[abridged] It has been widely claimed that several lines of observational evidence point towards a "downsizing" (DS) of the process of galaxy formation over cosmic time. This behavior is sometimes termed "anti-hierarchical", and contrasted with the "bottom-up" assembly of the dark matter structures in Cold Dark Matter models. In this paper we address three different kinds of observational evidence that have been described as DS: the stellar mass assembly, star formation rate and the ages of the stellar populations in local galaxies. We compare a broad compilation of available data-sets with the predictions of three different semi-analytic models of galaxy formation within the Lambda-CDM framework. In the data, we see only weak evidence at best of DS in stellar mass and in star formation rate. We find that, when observational errors on stellar mass and SFR are taken into account, the models acceptably reproduce the evolution of massive galaxies, over the entire redshift range that we consider. However, lower mass galaxies are formed too early in the models and are too passive at late times. Thus, the models do not correctly reproduce the DS trend in stellar mass or the archaeological DS, while they qualitatively reproduce the mass-dependent evolution of the SFR. We demonstrate that these discrepancies are not solely due to a poor treatment of satellite galaxies but are mainly connected to the excessively efficient formation of central galaxies in high-redshift haloes with circular velocities ~100-200 km/s. [abridged]
Water masers are found in dense molecular clouds closely associated with supermassive black holes in the centres of active galaxies. Based upon the understanding of the local water maser luminosity function, it was expected that masers at intermediate and high redshifts would be extremely rare, but galaxies at redshifts z > 2 might be quite different from those found locally, not least because of more frequent mergers and interaction events. Using gravitational lensing as a tool to enable us to search higher redshifts than would otherwise be possible, we have embarked on a survey of lensed galaxies, looking for masers. Here we report the discovery of a water maser at redshift 2.64 in the dust- and gas-rich gravitationally lensed type 1 quasar MG J0414+0534, which, with an isotropic luminosity of 10,000 L_solar, is twice as luminous as the most powerful local water maser, and half that of the most distant maser previously known. Using the locally-determined luminosity function, the probability of finding a maser this luminous associated with any single active galaxy is 10^{-6}. The fact that we saw such a maser in the first galaxy we observed must mean that the volume densities and luminosities of masers are higher at redshift 2.64.
Relativistic Turbulence provides an alternative to internal shocks as a mechanism for producing GRBs' variable light curves with efficient conversion of energy to radiation. In this model the relativistic outflow is broken into small eddies moving relativistically in the outflow's rest frame. Variability arises because an observer sees an eddy only when its velocity points towards him and only a small fraction of the eddies are observed. Relativistic turbulence with a significant relativistic velocity requires converting and maintaing a large fraction of the over all energy into turbulent motion. While it is not clear how this is achieved, we explore here, using a toy model, the constraints the model parameters results in light curves comparable to the observations. We find that a tight relation between the size of the eddies and the bulk and turbulent Lorentz factors is needed and that the variability level determines the turbulent Lorentz factor. While the model successfully produces the observed variability there are several inconsistencies with other properties of the light curves. Most of which, but not all, might be resolved if the central engine is active for a long time producing a number of shells, resembling to some extent the internal shocks model.
We present g-z color and z-band surface brightness fluctuations (SBF) measurements for 43 early-type galaxies in the Fornax cluster imaged with HST/ACS. These are combined with measurements for Virgo cluster galaxies to derive a revised, nonlinear calibration of the z-band SBF absolute magnitude as a function of g-z. In all, we tabulate recalibrated SBF distances for 134 galaxies in Virgo, Fornax, the Virgo W' group, and NGC4697 in the Virgo Southern Extension. The calibration procedure yields a precise relative distance modulus for Fornax with respect to Virgo of 0.42+/-0.03 mag, or a distance ratio 1.214 +/- 0.017. The resulting Fornax distance modulus is 31.51 +/-0.03 +/-0.15 mag, 20.0 +/-0.3 +/-1.4 Mpc, where the second set of error bars reflects systematic uncertainty from our assumed Virgo distance of 16.5 Mpc. The rms distance scatter for the early-type Fornax galaxies is 0.49^{+0.11}_{-0.15} Mpc, consistent with its compact appearance on the sky. This translates to a depth scatter smaller than the intrinsic, or "cosmic", scatter sigma_cosmic in the SBF calibration, unlike in Virgo. As a result, we are able to place the first tight constraints on the value of sigma_cosmic, finding 0.06 +/- 0.01 mag, with a firm upper limit of sigma_cosmic<0.08 mag, at least for galaxies with g-z>1.02. We also present an alternative SBF calibration based on the `fluctuation count' parameter Nbar, a proxy for galaxy mass, which gives a consistent relative distance. Finally, we find no evidence for systematic trends of the galaxy distances with position or velocity (e.g., no current infall); the Fornax cluster appears both compact and well virialized.[abridged]
Methods: The microscopic equations of H2-formation and protonation are integrated numerically over time in such a manner that the overall structures evolve self-consistently under benign conditions.} Results: The equilibrium H2 formation timescale in an H I cloud with N(H) ~ 4x10^{20}/cm^2 is 1-3 x 10^7 yr, nearly independent of the assumed density or H2 formation rate constant on grains, etc. Attempts to speed up the evolution of the H2-fraction would require densities well beyond the range usually considered typical of diffuse gas. The calculations suggest that, under benign, quiescent conditions, formation of H2 is favored in larger regions having moderate density, consistent with the rather high mean kinetic temperatures measured in H2, 70-80 K. Formation of H3+ is essentially complete when H2-formation equilibrates but the final abundance of H3+ appears more nearly at the very last instant. Chemistry in a weakly-molecular gas has particular properties so that the abundance patterns change appreciably as gas becomes more fully molecular, either in model sequences or with time in a single model. One manifestation of this is that the predicted abundance of H3+ is much more weakly dependent on the cosmic-ray ionization rate when n(H2)/n(H) < 0.05. In general, high abundances of H3+ do not enhance the abundances of other species (e.g. HCO+) but late-time OH formation proceeds most vigourously in more diffuse regions having modest density, extinction and H2 fraction and somewhat higher fractional ionization, suggesting that atypically high OH/H2 abundance ratios might be found optically in diffuse clouds having modest extinction.
Diffuse interstellar clouds show large abundances of H_3^+ which can be maintained only by a high ionization rate of H_2. Cosmic rays are the dominant ionization mechanism in this environment, so the large ionization rate implies a high cosmic-ray flux, and a large amount of energy residing in cosmic rays. In this paper we find that the standard propagated cosmic-ray spectrum predicts an ionization rate much lower than that inferred from H_3^+. Low-energy (~10 MeV) cosmic rays are the most efficient at ionizing hydrogen, but cannot be directly detected; consequently, an otherwise unobservable enhancement of the low-energy cosmic-ray flux offers a plausible explanation for the H_3^+ results. Beyond ionization, cosmic rays also interact with the interstellar medium by spalling atomic nuclei and exciting atomic nuclear states. These processes produce the light elements Li, Be, and B, as well as gamma-ray lines. To test the consequences of an enhanced low-energy cosmic-ray flux, we adopt two physically-motivated cosmic-ray spectra which by construction reproduce the ionization rate inferred in diffuse clouds, and investigate the implications of these spectra on dense cloud ionization rates, light element abundances, gamma-ray fluxes, and energetics. One spectrum proposed here provides an explanation for the high ionization rate seen in diffuse clouds while still appearing to be broadly consistent with other observables, but the shape of this spectrum suggests that supernovae remnants may not be the predominant accelerators of low-energy cosmic rays.
A review of the abundances and condensation temperatures of the elements and their nuclides in the solar nebula and in chondritic meteorites. Abundances of the elements in some neighboring stars are also discussed.
Using a representative sample of 911 central galaxies (CENs) from the SDSS DR4 group catalogue, we study how the structure of the most massive members in groups and clusters depend on (1) galaxy stellar mass (Mstar), (2) dark matter halo mass of the host group (Mhalo), and (3) their halo-centric position. We establish and thoroughly test a GALFIT-based pipeline to fit 2D Sersic models to SDSS data. We find that the fitting results are most sensitive to the background sky level determination and strongly recommend using the SDSS global value. We find that uncertainties in the background translate into a strong covariance between the total magnitude, half-light size (r50), and Sersic index (n), especially for bright/massive galaxies. We find that n depends strongly on Mstar for CENs, but only weakly or not at all on Mhalo. Less (more) massive CENs tend to be disk (spheroid)-like over the full Mhalo range. Likewise, there is a clear r50-Mstar relation for CENs, with separate slopes for disks and spheroids. When comparing CENs with satellite galaxies (SATs), we find that low mass (<10e10.75 Msun/h^2) SATs have larger median n than CENs of similar Mstar. Low mass, late-type SATs have moderately smaller r50 than late-type CENs of the same Mstar. However, we find no size differences between spheroid-like CENs and SATs, and no structural differences between CENs and SATs matched in both mass and colour. The similarity of massive SATs and CENs shows that this distinction has no significant impact on the structure of spheroids. We conclude that Mstar is the most fundamental property determining the basic structure of a galaxy. The lack of a clear n-Mhalo relation rules out a distinct group mass for producing spheroids, and the responsible morphological transformation processes must occur at the centres of groups spanning a wide range of masses. (abridged)
A new method for automated detection of polar coronal holes is presented. This method, called perimeter tracing, uses a series of 171, 195, and 304 \AA\ full disk images from the Extreme ultraviolet Imaging Telescope (EIT) on SOHO over solar cycle 23 to measure the perimeter of polar coronal holes as they appear on the limbs. Perimeter tracing minimizes line-of-sight obscurations caused by the emitting plasma of the various wavelengths by taking measurements at the solar limb. Perimeter tracing also allows for the polar rotation period to emerge organically from the data as 33 days. We have called this the Harvey rotation rate and count Harvey rotations starting 4 January 1900. From the measured perimeter, we are then able to fit a curve to the data and derive an area within the line of best fit. We observe the area of the northern polar hole area in 1996, at the beginning of solar cycle 23, to be about 4.2% of the total solar surface area and about 3.6% in 2007. The area of the southern polar hole is observed to be about 4.0% in 1996 and about 3.4% in 2007. Thus, both the north and south polar hole areas are no more than 15% smaller now than they were at the beginning of cycle 23. This compares to the polar magnetic field measured to be about 40% less now than it was a cycle ago.
The Parkes Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (HI) emission in the Southern sky covering declinations $\delta \leq 1^{\circ}$ using the Parkes Radio Telescope. The survey covers $2\pi$ steradians with an effective angular resolution of ~16', at a velocity resolution of 1.0 km/s, and with an rms brightness temperature noise of 57 mK. GASS is the most sensitive, highest angular resolution survey of Galactic HI emission ever made in the Southern sky. In this paper we outline the survey goals, describe the observations and data analysis, and present the first-stage data release. The data product is a single cube at full resolution, not corrected for stray radiation. Spectra from the survey and other data products are publicly available online.
The magnetic structure in the Galactic disk, the Galactic center and the Galactic halo can be delineated more clearly than ever before. In the Galactic disk, the magnetic structure has been revealed by starlight polarization within 2 or 3 kpc of the Solar vicinity, by the distribution of the Zeeman splitting of OH masers in two or three nearby spiral arms, and by pulsar dispersion measures and rotation measures in nearly half of the disk. The polarized thermal dust emission of clouds at infrared, mm and submm wavelengths and the diffuse synchrotron emission are also related to the large-scale magnetic field in the disk. The rotation measures of extragalactic radio sources at low Galactic latitudes can be modeled by electron distributions and large-scale magnetic fields. The statistical properties of the magnetized interstellar medium at various scales have been studied using rotation measure data and polarization data. In the Galactic center, the non-thermal filaments indicate poloidal fields. There is no consensus on the field strength, maybe mG, maybe tens of uG. The polarized dust emission and much enhanced rotation measures of background radio sources are probably related to toroidal fields. In the Galactic halo, the antisymmetric RM sky reveals large-scale toroidal fields with reversed directions above and below the Galactic plane. Magnetic fields from all parts of our Galaxy are connected to form a global field structure. More observations are needed to explore the untouched regions and delineate how fields in different parts are connected.
The source J 1128+5925 was found recently to show strong intraday variability at radio wavelengths and its radio variability may come from interstellar scintillation. In optical, the object was quiet in our 2007 monitoring session. Here we report the results of our new optical monitoring of this source in 2008. In addition to confirm our 2007 results, that the object did not display any clear variation on timescales from hour--day to month, we provide evidence that the object does not vary on timescale of one year, and it is probably intrinsically quiet in optical domain. Its very different behaviors in optical and radio regimes can be naturally explained if its strong radio variability comes from interstellar scintillation.
We have computed a series of realistic and self-consistent models that have been shown to be able to reproduce the emitted spectra of HII galaxies in a star bursting scenario (Martin-Majon et al. 2008). Our models combine different codes of chemical evolution, evolutionary population synthesis and photoionization. The emitted spectrum of HII galaxies is reproduced by means of the photoionization code CLOUDY (Ferland, 1998), using as ionizing spectrum the spectral energy distribution (SED) of the modelled HII galaxy, calculated using the new and updated stellar population models PopStar (Molla & Garcia-Vargas 2009, in prep.).This, in turn, is calculated according to a star formation history and a metallicity evolution given by a chemical evolution model. Each model is characterized by three parameters which are going to determine the evolution of the modeled galaxy: an initial efficiency of star formation, the way in which burst take place, and the time of separation between these bursts. Some model results emerging from the combination of different values for these three parameters are shown here. Our technique reproduces observed abundances, diagnostic diagrams and equivalent width-colour relations for local HII galaxies.
The high redshift GPS quasar PKS 0858-279 exhibits the following properties which make the source unusual. Our RATAN-600 monitoring of 1-22 GHz spectrum has detected broad-band radio variability with high amplitude and relatively short time scale. In the same time, the milliarcsecond scale structure observed in a snapshot VLBA survey turned out to be very resolved which is not expected from the fast flux density variations. We performed 1.4-22 GHz VLBA observations of this quasar in 2005-2007. It has revealed a core-jet morphology. A high Doppler factor delta is suggested for the jet, its nature is discussed in this report on the basis of the multi-frequency VLBA and RATAN data collected. Synchrotron self-absorption was confirmed to be dominating at low frequencies, the magnetic field strength of the dominating jet feature is estimated of an order of 0.1*delta mG.
This paper is a review of previous works on the stochastic background of gravitational waves (SBGWs) which has been discussed in various peer-reviewed journals and international conferences. The SBGWs is analyzed with the aid of the Wilkinson Microwave Anisotropy Probe (WMAP) data. We emphasize that, in general, in previous works in the literature about the SBGWs, old Cosmic Background Explorer (COBE) data were used. After this, we want to face the problem of how the SBGWs and f(R) gravity (where f(R) is a function of the Ricci scalar R) can be related, showing, vice versa, that a revealed SBGWs could be a powerful probe for a given theory of gravity. In this way, it will also be shown that the conform treatment of SBGWs can be used to parametrize in a natural way f(R) theories. Some interesting examples which have been recently discussed in the literature will be also analysed. The presence and the potential detection of the SBGWs is quite important in the framework of the debate on high-frequency gravitational waves (HFGWs) too. Recently, the importance of HFGWs has been emphasized in some papers in the literature.
Using the Multislit Imaging Spectroscopy (MSIS) technique at the FORS2 spectrograph on VLT-UT1, we have identified 60 Intracluster Planetary Nebula (ICPN) candidates associated with the Intracluster Light (ICL) in the central region of the Hydra I cluster. Hydra I is a medium compact, relatively near (~50 Mpc), rich cluster in the southern hemisphere. Here we describe the criteria used to select emission sources and present the evidence for these PN candidates to be associated with the ICL in the Hydra I cluster. We also show, using the luminosity-specific planetary nebulae number, the alpha parameter, that the expected number of PNs associated with the stellar population of the central cD galaxy NGC 3311 in the cluster is close to the number of PNs detected.
We report 2D time-dependent non-linear magneto-hydrodynamical simulations of waves in the atmospheres of roAp stars. We explore a grid of simulations in a wide parameter space. The aim of our study is to understand the influence of the atmosphere and the magnetic field on the propagation and reflection properties of magneto-acoustic waves, formation of shocks and node layers.
We present interferometric angular sizes for 12 stars with known planetary companions, for comparison with 28 additional main-sequence stars not known to host planets. For all objects we estimate bolometric fluxes and reddenings through spectral energy distribution fits, and in conjunction with the angular sizes, measurements of effective temperature. The angular sizes of these stars are sufficiently small that the fundamental resolution limits of our primary instrument, the Palomar Testbed Interferometer, are investigated at the sub-milliarcsecond level and empirically established based upon known performance limits. We demonstrate that the effective temperature scale as a function of dereddened $(V-K)_0$ color is statistically identical for stars with and without planets. A useful byproduct of this investigation is a direct calibration of the $T_{\rm EFF}$ scale for solar-like stars, as a function of both spectral type and $(V-K)_0$ color, with an precision of $\overline{\Delta T}_{\rm {(V-K)}_0} = 138$K over the range $(V-K)_0=0.0-4.0$ and $\overline{\Delta T}_{\rm {SpType}} = 105$K for the range F6V -- G5V. Additionally, we provide in an appendix spectral energy distribution fits for the 166 stars with known planets which have sufficient photometry available in the literature for such fits; this derived "{\tt XO-Rad}" database includes homogenous estimates of bolometric flux, reddening, and angular size.
We present photometric evolution models of galaxies, in which, in addition to the stellar component, the effects of an evolving dusty interstellar medium have been included with particular care. Starting from the work of Calura, Pipino & Matteucci (2008), in which chemical evolution models have been used to study the evolution of both the gas and dust components of the interstellar medium in the solar neighbourhood, elliptical and irregular galaxies, it has been possible to combine these models with a spectrophotometric stellar code that includes dust reprocessing (GRASIL) (Silva et al. 1998) to analyse the evolution of the spectral energy distributions (SED) of these galaxies. We test our models against observed SEDs both in the local universe and at high redshift and use them to predict how the percentage of reprocessed starlight evolves for each type of galaxy. The importance of following the dust evolution is investigated by comparing our results with those obtained by adopting simple assumptions to treat this component.
Infrared photometry and later infrared spectroscopy provided powerful diagnostics to distinguish between the main emission mechanisms in galaxies: AGN and Starburst. After the pioneering work on infrared photometry with IRAS in the far-IR and the S.Pedro Martir and ESO ground-based work in the near-IR, ISO photometry extended up to 200um the coverage of the galaxies energy distributions. Then Spitzer collected accurate mid-infrared spectroscopy on different samples of galaxies. We will review the work done on the 12um galaxy sample since the times of IRAS photometry to the new Spitzer spectroscopy. The main results on the multifrequency data of 12um selected Seyfert galaxies are presented and discussed in the light of unification and evolution models. The spectroscopic work of Spitzer will soon be complemented at longer wavelengths by the Herschel spectrometers and in the future by SPICA at higher redshift.
We investigate, in a unified and general way, the thermodynamic properties of dark energy with an arbitrary, varying equation-of-state parameter w(a). We find that all quantities are well defined and regular for every w(a), including at the -1-crossing, with the temperature being negative in the phantom regime (w(a)<-1) and positive in the quintessence one (w(a)>-1). The density and entropy are always positive while the chemical potential can be arbitrary. At the -1-crossing, both temperature and chemical potential are zero. The temperature negativity can only be interpreted in the quantum framework. The regular behavior of all quantities at the -1-crossing, leads to the conclusion that such a crossing does not correspond to a phase transition, but rather to a smooth cross-over.
The so-called Vegetation Red-Edge (VRE), a sharp increase in the reflectance around $700 nm$, is a characteristic of vegetation spectra, and can therefore be used as a biomarker if it can be detected in an unresolved extrasolar Earth-like planet integrated reflectance spectrum. Here we investigate the potential for detection of vegetation spectra during the last Quaternary climatic extrema, the Last Glacial Maximum (LGM) and the Holocene optimum, for which past climatic simulations have been made. By testing the VRE detectability during these extrema when Earth's climate and biomes maps were different from today, we are able to test the vegetation detectability on a terrestrial planet different from our modern Earth. Data from the Biome3.5 model have been associated to visible GOME spectra for each biome and cloud cover to derive Earth's integrated spectra for given Earth phases and observer positions. The VRE is then measured. Results show that the vegetation remains detectable during the last climatic extrema. Compared to current Earth, the Holocene optimum with a greener Sahara slightly increases the mean VRE on one hand, while on the other hand, the large ice cap over the northern Hemisphere during the LGM decreases vegetation detectability. We finally discuss the detectability of the VRE in the context of recently proposed space missions.
We consider the interaction between dark matter and dark energy in the framework of holographic dark energy, and propose a natural and physically plausible form of interaction, in which the interacting term is proportional to the product of the powers of the dark matter and dark energy densities. We investigate the cosmic evolution in such models. The impact of the coupling on the dark matter and dark energy components may be asymmetric. While the dark energy decouples from the dark matter at late time, just as other components of the cosmic fluid become decoupled as the universe expands, interestingly, the dark matter may actually become coupled to the dark energy at late time. We shall name such a phenomenon as "incoupling". We then use the latest type Ia supernovae data from the SCP team, baryon acoustics oscillation data from SDSS and 2dF surveys, and the position of the first peak of the CMB angular power spectrum to constrain the model. We find that the interaction term which is proportional to the the first power product of the dark energy and dark matter densities gives excellent fit to the current data.
We show that a simple, modified version of the Magnetorotational Instability (MRI) can develop in the outer liquid core of the Earth, in the presence of a background shear. It requires either thermal wind, or a primary instability, such as convection, to drive a weak differential rotation within the core. The force balance in the Earth's core is very unlike classical astrophysical applications of the MRI (such as gaseous disks around stars). Here, the weak differential rotation in the Earth core yields an instability by its constructive interaction with the planet's much larger rotation rate. The resulting destabilising mechanism is just strong enough to counteract stabilizing resistive effects, and produce growth on geophysically interesting timescales. We give a simple physical explanation of the instability, and show that it relies on a force balance appropriate to the Earth's core, known as magnetostrophic balance.
Gaztanaga et al. have recently claimed to measure the Baryon Acoustic Oscillation (BAO) scale in the radial direction from the publicly available SDSS DR6 data. They focus on the correlation function of Luminous Red Galaxies (LRG) close to the line-of-sight direction to find a feature that they identify as the BAO peak, arguing that a magnification bias effect from gravitational lensing increases the amplitude of the BAO peak, facilitating its detection. In this Comment, we clarify that lensing has a negligible impact on the measurement of the BAO peak, and that the interpretation by Gaztanaga et al. is incorrect. The feature they identify in the LRG correlation function near the line-of-sight cannot be explained by any known physical effect and is in fact consistent with noise.
We investigate the sample of 213 GPS sources selected from simultaneous multi-frequency 1-22 GHz observations obtained with RATAN-600 radio telescope. We use publicly available data to characterize parsec-scale structure of the selected sources. Among them we found 121 core dominated sources, 76 Compact Symmetric Object (CSO) candidates (24 of them are highly probable), 16 sources have complex parsec-scale morphology. Most of GPS galaxies are characterized by CSO-type morphology and lower observed peak frequency (~1.8 GHz). Most of GPS quasars are characterized by "core-jet"-type morphology and higher observed peak frequency (~3.6 GHz). This is in good agreement with previous results. However, we found a number of sources for which the general relation CSO - galaxy, core-jet - quasar does not hold. These sources deserve detailed investigation. Assuming simple synchrotron model of a homogeneous cloud we estimate characteristic magnetic field in parsec-scale components of GPS sources to be B ~ 10 mG.
Since September 2005, the Whipple 10m Gamma-ray Telescope has been operated primarily as a blazar monitor. The five Northern Hemisphere blazars that have already been detected at the Whipple Observatory, Markarian 421, H1426+428, Markarian 501, 1ES 1959+650 and 1ES 2344+514, are monitored routinely each night that they are visible. We report on the Markarian 421 observations taken from November 2005 to June 2006 in the gamma-ray, X-ray, optical and radio bands. During this time, Markarian 421 was found to be variable at all wavelengths probed. Both the variability and the correlations among different energy regimes are studied in detail here. A tentative correlation, with large spread, was measured between the X-ray and gamma-ray bands, while no clear correlation was evident among the other energy bands. In addition to this, the well-sampled spectral energy distribution of Markarian 421 (1101+384) is presented for three different activity levels. The observations of the other blazar targets will be reported separately.
We investigate the evolution of the optical and near-infrared colour-magnitude relation in an homogeneous sample of massive clusters from z = 1 to the present epoch. By comparing deep Hubble Space Telescope ACS imaging of X-ray selected MACS survey clusters at z = 0.5 to the similarly selected LARCS sample at z = 0.1 we find that the rest-frame d(U -V)/dV slope of the colour-magnitude relation evolves with redshift which we attribute to the build up of the red sequence over time. This rest frame slope evolution is not adequately reproduced by that predicted from semi-analytic models based on the Millennium Simulation despite a prescription for the build up of the red sequence by in-falling galaxies, 'strangulation'. We observe no strong correlation between this slope and the cluster environment at a given redshift demonstrating that the observed evolution is not due to a secondary correlation. Also presented are near-infrared UKIRT WFCAM observations of the LARCS clusters which confirm and improve on the the result from Stott et al. (2007) finding that there has been a two-fold increase in faint MV > -20 galaxies on the red sequence since z = 0.5 to a significance of 5sigma.
Accretion disks in AGN should be subject to the same type of instability as in cataclysmic variables (CVs) or in low-mass X-ray binaries (LMXBs), which leads to dwarf nova and soft X-ray transient outbursts. It has been suggested that this thermal/viscous instability can account for the long term variability of AGNs. We test this assertion by presenting a systematic study of the application of the disk instability model (DIM) to AGNs. We are using the adaptative grid numerical code we have developed in the context of CVs, enabling us to fully resolve the radial structure of the disk. We show that, because in AGN disks the Mach numbers are very large, the heating and cooling fronts are so narrow that they cannot be resolved by the numerical codes that have been used until now. In addition, these fronts propagate on time scales much shorter than the viscous time. As a result, a sequence of heating and cooling fronts propagate back and forth in the disk, leading only to small variations of the accretion rate onto the black hole, with short quiescent states occurring for very low mass transfer rates only. Truncation of the inner part of the disk by e.g. an ADAF does not alter this result, but enables longer quiescent states. Finally we discuss the effects of irradiation by the central X-ray source, and show that, even for extremely high irradiation efficiencies, outbursts are not a natural outcome of the model.
We investigate the role of the centrifugal acceleration of electrons in the Very High Energy (VHE) radiation from the BL Lac object 1ES 0806+524, recently detected by VERITAS. The efficiency of the inverse Compton scattering of the accretion disk thermal photons against centrifugally accelerated electrons is studied. By studying the dynamics of centrifugally induced outflows and by taking into account the frozen-in condition, we estimate the maximum attainable Lorentz factors of particles and we derive corresponding energetic characteristics of the emission produced via the Inverse Compton scattering. Examining physically reasonable parameters of 1ES 0806+524, by considering the narrow interval of inclination angles ($1^o-2^o$) of magnetic field lines with respect to the rotation axis, it is shown that the centrifugally accelerated electrons may lead to the observational pattern of the VHE emission.
Deep HST/ACS photometry of the young cluster NGC 602, located in the remote low density "wing" of the Small Magellanic Cloud, reveals numerous pre-main sequence stars as well as young stars on the main sequence. The resolved stellar content thus provides a basis for studying the star formation history into recent times and constraining several stellar population properties, such as the present day mass function, the initial mass function and the binary fraction. To better characterize the pre-main sequence population, we present a new set of model stellar evolutionary tracks for this evolutionary phase with metallicity appropriate for the Small Magellanic Cloud (Z = 0.004). We use a stellar population synthesis code, which takes into account a full range of stellar evolution phases to derive our best estimate for the star formation history in the region by comparing observed and synthetic color-magnitude diagrams. The derived present day mass function for NGC 602 is consistent with that resulting from the synthetic diagrams. The star formation rate in the region has increased with time on a scale of tens of Myr, reaching $0.3-0.7 \times 10^{-3} M_\odot yr^{-1}$ in the last 2.5 Myr, comparable to what is found in Galactic OB associations. Star formation is most complete in the main cluster but continues at moderate levels in the gas-rich periphery of the nebula.
We show that the low frequency QPO seen in the power density spectra of black hole binaries (and neutron stars) can be explained by Lense-Thirring precession. This has been proposed many times in the past, and simple, single radius models can qualitatively match the observed increase in QPO frequency by decreasing a characteristic radius, as predicted by the truncated disc models. However, this also predicts that the frequency is strongly dependent on spin, and gives a maximum frequency at the last stable orbit which is generally much higher than the remarkably constant maximum frequency at ~10Hz observed in all black hole binaries. The key aspect of our model which makes it match these observations is that the precession is of a radially extended region of the hot inner flow. The outer radius is set by the truncation radius of the disc as above, but the inner radius is instead set by where the bending waves can no longer maintain the flow in solid body precession at a constant tilt. This inner radius increases with a_*, decreasing the expected frequency in a way which almost completely cancels the expected increase with spin. This ties the maximum predicted frequency to around 10Hz irrespective of a_*, as observed. This is the first QPO model which explains both frequencies and spectrum in the context of a well established geometry for the accretion flow.
We show that growing neutrino models, in which the growing neutrino mass stops the dynamical evolution of a dark energy scalar field, lead to a substantial neutrino clustering on the scales of superclusters. Nonlinear neutrino lumps form at redshift z ~ 1 and could partially drag the clustering of dark matter. If observed, large scale non-linear structures could be an indication for a new attractive force stronger than gravity and mediated by the 'cosmon' dark energy scalar field.
The NEMO Collaboration installed an underwater detector including most of the critical elements of a possible km$^3$ neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems. These technical solutions will be evaluated, among others proposed for the construction of the km$^3$ detector, within the KM3NeT Consortium. The main test of this test experiment was the validation of the proposed design solutions mentioned above. We present results of the analysis of data collected with the NEMO Mini-Tower. The position of PMTs is determined through the acoustic position system; signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results were compared with Monte Carlo simulations.
Context: Red super-giant (RSG) stars exhibit significant mass loss through a slow and dense wind. They are often considered to be the more massive counter parts of Asymptotic Giant Branch (AGB) stars. While the AGB mass loss is linked to their strong pulsations, the RSG are often only weakly variable. Aim: To study the conditions at the base of the wind, by determining the dust composition in a sample of RSG. The dust composition is thought to be sensitive to the density, temperature and acceleration at the base of the wind. Method: We compile a sample of 27 RSG infrared spectra (ISO-SWS) and supplement these with photometric measurements to obtain the full spectral energy distribution (SED). These data are modelled using a dust radiative transfer code. The results are scrutinised for correlations. Results: We find (1) strong correlations between dust composition, mass-loss rate and stellar luminosity, roughly in agreement with the theoretical dust condensation sequence, (2) the need for a continuous (near-)IR dust opacity and tentatively propose amorphous carbon, and (3) significant differences with AGB star winds: presence of PAHs, absence of 'the' 13 micron band, and a lack of strong water bands. Conclusions: Dust condensation in RSG is found to experience a similar freeze-out process as in AGB stars. Together with the positive effect of the stellar luminosity on the mass-loss rate, this suggests that radiation pressure on dust grains is an important ingredient in the driving mechanism. Still, differences with AGB stars are manifold and thus the winds of RSG deserve separate studies.
We calculate Keplerian (mass shedding) configurations of rigidly rotating neutron stars and quark stars with crusts. We check the validity of empirical formula for Keplerian frequency, f_K, proposed by Lattimer & Prakash, f_K(M)=C (M/M_sun)^1/2 (R/10km)^-3/2, where M is the (gravitational) mass of Keplerian configuration, R is the (circumferential) radius of the non-rotating configuration of the same gravitational mass, and C = 1.04 kHz. Numerical calculations are performed using precise 2-D codes based on the multi-domain spectral methods. We use a representative set of equations of state (EOSs) of neutron stars and quark stars. We show that the empirical formula for f_K(M) holds within a few percent for neutron stars with realistic EOSs, provided 0.5 M_sun < M < 0.9 M_max,stat, where M_max,stat is the maximum allowable mass of non-rotating neutron stars for an EOS, and C=C_NS=1.08 kHz. Similar precision is obtained for quark stars with 0.5 M_sun < M < 0.9 M_max,stat. For maximal crust masses we obtain C_QS = 1.15 kHz, and the value of C_QS is not very sensitive to the crust mass. All our C's are significantly larger than the analytic value from the relativistic Roche model, C_Roche = 1.00 kHz. For 0.5 M_sun < M < 0.9 M_max,stat, the equatorial radius of Keplerian configuration of mass M, R_K(M), is, to a very good approximation, proportional to the radius of the non-rotating star of the same mass, R_K(M) = aR(M), with a_NS \approx a_QS \approx 1.44. The value of a_QS is very weakly dependent on the mass of the crust of the quark star. Both a's are smaller than the analytic value a_Roche = 1.5 from the relativistic Roche model.
BL Lacs are an enigmatic class of active galactic nuclei (AGNs), characterized by the non-thermal continuum typically attributed to synchrotron and inverse Compton emission. Depending on the frequency location of the maxima of these components, they are subdivided into three subclasses LBLs, IBLs, and HBLs. We present the results of a set of observations of eight BL Lac objects of LBL and IBL type performed by the XRT and UVOT detectors onboard the Swift satellite between January 2005 and November 2006. We are mainly interested in measuring the spectral parameters, and particularly the steepness between the UV and the X-ray band, useful for determining the classification of these sources. We compare the behavior of these sources with previous XMM-Newton, BeppoSAX obser- vations and with historical data in the X-ray and in the optical band. We are also interested in classifying the sources in our sample on the basis of the observations and comparing them with their classification presented in literature. We performed X-ray spectral analysis of observed BL Lac objects using a simple powerlaw and in a few cases the log-parabolic model. We also combined the UV emission with the low energy X-ray data to We used observational data to classify sources in our sample and derived parameters of their spectral energy distribution. We found that for the IBLs X-rays low states show features of the high energy component, usually interpreted as due to inverse Compton emission. Sources in our sample exhibit a range of temporal UV and X-ray behaviors, some objects having clear and neat correlated UV and X-ray variations (e.g. ON231) and other objects showing no clear (e.g. AO 0235+164) UV and X-ray correlation. Finally, we also note that our estimates of spectral curvature are in the range of that measured for the HBLs.
We outline a method for fitting binary-lens caustic-crossing microlensing events based on the alternative model parameterisation proposed and detailed in Cassan (2008). As an illustration of our methodology, we present an analysis of OGLE-2007-BLG-472, a double-peaked Galactic microlensing event with a source crossing the whole caustic structure in less than three days. In order to identify all possible models we conduct an extensive search of the parameter space, followed by a refinement of the parameters with a Markov Chain-Monte Carlo algorithm. We find a number of low-chi2 regions in the parameter space, which lead to several distinct competitive best models. We examine the parameters for each of them, and estimate their physical properties. We find that our fitting strategy locates several minima that are difficult to find with other modelling strategies and is therefore a more appropriate method to fit this type of events.
Extended X-ray structures are common in Active Galactic Nuclei (AGNs). Here we present the first case of a Compact Steep Spectrum (CSS) radio galaxy, 3C 305, in which the X-ray radiation appears to be associated with the optical emission line region, dominated by the [O III]5007. On the basis of a morphological study, performed using the comparison between the X-rays, the optical and the radio band, we argue that the high energy emission has a thermal nature and it is not directly linked to the radio jet and hotspots of this source. Finally, we discuss the origin of the extended X-ray structure connected with the optical emission line region following two different interpretations: as due to the interaction between matter outflows and shock-heated environment gas, or as due to gas photoionized by nuclear emission.
We analyze the observed distribution of the orbital eccentricity and period of binary radio pulsars in globular clusters using computational tools to simulate binary-single star interactions. Globular clusters have different groups of pulsars arising from separate interaction scenarios. Intermediate eccentricities of cluster pulsars can be mostly accounted by fly-bys although locally lower stellar densities at pulsar positions may alter the situation. Very high eccentricities are likely to be results of exchanges and/or mergers of single stars with the binary companion of the pulsar.
We present observations of the 9.8 s X-ray pulsar XTE J1859+083 made with the ASM and PCA on board RXTE, and the WFC on board BeppoSAX. The ASM data cover a 12 year time interval and show that an extended outburst occurred between approximately MJD 50,250 and 50,460 (1996 June 16 to 1997 January 12). The ASM data excluding this outburst interval suggest a possible modulation with a period of 60.65 +/- 0.08 days. Eighteen sets of PCA observations were obtained over an approximately one month interval in 1999. The flux variability measured with the PCA appears consistent with the possible period found with the ASM. The PCA measurements of the pulse period showed it to decrease non-monotonically and then to increase significantly. Doppler shifts due to orbital motion rather than accretion torques appear to be better able to explain the pulse period changes. Observations with the WFC during the extended outburst give a position which is consistent with a previously determined PCA error box, but which has a significantly smaller error. The transient nature of XTE J1859+083 and the length of its pulse period are consistent with it being a Be/neutron star binary. The possible 60.65 day orbital period would be of the expected length for a Be star system with a 9.8 s pulse period.
We explore the ability of high energy observations to constrain orbital
parameters of long period massive binary systems by means of an inverse Compton
model acting in colliding wind environments. This is particular relevant for
(very) long period binaries where orbital parameters are often poorly known
from conventional methods, as is the case e.g. for the Wolf-Rayet (WR) star
binary system WR 147 where INTEGRAL and MAGIC upper limits on the high-energy
emission have recently been presented. We conduct a parameter study of the set
of free quantities describing the yet vaguely constrained geometry and
respective effects on the non-thermal high-energy radiation from WR 147. The
results are confronted with the recently obtained high-energy observations and
with sensitivities of contemporaneous high-energy instruments like Fermi-LAT.
For binaries with sufficient long periods, like WR 147, gamma-ray attenuation
is unlikely to cause any distinctive features in the high-energy spectrum. This
leaves the anisotropic inverse Compton scattering as the only process that
reacts sensitively on the line-of-sight angle with respect to the orbital
plane, and therefore allows the deduction of system parameters even from
observations not covering a substantial part of the orbit.
Provided that particle acceleration acts sufficiently effectively to allow
the production of GeV photons through inverse Compton scattering, our analysis
indicates a preference for WR 147 to possess a large inclination angle.
Otherwise, for low inclination angles, electron acceleration is constrained to
be less efficient as anticipated here.
We present new interferometric data obtained with MIDI (MID infrared Interferometric instrument) for the Seyfert II galaxy NGC 1068, with an extensive coverage of sixteen uv points. These observations resolve the nuclear mid-infrared emission from NGC 1068 in unprecedented detail with a maximum resolution of 7 mas. For the first time, sufficient uv points have been obtained, allowing us to generate an image of the source using maximum entropy image reconstruction. The features of the image are similar to those obtained by modelling. We find that the mid-infrared emission can be represented by two components, each with a Gaussian brightness distribution. The first, identified as the inner funnel of the obscuring torus, is hot (800K), 1.35 parsec long, and 0.45 parsec thick in FWHM at a PA=-42 degrees (from north to east). It has an absorption profile different than standard interstellar dust and with evidence for clumpiness. The second component is 3 by 4 pc in FWHM with T=300K, and we identify it with the cooler body of the torus. The compact component is tilted by 45 degrees with respect to the radio jet and has similar size and orientation to the observed water maser distribution. We show how the dust distribution relates to other observables within a few parsecs of the core of the galaxy such as the nuclear masers, the radio jet, and the ionization cone. We compare our findings to a similar study of the Circinus galaxy and other relevant studies. Our findings shed new light on the relation between the different parsec-scale components in NGC 1068 and the obscuring torus.
Blue hook (BHk) stars are a rare class of horizontal branch stars that so far have been found in only very few Galactic globular clusters (GCs). The dominant mechanism for producing these objects is currently still unclear. In order to test if the presence of BHk populations in a given GC is linked to specific physical or structural cluster properties, we have constructed a parent sample of GCs for which existing data is sufficient to establish the presence or absence of BHk populations with confidence. We then compare the properties of those clusters in our parent sample that do contain a BHk population to those that do not. We find that there is only one compelling difference between BHk and non-BHk clusters: all known BHk clusters are unusually massive. However, we also find that the BHk clusters are consistent with being uniformly distributed within the cumulative mass distribution of the parent sample. Thus, while it is attractive to suggest there is is a lower mass cut-off for clusters capable of forming BHk stars, the data do not require this. Instead, the apparent preference for massive clusters could still be a purely statistical effect: intrinsically rare objects can only be found by searching a sufficiently large number of stars.
(Abridged) Aims & Methods. A two-dimensional, semi-analytical model is
presented that follows, for the first time, the chemical evolution from a
collapsing molecular cloud (a pre-stellar core) to a protostar and
circumstellar disk. The model computes infall trajectories from any point in
the cloud and tracks the radial and vertical motion of material in the
viscously evolving disk. It includes a full time-dependent radiative transfer
treatment of the dust temperature, which controls much of the chemistry. A
small parameter grid is explored to understand the effects of the sound speed
and the mass and rotation of the cloud. The freeze-out and evaporation of
carbon monoxide (CO) and water (H2O), as well as the potential for forming
complex organic molecules in ices, are considered as important first steps to
illustrate the full chemistry.
Results. Both species freeze out towards the centre before the collapse
begins. Pure CO ice evaporates during the infall phase and re-adsorbs in those
parts of the disk that cool below the CO desorption temperature of ~18 K. H2O
remains solid almost everywhere during the infall and disk formation phases and
evaporates within ~10 AU of the star. Mixed CO-H2O ices are important in
keeping some solid CO above 18 K and in explaining the presence of CO in
comets. Material that ends up in the planet- and comet-forming zones of the
disk is predicted to spend enough time in a warm zone during the collapse to
form first-generation complex organic species on the grains. The dynamical
timescales in the hot inner envelope (hot core or hot corino) are too short for
abundant formation of second-generation molecules by high-temperature gas-phase
chemistry.
We derive quantum kinetic equations for scalar fields undergoing coherent evolution either in time (coherent particle production) or in space (quantum reflection). Our central finding is that in systems with certain space-time symmetries, quantum coherence manifests itself in the form of new spectral solutions for the dynamical 2-point correlation function. This spectral structure leads to a self-consistent approximation for dynamical equations that describe coherent evolution in presence of decohering collisions. We demonstrate the physicality of the coherence shell solutions by solving the bosonic Klein problem and the bound states of the nonrelativistic square well potential. We then compare our spectral phase space definition of particle number to other definitions in the nonequilibrium field theory. Finally we will explicitly compute the effects of interactions to coherent particle production in the case of an unstable field coupled to an oscillating background.
We compute the probability distribution for bubble collisions in an inflating false vacuum which decays by bubble nucleation. Our analysis generalizes previous work of Guth, Garriga, and Vilenkin to the case of general cosmological evolution inside the bubble, and takes into account the dynamics of the domain walls that form between the colliding bubbles. We find that incorporating these effects changes the results dramatically: the total expected number of bubble collisions in the past lightcone of a typical observer is N ~ \gamma V_f / V_i, where \gamma is the fastest decay rate of the false vacuum, V_f is its vacuum energy, and V_i is the vacuum energy during inflation inside the bubble. This number can be large in realistic models without tuning. In addition, we calculate the angular position and size distribution of the collisions on the cosmic microwave background sky, and demonstrate that the number of bubbles of observable angular size is N_{LS} ~ \sqrt{\Omega_k} N, where \Omega_k is the curvature contribution to the total density at the time of observation. The distribution is almost exactly isotropic.
In this note we propose the use of an alternate action for the open string tachyon on a non-BPS $D3$-brane. At the classical level this action is precisely equivalent to the more commonly used DBI action, but involves an additional coupling to dynamical world-volume gravity. We find that, for a FRW metric, exponential expansion occurs provided that the cosmological constant is positive. For anti de-Sitter solutions we find a periodically bouncing universe, and there are no accelerating trajectories for a theory with no cosmological constant. In specific cases the acceleration is terminated by the condensation of the open string tachyon, leading to a canonical inflationary trajectory at late times.
We study the dynamics of a timelike vector field which violates Lorentz invariance when the background spacetime is in an accelerating phase in the early universe. It is shown that a timelike vector field is difficult to realize an inflationary phase, so we investigate the evolution of a vector field within a scalar field driven inflation model. And we calculate the power spectrum of the vector field without considering the metric perturbations. While the time component of the vector field perturbations provides a scale invariant spectrum when $\xi = 0$, where $\xi$ is a nonminimal coupling parameter, both the longitudinal and transverse perturbations give a scale invariant spectrum when $\xi = 1/6$.
We study the structure of hybrid stars with the Field Correlator Method, extended to the zero temperature limit, for the quark phase. For the hadronic phase, we use the microscopic Brueckner-Hartree- Fock many-body theory. The comparison with the neutron star mass phenomenology puts serious constraints on the currently adopted values of the gluon condensate $G_2 \simeq 0.006-0.007 \rm {GeV^4}$, and the large distance static $Q \bar Q$ potential.
We investigate a possibility of precision measurements for parameters of the Littlest Higgs model with T-parity at the International Linear Collider (ILC). The model predicts new gauge bosons (AH, ZH, and WH), among which the heavy photon (AH) is a candidate for dark matter. The masses of these new gauge bosons strongly depend on the vacuum expectation value that breaks a global symmetry of the model. Through Monte Carlo simulations of the processes: e+ e- ->AH ZH and e+ e- -> WH+ WH-, we show how precisely the masses can be determined at the ILC for a representative parameter point of the model. We also discuss the determination of the Little Higgs parameters and its impact on the future measurement of the thermal abundance of the dark matter relics in our universe.
Links to: arXiv, form interface, find, astro-ph, recent, 0901, contact, help (Access key information)
The goal of this paper is to provide a numerically fast and stable description for the microlensing magnification of an extended source (either uniform or limb darkened) that holds in any magnification regime. We show that our method of evaluating the magnification can be implemented into a light curve fitting routine using the Levenberg-Marquardt algorithm. We compare the accuracy and computation times to previous methods that either work in the high magnification regime only, or have a numerical instability problem due to the evaluation of an elliptic integral. In addition we also provide the equations including finite lens effects in microlensing light curves. We apply our methods to the MACHO-1995-BLG-30 and the OGLE-2003-BLG-262 events and obtain results consistent to former studies. We derive an upper limit for the OGLE-2003-BLG-262 event lens size. We conclude that our method allows to simultaneously search for point-source and finite source microlensing events in future large area microlensing surveys in a fast manner.
We compare assembly of DM halos with and without baryons, within the context of cosmological evolution in the LCDM WMAP3 Universe (baryons+DM, BDM model, and pure DM, PDM model). In representative PDM and BDM models we find that baryons contribute decisively to the evolution of the central region, leading to an isothermal DM cusp, and to a flat DM density core -- the result of heating by dynamical friction of the substructure during a quiescent evolution epoch. This process ablates the cold gas from an embedded disk, cutting the star formation rate by ~10, and heats up the spheroidal gas and stellar components, triggering their expansion. The substructure is more resilient in the presence of baryons. The disk which formed from inside-out as gas dominated, is transformed into an intermediate Hubble type by z ~ 2 and to an early type by z ~ 0.5, based on its gas contents and spheroidal-to-disk stellar mass ratio. Only a relatively small ~20% fraction of DM particles in PDM and BDM models are bound within the radius of maximal circular velocity in the halo -- most of the DM particles perform larger radial excursions. Hence the assembly of the inner halos continues to z=0. We also find that the fraction of baryons within the halo virial radius somewhat increases during the major mergers and decreases during the minor mergers. The net effect appears to be negligible. While the substructure is being tidally-disrupted, mixing of its debris in the halo is not efficient and becomes even less so with z. The streamers formed after z ~ 1 survive largely to the present time -- an important implication for embedded disk evolution.
At the present time, SDSS early-type BCGs have larger Re than early-type galaxies of similar L, whether these other objects are in the field, or are satellites in clusters (Re ~ L for BCGs). At fixed M* and formation time, BCGs at lower z are larger and have smaller velocity dispersions, i.e. Re increases and sigma decreases with age. As a result, at z~0.25, corresponding to a lookback time of order 3 Gyrs, BCGs are smaller than their lower z counterparts by as much as 70% for the brightest BCGs: Re evolves as (1+z)^{0.85(Mr+21)}. Qualitatively similar but weaker evolution in the sizes is also seen in the bulk of the early-type population: at Mr<-22 Re evolves as (1+z)^{0.7(Mr+21)}, while at Mr>-22 the evolution is approximately (1+z)^{-0.7}, independent of Mr. The sigma-L correlation also evolves: (1+z)^{-0.2(Mr+21)} at Mr < -22 (as for the BCGs) and (1+z)^{0.2} for fainter galaxies. The Re- and sigma-M* correlations yield consistent results. These trends are most easily understood if early-type BCGs grew from many dry minor mergers rather than a few major mergers. Only in such a scenario can BCGs be the descendents of the superdense galaxies seen at z~2; major dry mergers, which increase the size in proportion to the mass, cannot bring these galaxies onto the BCG Re-M* relation at z~0. We also compared the ages and sizes of our early-type BCGs with satellites. BCGs are larger than satellites of similar L or M* at the same redshift. Although both satellites and BCGs trace the same weak age-L or age-M* relation, this can be understood by noting that BCGs are typically about 1 Gyr older than the satellites in their group, and they are about 0.5 mags more luminous. Finally, we find that the mean satellite L is approximately independent of BCG L, in agreement with recent predictions based on the L-dependence of clustering.
Measuring metallicity in the nuclear regions of AGNs is difficult because only a few lines are observed and ionization correction becomes a major problem. Nitrogen to carbon ratio has been widely used as an indicator for metallicity, but precise measurements have been lacking. We made such measurements for the first time using a wide baseline of ionization states with observations from FUSE, HST and Chandra. OVI observations with FUSE were crucial in this effort. We measured super-solar metallicities in two AGNs and found that N/C does not scale with metallicity. This suggests that chemical enrichment scenario in nuclear regions of galaxies may be different from traditional models of metal enrichment.
The EROS-2 project has been designed to search for microlensing events towards any dense stellar field. The densest parts of the Galactic spiral arms have been monitored to maximize the microlensing signal expected from the stars of the Galactic disk and bulge. 12.9 million stars have been monitored during 7 seasons towards 4 directions in the Galactic plane, away from the Galactic center. A total of 27 microlensing event candidates have been found. Estimates of the optical depths from the 22 best events are provided. A first order interpretation shows that simple Galactic models with a standard disk and an elongated bulge are in agreement with our observations. We find that the average microlensing optical depth towards the complete EROS-cataloged stars of the spiral arms is $\bar{\tau} =0.51\pm .13\times 10^{-6}$, a number that is stable when the selection criteria are moderately varied. As the EROS catalog is almost complete up to $I_C=18.5$, the optical depth estimated for the sub-sample of bright target stars with $I_C<18.5$ ($\bar{\tau}=0.39\pm >.11\times 10^{-6}$) is easier to interpret. The set of microlensing events that we have observed is consistent with a simple Galactic model. A more precise interpretation would require either a better knowledge of the distance distribution of the target stars, or a simulation based on a Galactic model. For this purpose, we define and discuss the concept of optical depth for a given catalog or for a limiting magnitude.
Many X-ray observations of GigaHertz Peaked Spectrum and Compact Steep Spectrum sources have been made with Chandra X-ray Observatory and XMM-Newton Observatory over the last few years. The X-ray spectra contribute the important information to the total energy distribution of the compact radio sources. In addition the spatial resolution of Chandra allows for studies of the X-ray morphology of these sources on arcsec scales and provide a direct view of their environments. This paper gives a review of the current status of the X-ray observations and their contribution to our understanding of the nature of these compact radio sources. It also describes primary physical processes that lead to the observed X-ray emission and summarize X-ray emission properties expected from interactions between an expanding radio source and the intergalactic environment.
The HII complex N44 in the Large Magellanic Cloud (LMC) provides an excellent site to perform a detailed study of star formation in a mild starburst, as it hosts three regions of star formation at different evolutionary stages and it is not as complicated and confusing as the 30 Doradus giant HII region. We have obtained Spitzer Space Telescope observations and complementary ground-based 4m uBVIJK observations of N44 to identify candidate massive young stellar objects (YSOs). We further classify the YSOs into Types I, II, and III, according to their spectral energy distributions (SEDs). In our sample of 60 YSO candidates, ~65% of them are resolved into multiple components or extended sources in high-resolution ground-based images. We have modeled the SEDs of 36 YSOs that appear single or dominant within a group. We find good fits for Types I and I/II YSOs,but Types II and II/III YSOs show deviations between their observed SEDs and models that do not include PAH emission. We have also found that some Type III YSOs have central holes in their disk components. YSO counterparts are found in four ultracompact HII regions and their stellar masses determined from SED model fits agree well with those estimated from the ionization requirements of the HII regions. The distribution of YSOs is compared with those of the underlying stellar population and interstellar gas conditions to illustrate a correlation between the current formation of O-type stars and previous formation of massive stars. Evidence of triggered star formation is also presented.
In late 2003, the young eruptive variable star V1647 Orionis optically brightened by over 5 magnitudes, stayed bright for around 26 months, and then decline to its pre-outburst level. In August 2008 the star was reported to have unexpectedly brightened yet again and we herein present the first detailed observations of this new outburst. Photometrically, the star is now as bright as it ever was following the 2003 eruption. Spectroscopically, a pronounced P Cygni profile is again seen in Halpha with an absorption trough extending to -700 km/s. In the near-infrared, the spectrum now possesses very weak CO overtone bandhead absorption in contrast to the strong bandhead emission seen soon after the 2003 event. Water vapor absorption is also much stronger than previously seen. We discuss the current outburst below and relate it to the earlier event.
We present new results on the shock around the southwest radio lobe of Centaurus A using data from the Chandra Very Large Programme observations. The X-ray spectrum of the emission around the outer southwestern edge of the lobe is well described by a single power-law model with Galactic absorption -- thermal models are strongly disfavoured, except in the region closest to the nucleus. We conclude that a significant fraction of the X-ray emission around the southwest part of the lobe is synchrotron, not thermal. We infer that in the region where the shock is strongest and the ambient gas density lowest, the inflation of the lobe is accelerating particles to X-ray synchrotron emitting energies, similar to supernova remnants such as SN1006. This interpretation resolves a problem of our earlier, purely thermal, interpretation for this emission, namely that the density compression across the shock was required to be much larger than the theoretically expected factor of 4. We estimate that the lobe is expanding to the southwest with a velocity of ~2600 km/s, roughly Mach 8 relative to the ambient medium. We discuss the spatial variation of spectral index across the shock region, concluding that our observations constrain gamma_max for the accelerated particles to be 10^8 at the strongest part of the shock, consistent with expectations from diffusive shock acceleration theory. Finally, we consider the implications of these results for the production of ultra-high energy cosmic rays (UHECRs) and TeV emission from Centaurus A, concluding that the shock front region is unlikely to be a significant source of UHECRs, but that TeV emission from this region is expected at levels comparable to current limits at TeV energies, for plausible assumed magnetic field strengths.
This is the initial paper in a series presenting the first optical detections and subsequent follow-up spectroscopy of known Southern Galactic supernova remnants (SNRs) previously discovered in the radio. These new detections come from the AAO/UKST HAlpha survey of the Southern Galactic plane which has opened up fresh opportunities to study Galactic remnants. Here we present the first optical imaging and follow-up spectra of Galactic SNR G279.0+1.1 where a series of 14 small-scale fragmented groups of HAlpha filaments have been discovered in a ~2.3 deg. area centred on G279.0+1.1. Individually they are somewhat inconspicuous but collectively they are completely enclosed within the overall radio contours of this known SNR. Three of these filamentary groupings are particularly prominent and optical spectra have been obtained across two of them. Their morphological structure and spectral characteristics are typical of optically detected SNR filaments. Very strong [S II] emission relative to H has been detected with [S II]/HAlpha 0.7 and 1.1, confirming strong, shock heated emission. This is sufficient to classify these filaments in the likely SNR domain and therefore indicating a direct connection with the radio remnant. Other typical SNR emission lines such as [O II] at 3727A, HBeta, [O III] at 4959 and 5007A, HAlpha and [N II] at 6548 and 6584A were also detected, lending strong support to an SNR origin of these optical filaments. The value and insights that these optical data can provide for known remnants are discussed along with their relevance to the Galactic nitrogen abundance. A serendipitous discovery of an adjacent H II region is also briefly described.
We demonstrate for the first time that gaseous halos of disk galaxies can play a vital role in recycling metal-rich gas ejected from the bulges and thus in promoting chemical evolution of disks. Our numerical simulations show that metal-rich stellar winds from bulges in disk galaxies can be accreted onto the thin disks owing to hydrodynamical interaction between the gaseous ejecta and the gaseous halos, if the mean densities of the halos (rho_ hg) are as high as 10^{-5} cm^{-3}. The total amount of gas that is ejected from a bulge through a stellar wind and then accreted onto the disk depends mainly on rho_ hg and the initial velocity of the stellar wind. About ~ 1% of gaseous ejecta from bulges in disk galaxies of scale length a_d can be accreted onto disks around R ~ 2.5 a_ d for a reasonable set of model parameters. We discuss these results in the context of the origin of the surprisingly high metallicities of the solar neighborhood disk stars in the Galaxy. We also discuss some implications of the present results in terms of chemical evolution of disk galaxies with possibly different rho_ hg in different galaxy environments.
Using high-resolution data of the linearly polarized intensity and polarization angle at 3.6, 6.2, and 20 cm together with a 3-D model of the regular magnetic field, we study variations of the structure, strength, and energy density of the magnetic field in the Scd galaxy M33. The regular magnetic field consists of a horizontal component (represented by an axisymmetric mode from 1 to 3 kpc radius and a superposition of axisymmetric and bisymmetric modes from 3 to 5 kpc radius) and a vertical component. However, the inferred `vertical field' may be partly due to a galactic warp. We estimate the average total and regular magnetic field strengths as ~ 6.4 and 2.5 $\mu$G, respectively. Generation of interstellar magnetic fields by turbulent gas motion in M33 is indicated as the turbulent and magnetic energy densities are about equal.
We present a deep circular polarization image of the Orion BN/KL nebula in the Ks band and correlations of circular polarization, linear polarization, and H-Ks color representing extinction. The image of circular polarization clearly reveals the quadrupolar structure around the massive star IRc2, rather than BN. H-Ks color is well correlated with circular polarization. A simple relation between dichroic extinction, color excess, circular and linear polarization is derived. The observed correlation between the Stokes parameters and the color excess agrees with the derived relation, and suggests a major contribution of dichroic extinction to the production of circular polarization in this region, indicating the wide existence of aligned grains.
The observed X-ray source temperature distributions in OB stellar winds, as determined from high energy resolution Chandra observations, show that the highest temperatures occur near the star, and then steadily decrease outward through the wind. To explain this unexpected behavior, we propose a shock model concept that utilizes a well-known magnetic propulsion mechanism; the surface ejection of "diamagnetic plasmoids" into a diverging external magnetic field. This produces rapidly accelerating self-contained structures that plow through an ambient wind and form bow shocks that generate a range in X-ray temperatures determined by the plasmoid-wind relative velocities. The model free parameters are the plasmoid initial Alfven speed, the initial plasma-beta of the external medium, and the divergence rate of the external field. These are determined by fitting the predicted bow shock temperatures with the observed OB supergiant X-ray temperature distribution. We find that the initial external plasma-beta has a range between 0 and 2, and the assumed radially-decreasing external magnetic field strength that scales as r^{-S} has a value of S lying between 2 and 3. Most importantly, the initial plasmoid Alfven speed is found to be well-constrained at a value of 0.6 times the terminal velocity, which appears to represent an upper limit for all normal OB stars. This intriguing new limit on OB magnetic properties, as derived from Chandra observations, emphasizes the need for further studies of magnetic propulsion mechanisms in these stars.
We have used the He I discontinuities at 3421A to determine the electron temperatures, designated Te(He I), for a sample of five Galactic planetary nebulae (PNe). We compared Te(He I) with the electron temperatures derived from the hydrogen Balmer jump at 3646A, designated Te(H I), and found that Te(He I) are generally lower than Te(H I). There are two possible interpretations, a) the presence of substantial He+2 zone, or b) the presence of hydrogen-deficient cold clumps within diffuse nebulae. A series of photoionization models were constructed to test the two scenarios. We found that the observed Te(He I)/Te(H I) discrepancies are beyond the predictions of chemically homogeneous models. Our modelling shows that the presence of a small amount of hydrogen-deficient inclusions seems to be able to reproduce the observed intensities of He I discontinuities. We stress the value of He I discontinuities in investigating nebular physical conditions. Albeit with some observational and technical limitations, He I discontinuities should be considered in future modelling work.
The He-shell flash convection in AGB stars is the site for the high-temperature component of the s-process in low- and intermediate mass giants, driven by the Ne22 neutron source. [...] The upper convection boundary plays a critical role during the H-ingestion episode that may lead to neutron-bursts in the most metal-poor AGB stars. We address these problems through global 3-dimensional hydrodynamic simulations including the entire spherical He-shell flash convection zone (as oposed to the 3D box-in-a-star simulations). An important aspect of our current effort is to establish the feasibility of our appoach. We explain why we favour the explicit treatment over the anelastic approximation for this problem. The simulations presented in this paper use a Cartesian grid of 512^3 cells and have been run on four 8-core workstations for four days to simulate ~5000s, which corresponds to almost ten convective turn-over times. The convection layer extends radially at the simulated point in the flash evolution over 7 H_p pressure scale-heights and exceeds the size of the underlying core. Convection is dominated by large convective cells that fill more than an entire octant. [...]
UHE neutrinos with $E>10^{17}$ eV can be produced by ultra-high energy cosmic rays (UHECR) interacting with CMB photons (cosmogenic neutrinos) and by top-down sources, such as topological defects (TD), superheavy dark matter (SHDM) and mirror matter. Cosmogenic neutrinos are reliably predicted and their fluxes can be numerically evaluated using the observed flux of UHECR. The lower limit for the flux is obtained for the case of pure proton composition of the observed UHECR. The rigorous upper limit for cosmogenic neutrino flux also exists. The maximum neutrino energy is determined by maximum energy of acceleration, which at least for the shock acceleration is expected not to exceed $10^{21} - 10^{22}$ eV. The top-down sources provide neutrino energies a few orders of magnitude higher, and this can be considered as a signature of these models. Oscillations play important role in UHE neutrino astronomy. At production of cosmogenic neutrinos $\tau$-neutrinos are absent and $\bar{\nu}_e$ neutrinos are suppressed. These species, important for detection, appear in the observed fluxes due to oscillation. Mirror neutrinos cannot be observed directly, but due to oscillations to ordinary neutrinos they can provide the largest neutrino flux at the highest energies.
In the next years the FERMI gamma ray telescope and the Cherenkov telescopes will put very stringent constraints to models of gamma ray emission from galaxy clusters providing crucial information on relativistic particles in the inter-galactic-medium. We derive the broad band non-thermal spectrum of galaxy clusters in the context of general calculations in which relativistic particles (protons and secondary electrons due to proton-proton collisions) interact with MHD turbulence generated in the cluster volume during cluster mergers, and discuss the importance of future gamma ray observations.
Astrometry can bring powerful constraints to bear on a variety of scientific questions about neutron stars, including their origins, astrophysics, evolution, and environments. Using phase-referenced observations at the VLBA, in conjunction with pulsar gating and in-beam calibration, we have measured the parallaxes and proper motions for 14 pulsars. The smallest measured parallax in our sample is 0.13+-0.02 mas for PSR B1541+09, which has a most probable distance of 7.2+1.3-1.1 kpc. We detail our methods, including initial VLA surveys to select candidates and find in-beam calibrators, VLBA phase-referencing, pulsar gating, calibration, and data reduction. The use of the bootstrap method to estimate astrometric uncertainties in the presence of unmodeled systematic errors is also described. Based on our new model-independent estimates for distance and transverse velocity, we investigate the kinematics and birth sites of the pulsars and revisit models of the Galactic electron density distribution. We find that young pulsars are moving away from the Galactic plane, as expected, and that age estimates from kinematics and pulsar spindown are generally in agreement, with certain notable exceptions. Given its present trajectory, the pulsar B2045-16 was plausibly born in the open cluster NGC 6604. For several high-latitude pulsars, the NE2001 electron density model underestimates the parallax distances by a factor of two, while in others the estimates agree with or are larger than the parallax distances, suggesting that the interstellar medium is irregular on relevant length scales. The VLBA astrometric results for the recycled pulsar J1713+0747 are consistent with two independent estimates from pulse timing, enabling a consistency check between the different reference frames.
Black hole mass determination in active galaxies is a key issue in understanding various luminosity states. In the present paper we try to generalise the mass determination method based on the X-ray excess variance, successfully used for typical broad line Seyfert 1 galaxies (BLS1) to Narrow Line Seyfert 1 (NLS1) galaxies. NLS1 galaxies differ from BLS1 with respect to several properties. They are generally more variable in 2-10 keV energy band so the natural expectation is the need to use a different scaling coefficient between the mass and the variance in these two types of sources. However, we find that such a simple approach is not enough. Although for majority of the 21 NLS1 galaxies in our sample a single scaling coefficient (larger by a factor 20) provided us with a satisfactory method of mass determination, in a small subset of NLS1 galaxies this approach failed. Variability of those objects appeared to be at the intermediate level between NLS1 and BLS1 galaxies. These exceptional NLS1 galaxies have much harder soft X-ray spectra than majority of NLS1 galaxies. We thus postulate that the division of Seyfert 1 galaxies into BLS1 and NLS1 according to the widths of the Hbeta line is less generic than according to the soft X-ray slope.
The most recent results and some of the open key questions on the evolution of early-type galaxies are reviewed in the general cosmological context of massive galaxy formation.
The Galactic Center lobe is a degree-tall shell seen in radio continuum images of the Galactic center (GC) region. If it is actually located in the GC region, formation models would require massive energy input (e.g., starburst or jet) to create it. At present, observations have not strongly constrained the location or physical conditions of the GC lobe. This paper describes the analysis of new and archival single-dish observations of radio recombination lines toward this enigmatic object. The observations find that the ionized gas has a morphology similar to the radio continuum emission, suggesting that they are associated. We study averages of several transitions from H106alpha to H191epsilon and find that the line ratios are most consistent with gas in local thermodynamic equilibrium. The radio recombination line widths are remarkably narrow, constraining the typical electron temperature to be less than about 4000 K. These observations also find evidence of pressure broadening in the higher electronic states, implying a gas density of n_e=910^{+310}_{-450} cm^{-3}. The electron temperature, gas pressure, and morphology are all consistent with the idea that the GC lobe is located in the GC region. If so, the ionized gas appears to form a shell surrounding the central 100 parsecs of the galaxy with a mass of roughly 10^5 Msun, similar to ionized outflows seen in dwarf starbursts.
In February 1997, the Japanese radio astronomy satellite HALCA was launched to provide the space-bourne element for the VLBI Space Observatory Programme (VSOP) mission. A significant fraction of the mission time was to be dedicated to the VSOP Survey of bright compact Active Galactic Nuclei (AGN) at 5 GHz, which was lead by ISAS. The VSOP Survey Sources are an unbiased dataset of 294 targets, of which 82% were successfully observed. These are now undergoing statistical analysis to tease out the characteristics of typical AGN sources. We present here the summary of the imaging and conclusions we have reached.
Work has been on-going for the development of the required code for full polarisation processing of VLBI data using some new antennae mounts. The extensions of AIPS allows the support of two new mount types; the left-handed and right-handed Nasmyth antennae (Pico Veleta in the GMVA and Yebes-40m in the EVN) and the EW-mount (Hobart in the LBA). The data handling process is seamless, once the correct mount type has been selected. All subsequent calls to the parallactic angle subroutine PARANG will return the feed angles for Left or Right Nasmyth or EW-mount. These are required, respectively, for Pico Veleta, Yebes-40m (low frequency branch) and Hobart.
Pulsar timing at the Mt Pleasant observatory focused on Vela, which could be tracked for 18 hours of the day. These nearly continuous timing records extend over 24 years allowing a great insight into details of timing noise, micro glitches and other more exotic effects. It has been found that the spin up for the Vela pulsar occurs instantaneously to within the uncertainties of the data. The potential for new, higher resolution data, to unveil insights of the Neutron Star interiors is discussed.
Stimulated by the recent measurements on the electron spectrum by ATIC and positron fraction by PAMELA, we explore the correlation between the electron/positron excesses and the knee of the cosmic rays. In this work we ascribe the knee to the process of e$^+$e$^-$ pair production by interactions between high energy cosmic rays and background photons at the cosmic ray accelerating sources. With Monte-Carlo technique, the spectra of cosmic nuclei and electrons/positrons are calculated. The proton, Helium, Iron and all-particle spectra from low energy to high energies are well described. The generated electrons/positrons in pair production can explain the ATIC and PAMELA data quite well.
Milgrom's Modified Newtonian dynamics (MOND) provides an efficient way to summarize phenomenology of galaxies which does not lean on the notion of dark matter; it has great predictive power. Here I briefly review MOND as well as its implementation as a nonrelativistic modified gravity theory, AQUAL. Gravitational lensing and cosmology call for a relativistic gravity theory different from general relativity if dark matter is to be avoided. In recent years such a theory, T$e$V$e$S, has emerged from the marriage of AQUAL with the timelike vector field of Sanders. I discuss its structure and some of its successes and shortcomings.
The existence of a cosmic neutrino background -- the analogue of the cosmic microwave background -- is a fundamental prediction of standard big bang cosmology. Up to now, the observational evidence for its existence is rather indirect and rests entirely on cosmological observations of, e.g., the light elemental abundances, the anisotropies in the cosmic microwave background, and the large scale distribution of matter. Here, we review more direct, weak interaction based detection techniques for the cosmic neutrino background in the present epoch and in our local neighbourhood. We show that, with current technology, all proposals are still off by some orders of magnitude in sensitivity to lead to a guaranteed detection of the relic neutrinos. The most promising laboratory search, based on neutrino capture on beta decaying nuclei, may be done in future experiments designed to measure the neutrino mass through decay kinematics.
We test the reliability of infrared (IR) emission to trace star formation in individual star-forming sites of M33, and outline a new method for testing the distribution function of massive stars in newly formed clusters. We select IR sources from the Spitzer survey of M33 and show that the IR and Halpha luminosities are not correlated. Complementing the infrared photometry with GALEX-UV data, we estimate the source bolometric luminosities. For a given stellar IMF we simulate a theoretical curve for the expected bolometric-to-Halpha luminosity ratio, along which stellar clusters are born. We call this the cluster birthline in the Lbol--Lbol/LHal plane. The birthline is flat for Lbol>3x10^{39}erg/s because all clusters fully sample the IMF and it increases toward lower luminosities as the upper end of the IMF becomes incompletely sampled. The observations of M33 show that young isolated clusters lie close to the theoretical birthline for a wide range of Lbol. The luminosity is not proportional to Halpha emission for low mass clusters and aging moves clusters above the birthline. The best fit to the birthline is for a randomly sampled IMF, in which the mass of most massive star in a cluster is not strictly limited by the cluster's mass. We also find that the IR luminosity of young stellar clusters in M33 is not proportional to their bolometric luminosity. This irregularity could be the result of low and patchy dust abundance in M33.
We present the preliminary results of a systematic search for GRB and other transients in the publicly available data for the IBIS/PICsIT (0.2-10 MeV) detector on board INTEGRAL. Lightcurves in 2-8 energy bands with time resolution from 1 to 62.5 ms have been collected and an analysis of spectral and temporal characteristics has been performed. This is the nucleus of a forthcoming first catalog of GRB observed by PICsIT.
Red giants offer a good opportunity to study the interplay of magnetic fields and stellar evolution. Using the spectro-polarimeter NARVAL of the Telescope Bernard Lyot (TBL), Pic du Midi, France and the LSD technique, we began a survey of magnetic fields in single G-K-M giants. Early results include 6 MF-detections with fast rotating giants, and for the first time a magnetic field was detected directly in an evolved M-giant: EK Boo. Our results could be explained in the terms of $\alpha$--$\omega$ dynamo operating in these giants.
[Abridged] We use the deepest existing mid- and far-infrared observations (reaching ~3 mJy at 70 um) obtained with Spitzer in the GOODS and FIDEL fields to derive the evolution of the rest-frame 15 um, 35 um, and total infrared luminosity functions of galaxies spanning z < 1.3. In comparison with previous studies, the present one takes advantage of deep 70 um observations that provide a more robust infrared luminosity indicator than 24 um affected by the emission of PAHs at high redshift (z~1), and we use several independent fields to control cosmic variance. We use a new extraction technique based on the well-determined positions of galaxies at shorter wavelengths to extract the 24 and 70 um flux densities of galaxies. Using a combination of photometric and spectroscopic redshifts that exist for ~80% of the sources in our sample, we are able to estimate the rest-frame luminosities of galaxies at 15um and 35um. Then using a careful stacking analysis to validate the infrared bolometric corrections we compute the infrared luminosity function in three redshift bins z~0.55, z~0.85, and z~1.15. We find that the average infrared spectral energy distribution of galaxies over the last 2/3 of the cosmic time is consistent with that of local galaxies, although individual sources do present significant scatter. We also measured both the bright and faint ends of the infrared luminosity functions and find no evidence for a change in the slope of the double power law used to characterize the luminosity function. The redshift evolution of infrared luminous galaxies is consistent with pure luminosity evolution proportional to (1+z)^3.6 up to z~1.3. The comoving number density of infrared luminous galaxies has increased by a factor of ~100 between 0< z <1. By z~1.0, LIRGs produce half of the total comoving infrared luminosity density.
The fireshell model for Gamma-Ray Bursts (GRBs) naturally leads to a canonical GRB composed of a proper-GRB (P-GRB) and an afterglow. P-GRBs, introduced by us in 2001, are sometimes considered "precursors" of the main GRB event in the current literature. We show in this paper how the fireshell model leads to the understanding of the structure of GRBs, with precise estimates of the time sequence and intensities of the P-GRB and the of the afterglow. It leads as well to a natural classification of the canonical GRBs which overcomes the traditional one in short and long GRBs.
The extrasolar planets (EPs) so far detected are very different to the planets in our own Solar System. Many of them have Jupiter-like masses and close-in orbits (the so-called hot planets, HPs), with orbital periods of only a few days. In this paper, we present a new statistical analysis of the observed EPs, focusing on the origin of the HPs. Among the several HP formation mechanisms proposed so far, the two main formation mechanisms are type II migration and scattering. In both cases, planets form beyond the so-called snow-line of the protoplanetary disk and then migrate inward due to angular momentum and energy exchange with either the protoplanetary disk or with companion planets. Although theoretical studies produce a range of observed features, no firm correspondence between the observed EPs and models has yet been established. In our analysis, by means of principal component analysis and hierarchical cluster analysis, we find convincing indications for the existence of two types of HPs, whose parameters reflect physical mechanisms of type II migration and scattering.
The Gamma-Ray Bursts (GRBs) offer the unprecedented opportunity to observe for the first time the blackholic energy extracted by the vacuum polarization during the process of gravitational collapse to a black hole leading to the formation of an electron-positron plasma. The uniqueness of the Kerr-Newman black hole implies that very different processes originating from the gravitational collapse a) of a single star in a binary system induced by the companion, or b) of two neutron stars, or c) of a neutron star and a white dwarf, do lead to the same structure for the observed GRB. The recent progress of the numerical integration of the relativistic Boltzmann equations with collision integrals including 2-body and 3-body interactions between the particles offer a powerful conceptual tool in order to differentiate the traditional "fireball" picture, an expanding hot cavity considered by Cavallo and Rees, as opposed to the "fireshell" model, composed of an internally cold shell of relativistically expanding electron-positron-baryon plasma. The analysis of the fireshell naturally leads to a canonical GRB composed of a proper-GRB and an extended afterglow. By recalling the three interpretational paradigms for GRBs we show how the fireshell model leads to an understanding of the GRB structure and to an alternative classification of short and long GRBs.
We present high-speed optical photometry of the anomalous X-ray pulsar 1E 1048.1-5937 obtained with ULTRACAM on the 8.2-m Very Large Telescope in June 2007. We detect 1E 1048.1-5937 at a magnitude of i'=25.3+/-0.2, consistent with the values found by Wang et al. (2008) and hence confirming their conclusion that the source was approximately 1 mag brighter than in 2003-2006 due to an on-going X-ray flare that started in March 2007. The increased source brightness enabled us to detect optical pulsations with an identical period (6.458 s) to the X-ray pulsations. The rms pulsed fraction in our data is 21+/-7%, approximately the same as the 2-10 keV X-ray rms pulsed fraction. The optical and X-ray pulse profiles show similar morphologies and appear to be approximately in phase with each other, the latter lagging the former by only 0.06+/-0.02 cycles. The optical pulsations in 1E 1048.1-5937 are very similar in nature to those observed in 4U 0142+61. The implications of our observations for models of anomalous X-ray pulsars are discussed.
We present results of three-dimensional, fully nonlinear MHD simulations of a large-scale magnetic field evolution in a barred galaxy. The model does not take into consideration the dynamo process. We find that the obtained magnetic field configurations are highly similar to the observed maps of the polarized intensity of barred galaxies, because the modeled vectors form coherent structures along the bar and spiral arms. Due to the dynamical influence of the bar the gas forms spiral waves which go radially outward. Each spiral arm forms the magnetic arm which stays much longer in the disk, than the gaseous spiral structure. Additionally the modeled total energy of magnetic field grows due to strong compression and shear of non-axisymmetrical bar flows and differential rotation, respectively.
We investigate the cosmic ray driven dynamo in the interstellar medium of
irregular galaxy. The observations (Chyzy et al. 2000, 2003) show that the
magnetic field in irregular galaxies is present and its value reaches the same
level as in spiral galaxies. However the conditions in the medium of irregular
galaxy are very unfavorable for amplification the magnetic field due to slow
rotation and low shearing rate.
In this work we present numerical model of the interstellar medium in
irregular galaxies. The model includes magnetohydrodynamical dynamo driven by
cosmic rays in the interstellar medium provided by random supernova explosions.
We describe models characterized by different shear and rotation. We find that
even slow galactic rotation with low shearing rate gives amplification of the
magnetic field. Simulations have shown that high amount of the magnetic energy
flow out off the simulation region becoming an efficient source of
intergalactic magnetic fields.
Recent research has shown that distinct physical regions in the Venusian induced magnetosphere are recognizable from the variations of strength of the magnetic field and its wave/fluctuation activity. In this paper the statistical properties of magnetic fluctuations are investigated in the Venusian magnetosheath and wake regions. The main goal is to identify the characteristic scaling features of fluctuations along Venus Express (VEX) trajectory and to understand the specific circumstances of the occurrence of different types of scalings. For the latter task we also use the results of measurements from the previous missions to Venus. Our main result is that the changing character of physical interactions between the solar wind and the planetary obstacle is leading to different types of spectral scaling in the near-Venusian space. Noisy fluctuations are observed in the magnetosheath, wavy structures near the terminator and in the nightside near-planet wake. Multi-scale turbulence is observed at the magnetosheath boundary layer and near the quasi-parallel bow shock. Magnetosheath boundary layer turbulence is associated with an average magnetic field which is nearly aligned with the Sun-Venus line. Noisy magnetic fluctuations are well described with the Gaussian statistics. Both magnetosheath boundary layer and near shock turbulence statistics exhibit non-Gaussian features and intermittency over small spatio-temporal scales. The occurrence of turbulence near magnetosheath boundaries can be responsible for the local heating of plasma observed by previous missions.
The interstellar medium (ISM) is a key ingredient in galaxy formation and evolution as it provides the molecular gas reservoir which fuels star formation and supermassive black hole accretion. Yet the ISM is one of the least studied aspects of distant galaxies. Molecular and atomic transitions at (sub)millimetre wavelengths hold great promise in measuring macroscopic properties (e.g. masses, morphologies, star formation laws), as well as microscopic properties (e.g. gas densities, temperatures, cooling) of high-z galaxies. In this overview I summarize the growing number of high-z molecular line detections, highlighting some of the most intriguing results along the way. I end by discussing a few areas where future facilities (e.g. ALMA, EVLA, CCAT, LMT) will drastically improve on the current state of affairs.
Extensive simulations of the ultra-high energy cosmic ray (UHECR) propagation in the Galactic magnetic field (GMF) have been performed, and the results are presented. The use of different available models of the large-scale GMF and/or primary particle assumptions leads to distinctly different deflection patterns of the highest energy cosmic rays (CR). The lensing effects of the Galactic field modify the exposure of an UHECR experiment to the extragalactic sky. To quantify these effects for the Pierre Auger experiment, we performed a correlation analysis of the simulated cosmic ray event samples, backtracked from the Earth to the Galactic border, with the active galactic nuclei (AGN) from the 12th edition of the V\'eron-Cetty and V\'eron catalogue. Further forward-tracking studies under plausible UHECR sources scenarios are needed to allow for direct comparison with the observed correlation between the nearby AGN and the highest energy Auger events.
We describe two means by which XSTAR, a code which computes physical conditions and emission spectra of photoionized gases, has been parallelized. The first is pvm_xstar, a wrapper which can be used in place of the serial xstar2xspec script to foster concurrent execution of the XSTAR command line application on independent sets of parameters. The second is PModel, a plugin for the Interactive Spectral Interpretation System (ISIS) which allows arbitrary components of a broad range of astrophysical models to be distributed across processors during fitting and confidence limits calculations, by scientists with little training in parallel programming. Plugging the XSTAR family of analytic models into PModel enables multiple ionization states (e.g., of a complex absorber/emitter) to be computed simultaneously, alleviating the often prohibitive expense of the traditional serial approach. Initial performance results indicate that these methods substantially enlarge the problem space to which XSTAR may be applied within practical timeframes.
After the launch and successful beginning of operations of the FERMI satellite, the topics related to high-energy observations of gamma-ray bursts have obtained a considerable attention by the scientific community. Undoubtedly, the diagnostic power of high-energy observations in constraining the emission processes and the physical conditions of gamma-ray burst is relevant. We briefly discuss how gamma-ray burst observations with ground-based imaging array Cerenkov telescopes, in the GeV-TeV range, can compete and cooperate with FERMI observations, in the MeV-GeV range, to allow researchers to obtain a more detailed and complete picture of the prompt and afterglow phases of gamma-ray bursts.
Pulsars are fantastic objects, which show the extreme states of matters and plasma physics not understood yet. Pulsars can be used as probes for the detection of interstellar medium and even the gravitational waves. Here I review the basic facts of pulsars which should attract students to choose pulsar studies as their future projects.
In this second of a series of papers on spatially resolved star formation, we investigate the impact of the density-morphology relation of galaxies on the spatial variation of star formation (SF) and its dependence on environment. We find that while a density-morphology relation is present for the sample, it cannot solely explain the observed suppression of SF in galaxies in high-density environments. We also find that early-type and late-type galaxies exhibit distinct radial star formation rate (SFR) distributions, with early-types having a SFR distribution that extends further relative to the galaxy scale length, compared to late-types at all densities. We find that a suppression of SF in the highest density environments is found in the highest star forming galaxies for both galaxy types. This suppression occurs in the innermost regions in late-types (r <= 0.125 Petrosian radii), and further out in radius in early-types (0.125< r <= 0.25 Petrosian radii). When the full sample is considered no clear suppression of SF is detected, indicating that the environmental trends are driven only by the highest SF galaxies. We demonstrate that the density-morphology relation alone cannot account for the suppression of SF in the highest density environments. This points to an environmentally-governed evolutionary mechanism that affects the SF in the innermost regions in both early and late-type galaxies. We suggest that this is a natural consequence of the "downsizing" of SF in galaxies.
To date the onset of large-scale star formation in galaxies and its link to gravitational stability of the galactic disk have not been fully understood. The nearby face-on spiral galaxy M51 is an ideal target for studying this subject. This paper combines CO, dust, HI, and stellar maps of M51 and its companion galaxy to study the H2/HI transition, the gas-to-dust ratios, and the stability of the disk against gravitational collapse. We combine maps of the molecular gas using 12CO 2--1 map HERA/IRAM-30m data and HI VLA data to study the total gas surface density and the phase transition of atomic to molecular gas. The total gas surface density is compared to the dust surface density from 850 micron SCUBA data. Taking into account the velocity dispersions of the molecular and atomic gas, and the stellar surface densities derived from the 2MASS K-band survey, we derive the total Toomre Q parameter of the disk. The gas surface density in the spiral arms is approximately 2-3 higher compared to that of the interarm regions. The ratio of molecular to atomic surface density shows a nearly power-law dependence on the hydrostatic pressure P_hydro. The gas surface density distribution in M51 shows an underlying exponential distribution with a scale length of h_gas=7.6 kpc representing 55% of the total gas mass, comparable to the properties of the exponential dust disk. In contrast to the velocity widths observed in HI, the CO velocity dispersion shows enhanced line widths in the spiral arms compared to the interarm regions. The contribution of the stellar component in the Toomre Q-parameter analysis is significant and lowers the combined Q-parameter Q_tot by up to 70% towards the threshold for gravitational instability. The value of Q_tot varies from 1.5-3 in radial averages. A map of Q_tot shows values around 1 on the spiral arms.
We present a general analytical formalism to calculate accurately several statistics related to underdense regions in the Universe. The statistics are computed for dark matter halo and galaxy distributions both in real space and redshift space at any redshift. Using this formalism, we found that void statistics for galaxy distributions can be obtained, to a very good approximation, assuming galaxies to have the same clustering properties as halos above a certain mass. We deducted a relationship between this mass and that of halos with the same accumulated number density as the galaxies. We also found that the dependence of void statistics on redshift is small. For instance, the number of voids larger than 13 Mpc/h (defined to not contain galaxies brighter than M_r=-20.4 +5logh change less than 20% between z=1 and z=0. However, the dependence of void statistics on sigma_8 and Omega_m h is considerably larger, making them appropriate to develop tests to measure these parameters. We have shown how to efficiently construct several of these tests and discussed in detail the treatment of several observational effects. The formalism presented here along with the observed statistics extracted from current and future large galaxy redshift surveys will provide an independent measurement of the relevant cosmological parameters. Combining these measurements with those found using other methods will contribute to reduce their uncertainties.
The two dark sectors of the universe - dark matter and dark energy - may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from early time non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit "phantom crossing" and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.
(abridged) Vortices are believed to play a role in the formation of km-sized planetesimals. However, vortex dynamics is commonly studied in non-self-gravitating discs. The main goal here is to examine the effects of disc self-gravity on vortex dynamics. For this purpose, we employ the 2D self-gravitating shearing sheet approximation. A simple cooling law with a constant cooling time is adopted, such that the disc settles down into a quasi-steady gravitoturbulent state. In this state, vortices appear as transient structures undergoing recurring phases of formation, growth to sizes comparable to a local Jeans scale and eventual shearing and destruction due to the combined effects of self-gravity and background Keplerian shear. Each phase typically lasts about 2 orbital periods or less. As a result, in self-gravitating discs the overall dynamical picture of vortex evolution is irregular consisting of many transient vortices at different evolutionary stages and, therefore, with various sizes up to the local Jeans scale. Vortices generate density waves during evolution, which turn into shocks. Therefore, the dynamics of density waves and vortices are coupled implying that, in general, one should consider both vortex and spiral density wave modes in order to get a proper understanding of self-gravitating disc dynamics. Our results suggest that given such an irregular and rapidly varying character of vortex evolution in self-gravitating discs, it may be difficult for such vortices to effectively trap dust particles. Further study of the behaviour of dust particles embedded in a self-gravitating gaseous disc is, however, required to strengthen this conclusion.
The properties of the Extreme Horizontal Branch stars are quite well understood, but much uncertainty surrounds the many paths that bring a star to this peculiar configuration. Asteroseismology of pulsating EHB stars has been performed on a number of objects, bringing us to the stage where comparisons of the inferred properties with evolutionary models becomes feasible. In this review I outline our current understanding of the formation and evolution of these stars, with emphasis on recent progress. The aim is to show how the physical parameters derived by asteroseismology can enable the discrimination between different evolutionary models.
Measurements of the temperature and density structure of the solar corona provide critical constraints on theories of coronal heating. Unfortunately, the complexity of the solar atmosphere, observational uncertainties, and the limitations of current atomic calculations, particularly those for Fe, all conspire to make this task very difficult. A critical assessment of plasma diagnostics in the corona is essential to making progress on the coronal heating problem. In this paper we present an analysis of temperature and density measurements above the limb in the quiet corona using new observations from the EUV Imaging Spectrometer (EIS) on \textit{Hinode}. By comparing the Si and Fe emission observed with EIS we are able to identify emission lines that yield consistent emission measure distributions. With these data we find that the distribution of temperatures in the quiet corona above the limb is strongly peaked near 1 MK, consistent with previous studies. We also find, however, that there is a tail in the emission measure distribution that extends to higher temperatures. EIS density measurements from three density sensitive line ratios are found to be consistent with each other and with previous measurements in the quiet corona. Our analysis, however, also indicates that a significant fraction of the weaker emission lines observed in the EIS wavelength ranges cannot be understood with current atomic data
With Spitzer IRS we have obtained sensitive low-resolution spectroscopy from 5 to 35 microns for six supernova remnants (SNRs) that show evidence of shocked molecular gas: Kes 69, 3C 396, Kes 17, G346.6-0.2, G348.5-0.0 and G349.7+0.2. Bright, pure-rotational lines of molecular hydrogen are detected at the shock front in all remnants, indicative of radiative cooling from shocks interacting with dense clouds. We find the excitation of H2 S(0)-S(7) lines in these SNRs requires two non-dissociative shock components: a slow, 10 km/s C- shock through clumps of density 10^6 cm^-3, and a faster, 40-70 km/s C- shock through a medium of density 10^4 cm^-3. The ortho-to-para ratio for molecular hydrogen in the warm shocked gas is typically found to be much less than the LTE value, suggesting that these SNRs are propagating into cold quiescent clouds. Additionally a total of thirteen atomic fine-structure transitions of Ar+, Ar++, Fe+, Ne+, Ne++, S++, and Si+ are detected. The ionic emitting regions are spatially segregated from the molecular emitting regions within the IRS slits. The presence of ionic lines with high appearance potential requires the presence of much faster, dissociative shocks through a lower density medium. The IRS slits are sufficiently wide to include regions outside the SNR which permits emission from diffuse gas around the remnants to be separated from the shocked emission. We find the diffuse molecular hydrogen gas projected outside the SNR is excited to a temperature of 100 to 300 K with a warm gas fraction of 0.5 to 15 percent along the line of sight.
This paper describes a multiwavelengh optical study of chromospheres in two X-ray/EUV selected active binary stars with strong H_alpha emission, V789 Mon (2RE J0725-002) and GZ Leo (2RE J1101+223). The goal of the study is to determine radial velocities and fundamental stellar parameters in chromospherically active binary systems in order to include them in the activity-rotation and activity-age relations. We carried out high resolution echelle spectroscopic observations and applied spectral subtraction technique in order to measure emission excesses due to chromosphere. The detailed study of activity indicators allowed us to characterize the presence of different chromospheric features in these systems and enabled to include them in a larger activity-rotation survey. We computed radial velocities of the systems using cross correlation with the radial velocity standards. The double-line spectral binarity was confirmed and the orbital solutions improved for both systems. In addition, other stellar parameters such as: spectral types, projected rotational velocities (vsini), and the equivalent width of the lithium LiI 6707.8 AA absorption line were determined.
Considering epicyclic oscillations of pressure-supported perfect fluid tori orbiting Kerr black holes we examine non-geodesic (pressure) effects on the epicyclic modes properties. Using a perturbation method we derive fully general relativistic formulas for eigenfunctions and eigenfrequencies of the radial and vertical epicyclic modes of a slightly non-slender, constant specific angular momentum torus up to second-order accuracy with respect to the torus thickness. The behaviour of the axisymmetric and lowest-order ($m=\pm 1$) non-axisymmetric epicyclic modes is investigated. For an arbitrary black hole spin we find that, in comparison with the (axisymmetric) epicyclic frequencies of free test particles, non-slender tori receive negative pressure corrections and exhibit thus lower frequencies. Our findings are in qualitative agreement with the results of a recent pseudo-Newtonian study of analogous problem defined within the Paczy{\'n}ski-Wiita potential. Implications of our results on the high-frequency QPO models dealing with epicyclic oscillations are addressed.
As accretion in protoplanetary disks is enabled by turbulent viscosity, the border between active and inactive (dead) zones constitutes a location where there is an abrupt change in the accretion flow. The gas accumulation that ensues triggers the Rossby wave instability, that in turn saturates into anticyclonic vortices. It was suggested that the trapping of solids within them leads to a burst of planet formation on very short timescales. We perform two-dimensional global simulations of the dynamics of gas and solids in a non-magnetized thin protoplanetary disk with the Pencil Code. We use multiple particle species of radius 1, 10, 30, and 100 cm, solving for the particles' gravitational interaction by a particle-mesh method. The dead zone is modeled as a region of low viscosity. Adiabatic and locally isothermal equations of state are used. We find that the Rossby wave instability is triggered under a variety of conditions, thus making vortex formation a robust process. Inside the vortices, fast accumulation of solids occurs and the particles collapse into objects of planetary mass in timescales as short as five orbits. Because the drag force is size-dependent, aerodynamical sorting ensues within the vortical motion, and the first bound structures formed are composed primarily of similarly-sized particles. In addition to erosion due to ram pressure, we identify gas tides from the massive vortices as a disrupting agent of formed protoplanetary embryos. We also estimate the collisional velocity history of the particles that compose the most massive embryo by the end of the simulation, finding that the vast majority of them never experienced a collision with another particle at speeds faster than 1 m/s.
We derive a new set of equations which describe a continuous one parameter family of expanding wave solutions of the Einstein equations such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology, is embedded as a single point in this family. All of the spacetime metrics associated with this family satisfy the equation of state $p=\rho c^2/3$, correct for the pure radiation phase after inflation in the Standard Model of the Big Bang. By expanding solutions about the center to leading order in the Hubble length, the family reduces to a one-parameter family of expanding spacetimes that represent a perturbation of the Standard Model. We then derive a co-moving coordinate system in which the perturbed spacetimes can be compared with the Standard Model. In this coordinate system we calculate the correction to the Hubble constant, as well as the exact leading order quadratic correction to the redshift vs luminosity relation for an observer at the center of the expanding FRW spacetime. The leading order correction to the redshift vs luminosity relation entails an adjustable free parameter that introduces an anomalous acceleration. We conclude that any correction to the redshift vs luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. Since exact non-interacting expanding waves represent possible time-asymptotic wave patterns for conservation laws, we propose to further investigate the possibility that these corrections to the Standard Model might account for the anomalous acceleration of the galaxies, without the introduction of the cosmological constant.
In this paper, we propose & implement on WMAP 5-year data, a model independent approach of foreground power spectrum estimation for multifrequency observations of CMB experiments. Recently a model independent approach of CMB power spectrum estimation was proposed by Saha et al. 2006. This methodology demonstrates that CMB power spectrum can be reliably estimated solely from WMAP data without assuming any template models for the foreground components. In the current paper, we extend this work to estimate the galactic foreground power spectrum using the WMAP 5 year maps following a self contained analysis. We apply the model independent method in harmonic basis to estimate the foreground power spectrum and frequency dependence of combined foregrounds. We also study the behaviour of synchrotron spectral index variation over different regions of the sky. We compare our results with those obtained from MEM foreground maps which are formed in pixel space. We find that relative to our model independent estimates MEM maps overestimates the foreground power close to galactic plane and underestimates it at high latitudes.
We present high resolution images of the 12CO(2-1) emission in the central 1' (1 kpc) of NGC 5128 (Centaurus A), observed using the SMA. We elucidate for the first time the distribution and kinematics of the molecular gas in this region with a resolution of 6'.0 x 2'.4 (100 pc x 40 pc). We spatially resolve the circumnuclear molecular gas in the inner 24'' x 12'' (400 pc x 200 pc), which is elongated along a position angle P.A. = 155 deg and perpendicular to the radio/X-ray jet. The SE and NW components of the circumnuclear gas are connected to molecular gas found at larger radii. This gas appears as two parallel filaments at P.A. = 120 deg, which are coextensive with the long sides of the 3 kiloparsec parallelogram shape of the previously observed dust continuum, as well as ionized and pure rotational H2 lines. Spatial and kinematical asymmetries are apparent in both the circumnuclear and outer gas, suggesting non-coplanar and/or non-circular motions. We extend to inner radii (r < 200 pc) previously studied warped disk models built to reproduce the central parallelogram-shaped structure. Adopting the warped disk model we would confirm a gap in emission between the radii r = 200 - 800 pc (12'' - 50''), as has been suggested previously. Although this model explains this prominent feature, however, our 12CO(2-1) observations show relevant deviations from this model. Namely, the physical connection between the circumnuclear gas and that at larger radii, brighter SE and NW sides on the parallelogram-shaped feature, and an outer curvature of its long sides. Overall it resembles more closely an S-shaped morphology, a trend that is also found in other molecular species. Hence, we explore qualitatively the possible contribution of a weak bi-symmetric potential which would naturally explain these peculiarities.
The spatial distributions of the most recently discovered ultra faint dwarf satellites around the Milky Way and the Andromeda galaxy are compared to the previously reported discs-of-satellites (DoS) of their host galaxies. In our investigation we pay special attention to the selection bias introduced due to the limited sky coverage of SDSS. We find that the new Milky Way satellite galaxies follow closely the DoS defined by the more luminous dwarfs, thereby further emphasizing the statistical significance of this feature in the Galactic halo. We also notice a deficit of satellite galaxies with Galactocentric distances larger than 100 kpc that are away from the disc-of-satellites of the Milky Way. In the case of Andromeda, we obtain similar results, naturally complementing our previous finding and strengthening the notion that the discs-of-satellites are optical manifestations of a phase-space correlation of satellite galaxies.
We compare the amount of magnetic flux measured in Stokes V and Stokes I in a sample of early- and mid-M stars around the boundary to full convection (~M3.5). Early-M stars possess a radiative core, mid-M stars are fully convective. While Stokes V is sensitive to the net polarity of magnetic flux arising mainly from large-scale configurations, Stokes I measurements can see the total mean flux. We find that in early-M dwarfs, only ~6% of the total magnetic flux is detected in Stokes V. This ratio is more than twice as large, ~14%, in fully convective mid-M dwarfs. The bulk of the magnetic flux on M-dwarfs is not seen in Stokes V. This is presumably because magnetic flux is mainly stored in small scale components. There is also more to learn about the effect of the weak-field approximation on the accuracy of strong field detections. In our limited sample, we see evidence for a change in magnetic topology at the boundary to full convection. Fully convective stars store a 2-3 times higher fraction of their flux in fields visible to Stokes V. We estimate the total magnetic energy detected in Stokes I and compare it to results from Stokes V. We find that in early-M dwarfs only ~0.5% of the total magnetic energy is detected in Stokes V while this fraction is ~2.5% in mid-M dwarfs.
We calculate the probability distribution for the volume of the Universe after slow-roll inflation both in the eternal and in the non-eternal regime. Far from the eternal regime the probability distribution for the number of e-foldings, defined as one third of the logarithm of the volume, is sharply peaked around the number of e-foldings of the classical inflaton trajectory. At the transition to the eternal regime this probability is still peaked (with the width of order one e-folding) around the average, which gets twice larger at the transition point. As one enters the eternal regime the probability for the volume to be finite rapidly becomes exponentially small. In addition to developing techniques to study eternal inflation, our results allow us to establish the quantum generalization of a recently proposed bound on the number of e-foldings in the non-eternal regime: the probability for slow-roll inflation to produce a finite volume larger than e^(S_dS/2), where S_dS is the de Sitter entropy at the end of the inflationary stage, is smaller than the uncertainty due to non-perturbative quantum gravity effects. The existence of such a bound provides a consistency check for the idea of de Sitter complementarity.
We study the details of preheating in an inflationary scenario in which the Standard Model Higgs, strongly non-minimally coupled to gravity, plays the role of the inflaton. We find that the Universe does not reheat immediately through perturbative decays, but rather initiate a complex process in which perturbative and non-perturbative effects are mixed. The Higgs condesate starts oscillating around the minimum of its potential, producing W and Z gauge bosons non-perturbatively, due to violation of the so-called adiabaticity condition. However, during each semi-oscillation, the created gauge bosons completely decay (perturbatively) into fermions. This way, the decay of the gauge bosons prevents the development of parametric resonance, since bosons cannot accumulate significantly at the beginning. However, the energy transferred to the decay products of the bosons is not enough to reheat the universe, so after about a hundred oscillations, the resonance effect will finally dominate over the perturbative decays. Around the same time (or slightly earlier), backreaction from the gauge bosons onto the Higgs condensate will also start to be significant. Soon afterwards, the Universe is filled with the remnant condensate of the Higgs and a non-thermal distribution of Standard Model particles which redshift as radiation, while the Higgs continues to oscillate as a pressureless fluid. We compute the distribution of energy among all the species present at backreaction. From there on until thermalization, the evolution of the system is highly non-linear and non-perturbative, and will require a careful study via numerical simulations.
We show how to provide suitable gauge invariant prescriptions for the classical spatial averages (resp. quantum expectation values) that are needed in the evaluation of classical (resp. quantum) backreaction effects. We also present examples illustrating how the use of gauge invariant prescriptions can avoid interpretation problems and prevent misleading conclusions.
Links to: arXiv, form interface, find, astro-ph, recent, 0901, contact, help (Access key information)
Observations of the Galactic Centre show evidence of disc-like structures of
very young stars orbiting the central super-massive black hole within a
distance of a few 0.1 pc. While it is widely accepted that about half of the
stars form a relatively flat disc rotating clockwise on the sky, there is a
substantial ongoing debate on whether there is a second, counter-clockwise disc
of stars.
By means of N-body simulations using our bhint code, we show that two highly
inclined stellar discs with the observed properties cannot be recognised as two
flat circular discs after 5 Myr of mutual interaction. Instead, our
calculations predict a significant warping of the two discs, which we show to
be apparent among the structures observed in the Galactic Centre. While the
high eccentricities of the observed counter-clockwise orbits suggest an
eccentric origin of this system, we show the eccentricity distribution in the
inner part of the more massive clockwise disc to be perfectly consistent with
an initially circular disc in which stellar eccentricities increase due to both
non-resonant and resonant relaxation.
We conclude that the relevant question to ask is therefore not whether there
are two discs of young stars, but whether there were two such discs to begin
with.
In this paper we discuss some general aspects of the gravitational wave background arising from post-inflationary short-lasting cosmological events such as phase transitions. We concentrate on the physics which determines the shape and the peak frequency of the gravitational wave spectrum. We then apply our general findings to the case of bubble collisions during a first order phase transition and compare different results in the recent literature.
The growth of supermassive black holes and their host galaxies are thought to be linked, but the precise nature of this symbiotic relationship is still poorly understood. Both observations and simulations of galaxy formation suggest that the energy input from active galactic nuclei (AGN), as the central supermassive black hole accretes material and grows, heats the interstellar material and suppresses star formation. In this Letter, we show that most host galaxies of moderate-luminosity supermassive black holes in the local universe have intermediate optical colors that imply the host galaxies are transitioning from star formation to quiescence, the first time this has been shown to be true for all AGN independent of obscuration. The intermediate colors suggest that star formation in the host galaxies ceased roughly 100 Myr ago. This result indicates that either the AGN are very long-lived, accreting for more than 1 Gyr beyond the end of star formation, or there is a ~100 Myr time delay between the shutdown of star formation and detectable black hole growth. The first explanation is unlikely given current estimates for AGN lifetimes, so low-lumiosity AGN must shut down star formation before substantial black hole accretion activity is detected. The scarcity of AGN host galaxies in the blue cloud reported here challenges scenarios where significant star formation and black hole growth are coeval. Lastly, these observations also strongly support the `Unified Model' of AGN as the host galaxy colors are independent of obscuration towards the central engine.
Different compositions of galaxy types in the field in comparison to galaxy
clusters as described by the morphology-density relation in the local universe
is interpreted as a result of transformation processes from late- to early-type
galaxies. This interpretation is supported by the Butcher-Oemler effect.
We investigate E+A galaxies as an intermediate state between late-type
galaxies in low density environments and early-type galaxies in high density
environment to constrain the possible transformation processes. For this
purpose we model a grid of post-starburst galaxies by inducing a burst and/or a
halting of star formation on the normal evolution of spiral galaxies with our
galaxy evolution code GALEV.
From our models we find that the common E+A criteria exclude a significant
number of post-starburst galaxies and propose that comparing their spectral
energy distributions leads to a more sufficient method to investigate
post-starbust galaxies. We predict that a higher number of E+A galaxies in the
early universe can not be ascribed solely to a higher number of starburst, but
is a result of a lower metallicity and a higher burst strength due to more gas
content of the galaxies in the early universe. We find that even galaxies with
a normal evolution without a starburst have a Hdelta-strong phase at early
galaxy ages.
We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M^{-1/4}. Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M->0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.
(abridged) We present Spitzer infrared observations to constrain disc and dust evolution in young T Tauri stars in MBM 12, a star-forming cloud at high latitude with an age of 2 Myr and a distance of 275 pc. The region contains 12 T Tauri systems, with primary spectral types between K3 and M6; 5 are weak-line and the rest classical T Tauri stars. We first use MIPS and literature photometry to compile spectral energy distributions for each of the 12 members in MBM 12, and derive their IR excesses. The IRS spectra are analysed with the newly developed two-layer temperature distribution (TLTD) spectral decomposition method. For the 7 T Tauri stars with a detected IR excess, we analyse their solid-state features to derive dust properties such as mass-averaged grain size, composition and crystallinity. We find a spatial gradient in the forsterite to enstatite range, with more enstatite present in the warmer regions. The fact that we see a radial dependence of the dust properties indicates that radial mixing is not very efficient in the discs of these young T Tauri stars. The SED analysis shows that the discs in MBM 12, in general, undergo rapid inner disc clearing, while the binary sources have faster discevolution. The dust grains seem to evolve independently from the stellar properties, but are mildly related to disc properties such as flaring and accretion rates.
We report results of 3D MHD simulations of the dynamics of buoyant bubbles in magnetized galaxy cluster media. The simulations are three dimensional extensions of two dimensional calculations reported by Jones & De Young (2005). Initially spherical bubbles and briefly inflated spherical bubbles all with radii a few times smaller than the intracluster medium (ICM) scale height were followed as they rose through several ICM scale heights. Such bubbles quickly evolve into a toroidal form that, in the absence of magnetic influences, is stable against fragmentation in our simulations. This ring formation results from (commonly used) initial conditions that cause ICM material below the bubbles to drive upwards through the bubble, creating a vortex ring; that is, hydrostatic bubbles develop into "smoke rings", if they are initially not very much smaller or very much larger than the ICM scale height. Even modest ICM magnetic fields with beta = P_gas/P_mag ~ 10^3 can influence the dynamics of the bubbles, provided the fields are not tangled on scales comparable to or smaller than the size of the bubbles. Quasi-uniform, horizontal fields with initial beta ~ 10^2 bifurcated our bubbles before they rose more than about a scale height of the ICM, and substantially weaker fields produced clear distortions. On the other hand, tangled magnetic fields with similar, modest strengths are generally less easily amplified by the bubble motions and are thus less influential in bubble evolution. Inclusion of a comparably strong, tangled magnetic field inside the initial bubbles had little effect on our bubble evolution, since those fields were quickly diminished through expansion of the bubble and reconnection of the initial field.
Rotating black holes can power the most extreme non-thermal transient sources. They have a long-duration viscous time-scale of spin-down and produce non-thermal emissions along their spin-axis, powered by a relativistic capillary effect. We report on the discovery of exponential decay in BATSE light curves of long GRBs by matched filtering, consistent with a viscous time-scale, and identify UHECRs energies about the GZK threshold in linear acceleration of ion contaminants along the black hole spin-axis, consistent with black hole masses and lifetimes of FR II AGN. We explain the absence of UHECRs from BL Lac objects due to UHECR emissions preferably at appreciable angles away from the black hole spin-axis. Black hole spin may be key to unification of GRBs and their host environments, and to AGN and their host galaxies. Our model points to long duration bursts in radio from long GRBs without supernovae and gravitational-waves from all long GRBs.
The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the known accreting neutron stars, given the level of uncertainty that exists regarding spin and orbital parameters. In this paper we reflect on our conclusions, and issue an open challenge to the theoretical community to consider how searches should be designed to yield the most astrophysically interesting upper limits. With this in mind we examine some more optimistic emission scenarios involving spin-down, and show that there are technically feasible searches, particularly for the accreting millisecond pulsars, that might place meaningful constraints on torque mechanisms. We finish with a brief discussion of prospects for indirect detection.
We report the discovery of a minor planet (2006 SQ372) on an orbit with a perihelion of 24 AU and a semimajor axis of 796 AU. Dynamical simulations show that this is a transient orbit and is unstable on a timescale of 200 Myrs. Falling near the upper semimajor axis range of the scattered disk and the lower semimajor axis range of the Oort Cloud, previous membership in either class is possible. By modeling the production of similar orbits from the Oort Cloud as well as from the scattered disk, we find that the Oort Cloud produces 16 times as many objects on SQ372-like orbits as the scattered disk. Given this result, we believe this to be the most distant long-period comet ever discovered. Furthermore, our simulation results also indicate that 2000 OO67 has had a similar dynamical history. Unaffected by the "Jupiter-Saturn Barrier," these two objects are most likely long-period comets from the inner Oort Cloud.
Based on a panel discussion at the meeting "New Light on Young Stars: Spitzer's View of Circumstellar Disks", we provide some definitions of common usage of terms describing disks and related objects.
We report the discovery of an Ultra Compact Dwarf (UCD) associated with the
Sombrero galaxy (M104). This is the closest massive UCD known and the first
spectroscopically verified massive UCD which is located in a low density
environment.
The object, we name SUCD1, was identified in HST/ACS imaging and confirmed to
be associated with the Sombrero galaxy by its recession velocity obtained from
Keck spectra. The light profile is well fitted by a Wilson model. We measure a
half light size of 14.7 +/- 1.4 pc, an absolute magnitude of M_V = -12.3 mag
(M_K = -15.1 mag) and an internal velocity dispersion of 25.0 +/- 5.6 km/s.
Such values are typical of UCDs. From Lick spectral indices we measure a
luminosity-weighted central age of 12.6 +/- 0.9 Gyrs, [Fe/H] of -0.08 +/- 0.08
dex and [alpha/Fe] of 0.06 +/- 0.07 dex. The lack of colour gradients suggests
these values are representative of the entire UCD. The derived stellar and
virial masses are the same, within errors, at ~3.3 x 10E7 Msun. Thus we find no
strong evidence for dark matter or the need to invoke a non-standard IMF.
We also report arguably the first X-ray detection of a bona fide UCD, which
we attribute to the presence of Low-Mass X-ray Binaries (LMXBs). The X-ray
luminosity of L_X = 0.56 x 10E38 erg/s is consistent with the values observed
for GCs of the same metallicity. Overall we find SUCD1 has properties similar
to other known UCDs and massive GCs.
Three planets with minimum masses less than 10 Earth masses orbit the star HD 40307, suggesting these planets may be rocky. However, with only radial velocity data, it is impossible to determine if these planets are rocky or gaseous. Here we exploit various dynamical features of the system in order to assess the physical properties of the planets. Observations allow for circular orbits, but a numerical integration shows that the eccentricities must be at least 0.0001. Also, planets b and c are so close to the star that tidal effects are significant. If planet b has tidal parameters similar to the terrestrial planets in the Solar System and a remnant eccentricity larger than 0.001, then, going back in time, the system would have been unstable within the lifetime of the star (which we estimate to be 6.1 +/- 1.6 Gyr). Moreover, if the eccentricities are that large and the inner planet is rocky, then its tidal heating may be an order of magnitude greater than extremely volcanic Io, on a per unit surface area basis. If planet b is not terrestrial, e.g. Neptune-like, these physical constraints would not apply. This analysis suggests the planets are not terrestrial-like, and are more like our giant planets. In either case, we find that the planets probably formed at larger radii and migrated early-on (via disk interactions) into their current orbits. This study demonstrates how the orbital and dynamical properties of exoplanet systems may be used to constrain the planets' physical properties.
We present dust features and masses observed in young supernova remnants (SNRs) with Spitzer IRS mapping and staring observations of four youngest supernova remnants: SNR 1E102.2-7219 (E0102) in the SMC, Cas A and G11.2-0.3 in our Galaxy, and N132D in the LMC. The spectral mapping data revealed a number of dust features which include 21 micron-peak dust and featureless dust in Cas A and 18-micron peak dust in E0102 and N132D. The 18 micron-peak feature is fitted by a mix of MgSiO$_3$ and solid Si dust grains, while the 21-micron peak dust is by a mix of silicates and FeO; we also explore dust fitting using Continuous Distribution of Ellipsoid grain models. We report detection of CO fundamental band from Cas A in near-infrared. We review dust features observed and identified in other SNRs. The dust emission is spatially correlated with the ejecta emission, showing dust is formed in SN ejecta. The spectra of E0102 show rich gas lines from ejecta including strong ejecta lines of Ne and O, including two [Ne III] lines and two [Ne V] lines which allow us to diagnostic density and temperature of the ejecta and measure the ejecta masses. E0102 and N132D show weak or lacking Ar, Si, and Fe ejecta, whereas the young Galactic SNR Cas A show strong Ar, Si, and S and weak Fe. We discuss compositions and masses of dust and association with those of ejecta and finally, dust contribution from SNe to early Universe.
We use kinetic simulations of diffusive shock acceleration (DSA) to study the time-dependent evolution of plane, quasi-parallel, cosmic-ray (CR) modified shocks. Thermal leakage injection of low energy CRs and finite Alfv\'en wave propagation and dissipation are included. Bohm diffusion as well as the diffusion with the power-law momentum dependence are modeled. As long as the acceleration time scale to relativistic energies is much shorter than the dynamical evolution time scale of the shocks, the precursor and subshock transition approach the time-asymptotic state, which depends on the shock sonic and Alfv\'enic Mach numbers and the CR injection efficiency. For the diffusion models we employ, the shock precursor structure evolves in an approximately self-similar fashion, depending only on the similarity variable, x/(u_s t). During this self-similar stage, the CR distribution at the subshock maintains a characteristic form as it evolves: the sum of two power-laws with the slopes determined by the subshock and total compression ratios with an exponential cutoff at the highest accelerated momentum, p_{max}(t). Based on the results of the DSA simulations spanning a range of Mach numbers, we suggest functional forms for the shock structure parameters, from which the aforementioned form of CR spectrum can be constructed. These analytic forms may represent approximate solutions to the DSA problem for astrophysical shocks during the self-similar evolutionary stage as well as during the steady-state stage if p_{max} is fixed.
We investigated the kinematic and excitation structure of the NGC 1068 narrow-line region (NLR). We obtained profiles of several emission lines, [OIII]$\lambda$5007, H$\beta$, [OI]$\lambda$6300 and [FeVII]$\lambda$6087 at high-velocity resolution (R ~ 7500 - 11000), and confirmed that they showed different profiles. These profiles are useful for understanding the NLR structure, as they cover a wide ionization potential range. By comparing the results with a photoionization model, we found that 1) blueshifted components at the center are very dense, 2) those in the northeast region have slightly lower densities than those in the center, and 3) ionization parameters of the blueshifted components increase with increasing velocity with respect to the systemic velocity. We investigated the NLR structure in NGC 1068 based on these results. We show that both the observed velocity dependence of the ionization parameter and the gradually increasing velocity field can be reproduced by varying the ionizing continuum attenuation, assuming a hollowed biconical geometry and varying the column densities of outflowing clouds.
Previously Liao and Shuryak [\textbf{Phys. Rev C (2008)}] have investigated electrical flux tubes in monopole plasmas, where magnetic fields are non-solenoidal in quark-QCD plasmas. In this paper slow dynamos in diffusive plasma [{\textbf{Phys. Plasmas \textbf{15} (2008)}}] filaments (thin tubes) are obtained in the case of monopole plasmas. In the absence of diffusion the magnetic field decays in the Early Universe. The torsion is highly chaotic in dissipative large scale dynamos in the presence of magnetic monopoles. The magnetic field is given by the Heaviside step function in order to represent the non-uniform stretching of the dynamo filament. These results are obtained outside the junction condition. Stringent limits to the monopole flux were found by Lewis et al [\textbf{Phys Rev D (2000)}] by using the dispute between the dynamo action and monopole flux. Since magnetic monopoles flow dispute the dynamo action, it seems reasonable that their presence leads to a slow dynamo action in the best hypothesis or a decay of the magnetic field. Hindmarsh et al have computed the magnetic energy decay in the early universe as ${E}_{M}\approx{t^{-0.5}}$, while in our slow dynamo case linearization of the growth rate leads to a variation od magnetic energy of ${\delta}{E}_{M}\approx{t}$, due to the presence of magnetic monopoles. Da Rios equations of vortex filaments are used to place constraints on the geometry of monopole plasma filaments.
One important frontier for astronomical adaptive optics (AO) involves methods such as Multi-Object AO and Multi-Conjugate AO that have the potential to give a significantly larger field of view than conventional AO techniques. A second key emphasis over the next decade will be to push astronomical AO to visible wavelengths. We have conducted the first laboratory simulations of wide-field, laser guide star adaptive optics at visible wavelengths on a 10-meter-class telescope. These experiments, utilizing the UCO/Lick Observatory's Multi-Object / Laser Tomography Adaptive Optics (MOAO/LTAO) testbed, demonstrate new techniques in wavefront sensing and control that are crucial to future on-sky MOAO systems. We (1) test and confirm the feasibility of highly accurate atmospheric tomography with laser guide stars, (2) demonstrate key innovations allowing open-loop operation of Shack-Hartmann wavefront sensors (with errors of ~30 nm) as will be needed for MOAO, and (3) build a complete error budget model describing system performance. The AO system maintains a performance of 32.4% Strehl on-axis, with 24.5% and 22.6% at 10" and 15", respectively, at a science wavelength of 710 nm (R-band) over the equivalent of 0.8 seconds of simulation. The MOAO-corrected field of view is ~25 times larger in area than that limited by anisoplanatism at R-band. Our error budget is composed of terms verified through independent, empirical experiments. Error terms arising from calibration inaccuracies and optical drift are comparable in magnitude to traditional terms like fitting error and tomographic error. This makes a strong case for implementing additional calibration facilities in future AO systems, including accelerometers on powered optics, 3D turbulators, telescope and LGS simulators, and external calibration ports for deformable mirrors.
Direct measurements of magnetic fields in low-mass stars of spectral class M have become available during the last years. This contribution summarizes the data available on direct magnetic measurements in M dwarfs from Zeeman analysis in integrated and polarized light. Strong magnetic fields at kilo-Gauss strength are found throughout the whole M spectral range, and so far all field M dwarfs of spectral type M6 and later show strong magnetic fields. Zeeman Doppler images from polarized light find weaker fields, which may carry important information on magnetic field generation in partially and fully convective stars.
Microlensing observations towards M31 are a powerful tool for the study of the dark matter population in the form of MACHOs both in the Galaxy and the M31 halos, a still unresolved issue, as well as for the analysis of the characteristics of the M31 luminous populations. In this work we present the second year results of our pixel lensing campaign carried out towards M31 using the 152 cm Cassini telescope in Loiano. We have established an automatic pipeline for the detection and the characterisation of microlensing variations. We have carried out a complete simulation of the experiment and evaluated the expected signal, including an analysis of the efficiency of our pipeline. As a result, we select 1-2 candidate microlensing events (according to different selection criteria). This output is in agreement with the expected rate of M31 self-lensing events. However, the statistics are still too low to draw definitive conclusions on MACHO lensing.
Chemical networks used for models of interstellar clouds contain many reactions, some of them with poorly determined rate coefficients and/or products. In this work, we report a method for improving the predictions of molecular abundances using sensitivity methods and ab initio calculations. Based on the chemical network osu.2003, we used two different sensitivity methods to determine the most important reactions as a function of time for models of dense cold clouds. Of these reactions, we concentrated on those between C and C3 and between C and C5, both for their effect on specific important species such as CO and for their general effect on large numbers of species. We then used ab initio and kinetic methods to determine an improved rate coefficient for the former reaction and a new set of products, plus a slightly changed rate coefficient for the latter. Putting our new results in a pseudo-time-dependent model of cold dense clouds, we found that the abundances of many species are altered at early times, based on large changes in the abundances of CO and atomic C. We compared the effect of these new rate coefficients/products on the comparison with observed abundances and found that they shift the best agreement from 3e4 yr to (1-3)e5 yr.
In this paper we present extinction properties of interstellar dust in a prominent dust lane galaxy NGC 4370 based on the optical broad band (BVRI) imaging observations taken from the Himalaya Chandra Telescope (HCT), Hanle and the near-IR (J,H,K$_s$) images taken from the 2MASS archive. NGC 4370 belongs to the Virgo cluster (VCC 0758) and form a non-interactive pair with NGC 4365 at 10$\arcmin$. NGC 4370 hosts a prominent dust lane running parallel to its optical major axis and is extended almost up to 1\arcmin. The extinction curve derived for NGC 4370 is found to run parallel to Galactic extinction curve, implying that the properties of dust in NGC 4370 are identical to those of the canonical grains in the Milky Way. The $R_V$ value is found to be equal to 2.85$\pm$0.05 and is consitent with the values reported for the dust lane galaxies. The total dust content of NGC 4370 estimated using optical extinction and IRAS flux densities are found to be equal to $4.4\times 10^4$ \msol and $2.0\times 10^5$ \msol, respectively. As regard to the origin of dust and ISM in this galaxy, the accumulated dust by this galaxy over its life-time is insufficient to account for the detected mass by optical means, which in turn imply that the ISM might have been acquired by the NGC 4370 through a merger like event. An attempt is also made to study the apparent spatial correspondence between the multiple phases of ISM, i.e., hot gas, warm gas and dust in this galaxy by obtaining optical emission maps from narrow band imaging and diffuse X-ray emission map obtained from the analysis of \emph{Chandra} archival data. This analysis implies a physical connection between the dust and warm gas in terms of their physical co-existence and common origin too.
We extend the hadronic SU(3) non-linear sigma model to include quark degrees of freedom. The choice of potential for the Polyakov loop as a function of temperature and chemical potential allows us to construct a realistic phase diagram from the analysis of the order parameters of the system. These parameters are the chiral condensate, for the chiral symmetry restoration and the Polyakov loop, for the deconfinement to quark matter. Besides reproducing lattice QCD results, for zero and low chemical potential, we are in agreement with neutron star observations for zero temperature. We also predict very high maximum neutron star masses and radii.
We present a homogeneous and 92 % complete dataset of optical nuclear spectra for the 113 3CR radio sources with redshifts < 0.3, obtained with the Telescopio Nazionale Galileo. For these sources we could obtain uniform and uninterrupted coverage of the key spectroscopic optical diagnostics. The observed sample, including powerful classical FR II radio-galaxies and FR I, together spanning four orders of magnitude in radio-luminosity, provides a broad representation of the spectroscopic properties of radio galaxies. In this first paper we present an atlas of the spectra obtained, provide measurements of the diagnostic emission line ratios, and identify active nuclei with broad line emission. These data will be used in follow-up papers to address the connection between the optical spectral characteristics and the multiwavelength properties of the sample.
We characterize the flickering observed in the optical lightcurve of the Intermediate Polar system V709 Cas by determining its position in the alpha-Sigma as in the Fritz and Bruch (1998) classification scheme. Sigma represents the strength of flickering at a given timescale, while alpha describes the energy distribution of the flickering at different time scales. Here alpha is independently obtained with both the wavelets and the Hurst R/S analysis. The flickering shows self-similarity in the time scale ranging from tens of minutes down to 10 seconds with stochastic persistent memory in time. alpha and Sigma appear anticorrelated. In the alpha-Sigma diagram V709 Cas falls in the region of magnetic systems. Since V709 Cas shows the spin period of the magnetic WD only in the X-ray but not in the optical, we conclude that this method can be used to characterize CV subtypes especially when their classification is uncertain.
We propose an explanation for the far-infrared/radio correlation of galaxies in terms of the energy balance of the interstellar medium and determine the flux from high-energy photons and neutrinos from starburst galaxies. We present a catalog of the 127 brightest starburst galaxies with redshifts of z<0.03. In order to investigate the correlation between radio- and far-infrared emission, we apply the leaky box approximation. Further, we derive photon- and neutrino spectra from proton-proton interactions in supernova remnants (SNRs). Here, we assume that a fraction of the SNR's energy is transferred to the acceleration of cosmic rays. We also investigate the possibility of detecting Gamma Ray Bursts from nearby starburst galaxies, using the catalog defined here. We show that the radio emission is only weakly dependent on the magnetic field. It turns out that the intensity of the radio signal is directly proportional to the number of supernova explosions, which scales with the far-infrared luminosity. In addition, we find that high-energy photons from proton-proton interactions in SNRs in starbursts can make up several percent of the diffuse gamma-ray background. The neutrino flux from the same sources has a maximum energy of ~1e5 GeV. Neutrinos can, on the other hand, can be observed if a Gamma Ray Burst happens in a nearby starburst. About 0.03 GRBs per year are expected to occur in the entire catalog. The true number is expected to be even higher, since we only include the brightest sources. The number of events per burst in IceCube varies between about one event and more than 1000 events. This provides good prospects for IceCube to detect a significant event, since the background for a GRB search is close to zero.
Neutron stars and stellar-mass black holes are the remnants of massive stars, which ended their lives in supernova explosions. These exotic objects can only be studied in relatively rare cases. If they are interacting with close companions they become bright X-ray sources. If they are neutron stars, they may be detected as pulsars. Only a few hundred such systems are presently known in the Galaxy. However, there should be many more binaries with basically invisible compact objects in non-interacting binaries. Here we report the discovery of unseen compact companions to hot subdwarfs in close binary systems. Hot subdwarfs are evolved helium-core-burning stars that have lost most of their hydrogen envelopes, often due to binary interactions. Using high-resolution spectra and assuming tidal synchronisation of the subdwarfs, we were able to constrain the companion masses of 32 binaries. While most hot subdwarf binaries have white-dwarf or late-type main sequence companions, as predicted by binary evolution models, at least 5% of the observed subdwarfs must have very massive companions: unusually heavy white dwarfs, neutron stars and, in some cases, even black holes. We present evolutionary models which show that such binaries can indeed form if the system has evolved through two common-envelope phases. This new connection between hot subdwarfs, which are numerous in the Galaxy, and massive compact objects may lead to a tremendous increase in the number of known neutron stars and black holes and shed some light on this dark population and its evolutionary link to the X-ray binary population.
I present an overview of the Galactic binaries that form the foreground for the ESA/NASA Laser Interferometer Space Antenna (LISA). The currently known population is discussed, as well as current and near-future large-scale surveys that will find new systems. The astrophysics that can be done when the LISA data becomes available is presented, with particular attention to verification binaries, the overall Galactic populations, neutron star and black hole binaries and sources in globular clusters. I discuss the synergy with electro-magnetic observations and correct an error in the estimate of the number of LISA systems that can be found in the optical compared to Nelemans (2006a) and conclude that at least several hundreds of systems should be detectable.
This paper extends the models of Craig & McClymont (1991) and McLaughlin &
Hood (2004) to include finite $\beta$ and nonlinear effects.
We investigate the nature of nonlinear fast magnetoacoustic waves about a 2D
magnetic X-point.
We solve the compressible and resistive MHD equations using a Lagrangian
remap, shock capturing code (Arber et al. 2001) and consider an initial
condition in $ {\bf{v}}\times{\bf{B}} \cdot {\hat{\bf{z}}}$ (a natural variable
of the system).
We observe the formation of both fast and slow oblique magnetic shocks. The
nonlinear wave deforms the X-point into a 'cusp-like' point which in turn
collapses to a current sheet. The system then evolves through a series of
horizontal and vertical current sheets, with associated changes in
connectivity, i.e. the system exhibits oscillatory reconnection. Our final
state is non-potential (but in force balance) due to asymmetric heating from
the shocks. Larger amplitudes in our initial condition correspond to larger
values of the final current density left in the system.
The inclusion of nonlinear terms introduces several new features to the
system that were absent from the linear regime.
We present the first results of the expected variations of the molecular line emission arising from material recently affected by C-shocks (shock precursors). Our parametric model of the structure of C-shocks has been coupled with a radiative transfer code to calculate the molecular excitation and line profiles of shock tracers such as SiO, and of ion and neutral molecules such as H13CO+ and HN13C, as the shock propagates through the unperturbed medium. Our results show that the SiO emission arising from the early stage of the magnetic precursor typically has very narrow line profiles slightly shifted in velocity with respect to the ambient cloud. This narrow emission is generated in the region where the bulk of the ion fluid has already slipped to larger velocities in the precursor as observed toward the young L1448-mm outflow. This strongly suggests that the detection of narrow SiO emission and of an ion enhancement in young shocks, is produced by the magnetic precursor of C-shocks. In addition, our model shows that the different velocity components observed toward this outflow can be explained by the coexistence of different shocks at different evolutionary stages, within the same beam of the single-dish observations.
It is argued that a putative evolution of the fundamental couplings of strong and weak interactions via coupling to dark energy through a generalized Bekenstein-type model may, for a linear model of variation, cause deviations on the statistical nuclear decay Rutherford-Soddy law unless bounds are imposed on the parameters of this variation.
I present results from a set of 3D spherical-shell MHD simulations of the buoyant rise of active region flux tubes in the solar interior which put new constraints on the initial twist of the subsurface tubes in order for them to emerge with tilt angles consistent with the observed Joy's law for the mean tilt of solar active regions. Due to the asymmetric stretching of the $\Omega$-shaped tube by the Coriolis force, a field strength asymmetry develops with the leading side having a greater field strength and thus being more cohesive compared to the following side. Furthermore, the magnetic flux in the leading leg shows more coherent values of local twist $\alpha \equiv {\bf J} \cdot {\bf B} / B^2$, whereas the values in the following leg show large fluctuations and are of mixed signs.
Despite some success in explaining the observed polarisation angle swing of radio pulsars within the geometric rotating vector model, many deviations from the expected S-like swing are observed. In this paper we provide a simple and credible explanation of these variations based on a combination of the rotating vector model, intrinsic orthogonally polarized propagation modes within the pulsar magnetosphere and the effects of interstellar scattering. We use simulations to explore the range of phenomena that may arise from this combination, and briefly discuss the possibilities of determining the parameters of scattering in an effort to understand the intrinsic pulsar polarization.
There is a difference between the solar ionization concentration in the ionosphere in the daytime and at night-time. At night the E-region ion concentration peak is dramatically reduced due to chemical losses and the rapid change in the vertical polarization electric field at the time around sunset, which is due to the accelerating neutral wind dynamo and which produces a corresponding change in the zonal electric field through curl-free requirements. The result is the formation of a layer of high conductivity, at the daytime-night-time interface. This phenomenon in the South Atlantic Anomaly (SAA) area, provokes an increase in the precipitation of charge particles which is well known and is commonly termed "sunset enhancement". In the following we show that some gamma ray burst (GRB) triggers observed by spacecraft GRB detectors such as INTEGRAL, AGILE, and Fermi are probably noise triggers, produced by omni-directional particle precipitation, because they are in temporal coincidence with muon enhancement observed at ground level by the Tupi telescopes with different orientations at $\sim 21$ UT (local sunset), and located inside the SAA region.
We present the first full evolutionary calculations aimed at exploring the origin of hot DQ white dwarfs. These calculations consistently cover the whole evolution from the born-again stage to the white dwarf cooling track. Our calculations provide strong support to the diffusive/convective-mixing picture for the formation of hot DQs. We find that the hot DQ stage is a short-lived stage and that the range of effective temperatures where hot DQ stars are found can be accounted for by different masses of residual helium and/or different initial stellar masses. In the frame of this scenario, a correlation between the effective temperature and the surface carbon abundance in DQs should be expected, with the largest carbon abundances expected in the hottest DQs. From our calculations, we suggest that most of the hot DQs could be the cooler descendants of some PG1159 stars characterized by He-rich envelopes markedly smaller than those predicted by the standard theory of stellar evolution. At least for one hot DQ, the high-gravity white dwarf SDSS J142625.70+575218.4, an evolutionary link between this star and the massive PG1159 star H1504+65 is plausible.
The rotation of Mercury is presently captured in a 3/2 spin-orbit resonance with the orbital mean motion. The capture mechanism is well understood as the result of tidal interactions with the Sun combined with planetary perturbations. However, it is now almost certain that Mercury has a liquid core, which should induce a contribution of viscous friction at the core-mantle boundary to the spin evolution. This last effect greatly increases the chances of capture in all spin-orbit resonances, being 100% for the 2/1 resonance, and thus preventing the planet from evolving to the presently observed configuration. Here we show that for a given resonance, as the chaotic evolution of Mercury's orbit can drive its eccentricity to very low values during the planet's history, any previous capture can be destabilized whenever the eccentricity becomes lower than a critical value. In our numerical integrations of 1000 orbits of Mercury over 4 Gyr, the spin ends 99.8% of the time captured in a spin-orbit resonance, in particular in one of the following three configurations: 5/2 (22%), 2/1 (32%) and 3/2 (26%). Although the present 3/2 spin-orbit resonance is not the most probable outcome, we also show that the capture probability in this resonance can be increased up to 55% or 73%, if the eccentricity of Mercury in the past has descended below the critical values 0.025 or 0.005, respectively.
We investigate models where structure formation is initiated by scaling seeds: We consider rapidly expanding relativistic shells of energy and show that they can fit current CMB and large scale structure data if they expand with super-luminal velocities. These acausally expanding shells provide a viable alternative to inflation for cosmological structure formation with the same minimal number of parameters to characterize the initial fluctuations. Causally expanding shells alone cannot fit present data. Hybrid models where causal shells and inflation are mixed also provide good fits.
We report on XMM-Newton and optical results for 6 cataclysmic variables that were selected from Sloan Digital Sky Survey spectra because they showed strong HeII emission lines, indicative of being candidates for containing white dwarfs with strong magnetic fields. While high X-ray background rates prevented optimum results, we are able to confirm SDSSJ233325.92+152222.1 as an intermediate polar from its strong pulse signature at 21 min and its obscured hard X-ray spectrum. Ground-based circular polarization and photometric observations were also able to confirm SDSSJ142256.31-022108.1 as a polar with a period near 4 hr. Photometry of SDSSJ083751.00+383012.5 and SDSSJ093214.82+495054.7 solidifies the orbital period of the former as 3.18 hrs and confirms the latter as a high inclination system with deep eclipses.
Red Dwarfs (main-sequence / dwarf M or dM) stars are the most common stars in the Galaxy. These cool, faint, low mass stars comprise over 75% of all stars. Because of their low luminosities (~0.0008-0.06 of the Sun's luminosity), the circumstellar habitable zones (HZs) of dM stars are located within ~0.05-0.4 AU of the host star. Nevertheless, the prospect of life on a planet located within the HZ of a red dwarf is moderately high, based on the longevity of these stars (>50 Gyr), their constant luminosities and high space densities. Here we describe the aims and early results of the "Living with a Red Dwarf" Program - a study of dM stars that we have been carrying out over the last few years. The primary focus of our research on dM stars is the study of their magnetic dynamos and resulting star spots & coronal X-ray and chromospheric UV emissions as a function of age, rotation and spectral type. This program will provide datasets that can be used as inputs for the study of all aspects of dM stars, along with the planets already discovered hosted by them and the probable hundreds (thousands?) of planets expected to be uncovered in the near future by missions such as Kepler & Darwin/TPF. These datasets will be invaluable to those who model exo-planetary atmospheres, as well as exobiologists & astrobiologists who are studying the possibilities of life elsewhere in the universe. A significant element of our program is the determination of accurate stellar magnetic-driven X-ray-UV (X-UV) irradiances that are generated by the dM stars' vigorous magnetic dynamos. These X-UV irradiances (and flare frequencies) are strongly dependent on rotation, and thus age, and diminish as the stars lose angular momentum and spin-down over time via magnetic braking.
Observations of white dwarfs in the globular clusters NGC 6397 and
Omega Centauri indicate that these stars may get a velocity kick during their
time as giants. This velocity kick could originate naturally if the mass loss
while on the asymptotic giant branch is slightly asymmetric. The kicks may be
large enough to dramatically change the radial distribution of young white
dwarfs, giving them larger energies than other stars in the cluster. As these
energetic white dwarfs travel through the cluster they can impart their excess
energy on the other stars in the cluster. A Monte-Carlo simualtion of the
white-dwarfs kicks combined with estimate of the phase-space diffusion of the
white dwarfs reveals that as the white dwarfs equilibrate, they lose most of
their energy in the central region of the cluster. They could possibly mimic
the effect of binaries, puffing up the cluster and delaying core collapse.
The variation with time from 1956-2002 of the globally averaged rate of ionization produced by cosmic rays in the atmosphere is deduced and shown to have a cyclic component of period roughly twice the 11 year solar cycle period. Long term variations in the global average surface temperature as a function of time since 1956 are found to have a similar cyclic component. The cyclic variations are also observed in the solar irradiance and in the mean daily sun spot number. The cyclic variation in the cosmic ray rate is observed to be delayed by 2-4 years relative to the temperature, the solar irradiance and daily sun spot variations suggesting that the origin of the correlation is more likely to be direct solar activity than cosmic rays. Assuming that the correlation is caused by such solar activity, we deduce that the maximum recent increase in the mean surface temperature of the Earth which can be ascribed to this activity is $\lesssim14%$ of the observed global warming.
The momentum transfer $\Delta k$ required for a photon to scatter from a target and emerge as a $\rho^0$ decreases as the photon energy $k$ rises. For $k>3\times10^{14}$ eV, $\Delta k$ is small enough that the interaction cannot be localized to a single nucleus. At still higher energies, photons may coherently scatter elastically from bulk matter and emerge as a $\rho^0$, in a manner akin to kaon regeneration. Constructive interference from the different nuclei coherently raises the cross section and the interaction probability rises linearly with energy. At energies above $10^{23}$ eV, coherent conversion is the dominant process; photons interact predominantly as $\rho^0$. We compute the coherent scattering probabilities in slabs of lead, water and rock, and discuss the implications of the increased hadronic interaction probabilities for photons on ultra-high energy shower development.
We study thermodynamics of the apparent horizon in $F(R)$ gravity. In particular, we demonstrate that a $F(R)$ gravity model with realizing a crossing of the phantom divide can satisfy the second law of thermodynamics.
We introduce a general characterisation of sudden cosmological singularities and investigate the classical stability of homogeneous and isotropic cosmological solutions of all curvatures containing these singularities to small scalar, vector, and tensor perturbations using gauge invariant perturbation theory. We establish that sudden singularities at which the scale factor, expansion rate, and density are finite are stable except for a set of special parameter values. We also apply our analysis to the stability of Big Rip singularities and find the conditions for their stability against small scalar, vector, and tensor perturbations.
Links to: arXiv, form interface, find, astro-ph, recent, 0901, contact, help (Access key information)
We report on the detection of the secondary eclipse of the very-hot Jupiter OGLE-TR-56b from combined z-band time series photometry obtained with the VLT and Magellan telescopes. We measure a flux decrement of 0.0363+/-0.0091 percent from the combined Magellan and VLT datasets, which indicates a blackbody brightness temperature of 2718 (+127/-107) K, a very low albedo, and a small incident radiation redistribution factor, indicating a lack of strong winds in the planet's atmosphere. The measured secondary depth is consistent with thermal emission, but our precision is not sufficient to distinguish between a black-body emitting planet, or emission as predicted by models with strong optical absorbers such as TiO/VO. This is the first time that thermal emission from an extrasolar planet is detected at optical wavelengths and with ground-based telescopes.
The fast TeV variability of the blazars Mrk 501 and PKS 2155--304 implies a compact emitting region that moves with a bulk Lorentz factor of Gamma_{em}~100 toward the observer. The Lorentz factor is clearly in excess of the jet Lorentz factors Gamma_j\simless 10 measured on sub-pc scales in these sources. We propose that the TeV emission originates from compact emitting regions that move relativistically {\it within} a jet of bulk Gamma_j~10. This can be physically realized in a Poynting flux-dominated jet. We show that if a large fraction of the luminosity of the jet is prone to magnetic dissipation through reconnection, then material outflowing from the reconnection regions can efficiently power the observed TeV flares through synchrotron-self-Compton emission. The model predicts simultaneous far UV/soft X-ray flares.
Context: Secondary eclipse measurements of transiting extrasolar planets with
the Spitzer Space Telescope have yielded several direct detections of thermal
exoplanet light. Since Spitzer operates at wavelengths longward of 3.6 um,
arguably one of the most interesting parts of the planet spectrum (from 1 to 3
um) is inaccessible with this satellite. This region is at the peak of the
planet's spectral energy distribution and is also the regime where molecular
absorption bands can significantly influence the measured emission.
Aims: So far, 2.2 um K-band secondary eclipse measurements, which are
possible from the ground, have not yet lead to secure detections. The aim of
this paper is to measure the secondary eclipse of the very hot Jupiter TrES-3b
in K-band, and in addition to observe its transit, to obtain an accurate planet
radius in the near infrared.
Methods: We have used the William Herschell Telescope (WHT) to observe the
secondary eclipse, and the United Kingdom Infrared Telescope (UKIRT) to observe
the transit of TrES-3b. Both observations involved significant defocusing of
the telescope, aimed to produce high-cadence time series of several thousand
frames at high efficiency, with the starlight spread out over many pixels.
Results: We detect the secondary eclipse of TrES-3b with a depth of
-0.241+-0.043% (~6 sigma). This corresponds to a day-side brightness
temperature of T_B(2.2um)= 2040+-185 K, which is consistent with current models
of the physical properties of this planet's upper atmosphere. The centre of the
eclipse seems slightly offset from phase phi=0.5 by Delta_phi=-0.0042+-0.0027,
which could indicate that the orbit of TrES-3b is non-circular [abridged].
We study the properties of building blocks (BBs, i.e. accreted satellites) and surviving satellites of present-day galaxies using the SAG semi-analytic model of galaxy formation in the context of a concordance Lambda Cold Dark Matter (LCDM) cosmology. We find higher metallicities for BBs, an effect produced by the same processes behind the build-up of the mass-metallicity relation, namely, the higher peak height in the density fluctuation field occupied by BBs and central galaxies which have collapsed into a single object earlier than surviving satellites. A detailed analysis shows that BBs start to form stars earlier, and build-up half of their final stellar mass (measured at the moment of disruption) up to four times faster than surviving satellites. We show that this effect is a consequence of the epoch in which this occurs; BBs assemble their stellar mass mostly during the peak of the merger activity in the LCDM cosmology, whereas surviving satellites keep increasing their stellar masses down to z=1. The difference between the metallicities of satellites, BBs and central galaxies depends on the host DM halo mass, in a way that can be used as a further test for the concordance cosmology.
We compare the properties of galaxies that form in a large volume cosmological simulation without strong feedback to observations at z=0. We confirm previous findings that models without strong feedback overproduce the observed galaxy baryonic mass function, especially at the low and high mass extremes. Through post-processing we investigate what kinds of feedback would be required to reproduce observed galaxy masses and star formation rates. To mimic an extreme form of "preventive" feedback (e.g., AGN radio mode) we remove all baryonic mass that was originally accreted via "hot mode" from shock-heated gas. This does not bring the high mass end of the galaxy mass function into agreement with observations because much of the stellar mass in these systems formed at high redshift from baryons that originally accreted via "cold mode" onto lower mass progenitors. An efficient "ejective" feedback mechanism, such as supernova driven winds, must reduce the masses of these progenitors. Feedback must also reduce the masses of lower mass z=0 galaxies, which assemble at lower redshifts and have much lower star formation rates. If we monotonically re-map galaxy masses to reproduce the observed mass function, but retain the simulation's predicted star formation rates, we obtain fairly good agreement with the observed sequence of star-forming galaxies but fail to recover the observed population of passive, low star formation rate galaxies. Suppressing all hot mode accretion improves agreement for high mass galaxies but worsens the agreement at intermediate masses. Reproducing these z=0 observations requires a feedback mechanism that dramatically suppresses star formation in a fraction of galaxies, increasing with mass, while leaving star formation rates of other galaxies essentially unchanged.
We report on partially overlapping XMM-Newton (~260 ks) and Suzaku (~100 ks) observations of the iron K band in the nearby, bright Seyfert 1 galaxy Mrk 509. The source shows a resolved neutral Fe K line, most probably produced in the outer part of the accretion disc. Moreover, the source shows further emission blue-ward of the 6.4 keV line due to ionized material. This emission is well reproduced by a broad line produced in the accretion disc, while it cannot be easily described by scattering or emission from photo-ionized gas at rest. The summed spectrum of all XMM-Newton observations shows the presence of a narrow absorption line at 7.3 keV produced by highly ionized outflowing material. A spectral variability study of the XMM-Newton data shows an indication for an excess of variability at 6.6-6.7 keV. These variations may be produced in the red wing of the broad ionized line or by variation of a further absorption structure. The Suzaku data indicate that the neutral Fe Kalpha line intensity is consistent with being constant on long timescales (of a few years) and they also confirm as most likely the interpretation of the excess blueshifted emission in terms of a broad ionized Fe line. The average Suzaku spectrum differs from the XMM-Newton one for the disappearance of the 7.3 keV absorption line and around 6.7 keV, where the XMM-Newton data alone suggested variability.
The survey of the inner Galaxy with H.E.S.S. was remarkably successful in detecting a wide range of new very-high-energy gamma-ray sources. New TeV gamma-ray emitting source classes were established, although several of the sources remain unidentified, and progress has been made in understanding particle acceleration in astrophysical sources. In this work, we constructed a model of a population of such very-high-energy gamma-ray emitters and normalised the flux and size distribution of this population model to the H.E.S.S.-discovered sources. Extrapolating that population of objects to lower flux levels we investigate what a future array of imaging atmospheric telescopes (IACTs) such as AGIS or CTA might detect in a survey of the Inner Galaxy with an order of magnitude improvement in sensitivity. The sheer number of sources detected together with the improved resolving power will likely result in a huge improvement in our understanding of the populations of galactic gamma-ray sources. A deep survey of the inner Milky Way would also support studies of the interstellar diffuse gamma-ray emission in regions of high cosmic-ray density. In the final section of this paper we investigate the science potential for the Galactic Centre region for studying energy-dependent diffusion with such a future array.
We use an analytic model to study how inhomogeneous hydrogen reionization
affects the temperature distribution of the intergalactic medium (IGM). During
this process, the residual energy of each ionizing photon is deposited in the
IGM as heat, increasing its temperature to 20,000-30,000 K; subsequent
expansion of the Universe then cools the gas. Because reionization most likely
proceeds from high to low densities, underdense voids are ionized last, have
less time to cool, and are (on average) warmer than mean-density gas
immediately after reionization is complete (an "inverted" equation of state).
From this initial configuration, the low-density gas cools quickly and
eventually returns to a more normal equation of state. The rapidly evolving
temperature introduces systematic uncertainties in measurements of the ionizing
background at z~6. For example, late reionization implies rapid cooling, so
that the ionizing background would have to evolve even more rapidly at z ~5-6
than typically claimed. This degeneracy is difficult to disentangle, because
the Lyman-alpha forest probes only a narrow range in densities (over which the
gas is nearly isothermal). However, higher Lyman-series transitions probe wider
density ranges, sampling different effective temperatures, and offer a new way
to measure the IGM equation of state that should work where nearly saturated
absorption precludes other methods. This will help to separate evolution in
temperature from that in the ionizing background. While more detailed study
with hydrodynamic simulations is needed, we show that such measurements could
potentially distinguish early and late reionization using only a handful of
lines of sight.
The aim of this study is to determine the fractions of different spiral galaxy types, especially bulgeless disks, from a complete and homogeneous sample of 15127 edge-on disk galaxies extracted from the sixth data release from the Sloan Digital Sky Survey. The sample is divided in broad morphological classes and sub types consisting of galaxies with bulges, intermediate types and galaxies which appear bulgeless. A small fraction of disky irregulars is also detected. The morphological separation is based on automated classification criteria which resemble the bulge sizes and the flatness of the disks. Each of these broad classes contains about 1/3 of the total sample. Using strict criteria for selecting pure bulgeless galaxies leads to a fraction of 15% of simple disk galaxies. We compare this fraction to other galaxy catalogs and find an excellent agreement of the observed frequency of bulgeless galaxies. Although the fraction of simple disk galaxies in this study does not represent a cosmic fraction of bulgeless galaxies, it shows that the relative abundance of pure disks is comparable to other studies and offers a profound value of the frequency of simple disks in the local Universe. This fraction of simple disks emphasizes the challenge for formation and evolution models of disk galaxies since these models are hard pressed to explain the observed frequency of these objects.
We present a sample of spectroscopically confirmed QSOs with FUV-NUV color (as measured by GALEX photometry) bluer than canonical QSO templates and than the majority of known QSOs. We analyze their FUV to NIR colors, luminosities and optical spectra. The sample includes a group of 150 objects at low redshift (z $<$ 0.5), and a group of 21 objects with redshift 1.7$<$z$<$2.6. For the low redshift objects, the "blue" FUV-NUV color may be caused by enhanced Ly$\alpha$ emission, since Ly$\alpha$ transits the GALEX FUV band from z=0.1 to z=0.47. Synthetic QSO templates constructed with Ly$\alpha$ up to 3 times stronger than in standard templates match the observed UV colors of our low redshift sample. The H$\alpha$ emission increases, and the optical spectra become bluer, with increasing absolute UV luminosity. The UV-blue QSOs at redshift about 2, where the GALEX bands sample restframe about 450-590A (FUV) and about 590-940A(NUV), are fainter than the average of UV-normal QSOs at similar redshift in NUV, while they have comparable luminosities in other bands. Therefore we speculate that their observed FUV-NUV color may be explained by a combination of steep flux rise towards short wavelengths and dust absorption below the Lyman limit, such as from small grains or crystalline carbon. The ratio of Ly$\alpha$ to CIV could be measured in 10 objects; it is higher (30% on average) than for UV-normal QSOs, and close to the value expected for shock or collisional ionization. FULL VERSION AVAILABLE FROM AUTHOR'S WEB SITE: this http URL
We review the use of velocity centroids statistics to recover information of interstellar turbulence from observations. Velocity centroids have been used for a long time now to retrieve information about the scaling properties of the turbulent velocity field in the interstellar medium. We show that, while they are useful to study subsonic turbulence, they do not trace the statistics of velocity in supersonic turbulence, because they are highly influenced by fluctuations of density. We show also that for sub-Alfv\'enic turbulence (both supersonic and subsonic) two-point statistics (e.g. correlation functions or power-spectra) are anisotropic. This anisotropy can be used to determine the direction of the mean magnetic field projected in the plane of the sky.
The hidden scalar field, which couples to the visible sector only through Planck-suppressed interactions, is a candidate for dark matter owing to its long lifetime. Decay of such a scalar field offers observational tests of this scenario. We show that decay of the hidden scalar field can explain the observed excess of high-energy positrons/electrons observed by ATIC/PPB-BETS, for a suitable choice of the mass and the vacuum expectation value of the field. We also show that the same choice of the parameters gives the observed dark matter abundance. Such a remarkable coincidence suggests that the Planck-suppressed interactions may be responsible for the observed excess in the cosmic-ray positrons/electrons.
We have designed and demonstrated a Superconducting Quantum Interference Device (SQUID) array linearized with cryogenic feedback. To achieve the necessary loop gain a 300 element series array SQUID is constructed from three monolithic 100-element series arrays. A feedback resistor completes the loop from the SQUID output to the input coil. The short feedback path of this Linearized SQUID Array (LISA) allows for a substantially larger flux-locked loop bandwidth as compared to a SQUID flux-locked loop that includes a room temperature amplifier. The bandwidth, linearity, noise performance, and dynamic range of the LISA are sufficient for its use in our target application: the multiplexed readout of transition-edge sensor bolometers.
The Sloan Digital Sky Survey (SDSS) provides data on several hundred thousand galaxies. Precise location of these galaxies in the sky, along with information about their luminosities and line-of-sight (Doppler) velocities allows one to construct a three-dimensional map of their location and estimate their line-of-sight velocity dispersion. This information, in principle, allows one to test dynamical gravity models, specifically models of satellite galaxy velocity dispersions near massive hosts. A key difficulty is the separation of true satellites from interlopers. We sidestep this problem by not attempting to derive satellite galaxy velocity dispersions from the data, but instead incorporate an interloper background into the mathematical models and compare the result to the actual data. We find that due to the presence of interlopers, it is not possible to exclude several gravitational theories on the basis of the SDSS data.
We present results from sensitive, high dynamic range, observations to search for extended diffuse radio emission in relaxed and cool-core galaxy clusters. For this purpose we performed deep 1.4 GHz Very Large Array observations, of A1068, A1413, A1650, A1835, A2029, and complemented our dataset with archival observations of Ophiuchus. We find that in the central regions of A1835, A2029, and Ophiuchus the dominant radio galaxy is surrounded by a diffuse low-brightness radio emission that takes the form of a mini-halo. We detect no diffuse emission in A1650, at a surface brightness level of the other mini-halos. We find low significance indications of diffuse emission in A1068 and A1413, however to be classified as mini-halos they require further investigation, possibly with an even better signal-to-noise ratio. In addition, in the Appendix we report on the serendipitous detection of a giant radio galaxy with a total extension of about 1.6 Mpc in size.
We recently performed a study of a sample of relaxed, cooling core galaxy clusters with deep Very Large Array observations at 1.4 GHz. We find that in the central regions of A1835, A2029, and Ophiuchus the dominant radio galaxy is surrounded by a diffuse low-brightness radio emission that takes the form of a mini-halo. Here we present the results of the analysis of the extended diffuse radio emission in these mini-halos. In order to investigate the morphological properties of the diffuse radio emission in clusters of galaxies we propose to fit their azimuthally averaged brightness profile with an exponential, obtaining the central brightness and the e-folding radius from which the radio emissivity can be calculated. We investigate the radio properties of the mini-halos in A1835, A2029, and Ophiuchus in comparison with the radio properties of a representative sample of mini-halos and halos already known in the literature. We find that radio halos can have quite different length-scales but their emissivity is remarkably similar from one halo to the other. In contrast, mini-halos span a wide range of radio emissivity. Some of them, like the Perseus mini-halos, are characterized by a radio emissivity which is more than 100 times greater than that of radio halos. On the other hand, the new mini-halos in cooling core clusters analyzed in this work, namely A2029, Ophiuchus, and A1835, have a radio emissivity which is much more typical of halos in merging clusters rather than similar to that of the other mini-halos previously known.
At present, dwarf spheroidal galaxies satellites of the Milky Way may represent the best astrophysical objects for dark matter (DM) searches with gamma-ray telescopes. They present the highest mass-to-light ratios known in the Universe. Furthermore, many of them are near enough from the Earth to be able to yield high predicted DM annihilation fluxes that might be observed by current gamma-ray instruments like MAGIC. The picture has become even better with the recent discovery of new dwarfs. These new objects are expected to yield even higher DM annihilation fluxes, since most of them are nearer than the previously known dwarfs and are even more DM dominated systems. Here a tentative list of the best candidates is given. The observational results obtained with MAGIC from the Draco dwarf as well as the observation of other dwarfs carried out by other Cherenkov telescopes are presented as well. Finally, we discuss the detection prospects of such kind of objects in the context of DM searches.
We present the results of a Suzaku monitoring campaign of the Seyfert 2 galaxy, NGC7582. The source is characterized by very rapid (on timescales even lower than a day) changes of the column density of an inner absorber, together with the presence of constant components arising as reprocessing from a Compton-thick material. The best fitting scenario implies important modifications to the zeroth order view of Unified Models. While the existence of a pc-scale torus is needed in order to produce a constant Compton reflection component and an iron K$\alpha$ emission line, in this Seyfert 2 galaxy this is not viewed along the line of sight. On the other hand, the absorption of the primary continuum is due to another material, much closer to the BH, roughly at the distance of the BLR, which can produce the observed rapid spectral variability. On top of that, the constant presence of a $10^{22}$ cm$^{-2}$ column density can be ascribed to the presence of a dust lane, extended on a galactic scale, as previously confirmed by Chandra. There is now mounting evidence that complexity in the obscuration of AGN may be the rule rather than the exception. We therefore propose to modify the Unification Model, adding to the torus the presence of two further absorbers/emitters. Their combination along the line of sight can reproduce all the observed phenomenology.
Observations show that magnetic fields in the interstellar medium (ISM) often do not respond to increases in gas density as would be naively expected for a frozen-in field. This may suggest that the magnetic field in the diffuse gas becomes detached from dense clouds as they form. We have investigated this possibility using theoretical estimates, a simple magneto-hydrodynamic model of a flow without mass conservation and numerical simulations of a thermally unstable flow. Our results show that significant magnetic flux can be shed from dense clouds as they form in the diffuse ISM, leaving behind a magnetically dominated diffuse gas.
Galactic winds in dwarf galaxies are driven by the energy released by supernova explosions and stellar winds following an intense episode of star formation, which create an over-pressured cavity of hot gas. Although the luminosity of the star formation episode and the mass of the galaxy play a key role in determining the occurrence of the galactic winds and the fate of the freshly produced metals, other parameters play an equally important role. In this contribution we address the following questions (i) What is the late evolution of superbubbles and what is the final fate of the superbubble cavities? (ii) How does the multi-phase nature of the ISM, in particular the coexistence of hot gas with embedded clouds, affect the development of galactic winds? (iii) What is the relation between the flattening of a galaxy and the development of bipolar galactic winds?
We present the results from simultaneous Chandra HETGS and RXTE observations of the microquasar GRS 1915+105 in its quasi-stable "soft state" (or State A) performed on 2007 August 14, several days after the state transition from "hard state" (State C). The X-ray flux increased with spectral hardening around the middle of the Chandra observation, after which the 67 Hz QPO became significant. The HETGS spectra reveal at least 32 narrow absorption lines from highly ionized ions including Ne, Mg, Si, S, Ar, Ca, Cr, Mn, Fe, whose features are the deepest among those ever observed with Chandra from this source. We find that the absorber has outflow velocities of ~150 and ~500 km s^{-1} with a line-of-sight velocity dispersion of ~70 and ~200 km s^{-1} for the Si XIV and Fe XXVI ions, respectively. The larger velocity and its dispersion in heavier ions indicate that the wind has a non-uniform dynamical structure along the line-of-sight. The location of the absorber is estimated at ~(1-3)x10^5 r_g (r_g is the gravitational radius) from the source, consistent with thermally and/or radiation driven winds. The continuum spectra obtained with RXTE in the 3-25 keV band can be well described with a thermal Comptonization with an electron temperature of ~4 keV and an optical depth of ~5 from seed photons from the standard disk extending down to (4-7) r_g. In this interpretation, most of the radiation energy is produced in the Comptonization corona, which completely covers the inner part of the disk. A broad (1\sigma width of ~0.2 keV) iron-K emission line and a smeared edge feature are detected, which can be explained by reflection from the accretion disk at radii larger than 400 r_g.
The WMAP cold spot was found by applying spherical wavelets to the first year WMAP data. An excess of kurtosis of the wavelet coefficient was observed at angular scales of around 5 degrees. This excess was shown to be inconsistent with Gaussian simulations with a p-value of around 1%. A cold spot centered at (b = -57, l = 209) was shown to be the main cause of this deviation. Several hypotheses were raised to explain the origin of the cold spot. After performing a Bayesian template fit a collapsing cosmic texture was found to be the most probable hypothesis explaining the spot. Here we review the properties of the cold spot and the possible explanations.
Using deep J, H and Ks-band observations, we have studied the near-infrared (nIR) extinction of the Nuclear Bulge (NB) and we find significant, complex variations on small physical scales. We have applied a new variable nIR colour excess method, V-NICE, to measure the extinction; this method allows for variation in both the extinction law parameter alpha and the degree of absolute extinction on very small physical scales. We see significant variation in both these parameters on scales of 5 arcsec. In our observed fields, representing a random sample of sight lines to the NB, we measure alpha to be 2.64 +- 0.52, compared to the canonical "universal" value of 2. Our measured levels of A_Ks are similar to previously measured results (1 < A_Ks < 4.5); however, the steeper extinction law results in higher values for A_J (4.5 < A_J < 10) and A_H (1.5 < A_H < 6.5). Only when the extinction law is allowed to vary on the smallest scales can we recover self-consistent measures of the absolute extinction at each wavelength, allowing accurate reddening corrections for field star photometry in the NB. The steeper extinction law slope also suggests that previous conversions of nIR extinction to A_V may need to be reconsidered. Finally, we find that the measured values of extinction are significantly dependent on the filter transmission functions of the instrument used to obtain the data. This effect must be taken into account when combining or comparing data from different instruments.
The relative roles of metallicity and surface gravity on the near-infrared spectra of late-T brown dwarfs are not yet fully understood, and evolutionary models still need to be calibrated in order to provide accurate estimates of brown dwarf physical parameters from measured spectra. The T-type brown dwarfs Eps Indi Ba and Bb forming the tightly bound binary Eps Indi B, which orbits the K4V star Eps Indi A, are nowadays the only such benchmark T dwarfs for which all important physical parameters such as metallicity, age and mass are (or soon will be) known. We present spatially resolved VLT/NACO images and low resolution spectra of Eps Indi B in the J, H and K near-infrared bands. The spectral types of Eps Indi Ba and Bb are determined by direct comparison of the flux-calibrated JHK spectra with T dwarf standard template spectra and also by NIR spectral indices. Eps Indi Bb is confirmed as a T6 while the spectral type of Eps Indi Ba is T1.5 so somewhat later than the previously reported T1. Constrained values for surface gravity and effective temperature are derived by comparison with model spectra. The evolutionary models predict masses around about 53 M_J for Eps Indi Ba and about 34 M_J for Eps Indi Bb, slightly higher than previously reported values. The suppressed J-band and enhanced K-band flux of Eps Indi Ba indicates that a noticeable cloud layer is still present in a T1.5 dwarf while no clouds are needed to model the spectrum of Eps Indi Bb.
Within the context of upcoming full-sky lensing surveys, the edge-preserving non- linear algorithm Aski is presented. Using the framework of Maximum A Posteriori inversion, it recovers the full-sky convergence map from noisy surveys with masks. It proceeds in two steps: CCD images of crowded galactic fields are deblurred using automated edge-preserving deconvolution; once the reduced shear is estimated, the convergence map is also inverted via an edge- preserving method. For the deblurring, it is found that when the observed field is crowded, this gain can be quite significant for realistic ground-based surveys when both positivity and edge-preserving penalties are imposed during the iterative deconvolution. For the convergence inversion, the quality of the reconstruction is investigated on noisy maps derived from the horizon N-body simulation, with and without Galactic cuts, and quantified using one-point statistics, power spectra, cluster counts, peak patches and the skeleton. It is found that the reconstruction is able to interpolate and extrapolate within the Galactic cuts/non-uniform noise; its sharpness-preserving penalization avoids strong biasing near the clusters of the map; it reconstructs well the shape of the PDF as traced by its skewness and kurtosis; the geometry and topology of the reconstructed map is close to the initial map as traced by the peak patch distribution and the skeleton's differential length; the two-points statistics of the recovered map is consistent with the corresponding smoothed version of the initial map; the distribution of point sources is also consistent with the corresponding smoothing, with a significant improvement when edge preserving prior is applied. The contamination of B-modes when realistic Galactic cuts are present is also investigated. Leakage mainly occurs on large scales.
Whereas the Solar System has Mars and Europa as the best candidates for finding fossil/extant life as we know it - based on complex carbon compounds and liquid water - the 263 (non-pulsar) planetary systems around other stars as known at 15 September 2008 could between them possess many more planets where life might exist. Moreover, the number of these exoplanetary systems is growing steadily, and with this growth there is an increase in the number of planets that could bear carbon-liquid water life. In this brief review the main methods by which exoplanets are being discovered are outlined, and then the discoveries that have so far been made are presented. Habitability is then discussed, and an outline presented of how a planet could be studied from afar to determine whether it is habitable, and whether it is indeed inhabited. This review is aimed at the astrobiology community, which spans many disciplines, few of which involve exoplanets. It is therefore at a basic level and concentrates on the major topics.
Although the continua of radio-loud Active Galactic Nuclei (AGN) are typically dominated by synchrotron radiation over virtually the entire spectrum, it is not clear whether the radio and higher-frequency emission originate in the same or different parts of the jet. Several different radio--optical correlations based on polarization data have been found recently, suggesting that the optical and radio polarization may be closely related, and that the corresponding emission regions may be cospatial (Gabuzda et. al2006, Jorstad et al. 2007, D'Arcangelo et al. 2007) Our joint analysis of optical and VLBA polarization data for a sample of about 40 AGNs shows that, after correction for the inferred VLBA core Faraday rotations, most BL Lac objects and some quasars have aligned VLBA-core and optical polarizations, although many quasars also show no obvious relationship between their VLBA-core and optical polarization angles. This may indicate that not all AGNs have cospatial regions of optical and radio emission in their jets. However, another possibility is that some of the 7mm-2cm VLBA cores have Faraday rotations of the order of several tens of thousand of rad/m^2, which were not properly fit by our three-frequency data due to n*pi ambiguities in the observed polarization angles, leading to incorrect subtraction of the effects of the core Faraday rotation, and so incorrect "zero-wavelength" radio polarization angles. The possibility of such high core Faraday rotations is supported by the results of the parsec-scale Faraday-rotation studies of Zavala & Taylor (2004) and Jorstad et al. (2007).
We study the runaway mass loss process of major eruptions of luminous blue variables (LBVs) stars, such as the 1837-1856 Great Eruption of Eta Carinae. We follow the evolution of a massive star with a spherical stellar evolution numerical code. After the star exhausted most of the hydrogen in the core and had developed a large envelope, we remove mass at a rate of 1 Mo/yr from the outer envelope for 20 years. We find that after removing a small amount of mass at a high rate, the star contracts and releases a huge amount of gravitational energy. We suggest that this energy can sustain the high mass loss rate. The triggering of this runaway mass loss process might be a close stellar companion or internal structural changes. We show that a strong magnetic field region can be built in the radiative zone above the convective core of the evolved massive star. When this magnetic energy is released it might trigger a fast removal of mass, and by that trigger an eruption. Namely, LBV major eruptions might be triggered by magnetic activity cycles The prediction is that LBV stars that experiene major eruptions, should be found to have a close companion, and/or have signatures of strong magnetic activity during or after the eruption.
In this paper we revisit the issue of determining the oscillating primordial scalar power spectrum and oscillating equation of state of dark energy from the astronomical observations. By performing a global analysis with the Markov Chain Monte Carlo method, we find that the current observations from five-year WMAP and SDSS-LRG matter power spectrum, as well as the "union" supernovae sample, constrain the oscillating index of primordial spectrum and oscillating equation of state of dark energy with the amplitude less than $|n_{\rm amp}|<0.116$ and $|w_{\rm amp}|<0.232$ at 95% confidence level, respectively. This result shows that the oscillatory structures on the primordial scalar spectrum and the equation of state of dark energy are still allowed by the current data. Furthermore, we point out that these kinds of modulation effects will be detectable (or gotten a stronger constraint) in the near future astronomical observations, such as the PLANCK satellite, LAMOST telescope and the currently ongoing supernovae projects SNLS.
We present ground-based observations of the disk around the A-type star $\beta$ Pictoris to perform a close inspection of the inner disk morphology. Images were collected with NACO, the AO-assisted near-IR instrument on the VLT (ESO) which includes two types of coronagraphs: classical Lyot masks and phase masks. In this program we took advantage of both types of coronagraphs in two spectral bands, H-band for the Lyot mask and Ks-band for the phase mask. In addition, we simulated an extended object to understand the limitations in deconvolution of coronagraphic images. The reduced coronagraphic images allow us to carefully measure the structures of the debris disk and reveal a number of asymmetries of which some were not reported before (position, elevation and thickness of the warp). In this program, the circumstellar material is visible as close as 0.7" ($13.5 $AU) owing to the phase mask while the Lyot mask generates artifacts which hamper the detection of the dust at separations closer than 1.2" ($23.2 $AU). The point source detection limit is compared to recently published observations of a planet candidate. Finally, the simulations show that deconvolution of coronagraphic data may indeed produce artificial patterns within the image of a disk.
We revisit the issue of the recent dynamical evolution of clusters of galaxies using a sample of ACO clusters with z<0.14, which has been selected such that it does not contain clusters with multiple velocity components nor strongly merging or interacting clusters, as revealed in X-rays. We use as proxies of the cluster dynamical state the projected cluster ellipticity, velocity dispersion and X-ray luminosity. We find indications for a recent dynamical evolution of this cluster population, which however strongly depends on the cluster richness. Poor clusters appear to be undergoing their primary phase of virialization, with their ellipticity increasing with redshift with a rate de/dz ~ 2.5, while the richest clusters show an ellipticity evolution in the opposite direction (with de/dz ~ -1.2), which could be due to secondary infall. When taking into account sampling effects due to the magnitude-limited nature of the ACO cluster catalogue we find no significant evolution of the cluster X-ray luminosity, while the velocity dispersion increases with decreasing redshift, independent of the cluster richness, at a rate dsigma/dz ~ -1700 km/sec.
EDELWEISS is a direct dark matter search experiment situated in the low radioactivity environment of the Modane Underground Laboratory. The experiment uses Ge detectors at very low temperature in order to identify eventual rare nuclear recoils induced by elastic scattering of WIMPs from our Galactic halo. We present results of the commissioning of the second phase of the experiment, involving more than 7 kg of Ge, that has been completed in 2007. We describe two new types of detectors with active rejection of events due to surface contamination. This active rejection is required in order to achieve the physics goals of 10-8 pb cross-section measurement for the current phase.
Chemical turbulent mixing induced by rotation can affect the internal distribution of mu near the energy-generating core of main-sequence stars, having an effect on the evolutionary tracks similar to that of overshooting. However, this mixing also leads to a smoother chemical composition profile near the edge of the convective core, which is reflected in the behaviour of the buoyancy frequency and, therefore, in the frequencies of gravity modes. We show that for rotational velocities typical of main-sequence B-type pulsating stars, the signature of a rotationally induced mixing significantly perturbs the spectrum of gravity modes and mixed modes, and can be distinguished from that of overshooting. The cases of high-order gravity modes in Slowly Pulsating B stars and of low-order g modes and mixed modes in beta Cephei stars are discussed.
We show a comparison of the rest-frame UV morphologies of a sample of 162
intermediate redshift (median redshift 1.02) galaxies with their rest-frame
optical morphologies. We select our sample from the deepest near-UV image
obtained with the Hubble Space Telescope (HST) using the WFPC2 (F300W) as part
of the parallel observations of the Hubble Ultra Deep Field campaign
overlapping with the HST/ACS GOODS dataset. We perform single component Sersic
fits in both WFPC2/F300W (rest-frame UV) and ACS/F850LP (rest-frame optical)
bands and deduce that the Sersic index $n$ is estimated to be smaller in the
rest-frame UV compared to the rest-frame optical, leading to an overestimation
of the number of merger candidates by ~40-100% compared to the rest-frame
optical depending upon the cutoff in $n$ employed for identifying merger
candidates. This effect seems to be dominated by galaxies with low values of
n(F300W) <= 0.5 that have a value of n(F850LP) ~ 1.0. We argue that these
objects are probably clumpy starforming galaxies or minor mergers, both of
which are essentially contaminants, if one is interested in identifying major
mergers.
In addition we also find evidence that the axis ratio b/a is lower, i.e.
ellipticity (1-b/a) is higher in rest-frame UV compared to the rest-frame
optical. Moreover, we find that in the rest-frame UV, the number of high
ellipticity (e >= 0.8) objects are higher by a factor of ~2.8 compared to the
rest-frame optical. This indicates that the reported dominance of elongated
morphologies among high-z LBGs might just be a bias related to the use of
rest-frame UV datasets in high-z studies.
We present a new method to detect and quantify mass segregation in star
clusters. It compares the minimum spanning tree (MST) of massive stars with
that of random stars. If mass segregation is present, the MST length of the
most massive stars will be shorter than that of random stars. This difference
can be quantified (with an associated significance) to measure the degree of
mass segregation. We test the method on simulated clusters in both 2D and 3D
and show that the method works as expected.
We apply the method to the Orion Nebula Cluster (ONC) and show that the
method is able to detect the mass segregation in the Trapezium with a `mass
segregation ratio' \Lambda_{MSR}=8.0 \pm 3.5 (where \Lambda_{MSR}=1 is no mass
segregation) down to 16 \Msun, and also that the ONC is mass segregated at a
lower level (~2.0 \pm 0.5) down to 5 \Msun. Below 5 \Msun we find no evidence
for any further mass segregation in the ONC.
We revisit the tidal stability of extrasolar systems harboring a transiting planet and demonstrate that, independently of any tidal model, none but one (HAT-P-2b) of these planets has a tidal equilibrium state, which implies ultimately a collision of these objects with their host star. Consequently, conventional circularization and synchronization timescales cannot be defined because the corresponding states do not represent the endpoint of the tidal evolution. Using numerical simulations of the coupled tidal equations for the spin and orbital parameters of each transiting planetary system, we confirm these predictions and show that the orbital eccentricity and the stellar obliquity do not follow the usually assumed exponential relaxation but instead decrease significantly, reaching eventually a zero value, only during the final runaway merging of the planet with the star. The only characteristic evolution timescale of {\it all} rotational and orbital parameters is the lifetime of the system, which crucially depends on the magnitude of tidal dissipation within the star. These results imply that the nearly circular orbits of transiting planets and the alignment between the stellar spin axis and the planetary orbit are unlikely to be due to tidal dissipation. Other dissipative mechanisms, for instance interactions with the protoplanetary disk, must be invoked to explain these properties.
From optical photometry we show that SDSSJ121258.25-012310.1 is a new
eclipsing, post common-envelope binary with an orbital period of 8.06 hours and
an eclipse length of 23 minutes. We observed the object over 11 nights in
different bands and determined the ephemeris of the eclipse to HJD_mid =
2454104. 7086(2) + 0.3358706(5) x E, where numbers in parenthesis indicate the
uncertainties in the last digit. The depth of the eclipse is 2.85 +/- 0.17 mag
in the V band, 1.82 +/- 0.08 mag in the R band and 0.52 +/- 0.02 mag in the I
band. From spectroscopic observations we measured the semi-amplitude of the
radial velocity K_2 = 181 +/- 3 km/s for the secondary star. The stellar and
binary parameters of the system were constrained from a) fitting the SDSS
composite spectrum of the binary, b) using a K-band luminosty-mass relation for
the secondary star, and c) from detailed analyses of the eclipse light curve.
The white dwarf has an effective temperature of 17700 +/- 300 K, and its
surface gravity is logg =7.53 +/- 0.2. We estimate that the spectral type of
the red dwarf is M4 +/- 1 and the distance to the system is 230 +/- 20 parsec.
The mass of the secondary star is estimated to be in the range Msec = 0.26-0.29
Msun, while the mass of the white dwarf is most likely Mwd = 0.46-0.48 Msun.
From an empirical mass-radius relation we estimate the radius of the red
dwarf to be in the range 0.28-0.31 Rsun, whereas we get Rwd = 0.016-0.018 Rsun
from a theoretical mass-radius realation. Finally we discuss the spectral
energy distribution and the likely evolutionary state of SDSS1212-0123.
We aim to estimate and analyse the physical properties of the infrared counterparts of HMPOs by comparing their spectral energy distributions (SED) with those predicted by radiative transfer accretion models of YSOs. The SED of 68 IRCs are extended beyond the GLIMPSE photometry to the possible limits, from the near-infrared to the millimetre wavelengths by using the 2MASS, GLIMPSE version 2.0 catalogs, MSX, IRAS and some single dish (and interferometric) (sub)mm data. An online SED fitting tool that uses 2D radiative transfer accretion models of YSOs is employed to fit the observed SED to obtain various physical parameters. The SED of IRCs were fitted by models of massive protostars with a range of masses between 5-42 Msun and ages between 10^3 and 10^6 years. The median mass and age are 10 Msun and 10^4 yrs. The envelopes are large with a mean size of ~ 0.2-0.3 pc and show a distribution that is very similar to the distribution of the sizes of 8 micron nebulae discussed in Paper I. The estimated envelope accretion rates are high with a mean value of 10^(-3) Msun/yr and show a power law dependence to mass with an exponent of 2, suggesting spherical accretion at those scales. Disks are found to exist in most of the sources with a mean mass of 10^(-1.4+-0.7) Msun. The observed infrared-millimetre SED of the infrared counterparts of HMPOs are successfully explained with an YSO accretion model. The modelled sources mostly represent proto-B stars although some of them could become O stars in future. We demonstrate that many of these results may represent a realistic picture of massive star formation, despite some of the results which may be an effect of the assumptions within the models.
A study of the ionized and neutral gas kinematics near 23 WR stars in the Irr galaxy IC10 are provided. For most of the stars sings of the WR winds impact on the interstellar medium were detected. A rough estimate of the power of wind WR stars is about ~(0.01-0.84) 10^38 erg / sec.
We discuss the results of the first model of the gas dynamics in the Milky Way in the presence of two bars: the large scale primary bar or boxy bulge and a secondary bar in the Galactic center region. We have obtained an accurate potential by modeling 2MASS star counts and we have used this potential to simulate the gas dynamics. As a first approximation we have used one single pattern speed \Omega_p. The models with Omega_p=30-40 \kmskpc and a primary bar orientation of 20-35 deg reproduce successfully many characteristics of the observed longitude-velocity diagrams as the terminal velocity curve or the spiral arm tangent points. The Galactic Molecular Ring is not an actual ring but the inner part of the spiral arms, within corotation. The model reproduces quantitatively the "3-kpc arm" and the recently found far-side counterpart, which are the lateral arms that contour the bar. In the Galactic center region, the model reproduces the 1-kpc HI ring and the Central Molecular Zone (CMZ), which is the gas response to the secondary bar. In order to reproduce the observed parallelogram shape of the CO longitude velocity diagram of the CMZ, the secondary bar should be oriented by and angle of 60-70 deg with respect to the Sun-GC line. The mass of the secondary bar amounts to (2-5.5)10^9 Msun, which is 10-25 % of the mass of the primary bar.
The information on stellar parameters and on the stellar interior we can get by studying pulsating stars depends crucially on the available observational constraints: both seismic constraints precision and number of detected modes, identification, nature of the modes) and "classical" observations (photospheric abundances, effective temperature, luminosity, surface gravity). We consider the case of beta Cephei pulsators and, with the aim of estimating quantitatively how the available observational constraints determine the type and precision of our inferences, we set the stage for Hare&Hound exercises. In this contribution we present preliminary results for one simple case, where we assume as "observed" frequencies a subset of frequencies of a model and then evaluate a seismic merit function on a dense and extensive grid of models of B-type stars. We also compare the behaviour of chi^2 surfaces obtained with and without mode identification.
The final fate of massive stars depends on many factors, including the mass of the helium core, rotation rate, magnetic fields and metallicity. Theory suggests that some massive stars (initially greater than 25-30 solar masses) can die as under-luminous core-collapse supernovae (Ref.1,2,3). The models propose that the core mantle falls back onto the collapsed remnant, mass accretion leads to black hole formation and the remaining envelope including a very small fraction of radioactive elements is ejected with low kinetic energy. An alternative origin for low energy supernovae is the collapse of the oxygen-magnesium-neon core of a relatively low-mass star (7-8 solar masses) through electron capture (Ref 4,5). Only under-luminous type II-plateau (IIP) supernovae have been discovered so far (e.g. Ref. 6), and no weak hydrogen-stripped core-collapse supernova (of type Ib/c) has been detected. Here we show that faint Ib/c Supernovae do exist, and that they have been previously misclassified as peculiar thermonuclear supernovae (sometimes labelled 2002cx-like events, Ref. 7). We propose that the most recently discovered event of this class, SN2008ha, is a type Ib/c supernova and one of the faintest core-collapse events ever observed. This discovery has implications in linking supernovae to gamma-ray bursts. Extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce those long gamma-ray bursts whose afterglows do not show evidence of associated supernovae (Ref. 8,9,10). However until now these supernovae have remained undiscovered in the local Universe.
We present the results of the one year long observational campaign of the type II-plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool Galaxy). This extensive dataset makes SN 2005cs the best observed low-luminosity, 56Ni-poor type II-plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km/s) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 days after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 days. In addition to optical observations, we also present near-infrared light curves that (together with already published UV observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi-analytic model, we infer for SN 2005cs a 56Ni mass of about 0.003 solar masses, a total ejected mass of 8-13 solar masses and an explosion energy of about 3 x 10^50 erg.
We present a mid-infrared spectroscopic data cube of the central part of 30 Doradus, observed with Spitzer's IRS and MIPS/SED mode. Aromatic dust emission features and emission lines from molecular and atomic hydrogen are detected but not particularly strong. The dominant spectral features are emission lines from moderately ionized species of argon, neon, and sulphur, which are used to determine the physical conditions in the ionized gas. The ionized gas excitation shows strong variations on parsec scales, some of which can plausibly be associated with individual hot stars. We fit the ionic line strengths with photoionization and shock models, and find that photoionization dominates in the region. The ionization parameter U traces the rim of the central bubble, as well as highlighting isolated sources of ionization, and at least one quiescent clump. The hardness of the ionizing radiation field T_rad reveals several "hot spots" that are either the result of individual very hot stars or trace the propagation of the diffuse ionizing field through the surrounding neutral cloud. Consistent with other measurements of giant molecular hydrogen regions, log(U) ranges between -3 and -0.75, and T_rad between 30000 and 85000K.
We present observational results of the [Fe II] 1.644 um emission from the jets of L1551 IRS 5. The data sets were obtained through 13 fully sampled slits aimed at the base of the jets. These sets are used to construct a three-dimensional cube. The field of view was 5."8 X 4."2. We confirmed that the position of the knot PHK1 coincides with a stationary, point-like x-ray source within 0."3. The northern and southern jets are distinguished from each other at a point 0."6 away from their driving sources. We also confirmed that the northern jet consists of well-separated high- and low-velocity components (HVC and LVC, respectively). The HVC has a terminal velocity of ~400 km/s and shows a consistently narrow velocity width of 40 km/s. The LVC covers the velocity range from V_LSR = 0 to -240 km/s and has broad velocity widths of ~150-180 km/s. These decrease with distance from the driving sources. The spatial width of the LVC varies from 0."6-0."7 at V_LSR ~ -200 km/s to 0."8-0."9 at V_LSR ~ -30 km/s. These characteristics are well understood in terms of the two types of outflow mechanisms that are working simultaneously: one is the HVC, which is launched in a narrow, inner radial region at 0.04-0.05 AU, and the other is the LVC, which is launched in a wider, outer radial region from within 0.1-4.5 AU of the accretion disk. Part of the LVC emission could arise in the gas entrained or shocked by the HVC. We also discuss the possibility that part of the HVC gas is thermalized at PHK1 to produce the x-ray emission and LVC.
Relativistic current carrying strings moving axisymmetrically on the background of a Kerr black hole are studied. The boundaries and possible types of motion of a string with a given energy and current are found. Regions of parameters for which the string falls into the black hole, or is trapped in a toroidal volume, or can escape to infinity, are identified, and representative trajectories are examined by numerical integration, illustrating various interesting behaviors. In particular, we find that a string can start out at rest near the equatorial plane and, after bouncing around, be ejected out along the axis, some of its internal (elastic or rotational kinetic) energy having been transformed into translational kinetic energy. The resulting velocity can be an order unity fraction of the speed of light. This process results from the presence of an outer tension barrier and an inner angular momentum barrier that are deformed by the gravitational field. We speculatively discuss the possible astrophysical significance of this mechanism as a means of launching a collimated jet of MHD plasma flux tubes along the spin axis of a gravitating system fed by an accretion disk.
We study in this paper three different theories of gravitation with massive gravitons - the modified Fierz-Pauli (FP) model, Massive Gravity and the bimetric theory proposed by Visser - in linear perturbation theory around a Minkowski and a flat FRW background. For the TT tensor perturbations we show that the three theories give rise to the same dynamical equations and to the same form of the Boltzmann equations for the radiative transfer in General Relativity (GR). We then analyze vector perturbations in these theories and show that they do not give the same results as in the previous case. We first show that vector perturbations in Massive Gravity present the same form as found in General Relativity, whereas in the modified FP theory the vector gravitational-wave (GW) polarization modes ($\Psi_{3}$ amplitudes in the Newman-Penrose (NP) formalism) do not decay too fast as it happens in the former case. Rather, we show that such $\Psi_{3}$ polarization modes give rise to an unusual vector Sachs-Wolfe effect, leaving a signature in the quadrupole form $Y_{2,\pm 1}(\theta,\varphi)$ on the CMB polarization. We then derive the details for the Thomson scattering of CMB photons for these $\Psi_{3}$ modes, and then construct the correspondent Boltzmann equations. Based upon these results we then qualitatively show that $\Psi_{3}$-mode vector signatures - if they do exist - could clearly be distinguished on the CMB polarization from the usual $\Psi_4$ tensor modes.
Links to: arXiv, form interface, find, astro-ph, recent, 0901, contact, help (Access key information)
The turbulent diffusion tensor describing the evolution of the mean concentration of a passive scalar is investigated for forced turbulence either in the presence of rotation or a magnetic field. With rotation the Coriolis force causes a sideways deflection of the flux of mean concentration. Within the magnetohydrodynamics approximation there is no analogous effect from the magnetic field because the effects on the flow do not depend on the sign of the field. Both rotation and magnetic fields tend to suppress turbulent transport, but this suppression is weaker in the direction along the magnetic field. Turbulent transport along the rotation axis is not strongly affected by rotation, except on shorter length scales, i.e. when the scale of the variation of the mean field becomes comparable with the scale of the energy-carrying eddied.
We present high resolution simulations on the impact of ionizing radiation of massive O-stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low density gas and amplifies over-densities seeded by the initial turbulence. The formation of observed pillar-like structures in star forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low mass stars. Detailed analysis of the evolution of the turbulent spectra shows that UV-radiation of O-stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.
Cluster galaxies moving through the intracluster medium (ICM) are expected to lose some of their interstellar medium (ISM) through ISM-ICM interactions. We perform high resolution (40 pc) three-dimensional hydrodynamical simulations of a galaxy undergoing ram pressure stripping including radiative cooling in order to investigate stripping of a multiphase medium. The clumpy, multiphase ISM is self-consistently produced by the inclusion of radiative cooling, and spans six orders of magnitude in gas density. We find no large variations in the amount of gas lost whether or not cooling is involved, although the gas in the multiphase galaxy is stripped more quickly and to a smaller radius. We also see significant differences in the morphology of the stripped disks. This occurs because the multiphase medium naturally includes high density clouds set inside regions of lower density. We find that the lower density gas is stripped quickly from any radius of the galaxy, and the higher density gas can then be ablated. If high density clouds survive, through interaction with the ICM they lose enough angular momentum to drift towards the center of the galaxy where they are no longer stripped. Finally, we find that low ram pressure values compress gas into high density clouds that could lead to enhanced star formation, while high ram pressure leads to a smaller amount of high-density gas.
We revisit the well known discrepancy between the observed number of Milky Way (MW) dwarf satellite companions and the predicted population of cold dark matter (CDM) sub-halos, in light of the dozen new low luminosity satellites found in SDSS imaging data and our recent calibration of the SDSS satellite detection efficiency, which implies a total population far larger than these dozen discoveries. We combine a dynamical model for the CDM sub-halo population with simple, physically motivated prescriptions for assigning stellar content to each sub-halo, then apply observational selection effects and compare to the current observational census. As expected, models in which the stellar mass is a constant fraction F(Omega_b/Omega_m) of the sub-halo mass M_sat at the time it becomes a satellite fail for any choice of F. However, previously advocated models that invoke suppression of gas accretion after reionization in halos with circular velocity v_c <~ 35 km/s can reproduce the observed satellite counts for -15 < M_V < 0, with F ~ 10^{-3}. Successful models also require strong suppression of star formation BEFORE reionization in halos with v_c <~ 10 km/s; models without pre-reionization suppression predict far too many satellites with -5 < M_V < 0. Our models also reproduce the observed stellar velocity dispersions ~ 5-10 km/s of the SDSS dwarfs given the observed sizes of their stellar distributions, and model satellites have M(<300 pc) ~ 10^7 M_sun as observed even though their present day total halo masses span more than two orders of magnitude. Our modeling shows that natural physical mechanisms acting within the CDM framework can quantitatively explain the properties of the MW satellite population as it is presently known, thus providing a convincing solution to the `missing satellite' problem.
We present timing data spanning 6.4 yrs for the young and energetic PSR J0205+6449, in the supernova remnant 3C 58. Data were obtained with the Rossi X-ray Timing Explorer, the Jodrell Bank Observatory and the Green Bank Telescope. We present phase-coherent timing analyses showing timing noise and two spin-up glitches with fractional magnitudes of \Delta\nu/\nu \simeq 3.4E-7 near MJD 52555, and \Delta\nu/\nu \simeq 3.8E-6 between MJDs 52776 and 53063. In addition, we present an X-ray pulse profile analysis of three years of Rossi X-ray Timing Explorer data showing that the pulsar is detected up to 60 keV. We also present the first measurement of the phase offset between the radio and X-ray pulse for this source, showing that the radio pulse leads the X-ray pulse by 0.10+/-0.01. We compile all known measurements of the phase offsets between radio and X-ray and radio and gamma-ray pulses for X-ray and gamma-ray pulsars.
Combining a recent derivation of the CMB evolution equations for homogeneous but anisotropic (Bianchi) cosmologies with an account of the full linearized dynamical freedoms available in such models, I calculate and discuss the various temperature and polarisation anisotropy patterns which may be formed. Certain anisotropies can be hidden in superhorizon modes at early times, thus avoiding any constraints from nucleosynthesis while nevertheless producing non-trivial redshift-zero temperature patterns in flat and open universes. The results are likely to be more of pedagogical than observational interest, but future work will assess whether such patterns can be matched to anomalies in WMAP results.
(Abridged) The formation of massive spheroidal galaxies is studied on a visually classified sample of 910 galaxies extracted from the ACS/HST images of the GOODS North and South fields (0.4<z<.5). Three key observables are considered: comoving number density, internal colour distribution; and the Kormendy relation. The comoving number density of the most massive galaxies is found not to change significantly with redshift. One quarter of the whole sample of early-types are photometrically classified as blue galaxies. On a volume-limited subset out to z<0.7, the average stellar mass of the blue ellipticals is 5E9Msun compared to 4E10Msun for red ellipticals. On a volume-limited subsample of bright galaxies (Mv<-21) out to z=1.4 we find only 4% are blue early-types, in contrast with 26% for the full sample. The intrinsic colour distribution correlates overall bluer colours with **blue cores** (positive radial gradients of colour), suggesting an inside-out process of formation. The redshift evolution of the observed colour gradients is incompatible with a significant variaton in stellar age within each galaxy. The slope of the Kormendy relation in the subsample of massive galaxies does not change between z=0 and z=1.4.
Young radio-loud active galactic nuclei form an important tool to investigate the evolution of extragalactic radio sources. To study the early phases of expanding radio sources, we have constructed CORALZ, a sample of 25 compact ($\theta<2"$) radio sources associated with nearby ($z<0.16$) galaxies. In this paper we determine the morphologies, linear sizes, and put first constraints on the lobe expansion speeds of the sources in the sample. We observed the radio sources from the CORALZ sample with MERLIN at 1.4 GHz or 1.6 GHz, the EVN at 1.6 GHz, and global VLBI at 1.6 GHz and/or 5.0 GHz. Radio maps, morphological classifications, and linear sizes are presented for all sources in the CORALZ sample. We have determined a first upper limit to the expansion velocity of one of the sources, which is remarkably low compared to the brighter GPS sources at higher redshifts, indicating a relation between radio luminosity and expansion speed, in agreement with analytical models. In addition we present further strong evidence that the spectral turnovers in GPS and CSS sources are caused by synchrotron self-absorption (SSA): the CORALZ sources are significantly offset from the well-known correlation between spectral peak frequency and angular size, but this correlation is recovered after correcting for the flux-density dependence, as predicted by SSA theory.
An unambiguous link between star forming taking place within cold and dark molecular cloud cores and the initial core conditions is still missing. Therefore we investigate the collapse of low-mass prestellar cores and the formation and early evolution of protostellar disks using three-dimensional SPH simulations. We use slightly supercritical Bonnor-Ebert spheres in rigid rotation with different total angular momenta to setup the initial conditions. We find that protostellar disks forming from low angular momentum cores are moderately sized ($<$100-200AU), concentrated and warm ($\bar{T}>100$K). They are stable against local gravitational instabilities, e.g. fragmentation. Heating by gas infall onto the disk and accretion onto the central object plays a major role in stabilising the disk. On the other hand, more rapidly rotating cores form more extended disks (500-1000AU), which are less concentrated and cooler. They show extended spiral arm structures and are undergoing fragmentation. From the simulations we determine the critical amount of angular momentum that defines the transition of a core collapsing to form a stable or a fragmenting disk, which can form a multiple stellar system. From these results we determine an analytical criterion, which links the initial core properties and the fragmentation properties of the forming protostellar disks. This criterion allows us to predict the outcomes of star formation from individual prestellar cores, given that their masses, sizes and ratios of rotational to gravitational energy $\beta$ is known. We finally apply the criterion to observed core samples which fulfill these requirements and compare the expected frequency of multiple stellar systems to observations. We find the predicted multiplicity rates to be in well agreement with observed young stellar systems.
For an unsteady baryonic gamma-ray burst (GRB) outflow, the fast and slow proton shells collide with each other and produce energetic soft gamma-ray emission. If the outflow has a significant neutron component, the ultra-relativistic neutrons initially expand freely until decaying at a larger radius. The late time proton shells ejected from the GRB central engine, after powering the regular internal shocks, will sweep these $\beta-$decay products and give rise to very bright UV/optical emission. The naked-eye optical flash from GRB 080319B, an energetic explosion in the distant universe, can be well explained in this way.
M band spectra of two late-type T dwarfs, 2MASS J09373487+2931409, and Gliese 570D, confirm evidence from photometry that photospheric CO is present at abundance levels far in excess of those predicted from chemical equilibrium. These new and unambiguous detections of CO, together with an earlier spectroscopic detection of CO in Gliese 229B and existing M band photometry of a large selection of T dwarfs, suggest that vertical mixing in the photosphere drives the CO abundance out of chemical equilibrium and is a common, and likely universal feature of mid-to-late type T dwarfs. The M band spectra allow determinations of the time scale of vertical mixing in the atmosphere of each object, the first such measurements of this important parameter in late T dwarfs. A detailed analysis of the spectral energy distribution of 2MASS J09373487+2931409 results in the following values for metallicity, temperature, surface gravity, and luminosity: [M/H]~-0.3, T_eff=925-975K, log g=5.20-5.47, log L/L_sun=-5.308 +/- 0.027. The age is 3-10 Gyr and the mass is in the range 45-69 M_Jup.
In order to test the hypothesis that Class I protostellar binary stars are a product of ejections during the dynamical decay of non-hierarchical multiple systems, we combined the results of new adaptive optics (AO) observations of Class I protostars with our previously published AO data to investigate whether Class I protostars with a widely separated companion (r>200 AU) are more likely to also have a close companion (r<200 AU). In total, we observed 47 embedded young stellar objects (YSOs) with either the Subaru natural guide star AO system or the Keck laser guide star AO system. We found that targets with a widely separated companion within 5,000 AU are not more likely to have a close companion. However, targets with another YSO within a projected separation of 25,000 AU are much more likely to have a close companion. Most importantly, every target with a close companion has another YSO within a projected separation of 25,000 AU. We came to the same conclusions after considering a restricted sample of targets within 500 pc and close companions wider than 50 AU to minimize incompleteness effects. The Orion star forming region was found to have an excess of both close binaries and YSOs within 25,000 AU compared to other star forming regions. We interpret these observations as strong evidence that many close Class I binary stars form via ejections and that many of the ejected stars become unbound during the Class I phase.
We present 3D hydrodynamical simulations of the superbubble M17, also known
as the Omega nebula, carried out with the adaptive grid code yguazu'-a, which
includes radiative cooling. The superbubble is modelled considering the winds
of 11 individual stars from the open cluster inside the nebula (NGC 6618), for
which there are estimates of the mass loss rates and terminal velocities based
on their spectral types. These stars are located inside a dense interstellar
medium, and they are bounded by two dense molecular clouds.
We carried out three numerical models of this scenario, considering different
line of sight positions of the stars (the position in the plane of the sky is
known, thus fixed). Synthetic thermal X-ray emission maps are calculated from
the numerical models and compared with ROSAT observations of this astrophysical
object. Our models reproduce successfully both the observed X-ray morphology
and the total X-ray luminosity, without taking into account thermal conduction
effects.
We discuss the X-ray and optical properties of the massive galaxy cluster MACSJ1206.2-0847 (z=0.4385), discovered in the Massive Cluster Survey (MACS). Our Chandra observation of the system yields a total X-ray luminosity of 2.4 x 10^45 erg/s (0.1-2.4 keV) and a global gas temperature of (11.6 +/- 0.7) keV, very high values typical of MACS clusters. In both optical and X-ray images MACSJ1206 appears close to relaxed in projection, with a pronounced X-ray peak at the location of the brightest cluster galaxy (BCG); we interpret this feature as the remnant of a cold core. A spectacular giant gravitational arc, 15" in length, bright (V~21) and unusually red (R-K=4.3), is seen 20" west of the BCG; we measure a redshift of z=1.036 for the lensed galaxy. From our HST image of the cluster we identify the giant arc and its counter image as a seven-fold imaged system. An excess of X-ray emission in the direction of the arc coincides with a mild galaxy overdensity and could be the remnant of a minor merger with a group of galaxies. We derive estimates of the total cluster mass as well as of the mass of the cluster core using X-ray, dynamical, and gravitational-lensing techniques. For the mass enclosed by the giant arc (r<119 kpc) our strong-lensing analysis based on HST imaging yields a very high value of 1.1 x 10^14 M_sun, inconsistent with the much lower X-ray estimate of 0.5 x 10^14 M_sun. Similarly, the virial estimate of 4 x 10^15 M_sun for the total cluster mass, derived from multi-object spectroscopy of 38 cluster members, is significantly higher than the corresponding X-ray estimate of 1.7 x 10^15 M_sun. We take the discrepant mass estimates to be indicative of substructure along the line of sight during an ongoing merger event, an interpretation that is supported by the system's very high velocity dispersion of 1580 km/s.
We map the three dimensional extent of the Virgo Over-density by combining distance information from RR Lyrae variables and projected spatial information from SEKBO (Keller et al. 2008) and Sloan Digital Sky Survey (SDSS) DR6 photometry. The Virgo Over-density is seen to comprise two filaments 14.5 x 3 degrees and 10 x 3 degrees and a circular structure 3 degrees in diameter. Together the three features span 38 degrees of right ascension and declinations of +2 to -15 degrees. RR Lyrae variables place the two filamentary features at heliocentric distances of 20 and 17 kpc respectively, with projected dimensions of 5 x 1 kpc and 3 x 1 kpc.
We present new XMM-Newton observations of the supernova remnant N120 in the LMC, and numerical simulations on the evolution of this supernova remnant which we compare with the X-ray observations. The supernova remnant N120, together with several HII regions, forms a large nebular complex5D (also called N120) whose shape resembles a semicircular ring. From the XMM-Newton data we generate images and spectra of this remnant in the energy band between 0.2 to 2.0 keV. The images show that the X-ray emission is brighter towards the east (i.e., towards the rim of the large nebular complex). The EPIC/MOS1 and MOS2 data reveal a thermal spectrum in soft X-rays. 2D axisymmetric numerical simulations with the Yguaz\'u-a code were carried out assuming that the remnant is expanding into an inhomogeneous ISM with an exponential density gradient and showing that thermal conduction effects are negligible. Simulated X-ray emission maps were obtained from the numerical simulations in order to compare them with the observations. We find good agreement between the XMM-Newton data, previous optical kinematic data, and the numerical simulations; the simulations reproduce the observed X-ray luminosity and surface brightness distribution. We have also detected more extended diffuse X-ray emission probably due to the N120 large HII complex or superbubble.
We have derived CNO abundances in 12 RR Lyrae stars. Four stars show [C/Fe] near 0.0 and two stars show [C/Fe] = 0.52 and 0.65. Red giant branch stars, which are known to be the predecessors of RR Lyrae stars, generally show a deficiency of carbon due to proton captures during their evolution from the main sequence up the giant branch. We suggest that the enhancement of carbon is due to production during the helium flash combined with mixing to the surface by vigorous convection induced by the flash itself.
We draw a comparison between AGN and Galactic black hole binaries using a uniform description of spectral energy distribution of these two classes of accreting X-ray sources. We parametrize spectra of GBHs with an alpha_GBH parameter which we define as a slope of a nominal power law function between 3 and 20 keV. We show that this parameter can be treated as an equivalent of the X-ray loudness, alpha_OX, used to describe AGN spectra. We do not find linear correlation between the alpha_GBH and disc flux (similar to that between alpha_OX and optical/UV luminosity found in AGN). Instead, we show that alpha_GBH follows a well defined pattern during a GBH outburst. We find that alpha_GBH tend to cluster around 1, 1.5 and 2, which correspond to a hard, very high/intermediate and soft spectral state, respectively. We conclude that majority of the observed Type 1 radio quiet AGN are in a spectral state corresponding to a very high/intermediate state of GBHs. The same conclusion is valid for radio loud AGN. We also study variations of the spectral slopes (alpha_GBH and the X-ray photon index, Gamma) as a function of disc and Comptonization fluxes. We discuss these dependencies in the context of correlations of alpha_OX and Gamma with the optical/UV and X-ray 2 keV fluxes considered for AGN and quasars.
The current generation of Imaging Atmospheric telescopes (IACTs) has demonstrated the power of this observational technique, providing high sensitivity and an angular resolution of $\sim0.1^{\circ}$ per event above an energy threshold of $\sim$100 GeV. Planned future arrays of IACTs such as AGIS or CTA are aiming at significantly improving the angular resolution. Preliminary results have shown that values down to $\sim 1'$ might be achievable. Here we present results of Monte-Carlo simulations that aim to exploring the limits of angular resolution for next generation IACTs and investigate how the resolution can be optimised by changes to array and telescope parameters such as the number of pixel in the camera, the field of view of the camera, the angular pixel size, the mirror size, and also the telescope separation.
The current generation of Imaging Atmospheric telescopes (IACTs) has demonstrated the power of the technique in an energy range between ~100 GeV up to several tens of TeV. At the high-energy end, these instruments are limited by photon statistics. Future arrays of IACTs such as CTA or AGIS are planned to push into the energy range beyond 100 TeV. Scientifically, this region is very promising, providing a probe of particles up to the 'knee' in the cosmic ray spectrum and access to an unexplored region in the spectra of nearby extragalactic sources. We present first results from our simulation studies of the high-energy part of a future IACT array and discuss the design parameters of such an array.
The direct imaging and characterization of Earth-like planets is among the most sought-after prizes in contemporary astrophysics, however current optical instrumentation delivers insufficient dynamic range to overcome the vast contrast differential between the planet and its host star. New opportunities are offered by coherent single mode fibers, whose technological development has been motivated by the needs of the telecom industry in the near infrared. This paper presents a new vision for an instrument using coherent waveguides to remap the pupil geometry of the telescope. It would (i) inject the full pupil of the telescope into an array of single mode fibers, (ii) rearrange the pupil so fringes can be accurately measured, and (iii) permit image reconstruction so that atmospheric blurring can be totally removed. Here we present a laboratory experiment whose goal was to validate the theoretical concepts underpinning our proposed method. We successfully confirmed that we can retrieve the image of a simulated astrophysical object (in this case a binary star) though a pupil remapping instrument using single mode fibers.
We have decomposed the broad H-alpha, H-beta and H-gamma lines of 90 Active Galactic Nuclei (AGNs) into a superposition of a very broad and an intermediate Gaussian components (VBGC and IMGC) and discovered that the two Gaussian components evolve with FWHM of the whole emission lines. We suggest that the VBGC and the IMGC are produced in different emission regions, namely, Very Broad Line Region (VBLR) and Intermediate Line Region (IMLR). The details of the two components of H-alpha, H-beta and H-gamma lines indicate that the radius obtained from the emission line reverberation mapping normally corresponds to the radius of the VBLR, but the radius obtained from the infrared reverberation mapping corresponding to IMLR, i.e., the inner boundary of the dusty torus. The existence of the IMGC may affect the measurement of the black hole mass in AGNs. Therefore, the deviation of NLS1s from the M-sigma relation may be explained naturally in this way. The evolution of the two emission line regions may be related to the evolutionary stages of the broad line regions of AGNs from NLS1s to BLS1s. Other evidences for the existence of the IMLR are also presented.
We develop a numerical solver for the integral-differential equations, which describes the radiative transfer of photon distribution in the frequency space with resonant scattering of Lyalpha photons by hydrogen gas in the early universe. The time-dependent solutions of this equation is crucial to the estimation of the effect of the Wouthuysen-Field (WF) coupling in relation to the 21 cm emission and absorption at the epoch of reionization. The resonant scattering leads to the photon distribution in the frequency space to be piecewise smooth containing sharp changes. The weighted essentially nonoscillatory (WENO) scheme is suitable to handle this problem, as this algorithm has been found to be highly stable and robust for solving Boltzmann equation. We test this numerical solver against analytic solutions of the evolution of the photon distribution in rest background, analytic solution in expanding background without resonant scattering and formation of local Boltzmann distribution around the resonant frequency with the temperature same as that of atom for recoil. We find that evolution of photon distribution undergoes three phases; profile is similar to the initial one, a flat plateau (without recoil) or local Boltzmann distribution (with recoil) forms around the resonant frequency, and finally the distribution around the resonant frequency is saturated when the photons from the source is balanced by the redshift of the expansion. This result indicates that the onset of the W-F coupling should not be determined by the third phase, but by the time scale of the second phase. We found that the time scale of the W-F coupling is equal to about a few hundreds of the mean free flight time of photons with resonant frequency, and is independent of the Sobolev parameter if this parameter is much less than 1.
We study the light scattering properties of random ballistic aggregates constructed in Shen et al. (Paper I). Using the discrete-dipole-approximation, we compute the scattering phase function and linear polarization for random aggregates with various sizes and porosities, and with two different compositions: 100% silicate and 50% silicate-50% graphite. We investigate the dependence of light scattering properties on wavelength, cluster size and porosity using these aggregate models. We find that while the shape of the phase function depends mainly on the size parameter of the aggregates, the linear polarization depends on both the size parameter and the porosity of the aggregates, with increasing degree of polarization as the porosity increases. Contrary to previous studies, we argue that monomer size has negligible effects on the light scattering properties of ballistic aggregates, as long as the constituent monomer is smaller than the incident wavelength up to 2*pi*a_0/lambda\sim 1.6 where a_0 is the monomer radius. Previous claims for such monomer size effects are in fact the combined effects of size parameter and porosity. Finally, we present aggregate models that can reproduce the phase function and polarization of scattered light from the AU Mic debris disk and from cometary dust, including the negative polarization observed for comets at scattering angles 160<theta<180 deg. These aggregates have moderate porosities, P\sim 0.6, and are of sub-micron-size for the debris disk case, or micron-size for the comet case.
Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray bursts (GRBs) in some scenarios. Exploring this photon energy regime is necessary for understanding the energetics and properties of GRBs. GRBs have been one of the prime targets for the H.E.S.S. experiment, which makes use of four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays. Dedicated observations of 32 GRB positions were made in the years 2003-2007 and a search for VHE gamma-ray counterparts of these GRBs was made. Depending on the visibility and observing conditions, the observations mostly start minutes to hours after the burst and typically last two hours. Results from observations of 22 GRB positions are presented and evidence of a VHE signal was found neither in observations of any individual GRBs, nor from stacking data from subsets of GRBs with higher expected VHE flux according to a model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from the GRB positions were derived. For those GRBs with measured redshifts, differential upper limits at the energy threshold after correcting for absorption due to extra-galactic background light are also presented.
We present the high resolution spectra of the youn and compact planerary nebula NGC 6790 obtained with the echelle spectrograph at Bohyunsan Optical Astronomy Observatory and report the discovery of Raman scattered He II 6545 in this object. This line feature is formed in a thick neutral region surrounding the hot central star, where He II 1025 line photons are scattered inelastically by hydrogen atoms. A Monte Carlo technique is adopted to compute the line profile with a simple geometric model, in which the neutral region is in the form of a cylindrical shell that is expanding from the central star. From our line profile analysis, the expansion velocity of the HI region lies in the range V_exp = 15- 19 Km/s. Less stringent constraints are put on the HI column density N_HI and covering factor C, where the total flux of Raman He II 6545 is consistent with the product of N_HI and C being CN_HI ~ 0.5 X 10^20 cm^-2. The Monte Carlo profiles from stationary emission models exhibit deficit in the wing parts. A much better fit is obtained when the He II emission region is assumed to take the form of a ring that slowly rotates with a rotation speed ~ 18Km/s. Brief discussions are presented regarding the mass loss processes and future observations.
A fundamental question in cometary science is whether the different dynamical classes of comets have different chemical compositions, which would reflect different initial conditions. From the ground or Earth orbit, radio and infrared spectroscopic observations of a now significant sample of comets indeed reveal deep differences in the relative abundances of cometary ices. However, no obvious correlation with dynamical classes is found. Further results come, or are expected, from space exploration. Such investigations, by nature limited to a small number of objects, are unfortunately focussed on short-period comets (mainly Jupiter-family). But these in situ studies provide "ground truth" for remote sensing. We discuss the chemical differences in comets from our database of spectroscopic radio observations, which has been recently enriched by several Jupiter-family and Halley-type comets.
CoRoT is a space telescope dedicated to stellar seismology and the search for
extrasolar planets. The mission is led by CNES in association with French
laboratories and has a large international participation: the European Space
Agency (ESA), Austria, Belgium and Germany contribute to the payload, and Spain
and Brazil contribute to the ground segment. Development of the spacecraft,
which is based on a PROTEUS low earth orbit recurrent platform, commenced in
October 2000 and the satellite was launched on December 27th 2006.
The instrument and platform characteristics prior to launch have been
described in ESA publication (SP-1306) . In the present paper we detail the
behaviour in flight, based on raw and corrected data. Five runs have been
completed since January 2007. The data used here are essentially those acquired
during the commissioning phase and from a long run which lasted 146 days, these
enable us to give a complete overview of the instrument and platform behaviour
for all environmental conditions. The ground based data processing is not
described in detail, the most important method being published elsewhere. It is
shown that the performance specifications are easily satisfied when the
environmental conditions are favourable. Most of the perturbations, and
consequently data corrections, are related to Low Earth Orbit (LEO)
perturbations: high energy particles inside the South Atlantic Anomaly (SAA),
eclipses and temperature variations, and line of sight fluctuations due to the
attitude control system. Straylight due to the reflected light from the earth,
which is controlled by the telescope and baffle design, appears to be
negligible.
A significant fraction of high redshift starburst galaxies presents strong Ly alpha emission. Understanding the nature of these galaxies is important to assess the role they played in the early Universe and to shed light on the relation between the narrow band selected Lyalpha emitters and the Lyman break galaxies: are the Lyalpha emitters a subset of the general LBG population? or do they represent the youngest galaxies in their early phases of formation? We studied a sample of UV continuum selected galaxies from z~2.5 to z~6 (U, B, V and i-dropouts) from the GOODS-South survey, that have been observed spectroscopically. Using the GOODS-MUSIC catalog we investigated their physical properties, such as total masses, ages, SFRs, extinction etc as determined from a spectrophotometric fit to the multi-wavelength (U band to mid-IR) SEDs, and their dependence on the emission line characteristics. In particular we determined the nature of the LBGs with Lyalpha in emission and compared them to the properties of narrow band selected Lyalpha emitters. For U and B-dropouts we also compared the properties of LBGs with and without the Lyalpha emission line.
IGR J16351-5806 has been associated with the Seyfert 2 galaxy ESO 137-G34, having been first reported as a high energy emitter in the third INTEGRAL/IBIS survey. Using a new diagnostic tool based on X-ray column density measurements vs softness ratios, Malizia et al. (2007) identified this source as a candidate Compton thick AGN. In the present work we have analysed combined XMM-Newton and INTEGRAL data of IGR J16351-5806 in order to study its broad band spectrum and investigate its Compton thick nature. The prominent K_alpha fluorescence line around 6.4 keV (EW > 1 keV) together with a flat 2-10 keV spectrum immediately point to a highly obscured source. The overall spectrum can be interpreted in terms of a transmission scenario where some of the high energy radiation is able to penetrate through the thick absorption but a good fit is also obtained using a pure reflection spectrum. An alternative possibility is that of a complex absorption, where two layers of absorbing matter each partially covering the central nucleus are present in IGR J16351-5806. All three scenarios are compatible from a statistical viewpoint and provide reasonable AGN spectral parameters; more importantly all point to a source with an absorbing column greater than 1.5 x 10^24 cm^-2, i.e. to a Compton thick AGN. Because of this heavy obscuration, some extra components which would otherwise be hidden are able to emerge at low energies and can be studied. By providing strong evidence for the Compton thick nature of IGR J16351-5806, we indirectly confirm the validity of the Malizia et al. diagnostic diagram.
Swift-detected GRB 080307 showed an unusual smooth rise in its X-ray light-curve around 100 seconds after the burst, at the start of which the emission briefly softened. This `hump' has a longer duration than is normal for a flare at early times and does not demonstrate a typical flare profile. Using a two component power-law-to-exponential model, the rising emission can be modelled as the onset of the afterglow, something which is very rarely seen in Swift-X-ray light-curves. We cannot, however, rule out that the hump is a particularly slow early-time flare, or that it is caused by upscattered reverse shock electrons.
Aims: We generate theoretical ultraviolet and extreme-ultraviolet emission line ratios for O IV and show their strong versatility as electron temperature and density diagnostics for astrophysical plasmas. Methods: Recent fully relativistic calculations of radiative rates and electron impact excitation cross sections for O IV, supplemented with earlier data for A-values and proton excitation rates, are used to derive theoretical O IV line intensity ratios for a wide range of electron temperatures and densities. Results: Diagnostic line ratios involving ultraviolet or extreme-ultraviolet transitions in O IV are presented, that are applicable to a wide variety of astrophysical plasmas ranging from low density gaseous nebulae to the densest solar and stellar flares. Comparisons with observational data, where available, show good agreement between theory and experiment, providing support for the accuracy of the diagnostics. However, diagnostics are also presented involving lines that are blended in existing astronomical spectra, in the hope this might encourage further observational studies at higher spectral resolution.
We investigate the weak gravitational lensing effect on the two-point correlation function of local maxima (hot spots) in the cosmic 21 cm fluctuation map. The intrinsic two-point function has a pronounced depression feature around the angular scale of $\theta \sim 40$ arcmin, which depends on the observed frequency and corresponds to the scale of the acoustic oscillation of cosmic plasma before the recombination. It is found that the weak lensing induces a large w-dependent smoothing at that scale where w is the equation of state parameter of dark energy and thus provides a useful constraints on the dark energy property combined with the depression angular scales on the two-point correlation function.
XTE J1810-197 is the first transient Anomalous X-ray Pulsar ever discovered. Its highly variable X-ray flux allowed us to study the timing and spectral emission properties of a magnetar candidate over a flux range of about two orders of magnitude. We analyzed nine XMM-Newton observations of XTE J1810-197 collected over a four years baseline (September 2003 - September 2007). EPIC PN and MOS data were reduced and used for detailed timing and spectral analysis. Pulse phase spectroscopic studies were also carried out for observations with sufficiently high signal to noise. We find that: (i) a three blackbodies model reproduces the spectral properties of the source over the entire outburst statistically better than the two blackbodies model previously used in the literature, (ii) the coldest blackbody is consistent with the thermal emission from the whole surface, and has temperature and radius similar to those inferred from ROSAT observations before the outburst onset, (iii) there is a spectral feature around 1.1 keV during six consecutive observations (since March 2005); if due to proton resonant cyclotron scattering, it would imply a magnetic field of around 2E14 G. This is in a very good agreement with the value from the spin period measurements.
Radio sources of the RC catalog produced in 1980--1985 at RATAN-600 radio telescope based on a deep survey of a sky strip centered on the declination of the SS 433 source are optically identified in the region overlapping with FIRST and SDSS surveys (about 132 square degrees). The NVSS catalog was used as the reference catalog for refining the coordinates of the radio sources. The morphology is found for about 75% of the objects of the sample and the ratio of single, double and multicomponent radio sources is computed based on FIRST radio maps. The 74, 365, 1400, and 4850 MHz data of the VLSS, TXS, NVSS, FIRST, and GB6 catalogs are used to analyze the shape of the spectra.
We analyzed simultaneous archival XMM-Newton and RXTE observations of the X-ray binary and black hole candidate Swift J1753.5-0127. In a previous analysis of the same data a soft thermal component was found in the X-ray spectrum, and the presence of an accretion disk extending close to the innermost stable circular orbit was proposed. This is in contrast with the standard picture in which the accretion disk is truncated at large radii in the low/hard state. We tested a number of spectral models and we found that several of them fit the observed spectra without the need of a soft disk-like component. This result implies that the classical paradigm of a truncated accretion disk in the low/hard state can not be ruled out by these data. We further discovered a broad iron emission line between 6 and 7 keV in these data. From fits to the line profile we found an inner disk radius that ranges between ~6-16 gravitational radii, which can be in fact much larger, up to ~250 gravitational radii, depending on the model used to fit the continuum and the line. We discuss the implications of these results in the context of a fully or partially truncated accretion disk.
We briefly summarize our study on anisotropy of Ultra-High Energy Cosmic-Rays (UHECRs), in which we define a statistics that measures the correlation between UHECRs and Large Scale Structure (LSS). We also comment here on recently published paper by Koers and Tinyakov that compared our statistics to improved KS statistics.
In this work, we consider the cosmological constraints on the holographic Ricci dark energy proposed in arXiv:0712.1394, by using the observational data currently available. The main characteristic of holographic Ricci dark energy is governed by a positive numerical parameter $\alpha$ in the model. When $\alpha<1/2$, the holographic Ricci dark energy will exhibit a quintom-like behavior, i.e., its equation-of-state will evolve across the cosmological-constant boundary $w=-1$. The parameter $\alpha$ can only be determined by observations. Thus, in order to characterize the evolving feature of dark energy and to predict the fate of the universe, it is of extraordinary importance to constrain the parameter $\alpha$ by using the observational data. In this paper, we derive constraints on the holographic Ricci dark energy model from the latest observational data including the Union sample of 307 Type Ia supernovae (SNIa), the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). The joint analysis gives the best-fit results (with 1$\sigma$ uncertainty): $\alpha=0.359^{+0.024}_{-0.025}$ and $\Omega_{\rm m0}=0.318^{+0.026}_{-0.024}$. That is to say, according to the observations, the holographic Ricci dark energy takes on the quintom feature. Finally, in the light of the results of the cosmological constraints, we discuss the issue of the scalar-field dark energy reconstruction, based on the scenario of the holographic Ricci vacuum energy.
We study the coorbital flow for embedded, low mass planets. We provide a simple semi-analytic model for the corotation region, which is subsequently compared to high resolution numerical simulations. The model is used to derive an expression for the half-width of the horseshoe region, x_s, which in the limit of zero softening is given by x_s/r_p = 1.68(q/h)^(1/2), where q is the planet to central star mass ratio, h is the disc aspect ratio and r_p the orbital radius. This is in very good agreement with the same quantity measured from simulations. This result is used to show that horseshoe drag is about an order of magnitude larger than the linear corotation torque in the zero softening limit. Thus the horseshoe drag, the sign of which depends on the gradient of specific vorticity, is important for estimates of the total torque acting on the planet. We further show that phenomena, such as the Lindblad wakes, with a radial separation from corotation of ~ a pressure scale height H can affect x_s, even though for low-mass planets x_s << H. The effect is to distort streamlines and to reduce x_s through the action of a back pressure. This effect is reduced for smaller gravitational softening parameters and planets of higher mass, for which x_s becomes comparable to H.
We study the torque on low mass protoplanets on fixed circular orbits, embedded in a protoplanetary disc in the isothermal limit. For low mass protoplanets and large viscosity the corotation torque behaves as expected from linear theory. However, when the viscosity becomes small enough to enable horseshoe turns to occur, the linear corotation torque exists only temporarily after insertion of a planet into the disc, being replaced by the horseshoe drag first discussed by Ward. This happens after a time that is equal to the horseshoe libration period reduced by a factor amounting to about twice the disc aspect ratio. This torque scales with the radial gradient of specific vorticity, as does the linear torque, but we find it to be many times larger. If the viscosity is large enough for viscous diffusion across the coorbital region to occur within a libration period, we find that the horseshoe drag may be sustained. If not, the corotation torque saturates leaving only the linear Lindblad torques. As the magnitude of the non linear coorbital torque (horseshoe drag) is always found to be larger than the linear torque, we find that the sign of the total torque may change even for for mildly positive surface density gradients. In combination with a kinematic viscosity large enough to keep the torque from saturating, strong sustained deviations from linear theory and outward or stalled migration may occur in such cases (abridged).
Astronomy has evolved almost exclusively by the use of spectroscopic and imaging techniques, operated separately. With the development of modern technologies it is possible to obtain datacubes in which one combines both techniques simultaneously, producing images with spectral resolution. To extract information from them can be quite complex, and hence the development of new methods of data analysis is desirable. We present a method of analysis of datacube (data from single field observations, containing two spatial and one spectral dimension) that uses PCA (Principal Component Analysis) to express the data in the form of reduced dimensionality, facilitating efficient information extraction from very large data sets. PCA transforms the system of correlated coordinates into a system of uncorrelated coordinates ordered by principal components of decreasing variance. The new coordinates are referred to as eigenvectors, and the projections of the data onto these coordinates produce images we will call tomograms. The association of the tomograms (images) to eigenvectors (spectra) is important for the interpretation of both. The eigenvectors are mutually orthogonal and this information is fundamental for their handling and interpretation. When the datacube shows objects that present uncorrelated physical phenomena, the eigenvector's orthogonality may be instrumental in separating and identifying them. By handling eigenvectors and tomograms one can enhance features, extract noise, compress data, extract spectra, etc. We applied the method, for illustration purpose only, to the central region of the LINER galaxy NGC 4736, and demonstrate that it has a type 1 active nucleus, not known before. Furthermore we show that it is displaced from the centre of its stellar bulge.
Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud - SXP7.92. A detailed analysis of the X-ray data reveal a coherent period of 7.9s. A search through earlier X-ray observations of the SMC reveal a previously unknown earlier detection of this system. Follow-up X-ray observations identified a new transient source within the error circle of the previous observations. An optical counterpart, AzV285, is proposed which reveals clear evidence for a 36.8d binary period.
The Planetary Nebula (PN) population of M33 is studied via multi-fiber
spectroscopy with Hectospec at the MMT. In this paper we present the spectra of
102 PNe, whereas plasma diagnostic and chemical abundances were performed on
the 93 PNe where the necessary diagnostic lines were measured. About 20% of the
PNe are compatible with being Type I; the rest of the sample is the progeny of
an old disk stellar population, with main sequence masses M<3M${_\odot}$ and
ages t$>$0.3 Gyr.
By studying the elemental abundances of the PNe in the M33 disk we were able
to infer that: (1) there is a tight correlation between O/H and Ne/H, broadly
excluding the evolution of oxygen; (2) the average abundances of the
$\alpha$-elements are consistent with those of \hii regions, indicating a
negligible global enrichment in the disk of M33 from the epoch of the formation
of the PN progenitors to the present time; (3) the radial oxygen gradient
across the M33 disk has a slope of -0.031$\pm$0.013 dex kpc$^{-1}$, in
agreement, within the errors, with the corresponding gradient derived from HII
regions. Our observations do not seem to imply that the metallicity gradient
across the M33 disk has flattened considerably with time. We report also the
discovery of a PN with Wolf-Rayet features, PN039, belonging the class of late
[WC] stars
We have carried out long-slit spectroscopic observations of the star forming knots along the polar ring of the dwarf galaxy IIZw71 in the spectral range 3500 - 10000 angstroms taken with the William erschel Telescope (WHT). The spectroscopic observations have been complemented with available photometry of the galaxy in the narrow Halpha filter. We have measured the rotation curve of the ring, from which we infer a ratio M/L_B = 3.9 inside the star forming ring. We have measured the auroral [OIII] line in the two brightest knots. This has allowed us to measure oxygen, sulphur, nitrogen, argon and neon chemical abundances following the direct method. Different empirical calibrators have been used to estimate the oxygen abundance in the two faintest knots. The metallicities obtained are very similar for all the knots, but lower than previously reported in the literature from integrated spectra. The N/O abundance, as derived from the N2O2 parameter, is remarkably constant over the ring, indicating that local polution processes are not conspicuous. Using synthetic stellar populations (SSPs) calculated with the code STARLIGHT we have studied the age distribution of the stellar populations in each knot, finding that in all of them there is a combination of a very young population with less than 10 Myr, responsible for the ionisation of the gas, with other populations older than 100 Myr, probably responsible for the chemical evolution of the knots. The small differences in metallicity and the age distributions among the different knots are indicative of a common chemical evolution, probably related with the process of interaction with the companion galaxy IIZw70.
NGC 2024, a sites of massive star formation, have complex internal structures caused by cal heating by young stars, outflows, and stellar winds. These complex cloud structures lead to intricate emission line shapes. The goal of this paper is to show that the complex line shapes of 12 CO lines in NGC 2024 can be explained consistently with a model, whose temperature and velocity structure are based on the well-established scenario of a PDR and the Blister model. We present velocity-resolved spectra of seven CO lines ranging from J=3 to J=13, and we combined these data with CO high-frequency data from the ISO satellite. We find that the bulk of the molecular cloud associated with NGC 2024 consists of warm (75 K) and dense (9e5 cm-3) gas. An additional hot (~ 300 K) component, located at the interface of the HII region and the molecular cloud, is needed to explain the emission of the high-J CO lines. Deep absorption notches indicate that very cold material (20 K) exists in front of the warm material, too. A temperature and column density structure consistent with those predicted by PDR models, combined with the velocity structure of a Blister model, appropriately describes the observed emission line profiles of this massive star forming region. This case study of NGC 2024 shows that, with physical insights into these complex regions and careful modeling, multi-line observations of CO can be used to derive detailed physical conditions in massive star forming regions.
We develop a model for stochastic pre-enrichment and self-enrichment in globular clusters (GCs) during their formation process. GCs beginning their formation have an initial metallicity determined by the pre-enrichment of their surrounding protocloud, but can also undergo internal self-enrichment during formation. Stochastic variations in metallicity arise because of the finite numbers of supernova. We construct an analytic formulation of the combined effects of pre-enrichment and self-enrichment and use Monte Carlo models to verify that the model accurately encapsulates the mean metallicity and metallicity spread among real GCs. The predicted metallicity spread due to self-enrichment alone, a robust prediction of the model, is much smaller than the observed spread among real GCs. This result rules out self-enrichment as a significant contributor to the metal content in most GCs, leaving pre-enrichment as the viable alternative. Self-enrichment can, however, be important for clusters with masses well above 10^6 Msun, which are massive enough to hold in a significant fraction of their SN ejecta even without any external pressure confinement. This transition point corresponds well to the mass at which a mass-metallicity relationship ("blue tilt") appears in the metal-poor cluster sequence in many large galaxies. We therefore suggest that self-enrichment is the primary driver for the mass-metallicity relation. Other predictions from our model are that the cluster-to-cluster metallicity spread decreases amongst the highest mass clusters; and that the red GC sequence should also display a more modest mass-metallicity trend if it can be traced to similarly high mass.
We report the likely detection of near-infrared 2.29 $\mu$m first overtone Carbon Monoxide (CO) emission from the young supernova remnant Cassiopeia A (Cas A). The continuum-subtracted CO filter map reveals CO knots within the ejecta-rich reverse shock. We compare the first overtone CO emission with that found in the well-studied supernova, SN 1987A and find $\sim$30 times less CO in Cas A. The presence of CO suggests that molecule mixing is small in the SN ejecta and that astrochemical processes and molecule formation may continue at least ~300 years after the initial explosion.
The transition density $\rho_{t}$ and pressure $P_{t}$ at the inner edge separating the liquid core from the solid crust of neutron stars are systematically studied using a modified Gogny (MDI) and 47 popular Skyrme interactions within well established dynamical and thermodynamical methods. It is shown that the widely used parabolic approximation to the full Equation of State (EOS) of isospin asymmetric nuclear matter may lead to huge errors in estimating the \rho_{t} and P_{t}, especially for stiffer symmetry energy functionals $E_{sym}(\rho)$. The \rho_{t} and P_{t} decrease roughly linearly with the increasing slope parameter $L$ of the $E_{sym}(\rho)$ using the full EOS within both methods. It is also shown that the thickness, fractional mass and moment of inertia of neutron star crust are all very sensitive to the parameter $L$ through the $\rho_{t}$. Moreover, it is shown that the $E_{sym}(\rho)$ constrained in the same sub-saturation density range as the neutron star crust by the isospin diffusion data in heavy-ion collisions at intermediate energies limits the transition density and pressure to 0.040$ fm^-3}< \rho_{t} < 0.065$ fm^-3 and 0.01 MeV/fm^3 < P_{t} < 0.26$ MeV/fm^3, respectively. These constrained values for the transition density and pressure are significantly lower than their fiducial values currently used in the literature. Furthermore, the mass-radius relation and several other properties closely related to the neutron star crust are studied by using the MDI interaction. It is found that the newly constrained $\rho_t$ and $P_t$ together with the earlier estimate of $\Delta I/I>0.014$ for the crustal fraction of the moment of inertia of the Vela pulsar impose a stringent constraint of R>= 4.7+4.0M/M_sun km for the radius $R$ and mass $M$ of neutron stars.
The star BD+29 1748 was resolved to be a close binary from its occultation by the asteroid 87 Sylvia on 2006 December 18 UT. Four telescopes were used to observe this event at two sites separated by some 80 km apart. Two flux drops were observed at one site, whereas only one flux drop was detected at the other. From the long-term variation of Sylvia, we inferred the probable shape of the shadow during the occultation, and this in turn constrains the binary parameters: the two components of BD+29 1748 have a projected separation of 0.097" to 0.110" on the sky with a position angle 104 deg to 107 deg. The asteroid was clearly resolved with a size scale ranging from 130 to 290 km, as projected onto the occultation direction. No occultation was detected for either of the two known moonlets of 87 Sylvia.
Space densities and birthrates of Planetary Nebulae (PNe) are highly uncertain. A large range of formation rates has been derived by different studies, which has led to contradicting ideas for the final evolutionary phases of low and intermediate mass stars. We started a project to deduce a birthrate using a sample of PNe within 2kpc. The central stars will be identified in the PNe fields by their photometric colours and then used to establish improved distance estimates. To facilitate this we have created grids of photometric colours which are used to constrain stellar parameters. Our study has concentrated on PNe in SDSS and the INT Photometric Halpha Survey (IPHAS) so far. IPHAS is a nearly complete northern galactic plane survey in Halpha, r' and i' bands. Many previously unknown PNe have been discovered with IPHAS. We investigate implications of a more complete local sample on PN birthrate estimates.
We carried out a spectroscopic investigation of single lined white dwarfs (WDs) in double degenerate (DD) systems and discuss their binary evolution. Simulated spectra of the Halpha region are used to derive upper limits on the temperature of the invisible component and thus lower limits on the cooling age. This is done for a range of hypothetical secondary masses and a minimum cooling age deduced. Results are compared with the well known parameters of the visible primary, which allows us to determine a lower limit for the cooling age difference of both WDs. Most of the ten systems in our sample have a minimum age difference of not larger than 0.5Gyr and their small orbital separation is highly suggestive of at least one unstable mass transfer phase. However, a stable first mass transfer phase is feasible as the age difference is less then 1Gyr. The results imply that unstable mass transfer is the most likely final contact binary scenario to have occurred in DD systems but the first mass transfer phase is not constrained.
We investigate observational constraints on dark energy models from lookback time (LT) estimates of 32 old passive galaxies distributed over the redshift interval $0.11 \leq z \leq 1.84$. To build up our LT sample we combine the age measurements for these 32 objects with estimates of the total age of the Universe, as obtained from current CMB data. We show that LT data may provide bounds on the cosmological parameters with accuracy competitive with type Ia Supernova methods. In order to break possible degeneracies between models parameters, we also discuss the bounds when our lookback time versus redshift sample is combined with with the recent measurement of the baryonic acoustic oscillation peak and the derived age of the Universe from current CMB measurements.
We present an extended analysis of the relation between radio surface brightness and diameter -- the so-called $\Sigma-D$ relation for planetary nebulae (PNe). We revise our previous derivation of the theoretical $\Sigma-D$ relation for the evolution of bremsstrahlung surface brightness in order to include the influence of the fast wind from the central star. Different theoretical forms are derived: $\Sigma \propto D^{-1}$ for the first and second phases of evolution and $\Sigma\propto D^{-3}$ for the final stage of evolution. Also, we analyzed several different Galactic PN samples. All samples are influenced by severe selection effects, but Malmquist bias seems to be less influential here than in the supernova remnant (SNR) samples. We derived empirical $\Sigma-D$ relations for 27 sample sets using 6 updated PN papers from which an additional 21 new sets were extracted. Twenty four of these have a trivial form of $\beta \approx 2$. However, we obtain one empirical $\Sigma-D$ relation that may be useful for determining distances to PNe. This relation is obtained by extracting a recent nearby (< 1 kpc) Galactic PN sample.
The scientific goals of the AMIGA project are based on the analysis of a significant amount of spectroscopic 3D data. In order to perform this work we present an initiative to develop a new VO compliant package, including present core applications and tasks offered by the Groningen Image Processing System (GIPSY), and new ones based on use cases elaborated in collaboration with ad- vanced users. One of the main goals is to provide local interoperability between GIPSY (visualization and data analysis) and other VO software. The connectivity with the Virtual Observatory environment will provide general access to 3D data VO archives and services, maximizing the potential for scientific discovery.
Dark matter neutralinos in the constrained minimal supersymmetric model (CMSSM) may account for the recent cosmic ray electron and positron observations reported by the PAMELA and ATIC experiments either through self annihilation or via decay. However, to achieve this, both scenarios require new physics beyond the 'standard' CMSSM, and a unified explanation of the two experiments suggests a neutralino mass of order 700 GeV - 2 TeV. A relatively light neutralino with mass around 100 GeV (300 GeV) can accomodate the PAMELA but not the ATIC observations based on a model of annihilating (decaying) neutralinos. We study the implications of these scenarios for Higgs and sparticle spectroscopy in the CMSSM and highlight some benchmark points. An estimate of neutrino flux expected from the annihilating and decaying neutralino scenarios is provided.
We consider the recently introduced "galileon" field in a dynamical spacetime. When the galileon is assumed to be minimally coupled to the metric, we underline that both field equations of the galileon and the metric involve up to third-order derivatives. We show that a unique nonminimal coupling of the galileon to curvature eliminates all higher derivatives in all field equations, hence yielding second-order equations, without any extra propagating degree of freedom. The resulting theory breaks the generalized "Galilean" invariance of the original model.
We study the structure of hadronic protoneutron stars within the finite temperature Brueckner-Bethe-Goldstone theoretical approach. Assuming beta-equilibrated nuclear matter with nucleons and leptons in the stellar core, with isothermal or isentropic profile, we show that particle populations and equation of state are very similar. As far as the maximum mass is concerned, we find that its value turns out to be almost independent on T, while a slight decrease is observed in the isentropic case, due to the enhanced proton fraction in the high density range.
A new, computationally- and statistically-efficient algorithm, the Fast $\chi^2$ algorithm, can find a periodic signal with harmonic content in irregularly-sampled data with non-uniform errors. The algorithm calculates the minimized $\chi^2$ as a function of frequency at the desired number of harmonics, using Fast Fourier Transforms to provide $O (N \log N)$ performance. The code for a reference implementation is provided.
Links to: arXiv, form interface, find, astro-ph, recent, 0901, contact, help (Access key information)