gravitational cooling radiation. Thus far there is no obvious sign of a powerful AGN in or near the system, so in order to power the nebula while remaining hidden from view even in the mid-infrared, the AGN would need to be heavily obscured. Despite the strong Lya+HeII emission, it is not yet clear what is the dominant power source for this nebula. The system therefore serves as an instructive example of how the complexities of true astrophysical sources will complicate matters when attempting to use a strong Lya+HeII signature as a unique tracer of primordial galaxy formation.
The presence of massive, compact early-type galaxies at z>2 presents a major challenge for theoretical models of galaxy formation and evolution. Using one of the deepest large public near-IR surveys to date, we investigate in detail the correlations between star formation and galaxy structural parameters (size, stellar mass, and surface density) from z=2 to the present. At all redshifts, massive quiescent galaxies (i.e. those with little or no star formation) occupy the extreme high end of the surface density distribution and follow a tight mass-size correlation, while star-forming galaxies show a broad range of both densities and sizes. Conversely, galaxies with the highest surface densities comprise a nearly-homogeneous population with little or no ongoing star formation, while less dense galaxies exhibit high star-formation rates and varying levels of dust obscuration. Both the sizes and surface densities of quiescent galaxies evolve strongly from z=2-0; we parameterize this evolution for both populations with simple power law functions and present best-fit parameters for comparison to future theoretical models. Interestingly, star-forming galaxies' sizes and densities evolve at rates similar to those of quiescent galaxies. It is therefore possible that the same physical processes drive the structural evolution of both populations, suggesting that "dry mergers" may not be the sole culprit in this size evolution.
We present the Palermo Swift-BAT hard X-ray catalogue obtained from the analysis of the the data relative to the first 39 months of the Swift mission. We have developed a dedicated software to perform data reduction, mosaicking and source detection on the BAT survey data. We analyzed the BAT dataset in three energy bands (14-150 keV, 14-30 keV, 14-70 keV), obtaining a list of 962 detections above a significance threshold of 4.8 standard deviations. The identification of the source counterparts was pursued using three strategies: cross-correlation with published hard X-ray catalogues, analysis of field observations of soft X-ray instruments, cross-correlation with the SIMBAD databases. The survey covers 90% of the sky down to a flux limit of 2.5x10E-11 erg/cm2/s and 50% of the sky down to a flux limit of 1.8x10E-11 erg/cm2/s in the 14-150 keV band. We derived a catalogue of 754 identified sources, of which ~69% are extragalactic, ~27% are Galactic objects, ~4% are already known X-ray or gamma ray emitters whose nature has not been determined yet. The integrated flux of the extragalactic sample is ~1% of the Cosmic X-ray background in the 14-150 keV range.
We carefully examine the luminous content of three high mass clusters, A1703 (z=0.258), A370 (z=0.375) and RXJ1347-11 (z=0.45), with deep Subaru imaging. Accurate three-colour data allows us to separate well the populations of cluster members, foreground galaxies and the red and blue background galaxies. The clusters are well defined in colour-colour space by virtue of their smaller projected distance from the cluster centre compared to the unclustered background and foreground. Correction for residual background contamination of the cluster member population is obtained in colour-colour space with reference to the unbiased weak lensing of background galaxies. The determined cluster luminosity functions have similar faint-end slopes, \alpha ~ -1.0, with no marked faint-end upturn to M_R ~ -15.0, and only a mild radial gradient. The light profiles of the clusters all decline smoothly as ~ 1/r in projection, whereas the mass profiles are well described by the continuously varying NFW profile, so that the M/L profile peaks around ~ 0.2 r_{vir}, in the range 300-500(M/L_R)_\odot, and then steadily fall to ~ 100(M/L_R)_{\odot} at the virial radius of each cluster, similar to the mean field level. The radial trend of M/L is consistent with dynamical work, establishing this behavior as a universal property of high mass clusters. Not accounted for by the mild colour trent, this is likely due to a deficit of later-type galaxies near cluster centres, in contrast with red-sequence galaxies that show a much flatter M/L profile. It may indicate that galaxy disks are more susceptible to stripping processes during merger events with implications for the morphological evolution of disk galaxies falling into clusters.
We present spatially resolved high-spectral resolution K-band observations of the red supergiant Betelgeuse (alpha Ori) using AMBER at the Very Large Telescope Interferometer (VLTI). Betelgeuse was observed between 2.28 and 2.31 micron using baselines of 16, 32, and 48m with spectral resolutions of 4800 -- 12000. Spectrally dispersed interferograms have been obtained in the 2nd, 3rd, and 5th lobes, which represents the highest spatial resolution (9 mas) achieved for Betelgeuse, corresponding to 5 resolution elements over its stellar disk. The AMBER data in the continuum can be reasonably fitted by a uniform disk with a diameter of 43.19+/-0.03 mas or a limb-darkening disk with 43.56+/-0.06 mas. The K-band interferometric data taken at various epochs suggest that Betelgeuse seen in the continuum shows much smaller deviations from the above uniform/limb-darkened disk than predicted by 3-D convection simulations. On the other hand, our AMBER data in the CO lines reveal that the blue and red wings of the CO lines originate in spatially distinct regions over the stellar disk, indicating an inhomogeneous velocity field. Our AMBER data in the CO lines can be roughly explained by a simple model, in which a patch of CO gas is moving outward or inward at velocities of 10--15 km s^-1, while the CO gas in the remaining region in the atmosphere is moving in the opposite direction at the same velocities. The AMBER data are also consistent with the presence of warm molecular layers at ~1.4--1.5 Rstar with a CO column density of ~1 x 10^20 cm^-2. Our AMBER observations of Betelgeuse are the first spatially resolved study of the so-called macroturbulence in a stellar atmosphere other than the Sun. The spatially resolved CO gas motion is likely to be related to convective motion or intermittent mass ejections in clumps or arcs.
We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.
The Centaurs are a transient population of small bodies in the outer solar system whose orbits are strongly chaotic. These objects typically suffer significant changes of orbital parameters on timescales of a few thousand years, and their orbital evolution exhibits two types of behaviors described qualitatively as random-walk and resonance-sticking. We have analyzed the chaotic behavior of the known Centaurs. Our analysis has revealed that the two types of chaotic evolution are quantitatively distinguishable: (1) the random walk-type behavior is well described by so-called generalized diffusion in which the rms deviation of the semimajor axis grows with time t as ~t^H, with Hurst exponent H in the range 0.22--0.95, however (2) orbital evolution dominated by intermittent resonance sticking, with sudden jumps from one mean motion resonance to another, has poorly defined H. We further find that these two types of behavior are correlated with Centaur dynamical lifetime: most Centaurs whose dynamical lifetime is less than ~22 Myr exhibit generalized diffusion, whereas most Centaurs of longer dynamical lifetimes exhibit intermittent resonance sticking. We also find that Centaurs in the diffusing class are likely to evolve into Jupiter-family comets during their dynamical lifetimes, while those in the resonance-hopping class do not.
We present results of reanalysis of old electrophotometric data of early type close binary system RY Scuti obtained at the Abastumani Astrophysical Observatory, Georgia, during 1972-1990 years and at the Maidanak Observatory, Uzbekistan, during 1979-1991 years. It is revealed non-stable processes in RY Sct from period to period, from month to month and from year to year. This variation consists from the hundredths up to the tenths of a magnitude. Furthermore, periodical changes in the system's light are displayed near the first maximum on timescales of a few years. That is of great interest with regard to some similar variations seen in luminous blue variable (LBV) stars. This also could be closely related to the question of why RY Sct ejected its nebula.
High-mass microquasars are binary systems consisting of a massive star and an
accreting compact object from which relativistic jets are launched. There is
considerable observational evidence that winds of massive stars are clumpy.
Individual clumps may interact with the jets in high-mass microquasars to
produce outbursts of high-energy emission. Gamma-ray flares have been detected
in some high-mass X-ray binaries, such as Cygnus X-1, and probably in LS 5039
and LS I+61 303. We predict the high-energy emission produced by the
interaction between a jet and a clump of the stellar wind in a high-mass
microquasar. Assuming a hydrodynamic scenario for the jet-clump interaction, we
calculate the spectral energy distributions produced by the dominant
non-thermal processes: relativistic bremsstrahlung, synchrotron and inverse
Compton radiation, for leptons, and for hadrons, proton-proton collisions.
Significant levels of emission in X-rays (synchrotron), high-energy gamma rays
(inverse Compton), and very high-energy gamma rays (from the decay of neutral
pions) are predicted, with luminosities in the different domains in the range ~
10^{32}-10^{35} erg/s. The spectral energy distributions vary strongly
depending on the specific conditions. Jet-clump interactions may be detectable
at high and very high energies, and provide an explanation for the fast TeV
variability found in some high-mass X-ray binary systems.
Our model can help to infer information about the properties of jets and
clumpy winds by means of high-sensitivity gamma-ray astronomy.
We discuss the observations and theory of star cluster formation to argue that clusters form dynamically cool (subvirial) and with substructure. We then perform an ensemble of simulations of cool, clumpy (fractal) clusters and show that they often dynamically mass segregate on timescales far shorter than expected from simple models. The mass segregation comes about through the production of a short-lived, but very dense core. This shows that in clusters like the Orion Nebula Cluster the stars >4 Msun can dynamically mass segregate within the current age of the cluster. Therefore, the observed mass segregation in apparently dynamically young clusters need not be primordial, but could be the result of rapid and violent early dynamical evolution.
In the dark energy star picture a compact object is transparent at radio and optical frequencies, and acts as a defocusing lens. Thus the object itself appears as a luminous disk whose surface brightness reflects the surface brightness of the background. In the case of rotating dark energy stars the image will also contain background independent emission features. In this note we provide simple analytic formulae for the separation of these features as a function of angular momentum and viewing angle. In the case of rapid rotation these features will appear to lie within the shadow expected if the compact object were a black hole.
We report a comprehensive light element (Li, C, N, O, Na, Mg, and Al) abundance analysis of three solar-type main sequence (MS) dwarfs and three red giant branch (RGB) clump stars in the Hyades open cluster using high-resolution and high signal-to-noise spectroscopy. For each group (MS or RGB), the CNO abundances are found to be in excellent star-to-star agreement. Our results confirm that the giants have undergone the first dredge-up and that material processed by the CN cycle has been mixed to the surface layers. The observed abundances are compared to predictions of a standard stellar model based on the Clemson-American University of Beirut (CAUB) stellar evolution code. The model reproduces the observed evolution of the N and O abundances, as well as the previously derived 12C/13C ratio, but it fails to predict by a factor of 1.5 the observed level of 12C depletion. Li abundances are derived to determine if non-canonical extra mixing has occurred in the Hyades giants. The Li abundance of the giant gamma Tau is in good accord with the predicted level of surface Li dilution, but a ~0.35 dex spread in the giant Li abundances is found and cannot be explained by the stellar model. Possible sources of the spread are discussed; however, it is apparent that the differential mechanism responsible for the Li dispersion must be unrelated to the uniformly low 12C abundances of the giants. Na, Mg, and Al abundances are derived as an additional test of our stellar model. All three elements are found to be overabundant by 0.2-0.5 dex in the giants relative to the dwarfs. Such large enhancements of these elements are not predicted by the stellar model, and non-LTE effects significantly larger (and, in some cases, of opposite sign) than those implied by extant literature calculations are the most likely cause.
I pinpoint a previously unrecognized MOND effect that may act in the inner solar system, and is due to the galactic acceleration, g_g=eta*a0: a byproduct of the MOND external-field effect. Predictions of the effect are not generic to the MOND paradigm, but depend on the particular MOND formulation at hand. However, the modified-Poisson formulation, on which I concentrate, uniquely predicts a subtle anomaly that may be detected in planetary and spacecraft motions (and perhaps in other precision systems, such as binary pulsars), despite their very high accelerations, and even if the MOND interpolating function is arbitrarily close to unity at high accelerations. Near the sun, this anomaly appears as a quadrupole field, with the acceleration at position u from the sun being g_i(u)=-q_{ij}u^j, with q_{ij} diagonal, axisymmetric, and traceless: -2q_{xx}=-2q_{yy}=q_{zz}=q(eta)*(a0/rt), where rt=(MG/a0)^{1/2}=8*10^3 au is the MOND transition radius of the sun. The anomaly is described and analyzed as the Newtonian field of the fictitious cloud of ``phantom matter'' that hovers around the sun. I find, for the relevant range of eta values, and for a range of interpolating functions, mu(x), values of 10^{-2}<-q< 0.3, which turn out to be sensitive to the form of mu(x) around the MOND-to-Newtonian transition. This range verges on the present bounds from solar system measurements. There might thus exist favorable prospects for either measuring the effect, or constraining the theory and relevant parameters.
Spitzer MIPS 24 um images were obtained for 36 Galactic planetary nebulae (PNe) whose central stars are hot white dwarfs (WDs) or pre-WDs with effective temperatures of ~100,000 K or higher. Diffuse 24 um emission is detected in 28 of these PNe. The eight non-detections are angularly large PNe with very low H-alpha surface brightnesses. We find three types of correspondence between the 24 um emission and H-alpha line emission of these PNe: six show 24 um emission more extended than H-alpha emission, nine have a similar extent at 24 um and H-alpha, and 13 show diffuse 24 um emission near the center of the H-alpha shell. The sizes and surface brightnesses of these three groups of PNe and the non-detections suggest an evolutionary sequence, with the youngest ones being brightest and the most evolved ones undetected. The 24 um band emission from these PNe is attributed to [O IV] 25.9 um and [Ne V] 24.3 um line emission and dust continuum emission, but the relative contributions of these three components depend on the temperature of the central star and the distribution of gas and dust in the nebula.
We study the chemical evolution of the disks of the Milky Way (MW) and of Andromeda (M31), in order to reveal common points and differences between the two major galaxies of the Local group. We use a large set of observational data for M31, including recent observations of the Star Formation Rate (SFR) and gas profiles, as well as stellar metallicity distributions along its disk. We show that, when expressed in terms of the corresponding disk scale lengths, the observed radial profiles of MW and M31 exhibit interesting similarities, suggesting the possibility of a description within a common framework. We find that the profiles of stars, gas fraction and metallicity of the two galaxies, as well as most of their global properties, are well described by our model, provided the star formation efficiency in M31 disk is twice as large as in the MW. We show that the star formation rate profile of M31 cannot be fitted with any form of the Kennicutt-Schmidt law (KS Law) for star formation. We attribute those discrepancies to the fact that M31 has undergone a more active star formation history, even in the recent past, as suggested by observations of a "head-on" collision with the neighboring M32 galaxy about 200 Myr ago. The MW has most probably undergone a quiescent secular evolution, making possible a fairly successful description with a simple model. If M31 is more typical of spiral galaxies, as recently suggested by Hammer et al. (2007), more complex models, involving galaxy interactions, will be required for the description of spirals.
We present a comprehensive study of star-forming (SF) regions in the nearest large spiral galaxy M31. We use GALEX far-UV (1344-1786 \AA, FUV) and near-UV (1771-2831 \AA, NUV) imaging to detect young massive stars and trace the recent star formation across the galaxy. The FUV and NUV flux measurements of the SF regions, combined with ground-based data for estimating the reddening by interstellar dust from the massive stars they contain, are used to derive their ages and masses. The GALEX imaging, combining deep sensitivity and entire coverage of the galaxy, provides a complete picture of the recent star formation in M31 and its variation with environment throughout the galaxy. The FUV and NUV measurements are sensitive to detect stellar populations younger than a few hundred Myrs. We detected 894 SF regions, with size > 1600 pc^{2} above an average FUV flux limit of ~ 26 ABmag arcsecond^{-2}, over the whole 26 kpc galaxy disk. We derive the star-formation history of M31 within this time span. The star formation rate (SFR) from the youngest UV sources (age < 10 Myr) is comparable to that derived from H_{alpha}, as expected. We show the dependence of the results on the assumed metallicity. When star formation detected from IR measurements of the heated dust is added to the UV-measured star formation (from the unobscured populations) in the recent few Myrs, we find the SFR has slightly decreased in recent epochs, with a possible peak between 10 and 100 Myrs, and an average value of SFR ~ 0.6 or 0.7 M_{sun} yr^{-1} (for metallicity Z=0.02 or 0.05 respectively) over the last 400 Myrs.
Some models of the expanding Universe predict that the astrometric proper motion of distant radio sources embedded in space-time are non-zero as radial distance from observer to the source grows. Systematic effects due to this proper motion can even increase with distance making possible to measure them with high precision astrometric techniques like VLBI. We analyzed a large set of geodetic VLBI data spanning from 1979 till 2008 to estimate the dipole and the quadrupole harmonics in the expansion of the vector field of the proper motions of quasars in the sky. We estimated the vector spherical harmonics (three parameters for the dipole and ten - for the quadrupole systematic) directly from the VLBI group delays without intermediate calculation of the individual proper motion. The estimates have been obtained separately for different red shift zones. It was shown that the dipole harmonic does not vary significantly, whereas the amplitude of the quadrupole gradually increases with the red shift. This quadrupole pattern can be interpreted either as an anisotropic Hubble expansion, or as an indication of the primordial gravitational waves in the early Universe. However, more prosaic explanations may also be possible.
Ultrahigh energy cosmic rays (UHECRs) are believed to originate from astrophysical sources, which should trace the large scale structure (LSS) of the universe. On the other hand, the magnetic field in the intergalactic space (IGMF), which also traces the LSS of the universe, deflects the trajectories of the charged UHECRs and spoils the positional correlation of the observed UHECR events with their true sources. To explore this problem, we studied a simulation of the propagation of UHE protons through the magnetized LSS of the universe, reported earlier in Das et al. (2008), in which the IGMF was estimated based on a turbulence dynamo model (Ryu et al. 2008). Hypothetical sources were placed inside clusters and groups of galaxies in the simulated universe, while observers were located inside groups of galaxies that have similar properties as the Local Group. We calculated the statistics of the angular distance between the arrival directions of simulated UHE proton events and the positions of candidate sources in our simulation. We compared the statistics from our simulation with those calculated with the Auger data. We discussed the implication of our works on the nature of the sources of UHECRs.
Massive stars becoming red supergiants lose a significant amount of their mass during that brief evolutionary phase. They then either explode as a hydrogen-rich supernova (SN Type II), or continue to evolve as a hotter supergiant (before exploding). The slow, dusty ejecta of the red supergiant will be over-run by the hot star wind and/or SN ejecta. I will present estimates of the conditions for this interaction and discuss some of the implications.
Void models provide a possible explanation of the "accelerated expansion" of the Universe without dark energy. To make the conventional void models more realistic, we allow the void, an underdense region around us, to be anisotropic and consider an average of the distance-redshift relations over the solid angle subtended at the observer. We first show that after taking the average of a form of the optical scalar equation (distance equation), the effective distance equation we obtain coincides with the one for the Lemaitre-Tolman-Bondi universe with a Dyer-Roeder-like extension. We then numerically solve the equation to compare with observational data of Type Ia supernovae. We find that anisotropy allows smaller size of void and larger Omega_m.
V2129 Oph is a 1.35 solar mass classical T Tauri star, known to possess a strong and complex magnetic field. By extrapolating from an observationally derived magnetic surface map, obtained through Zeeman-Doppler imaging, models of V2129 Oph's corona have been constructed, and used to make predictions regarding the global X-ray emission measure, the amount of modulation of X-ray emission, and the density of accretion shocks. In late June 2009 we will under take an ambitious multi-wavelength, multi-observing site, and near contemporaneous campaign, combining spectroscopic optical, nIR, UV, X-ray, spectropolarimetric and photometric monitoring. This will allow the validity of the 3D field topologies derived via field extrapolation to be determined.
We present the results from a monitoring campaign of the Narrow-Line Seyfert~1 galaxy PG 1211+143. The object was monitored with ground-based facilities (UBVRI photometry; from February to July, 2007) and with Swift (X-ray photometry/spectroscopy and UV/Optical photometry; between March and May, 2007). We found PG 1211+143 in a historical low X-ray flux state at the beginning of the Swift monitoring campaign in March 2007. It is seen from the light curves that while violently variable in X-rays, the quasar shows little variations in optical/UV bands. The X-ray spectrum in the low state is similar to other Narrow-Line Seyfert 1 galaxies during their low-states and can be explained by a strong partial covering absorber or by X-ray reflection onto the disk. With the current data set, however, it is not possible to distinguish between both scenarios. The interband cross-correlation functions indicate a possible reprocessing of the X-rays into the longer wavelengths, consistent with the idea of a thin accretion disk, powering the quasar. The time lags between the X-ray and the optical/UV light curves, ranging from ~2 to ~18 days for the different wavebands, scale approximately as ~lambda^(4/3), but appear to be somewhat larger than expected for this object, taking into account its accretion disk parameters. Possible implications for the location of the X-ray irradiating source are discussed.
We report moderate resolution 3-5 micron spectroscopy of the nucleus of NGC 1068 obtained at 0.3 arcsec (20 pc) resolution with the spectrograph slit aligned approximately along the ionization cones of the AGN. The deconvolved FWHM of the nuclear continuum source in this direction is 0.3 arcsec. Four coronal lines of widely different excitations were detected; the intensity of each peaks near radio knot C, approximately 0.3 arcsec north of the infrared continuum peak, where the radio jet changes direction. Together with the broadened line profiles observed near that location, this suggests that shock-ionization is the dominant excitation mechanism of the coronal lines. The depth of the 3.4 micron hydrocarbon absorption is maximum at and just south of the continuum peak, similar to the 10 micron silicate absorption. That and the similar and rapid variations of the optical depths of both features across the nucleus suggest that substantial portions of both arise in a dusty environment just in front of the continuum source(s). A new and tighter limit is set on the column density of CO. Although clumpy models of the dust screen might explain the shallowness of the silicate feature, the presence of the 3.4 micron feature and the absence of CO are strongly reminiscent of Galactic diffuse cloud environments and a consistent explanation for them and the observed silicate feature is found if all three phenomena occur in such an environment, existing as close as 10 pc from the central engine.
A new method to constrain the cosmological equation of state is proposed by using combined samples of gamma-ray bursts (GRBs) and supernovae (SNeIa). The Chevallier-Polarski-Linder parameterization is adopted for the equation of state in order to find out a realistic approach to achieve the deceleration/acceleration transition phase of dark energy models. As results, we find that GRBs, calibrated by SNeIa, could be, at least, good distance indicators capable of discriminating cosmological models with respect to $\Lambda$CDM at high redshift. Besides, GRBs+SNeIa combined redshift-distance diagram puts better in evidence the change of slope around redshift $z\sim 0.5$ which is usually addressed as the "signature" of today observed acceleration. This feature could be interpreted, in more standard way, by the red sequence in galaxy clusters.
We report the detection of a stellar density cusp and a velocity dispersion increase in the center of the globular cluster M54, located at the center of the Sagittarius dwarf galaxy (Sgr). The central line of sight velocity dispersion is 20.2 +/- 0.7 km/s, decreasing to 16.4 +/- 0.4 km/s at 2.5" (0.3 pc). Modeling the kinematics and surface density profiles as the sum of a King model and a point-mass yields a black hole (BH) mass of ~ 9400 M_sun. However, the observations can alternatively be explained if the cusp stars possess moderate radial anisotropy. A Jeans analysis of the Sgr nucleus reveals a strong tangential anisotropy, probably a relic from the formation of the system.
A global Markov Chain Monte Carlo analysis of published eclipse photometry and radial velocities is presented for the transiting planet HD 80606b. Despite the lack of a complete transit light curve, the size of the planet is measured with a good level of precision (R_p = 1.04 +0.05-0.09 R_Jup), while the orbital parameters are refined. This global analysis reveals that the orbital axis of the planet is significatively inclined relative to the spin axis of the host star (Beta = -59 +18-28 deg), providing a compelling evidence that HD 80606b owes its peculiar orbit to the Kozai migration mechanism.
We present multi-colour time-series CCD photometry of the solar-age galactic open cluster M67 (NGC 2682). About 3600 frames spread over 28 nights were obtained with the 1.5 m Russian-Turkish and 1.2 m Mercator telescopes. High-precision observations of the close binary stars AH Cnc, EV Cnc, ES Cnc, the $\delta$ Scuti type systems EX Cnc and EW Cnc, and some long-period variables belonging to M67 are presented. Three full multi-colour light curves of the overcontact binary AH Cnc were obtained during three observing seasons. Likewise we gathered three light curves of EV Cnc, an EB-type binary, and two light curves of ES Cnc, a blue straggler binary. Parts of the light change of long-term variables S1024, S1040, S1045, S1063, S1242, and S1264 are obtained. Period variation analysis of AH Cnc, EV Cnc, and ES Cnc were done using all times of mid-eclipse available in the literature and those obtained in this study. In addition, we analyzed multi-colour light curves of the close binaries and also determined new frequencies for the $\delta$ Scuti systems. The physical parameters of the close binary stars were determined with simultaneous solutions of multi-colour light and radial velocity curves. Finally we determined the distance of M67 as 857(33) pc via binary star parameters, which is consistent with an independent method from earlier studies.
We have reanalyzed data from observations of PSR B1706-44, SN 1006, and the Vela pulsar region made with the CANGAROO 3.8 m imaging atmospheric Cherenkov telescope between 1993 and 1998 in response to the results reported for these sources by the H.E.S.S. collaboration. In our reanalysis, in which gamma-ray selection criteria have been determined exclusively using gamma-ray simulations and OFF-source data as background samples, no significant TeV gamma-ray signals have been detected from compact regions around PSR B1706-44 or within the northeast rim of SN 1006. We discuss reasons why the original analyses gave the source detections. The reanalysis did result in a TeV gamma-ray signal from the Vela pulsar region at the 4.5 sigma level using 1993, 1994, and 1995 data. The excess was located at the same position, 0.13 deg. to the southeast of the Vela pulsar, as that reported in the original analysis. We have investigated the effect of the acceptance distribution in the field of view of the 3.8 m telescope, which rapidly decreases toward the edge of the field of the camera, on the detected gamma-ray morphology. The expected excess distribution for the 3.8 m telescope has been obtained by reweighting the distribution of HESS J0835-455 measured by H.E.S.S. with the acceptance of the 3.8 m telescope. The result is morphologically comparable to the CANGAROO excess distribution, although the profile of the acceptance-reweighted H.E.S.S. distribution is more diffuse than that of CANGAROO. The integral gamma-ray flux from HESS J0835-455 has been estimated for the same region as defined by H.E.S.S. from the 1993-1995 data of CANGAROO to be F(> 4.0 +/- 1.6 TeV) = (3.28 +/- 0.92) x 10^{-12} photons cm^{-2} s^{-1}, which is statistically consistent with the integral flux obtained by H.E.S.S.
The origin and stability of a thin sheet of plasma in the magnetosphere of an accreting neutron star is investigated. First the radial extension of such a magnetospheric disc is explored. Then a mechanism for magnetospheric accretion is proposed, reconsidering the bending wave explored by Agapitou, Papaloizou & Terquem (1997), that was found to be stable in ideal MHD. We show that this warping becomes unstable and can reach high amplitudes, in a variant of Pringle's radiation-driven model for the warping of AGN accretion discs (Pringle (1996)). Finally we discuss how this mechanism might give a clue to explain the observed X-ray kHz QPO of neutron star binaries.
Starbursts and substantial variations in the star formation histories are a common phenomenon in galaxies. We study the stability properties of isolated star-forming dwarf galaxies with the aim of identifying starburst modes. The impact of the stellar birth function, the initial mass function (IMF), the stellar feedback and the interstellar medium (ISM) model are investigated. We apply a one-zone model for a star-gas system coupled by mass and energy transfer. Additionally, we extend the network for active dynamical evolution. This allows for a coupling between the dynamical state of the galaxy and its internal properties. While the influence of the dynamics on the total star formation rate is strong, the coupling of the internal properties (gas temperature) on the dynamics is rather limited, because radiative cooling keeps the gas temperature well below the virial temperature. Because of short cooling and feedback timescales, the star formation rate is close to the equilibrium star formation rates. Quasi-periodic starbursts occur, because star formation follows the variations in the gas density induced by decaying virial oscillations. This behaviour is quite insensitive to the nature and the details of the stellar birth description, viz. whether spontaneous or induced star formation is considered or the IMF is varied. A second type of burst is found as an instability operating when the cooling may drop at very low densities with increasing temperature. Bursts of star formation occur during transitory phases, when dynamical equilibrium is established. Then they are quasi-periodic on the dynamical timescale. Because of short heating and cooling timescales, the star formation rate follows the equilibrium star formation rate corresponding to the actual gas density.
The CoRoT satellite is collecting precise time-resolved photometry for tens of asteroseismology targets. To ensure a correct interpretation of the CoRoT data, the atmospheric parameters, chemical compositions, and rotational velocities of the stars must be determined. The main goal of the ground-based seismology support program for the CoRoT mission was to obtain photometric and spectroscopic data for stars in the fields monitored by the satellite. These ground-based observations were collected in the GAUDI archive. High-resolution spectra of more than 200 B-type stars are available in this database, and about 45% of them is analysed here. To derive the effective temperature of the stars, we used photometric indices. Surface gravities were obtained by comparing observed and theoretical Balmer line profiles. To determine the chemical abundances and rotational velocities, we used a spectrum synthesis method, which consisted of comparing the observed spectrum with theoretical ones based on the assumption of LTE. Atmospheric parameters, chemical abundances, and rotational velocities were determined for 89 late-B stars. The dominant species in their spectra are iron-peak elements. The average Fe abundance is 7.24+/-0.45 dex. The average rotational velocity is 126 km/sec, but there are 13 and 20 stars with low and moderate Vsin i values, respectively. The analysis of this sample of 89 late B-type stars reveals many chemically peculiar (CP) stars. Some of them were previously known, but at least 9 new CP candidates, among which at least two HgMn stars, are identified in our study. These CP stars as a group exhibit Vsin i values lower than the stars with normal surface chemical composition.
We present the analysis of three Suzaku observations of a bright arc in the ROSAT All-Sky Survey 1/4 keV maps at $l \approx 247\degr$, $b \approx -64\degr$. In particular, we have tested the hypothesis that the arc is the edge of a bubble blown by an extraplanar supernova. One pointing direction is near the brightest part of the arc, one is toward the interior of the hypothesized bubble, and one is toward the bubble exterior. We fit spectral models generated from 1-D hydrodynamical simulations of extraplanar supernova remnants (SNRs) to the spectra. The spectra and the size of the arc ($\mathrm{radius} \approx 5\degr$) are reasonably well explained by a model in which the arc is the bright edge of a $\sim$100,000-yr old SNR located $\sim$1--2 kpc above the disk. The agreement between the model and the observations can be improved if the metallicity of the X-ray--emitting gas is $\sim$1/3 solar, which is plausible, as the dust which sequesters some metals is unlikely to have been destroyed in the lifetime of the SNR. The width of the arc is larger than that predicted by our SNR model; this discrepancy is also seen with the Vela SNR, and may be due to the 1-D nature of our simulations. If the arc is indeed the edge of an extraplanar SNR, this work supports the idea that extraplanar supernovae contribute to the heating of the $\sim$million-degree gas in the halo.
We explore the nature of X-ray sources with 70 micron counterparts selected in the SWIRE fields ELAIS-N1, Lockman Hole and Chandra Deep Field South, for which Chandra X-ray data are available. A total of 28 X-ray/70 micron sources in the redshift interval 0.5<z<1.3 are selected. The X-ray luminosities and the shape of the X-ray spectra show that these sources are AGN. Modelling of the optical to far-infrared Spectral Energy Distribution indicates that most of them (27/28) have a strong starburst component (>50 solar masses per year) that dominates in the infrared. It is found that the X-ray and infrared luminosities of the sample sources are broadly correlated, consistent with a link between AGN activity and star-formation. Contrary to the predictions of some models for the co-evolution of AGN and galaxies, the X-ray/70 micron sources in the sample are not more obscured at X-ray wavelengths compared to the overall X-ray population. It is also found that the X-ray/70 micron sources have lower specific star-formation rates compared to the general 70 micron population, consistent with AGN feedback moderating the star-formation in the host galaxies.
We consider a primordial SU(2) vector multiplet during inflation in models where quantum fluctuations of vector fields are involved in producing the curvature perturbation. Recently, a lot of attention has been paid to models populated by vector fields, given the interesting possibility of generating some level of statistical anisotropy in the cosmological perturbations. The scenario we propose is strongly motivated by the fact that, for non-Abelian gauge fields, self-interactions are responsible for generating extra terms in the cosmological correlation functions, which are naturally absent in the Abelian case. We compute these extra contributions to the bispectrum of the curvature perturbation, using the delta N formula and the Schwinger-Keldysh formalism. The primordial violation of rotational invariance (due to the introduction of the SU(2) gauge multiplet) leaves its imprint on the correlation functions introducing, as expected, some degree of statistical anisotropy in our results. We calculate the non-Gaussianity parameter f_{NL}, proving that the new contributions derived from gauge bosons self-interactions can be important, and in some cases the dominat ones. We study the shape of the bispectrum and we find that it turns out to peak in the local configuration, with an amplitude that is modulated by the preferred directions that break statistical isotropy.
We analyze statistical properties of the separate multipole moments of the CMB temperature maps and find that the distribution tails are slightly non-Gaussian. Moreover, the deviation from Gaussianity peaks sharply at around $l\sim45\pm10$. If the detected non-Gaussianities should be attributed to the remaining foreground contamination from the galactic plane, an appearance of a similar peak in different frequency bands is unexpected. The presence of the peak was also confirmed by the analysis of weighted multipoles which is less susceptible to the galactic noise. We argue that cosmic strings or correlated gravitational waves could lead to the observed effect.
This paper presents the Hubble diagram (K-z relation) for FIRST (Faint Images of the Radio Sky at 20 cm) radio sources identified in the Bootes and Cetus fields. The correlation between the K magnitude of the FIRST-NDWFS sample and the photometric redshifts found to be linear. The dispersion about the best fit line is given by 1.53 for the whole sample and 0.75 at z>1. The paper also presents a composite K-z diagram of FIRST radio sources and low-frequency selected radio samples with progressively fainter flux-density limits (3CRR, 6C, 7CRS and the EIS-NVSS sample). The majority of FIRST radio sources lie fainter than the no evolution curve (3L* galaxies) probably highlighting the fact that the galaxy luminosity is correlated with the radio power.
Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves (GWs) and high-energy neutrinos (HENs). A network of GW detectors such as LIGO and Virgo can determine the direction/time of GW bursts while the IceCube and ANTARES neutrino telescopes can also provide accurate directional information for HEN events. Requiring the consistency between both, totally independent, detection channels shall enable new searches for cosmic events arriving from potential common sources, of which many extra-galactic objects.
The relatively large number of nearby radio-quiet and thermally emitting isolated neutron stars (INSs) discovered in the ROSAT All-Sky Survey, dubbed the ``Magnificent Seven'' (M7), suggests that they belong to a formerly neglected major component of the overall INS population. So far, attempts to discover similar INSs beyond the solar vicinity failed to confirm any reliable candidate. The EPIC cameras onboard the XMM-Newton satellite allow to efficiently search for new thermally emitting INSs. We used the 2XMMp catalogue to select sources with no catalogued candidate counterparts and with X-ray spectra similar to those of the M7, but seen at greater distances and thus undergoing higher interstellar absorptions. Identifications in more than 170 astronomical catalogues and visual screening allowed to select fewer than 30 good INS candidates. In order to rule out alternative identifications, we obtained deep ESO-VLT and SOAR optical imaging for the X-ray brightest candidates. We report here on the optical follow-up results of our search and discuss the possible nature of 8 of our candidates. A high X-ray-to-optical flux ratio together with a stable flux and soft X-ray spectrum make the brightest source of our sample, 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The X-ray source 2XMM J010642.3+005032 has no evident optical counterpart and should be further investigated. The remaining X-ray sources are most probably identified with CVs and AGN, as inferred from the colours and flux ratios of their likely optical counterparts. Beyond the finding of new thermally emitting INSs, our study aims at constraining the space density of this Galactic population at great distances and at determining whether their apparently high density is a local anomaly or not.
In this paper, we present a simplified model for magnetized neutrino-dominated accretion flow (NDAF) in which effect of black hole (BH) spin is taken into account by adopting a set of relativistic correction factor, and the magnetic field is parameterized as \beta, the ratio of the magnetic pressure to the total pressure. It is found that the disc properties are sensitive to the values of the BH spin and \beta, and more energy can be extracted from NDAF for the faster spin and lower \beta.
In small-scale experiments such as CODALEMA and LOPES, radio detection of cosmic rays has demonstrated its potential as a technique for cosmic ray measurements up to the highest energies. Radio detection promises measurements with high duty-cycle, allows a direction reconstruction with very good angular resolution, and provides complementary information on energy and nature of the cosmic ray primaries with respect to particle detectors at ground and fluorescence telescopes. Within the Pierre Auger Observatory, we tackle the technological and scientific challenges for an application of the radio detection technique on large scales. Here, we report on the results obtained so far using the Southern Auger site and the plans for an engineering array of radio detectors covering an area of ~20 km^2.
Traditionally, the mass-anisotropy degeneracy inherent in the spherical stationary non-streaming Jeans equation has been handled by assuming a mass profile and fitting models to the observed kinematical data. Here, the opposite approach is considered: The equation of anisotropic kinematic projection is inverted for known arbitrary anisotropy to yield the space radial velocity dispersion profile in terms of an integral involving the radial profiles of anisotropy and of the observational data. Then, through the Jeans equation, the mass profile of a spherical system is derived in terms of double integrals of observable quantities. Single integral formulas are provided for several simple anisotropy models (isotropic, radial, circular, general constant, Osipkov-Merritt, Mamon-Lokas and Diemand-Moore-Stadel). Tests of the mass inversion on NFW models with the first four of these anisotropy models yield accurate results in the case of perfect observational data, and typically better than 70% accurate mass profiles for the sampling errors expected from current observational data on clusters of galaxies. For the NFW model with mildly increasing radial anisotropy, the mass is found to be insensitive to the adopted anisotropy profile at 7 scale radii and to the adopted anisotropy radius at 2.5 scale radii. This anisotropic mass inversion method is a useful complementary tool to analyze the mass and anisotropy profiles of spherical systems. It provides the practical means to lift the mass-anisotropy degeneracy in quasi-spherical systems such as globular clusters, round dwarf spheroidal and elliptical galaxies, as well as groups and clusters of galaxies, when the anisotropy of the tracer is expected to be linearly related to the slope of its density.
We present XMM observations of the AGN SDSS 1430-0011. The low S/N spectrum of this source obtained in a snap shot Chandra observation showed an unusually flat continuum. With the follow up XMM observations we find that the source spectrum is complex; it either has an ionized absorber or a partially covering absorber. The underlying power-law is in the normal range observed for AGNs. The low luminosity of the source during Chandra observations can be understood in terms of variations in the absorber properties. The X-ray and optical properties of this source are such that it cannot be securely classified as either a narrow line Seyfert 1 or a broad line Seyfert 1 galaxy.
Gravitational wave production induces a strong constraint on the amplitude of a primordial magnetic field. It has been shown that the nucleosynthesis bound for a stochastic gravitational wave background implies that causally generated fields cannot have enough power on large scales to provide the seeds necessary for the observed magnetic fields in galaxies and clusters, even by the most optimistic dynamo amplification. Magnetic fields generated at inflation can have high enough amplitude only if their spectrum is very red. Here we show that helicity, which leads to an inverse cascade, can mitigate these limits. In particular, we find that helical fields generated at the QCD phase transition or at inflation with red spectrum are possible seeds for the dynamo. Helical fields generated at the electroweak phase transition are instead excluded as seeds at large scales. We also calculate the spectrum of gravitational waves generated by helical magnetic fields.
We measure the angular 2-point correlation functions of galaxies in a volume limited, photometrically selected galaxy sample from the fifth data release of the Sloan Digital Sky Survey. We split the sample both by luminosity and galaxy type and use a halo-model analysis to find halo-occupation distributions that can simultaneously model the clustering of all, early-, and late-type galaxies in a given sample. Our results for the full galaxy sample are generally consistent with previous results using the SDSS spectroscopic sample, taking the differences between the median redshifts of the photometric and spectroscopic samples into account. We find that our early- and late- type measurements cannot be fit by a model that allows early- and late-type galaxies to be well-mixed within halos. Instead, we introduce a new model that segregates early- and late-type galaxies into separate halos to the maximum allowed extent. We determine that, in all cases, it provides a good fit to our data and thus provides a new statistical description of the manner in which early- and late-type galaxies occupy halos.
Only about 10% of the baryons in the universe lie in galaxies as stars or cold gas, with the remainder predicted to exist as a dilute gaseous filamentary network known as the Cosmic Web. Some of this gas is detected through UV absorption line studies, but half of the gas remains undetected. Growth of structure simulations suggest that these "missing" baryons were shock heated in unvirialized cosmic filaments to temperatures of 10^5.5-10^7 K, and that the gas is chemically enriched by galactic superwinds. Most of the gas in this temperature regime can be detected only by X-ray observations through absorption and emission from the He-like and H-line ions of C, N, and O. This white paper shows that an X-ray telescope such as IXO can test the most central predictions of the Cosmic Web: the distribution of gas mass with temperature; the dynamics of the gas and its relationship to nearby galaxies; and the topology of the Cosmic Web material.
Faraday rotation (FR) is widely used to infer the orientation and strength of magnetic fields in astrophysical plasmas. Although the absence of electron-positron pairs is a plausible assumption in many astrophysical environments, the magnetospheres of pulsars and black holes and their associated jets may involve a significant pair plasma fraction. This motivates being mindful of the effect of positrons on FR. Here we derive and interpret exact expressions of FR for a neutral plasma of arbitrary composition. We focus on electron-ion-positron plasmas in which charge neutrality is maintained by an arbitrary combination of ions and positrons. Because a pure electron-positron plasma has zero FR, the greater the fraction of positrons the higher the field strength required to account for the same FR. We first obtain general formulae and then specifically consider parameters relevant to active galctic nuclei (AGN) jets to illustrate the significant differences in field strengths that FR measurements from radio frequency measurements. Complementarily, using galaxy cluster core plasmas as examples, we discuss how plasma composition can be constrained if independent measurements of the field strength and number density are available and combined with FR.
The Milky Way and all other galaxies are missing most of their baryons in that the ratio of the known baryonic mass to the gravitating mass (within the virial radius), is several times less than the cosmic ratio determined from WMAP. This implies that either the baryons never fell into galaxies or that powerful galactic winds removed most of the baryons. It is possible to discriminate between these two pathways if we can discover the missing baryons and measure its properties: spatial distribution; temperature; and metallicity. The missing baryons from galaxies are expected to have temperatures of 1-3E6 K, so X-ray observations are required. In this white paper, we show how X-ray observations, obtained with a facility such as IXO, can be used to identify and study these elusive baryons.
Tension between varying fine-structure "constant'' alpha and charged black hole properties has been invoked in the past to place constraints on cosmological variability of alpha. However, the properties used are those of the standard Reissner-Nordstrom black holes; this ignores modifications of black hole structure that must result from alpha variability. To elucidate this issue we have derived, in 4-D general relativity, and using isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical variability of alpha which does not fix its overall scale. This solution coincides with a known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying alpha charged black holes are adherence to the "no hair'' principle, the absence of the inner (Cauchy) horizon, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in a separate sector of the relevant metric. This last hints at the possible coexistence of naked singularities and black holes, an eventuality at odds with the "cosmic censor'' dictum. We also exhibit the thermodynamics of the modified black holes, and the family of dual magnetically charged black holes. The thermodynamic constraints that the modified charged black holes set on cosmological alpha variability are weaker than naive considerations would suggest. However, such a black hole may still evolve, under cosmologically growing alpha or Hawking emission of neutral particles, to a naked singularity.
Using spectral methods, we analyse the orbital structure of dark matter (DM) in N-body simulations in an effort to understand the physical processes that drive the evolution of dark matter halo shapes caused by growing central masses. A longstanding issue is whether the change in the shapes of DM halos is the result of chaotic scattering of the major family of box orbits that serves as the back-bone of a triaxial system, or whether they change shape in response to the evolving galactic potential. We use the characteristic orbital frequencies to classify orbits into major orbital families, to quantify orbital shapes, and to identify resonant orbits and chaotic orbits. We show that regardless of the distribution of the baryonic component, the shape of a DM halo changes primarily due to changes in the shapes of individual orbits within a given family. Orbits with small pericentric radii are more likely to change both their orbital type and shape than orbits with large pericentric radii. Whether the evolution is regular (and reversible) or chaotic (and irreversible), depends primarily on the radial distribution of the baryonic component. A massive, compact central mass results in chaotic scattering of a large enough fraction of both box and long-axis tube orbits, even at fairly large pericentric distances, such that the evolution is not reversible. Frequency maps show that the growth of a disk causes a significant fraction of halo particles to become associated with major global orbital resonances.
Links to: arXiv, form interface, find, astro-ph, recent, 0906, contact, help (Access key information)
We show that the class of antenna layouts for telescope arrays allowing cheap analysis hardware (with cost scaling as N log N rather than N^2 with the number of antennae N) is encouragingly large, including not only previously discussed rectangular grids but also arbitrary hierarchies of such grids, with arbitrary rotations and shears at each level. We show that all correlations for such a 2D array with an n-level hierarchy can be efficiently computed via a Fast Fourier Transform in not 2 but 2n dimensions. This allows major cost reductions for science applications requiring sensitivity at widely separated angular scales, for example 21cm tomography (where short baselines are needed to probe the cosmological signal and long baselines are needed for point source removal). Such hierarchical grids combine the angular resolution advantage of traditional array layouts with the cost advantage of a rectangular Fast Fourier Transform Telescope. We also describe an algorithm for how a subclass of hierarchical arrays can efficiently use rotation synthesis to produce global sky maps with minimal noise and a well-characterized synthesized beam.
The detection of planets around very low-mass stars with the radial velocity method is hampered by the fact that these stars are very faint at optical wavelengths. We investigate the precision that can be achieved in radial velocity measurements of low mass stars in the near infrared (nIR) Y-, J-, and H-bands, and we compare it to the precision achievable in the optical. For early-M stars, radial velocity measurements in the nIR offer no or only marginal advantage in comparison to optical measurements. Although they emit more flux in the nIR, the richness of spectral features in the optical outweighs the flux difference. We find that nIR measurement can be more precise than optical measurements in stars of spectral type ~M3, and from there the nIR offers significant gains in precision towards cooler objects. We studied potential calibration strategies in the nIR finding that a stable spectrograph with a ThAr calibration probably offers the best choice with currently available technology. Furthermore, we simulate the wavelength-dependent influence of activity (cool spots) on radial velocity measurements. Our spot simulations reveal that the radial velocity jitter does not decrease as dramatically towards longer wavelengths as often thought. The jitter strongly depends on the details of the spots, i.e., on spot temperature and the spectral appearance of the spot. At low temperature contrast (~200K), the jitter shows a decrease towards the nIR up to a factor of ten, but it is substantially smaller with larger temperature contrast. Forthcoming nIR spectrographs will allow the search for planets with a particular advantage in mid- and late-M stars. Activity will remain an issue, but simultaneous observations at optical and nIR wavelengths can provide strong constraints on spot properties in active stars.
We use the large catalogues of haloes available for the Millennium Simulation to test whether recently merged haloes exhibit stronger large-scale clustering than other haloes of the same mass. This effect could help to understand the very strong clustering of quasars at high redshift. However, we find no statistically significant excess bias for recently merged haloes over the redshift range 2 < z < 5, with the most massive haloes showing an excess of at most ~5%. We also consider galaxies extracted from a semianalytic model built on the Millennium Simulation. At fixed stellar mass, we find an excess bias of ~ 20-30% for recently merged objects, decreasing with increasing stellar mass. The fact that recently-merged galaxies are found in systematically more massive haloes than other galaxies of the same stellar mass accounts for about half of this signal, and perhaps more for high-mass galaxies. The weak merger bias of massive systems suggests that objects of merger-driven nature, such as quasars, do not cluster significantly differently than other objects of the same characteristic mass. We discuss the implications of these results for the interpretation of clustering data with respect to quasar duty cycles, visibility times, and evolution in the black hole-host mass relation.
We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extra-solar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii <~1.5AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of "transitional" disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.
We present detailed simulations of the Pan-STARRS-1 (PS1) multi-epoch, multi-band 3-pi Survey in order to assess its potential yield of transiting planets and eclipsing binaries. This survey differs from dedicated transit surveys in that it will cover the entire Northern sky but provide only sparsely sampled light curves. Since most eclipses would be detected at only a single epoch, the 3-pi Survey will be most sensitive to deep eclipses (> 0.10 mag) caused by Jupiters transiting M dwarfs and eclipsing stellar/substellar binaries. The survey will also provide parallaxes for the ~400,000 stars within 100 pc which will enable a volume-limited eclipse search, reducing the number of astrophysical false positives compared to previous magnitude-limited searches. Using the best available empirical data, we constructed a model of the extended solar neighborhood that includes stars, brown dwarfs, and a realistic binary population. We computed the yield of deeply eclipsing systems using both a semi-analytic and a full Monte Carlo approach. We examined statistical tests for detecting single-epoch eclipses in sparsely sampled data and assessed their vulnerability to false positives due to stellar variability. Assuming a short-period planet frequency of 0.5% for M dwarfs, our simulations predict that about a dozen transiting Jupiters around low-mass stars (M < 0.3 Msun) within 100 pc are potentially detectable in the PS1 3-pi Survey, along with ~300 low-mass eclipsing binaries (both component masses < 0.5 Msun), including ~10 eclipsing field brown dwarfs. Extensive follow-up observations would be required to characterize these candidate eclipsing systems, thereby enabling comprehensive tests of structural models and novel insights into the planetary architecture of low-mass stars.
Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar field models) which is often generically called "dark energy". We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.
We describe an algorithm to generate temperature and polarization maps of the cosmic microwave background radiation containing non-Gaussianity of arbitrary local type. We apply an optimized quadrature scheme that allows us to predict and control integration accuracy, speed up the calculations, and reduce memory consumption by an order of magnitude. We generate 1000 non-Gaussian CMB temperature and polarization maps up to a multipole moment of l_max = 1024. We validate the method and code using the power spectrum and the fast cubic (bispectrum) estimator and find consistent results. The simulations are provided to the community.
Achromatic breaks in afterglow light curves of gamma-ray bursts (GRBs) arise naturally when the product of the jet's Lorentz factor \gamma and opening angle \Theta_j satisfies \gamma\Theta_j >> 1. Magnetohydrodynamic (MHD) simulations of collimated GRB jets generally give \gamma\Theta_j <~ 1, suggesting that MHD models are incapable of explaining jet breaks. We work within the collapsar paradigm and use axisymmetric relativistic MHD simulations to explore the effect of a finite stellar envelope on the structure of the jet. Our idealized models treat the jet-stellar envelope interface as a collimating rigid wall, which opens up outside the star to mimic loss of collimation. We find that the onset of deconfinement outside the star causes a burst of acceleration with negligible change in the opening angle. In our fiducial model with a stellar radius equal to 10^4.5 times that of the central compact object, the jet achieves an asymptotic Lorentz factor \gamma ~ 500 far outside the star and an asymptotic opening angle \Theta_j ~ 0.04 rad ~ 2 deg, giving \gamma\Theta_j ~ 20. These values are consistent with observations of typical long-duration GRBs, and explain the occurrence of jet breaks.
We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r<20 and proper-motion measurements derived from SDSS and POSS astrometry, including ~170,000 stars with radial-velocity measurements from the SDSS spectroscopic survey. Distances to stars are determined using a photometric parallax relation, covering a distance range from 100 pc to 10 kpc over a quarter of the sky at high Galactic latitudes (|b|>20 degrees). We find that in the region defined by 1 kpc <Z<5 kpc and 3 kpc <R< 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and is spatially invariant within the probed volume. The velocity distribution of nearby (Z<1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (<100 pc), we detect a multimodal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and LSST.
We identify 3,113 highly variable objects in 7,200 square degrees of the Palomar-QUEST Survey, which each varied by more than 0.4 magnitudes simultaneously in two broadband optical filters on timescales from hours to roughly 3.5 years. The primary goal of the selection is to find blazars by their well-known violent optical variability. Because most known blazars have been found in radio and/or X-ray wavelengths, a sample discovered through optical variability may have very different selection effects, elucidating the range of behavior possible in these systems. A set of blazars selected in this unusual manner will improve our understanding of the physics behind this extremely variable and diverse class of AGN. The object positions, variability statistics, and color information are available using the Palomar-QUEST CasJobs server. The time domain is just beginning to be explored over large sky areas; we do not know exactly what a violently variable sample will hold. About 20% of the sample has been classified in the literature; over 70% of those objects are known or likely AGN. The remainder largely consists of a variety of variable stars, including a number of RR Lyrae and cataclysmic variables.
We study the emission of the short/hard GRB 090510 at energies > 0.1 GeV as observed by the Large Area Telescope (LAT) onboard the Fermi satellite. The GeV flux rises in time as t^2 and decays as t^-1.5 up to 200 s. The peak of the high energy flux is delayed by 0.2 s with respect to the main ~MeV pulse detected by the Fermi Gamma Burst Monitor (GBM). Its energy spectrum is consistent with F(E)=E^-1. The time behavior and the spectrum of the high energy LAT flux are strong evidences of an afterglow origin. We then interpret it as synchrotron radiation produced by the forward shock of a fireball having a bulk Lorentz factor Gamma ~ 2000. The afterglow peak time is independent of energy in the 0.1-30 GeV range and coincides with the arrival time of the highest energy photon (~ 30 GeV). Since the flux detected by the GBM and the LAT have different origins, the delay between these two components is not entirely due to possible violation of the Lorentz invariance. It is the LAT component by itself that allows to set a stringent lower limit on the quantum-gravity mass of 4.7 times the Planck mass.
We report long-slit spectroscopic observations of SDSS J092712+294344 carried-out at the recently commissioned 2m telescope in IUCAA Girawali Observatory, India. This AGN-like source is known to feature three sets of emission lines at zem = 0.6972, 0.7020 and 0.7128. Different scenarios such as a recoiling black hole after asymmetric emission of gravitational waves, binary black holes and possible merging systems are proposed for this object. We test these scenarios by comparing our spectra with that from the Sloan Digital Sky Survey (SDSS), obtained 4 years prior to our observations. Comparing the redshifts of [OIII]4960,5008 we put a 3 sigma limit on the relative acceleration to be less than 32 km s^-1 yr^-1 between different emitting regions. Using the 2D spectra obtained at different position angles we show that the [OIII]5008 line from the zem = 0.7128 component is extended beyond the spectral point spread function. We infer the linear extent of this line emitting region is ~8 kpc. We also find a tentative evidence for an offset between the centroid of the [OIII]5008 line at zem = 0.7128 and the QSO trace when the slit is aligned at a position angle of 299 degrees. This corresponds to the zem = 0.7128 system being at an impact parameter of ~1 kpc with respect to the zem = 0.6972 in the north west direction. Based on our observations we conclude that the binary black hole model is most unlikely. The spatial extent and the sizes are consistent with both black hole recoil and merging scenarios.
We examine a dark energy model where a scalar unparticle degree of freedom plays the role of quintessence. In particular, we study a model where the unparticle degree of freedom has a standard kinetic term and a simple mass potential, the evolution is slowly rolling and the field value is of the order of the unparticle energy scale ($\lambda_u$). We study how the evolution of $w$ depends on the parameters $B$ (a function of the unparticle scaling dimension $d_u$), the initial value of the field $\phi_i$ (or equivalently, $\lambda_u$) and the present matter density $\Omega_{m0}$. We use observational data from Type Ia supernovae, BAO and CMB to constrain the model parameters and find that these models are not ruled out by the observational data. From a theoretical point of view, an unparticle dark energy model is very attractive, since unparticles (being bound states of fundamental fermions) are protected from radiative corrections. Further, coupling of unparticles to the standard model fields can be arbitrarily suppressed by raising the fundamental energy scale $M_F$, making the unparticle dark energy model free of most of the problems that plague conventional scalar field quintessence models.
We amassed statistics for quiet-sun chromosphere spicules at the limb using ground-based observations from the Swedish 1-m Solar Telescope on La Palma and simultaneously from NASA's Transition Region and Coronal Explorer (TRACE) spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond resolution obtained after maximizing the ground-based resolution with the Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained specific statistics for sizes and motions of over two dozen individual spicules, based on movies compiled at 50-second cadence for the series of five wavelengths observed in a very narrow band at H-alpha, on-band and in the red and blue wings at 0.035 nm and 0.070 nm (10 s at each wavelength) using the SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from TRACE. The MOMFBD restoration also automatically aligned the images, facilitating the making of Dopplergrams at each off-band pair. We studied 40 H-alpha spicules, and 14 EUV spicules that overlapped H-alpha spicules; we found that their dynamical and morphological properties fit into the framework of several previous studies. From a preliminary comparison with spicule theories, our observations are consistent with a reconnection mechanism for spicule generation, and with UV spicules being a sheath region surrounding the H-alpha spicules.
We construct a sample of low-redshift Ly-alpha emission-line selected sources from GALEX grism spectroscopy of nine deep fields to study the role of Ly-alpha emission in galaxy populations with cosmic time. Our final sample consists of 122 (142) sources selected in the redshift interval z=0.195-0.44 (z=0.65-1.25) from the FUV (NUV) channel. We classify the Ly-alpha sources as AGNs if high-ionization emission lines are present in their UV spectra and as galaxies otherwise. These classifications are broadly supported by comparisons with X-ray and optical spectroscopic observations. We classify additional sources as AGNs using line widths for our Ly-alpha emitter (LAE) analysis. Defining the GALEX LAE sample in the same way as high-redshift LAE samples, we show that LAEs constitute only about 5% of NUV-continuum selected galaxies at z~0.3. We also show that they are less common at z~0.3 than they are at z~3. We find that the z~0.3 optically-confirmed Ly-alpha galaxies lie below the metallicity-luminosity relation of the z~0.3 NUV-continuum selected galaxies but have similar velocity widths at similar luminosities, suggesting that they also lie below the metallicity-mass relation of the NUV-continuum selected galaxies. We show that on average the Ly-alpha galaxies have bluer colors, lower extinctions as measured from the Balmer line ratios, and more compact morphologies than the NUV-continuum selected galaxies. Finally, we confirm that the z~2 Lyman break galaxies (LBGs) have relatively low metallicities for their luminosities, and we find that they lie in the same metallicity range as the z~0.3 Ly-alpha galaxies.
The quantitative spectral analysis of medium resolution optical spectra of A and B supergiants obtained with DEIMOS and ESI at the Keck Telescopes is used to determine a distance modulus of 24.93 +/- 0.11 mag for the Triangulum Galaxy M33. The analysis yields stellar effective temperatures, gravities, interstellar reddening, and extinction, the combination of which provides a distance estimate via the Flux-weighted Gravity--Luminosity Relationship (FGLR). This result is based on an FGLR calibration that is continually being polished. An average reddening of <E(B-V)> ~ 0.08 mag is found, with a large variation ranging from 0.01 to 0.16 mag however, demonstrating the importance of accurate individual reddening measurements for stellar distance indicators in galaxies with evident signatures of interstellar absorption. The large distance modulus found is in good agreement with recent work on eclipsing binaries, planetary nebulae, long period variables, RR Lyrae stars, and also with HST observations of Cepheids, if reasonable reddening assumptions are made for the Cepheids. Since distances based on the tip of the red giant branch (TRGB) method found in the literature give conflicting results, we have used HST ACS V- and I-band images of outer regions of M 33 to determine a TRGB distance of 24.84 +/- 0.10 mag, in basic agreement with the FGLR result. We have also determined stellar metallicities and discussed the metallicity gradient in the disk of M33. We find metallicity of $Z_\odot$ at the center and 0.3 $Z_\odot$ in the outskirts at a distance of one isophotal radius. The average logarithmic metallicity gradient is -0.07 +/- 0.01 dex kpc^-1. However, there is a large scatter around this average value, very similar to what has been found for the HII regions in M33.
Star clusters represent the most common 'mode' of star formation. They are found in all types of environments, cascading down from galaxy groups and merging pairs through starbursts to normal galaxies and dwarves and even isolated regions in extragalactic space. As they maintain a link to the overall star formation in a system, they can be used as tracers of the star formation history of environments located at distances prohibitive to the study of individual stars. This makes them ideally suited to the study of mergers and interactions in galaxy pairs and groups. In this work we present observations of the star cluster populations in the local starburst galaxy M82, post-interaction spiral NGC 6872, the "Antennae" merging pair and two compact groups, "Stephan's Quintet" and HCG 7. In each case, we extract information on the clusters and their hosts using mainly HST photometry and Gemini spectroscopy.
We present an atlas of moderate-resolution (R ~ 1200-1600) optical spectra of 94 low-redshift (z < 0.5) active galactic nuclei taken with the Magellan 6.5 m Clay Telescope. The spectra mostly cover the rest-frame region 3600-6000 Ang. All the objects have preexisting Hubble Space Telescope imaging, and they were chosen as part of an ongoing program to investigate the relationship between black hole mass and their host galaxy properties. A significant fraction of the sample has no previous quantitative spectroscopic measurements in the literature. We perform spectral decomposition of the spectra and present detailed fits and basic measurements of several commonly used broad and narrow emission lines, including [O II] 3727, He II 4686, Hbeta, and [O III] 4959, 5007. Eight of the objects are narrow-line sources that were previously misclassified as broad-line (type 1) Seyfert galaxies; of these, five appear not to be accretion-powered.
Muons with a high transverse momentum (p_T) are produced in cosmic ray air showers via semileptonic decay of heavy quarks and the decay of high p_T kaons and pions. These high p_T muons have a large lateral separation from the shower core muon bundle. IceCube is well suited for the detection of high p_T muons. The surface shower array can determine the energy, core location and direction of the cosmic ray air shower while the in-ice array can reconstruct the energy and direction of the high p_T muon. This makes it possible to measure the decoherence function (lateral separation spectrum) at distances greater than 150 meters. The muon p_T can be determined from the muon energy (measured by dE/dx) and the lateral separation. The high p_T muon spectrum may also be calculated in a perturbative QCD framework; this spectrum is sensitive to the cosmic-ray composition.
We have observed 152 nearby solar-type stars with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope. Including stars that met our criteria but were observed in other surveys, we get an overall success rate for finding excesses in the long wavelength IRS band (30-34 micron) of 11.8% +/- 2.4%. The success rate for excesses in the short wavelength band (8.5-12 micron) is ~1% including sources from other surveys. For stars with no excess at 8.5-12 microns, the IRS data set 3 sigma limits of around 1,000 times the level of zodiacal emission present in our solar system, while at 30-34 microns set limits of around 100 times the level of our solar system. Two stars (HD 40136 and HD 10647) show weak evidence for spectral features; the excess emission in the other systems is featureless. If the emitting material consists of large (10 micron) grains as implied by the lack of spectral features, we find that these grains are typically located at or beyond the snow line, ~1-35 AU from the host stars, with an average distance of 14 +/- 6 AU; however smaller grains could be located at significantly greater distances from the host stars. These distances correspond to dust temperatures in the range ~50-450 K. Several of the disks are well modeled by a single dust temperature, possibly indicative of a ring-like structure. However, a single dust temperature does not match the data for other disks in the sample, implying a distribution of temperatures within these disks. For most stars with excesses, we detect an excess at both IRS and MIPS wavelengths. Only three stars in this sample show a MIPS 70 micron excess with no IRS excess, implying that very cold dust is rare around solar-type stars.
IGR J19405-3016 is reported in the 3rd IBIS catalog as being one of its lowest significance sources (~4.6 sigma under an exposure of about 371 ks). This leads to a caveat in multi-wavelength study although the source was identified in optical as a Seyfert 1. The currently increased INTEGRAL data stimulate us to investigate the reality of this source. We analyze all available observations carried out by INTEGRAL and Swift on IGR J19405-3016. We find that IGR J19405-3016 has a detection significance of ~ 9.4 sigma in the 20-60 keV band during the observational period between March 2003 and March 2008. Thus confirms a real source detection reported previously. The source position and error location are therefore updated. The source is found to be constant over years at the hard X-rays. Over the three XRT observations, the source flux varied by up to 39% from the average, and the spectrum is generally soft. The combined XRT/ISGRI spectrum is well fitted with a simple power law model (photon index 2.11+-0.03). Such a photon index is well consistent with the mean value 1.98 (dispersion 0.27) as obtained from Swift/BAT AGN samples at 14-195 keV. The spectral slope of IGR J19405-3016 is larger than the average spectral slope found by Molina et al. (2009). A similar discrepancy is found with the results of Beckmann et al. (2009) regarding Seyfert 1 AGNs. A possible explanation of this simple spectral description may be that the low level of the column density allows for the `true' spectrum to appear at soft X-rays as well.
Water is a key species in many astrophysical environments, but it is particularly important in proto-planetary disks. So far,observations of water in these objects have been scarce, but the situation should soon change thanks to the Herschel satellite. We report here a theoretical study of the water line spectrum of a proto-planetary disk surrounding Ae stars. We show that several lines will be observable with the HIFI instrument onboard the Herschel Space Observatory. We predict that some maser lines could also be observable with ground telescopes and we discuss how the predictions depend not only on the adopted physical and chemical model but also on the set of collisional coefficients used and on the H2 ortho to para ratio through its effect on collisional excitation. This makes the water lines observations a powerful, but dangerous -if misused- diagnostic tool.
We analyse the kinematic and chemical evolution of 203 distant spheroidal (elliptical and S0) galaxies at 0.2<z<0.8 which are located in different environments (rich clusters, low-mass clusters and in the field). VLT/FORS and CAHA/MOSCA spectra with intermediate-resolution have been acquired to measure the internal kinematics and stellar populations of the galaxies. From HST/ACS and WFPC2 imaging, surface brightness profiles and structural parameters were derived for half of the galaxy sample. The scaling relations of the Faber-Jackson relation and Kormendy relation as well as the Fundamental Plane indicate a moderate evolution for the whole galaxy population in each density regime. In all environments, S0 galaxies show a faster evolution than elliptical galaxies. For the cluster galaxies a slight radial dependence of the evolution out to one virial radius is found. Dividing the samples with respect to their mass, a mass dependent evolution with a stronger evolution of lower-mass galaxies (M<2x10^{11} M_{\sun}) is detected. Evidence for recent star formation is provided by blue colours and weak OII emission or strong H\delta absorption features in the spectra. The results are consistent with a down-sizing formation scenario which is independent from the environment of the galaxies.
We present a detailed study of the spatially resolved kinematics, star-formation and stellar mass in a highly amplified galaxy at z=4.92 behind the lensing cluster MS1358+62. We use the observed optical, near- and mid-infrared imaging from HST ACS & NICMOS and Spitzer IRAC to derive the stellar mass and the Gemini/NIFS IFU to investigate the velocity structure of the galaxy from the nebular [OII] emission. Using a detailed gravitational lens model, we account for lensing amplification factor 12.+/-2.0 and find that this intrinsically L* galaxy has a stellar mass of M*=7+/-2x10^8Mo, a dynamical mass of Mdyn=3+/-1x10^9csc^2(i)Mo (within of 2kpc) and a star-formation rate of 42+/-8Mo/yr. The source-plane UV/optical morphology of this galaxy is dominated by five discrete star-forming regions. Exploiting the dynamical information we derive masses for individual star-forming regions of Mcl~10^(8-9)Mo with sizes of ~200pc. We find that, at a fixed size, the star-formation rate density within these HII regions is approximately two orders of magnitude greater than those observed in local spiral/starburst galaxies, but consistent with the most massive HII regions in the local Universe such as 30Dor. Finally, we compare the spatially resolved nebular emission line velocity with the Ly-alpha and UV-ISM lines and find that this galaxy is surrounded by a galactic scale outflow in which the Ly-alpha appears redshifted by ~150km/s and the UV-ISM lines blue-shifted by -200km/s from the (systemic) nebular emission. The velocity structure of the outflow mirrors that of the nebular emission suggesting the outflow is young (~15Myr), and has yet to burst out of the system. Taken together, these results suggest that this young galaxy is undergoing its first major epoch of mass assembly.
Four of nine exoplanets found by microlensing were detected by the resonant caustic, which represents the merging of the planetary and central caustics at the position when the projected separation of a host star and a bounded planet is s~1. One of the resonant caustic lensing events, OGLE-2005-BLG-169, was a caustic-crossing high-magnification event with $A_{max} \sim$ 800 and the source star was much smaller than the caustic, nevertheless the perturbation was not obviously apparent on the light curve of the event. In this paper, we investigate the perturbation pattern of the resonant caustic to understand why the perturbations induced by the caustic do not leave strong traces on the light curves of high-magnification events despite a small source/caustic size ratio. From this study, we find that the regions with small-magnification-excess around the center of the resonant caustic are rather widely formed, and the event passing the small-excess region produces a high-magnification event with a weak perturbation that is small relative to the amplification caused by the star and thus does not noticeably appear on the light curve of the event. We also find that the positive excess of the inside edge of the resonant caustic and the negative excess inside the caustic become stronger and wider as $q$ increases, and thus the resonant caustic-crossing high-magnification events with the weak perturbation occur in the range of $q \leqslant 10^{-4}$. We determine the probability of the occurrence of events with the small excess $|\epsilon| \leqslant 3 %$ in high-magnification events induced by a resonant caustic. As a result, we find that for the Earth-mass planets with a separation of ~ 2.5 AU, the resonant caustic high-magnification events with the weak perturbation can occur with a significant frequency.
It is shown that, in addition to the Thomson scattering, the absorption due to the electron-electron, electron-ion and the electron -atom collisions in a partially ionized cosmic plasma would also contribute to the optical depth of the cosmic microwave background (CMB). The absorption depth depends on the plasma temperature and frequency of the CMB radiation. The absorption effects are prominent at the low frequency part of the CMB spectrum. These effects when included in the interpretation of the CMB spectrum may necessitate a revised view of the ioniziation of the universe.
Statistical analyses of finite sample distributions usually assume that fluctuations are self-averaging, i.e. that they are statistically similar in different regions of the given sample volume. By using the scale-length method, we test whether this assumption is satisfied in several samples of the Sloan Digital Sky Survey Data Release Six. We find that the probability density function (PDF) of conditional fluctuations, filtered on large enough spatial scales (i.e., r>30 Mpc/h), shows relevant systematic variations in different sub-volumes of the survey. Instead for scales r<30 Mpc/h the PDF is statistically stable, and its first moment presents scaling behavior with a negative exponent around one. Thus while up to 30 Mpc/h galaxy structures have well-defined power-law correlations, on larger scales it is not possible to consider whole sample average quantities as meaningful and useful statistical descriptors. This situation is due to the fact that galaxy structures correspond to density fluctuations which are too large in amplitude and too extended in space to be self-averaging on such large scales inside the sample volumes: galaxy distribution is inhomogeneous up to the largest scales, i.e. r ~ 100 Mpc/h, probed by the SDSS samples. We show that cosmological corrections, as K-corrections and standard evolutionary corrections, do not qualitatively change the relevant behaviors. Finally we show that the large amplitude galaxy fluctuations observed in the SDSS samples are at odds with the predictions of the standard LCDM model of structure formation.(Abridged version).
SS433, located at the center of the supernova remnant W50, is a close proximity binary system consisting of a compact star and a normal star. Jets of material are directed outwards from the vicinity of the compact star symmetrically to the east and west. Non-thermal hard X-ray emission is detected from lobes lying on both sides. Shock accelerated electrons are expected to generate sub-TeV gamma rays through the inverse-Compton process in the lobes. Observations of the western X-ray lobe region of SS433/W50 system have been performed to detect sub-TeV gamma-rays using the 10m CANGAROO-II telescope in August and September, 2001, and July and September, 2002. The total observation times are 85.2 hours for ON source, and 80.8 hours for OFF source data. No significant excess of sub-TeV gamma rays has been found at 3 regions of the western X-ray lobe of SS433/W50 system. We have derived 99% confidence level upper limits to the fluxes of gamma rays and have set constraints on the strengths of the magnetic fields assuming the synchrotron/inverse-Compton model for the wide energy range of photon spectrum from radio to TeV. The derived lower limits are 4.3 microgauss for the center of the brightest X-ray emission region and 6.3 microgauss for the far end from SS433 in the western X-ray lobe. In addition, we suggest that the spot-like X-ray emission may provide a major contribution to the hardest X-ray spectrum in the lobe.
The carbon, nitrogen, and oxygen abundances and trends in the bulge are discussed in the context of our recent analysis of these elements in an on-going project based on near-IR spectra (Ryde et al. 2009). We obtained these using the CRIRES spectrometer on the VLT. The formation and evolution of the Milky Way bulge can be constrained by studying elemental abundances of bulge stars. Due to the large and variable visual extinction in the line-of-sight towards the bulge, an analysis in the near-IR is preferred.
We derive the $\Sigma$-$D$ relation of Galactic supernova remnants of shell-type separately at adiabatic-phase and at radiative-phase through two sets of different formulas, considering the different physical processes of shell-type remnants at both stages. Also statistics on Galactic shell-type remnants about 57 was made. Then we do some comparison with other results obtained before. It shows that all the best fit lines in the $\Sigma$-$D$ relation plots newly are to some extent flatter than those derived by some authors at early time. Our theoretical and statistical outcomes are in somewhat good consistency.
We present here preliminary results concerning 32 stars identified as main gamma Doradus candidates by the COROT Variable Classifier (CVC) among the 4 first fields of the exoplanet CCDs.
In previous papers we showed that in a one-armed deformed disks, p-mode and g-mode oscillations are resonantly excited by horizontal resonance, and applied it to high frequency QPOs observed in low mass X-ray binaries. In that model, the observed time variation of kHz QPOs is regarded as a result of a time-dependent precession of the deformation. In this paper we consider another possible cause of time variation of kHz QPOs. That is, we demonstrate that in a two-armed deformed disks, p-mode and g-mode oscillations are excited by {\it vertical resonance}, not by horizontal resonance(horizontal resonance dampens them). Furthermore, we show that in the case of vertical resonance, the frequencies of disk oscillations excited can vary with time if vertical disk structure changes with time. A brief application of these results to the time variation of observed kHz QPOs is made.
An evolution of the electron distribution function in the beam-plasma system with the return current is computed numerically for different parameters. The X-ray bremsstrahlung corresponding to such an electron distribution is calculated and the directivity of the X-ray emission is studied. For computations of the electron distribution functions we used a 3-D particle-in-cell electromagnetic code. The directivity of the X-ray emission was calculated using the angle-dependent electron-ion bremsstrahlung cross-section. It was found that the resulting electron distribution function depends on the magnetic field assumed along the electron beam propagation direction. For small magnetic fields the electron distribution function becomes broad in the direction perpendicular to the beam propagation due to the Weibel instability and the return current is formed by the electrons in a broad and shifted bulk of the distribution. On the other hand, for stronger magnetic fields the distribution is more extended in the beam-propagation direction and the return current is formed by the electrons in the extended distribution tail. In all cases, the anisotropy of the electron distribution decreases rapidly due to fast collisionless processes. However, the magnetic field reduces this anisotropy decrease. The X-ray directivity shows the same trend and it is always closer to the isotropic case than that in a simple beaming model.
The ZZ Ceti star KUV 02464+3239 was observed over a whole season at the mountain station of Konkoly Observatory. A rigorous frequency analysis revealed 6 certain periods between 619 and 1250 seconds, with no shorter period modes present. We use the observed periods, published effective temperature and surface gravity, along with the model grid code of Bischoff-Kim, Montgomery and Winget (2008) to perform a seismological analysis. We find acceptable model fits with masses between 0.60 and 0.70 M_Sun. The hydrogen layer mass of the acceptable models are almost always between 10^-4 and 10^-6 M_*. In addition to our seismological results, we also show our analysis of individual light curve segments. Considering the non-sinusoidal shape of the light curve and the Fourier spectra of segments showing large amplitude variations, the importance of non-linear effects in the pulsation is clearly seen.
We present the results on period search and modeling of the cool DAV star KUV 02464+3239. Our observations resolved the multiperiodic pulsational behaviour of the star. In agreement with its position near the red edge of the DAV instability strip, it shows large amplitude, long period pulsation modes, and has a strongly non-sinusoidal light curve. We determined 6 frequencies as normal modes and revealed remarkable short-term amplitude variations. A rigorous test was performed for the possible source of amplitude variation: beating of modes, effect of noise, unresolved frequencies or rotational triplets. Among the best-fit models resulting from a grid search, we selected 3 that gave l=1 solutions for the largest amplitude modes. These models had masses of 0.645, 0.650 and 0.680 M_Sun. The 3 `favoured' models have M_H between 2.5x10^-5 - 6.3x10^-6 M_* and give 14.2 - 14.8 mas seismological parallax. The 0.645 M_Sun (11400 K) model also matches the spectroscopic log g and T_eff within 1 sigma. We investigated the possibility of mode trapping and concluded that while it can explain high amplitude modes, it is not required.
As starburst galaxies show a star formation rate up to several hundred times larger than the one in a typical galaxy, the expected supernova rate is higher than average. This in turn implies a high rate of long gamma ray bursts (GRBs), which are extreme supernova events. We present a catalog of 127 local starburst galaxies with redshifts of z<0.03. Using this catalog we investigate the possibility of detecting neutrinos from Gamma Ray Bursts from nearby starburst galaxies. We show that the rate of long GRBs is correlated to the supernova rate which in turn is correlated to the far infrared output. For the entire catalog, 0.03 GRB per year are expected to occur. The true number can even be higher since only the brightest sources were included in the catalog.
Discovery of the 6.7-hour periodicity in the X-ray source 1E 161348-5055 in RCW 103 has led to investigations of the nature of this periodicity. We explore a model for 1E 161348-5055, wherein a fast-spinning neutron star with a magnetic field $\sim 10^{12}$ G in a young pre-Low-Mass X-ray Binary (pre-LMXB) with an eccentric orbit of period 6.7 hr operates in the "propeller" phase. The 6.7-hr light curve of 1E 161348-5055 can be quantitatively accounted by a model of orbitally-modulated mass transfer through a viscous accretion disk and subsequent propeller emission (both Illarionov-Sunyaev type and Romanova-Lovelace et al type), and spectral and other properties are also in agreement. Formation and evolution of model systems are shown to be in accordance both with standard theories.
The origin of magnetic fields in the Universe is an open problem in astrophysics and fundamental physics. Our present-day knowledge is limited to regions of strong magnetic fields and to star-forming disks of galaxies. Low-energy electrons emitting at low frequencies suffer less from energy losses and can propagate further into the intergalactic medium. The prospects are threefold: Firstly, LOFAR will map the structure of weak magnetic fields in the outer regions and halos of galaxies and in the Milky Way. Polarized emission is an excellent tracer of past interactions with other galaxies and with the interstellar medium. Secondly, high-resolution polarization observations are needed at high frequencies with the EVLA and SKA to trace the structure of magnetic fields in the disks and central regions of galaxies in unprecedented detail. The SKA can also detect polarized emission from distant, unresolved galaxies. Thirdly, Faraday rotation measures (RM) are signatures of regular magnetic fields generated by the dynamo mechanism. All-sky surveys of Faraday rotation measures (RM) towards polarized background sources will be used to model the structure and strength of the regular magnetic fields in the Milky Way, the interstellar medium of galaxies and the intergalactic medium. This will open a new era in the observation of cosmic magnetic fields. "Key Science" Projects on cosmic magnetism are organized for the Low Frequency Array (LOFAR), the planned Square Kilometre Array (SKA) and the Australian SKA Pathfinder telescope (ASKAP).
We review the observational evidence for dust formation in Wolf-Rayet binary systems and in Type II Supernova ejecta. Existing theoretical models describing the condensation of solids in carbon-rich Wolf-Rayet stars and in Supernovae close by and at high redshift are discussed. We describe new modeling of carbon- and oxygen-based grain nucleation using a chemical kinetic approach applied to the ejecta of massive pair-instability Supernovae in the early universe. Finally, dust formation processes in colliding wind regions of WC binary systems are discussed.
In this document a review of the author's method of Fourier disentangling of spectra of binary and multiple stars is presented for the purpose of the summer school organized at Ondrejov observatory in September 2008. Related methods are also discussed and some practical hints for the use of the author's code KOREL and related auxiliary codes with examples are given.
Approximately 20% of very metal-poor stars ([Fe/H] < -2.0) are strongly enhanced in carbon ([C/Fe] > +1.0). Such stars are referred to as carbon-enhanced metal-poor (CEMP) stars. We present a chemical abundance analysis based on high resolution spectra acquired with UVES at the VLT of three dwarf CEMP stars: SDSS J1349-0229, SDSS J0912+0216 and SDSS J1036+1212. These very metal-poor stars, with [Fe/H] < -2.5, were selected from our ongoing survey of extremely metal-poor dwarf candidates from the SDSS. Among these CEMPs, SDSS J1349-0229 has been identified as a carbon star ([C/O] > +1.0). First and second peak s-process elements, as well as second peak r-process elements have been detected in all stars. In addition, elements from the third r-process peak were detected in one of the stars, SDSS J1036+1212. We present the abundance results of these stars in the context of neutron-capture nucleosynthesis theories.
Potential Type II Cepheids are identified in surveys of the galaxies IC 1613, M33, M101, M106, M31, NGC 4603, and the SMC, complementing previous discoveries of Type II Cepheids in NGC 5128, NGC 3198, and the LMC. The most distant Type II Cepheid observed may be associated with NGC 4603 (d~29 Mpc). Preliminary results confirm that Type II Cepheids could play an important role as standard candles, in constraining the effects of metallicity on Cepheid distances to galaxies, and in mapping extinction.
The hot Jupiter HD 209458b was observed during primary transit at 3.6, 4.5, 5.8 and 8.0 microns using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We detail here the procedures we adopted to correct for the systematic trends present in the IRAC data. The light curves were fitted including limb darkening effects and fitted using Markov Chain Monte Carlo and prayer-bead Monte Carlo techniques, finding almost identical results. The final depth measurements obtained by a combined Markov Chain Monte Carlo fit are at 3.6 microns, 1.469 +- 0.013 % and 1.448 +- 0.013 %; at 4.5 microns, 1.478 +- 0.017 % ; at 5.8 microns, 1.549 +- 0.015 % and at 8.0 microns 1.535 +- 0.011 %. Our results clearly indicate the presence of water in the planetary atmosphere. Our broad band photometric measurements with IRAC prevent us from determining the additional presence of other other molecules such as CO, CO2 and methane for which spectroscopy is needed. While water vapour with a mixing ratio of 10^-4-10^-3 combined with thermal profiles retrieved from the day-side may provide a very good fit to our observations, this data set alone is unable to resolve completely the degeneracy between water abundance and atmospheric thermal profile.
Using the radiative transfer code Torus, we produce spectral-line cubes of the predicted HI profile from global SPH simulations of spiral galaxies. Torus grids the SPH galaxy using Adaptive Mesh Refinement, then applies a ray-tracing method to infer the HI profile along the line(s) of sight. The gridded galaxy can be observed from any direction, which enables us to model the observed HI profile for galaxies of any orientation. We can also place the observer inside the galaxy, to simulate HI observations taken from the Earth's position in the Milky Way.
Due to non-homogeneous mass distribution and non-uniform velocity rate inside the Sun, the solar outer shape is distorted in latitude. In this paper, we analyze the consequences of a temporal change in this figure on the luminosity. To do so, we use the Total Solar Irradiance (TSI) as an indicator of luminosity. Considering that most of the authors have explained the largest part of the TSI modulation with magnetic network (spots and faculae) but not the whole, we could set constraints on radius and effective temperature variations (dR, dT). However computations show that the amplitude of solar irradiance modulation is very sensitive to photospheric temperature variations. In order to understand discrepancies between our best fit and recent observations of Livingston et al. (2005), showing no effective surface temperature variation during the solar cycle, we investigated small effective temperature variation in irradiance modeling. We emphasized a phase-shift (correlated or anticorrelated radius and irradiance variations) in the (dR, dT)-parameter plane. We further obtained an upper limit on the amplitude of cyclic solar radius variations, deduced from the gravitational energy variations. Our estimate is consistent with both observations of the helioseismic radius through the analysis of f-mode frequencies and observations of the basal photospheric temperature at Kitt Peak. Finally, we suggest a mechanism to explain faint changes in the solar shape due to variation of magnetic pressure which modifies the granules size. This mechanism is supported by our estimate of the asphericity-luminosity parameter, which implies an effectiveness of convective heat transfer only in very outer layers of the Sun.
We observed two fields near M32 with the ACS/HRC on board the Hubble Space Telescope, located at distances of about 1.8' and 5.4' (hereafter F1 and F2, respectively) from the center of M32. To obtain a very detailed and deep color-magnitude diagram (CMD) and to look for short period variability, we obtained time-series imaging of each field in 32-orbit-long exposures using the F435W (B) and F555W (V) filters, spanning a temporal range of 2 days per filter. We focus on our detection of variability on RR Lyrae variable stars, which represents the only way to obtain information about the presence of a very old population (larger than 10 Gyr) in M32 from optical data. Here we present results obtained from the detection of 31 RR Lyrae in these fields: 17 in F1 and 14 in F2.
Aims: Drawing an analogy with Active Galactic Nuclei, we investigate the one-zone SSC model of Gamma Ray Bursts afterglows in the presence of electron injection and cooling both by synchrotron and SSC losses. Methods: We solve the spatially averaged kinetic equations which describe the simultaneous evolution of particles and photons, obtaining the multi-wavelength spectrum as a function of time. We back up our numerical calculations with analytical solutions of the equations using various profiles of the magnetic field evolution under certain simplifying assumptions. Results: We apply the model to the afterglow evolution of GRBs in a uniform density environment and examine the impact various parameters have on the multiwavelength spectra. We find that in cases where the electron injection and/or the ambient density is high, the losses are dominated by SSC and the solutions depart significantly from the ones derived in the synchrotron standard cases.
In classical T Tauri stars, X-rays are produced by two plasma components: a hot low-density plasma, with frequent flaring activity, and a high-density lower temperature plasma. The former is coronal plasma related to the stellar magnetic activity. The latter component, never observed in non-accreting stars, could be plasma heated by the shock formed by the accretion process. However its nature is still being debated. Our aim is to probe the soft X-ray emission from the high-density plasma component in classical T Tauri stars to check whether this is plasma heated in the accretion shock or whether it is coronal plasma. High-resolution X-ray spectroscopy allows us to measure individual line fluxes. We analyze X-ray spectra of the classical T Tauri star MP Muscae and TW Hydrae. Our aim is to evaluate line ratios to search for optical depth effects, which are expected in the accretion-driven scenario. We also derive the plasma emission measure distributions EMD, to investigate whether and how the EMD of accreting and non accreting young stars differ. The results are compared to those obtained for the non-accreting weak-line T Tauri stars TWA 5. We find evidence of resonance scattering in the strongest lines of MP Mus, supporting the idea that soft X-rays are produced by plasma heated in the accretion shock. We also find that the EMD of MP Mus has two peaks: a cool peak at temperatures expected by plasma heated in the accretion shock, and a hot peak typical of coronal plasma. The shape of the EMD of MP Mus appears to be the superposition of the EMD of a pure coronal source, like TWA 5, and an EMD alike that of TW Hydrae, which is instead dominated by shock-heated plasma.
For the recent four years we have been studying feedback heating in cooling
flow (CF) clusters by AGN activity that inflate bubbles by jets; this short
contribution to a meeting summarizes our main results. To achieve our results
we had to self-consistently inflate the bubbles with jets, rather than inject
them artificially. Our main results are as follows
(1) Feedback mechanisms that are based on Bondi accretion fail. Instead, the
accretion to the central super-massive black hole (SMBH) is in the form of cold
dense blobs that fall-in from an extended region. (2) Slow massive wide (SMW)
jets, or rapidly precessing jets, can inflate bubbles similar to those observed
in CF clusters. (3) Contrary to some claims in the literature, the inflated
bubbles are stable for a relatively long time, becoming unstable only at later
times. (4) A single bubble inflation episode excites multiple sound waves and
shocks. These can then heat the intracluster medium (ICM). (5) Mixing of the
bubble material to the ICM is efficient, and can serve as a main heating
channel. (6) The heating processes work in all directions, and can explain the
heating of the ICM in CF in clusters and in galaxies.
We present the first of a sample of fossil galaxy groups with pre-existing Chandra and/or XMM-Newton X-ray observations and new or forthcoming low frequency GMRT data -- RXJ1416.4+2315 (z=0.137). Fossil galaxy groups are ideal laboratories for studying feedback mechanisms and how energy injection affects the IGM, since due to the lack of recent merging activity, we expect the IGM to be relatively pristine and affected only by any AGN activity that has occurred in the group. Our Chandra X-ray observations reveal features resembling AGN-inflated bubbles, whilst our GMRT radio data show evidence of extended emission from the central AGN that may be filling the bubble. This has enabled us to estimate the work done by the central AGN, place limits on the rates of energy injection and discuss the nature of the plasma filling the bubble.
Observational gamma-ray astronomy was born some forty years ago, when small detectors were flown in satellites, following a decade of theoretical predictions of its potential to discover the origin of cosmic rays via the pi-zero decay mechanism. The seventies were a golden era for gamma-ray and cosmic-ray astrophysics, with the (re)discovery of the "diffuse shock acceleration" theory for cosmic rays, and the first CO and GeV gamma-ray surveys of the galactic plane, verifying the importance of pi-zero decay in the large-scale gamma-ray emission of the Galaxy. But because of this strong galactic background, GeV gamma-ray sources were hard to identify. The first such sources definitely identified were three pulsars, with a suggestion that supernova remnants interacting with molecular clouds in massive star-forming regions ("SNOBs") were also gamma-ray sources. Because of their improved sensitivity and spatial resolution, ground-based Cerenkov telescopes, detecting gamma-rays at > TeV energies, are now able to resolve molecular cloud-sized objects at a few kpc. SNOB-like objects like IC443 and W28 are detected at GeV and TeV energies, and show spatial evidence for cosmic-ray interactions between an SNR shock wave and nearby molecular clouds, and subsequent pi-zero decay. However, the spectral evidence does not clearly support this mechanism. We propose to use another tool for probing the interaction of the low-energy component of the putative local cosmic rays, in the form of enhanced ionization in TeV-bright molecular clouds, using millimeter observations.
We present X-ray spectral analysis of the brightest sources (f_{2-10 keV}>10^{-15}$ cgs) in the Chandra Deep Field North. Our sample consists of 222 sources; for the vast majority (171) either a spectroscopic or a photometric redshift is available. Our goal is to discover the Compton-thick AGN in a direct way i.e. through their X-ray spectra. Compton-thick AGN give away their presence in X-rays either directly through the absorption turnover redshifted in the Chandra passband, or through a flat, reflection-dominated, spectrum. The above selection criteria yield 10 Compton-thick AGN candidates of which the nine are reflection dominated. The IR or sub-mm data where available, corroborate the presence of a heavily obscured nucleus in most cases. All the five candidate Compton-thick sources with available 24 micron data present very high values of the f_{24}/f_R flux ratio suggesting that they are dust obscured galaxies. The low f_x/f_{IR} ratio also suggest the presence of obscured nuclei in many cases. Four of the candidate Compton-thick sources are associated with sub-mm galaxies at high redshifts z$\sim2$. The number count vs. flux distribution of the candidate Compton-thick AGN as well as their distribution with redshift agree reasonably well with the predictions of the X-ray background synthesis models of Gilli et al.
We report results concerning the distribution and properties of galactic
extinction at high galactic latitudes derived from stellar statistics using the
Sloan Digital Sky Survey (SDSS). We use the classical Wolf diagram method to
identify regions with extinction, and derive the extinction and the extinction
law of the dust using all five SDSS spectral bands. We estimate the distance to
the extinguishing medium using simple assumptions about the stellar populations
in the line of sight.
We report the identification of three extinguishing clouds, each a few tens
of pc wide, producing 0.2-0.4 mag of g'-band extinction, located 1-2 kpc away
or 0.5-1 kpc above the galactic plane. All clouds exhibit grey extinction,
i.e., almost wavelength-independent in the limited spectral range of the SDSS.
We discuss the implication of this finding on general astrophysical questions.
Specific indications of star-formation are presented within cluster and filament galaxies that are members of the Horologium-Reticulum supercluster (HRS, z ~0.06). These indicators arise from multi-wavelength observations, primarily emission lines from optical spectroscopy and faint excess from radio continuum (1.4 GHz) photometry. HRS galaxies exhibiting current star formation are consistent with previous studies in that the star-forming populations organize around megaparsec-scale filament axes as well as near the cluster core. Therefore with support from optical photometry, mechanisms for triggering star formation in these galaxies are most likely due to merger interactions in lower density (and lower velocity) environments and possible bursts prior to stripping within the higher density (and higher velocity) environments.
A model of inflation is presented where the inflaton field is a complex scalar field coupled to a U(1) gauge field. Due to the axial symmetry of the potential, the inflation is driven by the radial direction while the angular field is gauged by U(1). Due to the coupling of the inflaton to the gauge field, a time dependent mass term for the gauge field is generated dynamically and conformal invariance is broken. We study whether a significant amount of primordial magnetic fields can be generated during inflation by allowing a time-dependent U(1) gauge kinetic coupling.
The averaging problem in cosmology is of considerable importance for the correct interpretation of cosmological data. A rigorous mathematical definition of averaging in a cosmological model is necessary. In general, a spacetime is completely characterized by its scalar curvature invariants, and this suggests a particular spacetime averaging scheme based entirely on scalars. We clearly identify the problems of averaging in a cosmological model. We then present a precise definition of a cosmological model, and based upon this definition, we propose an averaging scheme in terms of scalar curvature invariants. This scheme is illustrated in a simple static spherically symmetric perfect fluid cosmological spacetime, where the averaging scales are clearly identified.
Links to: arXiv, form interface, find, astro-ph, recent, 0909, contact, help (Access key information)
We show that the class of antenna layouts for telescope arrays allowing cheap analysis hardware (with cost scaling as N log N rather than N^2 with the number of antennae N) is encouragingly large, including not only previously discussed rectangular grids but also arbitrary hierarchies of such grids, with arbitrary rotations and shears at each level. We show that all correlations for such a 2D array with an n-level hierarchy can be efficiently computed via a Fast Fourier Transform in not 2 but 2n dimensions. This allows major cost reductions for science applications requiring sensitivity at widely separated angular scales, for example 21cm tomography (where short baselines are needed to probe the cosmological signal and long baselines are needed for point source removal). Such hierarchical grids combine the angular resolution advantage of traditional array layouts with the cost advantage of a rectangular Fast Fourier Transform Telescope. We also describe an algorithm for how a subclass of hierarchical arrays can efficiently use rotation synthesis to produce global sky maps with minimal noise and a well-characterized synthesized beam.
The detection of planets around very low-mass stars with the radial velocity method is hampered by the fact that these stars are very faint at optical wavelengths. We investigate the precision that can be achieved in radial velocity measurements of low mass stars in the near infrared (nIR) Y-, J-, and H-bands, and we compare it to the precision achievable in the optical. For early-M stars, radial velocity measurements in the nIR offer no or only marginal advantage in comparison to optical measurements. Although they emit more flux in the nIR, the richness of spectral features in the optical outweighs the flux difference. We find that nIR measurement can be more precise than optical measurements in stars of spectral type ~M3, and from there the nIR offers significant gains in precision towards cooler objects. We studied potential calibration strategies in the nIR finding that a stable spectrograph with a ThAr calibration probably offers the best choice with currently available technology. Furthermore, we simulate the wavelength-dependent influence of activity (cool spots) on radial velocity measurements. Our spot simulations reveal that the radial velocity jitter does not decrease as dramatically towards longer wavelengths as often thought. The jitter strongly depends on the details of the spots, i.e., on spot temperature and the spectral appearance of the spot. At low temperature contrast (~200K), the jitter shows a decrease towards the nIR up to a factor of ten, but it is substantially smaller with larger temperature contrast. Forthcoming nIR spectrographs will allow the search for planets with a particular advantage in mid- and late-M stars. Activity will remain an issue, but simultaneous observations at optical and nIR wavelengths can provide strong constraints on spot properties in active stars.
We use the large catalogues of haloes available for the Millennium Simulation to test whether recently merged haloes exhibit stronger large-scale clustering than other haloes of the same mass. This effect could help to understand the very strong clustering of quasars at high redshift. However, we find no statistically significant excess bias for recently merged haloes over the redshift range 2 < z < 5, with the most massive haloes showing an excess of at most ~5%. We also consider galaxies extracted from a semianalytic model built on the Millennium Simulation. At fixed stellar mass, we find an excess bias of ~ 20-30% for recently merged objects, decreasing with increasing stellar mass. The fact that recently-merged galaxies are found in systematically more massive haloes than other galaxies of the same stellar mass accounts for about half of this signal, and perhaps more for high-mass galaxies. The weak merger bias of massive systems suggests that objects of merger-driven nature, such as quasars, do not cluster significantly differently than other objects of the same characteristic mass. We discuss the implications of these results for the interpretation of clustering data with respect to quasar duty cycles, visibility times, and evolution in the black hole-host mass relation.
We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extra-solar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii <~1.5AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of "transitional" disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.
We present detailed simulations of the Pan-STARRS-1 (PS1) multi-epoch, multi-band 3-pi Survey in order to assess its potential yield of transiting planets and eclipsing binaries. This survey differs from dedicated transit surveys in that it will cover the entire Northern sky but provide only sparsely sampled light curves. Since most eclipses would be detected at only a single epoch, the 3-pi Survey will be most sensitive to deep eclipses (> 0.10 mag) caused by Jupiters transiting M dwarfs and eclipsing stellar/substellar binaries. The survey will also provide parallaxes for the ~400,000 stars within 100 pc which will enable a volume-limited eclipse search, reducing the number of astrophysical false positives compared to previous magnitude-limited searches. Using the best available empirical data, we constructed a model of the extended solar neighborhood that includes stars, brown dwarfs, and a realistic binary population. We computed the yield of deeply eclipsing systems using both a semi-analytic and a full Monte Carlo approach. We examined statistical tests for detecting single-epoch eclipses in sparsely sampled data and assessed their vulnerability to false positives due to stellar variability. Assuming a short-period planet frequency of 0.5% for M dwarfs, our simulations predict that about a dozen transiting Jupiters around low-mass stars (M < 0.3 Msun) within 100 pc are potentially detectable in the PS1 3-pi Survey, along with ~300 low-mass eclipsing binaries (both component masses < 0.5 Msun), including ~10 eclipsing field brown dwarfs. Extensive follow-up observations would be required to characterize these candidate eclipsing systems, thereby enabling comprehensive tests of structural models and novel insights into the planetary architecture of low-mass stars.
Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar field models) which is often generically called "dark energy". We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.
We describe an algorithm to generate temperature and polarization maps of the cosmic microwave background radiation containing non-Gaussianity of arbitrary local type. We apply an optimized quadrature scheme that allows us to predict and control integration accuracy, speed up the calculations, and reduce memory consumption by an order of magnitude. We generate 1000 non-Gaussian CMB temperature and polarization maps up to a multipole moment of l_max = 1024. We validate the method and code using the power spectrum and the fast cubic (bispectrum) estimator and find consistent results. The simulations are provided to the community.
Achromatic breaks in afterglow light curves of gamma-ray bursts (GRBs) arise naturally when the product of the jet's Lorentz factor \gamma and opening angle \Theta_j satisfies \gamma\Theta_j >> 1. Magnetohydrodynamic (MHD) simulations of collimated GRB jets generally give \gamma\Theta_j <~ 1, suggesting that MHD models are incapable of explaining jet breaks. We work within the collapsar paradigm and use axisymmetric relativistic MHD simulations to explore the effect of a finite stellar envelope on the structure of the jet. Our idealized models treat the jet-stellar envelope interface as a collimating rigid wall, which opens up outside the star to mimic loss of collimation. We find that the onset of deconfinement outside the star causes a burst of acceleration with negligible change in the opening angle. In our fiducial model with a stellar radius equal to 10^4.5 times that of the central compact object, the jet achieves an asymptotic Lorentz factor \gamma ~ 500 far outside the star and an asymptotic opening angle \Theta_j ~ 0.04 rad ~ 2 deg, giving \gamma\Theta_j ~ 20. These values are consistent with observations of typical long-duration GRBs, and explain the occurrence of jet breaks.
We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r<20 and proper-motion measurements derived from SDSS and POSS astrometry, including ~170,000 stars with radial-velocity measurements from the SDSS spectroscopic survey. Distances to stars are determined using a photometric parallax relation, covering a distance range from 100 pc to 10 kpc over a quarter of the sky at high Galactic latitudes (|b|>20 degrees). We find that in the region defined by 1 kpc <Z<5 kpc and 3 kpc <R< 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and is spatially invariant within the probed volume. The velocity distribution of nearby (Z<1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (<100 pc), we detect a multimodal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and LSST.
We identify 3,113 highly variable objects in 7,200 square degrees of the Palomar-QUEST Survey, which each varied by more than 0.4 magnitudes simultaneously in two broadband optical filters on timescales from hours to roughly 3.5 years. The primary goal of the selection is to find blazars by their well-known violent optical variability. Because most known blazars have been found in radio and/or X-ray wavelengths, a sample discovered through optical variability may have very different selection effects, elucidating the range of behavior possible in these systems. A set of blazars selected in this unusual manner will improve our understanding of the physics behind this extremely variable and diverse class of AGN. The object positions, variability statistics, and color information are available using the Palomar-QUEST CasJobs server. The time domain is just beginning to be explored over large sky areas; we do not know exactly what a violently variable sample will hold. About 20% of the sample has been classified in the literature; over 70% of those objects are known or likely AGN. The remainder largely consists of a variety of variable stars, including a number of RR Lyrae and cataclysmic variables.
We study the emission of the short/hard GRB 090510 at energies > 0.1 GeV as observed by the Large Area Telescope (LAT) onboard the Fermi satellite. The GeV flux rises in time as t^2 and decays as t^-1.5 up to 200 s. The peak of the high energy flux is delayed by 0.2 s with respect to the main ~MeV pulse detected by the Fermi Gamma Burst Monitor (GBM). Its energy spectrum is consistent with F(E)=E^-1. The time behavior and the spectrum of the high energy LAT flux are strong evidences of an afterglow origin. We then interpret it as synchrotron radiation produced by the forward shock of a fireball having a bulk Lorentz factor Gamma ~ 2000. The afterglow peak time is independent of energy in the 0.1-30 GeV range and coincides with the arrival time of the highest energy photon (~ 30 GeV). Since the flux detected by the GBM and the LAT have different origins, the delay between these two components is not entirely due to possible violation of the Lorentz invariance. It is the LAT component by itself that allows to set a stringent lower limit on the quantum-gravity mass of 4.7 times the Planck mass.
We report long-slit spectroscopic observations of SDSS J092712+294344 carried-out at the recently commissioned 2m telescope in IUCAA Girawali Observatory, India. This AGN-like source is known to feature three sets of emission lines at zem = 0.6972, 0.7020 and 0.7128. Different scenarios such as a recoiling black hole after asymmetric emission of gravitational waves, binary black holes and possible merging systems are proposed for this object. We test these scenarios by comparing our spectra with that from the Sloan Digital Sky Survey (SDSS), obtained 4 years prior to our observations. Comparing the redshifts of [OIII]4960,5008 we put a 3 sigma limit on the relative acceleration to be less than 32 km s^-1 yr^-1 between different emitting regions. Using the 2D spectra obtained at different position angles we show that the [OIII]5008 line from the zem = 0.7128 component is extended beyond the spectral point spread function. We infer the linear extent of this line emitting region is ~8 kpc. We also find a tentative evidence for an offset between the centroid of the [OIII]5008 line at zem = 0.7128 and the QSO trace when the slit is aligned at a position angle of 299 degrees. This corresponds to the zem = 0.7128 system being at an impact parameter of ~1 kpc with respect to the zem = 0.6972 in the north west direction. Based on our observations we conclude that the binary black hole model is most unlikely. The spatial extent and the sizes are consistent with both black hole recoil and merging scenarios.
We examine a dark energy model where a scalar unparticle degree of freedom plays the role of quintessence. In particular, we study a model where the unparticle degree of freedom has a standard kinetic term and a simple mass potential, the evolution is slowly rolling and the field value is of the order of the unparticle energy scale ($\lambda_u$). We study how the evolution of $w$ depends on the parameters $B$ (a function of the unparticle scaling dimension $d_u$), the initial value of the field $\phi_i$ (or equivalently, $\lambda_u$) and the present matter density $\Omega_{m0}$. We use observational data from Type Ia supernovae, BAO and CMB to constrain the model parameters and find that these models are not ruled out by the observational data. From a theoretical point of view, an unparticle dark energy model is very attractive, since unparticles (being bound states of fundamental fermions) are protected from radiative corrections. Further, coupling of unparticles to the standard model fields can be arbitrarily suppressed by raising the fundamental energy scale $M_F$, making the unparticle dark energy model free of most of the problems that plague conventional scalar field quintessence models.
We amassed statistics for quiet-sun chromosphere spicules at the limb using ground-based observations from the Swedish 1-m Solar Telescope on La Palma and simultaneously from NASA's Transition Region and Coronal Explorer (TRACE) spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond resolution obtained after maximizing the ground-based resolution with the Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained specific statistics for sizes and motions of over two dozen individual spicules, based on movies compiled at 50-second cadence for the series of five wavelengths observed in a very narrow band at H-alpha, on-band and in the red and blue wings at 0.035 nm and 0.070 nm (10 s at each wavelength) using the SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from TRACE. The MOMFBD restoration also automatically aligned the images, facilitating the making of Dopplergrams at each off-band pair. We studied 40 H-alpha spicules, and 14 EUV spicules that overlapped H-alpha spicules; we found that their dynamical and morphological properties fit into the framework of several previous studies. From a preliminary comparison with spicule theories, our observations are consistent with a reconnection mechanism for spicule generation, and with UV spicules being a sheath region surrounding the H-alpha spicules.
We construct a sample of low-redshift Ly-alpha emission-line selected sources from GALEX grism spectroscopy of nine deep fields to study the role of Ly-alpha emission in galaxy populations with cosmic time. Our final sample consists of 122 (142) sources selected in the redshift interval z=0.195-0.44 (z=0.65-1.25) from the FUV (NUV) channel. We classify the Ly-alpha sources as AGNs if high-ionization emission lines are present in their UV spectra and as galaxies otherwise. These classifications are broadly supported by comparisons with X-ray and optical spectroscopic observations. We classify additional sources as AGNs using line widths for our Ly-alpha emitter (LAE) analysis. Defining the GALEX LAE sample in the same way as high-redshift LAE samples, we show that LAEs constitute only about 5% of NUV-continuum selected galaxies at z~0.3. We also show that they are less common at z~0.3 than they are at z~3. We find that the z~0.3 optically-confirmed Ly-alpha galaxies lie below the metallicity-luminosity relation of the z~0.3 NUV-continuum selected galaxies but have similar velocity widths at similar luminosities, suggesting that they also lie below the metallicity-mass relation of the NUV-continuum selected galaxies. We show that on average the Ly-alpha galaxies have bluer colors, lower extinctions as measured from the Balmer line ratios, and more compact morphologies than the NUV-continuum selected galaxies. Finally, we confirm that the z~2 Lyman break galaxies (LBGs) have relatively low metallicities for their luminosities, and we find that they lie in the same metallicity range as the z~0.3 Ly-alpha galaxies.
The quantitative spectral analysis of medium resolution optical spectra of A and B supergiants obtained with DEIMOS and ESI at the Keck Telescopes is used to determine a distance modulus of 24.93 +/- 0.11 mag for the Triangulum Galaxy M33. The analysis yields stellar effective temperatures, gravities, interstellar reddening, and extinction, the combination of which provides a distance estimate via the Flux-weighted Gravity--Luminosity Relationship (FGLR). This result is based on an FGLR calibration that is continually being polished. An average reddening of <E(B-V)> ~ 0.08 mag is found, with a large variation ranging from 0.01 to 0.16 mag however, demonstrating the importance of accurate individual reddening measurements for stellar distance indicators in galaxies with evident signatures of interstellar absorption. The large distance modulus found is in good agreement with recent work on eclipsing binaries, planetary nebulae, long period variables, RR Lyrae stars, and also with HST observations of Cepheids, if reasonable reddening assumptions are made for the Cepheids. Since distances based on the tip of the red giant branch (TRGB) method found in the literature give conflicting results, we have used HST ACS V- and I-band images of outer regions of M 33 to determine a TRGB distance of 24.84 +/- 0.10 mag, in basic agreement with the FGLR result. We have also determined stellar metallicities and discussed the metallicity gradient in the disk of M33. We find metallicity of $Z_\odot$ at the center and 0.3 $Z_\odot$ in the outskirts at a distance of one isophotal radius. The average logarithmic metallicity gradient is -0.07 +/- 0.01 dex kpc^-1. However, there is a large scatter around this average value, very similar to what has been found for the HII regions in M33.
Star clusters represent the most common 'mode' of star formation. They are found in all types of environments, cascading down from galaxy groups and merging pairs through starbursts to normal galaxies and dwarves and even isolated regions in extragalactic space. As they maintain a link to the overall star formation in a system, they can be used as tracers of the star formation history of environments located at distances prohibitive to the study of individual stars. This makes them ideally suited to the study of mergers and interactions in galaxy pairs and groups. In this work we present observations of the star cluster populations in the local starburst galaxy M82, post-interaction spiral NGC 6872, the "Antennae" merging pair and two compact groups, "Stephan's Quintet" and HCG 7. In each case, we extract information on the clusters and their hosts using mainly HST photometry and Gemini spectroscopy.
We present an atlas of moderate-resolution (R ~ 1200-1600) optical spectra of 94 low-redshift (z < 0.5) active galactic nuclei taken with the Magellan 6.5 m Clay Telescope. The spectra mostly cover the rest-frame region 3600-6000 Ang. All the objects have preexisting Hubble Space Telescope imaging, and they were chosen as part of an ongoing program to investigate the relationship between black hole mass and their host galaxy properties. A significant fraction of the sample has no previous quantitative spectroscopic measurements in the literature. We perform spectral decomposition of the spectra and present detailed fits and basic measurements of several commonly used broad and narrow emission lines, including [O II] 3727, He II 4686, Hbeta, and [O III] 4959, 5007. Eight of the objects are narrow-line sources that were previously misclassified as broad-line (type 1) Seyfert galaxies; of these, five appear not to be accretion-powered.
Muons with a high transverse momentum (p_T) are produced in cosmic ray air showers via semileptonic decay of heavy quarks and the decay of high p_T kaons and pions. These high p_T muons have a large lateral separation from the shower core muon bundle. IceCube is well suited for the detection of high p_T muons. The surface shower array can determine the energy, core location and direction of the cosmic ray air shower while the in-ice array can reconstruct the energy and direction of the high p_T muon. This makes it possible to measure the decoherence function (lateral separation spectrum) at distances greater than 150 meters. The muon p_T can be determined from the muon energy (measured by dE/dx) and the lateral separation. The high p_T muon spectrum may also be calculated in a perturbative QCD framework; this spectrum is sensitive to the cosmic-ray composition.
We have observed 152 nearby solar-type stars with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope. Including stars that met our criteria but were observed in other surveys, we get an overall success rate for finding excesses in the long wavelength IRS band (30-34 micron) of 11.8% +/- 2.4%. The success rate for excesses in the short wavelength band (8.5-12 micron) is ~1% including sources from other surveys. For stars with no excess at 8.5-12 microns, the IRS data set 3 sigma limits of around 1,000 times the level of zodiacal emission present in our solar system, while at 30-34 microns set limits of around 100 times the level of our solar system. Two stars (HD 40136 and HD 10647) show weak evidence for spectral features; the excess emission in the other systems is featureless. If the emitting material consists of large (10 micron) grains as implied by the lack of spectral features, we find that these grains are typically located at or beyond the snow line, ~1-35 AU from the host stars, with an average distance of 14 +/- 6 AU; however smaller grains could be located at significantly greater distances from the host stars. These distances correspond to dust temperatures in the range ~50-450 K. Several of the disks are well modeled by a single dust temperature, possibly indicative of a ring-like structure. However, a single dust temperature does not match the data for other disks in the sample, implying a distribution of temperatures within these disks. For most stars with excesses, we detect an excess at both IRS and MIPS wavelengths. Only three stars in this sample show a MIPS 70 micron excess with no IRS excess, implying that very cold dust is rare around solar-type stars.
IGR J19405-3016 is reported in the 3rd IBIS catalog as being one of its lowest significance sources (~4.6 sigma under an exposure of about 371 ks). This leads to a caveat in multi-wavelength study although the source was identified in optical as a Seyfert 1. The currently increased INTEGRAL data stimulate us to investigate the reality of this source. We analyze all available observations carried out by INTEGRAL and Swift on IGR J19405-3016. We find that IGR J19405-3016 has a detection significance of ~ 9.4 sigma in the 20-60 keV band during the observational period between March 2003 and March 2008. Thus confirms a real source detection reported previously. The source position and error location are therefore updated. The source is found to be constant over years at the hard X-rays. Over the three XRT observations, the source flux varied by up to 39% from the average, and the spectrum is generally soft. The combined XRT/ISGRI spectrum is well fitted with a simple power law model (photon index 2.11+-0.03). Such a photon index is well consistent with the mean value 1.98 (dispersion 0.27) as obtained from Swift/BAT AGN samples at 14-195 keV. The spectral slope of IGR J19405-3016 is larger than the average spectral slope found by Molina et al. (2009). A similar discrepancy is found with the results of Beckmann et al. (2009) regarding Seyfert 1 AGNs. A possible explanation of this simple spectral description may be that the low level of the column density allows for the `true' spectrum to appear at soft X-rays as well.
Water is a key species in many astrophysical environments, but it is particularly important in proto-planetary disks. So far,observations of water in these objects have been scarce, but the situation should soon change thanks to the Herschel satellite. We report here a theoretical study of the water line spectrum of a proto-planetary disk surrounding Ae stars. We show that several lines will be observable with the HIFI instrument onboard the Herschel Space Observatory. We predict that some maser lines could also be observable with ground telescopes and we discuss how the predictions depend not only on the adopted physical and chemical model but also on the set of collisional coefficients used and on the H2 ortho to para ratio through its effect on collisional excitation. This makes the water lines observations a powerful, but dangerous -if misused- diagnostic tool.
We analyse the kinematic and chemical evolution of 203 distant spheroidal (elliptical and S0) galaxies at 0.2<z<0.8 which are located in different environments (rich clusters, low-mass clusters and in the field). VLT/FORS and CAHA/MOSCA spectra with intermediate-resolution have been acquired to measure the internal kinematics and stellar populations of the galaxies. From HST/ACS and WFPC2 imaging, surface brightness profiles and structural parameters were derived for half of the galaxy sample. The scaling relations of the Faber-Jackson relation and Kormendy relation as well as the Fundamental Plane indicate a moderate evolution for the whole galaxy population in each density regime. In all environments, S0 galaxies show a faster evolution than elliptical galaxies. For the cluster galaxies a slight radial dependence of the evolution out to one virial radius is found. Dividing the samples with respect to their mass, a mass dependent evolution with a stronger evolution of lower-mass galaxies (M<2x10^{11} M_{\sun}) is detected. Evidence for recent star formation is provided by blue colours and weak OII emission or strong H\delta absorption features in the spectra. The results are consistent with a down-sizing formation scenario which is independent from the environment of the galaxies.
We present a detailed study of the spatially resolved kinematics, star-formation and stellar mass in a highly amplified galaxy at z=4.92 behind the lensing cluster MS1358+62. We use the observed optical, near- and mid-infrared imaging from HST ACS & NICMOS and Spitzer IRAC to derive the stellar mass and the Gemini/NIFS IFU to investigate the velocity structure of the galaxy from the nebular [OII] emission. Using a detailed gravitational lens model, we account for lensing amplification factor 12.+/-2.0 and find that this intrinsically L* galaxy has a stellar mass of M*=7+/-2x10^8Mo, a dynamical mass of Mdyn=3+/-1x10^9csc^2(i)Mo (within of 2kpc) and a star-formation rate of 42+/-8Mo/yr. The source-plane UV/optical morphology of this galaxy is dominated by five discrete star-forming regions. Exploiting the dynamical information we derive masses for individual star-forming regions of Mcl~10^(8-9)Mo with sizes of ~200pc. We find that, at a fixed size, the star-formation rate density within these HII regions is approximately two orders of magnitude greater than those observed in local spiral/starburst galaxies, but consistent with the most massive HII regions in the local Universe such as 30Dor. Finally, we compare the spatially resolved nebular emission line velocity with the Ly-alpha and UV-ISM lines and find that this galaxy is surrounded by a galactic scale outflow in which the Ly-alpha appears redshifted by ~150km/s and the UV-ISM lines blue-shifted by -200km/s from the (systemic) nebular emission. The velocity structure of the outflow mirrors that of the nebular emission suggesting the outflow is young (~15Myr), and has yet to burst out of the system. Taken together, these results suggest that this young galaxy is undergoing its first major epoch of mass assembly.
Four of nine exoplanets found by microlensing were detected by the resonant caustic, which represents the merging of the planetary and central caustics at the position when the projected separation of a host star and a bounded planet is s~1. One of the resonant caustic lensing events, OGLE-2005-BLG-169, was a caustic-crossing high-magnification event with $A_{max} \sim$ 800 and the source star was much smaller than the caustic, nevertheless the perturbation was not obviously apparent on the light curve of the event. In this paper, we investigate the perturbation pattern of the resonant caustic to understand why the perturbations induced by the caustic do not leave strong traces on the light curves of high-magnification events despite a small source/caustic size ratio. From this study, we find that the regions with small-magnification-excess around the center of the resonant caustic are rather widely formed, and the event passing the small-excess region produces a high-magnification event with a weak perturbation that is small relative to the amplification caused by the star and thus does not noticeably appear on the light curve of the event. We also find that the positive excess of the inside edge of the resonant caustic and the negative excess inside the caustic become stronger and wider as $q$ increases, and thus the resonant caustic-crossing high-magnification events with the weak perturbation occur in the range of $q \leqslant 10^{-4}$. We determine the probability of the occurrence of events with the small excess $|\epsilon| \leqslant 3 %$ in high-magnification events induced by a resonant caustic. As a result, we find that for the Earth-mass planets with a separation of ~ 2.5 AU, the resonant caustic high-magnification events with the weak perturbation can occur with a significant frequency.
It is shown that, in addition to the Thomson scattering, the absorption due to the electron-electron, electron-ion and the electron -atom collisions in a partially ionized cosmic plasma would also contribute to the optical depth of the cosmic microwave background (CMB). The absorption depth depends on the plasma temperature and frequency of the CMB radiation. The absorption effects are prominent at the low frequency part of the CMB spectrum. These effects when included in the interpretation of the CMB spectrum may necessitate a revised view of the ioniziation of the universe.
Statistical analyses of finite sample distributions usually assume that fluctuations are self-averaging, i.e. that they are statistically similar in different regions of the given sample volume. By using the scale-length method, we test whether this assumption is satisfied in several samples of the Sloan Digital Sky Survey Data Release Six. We find that the probability density function (PDF) of conditional fluctuations, filtered on large enough spatial scales (i.e., r>30 Mpc/h), shows relevant systematic variations in different sub-volumes of the survey. Instead for scales r<30 Mpc/h the PDF is statistically stable, and its first moment presents scaling behavior with a negative exponent around one. Thus while up to 30 Mpc/h galaxy structures have well-defined power-law correlations, on larger scales it is not possible to consider whole sample average quantities as meaningful and useful statistical descriptors. This situation is due to the fact that galaxy structures correspond to density fluctuations which are too large in amplitude and too extended in space to be self-averaging on such large scales inside the sample volumes: galaxy distribution is inhomogeneous up to the largest scales, i.e. r ~ 100 Mpc/h, probed by the SDSS samples. We show that cosmological corrections, as K-corrections and standard evolutionary corrections, do not qualitatively change the relevant behaviors. Finally we show that the large amplitude galaxy fluctuations observed in the SDSS samples are at odds with the predictions of the standard LCDM model of structure formation.(Abridged version).
SS433, located at the center of the supernova remnant W50, is a close proximity binary system consisting of a compact star and a normal star. Jets of material are directed outwards from the vicinity of the compact star symmetrically to the east and west. Non-thermal hard X-ray emission is detected from lobes lying on both sides. Shock accelerated electrons are expected to generate sub-TeV gamma rays through the inverse-Compton process in the lobes. Observations of the western X-ray lobe region of SS433/W50 system have been performed to detect sub-TeV gamma-rays using the 10m CANGAROO-II telescope in August and September, 2001, and July and September, 2002. The total observation times are 85.2 hours for ON source, and 80.8 hours for OFF source data. No significant excess of sub-TeV gamma rays has been found at 3 regions of the western X-ray lobe of SS433/W50 system. We have derived 99% confidence level upper limits to the fluxes of gamma rays and have set constraints on the strengths of the magnetic fields assuming the synchrotron/inverse-Compton model for the wide energy range of photon spectrum from radio to TeV. The derived lower limits are 4.3 microgauss for the center of the brightest X-ray emission region and 6.3 microgauss for the far end from SS433 in the western X-ray lobe. In addition, we suggest that the spot-like X-ray emission may provide a major contribution to the hardest X-ray spectrum in the lobe.
The carbon, nitrogen, and oxygen abundances and trends in the bulge are discussed in the context of our recent analysis of these elements in an on-going project based on near-IR spectra (Ryde et al. 2009). We obtained these using the CRIRES spectrometer on the VLT. The formation and evolution of the Milky Way bulge can be constrained by studying elemental abundances of bulge stars. Due to the large and variable visual extinction in the line-of-sight towards the bulge, an analysis in the near-IR is preferred.
We derive the $\Sigma$-$D$ relation of Galactic supernova remnants of shell-type separately at adiabatic-phase and at radiative-phase through two sets of different formulas, considering the different physical processes of shell-type remnants at both stages. Also statistics on Galactic shell-type remnants about 57 was made. Then we do some comparison with other results obtained before. It shows that all the best fit lines in the $\Sigma$-$D$ relation plots newly are to some extent flatter than those derived by some authors at early time. Our theoretical and statistical outcomes are in somewhat good consistency.
We present here preliminary results concerning 32 stars identified as main gamma Doradus candidates by the COROT Variable Classifier (CVC) among the 4 first fields of the exoplanet CCDs.
In previous papers we showed that in a one-armed deformed disks, p-mode and g-mode oscillations are resonantly excited by horizontal resonance, and applied it to high frequency QPOs observed in low mass X-ray binaries. In that model, the observed time variation of kHz QPOs is regarded as a result of a time-dependent precession of the deformation. In this paper we consider another possible cause of time variation of kHz QPOs. That is, we demonstrate that in a two-armed deformed disks, p-mode and g-mode oscillations are excited by {\it vertical resonance}, not by horizontal resonance(horizontal resonance dampens them). Furthermore, we show that in the case of vertical resonance, the frequencies of disk oscillations excited can vary with time if vertical disk structure changes with time. A brief application of these results to the time variation of observed kHz QPOs is made.
An evolution of the electron distribution function in the beam-plasma system with the return current is computed numerically for different parameters. The X-ray bremsstrahlung corresponding to such an electron distribution is calculated and the directivity of the X-ray emission is studied. For computations of the electron distribution functions we used a 3-D particle-in-cell electromagnetic code. The directivity of the X-ray emission was calculated using the angle-dependent electron-ion bremsstrahlung cross-section. It was found that the resulting electron distribution function depends on the magnetic field assumed along the electron beam propagation direction. For small magnetic fields the electron distribution function becomes broad in the direction perpendicular to the beam propagation due to the Weibel instability and the return current is formed by the electrons in a broad and shifted bulk of the distribution. On the other hand, for stronger magnetic fields the distribution is more extended in the beam-propagation direction and the return current is formed by the electrons in the extended distribution tail. In all cases, the anisotropy of the electron distribution decreases rapidly due to fast collisionless processes. However, the magnetic field reduces this anisotropy decrease. The X-ray directivity shows the same trend and it is always closer to the isotropic case than that in a simple beaming model.
The ZZ Ceti star KUV 02464+3239 was observed over a whole season at the mountain station of Konkoly Observatory. A rigorous frequency analysis revealed 6 certain periods between 619 and 1250 seconds, with no shorter period modes present. We use the observed periods, published effective temperature and surface gravity, along with the model grid code of Bischoff-Kim, Montgomery and Winget (2008) to perform a seismological analysis. We find acceptable model fits with masses between 0.60 and 0.70 M_Sun. The hydrogen layer mass of the acceptable models are almost always between 10^-4 and 10^-6 M_*. In addition to our seismological results, we also show our analysis of individual light curve segments. Considering the non-sinusoidal shape of the light curve and the Fourier spectra of segments showing large amplitude variations, the importance of non-linear effects in the pulsation is clearly seen.
We present the results on period search and modeling of the cool DAV star KUV 02464+3239. Our observations resolved the multiperiodic pulsational behaviour of the star. In agreement with its position near the red edge of the DAV instability strip, it shows large amplitude, long period pulsation modes, and has a strongly non-sinusoidal light curve. We determined 6 frequencies as normal modes and revealed remarkable short-term amplitude variations. A rigorous test was performed for the possible source of amplitude variation: beating of modes, effect of noise, unresolved frequencies or rotational triplets. Among the best-fit models resulting from a grid search, we selected 3 that gave l=1 solutions for the largest amplitude modes. These models had masses of 0.645, 0.650 and 0.680 M_Sun. The 3 `favoured' models have M_H between 2.5x10^-5 - 6.3x10^-6 M_* and give 14.2 - 14.8 mas seismological parallax. The 0.645 M_Sun (11400 K) model also matches the spectroscopic log g and T_eff within 1 sigma. We investigated the possibility of mode trapping and concluded that while it can explain high amplitude modes, it is not required.
As starburst galaxies show a star formation rate up to several hundred times larger than the one in a typical galaxy, the expected supernova rate is higher than average. This in turn implies a high rate of long gamma ray bursts (GRBs), which are extreme supernova events. We present a catalog of 127 local starburst galaxies with redshifts of z<0.03. Using this catalog we investigate the possibility of detecting neutrinos from Gamma Ray Bursts from nearby starburst galaxies. We show that the rate of long GRBs is correlated to the supernova rate which in turn is correlated to the far infrared output. For the entire catalog, 0.03 GRB per year are expected to occur. The true number can even be higher since only the brightest sources were included in the catalog.
Discovery of the 6.7-hour periodicity in the X-ray source 1E 161348-5055 in RCW 103 has led to investigations of the nature of this periodicity. We explore a model for 1E 161348-5055, wherein a fast-spinning neutron star with a magnetic field $\sim 10^{12}$ G in a young pre-Low-Mass X-ray Binary (pre-LMXB) with an eccentric orbit of period 6.7 hr operates in the "propeller" phase. The 6.7-hr light curve of 1E 161348-5055 can be quantitatively accounted by a model of orbitally-modulated mass transfer through a viscous accretion disk and subsequent propeller emission (both Illarionov-Sunyaev type and Romanova-Lovelace et al type), and spectral and other properties are also in agreement. Formation and evolution of model systems are shown to be in accordance both with standard theories.
The origin of magnetic fields in the Universe is an open problem in astrophysics and fundamental physics. Our present-day knowledge is limited to regions of strong magnetic fields and to star-forming disks of galaxies. Low-energy electrons emitting at low frequencies suffer less from energy losses and can propagate further into the intergalactic medium. The prospects are threefold: Firstly, LOFAR will map the structure of weak magnetic fields in the outer regions and halos of galaxies and in the Milky Way. Polarized emission is an excellent tracer of past interactions with other galaxies and with the interstellar medium. Secondly, high-resolution polarization observations are needed at high frequencies with the EVLA and SKA to trace the structure of magnetic fields in the disks and central regions of galaxies in unprecedented detail. The SKA can also detect polarized emission from distant, unresolved galaxies. Thirdly, Faraday rotation measures (RM) are signatures of regular magnetic fields generated by the dynamo mechanism. All-sky surveys of Faraday rotation measures (RM) towards polarized background sources will be used to model the structure and strength of the regular magnetic fields in the Milky Way, the interstellar medium of galaxies and the intergalactic medium. This will open a new era in the observation of cosmic magnetic fields. "Key Science" Projects on cosmic magnetism are organized for the Low Frequency Array (LOFAR), the planned Square Kilometre Array (SKA) and the Australian SKA Pathfinder telescope (ASKAP).
We review the observational evidence for dust formation in Wolf-Rayet binary systems and in Type II Supernova ejecta. Existing theoretical models describing the condensation of solids in carbon-rich Wolf-Rayet stars and in Supernovae close by and at high redshift are discussed. We describe new modeling of carbon- and oxygen-based grain nucleation using a chemical kinetic approach applied to the ejecta of massive pair-instability Supernovae in the early universe. Finally, dust formation processes in colliding wind regions of WC binary systems are discussed.
In this document a review of the author's method of Fourier disentangling of spectra of binary and multiple stars is presented for the purpose of the summer school organized at Ondrejov observatory in September 2008. Related methods are also discussed and some practical hints for the use of the author's code KOREL and related auxiliary codes with examples are given.
Approximately 20% of very metal-poor stars ([Fe/H] < -2.0) are strongly enhanced in carbon ([C/Fe] > +1.0). Such stars are referred to as carbon-enhanced metal-poor (CEMP) stars. We present a chemical abundance analysis based on high resolution spectra acquired with UVES at the VLT of three dwarf CEMP stars: SDSS J1349-0229, SDSS J0912+0216 and SDSS J1036+1212. These very metal-poor stars, with [Fe/H] < -2.5, were selected from our ongoing survey of extremely metal-poor dwarf candidates from the SDSS. Among these CEMPs, SDSS J1349-0229 has been identified as a carbon star ([C/O] > +1.0). First and second peak s-process elements, as well as second peak r-process elements have been detected in all stars. In addition, elements from the third r-process peak were detected in one of the stars, SDSS J1036+1212. We present the abundance results of these stars in the context of neutron-capture nucleosynthesis theories.
Potential Type II Cepheids are identified in surveys of the galaxies IC 1613, M33, M101, M106, M31, NGC 4603, and the SMC, complementing previous discoveries of Type II Cepheids in NGC 5128, NGC 3198, and the LMC. The most distant Type II Cepheid observed may be associated with NGC 4603 (d~29 Mpc). Preliminary results confirm that Type II Cepheids could play an important role as standard candles, in constraining the effects of metallicity on Cepheid distances to galaxies, and in mapping extinction.
The hot Jupiter HD 209458b was observed during primary transit at 3.6, 4.5, 5.8 and 8.0 microns using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We detail here the procedures we adopted to correct for the systematic trends present in the IRAC data. The light curves were fitted including limb darkening effects and fitted using Markov Chain Monte Carlo and prayer-bead Monte Carlo techniques, finding almost identical results. The final depth measurements obtained by a combined Markov Chain Monte Carlo fit are at 3.6 microns, 1.469 +- 0.013 % and 1.448 +- 0.013 %; at 4.5 microns, 1.478 +- 0.017 % ; at 5.8 microns, 1.549 +- 0.015 % and at 8.0 microns 1.535 +- 0.011 %. Our results clearly indicate the presence of water in the planetary atmosphere. Our broad band photometric measurements with IRAC prevent us from determining the additional presence of other other molecules such as CO, CO2 and methane for which spectroscopy is needed. While water vapour with a mixing ratio of 10^-4-10^-3 combined with thermal profiles retrieved from the day-side may provide a very good fit to our observations, this data set alone is unable to resolve completely the degeneracy between water abundance and atmospheric thermal profile.
Using the radiative transfer code Torus, we produce spectral-line cubes of the predicted HI profile from global SPH simulations of spiral galaxies. Torus grids the SPH galaxy using Adaptive Mesh Refinement, then applies a ray-tracing method to infer the HI profile along the line(s) of sight. The gridded galaxy can be observed from any direction, which enables us to model the observed HI profile for galaxies of any orientation. We can also place the observer inside the galaxy, to simulate HI observations taken from the Earth's position in the Milky Way.
Due to non-homogeneous mass distribution and non-uniform velocity rate inside the Sun, the solar outer shape is distorted in latitude. In this paper, we analyze the consequences of a temporal change in this figure on the luminosity. To do so, we use the Total Solar Irradiance (TSI) as an indicator of luminosity. Considering that most of the authors have explained the largest part of the TSI modulation with magnetic network (spots and faculae) but not the whole, we could set constraints on radius and effective temperature variations (dR, dT). However computations show that the amplitude of solar irradiance modulation is very sensitive to photospheric temperature variations. In order to understand discrepancies between our best fit and recent observations of Livingston et al. (2005), showing no effective surface temperature variation during the solar cycle, we investigated small effective temperature variation in irradiance modeling. We emphasized a phase-shift (correlated or anticorrelated radius and irradiance variations) in the (dR, dT)-parameter plane. We further obtained an upper limit on the amplitude of cyclic solar radius variations, deduced from the gravitational energy variations. Our estimate is consistent with both observations of the helioseismic radius through the analysis of f-mode frequencies and observations of the basal photospheric temperature at Kitt Peak. Finally, we suggest a mechanism to explain faint changes in the solar shape due to variation of magnetic pressure which modifies the granules size. This mechanism is supported by our estimate of the asphericity-luminosity parameter, which implies an effectiveness of convective heat transfer only in very outer layers of the Sun.
We observed two fields near M32 with the ACS/HRC on board the Hubble Space Telescope, located at distances of about 1.8' and 5.4' (hereafter F1 and F2, respectively) from the center of M32. To obtain a very detailed and deep color-magnitude diagram (CMD) and to look for short period variability, we obtained time-series imaging of each field in 32-orbit-long exposures using the F435W (B) and F555W (V) filters, spanning a temporal range of 2 days per filter. We focus on our detection of variability on RR Lyrae variable stars, which represents the only way to obtain information about the presence of a very old population (larger than 10 Gyr) in M32 from optical data. Here we present results obtained from the detection of 31 RR Lyrae in these fields: 17 in F1 and 14 in F2.
Aims: Drawing an analogy with Active Galactic Nuclei, we investigate the one-zone SSC model of Gamma Ray Bursts afterglows in the presence of electron injection and cooling both by synchrotron and SSC losses. Methods: We solve the spatially averaged kinetic equations which describe the simultaneous evolution of particles and photons, obtaining the multi-wavelength spectrum as a function of time. We back up our numerical calculations with analytical solutions of the equations using various profiles of the magnetic field evolution under certain simplifying assumptions. Results: We apply the model to the afterglow evolution of GRBs in a uniform density environment and examine the impact various parameters have on the multiwavelength spectra. We find that in cases where the electron injection and/or the ambient density is high, the losses are dominated by SSC and the solutions depart significantly from the ones derived in the synchrotron standard cases.
In classical T Tauri stars, X-rays are produced by two plasma components: a hot low-density plasma, with frequent flaring activity, and a high-density lower temperature plasma. The former is coronal plasma related to the stellar magnetic activity. The latter component, never observed in non-accreting stars, could be plasma heated by the shock formed by the accretion process. However its nature is still being debated. Our aim is to probe the soft X-ray emission from the high-density plasma component in classical T Tauri stars to check whether this is plasma heated in the accretion shock or whether it is coronal plasma. High-resolution X-ray spectroscopy allows us to measure individual line fluxes. We analyze X-ray spectra of the classical T Tauri star MP Muscae and TW Hydrae. Our aim is to evaluate line ratios to search for optical depth effects, which are expected in the accretion-driven scenario. We also derive the plasma emission measure distributions EMD, to investigate whether and how the EMD of accreting and non accreting young stars differ. The results are compared to those obtained for the non-accreting weak-line T Tauri stars TWA 5. We find evidence of resonance scattering in the strongest lines of MP Mus, supporting the idea that soft X-rays are produced by plasma heated in the accretion shock. We also find that the EMD of MP Mus has two peaks: a cool peak at temperatures expected by plasma heated in the accretion shock, and a hot peak typical of coronal plasma. The shape of the EMD of MP Mus appears to be the superposition of the EMD of a pure coronal source, like TWA 5, and an EMD alike that of TW Hydrae, which is instead dominated by shock-heated plasma.
For the recent four years we have been studying feedback heating in cooling
flow (CF) clusters by AGN activity that inflate bubbles by jets; this short
contribution to a meeting summarizes our main results. To achieve our results
we had to self-consistently inflate the bubbles with jets, rather than inject
them artificially. Our main results are as follows
(1) Feedback mechanisms that are based on Bondi accretion fail. Instead, the
accretion to the central super-massive black hole (SMBH) is in the form of cold
dense blobs that fall-in from an extended region. (2) Slow massive wide (SMW)
jets, or rapidly precessing jets, can inflate bubbles similar to those observed
in CF clusters. (3) Contrary to some claims in the literature, the inflated
bubbles are stable for a relatively long time, becoming unstable only at later
times. (4) A single bubble inflation episode excites multiple sound waves and
shocks. These can then heat the intracluster medium (ICM). (5) Mixing of the
bubble material to the ICM is efficient, and can serve as a main heating
channel. (6) The heating processes work in all directions, and can explain the
heating of the ICM in CF in clusters and in galaxies.
We present the first of a sample of fossil galaxy groups with pre-existing Chandra and/or XMM-Newton X-ray observations and new or forthcoming low frequency GMRT data -- RXJ1416.4+2315 (z=0.137). Fossil galaxy groups are ideal laboratories for studying feedback mechanisms and how energy injection affects the IGM, since due to the lack of recent merging activity, we expect the IGM to be relatively pristine and affected only by any AGN activity that has occurred in the group. Our Chandra X-ray observations reveal features resembling AGN-inflated bubbles, whilst our GMRT radio data show evidence of extended emission from the central AGN that may be filling the bubble. This has enabled us to estimate the work done by the central AGN, place limits on the rates of energy injection and discuss the nature of the plasma filling the bubble.
Observational gamma-ray astronomy was born some forty years ago, when small detectors were flown in satellites, following a decade of theoretical predictions of its potential to discover the origin of cosmic rays via the pi-zero decay mechanism. The seventies were a golden era for gamma-ray and cosmic-ray astrophysics, with the (re)discovery of the "diffuse shock acceleration" theory for cosmic rays, and the first CO and GeV gamma-ray surveys of the galactic plane, verifying the importance of pi-zero decay in the large-scale gamma-ray emission of the Galaxy. But because of this strong galactic background, GeV gamma-ray sources were hard to identify. The first such sources definitely identified were three pulsars, with a suggestion that supernova remnants interacting with molecular clouds in massive star-forming regions ("SNOBs") were also gamma-ray sources. Because of their improved sensitivity and spatial resolution, ground-based Cerenkov telescopes, detecting gamma-rays at > TeV energies, are now able to resolve molecular cloud-sized objects at a few kpc. SNOB-like objects like IC443 and W28 are detected at GeV and TeV energies, and show spatial evidence for cosmic-ray interactions between an SNR shock wave and nearby molecular clouds, and subsequent pi-zero decay. However, the spectral evidence does not clearly support this mechanism. We propose to use another tool for probing the interaction of the low-energy component of the putative local cosmic rays, in the form of enhanced ionization in TeV-bright molecular clouds, using millimeter observations.
We present X-ray spectral analysis of the brightest sources (f_{2-10 keV}>10^{-15}$ cgs) in the Chandra Deep Field North. Our sample consists of 222 sources; for the vast majority (171) either a spectroscopic or a photometric redshift is available. Our goal is to discover the Compton-thick AGN in a direct way i.e. through their X-ray spectra. Compton-thick AGN give away their presence in X-rays either directly through the absorption turnover redshifted in the Chandra passband, or through a flat, reflection-dominated, spectrum. The above selection criteria yield 10 Compton-thick AGN candidates of which the nine are reflection dominated. The IR or sub-mm data where available, corroborate the presence of a heavily obscured nucleus in most cases. All the five candidate Compton-thick sources with available 24 micron data present very high values of the f_{24}/f_R flux ratio suggesting that they are dust obscured galaxies. The low f_x/f_{IR} ratio also suggest the presence of obscured nuclei in many cases. Four of the candidate Compton-thick sources are associated with sub-mm galaxies at high redshifts z$\sim2$. The number count vs. flux distribution of the candidate Compton-thick AGN as well as their distribution with redshift agree reasonably well with the predictions of the X-ray background synthesis models of Gilli et al.
We report results concerning the distribution and properties of galactic
extinction at high galactic latitudes derived from stellar statistics using the
Sloan Digital Sky Survey (SDSS). We use the classical Wolf diagram method to
identify regions with extinction, and derive the extinction and the extinction
law of the dust using all five SDSS spectral bands. We estimate the distance to
the extinguishing medium using simple assumptions about the stellar populations
in the line of sight.
We report the identification of three extinguishing clouds, each a few tens
of pc wide, producing 0.2-0.4 mag of g'-band extinction, located 1-2 kpc away
or 0.5-1 kpc above the galactic plane. All clouds exhibit grey extinction,
i.e., almost wavelength-independent in the limited spectral range of the SDSS.
We discuss the implication of this finding on general astrophysical questions.
Specific indications of star-formation are presented within cluster and filament galaxies that are members of the Horologium-Reticulum supercluster (HRS, z ~0.06). These indicators arise from multi-wavelength observations, primarily emission lines from optical spectroscopy and faint excess from radio continuum (1.4 GHz) photometry. HRS galaxies exhibiting current star formation are consistent with previous studies in that the star-forming populations organize around megaparsec-scale filament axes as well as near the cluster core. Therefore with support from optical photometry, mechanisms for triggering star formation in these galaxies are most likely due to merger interactions in lower density (and lower velocity) environments and possible bursts prior to stripping within the higher density (and higher velocity) environments.
A model of inflation is presented where the inflaton field is a complex scalar field coupled to a U(1) gauge field. Due to the axial symmetry of the potential, the inflation is driven by the radial direction while the angular field is gauged by U(1). Due to the coupling of the inflaton to the gauge field, a time dependent mass term for the gauge field is generated dynamically and conformal invariance is broken. We study whether a significant amount of primordial magnetic fields can be generated during inflation by allowing a time-dependent U(1) gauge kinetic coupling.
The averaging problem in cosmology is of considerable importance for the correct interpretation of cosmological data. A rigorous mathematical definition of averaging in a cosmological model is necessary. In general, a spacetime is completely characterized by its scalar curvature invariants, and this suggests a particular spacetime averaging scheme based entirely on scalars. We clearly identify the problems of averaging in a cosmological model. We then present a precise definition of a cosmological model, and based upon this definition, we propose an averaging scheme in terms of scalar curvature invariants. This scheme is illustrated in a simple static spherically symmetric perfect fluid cosmological spacetime, where the averaging scales are clearly identified.
Links to: arXiv, form interface, find, astro-ph, recent, 0909, contact, help (Access key information)
We present recent results from a GALEX investigation of star formation in 16 cooling core clusters of galaxies, selected to span a broad range in both redshift and central cooling time. Initial results demonstrate clear UV excesses in most, but not all, brightest cluster galaxies in our sample. This UV excess is a direct indication of the presence of young massive stars and, therefore, recent star formation. We report on the physical extent of UV emission in these objects as well as their FUV-NUV colors, and compare GALEX inferred star formation rates to central cooling times, H-alpha and IR luminosities for our sample.
Double-peaked emission lines are believed to be originated from accretion disks around supermassive black holes (SMBHs), and about 3% of z<0.33 AGNs are found to be double-peaked emitters. The quasar SDSS J153636.22+044127.0 has recently been identified with peculiar broad-line emission systems exhibiting multiple redshifts. We decompose the H$\alpha$ and H$\beta$ profiles into a circular Keplerian disk line component and other Gaussian components. We propose that the system is both a double-peaked emitter and a binary SMBH system, where the extra-flux in the blue peaks of the broad lines comes from the region around the secondary black hole. We suggest that such black hole binary systems might also exist in many known double-peaked emitters, where the tidal torques from the secondary black hole clear the outer region of the disk around the primary black hole, similar to the gap in a protostellar disk due to the process of planetary migration, and might also stimulate the formation of a vertical extended source in the inner region around the primary which illuminates the disk. However, most secondary SMBHs in such systems might be too small to maintain a detectable broad line region (BLR), so that the disk line from the primary dominates.
We present three-dimensional numerical simulations of particle clumping and planetesimal formation in protoplanetary disks with varying amounts of solid material. As centimeter-size pebbles settle to the mid-plane, turbulence develops through vertical shearing and streaming instabilities. We find that when the pebble-to-gas column density ratio is 0.01, corresponding roughly to solar metallicity, clumping is weak, so the pebble density rarely exceeds the gas density. Doubling the column density ratio leads to a dramatic increase in clumping, with characteristic particle densities more than ten times the gas density and maximum densities reaching several thousand times the gas density. This is consistent with unstratified simulations of the streaming instability that show strong clumping in particle dominated flows. The clumps readily contract gravitationally into interacting planetesimals of order 100 km in radius. Our results suggest that the correlation between host star metallicity and exoplanets may reflect the early stages of planet formation. We further speculate that initially low metallicity disks can be particle enriched during the gas dispersal phase, leading to a late burst of planetesimal formation.
We present HST NIC2 morphologies of a spectroscopic sample of massive galaxies at z~2.3, by extending our sample of nine compact quiescent galaxies (r_e~0.9 kpc) with ten massive emission-line galaxies. The emission-line galaxies are classified by the nature of their ionized emission; there are six star-forming galaxies and four galaxies hosting an active galactic nucleus (AGN). The star-forming galaxies are the largest among the emission-line galaxies, with a median size of r_e=2.8 kpc. The three galaxies with the highest star formation rates (>~ 100 Msol / yr) have irregular and clumpy morphologies. The AGN host galaxies are more similar to the compact quiescent galaxies in terms of their structures (r_e~1.1 kpc) and spectral energy distributions. The total sample clearly separates into two classes in a color-mass diagram: the large star-forming galaxies that form the blue cloud, and the compact quiescent galaxies on the red sequence. However, it is unclear how or even if the two classes are evolutionary related. Three out of six massive star-forming galaxies have dense cores and thus may passively evolve into compact galaxies due to fading of outer star-forming regions. For these galaxies a reverse scenario, in which compact galaxies grow inside-out by star formation is also plausible. We do caution though that the sample is small. Nonetheless, it is evident that a Hubble sequence of massive galaxies with strongly correlated galaxy properties is already in place at z>2.
Mergers of gas-rich galaxies lead to black hole binaries that coalesce as a result of dynamical friction on the ambient gas. Once the binary tightens to <10^3 Schwarzschild radii, its merger is driven by the emission of gravitational waves (GWs). We show that this transition occurs generically at orbital periods of ~1-10 years and an orbital velocity V of a few thousand km/s, with a very weak dependence on the supply rate of gas (V proportional to Mdot^{1/8}). Therefore, as binaries enter their GW-dominated inspiral, they inevitably induce large periodic shifts in the broad emission lines of any associated quasar(s). The probability of finding a binary in tighter configurations scales as V^{-8} owing to their much shorter lifetimes. Systematic monitoring of the broad emission lines of quasars on timescales of months to decades can set a lower limit on the expected rate of GW sources for LISA.
We study the formation histories and present-day structure of satellite galaxies formed in a high resolution hydrodynamic simulation of a Milky Way-like galaxy. The simulated satellites span nearly 4 orders of magnitude in luminosity but have a very similar mass within their inner 600 pc, ~ 3 10^7 M_solar, with very little scatter. This result is in agreement with the recent measurements for dwarf spheroidal galaxies (dSphs) in the Milky Way by Strigari et al. In our simulations a preferred mass scale arises naturally from the effects of the early reionisation of gas. These impose a sharp threshold of ~ 12 km/s on the circular velocity of haloes which can cool gas and make stars. At the present day, subhaloes that host satellites as luminous as the classical Milky Way dwarfs (L_V > 2.6 10^5 L_solar), have typically grown to have circular velocities of $> 20 km/s. There are, however, subhaloes with similar circular velocities today which were, nevertheless, below threshold at reionisation and thus remain dark. Star formation in above-threshold haloes is truncated when the halo is accreted into the main galaxy progenitor. Thus, many properties of today's dwarf satellites such as their luminosity and star formation rate are set by their accretion time.
We investigate the properties of satellite galaxies in cosmological N-body/SPH simulations of galaxy formation in Milky Way-sized haloes. Because of their shallow potential wells, satellite galaxies are very sensitive to heating processes which affect their gas content. Their properties can therefore be used to constrain the nature of feedback processes that regulate galaxy formation. In our simulations, we assume that all the energy produced by supernovae is used as kinetic energy to drive galactic winds. Several of our simulations produce bright, disc-dominated galaxies. We find that wind models in which the wind speed, v_w, is proportional to local velocity dispersion of dark matter, sigma, (and thus the wind mass-loading, eta_w \propto sigma^{-2}) have episodic star formation histories, reproduce the observed satellite luminosity function quite well (down to M_v=-7) and match the luminosity-metallicity relation observed in the Local Group satellites. By contrast, models that assume a constant wind speed overproduce faint satellites and predict an incorrect luminosity-metallicity relation. Our simulations therefore suggest that the feedback processes that operate on the scale of satellite galaxies should generate galactic outflows whose intensity varies inversely with the depth of the potential.
The recent VLBI observation of the Galactic center black hole candidate Sgr A* at 1.3mm shows source structure on event-horizon scales. This detection enables a direct comparison of the emission region with models of the accretion flow onto the black hole. We present the first results from time-dependent radiative transfer of general relativistic MHD simulation data, and compare simulated synchrotron images at black hole spin a=0.9 with the VLBI measurements. After tuning the accretion rate to match the millimeter flux, we find excellent agreement between predicted and observed visibilities, even when viewed face-on (i < 30 degrees). VLBI measurements on 2000-3000km baselines should constrain the inclination. The data constrain the accretion rate to be (1.0-2.3)x10^-9 M_sun / yr with 99% confidence, consistent with but independent of prior estimates derived from spectroscopic and polarimetric measurements. Finally, we compute light curves, which show that magnetic turbulence can directly produce flaring events with .5 hour rise times, 2-3.5 hour durations and 40-50% flux modulation, in agreement with observations of Sgr A* at millimeter wavelengths.
We investigate the correlation between the mass of a central supermassive black hole and the total gravitational mass of the host galaxy (M_tot). The results are based on 43 galaxy-scale strong gravitational lenses from the Sloan Lens ACS (SLACS) Survey whose black hole masses were estimated through two scaling relations: the relation between black hole mass and Sersic index (M_bh - n) and the relation between black hole mass and stellar velocity dispersion (M_bh - sigma). We use the enclosed mass within R_200, the radius within which the density profile of the early type galaxy exceeds the critical density of the Universe by a factor of 200, determined by gravitational lens models fitted to HST imaging data, as a tracer of the total gravitational mass. The best fit correlation, where M_bh is determined from M_bh - sigma relation, is log(M_bh) = (8.18 +/- 0.11) + (1.55 +/- 0.31) (log(M_tot) - 13.0) over 2 orders of magnitude in M_bh. From a variety of tests, we find that we cannot reliably infer a connection between M_bh and M_tot from the M_bh - n relation. The M_bh - M_tot relation provides some of the first, direct observational evidence to test the prediction that supermassive black hole properties are determined by the halo properties of the host galaxy.
The intracluster medium (ICM) is stably stratified in the hydrodynamic sense with the entropy $s$ increasing outwards. However, thermal conduction along magnetic field lines fundamentally changes the stability of the ICM, leading to the "heat-flux buoyancy instability" when $dT/dr>0$ and the "magnetothermal instability" when $dT/dr<0$. The ICM is thus buoyantly unstable regardless of the signs of $dT/dr$ and $ds/dr$. On the other hand, these temperature-gradient-driven instabilities saturate by reorienting the magnetic field (perpendicular to $\hat{\bf r}$ when $dT/dr>0$ and parallel to $\hat{\bf r}$ when $dT/dr<0$), without generating sustained convection. We show that after an anisotropically conducting plasma reaches this nonlinearly stable magnetic configuration, it experiences a buoyant restoring force that resists further distortions of the magnetic field. This restoring force is analogous to the buoyant restoring force experienced by a stably stratified adiabatic plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or cosmic-ray buoyancy) to overcome this restoring force and generate turbulence in the ICM, the strength of the driving must exceed a threshold, corresponding to turbulent velocities $\gtrsim 10 -100 {km/s}$. For weaker driving, the ICM remains in its nonlinearly stable magnetic configuration, and turbulent mixing is effectively absent. We discuss the implications of these findings for the turbulent diffusion of metals and heat in the ICM.
We derive structural parameters for ~2000 globular clusters in the giant Virgo elliptical M87 using extremely deep Hubble Space Telescope images in F606W (V) and F814W (I) taken with the ACS/WFC. The cluster scale sizes (half-light radii r_h) and ellipticities are determined from PSF-convolved King-model profile fitting. We find that the r_h distribution closely resembles the inner Milky Way clusters, peaking at r_h~2.5 pc and with virtually no clusters more compact than r_h ~ 1 pc. The metal-poor clusters have on average an r_h 24% larger than the metal-rich ones. The cluster scale size shows a gradual and noticeable increase with galactocentric distance. Clusters are very slightly larger in the bluer waveband V a possible hint that we may be beginning to see the effects of mass segregation within the clusters. We also derived a color magnitude diagram for the M87 globular cluster system which show a striking bimodal distribution.
The progenitors of Type Ia and some core collapse supernovae are thought to be stars in binary systems, but little observational evidence exists to confirm the hypothesis. We suggest that the collision of the supernova ejecta with its companion star should produce detectable emission in the hours and days following the explosion. The interaction occurs at distances ~10^11-10^13 cm and shocks the impacting supernova debris, dissipating kinetic energy and re-heating the gas. Initially, some radiation may escape promptly through the evacuated region of the shadowcone, producing a bright X-ray (0.1-2 keV) burst lasting minutes to hours with luminosity L ~ 10^44 ergs/s. Continuing radiative diffusion from deeper layers of shock heated ejecta produces a longer lasting optical/UV emission which exceeds the radioactively powered luminosity of the supernova for the first few days after the explosion. These signatures are prominent for viewing angles looking down upon the shocked region, or about 10% of the time. The properties of the emission provide a straightforward measure of the separation distance between the stars and hence (assuming Roche lobe overflow) the companion's radius. Current optical and UV data sets likely already constrain red giant companions. By systematically acquiring early time data for many supernovae, it should eventually be possible to empirically determine how the parameters of the progenitor system influence the outcome of the explosion.
We find that the amount and nature of the assumed ionizing background can strongly affect galaxy formation and evolution. Galaxy evolution simulations typically incorporate an ultraviolet background which falls off rapidly above z=3; e.g., that of Haardt & Madau (1996). However, this decline may be too steep to fit the WMAP constraints on electron scattering optical depth or observations of intermediate redshift (z ~ 2-4) Ly-alpha forest transmission. As an alternative, we present simulations of the cosmological formation of individual galaxies with UV backgrounds that decline more slowly at high redshift: both a simple intensity rescaling and the background recently derived by Faucher-Giguere (2009), which softens the spectrum at higher redshifts. We also test an approximation of the X-ray background with a similar z-dependence. We find for the test galaxies that an increase in either the intensity or hardness of ionizing radiation generically pushes star formation towards lower redshifts: although overall star formation in the simulation boxes is reduced by 10-25%, the galaxies show a factor of ~2 increase in the fraction of stars within a 30 kpc radius that are formed after z=1. Other effects include late gas inflows enhanced up to 30 times, stellar half-mass radii decreased by up to 30%, central velocity dispersions increased up to 40%, and a strong reduction in substructure. The magnitude of the effects depends on the environmental/accretion properties of the particular galaxy.
Radio halos require the coexistence of extra-planar cosmic rays and magnetic fields. Because cosmic rays are injected and accelerated by processes related to star formation in the disk, they have to be transported from the disk into the halo. A vertical large-scale magnetic field can significantly enhance this transport. We observed NGC 253 using radio continuum polarimetry with the Effelsberg and VLA telescopes. The radio halo of NGC 253 has a dumbbell shape with the smallest vertical extension near the center. With an estimate for the electron lifetime, we measured the cosmic-ray bulk speed as 300+/-30 km/s which is constant over the extent of the disk. This shows the presence of a "disk wind" in NGC 253. We propose that the large-scale magnetic field is the superposition of a disk (r,phi) and a halo (r,z) component. The disk field is an inward-pointing spiral with even parity. The conical (even) halo field appears in projection as an X-shaped structure, as observed in other edge-on galaxies. Interaction by compression in the walls of the superbubbles may explain the observed alignment between the halo field and the lobes of hot Halpha- and soft X-ray emitting gas. The disk wind is a good candidate for the transport of small-scale helical fields, required for efficient dynamo action, and as a source for the neutral hydrogen observed in the halo.
We consider the formation and migration of protoplanetary embryos in disks around the stars in tight binary systems (separations ~ 20 AU. In such systems, the initial stages of runaway embryo formation are expected to only take place within some critical disk radius a_{crit}, due to the perturbing effect of the binary companions (Thebault et al. 2009). We perform n-body simulations of the evolution of such a population of inner-disk embryos surrounded by an outer-disk of smaller planetesimals. Taking Alpha Centauri-B as our fiducial reference example in which a_{crit} ~ 0.7 AU, and using a Minimum Mass Nebular Model with $\Sigma \propto a^{-3/2}$, we find that within 10^6 yrs (10^7 yrs), systems will on average contain embryos which have migrated out to 0.9 AU (1.2 AU), with the average outer-most body having a mass of 0.2 M_{earth} 0.4 M_{earth}. Changes to increase the surface density of solids or to use a flatter profile both produce increased embryo migration and growth. At a given time, the relative change in semi-major axis of the outer-most embryo in these simulations is found to be essentially independent of a_{crit}, and we note that little further embryo migration takes place beyond 10^7 years. We conclude that the suppression of runaway growth outside a_{crit} does not mean that the habitable zones in such tight binary systems will be devoid of detectable, terrestrial mass planets, even if a_{crit} lies significantly interior to the inner edge of the habitable zone.
The analysis of transiting extra-solar planets provides an enormous amount of information about the formation and evolution of planetary systems. A precise knowledge of the host stars is necessary to derive the planetary properties accurately. The properties of the host stars, especially their chemical composition, are also of interest in their own right. Information about planet formation is inferred by, among others, correlations between different parameters such as the orbital period and the metallicity of the host stars. The stellar properties studied should be derived as homogeneously as possible. The present work provides new, uniformly derived parameters for 13 host stars of transiting planets. Effective temperature, surface gravity, microturbulence parameter, and iron abundance were derived from spectra of both high signal-to-noise ratio and high resolution by assuming iron excitation and ionization equilibria. For some stars, the new parameters differ from previous determinations, which is indicative of changes in the planetary radii. A systematic offset in the abundance scale with respect to previous assessments is found for the TrES and HAT objects. Our abundance measurements are remarkably robust in terms of the uncertainties in surface gravities. The iron abundances measured in the present work are supplemented by all previous determinations using the same analysis technique. The distribution of iron abundance then agrees well with the known metal-rich distribution of planet host stars. To facilitate future studies, the spectroscopic results of the current work are supplemented by the findings for other host stars of transiting planets, for a total dataset of 50 objects.
We present an ongoing study of 18 nearby galaxy groups, chosen for the availability of Chandra and/or XMM-Newton data and evidence for AGN/hot intragroup gas interaction. We have obtained 235 and 610 MHz observations at the GMRT for all the groups, and 327 and 150 MHz for a few. We discuss two interesting cases - NGC 5044 and AWM 4 - which exhibit different kinds of AGN/hot gas interaction. With the help of these examples we show how joining low-frequency radio data (to track the history of AGN outbursts through emission from aged electron populations) with X-ray data (to determine the state of hot gas, its disturbances, heating and cooling) can provide a unique insight into the nature of the feedback mechanism in galaxy groups.
The emission mechanisms in extragalactic jets include synchrotron and various inverse-Compton processes. At low (radio through infrared) energies, it is widely agreed that synchrotron emission dominates in both low-power (FR I) and high-power (FR II and quasar) jets, because of the power-law nature of the spectra observed and high polarizations. However, at higher energies, the emission mechanism for high-power jets at kpc scales is hotly debated. Two mechanisms have been proposed: either inverse-Compton of cosmic microwave background photons or synchrotron emission from a second, high-energy population of electrons. Here we discuss optical polarimetry as a method for diagnosing the mechanism for the high-energy emission in quasar jets, as well as revealing the jet's three-dimensional energetic and magnetic field structure. We then discuss high-energy emission mechanisms for powerful jets in the light of the HST polarimetry of PKS 1136-135.
A short gamma-ray burst GRB 090510 detected by {\it Fermi} shows an extra spectral component between 10 MeV and 30 GeV, an addition to a more usual low-energy ($<10$ MeV) Band component. In general, such an extra component could originate from accelerated protons. In particular, inverse Compton emission from secondary electron-positron pairs and proton synchrotron emission are competitive models for reproducing the hard spectrum of the extra component in GRB 090510. Here, using Monte Carlo simulations, we test the hadronic scenarios against the observed properties. To reproduce the extra component around GeV with these models, the proton injection isotropic-equivalent luminosity is required to be larger than $10^{55}$ erg$ / $s. Such large proton luminosities are a challenge for the hadronic models.
We present the results of new Australia Telescope Compact Array (ATCA) observations of one of the largest supernova remnants, SNR J0450-709, in the Local Group of galaxies. We found that this Large Magellanic Cloud (LMC) ob ject exhibits a typical morphology of an old supernova remnant (SNR) with diameter D=102x75+-1 pc and radio spectral index alpha=-0.43+-0.06. Regions of high polarisation were detected with peak value of ~40%.
Laboratory spectroscopy of non-thermal equilibrium plasmas photoionized by intense radiation is a key to understanding compact objects, such as black holes, based on astronomical observations. This paper describes an experiment to study photoionizing plasmas in laboratory under well-defined and genuine conditions. Photoionized plasma is here generated using a 0.5-keV Planckian x-ray source created by means of a laser-driven implosion. The measured x-ray spectrum from the photoionized silicon plasma resembles those observed from the binary stars Cygnus X-3 and Vela X-1 with the Chandra x-ray satellite. This demonstrates that an extreme radiation field was produced in the laboratory, however, the theoretical interpretation of the laboratory spectrum significantly contradicts the generally accepted explanations in x-ray astronomy. This model experiment offers a novel test bed for validation and verification of computational codes used in x-ray astronomy.
The August 2009 edition of the AAO newsletter contains articles on observations of the lunar impact of the Kaguya satellite, mapping the ISM towards Omega Centauri, early results from the Anglo-Australian Rocky Planet search, details of a new AAOmega observing mode, the new telescope control system and a number of regular features.
The effects of uniform horizontal shear on a stably stratified layer of gas is studied. The system is initially destabilized by a magnetically buoyant flux tube pointing in the cross-stream direction. The shear amplifies the initial field to Lundquist numbers of about 200-400, but then its value drops to about 100-300, depending on the value of the sub-adiabatic gradient. The larger values correspond to cases where the stratification is strongly stable and nearly isothermal. At the end of the runs the magnetic field is nearly axisymmetric, i.e. uniform in the streamwise direction. In view of Cowling's theorem the sustainment of the field remains a puzzle and may be due to subtle numerical effects that have not yet been identified in detail. In the final state the strength of the magnetic field decreases with height in such a way that the field is expected to be unstable. Low amplitude oscillations are seen in the vertical velocity even at late times, suggesting that they might be persistent.
In this Letter, we give new constraints on planet migration. They were obtained under the assumption that Saturn's current obliquity is due to a capture in resonance with Neptune's ascending node. If planet migration is too fast, then Saturn crosses the resonance without being captured and it keeps a small obliquity. This scenario thus gives a lower limit on the migration time scale tau. We found that this boundary depends strongly on Neptune's initial inclination. For two different migration types, we found that tau should be at least greater than 7 Myr. This limit increases rapidly as Neptune's initial inclination decreases from 10 to 1 degree. We also give an algorithm to know if Saturn can be tilted for any migration law.
The brightest continuum source in the Orion Molecular Cloud-3 region (OMC-3), MMS 6, was observed with the Very Large Array (VLA), the Nobeyama Millimeter Array (NMA), and the Submillimeter Array (SMA). Our data were supplemented by near- to mid-infrared archival data taken by Spitzer Space Telescope. The compact continuum source, MMS 6-main, was detected with an H_2 mass of 3.0 Msun with a size of 510 AU. Despite its compact and well condensed appearance, neither clear CO outflow, radio jet, nor infrared sources (at a wave-length shorter than 8 um) were detected at MMS 6-main even with the present high-spatial resolution and high-sensitivity observations. The derived H_2 column density, 2.6x10^25 cm^-2, corresponds to a visual extinction of A_v~15000 mag., and the derived number density is at least two orders of magnitude higher than for the other OMC-2/3 continuum sources. The volume density profile of the source was estimated to have a power-law index of 2 or steeper down to a radius of ~450 AU. The time scale to form a protostar at the center or the time scale elapsed after its formation is estimated to be 830 to 7600 yr. This is much shorter than the typical lifetime of the Class 0/I protostars, which is ~10^(4-5) yr, suggesting that MMS 6-main is probably in either the earliest stage of the proto-stellar core or in the latest stage of the pre-stellar phase.
There are several different methods to determine the individual supernovae (SNe) initial explosion energy, here we derive the average or typical explosion energy of shell-type supernova remnants (SNRs) in a particular way. By solving a group of equations pertaining to shell-type SNRs at the same stage we obtained some physical parameters, e.g. the distance ($d$), evolved age ($t$), etc.. Assuming series of different SN initial explosion energies ranging from $10^{48}$ ergs to $10^{53}$ ergs, we derived series of distance and age parameters with which compared already known ones. Thus the most likely value of the SNe initial explosion energy is obtained when the deviation is least, which equals to about $10^{51}$ ergs, in good agreement with the undertook value.
In 2D-simulations of self-gravitating gaseous discs, the potential is often computed in the framework of "softened gravity" initially designed for N-body codes. In this special context, the role of the softening length LAMBDA is twofold: i) to avoid numerical singularities in the integral representation of the potential (i.e., arising when the relative separation vanishes), and ii) to acount for stratification of matter in the direction perpendicular to the disc mid-plane. So far, most studies have considered LAMBDA as a free parameter and various values or formulae have been proposed without much mathematical justification. In this paper, we demonstrate by means of a rigorous calculus that it is possible to define LAMBDA such that the gravitational potential of a flat disc coincides at order zero with that of a geometically thin disc of the same surface density. Our prescription for LAMBDA, valid in the local, axisymmetric limit, has the required properties i) and ii). It is mainly an analytical function of the radius and disc thickness, and is sensitive to the vertical stratification. For mass density profiles considered (namely, profiles expandable over even powers of the altitude), we find that LAMBDA : i) is independant of the numerical mesh, ii) is always a fraction of the local thickness H, iii) goes through a minimum at the singularity (i.e., at null separation), and iv) is such that 0.13 < LAMBDA/H < 0.29 typically (depending on the separation and on density profile). These results should help us to improve the quality of 2D- and 3D-simulations of gaseous discs in several respects (physical realism, accuracy, and computing time).
We analyse the two-dimensional MHD configurations characterising the steady
state of the accretion disk on a highly magnetised neutron star. The model we
describe has a local character and represents the extension of the crystalline
structure outlined in Coppi (2005), dealing with a local model too, when a
specific accretion rate is taken into account. We limit our attention to the
linearised MHD formulation of the electromagnetic back-reaction characterising
the equilibrium, by fixing the structure of the radial, vertical and azimuthal
profiles. Since we deal with toroidal currents only, the consistency of the
model is ensured by the presence of a small collisional effect,
phenomenologically described by a non-zero constant Nernst coefficient (thermal
power of the plasma). Such an effect provides a proper balance of the electron
force equation via non zero temperature gradients, related directly to the
radial and vertical velocity components.
We show that the obtained profile has the typical oscillating feature of the
crystalline structure, reconciled with the presence of viscosity, associated to
the differential rotation of the disk, and with a net accretion rate. In fact,
we provide a direct relation between the electromagnetic reaction of the disk
and the (no longer zero) increasing of its mass per unit time. The radial
accretion component of the velocity results to be few orders of magnitude below
the equatorial sound velocity. Its oscillating-like character does not allow a
real matter in-fall to the central object (an effect to be searched into
non-linear MHD corrections), but it accounts for the out-coming of steady
fluxes, favourable to the ring-like morphology of the disk.
We compare the CO J =(1-0) and HI emission in the Large Magellanic Cloud (LMC) in three dimensions, i.e. including a velocity axis in addition to the two spatial axes, with the aim of elucidating the physical connection between giant molecular clouds (GMCs) and their surrounding HI gas. The CO J =1-0 dataset is from the second NANTEN CO survey and the HI dataset is from the merged Australia Telescope Compact Array (ATCA) and Parkes Telescope surveys. The major findings of our analysis are: 1) GMCs are associated with an envelope of HI emission, 2) in GMCs [average CO intensity] is proportional to [average HI intensity]^[1.1+-0.1] and 3) the HI intensity tends to increase with the star formation activity within GMCs, from Type I to Type III. An analysis of the HI envelopes associated with GMCs shows that their average linewidth is 14 km s-1 and the mean density in the envelope is 10 cm-3. We argue that the HI envelopes are gravitationally bound by GMCs. These findings are consistent with a continual increase in the mass of GMCs via HI accretion at an accretion rate of 0.05 Msun/yr over a time scale of 10 Myr. The growth of GMCs is terminated via dissipative ionization and/or stellar-wind disruption in the final stage of GMC evolution.
We briefly reviewed some recent progress on the studies of supernova remnants (SNRs), including the radio SNRs (the structure, polarization, spectrum etc.), observational characteristics of X-ray emission, pulsar wind nebulae (PWNe), association properties between SNR and PSR, interaction of SNR and interstellar medium (ISM), cosmos ray and the SNRs in external galaxies, etc.. Correspondingly to the continue improvement of space and spectrum resolution of the on-ground and in-space astronomical equipments at wavelengthes as radio, optical, X-ray and so on, we know about SNRs more and deeper.
We have observed the rotational ground-state (J = 1-0) transitions of DCO+,
HN13C and DNC with the IRAM 30m telescope toward the dark cloud LDN 1512 which
has exceptionally narrow lines permitting hyperfine splitting to be resolved in
part. The measured splittings of 50-300 kHz are used to derive nuclear
quadrupole and spin-rotation parameters for these species. The measurements are
supplemented by high-level quantum-chemical calculations using coupled-cluster
techniques and large atomic-orbital basis sets.
We find eQq = +151.12 (400) kHz and C_I = -1.12 (43) kHz for DCO+, eQq =
272.5 (51) kHz for HN13C, and eQq(D) = 265.9 (83) kHz and eQq(N) = 288.2 (71)
kHz for DNC. The numbers for DNC are consistent with previous laboratory data,
while our constants for DCO+ are somewhat smaller than previous results based
on astronomical data. For both DCO+ and DNC, our results are more accurate than
previous determinations. Our results are in good agreement with the
corresponding best theoretical estimates. We also derive updated rotational
constants for HN13C: B = 43545.6000 (47) MHz and D = 93.7 (20) kHz.
The hyperfine splittings of the DCO+, DNC and HN13C J = 1-0 lines range over
0.47-1.28 km/s, which is comparable to typical line widths in pre-stellar cores
and to systematic gas motions on ~1000 AU scales in protostellar cores. We
present tabular information to allow inclusion of the hyperfine splitting in
astronomical data interpretation. The large differences in the 14N quadrupole
parameters of DNC and HN13C have been traced to differences in the vibrational
corrections caused by significant non-rigidity of these molecules, particularly
along the bending coordinate.
There are either a near kinematic distance of 5.5 kpc or a far distance of 8.8 kpc for a Galactic supernova remnant (SNR) G32.8$-$0.1 derived by using the rotation curve of the Galaxy. Here we make sure that the remnant distance is the farther one 8.8 kpc through solving a group of equations for the shell-type remnants separately at the adiabatic-phase and the radiative-phase. For SNR G346.6$-$0.2 we determine its distance also the farther one 11 kpc rather than the nearer one 5.5 kpc.
Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling flows and in the process of galaxy formation and evolution. But, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how the cooling is balanced by the cavity heating for a complete sample of clusters (the Brightest 55 clusters of galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of which have detected X-ray bubbles in their ICM. Among the remaining 13, all except Ophiuchus could have significant cavity power yet remain undetected in existing images. This implies that the duty cycle of AGN outbursts with significant heating potential in cooling flow clusters is at least 60 % and could approach 100 %, but deeper data is required to constrain this further.
In hierarchical cosmological models, galaxies grow in mass through the continual accretion of smaller ones. The tidal disruption of these systems is expected to result in loosely bound stars surrounding the galaxy, at distances that reach $10 - 100$ times the radius of the central disk. The number, luminosity and morphology of the relics of this process provide significant clues to galaxy formation history, but obtaining a comprehensive survey of these components is difficult because of their intrinsic faintness and vast extent. Here we report a panoramic survey of the Andromeda galaxy (M31). We detect stars and coherent structures that are almost certainly remnants of dwarf galaxies destroyed by the tidal field of M31. An improved census of their surviving counterparts implies that three-quarters of M31's satellites brighter than $M_V < -6$ await discovery. The brightest companion, Triangulum (M33), is surrounded by a stellar structure that provides persuasive evidence for a recent encounter with M31. This panorama of galaxy structure directly confirms the basic tenets of the hierarchical galaxy formation model and reveals the shared history of M31 and M33 in the unceasing build-up of galaxies.
We present the discovery of two new dwarf galaxies, Andromeda XXI and Andromeda XXII, located in the surroundings of the Andromeda and Triangulum galaxies (M31 and M33). These discoveries stem from the first year data of the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 group conducted with the Megaprime/MegaCam wide-field camera mounted on the Canada-France-Hawaii Telescope. Both satellites appear as spatial overdensities of stars which, when plotted in a color-magnitude diagram, follow metal-poor, [Fe/H]=-1.8, red giant branches at the distance of M31/M33. Andromeda XXI is a moderately bright dwarf galaxy (M_V=-9.9+/-0.6), albeit with low surface brightness, emphasizing again that many relatively luminous M31 satellites still remain to be discovered. It is also a large satellite, with a half-light radius close to 1 kpc, making it the fourth largest Local Group dwarf spheroidal galaxy after the recently discovered Andromeda XIX, Andromeda II and Sagittarius around the Milky Way, and supports the trend that M31 satellites are larger than their Milky Way counterparts. Andromeda XXII is much fainter (M_V=-6.5+/-0.8) and lies a lot closer in projection to M33 than it does to M31 (42 vs. 224 kpc), suggesting that it could be the first Triangulum satellite to be discovered. Although this is a very exciting possibility in the context of a past interaction of M33 with M31 and the fate of its satellite system, a confirmation will have to await a good distance estimate to confirm its physical proximity to M33. Along with the dwarf galaxies found in previous surveys of the M31 surroundings, these two new satellites bring the number of dwarf spheroidal galaxies in this region to 20.
We show that the initial field values required to produce inflation in the two fields original hybrid model, and its supergravity F-term extension, do not suffer from any fine-tuning problem, even when the fields are restricted to be sub-planckian and for almost all potential parameter values. This is due to the existence of an initial slow-roll violating evolution which has been overlooked so far. Due to the attractor nature of the inflationary valley, these trajectories end up producing enough accelerated expansion of the universe. By numerically solving the full non-linear dynamics, we show that the set of such successful initial field values is connected, of dimension two and possesses a fractal boundary of infinite length exploring the whole field space. We then perform a Monte--Carlo--Markov--Chain analysis of the whole parameter space consisting of the initial field values, field velocities and potential parameters. We give the marginalised posterior probability distributions for each of these quantities such that the universe inflates long enough to solve the usual cosmological problems. Inflation in the original hybrid model and its supergravity version appears to be generic and more probable by starting outside of the inflationary valley. Finally, the implication of our findings in the context of the eternal inflationary scenario are discussed.
The recent weak lensing measurement of the dark matter mass of the high-redshift galaxy cluster XMMUJ2235.3-2557 of (8.5 +- 1.7) x 10^{14} Msun at z=1.4, indicates that, if the cluster is assumed to be the result of the collapse of dark matter in a primordial gaussian field in the standard LCDM model, then its abundance should be < 0.002 clusters in the observed area. Here we investigate how to boost the probability of XMMUJ2235.3-2557 in particular resorting to deviations from Gaussian initial conditions. We show that this abundance can be boosted by factors > 3-10 if the non-Gaussianity parameter f^local_NL is in the range 150-200. This value is comparable to the limit for f_NL obtained by current constraints from the CMB. We conclude that mass determination of high-redshift, massive clusters can offer a complementary probe of primordial non-gaussianity.
We present the results of detailed dynamical simulations of the effect of the migration of the four giant planets on both the transport of pre-formed Neptune Trojans, and the capture of new Trojans from a trans-Neptunian disk. We find that scenarios involving the slow migration of Neptune over a large distance (50Myr to migrate from 18.1AU to its current location) provide the best match to the properties of the known Trojans. Scenarios with faster migration (5Myr), and those in which Neptune migrates from 23.1AU to its current location, fail to adequately reproduce the current day Trojan population. Scenarios which avoid disruptive perturbation events between Uranus and Neptune fail to yield any significant excitation of pre-formed Trojans (transported with efficiencies between 30 and 98% whilst maintaining the dynamically cold nature of these objects). Conversely, scenarios with periods of strong Uranus-Neptune perturbation lead to the almost complete loss of such pre-formed objects. In these cases, a small fraction (~0.15%) of these escaped objects are later recaptured as Trojans prior to the end of migration, with a wide range of eccentricities (<0.35) and inclinations (<40 deg). In all scenarios (including those with such disruptive interaction between Uranus and Neptune) the capture of objects from the trans-Neptunian disk (through which Neptune migrates) is achieved with efficiencies between ~0.1 and ~1%. The captured Trojans display a wide range of inclinations (<40 deg for slow migration, and <20 deg for rapid migration) and eccentricities (<0.35), and we conclude that, given the vast amount of material which undoubtedly formed beyond the orbit of Neptune, such captured objects may be sufficient to explain the entire Neptune Trojan population. (Shortened version)
(abridged) MGRO J2019+37 is an unidentified extended source of VHE gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37, although extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Our aim is to identify radio and NIR sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts that could contribute to its emission. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the NIR Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at NIR wavelengths, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1 degree uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the HII region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158.
Our statistics on Galactic supernova remnants (SNRs) shows that the electrons temperature ($T$) of hard X-ray and the shock waves traveling velocity ($\upsilon$) decreases with ages ($t$) for all-sort remnants. However, the shock waves swept-up mass ($M_{su}$) of ISM increases with the age. Second, the remnant radio fluxes ($S$) at 1 GHz increase slightly with ISM electrons density ($n_0$). At last, the number distributions illustrate that the supernovae (SNe) initial kinetic energy ($E_0$), hydrogen column density ($N_H$), electrons temperature (kT) of hard X-ray, magnetic field ($B$) and the shock waves swept-up mass ($M_{su}$) of ISM mainly peaked at $(1 \sim 10) \times 10^{50}$ ergs, $(1 \sim 10)\times 10^{21}$ cm$^{-2}$, a few KeV, 100 $\mu$G and 10$\sim$100 $M_{\odot}$, respectively.
We report on the detection of diffuse radio emission in the X-ray luminous and massive galaxy cluster A1351 (z=0.322) using archival Very Large Array data at 1.4 GHz. Given its central location, morphology and Mpc-scale extent, we classify the diffuse source as a giant radio halo. X-ray and weak lensing studies show A1351 to be a system undergoing a major merger. The halo is associated to the most massive substructure. The presence of this source is explained assuming that merger-driven turbulence may re-accelerate high energy particles in the intracluster medium and generate diffuse radio emission on the cluster scale. The position of A1351 in the LogP$_{\rm 1.4 GHz}$ -- LogL$_{\rm X}$ plane is consistent with that of all other radio-halo clusters known to date, supporting a causal connection between the unrelaxed dynamical state of massive ($>10^{15}$ M$_{\odot}$) clusters and the presence of giant radio halos.
Regular observations by the All Sky Monitor aboard the Rossi X-ray Timing Explorer satellite have yielded well-sampled light-curves with a time baseline of over ten years. We find that up to eight of the sixteen brightest persistent low mass X-ray binaries show significant, possible sinusoidal, variations with periods of order ten years. We speculate on its possible origin and prevalence in the population of low mass X-ray binaries and we find the presence of a third object in the system, or long-period variability intrinsic to the donor star, as being attractive origins for the X-ray flux modulation we detect. For some of the objects in which we do not detect a signal, there is substantial short-term variation which may hide modest modulation on long time-scales. Decade time-scale modulations may thus be even more common.
We propose to explore the so-far poorly measured cosmic ray and gamma-ray sky (accelerator sky) in the energy range from 10 TeV to 1 EeV. New physics questions might be addressed in this last remaining observation window of gamma-ray astronomy. The very high beam-energies provided by Cosmic accelerators and the air-shower detection technique naturally imply an entanglement between fundamental questions of astroparticle physics and particle physics. The new large-area (10 km$^2$) wide-angle (1 sr) air Cherenkov detector SCORE (Study for a Cosmic ORigin Explorer) is based on non-imaging Cherenkov light-front sampling with sensitive large-area detector modules of the order of 1 m$^2$. The lateral photon density and arrival-time distribution will be sampled up to large distances from the shower core. The physics motivations, the detector concept and first simulation results will be presented.
We present the first detailed spatio-kinematical analysis and modelling of the Southern planetary nebula SuWt 2. This object presents a problem for current theories of planetary nebula formation and evolution, as it is not known to contain a central post-main sequence star. Our findings are discussed with relation to possible formation scenarios for SuWt 2.
We report an observation of X-ray emission from the exciting region of Cepheus A with the Chandra/ACIS instrument. What had been an unresolved X-ray source comprising the putative power sources is now resolved into at least 3 point-like sources, each with similar X-ray properties and differing radio and submillimeter properties. The sources are HW9, HW3c, and a new source that is undetected at other wavelengths "h10." They each have inferred X-ray luminosities >= 10^31 erg s^-1 with hard spectra, T >= 10^7 K, and high low-energy absorption equivalent to tens to as much as a hundred magnitudes of visual absorption. The star usually assumed to be the most massive and energetic, HW2, is not detected with an upper limit about 7 times lower than the detections. The X-rays may arise via thermal bremsstrahlung in diffuse emission regions associated with a gyrosynchrotron source for the radio emission, or they could arise from powerful stellar winds. We also analyzed the Spitzer/IRAC mid-IR observation from this star-formation region and present the X-ray results and mid-IR classifications of the nearby stars. HH 168 is not as underluminous in X-rays as previously reported.
Massive evolved stars loss a large fraction of their mass via copious stellar wind or instant outbursts and during certain evolutionary phases they can be identified via the presence of their circumstellar nebulae. In this Letter, we present the results of search for ring-like and bipolar nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24 $\mu$m data obtained with the Multiband Imaging Photometer for Spitzer. We discovered 94 nebulae and suggest that they could serve as indicators that their central stars are Luminous Blue Variables (LBVs) or related evolved stars. Our suggestion is supported by spectroscopic follow-ups of two dozens of central stars associated with the nebulae from our sample, most of which turns out to be either candidate LBVs (cLBVs), late WN-type (WNL) Wolf-Rayet (WR) stars or blue supergiants. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs, which in turn would have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen burning O stars and helium burning WR stars. We also report the detection of an arc-like structure attached to the cLBV HD 326823 and extended diffuse emission associated with the previously known shells around the cLBV GAL 079.29+00.46 and the WN8h star WR 124.
We present optical spectroscopic identifications of X-ray sources in ~3 square degrees of the XMM-Large Scale Structure survey (XMM-LSS), also covered by the Canada France Hawaii Telescope Legacy Survey (CFHTLS), obtained with the AAOmega instrument at the Anglo Australian Telescope. In a flux limited sample of 829 point like sources in the optical band with g' <~22 mag and the 0.5-2 keV flux > 1x10^{-15}erg/cm^2/s, we observed 695 objects and obtained reliable spectroscopic identification for 489 sources, ~59% of the overall sample. We therefore increase the number of identifications in this field by a factor close to five. Galactic stellar sources represent about 15% of the total (74/489). About 55% (267/489) are broad-line Active Galactic Nuclei (AGNs) spanning redshifts between 0.15 and 3.87 with a median value of 1.68. The optical-to-X-ray spectral index of the broad-line AGNs is 1.47, typical of optically-selected Type I quasars and is found to correlate with the rest frame X-ray and optical monochromatic luminosities at 2 keV and 2500 angstroms respectively. Consistent with previous studies, we find alpha_ox not to be correlated with z. In addition, 32 and 116 X-ray sources are, respectively absorption and emission-line galaxies at z<0.76. From a line ratio diagnostic diagram it is found that in about 50% of these emission line galaxies, the emission lines are powered significantly by the AGN. Thirty of the XMM sources are detected at one or more radio frequencies. In addition, 24 sources have ambiguous identification: in 8 cases, two XMM sources have a single optical source within 6 arcsecs of each of them, whereas, 2 and 14 XMM sources have, respectively, 3 and 2 possible optical sources within 6 arcsecs of each of them.
For late-type non-active stars, gravitational redshifts and convective blueshifts are the main source of biases in the determination of radial velocities. If ignored, these effects can introduce systematic errors of the order of ~ 0.5 km/s. We demonstrate that three-dimensional hydrodynamical simulations of solar surface convection can be used to predict the convective blue-shifts of weak spectral lines in solar-like stars to ~ 0.070 km/s. Using accurate trigonometric parallaxes and stellar evolution models, the gravitational redshifts can be constrained with a similar uncertainty, leading to absolute radial velocities accurate to better than ~ 0.1 km/s.
We study the variable star content of the globular cluster M53 to compute the physical parameters of the constituting stars and the distance of the cluster. Covering two adjacent seasons in 2007 and 2008, new photometric data are gathered for 3048 objects in the field of M53. By using the OIS method and subsequently TFA, we search for variables in the full sample by using DFT and BLS methods. We select variables based on the statistics related to these methods combined with visual inspections. We identified 12 new variables (2 RR Lyrae stars, 7 short periodic stars - 3 of them are SX Phe stars - and 3 long-period variables). No eclipsing binaries were found in the present sample. Except for the 3 (hitherto unknown) Blazhko RR Lyrae stars, no multiperiodic variables were found. We showed that after proper period shift, the PLC relation for the first overtone RR Lyrae sample tightly follows the one spanned by the fundamental stars. Furthermore, the slope is in agreement with the one derived from other clusters. Based on the earlier Baade-Wesselink calibration of the PLC relations, the derived reddening-free distance modulus of M53 is 16.31 +/- 0.04 mag, corresponding to a distance modulus of 18.5 mag for the Large Magellanic Cloud. From the Fourier parameters of the RRab stars we obtained an average iron abundance of -1.58 +/- 0.03. This is ~0.5 dex higher than the overall abundance of the giants as given in the literature and derived in this paper from the three-color photometry of giants. We suspect that the source of this discrepancy (observable also in other, low-metallicity clusters) is the want of sufficient number of low-metallicity objects in the calibrating sample of the Fourier method.
The modulation of high-energy transients' (or steadily emitting sources') light curves due to the imperfect alignment of the detector's view axis with the spin axis in a spin-stabilized satellite is derived. It is shown how the orientation of the detector's view axis with respect to the satellite's spin axis may be estimated using observed light curves. The effects of statistical fluctuations are considered. Conversely, it is shown how the attitude of a spin-axis stabilized satellite as well as the unknown position of a celestial source of high-energy photons may be determined using a detector whose view-axis is intentionally kept inclined and is known accurately beforehand. The case of three-axes stabilized satellites is also discussed.
Based on a set of over 100 medium- to high-resolution optical spectra collected from 2003 to 2009, we investigate the properties of the O-type star population in NGC6611 in the core of the Eagle Nebula (M16). Using a much more extended data set than previously available, we revise the spectral classification and multiplicity status of the nine O-type stars in our sample. We confirm two suspected binaries and derive the first SB2 orbital solutions for two systems. We further report that two other objects are displaying a composite spectrum, suggesting possible long-period binaries. Our analysis is supported by a set of Monte-Carlo simulations, allowing us to estimate the detection biases of our campaign and showing that the latter do not affect our conclusions. The absolute minimal binary fraction in our sample is f_min=0.44 but could be as high as 0.67 if all the binary candidates are confirmed. As in NGC6231 (see Paper I), up to 75% of the O star population in NGC6611 are found in an O+OB system, thus implicitly excluding random pairing from a classical IMF as a process to describe the companion association in massive binaries. No statistical difference could be further identified in the binary fraction, mass-ratio and period distributions between NGC6231 and NGC6611, despite the difference in age and environment of the two clusters.
We study the slow-roll inflation models, where the inflaton slow-rolls along a trajectory whose orthogonal directions are lifted by potentials with masses of order the Hubble parameter. In these models large non-Gaussianities can be generated through the transformation from the isocurvature modes to the curvature mode, once the inflaton trajectory turns. We find large bispectra with one-parameter family of novel shapes, interpolating between the equilateral and local shape. According to the in-in formalism, the shapes of these non-Gaussianities are different from a simple projection from the isocurvature non-Gaussian correlation functions.
Dynamical Chern-Simons (DCS) modified gravity is an attractive, yet relatively unexplored, candidate to an alternative theory of gravity. The DCS correction couples a dynamical scalar field to the gravitational field. In this framework, we analyze the perturbation formalism and stability properties of spherically symmetric black holes. Assuming that no background scalar field is present, gravitational perturbations with polar and axial parities decouple. We find no effect of the Chern-Simons coupling on the polar sector, while axial perturbations couple to the Chern-Simons scalar field. The axial sector can develop strong instabilities if the coupling parameter beta, associated to the dynamical coupling of the scalar field, is small enough; this yields a constraint on beta which is much stronger than the constraints previously known in the literature.
An effect generated by the nonexponential behavior of the survival amplitude of an unstable state in the long time region is considered. In 1957 Khalfin proved that this amplitude tends to zero as $t\to\infty$ more slowly than any exponential function of $t$. For a time-dependent decay rate $\gamma(t)$ Khalfin's result means that this $\gamma(t)$ is not a constant for large $t$ but that it tends to zero as $t\to\infty$. We find that a similar conclusion can be drawn for the instantaneous energy of the unstable state for a large class of models of unstable states: This energy tends to the minimal energy of the system ${\cal E}_{min}$ as $t\to\infty$ which is much smaller than the energy of this state for $t$ of the order of the lifetime of the considered state. Analyzing the transition time region between exponential and non-exponential form of the survival amplitude we find that the instantaneous energy of a considered unstable state can take large values, much larger than the energy of this state for $t$ from the exponential time region. Taking into account results obtained for a model considered, it is hypothesized that this purely quantum mechanical effect may be responsible for the properties of broad resonances such as $\sigma$ meson as well as having astrophysical and cosmological consequences.
We discuss the important role played during inflation by one of the soft supersymmetry breaking terms in the inflationary potential of supersymmetric hybrid inflation models. With minimal Kaehler potential, the inclusion of this term allows the prediction for the scalar spectral index to agree with the value n_s = 0.963^{+0.014}_{-0.015} found by WMAP5. In the absence of this soft term, and by taking into account only radiative and supergravity corrections, it is well known that n_s >= 0.985. This same soft term has previously been shown to play a key role in resolving the MSSM mu problem. The tensor to scalar ratio r is quite small in these models, taking on values r <= 10^{-5} in the WMAP5 2-sigma range of n_s.
In this paper we consider realistic model of inflation embedded in the framework of loop quantum cosmology. Phase of inflation is preceded here by the phase of a quantum bounce. We show how parameters of inflation depend on the initial conditions established in the contracting, pre-bounce phase. Our investigations indicate that phase of the bounce easily sets proper initial conditions for the inflation. Subsequently we study observational effects that might arise due to the quantum gravitational modifications. We perform preliminary observational constraints for the Barbero-Immirzi parameter $\gamma$, critical density $\rho_{\text{c}}$ and parameter $\lambda$. In the next step we study effects on power spectrum of perturbations. We calculate spectrum of perturbations from the bounce and from the joined bounce+inflation phase. Based on these studies we indicate possible way to relate quantum cosmological models with the astronomical observations. Using the Sachs-Wolfe approximation we calculate spectrum of the super-horizontal CMB anisotropies. We show that quantum cosmological effects can, in the natural way, explain suppression of the low CMB multipoles. We show that fine-tuning is not required here and model is consistent with observations. We also analyse other possible probes of the quantum cosmologies and discuss perspectives of their implementation.
The one-dimensional dynamics of a classical ideal 'exotic' fluid with equation of state $p=p(\epsilon) < 0$ violating the weak energy condition is discussed. Under certain assumptions it is shown that the well-known Hwa-Bjorken exact solution of one-dimensional relativistic hydrodynamics is confined within the future/past light cone. It is also demonstrated that the total energy of such a solution is equal to zero and that there are regions within the light cone with negative $(-)$ and positive $(+)$ total energies. For certain equations of state there is a continuous energy transfer from the $(-)$-regions to the $(+)$-regions resulting in indefinite growth of energy in the $(+)$ regions with time, which may be interpreted as action of a specific 'Perpetuum Mobile' (Perpetuum Motion). It is speculated that if it is possible to construct a three-dimensional non-stationary flow of an exotic fluid having a finite negative value of energy such a situation would also occur. Such a flow may continuously transfer positive energy to gravitational waves, resulting in a runaway. It is conjectured that theories plagued by such solutions should be discarded as inherently unstable.
Links to: arXiv, form interface, find, astro-ph, recent, 0909, contact, help (Access key information)
We derive a new age for the Gamma^2 Velorum binary by comparing recent observations to our set of binary models. We find that it is very unlikely the stars have not interacted, which implies that previous estimates of the age from single-star models of 3.5+/-0.4 Myrs are incorrect. We prefer an older age of 5.5+/-1 Myrs that agrees with the age of other lower mass stars in the Vela OB association. We also find that our favoured binary model shows the components of the binary have interacted in a Case B, post main-sequence, mass-transfer event. During the mass-transfer event, the envelopes of both components where radiative and therefore the damping of tidal forces are relatively weak. This explains why the binary is still eccentric after mass-transfer.
We investigate fluid motions near the midplane of vertically stratified accretion disks with highly resistive midplanes. In such disks, the magnetorotational instability drives turbulence in thin layers surrounding a resistive, stable dead zone. The turbulent layers in turn drive motions in the dead zone. We examine the properties of these motions using three-dimensional, stratified, local, shearing-box, non-ideal, magnetohydrodynamical simulations. Although the turbulence in the active zones provides a source of vorticity to the midplane, no evidence for coherent vortices is found in our simulations. It appears that this is because of strong vertical oscillations in the dead zone. By analyzing time series of azimuthally-averaged flow quantities, we identify an axisymmetric wave mode particular to models with dead zones. This mode is reduced in amplitude, but not suppressed entirely, by changing the equation of state from isothermal to ideal. These waves are too low-frequency to affect sedimentation of dust to the midplane, but may have significance for the gravitational stability of the resulting midplane dust layers.
The NASA Kepler mission is designed to find planets through transits. Accurate and precise radii of the detected planets depend on knowing the radius of the host star accurately, which is difficult unless the temperature and luminosity of the star are known precisely. Kepler, however, has an asteroseismology programme that will provide seismic variables that can characterise stellar radii easily, accurately, and extremely precisely. In this paper we describe the Yale-Birmingham (YB) method to determine stellar radii using a combination of seismic and conventional variables, and analyse the effect of these variables on the result. We find that for main-sequence stars, a knowledge of the parallax is not important to get accurate radii using the YB method: we can get results to an accuracy and precision of better than a few percent if we know the effective temperature and the seismic parameters for these stars. Metallicity does not make much difference either. However, good estimates of the effective temperature and metallicity, along with those of the seismic parameters, are essential to determine radii of sub giants properly. On the other hand, for red giants we find that determining radii properly is not possible without a good estimate of the parallax. We find that the so called "surface term" in the seismic data has minimal effect on the inferred radii. Uncertainties in the convective mixing length can matter under some circumstances and can cause a systematic shift in the inferred radii. Blind tests with data simulated to match those expected from the asteroseismic Survey Phase of Kepler show that it will be possible to infer stellar radii successfully using our method.
Charge Transfer Inefficiency (CTI) due to radiation damage above the Earth's atmosphere creates spurious trailing in Hubble Space Telescope (HST) images. Radiation damage also creates unrelated warm pixels - but these happen to be perfect for measuring CTI. We model CTI in the Advanced Camera for Surveys (ACS)/Wide Field Channel (WFC) and construct a physically motivated correction scheme. This operates on raw data, rather than secondary science products, by returning individual electrons to pixels from which they were unintentionally dragged during readout. We apply our correction to images from the HST COSMOS survey, successfully reducing the CTI trails by a factor of ~30 everywhere in the CCD and at all flux levels. We quantify changes in galaxy photometry, astrometry and shape. The remarkable 97% level of correction is more than sufficient to enable a (forthcoming) reanalysis of downstream science products, and the collection of larger surveys.
Multiple star systems are commonly assumed to form coevally; they thus provide the anchor for most calibrations of stellar evolutionary models. In this paper we study the binary population of the Taurus-Auriga association, using the component positions in an HR diagram in order to quantify the frequency and degree of coevality in young binary systems. After identifying and rejecting the systems that are known to be affected by systematic errors (due to further multiplicity or obscuration by circumstellar material), we find that the relative binary ages, |Delta log(tau)|, have an overall dispersion of sigma~0.40 dex. Random pairs of Taurus members are coeval only to within sigma~0.58 dex, indicating that Taurus binaries are indeed more coeval than the association as a whole. However, the distribution of |Delta log(tau)| suggests two populations, with ~2/3 of the sample appearing coeval to within the errors (sigma~0.16 dex) and the other ~1/3 distributed in an extended tail reaching |Delta log(tau)|~0.4-0.9 dex. To explain the finding of a multi-peaked distribution, we suggest that the tail of the differential age distribution includes unrecognized hierarchical multiples, stars seen in scattered light, or stars with disk contamination; additional followup is required to rule out or correct for these explanations. The relative coevality of binary systems does not depend significantly on the system mass, mass ratio, or separation. Indeed, any pair of Taurus members wider than ~10' (~0.7 pc) shows the full age spread of the association.
We have measured the abundances of Fe, Si, Ni, Ti, and Na in 20 Pleiads with \teff values near solar and with low \vsini using high-resolution, high signal-to-noise echelle spectra. We have validated our procedures by also analyzing 10 field stars of a range of temperatures and metallicities that were observed by \citet{Vale05}. Our result for the Pleiades is [Fe/H] = $+0.03\pm0.02\pm0.05$ (statistical and systematic). The average of published measurements for the Pleiades is $+0.042\pm0.021$.
We present results of visible wavelengths spectroscopic measurements (0.45 to 0.72 microns) of two binary asteroids, obtained with the 1-m telescope at the Wise Observatory on January 2008. The asteroids (90) Antiope and (1509) Esclangona were observed to search for spectroscopic variations correlated with their rotation while presenting different regions of their surface to the viewer. Simultaneous photometric observations were performed with the Wise Observatory's 0.46-m telescope, to investigate the rotational phase behavior and possible eclipse events. (90) Antiope displayed an eclipse event during our observations. We could not measure any slope change of the spectroscopic albedo within the error range of 3%, except for a steady decrease in the total light flux while the eclipse took place. We conclude that the surface compositions of the two components do not differ dramatically, implying a common origin and history. (1509) Esclangona did not show an eclipse, but rather a unique lightcurve with three peaks and a wide and flat minimum, repeating with a period of 3.2524 hours. Careful measurements of the spectral albedo slopes reveal a color variation of 7 to 10 percent on the surface of (1509) Esclangona, which correlates with a specific region in the photometric lightcurve. This result suggests that the different features on the lightcurve are at least partially produced by color variations and could perhaps be explained by the existence of an exposed fresh surface on (1509) Esclangona.
Eulerian hydrodynamical simulations are a powerful and popular tool for modeling fluids in astrophysical systems. In this work, we critically examine recent claims that these methods violate Galilean invariance of the Euler equations. We demonstrate that Eulerian hydrodynamics methods do converge to a Galilean-invariant solution, provided a well-defined convergent solution exists. Specifically, we show that numerical diffusion, resulting from diffusion-like terms in the discretized hydrodynamical equations solved by Eulerian methods, accounts for the effects previously identified as evidence for the Galilean non-invariance of these methods. These velocity-dependent diffusive terms lead to different results for different bulk velocities when the spatial resolution of the simulation is kept fixed, but their effect becomes negligible as the resolution of the simulation is increased to obtain a converged solution. In particular, we find that Kelvin-Helmholtz instabilities develop properly in realistic Eulerian calculations regardless of the bulk velocity provided the problem is simulated with sufficient resolution (a factor of 2-4 increase compared to the case without bulk flows for realistic velocities). Our results show that high-resolution Eulerian methods can perform well in the presence of supersonic bulk flows, especially when aided by Adaptive Mesh Refinement, and should continue to be a highly competitive and attractive choice for modeling astrophysical fluids.
Detection of electromagnetic (EM) counterparts of pre-coalescence binaries has very important implications for our understanding of the evolution of these systems as well as the associated accretion physics. In addition, a combination of EM and gravitational wave signatures observed from coalescing supermassive black hole binaries (SBHBs) would provide independent measurements of redshift and luminosity distance, thus allowing for high precision cosmological measurements. However, a statistically significant sample of these objects is yet to be attained and finding them observationally has proven to be a difficult task. Here we discuss existing observational evidence and how further advancements in the theoretical understanding of observational signatures of SBHBs before and after the coalescence can help in future searches.
Due to their higher concentrations and small internal velocities, Milky Way subhalos can be at least as important as the smooth halo in accounting for the GeV positron excess via dark matter annihilation. After showing how this can be achieved in Sommerfeld models, we demonstrate that, in this case, the diffuse inverse-Compton emission resulting from electrons and positrons produced in substructure leads to a nearly-isotropic signal close to the level of the isotropic GeV gamma-ray background seen by Fermi. Moreover, we show that HESS cosmic-ray electron measurements can be used to constrain TeV internal bremsstrahlung gamma rays from annihilation to charged leptons.
Molecular outflows from high-mass young stellar objects provide an excellent way to study the star formation process, and investigate if they are scaled-up versions of their low-mass counterparts. We selected the nearby massive star forming region IRAS 17233-3606 in order to study the kinematics and physics along the molecular outflow(s) originating from this source. We observed IRAS 17233-3606 in CO, a typical tracer of gas associated with molecular outflow, with the Submillimeter Array in the (2-1) transition, and with the APEX telescope in the higher excitation (6-5) line. Additional infrared H2 observations were performed with the UKIRT telescope. The CO data were analysed using a LVG approach. Our data resolve the previously detected molecular outflow in at least three different components, one of them with a high collimation factor ~4, and characterised by emission at extremely high velocities (|v-v_{LSR}|>120 km s^{-1}). The estimate of the kinematical outflow parameters are typical of massive YSOs, and in agreement with the measured bolometric luminosity of the source. The kinematic ages of the flows are in the range 10^2-10^3 yr, and therefore point to young objects that still did not reach the main sequence.
We compare the efficiency of weak lensing-selected galaxy clusters counts and of the weak lensing bispectrum at capturing non-Gaussian features in the dark matter distribution. We use the halo model to compute the weak lensing power spectrum, the bispectrum and the expected number of detected clusters, and derive constraints on cosmological parameters for a large, low systematic weak lensing survey, by focusing on the $\Omega_m$-$\sigma_8$ plane and on the dark energy equation of state. We separate the power spectrum into the resolved and the unresolved parts of the data, the resolved part being defined as detected clusters, and the unresolved part as the rest of the field. We consider four kinds of clusters counts, taking into account different amount of information : signal-to-noise ratio peak counts; counts as a function of clusters' mass; counts as a function of clusters' redshift; and counts as a function of clusters' mass and redshift. We show that when combined with the power spectrum, those four kinds of counts provide similar constraints, thus allowing one to perform the most direct counts, signal-to-noise peaks counts, and get percent level constraints on cosmological parameters. We show that the weak lensing bispectrum gives constraints comparable to those given by the power spectrum and captures non-Gaussian features as well as clusters counts, its combination with the power spectrum giving errors on cosmological parameters that are similar to, if not marginally smaller than, those obtained when combining the power spectrum with cluster counts. We finally note that in order to reach its potential, the weak lensing bispectrum must be computed using all triangle configurations, as equilateral triangles alone do not provide useful information.
Cosmological departures from general relativity offer a possible explanation for the cosmic acceleration. To linear order, these departures (quantified by the model-independent parameter $\varpi$, referred to as a `gravitational slip') amplify or suppress the growth of structure in the universe relative to what we would expect to see from a general relativistic universe lately dominated by a cosmological constant. As structures collapse and become more dense, linear perturbation theory is an inadequate descriptor of their behavior, and one must extend calculations to non-linear order. If the effects of gravitational slip extend to these higher orders, we might expect to see a signature of $\varpi$ in the bispectrum of galaxies distributed on the sky. We solve the equations of motion for non-linear perturbations in the presence of gravitational slip and find that, while there is an effect on the bispectrum, it is too weak to be detected with present galaxy surveys. We also develop a formalism for incorporating scale dependence into our description of gravitational slip.
We present general considerations regarding the derivation of the radial
distances of coronal mass ejections (CMEs) from elongation angle measurements
such as those provided by SECCHI and SMEI, focusing on measurements in the
Heliospheric Imager 2 (HI-2) field of view (i.e. past 0.3 AU). This study is
based on a three-dimensional (3-D) magneto-hydrodynamics (MHD) simulation of
two CMEs observed by SECCHI on January 24-27, 2007. Having a 3-D simulation
with synthetic HI images, we are able to compare the two basic methods used to
derive CME positions from elongation angles, the so-called "Point-P" and
"Fixed-Phi" approximations.
We confirm, following similar works, that both methods, while valid in the
most inner heliosphere, yield increasingly large errors in HI-2 field of view
for fast and wide CMEs. Using a simple model of a CME as an expanding
self-similar sphere, we derive an analytical relationship between elongation
angles and radial distances for wide CMEs. This relationship is simply the
harmonic mean of the "Point-P" and "Fixed-Phi'' approximations and it is aimed
at complementing 3-D fitting of CMEs by cone models or flux rope shapes. It
proves better at getting the kinematics of the simulated CME right when we
compare the results of our line-of-sights to the MHD simulation. Based on this
approximation, we re-analyze the J-maps (time-elongation maps) in January
26-27, 2007 and present the first observational evidence that the merging of
CMEs is associated with a momentum exchange from the faster ejection to the
slower one due to the propagation of the shock wave associated with the fast
eruption through the slow eruption.
We have combined 327.5 MHz radio observations and optical spectroscopy to study conditions in the Extended Orion Nebula. We see a steady progression of characteristics with increasing distance from the dominant photoionizing star Theta1OriC. This progression includes a decrease in the F(Halpha)/F(Hbeta) ratio, an increase in the relative strength of scattered stellar continuum, decrease in electron density determined from the [S II] doublet, and increase in the ratio of Emission Measures derived from the Hbeta line and the 327.5 MHz radio continuum. We conclude that beyond about 5' south of Theta1OriC that scattered light from the much brighter central Huygens region of the nebula significantly contaminates local emission. This strengthens earlier arguments that wavelength and model dependent scattering of emission line radiation imposes a fundamental limit on our ability to determine the physical conditions and abundances in this and arguably other similar Galactic Nebulae. The implications for the study of extra-galactic HII regions are even more severe. We confirm the result of an earlier study that at least the eastern boundary of the Extended Orion Nebula is dominated by scattered light from the Huygens region.
The kd-tree is a fundamental tool in computer science. Among others, an application of the kd-tree search (oct-tree method) to fast evaluation of particle interactions and neighbor search is highly important since computational complexity of these problems are reduced from O(N^2) with a brute force method to O(N log N) with the tree method where N is a number of particles. In this paper, we present a parallel implementation of the tree method running on a graphic processor unit (GPU). We successfully run a simulation of structure formation in the universe very efficiently. On our system, which costs roughly $900, the run with N ~ 2.87x10^6 particles took 5.79 hours and executed 1.2x10^13 force evaluations in total. We obtained the sustained computing speed of 21.8 Gflops and the cost per Gflops of 41.6/Gflops that is two and half times better than the previous record in 2006.
Though feedback from central active galactic nuclei provides an attractive solution to the problem of overcooling in galaxy cluster cores, another possible source of heating may come from ``sloshing'' of the cluster core gas initiated by mergers. We present a set of simulations of galaxy cluster mergers with subclusters in order to determine the amount of heating provided by the mechanism of sloshing, exploring a parameter space over mass ratio, impact parameter, and viscosity of the intracluster medium (ICM). Our results show that for sloshing caused by mergers with gasless subclusters cooling may be partially offset by heating from sloshing, but this mechanism is less effective if the ICM is viscous.
We investigate the neutral hydrogen (HI) content of sixteen groups for which we have multi-wavelength data including X-ray observations. Wide-field imaging of the groups was obtained with the 20-cm multibeam system on the 64-m Parkes telescope. We have detected ten previously uncatalogued HI sources, one of which has no visible optical counterpart. We examine the HI properties of the groups, compared to their X-ray characteristics, finding that those groups with a higher X-ray temperature and luminosity contain less HI per galaxy. The HI content of a group depends on its morphological make-up, with those groups dominated by early-type galaxies containing the least total HI. We determined the expected HI for the spiral galaxies in the groups, and found that a number of the galaxies were HI deficient. The HI deficient spirals were found both in groups with and without a hot intra-group medium. The HI deficient galaxies were not necessarily found at the centre of the groups, however, we did find that two thirds of HI deficient galaxies were found within about 1 Mpc from the group centre, indicating that the group environment is affecting the gas-loss from these galaxies. We determined the HI mass function for a composite sample of 15 groups, and found that it is significantly flatter than the field HI mass function. We also find a lack of high HI-mass galaxies in groups. One possible cause of this effect is the tidal stripping of HI gas from spiral galaxies as they are pre-processed in groups.
The electrostatic instabilities driven by the gradients of the density, temperature and magnetic field, are discussed in their application to solar magnetic structures. Strongly growing modes are found for some typical plasma parameters. These instabilities i) imply the presence of electric fields that can accelerate the plasma particles in both perpendicular and parallel directions with respect to the magnetic field vector, and ii) can stochastically heat ions. The perpendicular acceleration is to the leading order determined by the $\bmath{E}\times \bmath{B}$-drift acting equally on both ions and electrons, while the parallel acceleration is most effective on electrons. The experimentally confirmed stochastic heating is shown to act mainly in the direction perpendicular to the magnetic field vector and acts stronger on heavier ions. The energy release rate and heating may exceed for several orders of magnitude the value accepted as necessary for a self-sustained heating in the solar corona. The energy source for both the acceleration and the heating is stored in the mentioned background gradients.
We aim to present a tutorial on the detection, parameter estimation and statistical analysis of compact sources (far galaxies, galaxy clusters and Galactic dense emission regions) in cosmic microwave background observations. The topic is of great relevance for current and future cosmic microwave background missions because the presence of compact sources in the data introduces very significant biases in the determination of the cosmological parameters that determine the energy contain, origin and evolution of the universe and because compact sources themselves provide us with important information about the large scale structure of the universe.
Dynamical friction arises from the interaction of a perturber and the gravitational wake it excites in the ambient medium. This interaction is usually derived assuming that the perturber has a constant velocity. In realistic situations, motion is accelerated as for instance by dynamical friction itself. Here, we study the effect of acceleration on the dynamical friction force. We characterize the density enhancement associated with a constantly accelerating perturber with rectilinear motion in an infinite homogeneous gaseous medium and show that dynamical friction is not a local force and that its amplitude may depend on the perturber's initial velocity. The force on an accelerating perturber is maximal between Mach 1 and Mach 2, where it is smaller than the corresponding uniform motion friction. In the limit where the perturber's size is much smaller than the distance needed to change the Mach number by unity through acceleration, a subsonic perturber feels a force similar to uniform motion friction only if its past history does not include supersonic episodes. Once an accelerating perturber reaches large supersonic speeds, accelerated motion friction is marginally stronger than uniform motion friction. The force on a decelerating supersonic perturber is weaker than uniform motion friction as the velocity decreases to a few times the sound speed. Dynamical friction on a decelerating subsonic perturber with an initial Mach number larger than 2 is much larger than uniform motion friction and tends to a finite value as the velocity vanishes in contrast to uniform motion friction.
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. Four redshift bins with boundaries at $z=0.22$, 0.527, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parameter $w(z)$ of dark energy. We find no significant evidence for evolving $w(z)$. With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift is improved by 70%. We also find that the question whether dark energy is dynamical or not can be better addressed if we have more accurate data in the redshift range $0.2-0.9$.
We present AGN feedback in the interesting cases of two groups: AWM 4 and NGC 5044. AWM 4 is characterized by a combination of properties which seems to defy the paradigm for AGN heating in cluster cores: a flat inner temperature profile indicative of a past, major heating episode which completely erased the cool core, as testified by the high central cooling time (> 3 Gyrs) and by the high central entropy level (~ 50 keV cm^2), and yet an active central radio galaxy with extended radio lobes out to 100 kpc, revealing recent feeding of the central massive black hole. A recent Chandra observation has revealed the presence of a compact cool corona associated with the BCG, solving the puzzle of the apparent lack of low entropy gas surrounding a bright radio source, but opening the question of its origin. NGC 5044 shows in the inner 10 kpc a pair of cavities together with a set of bright filaments. The cavities are consistent with a recent AGN outburst as also indicated by the extent of dust and H_alpha emission even though the absence of extended 1.4 GHz emission remains to be explained. The soft X-ray filaments coincident with H_alpha and dust emission are cooler than those which do not correlate with optical and infrared emission, suggesting that dust-aided cooling can contribute to the overall cooling. For the first time sloshing cold fronts at the scale of a galaxy group have been observed in this object.
The determination of pulsation velocities from observed spectra of Cepheids is needed for the Baade-Wesselink calibration of these primary distance markers. The applicability of the Fourier-disentangling technique for the determination of pulsation velocities of Cepheids and other pulsating stars is studied. The KOREL-code was modified to enable fitting of free parameters of a prescribed line-profile broadening function corresponding to the radial pulsations of the stellar atmosphere. It was applied to spectra of delta Cep in the H-alpha region observed with the Ondrejov 2-m telescope. The telluric lines were removed using template-constrained disentangling, phase-locked variations of line-strengths were measured and the curves of pulsational velocities obtained for several spectral lines. It is shown that the amplitude and phase of the velocities and line-strength variations depend on the depth of line formation and the excitation potential. The disentangling of pulsations in the Cepheid spectra may be used for distance determination.
The proper motions of OB-associations computed using the old (Hipparcos 1997} and new (van Leeuwen 2007) reductions of the Hipparcos data are in a good agreement with each other. The Galactic rotation curve derived from an analysis of line-of-sight velocities and proper motions of OB-associations is almost flat in the 3-kpc neighborhood of the Sun. The angular rotation velocity at the solar distance is Omega_0=31 +/-1 km s-1 kpc-1. The standard deviation of the velocities of OB-associations from the rotation curve is sigma=7.2 km s-1. The distance scale for OB associations (Blaha & Humphreys 1989) should be shortened by 10-20%. The residual velocities of OB-associations calculated for the new and old reductions differ, on average, by 3.5 km s-1. The mean residual velocities of OB-associations in the stellar-gas complexes depend only slightly on the data reduction employed.
We report the serendipitous discovery of a ring nebula around a candidate Wolf-Rayet (WR) star, HBHA 4202-22, in Cygnus using the Spitzer Space Telescope archival data. Our spectroscopic follow-up observations confirmed the WR nature of this star (we named it WR138a) and showed that it belongs to the WN8-9h subtype. We thereby add a new example to the known sample of late WN stars with circumstellar nebulae. We analyzed the spectrum of WR138a by using the Potsdam Wolf-Rayet (PoWR) model atmospheres, obtaining a stellar temperature of 40 kK. The stellar wind composition is dominated by helium with 20 per cent of hydrogen. The stellar spectrum is highly reddened and absorbed (E_{B-V} = 2.4 mag, A_V = 7.4 mag). Adopting a stellar luminosity of log L/Lsun = 5.3, the star has a mass-loss rate of 10^{-4.7} Msun yr^{-1}, and resides in a distance of 4.2 kpc. We measured the proper motion for WR138a and found that it is a runaway star with a peculiar velocity of ~50 km/s. Implications of the runaway nature of WR138a for constraining the mass of its progenitor star and understanding the origin of its ring nebula are discussed.
We analytically derive the spectrum of gravitational waves due to magneto-hydrodynamical turbulence generated by bubble collisions in a first-order phase transition. In contrast to previous studies, we take into account the fact that turbulence and magnetic fields act as sources of gravitational waves for many Hubble times after the phase transition is completed. This modifies the gravitational wave spectrum at large scales. We also model the initial stirring phase preceding the Kolmogorov cascade, while earlier works assume that the Kolmogorov spectrum is set in instantaneously. The continuity in time of the source is relevant for a correct determination of the peak position of the gravitational wave spectrum. We discuss how the results depend on assumptions about the unequal-time correlation of the source and motivate a realistic choice for it. Our treatment gives a similar peak frequency to previous analyses but the amplitude of the signal is reduced due to the use of a more realistic power spectrum for the MHD turbulence. For a strongly first-order electroweak phase transition, the signal is observable by LISA.
Recently it has been proposed that there are two types of SN Ia progenitors -- short-lived and long-lived. On the basis of this idea, we develope a theory of a unified mechanism for the formation of the bimodal radial distribution of iron and oxygen in the Galactic disc. The underlying cause for the formation of the fine structure of the radial abundance pattern is the influence of spiral arms, specifically, the combined effect of the corotation resonance and turbulent diffusion. From our modelling we conclude that to explain the bimodal radial distributions simultaneously for oxygen and iron and to obtain approximately equal total iron output from different types of supernovae, the mean ejected iron mass per supernova event should be the same as quoted in literature if maximum mass of stars, that eject heavy elements, is $50 M_{\odot}$. For the upper mass limit of $70 M_{\odot}$ the production of iron by a supernova II explosion should be increased by about 1.5 times.
Analyzing the spectra from Wolf-Rayet stars requires adequate non-LTE modeling of their expanding atmosphere. The numerical schemes for solving the radiative transfer in the co-moving frame of reference have been developed by Mihalas and co-workers 30 years ago. The most elaborate codes can cope today with many hundred explicit non-LTE levels or super-levels and account for metal-line blanketing. The limited agreement with observed spectra indicates that the model simplifications are still severe. One approximation that has to be blamed is homogeneity. Stellar-wind clumping on small scales was easily implemented, while "macro-clumping" is still a big challenge. First studies showed that macro-clumping can reduce the strength of predicted P-Cygni line profiles in O-star spectra, and largely affects the X-ray line spectra from stellar winds. The classical model for radiation-driven winds by Castor, Abbot and Klein fails to explain the very dense winds from Wolf-Rayet stars. Only when we solved the detailed non-LTE radiative transfer consistently with the hydrodynamic equations, mass-loss rates above the single-scattering limit have been obtained.
Three-quarters of the 1 cubic kilometer neutrino telescope IceCube is currently taking data. Current models predict high-energy neutrino emission from transient objects like supernovae (SNe) and gammaray bursts (GRBs). To increase the sensitivity to such transient objects we have set up an optical follow-up program that triggers optical observations on multiplets of high-energy muon-neutrinos. We define multiplets as a minimum of two muon-neutrinos from the same direction (within 4 deg) that arrive within a 100 s time window. When this happens, an alert is issued to the four ROTSE-III telescopes, which immediately observe the corresponding region in the sky. Image subtraction is applied to the optical data to find transient objects. In addition, neutrino multiplets are investigated online for temporal and directional coincidence with gamma-ray satellite observations issued over the Gamma-Ray Burst Coordinate Network. An overview of the full program is given, from the online selection of neutrino events to the automated follow-up, and the resulting sensitivity to transient neutrino sources is presented for the first time.
The transition from early Of stars to WN type objects is poorly understood. O-type supergiants with emission lines (OIf+) are considered to be intermediate between these two classes. The scope of this paper is to investigate the spectral variability of three Of+ supergiants. We constituted spectral time series of unprecedented quality for our targets (~ 200 spectra in total), essentially in the blue domain, covering time-scales from a few hours up to a few years. Time Variance Spectrum (TVS) and Fourier analyses were performed in order to characterize their spectral variability. We report on a correlated significant line profile variability in the prominent He II \lambda 4686 and H\beta lines most likely related to the strong stellar winds. The variability pattern is similar for the three stars investigated (HD14947, HD15570 and HD16691), and the main differences are more quantitative than qualitative. However, the reported time-scales are somewhat different, and the most striking variability pattern is reported for HD16691. We did not find any clear evidence for binarity, and we focus mainly on an interpretation based on a single star scenario. We show that the behaviour of the three stars investigated in this study present strong similarities, pointing to a putative common scenario, even though a few differences should be noted. Our preferred interpretation scheme is that of Large Scale Corotating Structures modulating the profile of the lines that are produced in the strong stellar wind.
Observations of the temperature anisotropies induced as light from the CMB passes through large scale structures in the late universe are a sensitive probe of the interactions of photons in such environments. In extensions of the Standard Model which give rise to mini-charged particles, photons propagating through transverse magnetic fields can be lost to pair production of such particles. Such a decrement in the photon flux would occur as photons from the CMB traverse the magnetic fields of galaxy clusters. Therefore late time CMB anisotropies can be used to constrain the properties of mini-charged particles. We outline how this test is constructed, and present new constraints on mini-charged particles from observations of the Sunyaev-Zel'dovich effect in the Coma cluster.
We reconsider the emission properties of the BL Lac objects emitting in the high-energy gamma-ray band exploiting the new information in the MeV-GeV band obtained by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope in its first three months of operation. To this aim we construct the spectral energy distribution of all the BL Lacs revealed by LAT and of the known TeV BL Lacs not detected by LAT, also including data from the Swift satellite, and model them with a simple one-zone leptonic model. The analysis shows that the BL Lacs detected by LAT (being or not already detected in the TeV band) share similar physical parameters. While some of the TeV BL Lacs not revealed by LAT have spectral energy distributions and physical parameters very similar to the LAT BL Lacs, a group of objects displays peculiar properties (larger electron energies and smaller magnetic fields) suggesting different physical conditions in the emission region. Finally, we discuss possible criteria to effectively select good new candidates for the Cherenkov telescopes among the LAT sources, presenting a list of predicted fluxes in the very high-energy band calculated including the effect of the absorption by the extragalactic background light.
We have developed a micro-tpc using a pixelized bulk micromegas coupled to dedicated acquisition electronics as a read-out allowing to reconstruct the three dimensional track of a few keV recoils. The prototype has been tested with the Amande facility at the IRSN-Cadarache providing monochromatic neutrons. The first results concerning discrimination of a few keV electrons and proton recoils are presented.
Luminous Infrared (IR) Galaxies (LIRGs) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a GTO Spitzer IRS program aimed to obtain spectral mapping of a sample of 14 local (d<76Mpc) LIRGs. The data cubes map, at least, the central 20arcsec x 20arcsec to 30arcsec x 30arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38micron spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [NeII], [NeIII], [SIII], H_2), continuum, the 6.2 and 11.3micron PAH features, and the 9.7micron silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The IRS data are used to obtain spatially resolved measurements of the extinction using the 9.7micron silicate feature, and to trace star forming regions using the neon lines and the PAH features. We also investigate a number of AGN indicators, including the presence of high excitation emission lines and a strong dust continuum emission at around 6micron. We finally use the integrated Spitzer/IRS spectra as templates of local LIRGs. We discuss several possible uses for these templates, including the calibration of the star formation rate of IR-bright galaxies at high redshift. We also predict the intensities of the brightest mid-IR emission lines for LIRGs as a function of redshift, and compare them with the expected sensitivities of future space IR missions.
We used the large binocular camera (LBC) mounted on the large binocular telescope (LBT) to observe the Lockman Hole in the U, B, and V bands. Our observations cover an area of 925 sq.arcmin. We reached depths of 26.7, 26.3, and 26.3 mag(AB) in the three bands, respectively, in terms of 50% source detection efficiency, making this survey the deepest U-band survey and one of the deepest B and V band surveys with respect to its covered area. We extracted a large number of sources (~89000), detected in all three bands and examined their surface density, comparing it with models of galaxy evolution. We find good agreement with previous claims of a steep faint-end slope of the luminosity functions, caused by late-type and irregular galaxies at z>1.5. A population of dwarf star-forming galaxies at 1.5<z<2.5 is needed to explain the U-band number counts. We also find evidence of strong supernova feedback at high redshift. This survey is complementary to the r, i, and z Lockman Hole survey conducted with the Subaru telescope and provides the essential wavelength coverage to derive photometric redshifts and select different types of sources from the Lockman Hole for further study.
The proposed SCORE detector consists of a large array of light collecting modules designed to sample the Cherenkov light front of extensive air showers in order to detect high energy gamma-rays. A large spacing of the detector stations makes it possible to cover a huge area with a reasonable effort, thus achieving a good sensitivity up to energies of about a few 10 PeV. In this paper the event reconstruction algorithm for SCORE is presented and used to obtain the anticipated performance of the detector in terms of angular resolution, energy resolution, shower depth resolution and gamma / hadron separation.
We present a study of the effect of AGN feedback on metal enrichment and thermal properties of the intracluster medium (ICM) in hydrodynamical simulations. The cosmological simulations are performed for a set of clusters using a version of the TreePM-SPH Gadget code that follows chemo-dynamical evolution by accounting for metal enrichment by different stellar populations. Besides runs not including any efficient form of energy feedback, we carry out simulations including: (i) kinetic feedback in the form of galactic winds triggered by supernova explosions; (ii) AGN feedback from gas accretion onto super-massive black holes (BHs); (iii) AGN feedback in which a 'radio mode' is included. We find that AGN feedback is able to quench star formation in the brightest cluster galaxies at z<4 and provides correct temperature profiles in the central regions of galaxy groups. However, its effect is not sufficient to create cool cores in massive clusters. AGN feedback creates a widespread enrichment in the outskirts of clusters, thanks to its efficiency in displacing enriched gas from galactic halos to the inter-galactic medium at relatively high redshift. Iron abundance profiles are in better agreement with observations, with a more pristine enrichment of the ICM around and beyond the cluster virial regions. From the pattern of the relative abundances of Silicon and Iron, we conclude that a significant fraction of ICM enrichment in simulations is contributed by a diffuse population of intra-cluster stars. Our simulations also predict that profiles of Z_Si/Z_Fe abundance ratio do not increase at least out to 0.5 R_vir. Our results clearly show that different sources of energy feedback leave distinct imprints in the enrichment pattern of the ICM, that are more evident when looking at cluster external regions.
Our study is a follow-up of the SACY project, an extended survey in the Southern Hemisphere targeted to search for young nearby associations. Nine associations have either been newly identified, or had their member list better defined. These associations, with ages between about 6 Myr and 70 Myr, form an excellent sample to study the Li depletion in the pre-main sequence (PMS) evolution. We investigate the use of Li abundances as an independent clock to constrain the PMS evolution. We have calculated the LTE Li abundances for 376 members of different young associations. In addition we considered the effects of their projected stellar rotation. We present the Li depletion as function of age in the first hundred million years for the first time for the most extended sample of Li abundances in young stellar associations. A clear Li depletion can be measured in the temperature range from 5000K to 3500K for the age span covered by these nine associations. The age sequence based on the Li-clock agrees well with the isochronal ages, $\epsilon$Cha association being the only possible exception. The lithium depletion patterns for those associations resemble those of the young open clusters, strengthening the notion that the members proposed for these loose young associations have indeed a common physical origin. The observed scatter in the Li abundances hampers the use of Li to determine reliable ages for individual stars. Rotation velocities above 20 km s$^{-1}$ seem to inhibit the Li depletion.
Data from the IceCube detector in its 22-string configuration (IC22) were used to directly measure the atmospheric muon energy spectrum near the horizon. After passage through more than 10 km of ice, muon bundles from air showers are reduced to single muons, whose energy can be estimated from the total number of photons registered in the detector. The energy distribution obtained in this way is sensitive to the cosmic ray composition around the knee and is complementary to measurements by air shower arrays. The method described extends the physics potential of neutrino telescopes and can easily be applied in similar detectors. Presented is the result from the analysis of one month of IC22 data.
We present mass models of a sample of 14 spiral and 14 S0 galaxies that constrain their stellar and dark matter content. For each galaxy we derive the stellar mass distribution from near-infrared photometry under the assumptions of axisymmetry and a constant Ks-band stellar mass-to-light ratio, (M/L)_Ks. To this we add a dark halo assumed to follow a spherically symmetric NFW profile and a correlation between concentration and dark mass within the virial radius, M_DM. We solve the Jeans equations for the corresponding potential under the assumption of constant anisotropy in the meridional plane, beta_z. By comparing the predicted second velocity moment to observed long-slit stellar kinematics, we determine the three best-fitting parameters of the model: (M/L)_Ks, M_DM and beta_z. These simple axisymmetric Jeans models are able to accurately reproduce the wide range of observed stellar kinematics, which typically extend to ~2-3 Re or, equivalently, ~0.5-1 R_25. We find a median stellar mass-to-light ratio at Ks-band of 1.09 (solar units) with an rms scatter of 0.31. We present preliminary comparisons between this large sample of dynamically determined stellar mass-to-light ratios and the predictions of stellar population models. The stellar population models predict slightly lower mass-to-light ratios than we measure. The mass models contain a median of 15 per cent dark matter by mass within an effective radius Re, and 49 per cent within the optical radius R_25. Dark and stellar matter contribute equally to the mass within a sphere of radius 4.1 Re or 1.0 R_25. There is no evidence of any significant difference in the dark matter content of the spirals and S0s in our sample (abridged).
We analyze the far-ultraviolet (FUV) spectra of 33 classical T Tauri stars (CTTS), including 20 new spectra obtained with the Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope. Of the sources, 28 are in the ~1 Myr old Taurus-Auriga complex or Orion Molecular Cloud, 4 in the 8-10 Myr old Orion OB1a complex and one, TW Hya, in the 10 Myr old TW Hydrae Association. We also obtained FUV ACS/SBC spectra of 10 non-accreting sources surrounded by debris disks with ages between 10 and 125 Myr. We use a feature in the FUV spectra due mostly to electron impact excitation of \h2 to study the evolution of the gas in the inner disk. We find that the \h2 feature is absent in non-accreting sources, but is detected in the spectra of CTTS and correlates with accretion luminosity. Since all young stars have active chromospheres which produce strong X-ray and UV emission capable of exciting \h2 in the disk, the fact that the non-accreting sources show no \h2 emission implies that the \h2 gas in the inner disk has dissipated in the non-accreting sources, although dust (and possibly gas) remains at larger radii. Using the flux at 1600 {\AA}, we estimate that the column density of \h2 left in the inner regions of the debris disks in our sample is less than ~ 3x10^-6 g cm^-2, nine orders of magnitude below the surface density of the minimum mass solar nebula at 1 AU.
We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.
To better understand the physical properties of accretion disks in high-mass star formation, we present a study of a 12 high-mass accretion disk candidates observed at high spatial resolution with the Australia Telescope Compact Array (ATCA) in the NH3 (4,4) and (5,5) lines. Almost all sources were detected in NH3, directly associated with CH3OH Class II maser emission. From the remaining eleven sources, six show clear signatures of rotation and/or infall motions. These signatures vary from velocity gradients perpendicular to the outflows, to infall signatures in absorption against ultracompact HII regions, to more spherical infall signatures in emission. Although our spatial resolution is ~1000AU, we do not find clear Keplerian signatures in any of the sources. Furthermore, we also do not find flattened structures. In contrast to this, in several of the sources with rotational signatures, the spatial structure is approximately spherical with sizes exceeding 10^4 AU, showing considerable clumpy sub-structure at even smaller scales. This implies that on average typical Keplerian accretion disks -- if they exist as expected -- should be confined to regions usually smaller than 1000AU. It is likely that these disks are fed by the larger-scale rotating envelope structure we observe here. Furthermore, we do detect 1.25cm continuum emission in most fields of view.
A careful examination of Red Rectangle bands which have been considered as
diffuse interstellar bands (DIBs) in emission shows that a few are likely to be
artifacts in the spectrum. Some others result from atmospheric extinction.
Consequences for the Red Rectangle band/DIB associations are examined.
I will also comment a striking resemblance between the DIB spectrum and the
spectrum of NO2 in the 6150-6250A region. This suggests that some DIBs could be
provoked by atmospheric molecules.
Shack Hartmann Sensor (SHS) is inflicted with significant background noise that deteriorates the wave-front reconstruction accuracy. In this paper, a simple method to remove the back ground noise with the use of Zernike polynomials is suggested. The images corresponding to individual array points of the SHS at the detector, placed at the focal plane are independently reconstructed using Zernike polynomials by the calculation of Zernike moments. Appropriate thresholding is applied on the images. It is shown with computational experiments that using Zernike Reconstructor along with usual thresholding improves the centroiding accuracy when compared to direct thresholding. A study was performed at different Signal to Noise ratio by changing the number of Zernike orders used for reconstruction. The analysis helps us in setting upper and lower bounds in the application of this denoising procedure.
We present submillimetre observations of the J = 3-2 rotational transition of 12CO, 13CO and C18O across over 600 sq arcmin of the Perseus molecular cloud, undertaken with HARP, a new array spectrograph on the James Clerk Maxwell Telescope. The data encompass four regions of the cloud, containing the largest clusters of dust continuum condensations: NGC 1333, IC348, L1448 and L1455. A new procedure to remove striping artefacts from the raw HARP data is introduced. We compare the maps to those of the dust continuum emission mapped with SCUBA (Hatchell et al. 2005) and the positions of starless and protostellar cores (Hatchell et al. 2007a). No straightforward correlation is found between the masses of each region derived from the HARP CO and SCUBA data, underlining the care that must be exercised when comparing masses of the same object derived from different tracers. From the 13CO/C18O line ratio the relative abundance of the two species ([13CO]/[C18O] ~ 7) and their opacities (typically tau is 0.02-0.22 and 0.15-1.52 for the C18O and 13CO gas respectively) are calculated. C18O is optically thin nearly everywhere, increasing in opacity towards star-forming cores but not beyond tau(C18O)~0.9. Assuming the 12CO gas is optically thick we compute its excitation temperature (around 8-30 K), which has little correlation with estimates of the dust temperature.
We describe a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The version we describe here is designed to model hot accretion flows in the Kerr metric and therefore incorporates synchrotron emission and absorption, and Compton scattering. The code can be readily generalized, however, to account for other radiative processes and an arbitrary spacetime. We describe a suite of test problems, and demonstrate the expected $N^{-1/2}$ convergence rate, where $N$ is the number of Monte Carlo samples. Finally we illustrate the capabilities of the code with a model calculation, a spectrum of the slowly accreting black hole Sgr A* based on data provided by a numerical general relativistic MHD model of the accreting plasma.
Nullifying the servo bandwidth errors improves the strehl ratio by a substantial quantity in adaptive optics systems. An effective method for predicting atmospheric turbulence to reduce servo bandwidth errors in real time closed loop correction systems is presented using data mining. Temporally evolving phase screens are simulated using Kolmogorov statistics and used for data analysis. A data cube is formed out of the simulated time series. Partial data is used to predict the subsequent phase screens using the progressive prediction method. The evolution of the phase amplitude at individual pixels is segmented by implementing the segmentation algorithms and prediction was made using linear as well as non linear regression. In this method, the data cube is augmented with the incoming wave-front sensor data and the newly formed data cube is used for further prediction. The statistics of the prediction method is studied under different experimental parameters like segment size, decorrelation timescales of turbulence and segmentation procedure. On an average, 6% improvement is seen in the wave-front correction after progressive prediction using data mining.
We consider the linear stability of two-dimensional nonlinear magnetohydrodynamic basic states to long-wavelength three-dimensional perturbations. Following Hughes & Proctor (2009a), the 2D basic states are obtained from a specific forcing function in the presence of an initially uniform mean field of strength $\mathcal{B}$. By extending to the nonlinear regime the kinematic analysis of Roberts (1970), we show that it is possible to predict the growth rate of these perturbations by applying mean field theory to \textit{both} the momentum and the induction equations. If $\mathcal{B}=0$, these equations decouple and large-scale magnetic and velocity perturbations may grow via the kinematic $\alpha$-effect and the AKA instability respectively. However, if $\mathcal{B} \neq 0$, the momentum and induction equations are coupled by the Lorentz force; in this case, we show that four transport tensors are now necessary to determine the growth rate of the perturbations. We illustrate these situations by numerical examples; in particular, we show that a mean field description of the nonlinear regime based solely on a quenched $\alpha$ coefficient is incorrect.
Observations of X-ray cavities formed by powerful jets from AGN in galaxy cluster cores are commonly used to estimate the mechanical luminosity of these sources. We test the reliability of observationally measuring this power with synthetic X-ray observations of 3-D MHD simulations of jets in a galaxy cluster environment. We address the role that factors such as jet intermittency and orientation of the jets on the sky have on the reliability of observational measurements of cavity enthalpy and age. An estimate of the errors in these quantities can be made by directly comparing ``observationally'' derived values with values from the simulations. In our tests, cavity enthalpy, age and mechanical luminosity derived from observations are within a factor of two of the simulation values.
We present 3-D models of dust distribution around beta Pictoris that produce the best fits to the Hubble Space Telescope Advanced Camera for Surveys' (HST/ACS) images obtained by Golimowski and co-workers. We allow for the presence of either one or two separate axisymmetric dust disks. The density models are analytical, radial two-power-laws joined smoothly at a cross-over radius with density exponentially decreasing away from the mid-plane of the disks. Two-disk models match the data best, yielding a reduced chi^2 of ~1.2. Our two-disk model reproduces many of the asymmetries reported in the literature and suggests that it is the secondary (tilted) disk which is largely responsible for them. Our model suggests that the secondary disk is not constrained to the inner regions of the system (extending out to at least 250 AU) and that it has a slightly larger total area of dust than the primary, as a result of slower fall-off of density with radius and height. This surprising result raises many questions about the origin and dynamics of such a pair of disks. The disks overlap, but can coexist owing to their low optical depths and therefore long mean collision times. We find that the two disks have dust replenishment times on the order of 10^4 yr at ~100 AU, hinting at the presence of planetesimals that are responsible for the production of 2nd generation dust. A plausible conjecture, which needs to be confirmed by physical modeling of the collisional dynamics of bodies in the disks, is that the two observed disks are derived from underlying planetesimal disks; such disks would be anchored by the gravitational influence of planets located at less than 70 AU from beta Pic that are themselves in slightly inclined orbits.
The hydrogen Lyman-alpha plays a dominant role in the radiative energy transport in the lower transition region, and is important for the stud- ies of transition-region structure as well as solar wind origin. We investigate the Ly-alpha profiles obtained by SUMER in coronal holes and quiet Sun. In a subset of these observations, also the Hi Lyman-beta, Si iii, and O vi lines were (quasi-) simultaneously recorded. We find that the distances between the two peaks of Ly-alpha profiles are larger in coronal holes than in the quiet Sun, indicating a larger opacity in coronal holes. This difference might result from the different magnetic structures or the different radiation fields in the two regions. Most of the Ly-beta profiles in the coronal hole have a stronger blue peak, in contrast to those in quiet-Sun regions. Whilst in both regions the Ly-alpha profiles are stronger in the blue peak. Although the asymmetries are likely to be produced by differential flows in the solar atmosphere, their detailed formation processes are still unclear. The radiance ratio between Ly-alpha and Ly-beta decreases towards the limb in the coronal hole, which might be due to the different opacity of the two lines. We also find that the radiance distributions of the four lines are set by a combined effect of limb brightening and the different emission level between coronal holes and quiet Sun.
The prominent blue shifts of Ne viii associated with the junctions of the magnetic network in the quiet Sun are still not well understood. By comparing the coronal magnetic-field structures as obtained by a potential-field reconstruction with the conspicuous blue-shift patches on the dopplergram of Ne viii as observed in an equatorial quiet-Sun region, we find that most of the regions with significant upflow are associated with the funnel-like legs of magnetic loops and co-spatial with increments of the line width. These quasi-steady upflows can be regarded as the signatures of mass supply to coronal loops. By using the square-root of the line intensity as a proxy for the plasma density, the mass flux of the upflow in each funnel can be estimated. We find that the mass flux is anti-correlated with the funnel's expansion factor as determined from the extrapolated magnetic field. One of the loop systems is associated with a coronal bright point, which was observed by several instruments and exhibited various morphologies in different wavelengths and viewing directions. A remarkable agreement between its magnetic structure and the associated EUV emission pattern was found, suggesting an almost potential-field nature of the coronal magnetic field. We also report the direct detection of a small-scale siphon flow by both STEREO satellites. However, this transient siphon flow occurred in a weak mixed-polarity-field region, which was outside the adjacent magnetic funnel, and thus it is perhaps not related to plasma upflow in the funnel. Based on these observations, we suggest that at upper-TR temperatures the dominant flows in quiet-Sun coronal loops are long-lasting upflows rather than siphon flows. We also discuss the implications for coronal heating and unresolved magnetic structures.
X-ray sources in spiral galaxies can be approximately classified into bulge and disk populations. The bulge (or hard) sources have X-ray colors which are consistent with Low Mass X-ray Binaries (LMXB) but the the disk sources have softer colors suggesting a different type of source. In this paper, we further study the properties of hard and soft sources by constructing color segregated X-ray Luminosity Functions (XLF) for these two populations. Since the number of sources in any given galaxy is small, we coadded sources from a sample of nearby, face-on spiral galaxies observed by Chandra as a Large Project in Cycle 2. We use simulations to carefully correct the XLF for completeness. The composite hard source XLF is not consistent with a single power-law fit. At luminosities Lx>3E38 ergs/s it is well fit by a power law with a slope that is consistent with that found for sources in elliptical galaxies by Kim and Fabbiano 2004. This is supports the suggestion that the hard sources are dominated by LMXBs. In contrast, the high luminosity XLF of soft sources has a slope similar to the ``universal'' High Mass X-ray Binary XLF. Some of these sources are stellar mass black-hole binaries accreting at high rates in a thermal/steep power law state. The softest sources have inferred disk temperatures that are considerably lower than found in galactic black holes binaries. These sources are not well understood, but some may be super-soft ultra-luminous X-ray sources in a quiescent state as suggested by Soria et al 2009.
We propose a novel method for observing the gravitational wave signature of super-massive black hole (SMBH) mergers. This method is based on detection of a specific type of gravitational waves, namely gravitational wave burst with memory (BWM), using pulsar timing. We study the unique signature produced by BWM in anomalous pulsar timing residuals. We show that the present day pulsar timing precision allows one to detect BWM due to SMBH mergers from distances up to $1 \rm{Gpc}$ (for case of equal mass $10^8 M_{\odot}$ SMBH). Improvements in precision of pulsar timing together with the increase in number of observed pulsars should eventually lead to detection of a BWM signal due to SMBH merger, thereby making the proposed technique complementary to the capabilities of the planned LISA mission.
We give here a new third post-Newtonisn (3PN) spin-spin contribution (in the PN parameter $\epsilon $) to the accumulated orbital phase of a compact binary, arising from the spin-orbit precessional motion of the spins. In the equal mass case this contribution vanishes, but LISA sources of merging supermassive binary black holes have typically a mass ratio of 1:10. For such non-equal masses this 3PN correction is periodic in time, with period approximately $\epsilon ^{-1}$ times larger than the period of gravitational waves. We derive a renormalized and simpler expression of the spin-spin coefficient at 2PN, as an average over the time-scale of this period of the combined 2PN and 3PN contribution. We also find that for LISA sources the quadrupole-monopole contribution to the phase dominates over the spin-spin contribution, while the self-spin contribution is negligible even for the dominant spin. Finally we define a renormalized total spin coefficient $\bar{\sigma}$ to be employed in the search for gravitational waves emitted by LISA sources.
The possibility of direct detection of light fermionic dark matter in neutrino detectors is explored from a model-independent standpoint. We consider all operators of dimension six or lower which can contribute to the interaction $\bar{f} p \to e^+ n$, where $f$ is a dark Majorana or Dirac fermion. Constraints on these operators are then obtained from the $f$ lifetime and its decays which produce visible $\gamma$ rays or electrons. We find one operator which would allow $\bar{f} p \to e^+ n$ at interesting rates in neutrino detectors, as long as $m_f \lesssim m_{\pi}$. The existing constraints on light dark matter from relic density arguments, supernova cooling rates, and big-bang nucleosynthesis are then reviewed. We calculate the cross-section for $\bar{f} p \to e^+ n$ in neutrino detectors implied by this operator, and find that Super-K can probe the new physics scale $\Lambda$ for this interaction up to ${\cal O}(100 {TeV})$
Relic density calculations are often used to constrain particle physics models, and in particular supersymmetry. In this paper, we will show that the presence of additional energy or entropy before the Big-Bang nucleosynthesis can however completely change the relic density constraints on the SUSY parameter space. Therefore one should be extremely careful when using the relic density to constrain supersymmetry as it could give misleading results, especially if combined with the future collider data. Alternatively, we will also show that combining the discoveries of the future colliders with relic density calculations can shed light on the inaccessible pre-BBN dark time physics. Finally we will present SuperIso Relic, a new relic density calculator code in Supersymmetry, which incorporates alternative cosmological models, and is publicly available.
We analyze galactic black hole mergers and their emitted gravitational waves. Such mergers have typically unequal masses with mass ratio of the order 1/10. The emitted gravitational waves carry the inprint of spins and mass quadrupoles of the binary components. Among these contributions, we consider here the quasi-precessional evolution of the spins. A method of taking into account these third post-Newtonian (3PN) effects by renormalizing (redefining) the 1.5 PN and 2PN accurate spin contributions to the accumulated orbital phase is developed.
We develop a 3+1+1 covariant formalism, having in mind brane-world applications, and give the evolution and constraint equations both on the brane and off-brane in terms of 3-space covariant kinematical, gravito-electro-magnetic (Weyl) and matter variables. We discuss the junction conditions across the brane, sources of gravity and cosmology on the brane in terms of the new variables.
Links to: arXiv, form interface, find, astro-ph, recent, 0909, contact, help (Access key information)