This document is divided in two parts. The first part deals with the radial velocities (RV) distributions for B-type stars and nebulosities observed with the VLT-GIRAFFE in the Large and Small Magellanic Clouds towards the open clusters NGC2004 and NGC330. Thanks to the resolution of GIRAFFE spectra, we found that the RV distribution for the nebulosities in the LMC is bi-modal. This bi-modality can be interpreted, in term of dynamics, by the expansion of the LMC4 superbubble. The second part deals with the GAIA space mission and the determination of the radial velocities by using Radial Velocity Spectrometer (RVS) spectra. The methods to determine the radial velocities are presented as well as preliminary results on simulated RVS spectra.
I investigate multi-field inflationary models with fields that decay during inflation, leading to staggered inflation. This feature is natural in many models motivated by string theory, for instance if inflatons are related to interbrane distances and the branes start to annihilate during inflation. A short exposition to an analytic framework is provided, enabling the computation of leading order corrections to observables, i.e. the scalar spectral index.
Since their discovery, cosmic crystalline silicates have presented several challenges to understanding dust formation and evolution. The mid-infrared spectrum of IRAS 17495$-$2534, a highly obscured oxygen-rich asymptotic giant branch (AGB) star, is the only source observed to date which exhibits a clear crystalline silicate absorption feature. This provides an unprecedented opportunity to test competing hypotheses for dust formation. Observed spectral features suggest that both amorphous and crystalline dust is dominated by forsterite (Mg\_2 SiO\_4) rather than enstatite (MgSiO\_3) or other silicate compositions. We confirm that high mass-loss rates should produce more crystalline material, and show why this should be dominated by forsterite. The presence of Mg\_2 SiO\_4 glass suggests that another factor (possibly C/O) is critical in determining astromineralogy. Correlation between crystallinity, mass-loss rate and initial stellar mass suggests that only the most massive AGB stars contribute significant quantities of crystalline material to the interstellar medium, resolving the conundrum of its low crystallinity.
This article investigates the full Boltzmann equation up to second order in the cosmological perturbations. Describing the distribution of polarized radiation by using a tensor valued distribution function, the second order Boltzmann equation, including polarization, is derived without relying on the Stokes parameters.
(Abridged) We use VLT/UVES high-resolution optical spectroscopy of seven GRB afterglows at z_GRB>2 to investigate circumburst and interstellar plasma in the host galaxies. Our sample consists of GRBs 021004, 050730, 050820, 050922C, 060607, 071031, and 080310. Four of these spectra were taken in rapid-response mode, within 30 minutes of the Swift GRB detection. We identify several distinct categories of high-ion absorption at velocities close to z_GRB: (i) Strong high-ion components at z_GRB itself are always seen in OVI, CIV, and SiIV, and usually (in 6 of 7 cases) in NV. We discuss circumburst and interstellar models for the origin of this absorption. Using the non-detection of SIV* toward GRB 050730 together with a UV photo-excitation model, we place a lower limit of 400 pc on the distance of the SIV-bearing gas from the GRB. (ii) Complex, multi-component CIV and SiIV profiles extending over 100-400 km/s around z_GRB are observed in each spectrum; these velocity fields are similar to those measured in damped Lyman-alpha systems at similar redshifts, suggesting a galactic origin. (iii) Asymmetric, blueshifted, absorption-line wings covering 65-140 km/s are seen in the CIV, SiIV, and OVI profiles in 4 of the 7 spectra. The wing kinematics together with the observation that two wings show "Galactic" CIV/SiIV ratios suggest these features trace outflowing ISM gas in the GRB host galaxies. (iv) High-velocity (HV; 500-5000 km/s) components are detected in 6 of the 7 spectra. The HV components show diverse properties. In the cases of GRBs 071031 and 080310, both the ionization level (very high CIV/SiIV ratios and absence of neutral-phase absorption) and the kinematics of the HV components can be explained by Wolf-Rayet winds from the GRB progenitors.
Several lines of evidence suggest that the galaxy cluster Cl0024+17, an apparently relaxed system, is actually a collision of two clusters, the interaction occurring along our line of sight. Recent lensing observations suggest the presence of a ring-like dark matter structure, which has been interpreted as the result of such a collision. In this paper we present $N$-body simulations of cluster collisions along the line of sight to investigate the detectability of such features. We use realistic dark matter density profiles as determined from cosmological simulations. Our simulations show a "shoulder" in the dark matter distribution after the collision, but no ring feature even when the initial particle velocity distribution is highly tangentially anisotropic ($\sigma_\theta/\sigma_r >> 1$). Only when the initial particle velocity distribution is circular do our simulations show such a feature. Even modestly anisotropic velocity distributions are inconsistent with the halo velocity distributions seen in cosmological simulations, and would require highly fine-tuned initial conditions. Our investigation leaves us without an explanation for the dark matter ring-like feature in Cl 0024+17 suggested by lensing observations.
We consider theoretical models of emission of TeV photons by Cyg X-1 during a flare discovered by the MAGIC detector. We study acceleration of electrons to energies sufficient for TeV emission, and find the emission site is allowed to be close to the black hole. We then consider pair absorption in the photon field of the central X-ray source and a surrounding accretion disc, and find its optical depth is < 1, allowing emission close to the black hole. On the other hand, the optical depth in the stellar field is about 10 at 1 TeV. However, the optical depth drops with increasing energy, allowing a model with the initial energy of > 3 TeV, in which photons travel far away from the star, initiating a spatially extended pair cascade. This qualitatively explains the observed TeV spectrum, though still not its exact shape.
From optical high-resolution spectra the nature of the unseen companion of HW Vir is determined without detection of any spectral features originating from the secondary itself. Using radial velocity measurements from the primary hot subdwarf B star and from weak additional absorption lines detected close to the secondary eclipse, probably caused by reflected light off the surface of the secondary, the mass and radius of the companion is determined. The values are consistent with those of a M type main sequence star.
A search for recoiling supermassive black hole candidates recently yielded the best candidate thus far, SDSS J092712.65+294344.0 reported by Komossa et al. Here we propose the alternative hypothesis that this object is a supermassive black hole binary. From the velocity shift imprinted in the emission-line spectrum we derive the orbital period of ~190 years for a binary mass ratio of 0.1, a secondary black hole mass of 100 million solar masses, and binary inclination and orbital phase angles of 45 degrees. In this model the origin of the blueshifted narrow emission lines is naturally explained in the context of an accretion stream within the inner rim of the circumbinary disk. We show that, within the uncertainties, this binary system can be long lived and thus, is not observed in a special moment in time. The orbital motion of the binary can potentially be observed with the VLBA if at least the secondary black hole is a radio emitter. In addition, for the parameters quoted above, the orbital motion will result in a ~100 km/s velocity shift of the emission lines on a time scale of ~10 yr providing a direct observational test for the binary hypothesis.
Circumstellar shells around AGB stars are built over long periods of time that may reach several million years. They may therefore be extended over large sizes (~1 pc, possibly more), and different complementary tracers are needed to describe their global properties. In the present work, we combined 21-cm HI and CO rotational line data obtained on an oxygen-rich semi-regular variable, RX Lep, to describe the global properties of its circumstellar environment. With the SEST, we detected the CO(2-1) rotational line from RX Lep. The line profile is parabolic and implies an expansion velocity of ~4.2 km/s and a mass-loss rate ~1.7 10^-7 Msun/yr (d = 137 pc). The HI line at 21 cm was detected with the Nancay Radiotelescope on the star position and at several offset positions. The linear shell size is relatively small, ~0.1 pc, but we detect a trail extending southward to ~0.5 pc. The line profiles are approximately Gaussian with an FWHM ~3.8 km/s and interpreted with a model developed for the detached shell around the carbon-rich AGB star Y CVn. Our HI spectra are well-reproduced by assuming a constant outflow (Mloss = 1.65 10^-7 Msun/yr) of ~4 10^4 years duration, which has been slowed down by the external medium. The spatial offset of the HI source is consistent with the northward direction of the proper motion, lending support to the presence of a trail resulting from the motion of the source through the ISM, as already suggested for Mira, RS Cnc, and other sources detected in HI. The source was also observed in SiO (3 mm) and OH (18 cm), but not detected. The properties of the external parts of circumstellar shells around AGB stars should be dominated by the interaction between stellar outflows and external matter for oxygen-rich, as well as for carbon-rich, sources, and the 21-cm HI line provides a very useful tracer of these regions.
We present results of a search for a young stellar moving group associated with the star HD 141569, a nearby, isolated Herbig AeBe primary member of a 5+/-3 Myr-old triple star system on the outskirts of the Sco-Cen complex. Our spectroscopic survey identified a population of 21 Li-rich, <30 Myr-old stars within 30 degrees of HD 141569 which possess similar proper motions with the star. The spatial distribution of these Li-rich stars, however, is not suggestive of a moving group associated with the HD 141569 triplet, but rather this sample appears cospatial with Upper Scorpius and Upper Centaurus Lupus. We apply a modified moving cluster parallax method to compare the kinematics of these youthful stars with Upper Scorpius and Upper Centaurus Lupus. Eight new potential members of Upper Scorpius and five new potential members of Upper Centaurus Lupus are identified. A substantial moving group with an identifiable nucleus within 15 degrees (~30 pc) of HD 141569 is not found in this sample. Evidently, the HD 141569 system formed ~5 Myr ago in relative isolation, tens of parsecs away from the recent sites of star formation in the Ophiucus-Scorpius-Centaurus region.
We present an analysis of infrared (IR) echelle spectra of five stars in the TW Hydrae Association (TWA). We model the Zeeman broadening in four magnetic-sensitive \ion{Ti}{1} lines near $2.2 \mu$m and measure the value of the photospheric magnetic field averaged over the surface of each star. To ensure that other broadening mechanisms are properly taken into account, we also inspect several magnetically insensitive CO lines near $2.3 \mu$m and find no excess broadening above that produced by stellar rotation and instrumental broadening, providing confidence in the magnetic interpretation of the width of the \ion{Ti}{1} lines. We then utilize our results to test the relationship between stellar magnetic flux and X-ray properties and compare the measured fields with equipartition field values. Finally, we use our results and recent results on a large sample of stars in Taurus to discuss the potential evolution of magnetic field properties between the age of Taurus ($\sim$2 Myrs) and the age of TWA ($\sim$10 Myrs). We find that the average stellar field strength increases with age; however, the total unsigned magnetic flux decreases as the stars contract onto the main-sequence.
In this paper, we report results of our near-infrared (NIR) photometric variability studies of the BL Lacertae object S5 0716+714. NIR photometric observations spread over 7 nights during our observing run April 2-9, 2007 at 1.8 meter telescope equipped with KASINICS (Korea Astronomy and Space Science Institute Near Infrared Camera System) and J, H, and Ks filters at Bohyunsan Optical Astronomy Observatory (BOAO), South Korea. We searched for intra-day variability, short term variability and color variability in the BL Lac object. We have not detected any genuine intra-day variability in any of J, H, and Ks passbands in our observing run. Significant short term variability ~ 32.6%, 20.5% and 18.2% have been detected in J, H, Ks passbands, respectively, and ~ 11.9% in (J-H) color.
The near-star environment around obscured stars is very dynamic. Many classes of stars show evidence for winds, disks, inflows and outflows with many phenomena occurring simultaneously. These processes are involved in stellar evolution, star and planet formation, and influence the formation and habitability of planets around host stars. Even for the nearest stars, this region will not be imaged even after the completion of the next generation of telescopes. Other methods for measuring the physical properties of circumstellar material must be developed. The polarization of light across spectral lines is a signature that contains information about the circumstellar material on these small spatial scales. We used the HiVIS (R=13000 to 50000) and ESPaDOnS (R=68000) spectropolarimeters to monitor several classes of stars on over a hundred nights of observing from 2004-2008. In 10/30 classical Be stars, the traditional broad depolarization morphology is reproduced, but with some additional absorptive effects in 4 of these 10 stars. In Herbig Ae/Be stars roughly 2/3 of the stars (14/20) with strong absorptive components (either central or blue-shifted) showed clear spectropolarimetric signatures typically centered on absorptive components of the spectral lines. They were typically 0.3% to 2% with some signatures being variable in time. Post-AGB and RV-Tau type evolved stars showed very strong absorptive polarimetric effects (5/6 PAGB and 4/4 RVTau) very similar to the Herbig Ae/Be stars. These observations were inconsistent with the traditional scattering models and inspired the development of a new explanation of the observed polarization. This new model, based on optical-pumping, has the potential to provide direct measurements of the circumstellar gas properties.
We have used the Sloan Digital Sky Survey (SDSS) to undertake an investigation of lopsidedness in a sample of ~25,000 nearby galaxies (z < 0.06). We use the m=1 azimuthal Fourier mode between the 50% and 90% light radii as our measure of lopsidedness. The SDSS spectra are used to measure the properties of the stars, gas, and black hole in the central-most few-kpc-scale region. We show that there is a strong link between lopsidedness in the outer parts of the galactic disk and the youth of the stellar population in the central region. This link is independent of the other structural properties of the galaxy. These results provide a robust statistical characterization of the connections between accretion/interactions/mergers and the resulting star formation. We also show that residuals in the galaxy mass-metallicity relation correlate with lopsidedness (at fixed mass, the more metal-poor galaxies are more lopsided). This suggests that the events causing lopsidedness and enhanced star formation deliver lower metallicity gas into the galaxy's central region. Finally, we find that there is a trend for the more powerful active galactic nuclei to be hosted by more lopsided galaxies (at fixed galaxy mass, density, or concentration). However if we compare samples matched to have both the same structures and central stellar populations, we then find no difference in lopsidedness between active and non-active galaxies. This leads to the following picture. The presence of cold gas in the central region of a galaxy (irrespective of its origin) is essential for both star-formation and black hole growth. The delivery of cold gas is aided by the processes that produce lopsidedness. Other processes on scales smaller than we can probe with our data are required to transport the gas to the black hole.
Many important techniques for investigating the properties of extragalactic radio sources, such as spectral-index and rotation-measure mapping, involve the comparison of images at two or more frequencies. In the case of radio interferometric data, this can be done by comparing the CLEAN maps obtained at the different frequencies. However, intrinsic differences in images due to the frequency dependence of the radio emission can be distorted by additional differences that arise due to source variability (if the data to be compared is obtained at different times), image misalignment, and the frequency dependence of the sensitivity to weak emission and the angular resolution provided by the observations (the resolution of an interferometer depends on the lengths of its baselines in units of the observing wavelength). These effects must be corrected for as best as possible before multi-frequency data comparison techniques can be applied. We consider the origins for the afore-mentioned factors, outline the standard techniques used to overcome these difficulties, and describe in detail a technique developed by us, based on the cross-correlation technique widely used in other fields, to correct for misalignments between maps at different frequencies.
We are developing a new photon detector with micro pattern gaseous detectors. A semitransparent CsI photocathode is combined with 10cm$\times$10cm GEM/$\mu$PIC for the first prototype which is aimed for the large liquid Xe detectors. Using Ar+C$_2$H$_6$ (10%) gas, we achieved the gas gain of $10^5$ which is enough to detect single photoelectron. We, then, irradiated UV photons from a newly developed solid scintillator, LaF$_3$(Nd), to the detector and successfully detected single photoelectron.
For thermonuclear flashes to occur on neutron star surfaces, fuel must have been accreted from a donor star. However, sometimes flashes are seen from transient binary systems when they are thought to be in their quiescent phase, during which no or relatively very little accretion is expected to occur. We investigate the accretion luminosity during several such flashes, including the first-ever and brightest detected flash from Cen X-4 in 1969. It is found from measurements and theoretical expectations that immediately prior to these flashes the accretion rate must have been between about 0.001 and 0.01 times the equivalent of the Eddington limit, which is roughly 2 orders of magnitude less than the peak accretion rates seen in these transients and 3-4 orders magnitude more than the lowest measured values in quiescence. Furthermore, three such flashes, including the one from Cen X-4, are within 2 to 7 days followed by a transient X-ray outburst. A long-term episode of enhanced accretion near the end of the quiescent phase is predicted by the disk-instability model, and may thus have provided the right conditions for these flashes to occur. We question whether these flashes acted as triggers of the outbursts, signifying a dramatic increase of the accretion rate. Although it is difficult to rule out, we find it unlikely that the irradiance by these flashes is sufficient to change the state of the accretion disk in such a dramatic way.
We establish a unified model to explain Quasi-Periodic-Oscillation (QPO) observed from black hole and neutron star systems globally. This is based on the accreting systems thought to be damped harmonic oscillators with higher order nonlinearity. The model explains multiple properties parallelly independent of the nature of the compact object. It describes QPOs successfully for several compact sources. Based on it, we predict the spin frequency of the neutron star Sco X-1 and the specific angular momentum of black holes GRO J1655-40, GRS 1915+105.
We study bulk viscosity in neutron star matter including $\Lambda$ hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving $\Lambda$ hyperons and the direct Urca (dUrca) process are calculated here. In the presence of a strong magnetic field, bulk viscosity coefficients are enhanced when protons, electrons and muons are populated in their respective zeroth Landau levels compared with the field free cases. The enhancement of bulk viscosity coefficient is larger for the dUrca case.
A report is presented on Suzaku observations of the ultra-luminous X-ray source X-1 in the starburst galaxy M82, made three time in 2005 October for an exposure of ~ 30 ks each. The XIS signals from a region of radius 3 around the nucleus defined a 2-10 keV flux of 2.1 x 10^-11 erg s-1 cm-2 attributable to point sources. The 3.2-10 keV spectrum was slightly more convex than a power-law with a photon index of 1.7. In all observations, the HXD also detected signals from M82 up to ~ 20 keV, at a 12-20 keV flux of 4.4 x 10^-12 erg s-1 cm-2 . The HXD spectrum was steeper than that of the XIS. The XIS and HXD spectra can be jointly reproduced by a cutoff power-law model, or similar curved models. Of the detected wide-band signals, 1/3 to 2/3 are attributable to X-1, while the remainder to other discrete sources in M82. Regardless of the modeling of these contaminants, the spectrum attributable to X-1 is more curved than a power-law, with a bolometric luminosity of (1.5 -3) x 10 ^40 erg s-1. These results are interpreted as Comptonized emission from a black hole of 100-200 solar masses, radiating roughly at the Eddington luminosity.
I discuss the use of neutrinos from the CN cycle and pp chain to constrain the primordial solar core abundances of C and N at an interesting level of precision. A comparison of the Sun's deep interior and surface compositions would test a key assumption of the standard solar model (SSM), a homogeneous zero-age Sun. It would also provide a cross-check on recent photospheric abundance determinations that have altered the once excellent agreement between the SSM and helioseismology. Motivated by the discrepancy between convective-zone abundances and helioseismology, I discuss the possibility that a two-zone Sun could emerge from late-stage metal differentiation in the solar nebula connected with formation of the gaseous giant planets.
The stability problem of MHD Taylor-Couette flows with toroidal magnetic
fields is considered in dependence on the magnetic Prandtl number. Only the
most uniform (but not current-free) field with B\_in = B\_out has been
considered. For high enough Hartmann numbers the toroidal field is always
unstable. Rigid rotation, however, stabilizes the magnetic (kink-)instability.
The axial current which drives the instability is reduced by the
electromotive force induced by the instability itself. Numerical simulations
are presented to probe this effect as a possibility to measure the turbulent
conductivity in a laboratory. It is shown numerically that in a sodium
experiment (without rotation) an eddy diffusivity 4 times the molecular
diffusivity appears resulting in a potential difference of ~34 mV/m. If the
cylinders are rotating then also the eddy viscosity can be measured. Nonlinear
simulations of the instability lead to a turbulent magnetic Prandtl number of
2.1 for a molecular magnetic Prandtl number of 0.01. The trend goes to higher
values for smaller Pm.
The evolution of scalar perturbations is studied for 2-component (non-relativistic matter and dark energy) cosmological models at the linear and non-linear stages. The dark energy is assumed to be the scalar field with either classical or tachyonic Lagrangian and constant equation-of-state parameter w. The fields and potentials were reconstructed for the set of cosmological parameters derived from observations. The comparison of the calculated within these models and experimental large-scale structure characteristics is made. It is shown that for w=const such analysis can't remove the existing degeneracy of the dark energy models.
We introduce a new space VLBI project, the Second VLBI Space Observatory Program (VSOP2), following the success of the VLBI Space Observatory Program (VSOP1). VSOP2 has 10 times higher angular resolution, up to about 40 micro arcseconds, 10 times higher frequency up to 43 GHz, and 10 times higher sensitivity compared to VSOP1. Then VSOP2 should become a most powerful tool to observe innermost regions of AGN and astronomical masers. ASTRO-G is a spacecraft for VSOP2 project constructing in ISAS/JAXA since July 2007. ASTRO-G will be launched by JAXA H-IIA rocket in fiscal year 2012. ASTRO-G and ground-based facilities are combined as VSOP2. To achieve the good observation performances, we must realize new technologies. They are large precision antenna, fast-position switching capability, new LNAs, and ultra wide-band down link, etc.. VSOP2 is a huge observation system involving ASTRO-G, ground radio telescopes, tracking stations, and correlators, one institute can not prepare a whole system of VSOP2. Then we must need close international collaboration to get sufficient quality of resultant maps and to give a sufficient quantity of observation time for astronomical community. We formed a new international council to provide guidance on scientific aspects related of VSOP2, currently called the VSOP2 International Science Council (VISC2).
By the precise timing of the low amplitude (0.005 - 0.02 magnitude) transits of exoplanets around their parent star it should be possible to infer the presence of other planetary bodies in the system down to Earth-like masses. We describe the design and construction of RISE, a fast-readout frame transfer camera for the Liverpool Telescope designed to carry out this experiment. The results of our commissioning tests are described as well as the data reduction procedure necessary. We present light curves of two objects, showing that the desired timing and photometric accuracy can be obtained providing that autoguiding is used to keep the target on the same detector pixel for the entire (typically 4 hour) observing run.
At present, ten years after they were first discovered, ten accreting millisecond pulsars are known. I present a study of the aperiodic X-ray variability in three of these systems, which led to the discovery of simultaneous kHz quasi periodic oscillations in XTE J1807-294 and extremely strong broadband noise at unusually low variability frequencies in IGR J00291+5934. Furthermore, we classified SWIFT J1756.9-2508 as an atoll source and measured in its 2007 outburst spectral and variability properties typical of the extreme island state. I also give detailed estimates of the total fluence during the studied outbursts.
We develop and demonstrate a probabilistic method for classifying rare objects in surveys with the particular goal of building very pure samples. It works by modifying the output probabilities from a classifier so as to accommodate our expectation (priors) concerning the relative frequencies of different classes of objects. We demonstrate our method using the Discrete Source Classifier, a supervised classifier currently based on Support Vector Machines, which we are developing in preparation for the Gaia data analysis. DSC classifies objects using their very low resolution optical spectra. We look in detail at the problem of quasar classification, because identification of a pure quasar sample is necessary to define the Gaia astrometric reference frame. By varying a posterior probability threshold in DSC we can trade off sample completeness and contamination. We show, using our simulated data, that it is possible to achieve a pure sample of quasars (upper limit on contamination of 1 in 40,000) with a completeness of 65% at magnitudes of G=18.5, and 50% at G=20.0, even when quasars have a frequency of only 1 in every 2000 objects. The star sample completeness is simultaneously 99% with a contamination of 0.7%. Including parallax and proper motion in the classifier barely changes the results. We further show that not accounting for class priors in the target population leads to serious misclassifications and poor predictions for sample completeness and contamination. (Truncated)
We consider the linear growth of matter perturbations on low redshifts in some $f(R)$ dark energy (DE) models. We discuss the definition of dark energy (DE) in these models and show the differences with scalar-tensor DE models. For the $f(R)$ model recently proposed by Starobinsky we show that the growth parameter $\gamma_0\equiv \gamma(z=0)$ takes the value $\gamma_0\simeq 0.4$ for $\Omega_{m,0}=0.32$ and $\gamma_0\simeq 0.43$ for $\Omega_{m,0}=0.23$, allowing for a clear distinction from $\Lambda$CDM. Though a scale-dependence appears in the growth of perturbations on higher redshifts, we find no dispersion for $\gamma(z)$ on low redshifts up to $z\sim 0.3$, $\gamma(z)$ is also quasi-linear in this interval. At redshift $z=0.5$, the dispersion is still small with $\Delta \gamma\simeq 0.01$. As for some scalar-tensor models, we find here too a large value for $\gamma'_0\equiv \frac{d\gamma}{dz}(z=0)$, $\gamma'_0\simeq -0.25$ for $\Omega_{m,0}=0.32$ and $\gamma'_0\simeq -0.18$ for $\Omega_{m,0}=0.23$. These values are largely outside the range found for DE models in General Relativity (GR). This clear signature provides a powerful constraint on these models.
The Lagoon Nebula is an HII region in the Sagittarius Arm, about 1.3 kpc away, associated with the young (1-3 Myr) open cluster NGC 6530, which contains several O stars and several dozen B stars. Lower-mass cluster members, detected by X-ray and H-alpha emission, and by near-IR excess, number more than a thousand. Myr-old star formation is traced by the optically-visible HII region and cluster; observations of infrared and submillimetre-wave emission, and of optical emission features, indicate ongoing star formation in several locations across the Lagoon. The most prominent of these are the Hourglass Nebula and M8E. Submillimetre-wave observations also reveal many clumps of dense molecular gas, which may form the next generation of stars. The complex structure of the region has been shaped by the interaction of the underlying molecular gas with multiple massive stars and episodes of star formation. NGC 6530 is the oldest component, with the newest stars found embedded in the molecular gas behind the cluster and at its southern rim. A degree to the east of the Lagoon, Simeis 188 is a complex of emission and reflection nebulae, including the bright-rimmed cloud NGC 6559; the presence of H-alpha emission stars suggests ongoing star formation.
An analysis of the residual-velocity field of OB associations within 3 kpc of the Sun has revealed periodic variations in the radial residual velocities along the Galactic radius vector with a typical scale length of lambda=2.0(+/-0.2) kpc and a mean amplitude of fR=7(+/-1) km/s. The fact that the radial residual velocities of almost all OB-associations in rich stellar-gas complexes are directed toward the Galactic center suggests that the solar neighborhood under consideration is within the corotation radius. The azimuthal-velocity field exhibits a distinct periodic pattern in the region 0<l<180 degrees, where the mean azimuthal-velocity amplitude is ft=6(+/-2) km/s. There is no periodic pattern of the azimuthal-velocity field in the region 180<l<360 degrees. The locations of the Cygnus arm, as well as the Perseus arm, inferred from an analysis of the radial- and azimuthal-velocity fields coincide. The periodic patterns of the residual-velocity fields of Cepheids and OB associations share many common features.
Observational data and theoretical calculations show that significant small-scale substructures are present in dark molecular clouds. These inhomogeneities can provide precious hints on the physical conditions inside the clouds, but can also severely bias extinction measurements. We present NICEST, a novel method to account and correct for inhomogeneities in molecular cloud extinction studies. The method, tested against numerical simulations, removes almost completely the biases introduced by sub-pixel structures and by the contamination of foreground stars. We applied NICEST to 2MASS data of the Pipe molecular complex. The map thereby obtained shows significantly higher (up to 0.41 mag in A_K) extinction peaks than the standard NICER (Lombardi et al. 2001) map. This first application confirms that substructures in nearby molecular clouds, if not accounted for, can significantly bias extinction measurements in regions with A_K > 1 mag; the effect, moreover, is expected to increase in more distant molecular cloud, because of the poorer physical resolution achievable.
Recent VLT SINFONI observations of the close environments (~30pc) of nearby AGNs have shown that thick gas tori and starbursts with ages between 10 and 150Myr are frequently found. By applying these observations to a previously established analytical model of clumpy accretion disks, we suggest an evolutionary sequence for starburst and AGN phases. Whereas the observed properties of the gas tell us about the current state of the torus, the starburst characteristics provide information on the history of the torus. In the suggested evolution, a torus passes through 3 different phases predetermined by an external mass accretion rate. Started by an initial, short, and massive gas infall, a turbulent and stellar wind-driven Q~1 disk is formed in which the starburst proceeds. Once the supernovae explode the intercloud medium is removed, leaving a massive, geometrically thick, collisional disk with a decreasing, but still high-mass accretion rate. When the mass accretion rate has significantly decreased, the collisional torus becomes thin and transparent as the circumnuclear disk in the Galactic center of the Milky Way. Variations on this scenario are possible either when there is a second short and massive gas infall, in which case the torus may switch back into the starburst mode, or when there is no initial short massive gas infall. All observed tori up to now have been collisional and thick. The observations show that this phase can last more than 100Myr. During this phase the decrease in the mass accretion rate within the torus is slow (a factor of 4 within 150Myr). The collisional tori also form stars, but with an efficiency of about 10% when compared to a turbulent disk.
We present binary galaxy merger simulations of gas-rich disks (Sp-Sp), of early-type galaxies and disks (E-Sp, mixed mergers), and mergers of early-type galaxies (E-E, dry mergers) with varying mass ratios and different progenitor morphologies. The simulations include radiative cooling, star formation and black hole (BH) accretion and the associated feedback processes. We find for Sp-Sp mergers, that the peak star formation rate and BH accretion rate decrease and the growth timescales of the central black holes and newly formed stars increase with higher progenitor mass ratios. The termination of star formation by BH feedback in disk mergers is significantly less important for higher progenitor mass ratios (e.g. 3:1 and higher). In addition, the inclusion of BH feedback suppresses efficiently star formation in dry E-E mergers and mixed E-Sp mergers.
Gravitational lensing of background compact objects like active galactic nuclei and quasars, by extended intermediate mass lenses such as globular clusters and and dark matter clumps with masses 10^5 - 10^8 M_sun, is considered. It is shown that observational study of the galaxy-quasar's associations is a powerful direct observational test of the nature of massive galaxy haloes. Optical interferometric observations with VLTI and Keck instruments are able to constrain masses and number of substructure halo objects. Evidence of gravitational lensing by globular clusters in haloes of spiral and elliptical galaxies is presented.
We study non-linear structure formation in high-resolution simulations of Early Dark Energy (EDE) cosmologies and compare their evolution with the standard LCDM model. Extensions of the spherical top-hat collapse model predict that the virial overdensity and linear threshold density for collapse should be modified in EDE model, yielding significant modifications in the expected halo mass function. Here we present numerical simulations that directly test these expectations. Interestingly, we find that the Sheth & Tormen formalism for estimating the abundance of dark matter halos continues to work very well in its standard form for the Early Dark Energy cosmologies, contrary to analytic predictions. The residuals are even slightly smaller than for LCDM. We also study the virial relationship between mass and dark matter velocity dispersion in different dark energy cosmologies, finding excellent agreement with the normalization for Lambda as calibrated by Evrard et al.(2008). The earlier growth of structure in EDE models relative to LCDM produces large differences in the mass functions at high redshift. This could be measured directly by counting groups as a function of the line-of-sight velocity dispersion, skirting the ambiguous problem of assigning a mass to the halo. Using dark matter substructures as a proxy for member galaxies, we demonstrate that even with 3-5 members sufficiently accurate measurements of the halo velocity dispersion function are possible. Finally, we determine the concentration-mass relationship for our EDE cosmologies. Consistent with the earlier formation time, the EDE halos show higher concentrations at a given halo mass. We find that the magnitude of the difference in concentration is well described by the prescription of Eke et al.(2001) for estimating halo concentrations.
We present several corrections for point source photometry to be applied to data from the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. These corrections are necessary because of characteristics of the IRAC arrays and optics and the way the instrument is calibrated in-flight. When these corrections are applied, it is possible to achieve a ~2% relative photometric accuracy for sources of adequate signal to noise in an IRAC image.
Massive black holes are key components of the assembly and evolution of cosmic structures and a number of surveys are currently on-going or planned to probe the demographics of these objects and to gain insight into the relevant physical processes. Pulsar Timing Arrays (PTAs) currently provide the only means to observe gravitational radiation from massive black hole binary systems with masses >10^7 solar masses. The whole cosmic population produces a stochastic background that could be detectable with upcoming Pulsar Timing Arrays. Sources sufficiently close and/or massive generate gravitational radiation that significantly exceeds the level of the background and could be individually resolved. We consider a wide range of massive black hole binary assembly scenarios, we investigate the distribution of the main physical parameters of the sources, such as masses and redshift, and explore the consequences for Pulsar Timing Arrays observations. Depending on the specific massive black hole population model, we estimate that on average at least one resolvable source produces timing residuals in the range ~10-50 ns. Pulsar Timing Arrays, and in particular the future Square Kilometre Array (SKA), can plausibly detect these unique systems, although the events are likely to be rare. These observations would naturally complement on the high-mass end of the massive black hole distribution function future surveys carried out by the Laser Interferometer Space Antenna (LISA)
The super massive black hole candidate, Sagittarius A*, exhibits variability from radio to X-ray wavelengths on time scales that correspond to < 10 Schwarzschild radii. We survey the potential of millimeter-wavelength VLBI to detect and constrain time variable structures that could give rise to such variations, focusing on a model in which an orbiting hot spot is embedded in an accretion disk. Non-imaging algorithms are developed that use interferometric closure quantities to test for periodicity, and applied to an ensemble of hot-spot models that sample a range of parameter space. We find that structural periodicity in a wide range of cases can be detected on most potential VLBI arrays using modern VLBI instrumentation. Future enhancements of mm/sub-mm VLBI arrays including phased array processors to aggregate VLBI station collecting area, increased bandwidth recording, and addition of new VLBI sites all significantly aid periodicity detection. The methods described herein can be applied to other models of Sagittarius A*, including jet outflows and Magneto-Hydrodynamic accretion simulations.
We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focussing on the extension of the vanilla $\Lambda$CDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software, which is fully parallelized using MPI and includes an interface to CosmoMC, is available at this http URL It will also be released as part of the SuperBayeS package, for the analysis of supersymmetric theories of particle physics, at this http URL
In this Letter we explore the hypothesis that the quasar SDSSJ092712.65+294344.0 is hosting a massive black hole binary embedded in a circum-binary disc. The lightest, secondary black hole is active and gas swirling around it is responsible for the blue--shifted broad emission lines with velocity off-set of 2650 km/s, relative to the galaxy rest frame. As the tidal interaction of the binary with the outer disc is expected to open a gap, the blue-shifted narrow emission lines are consistent of being emitted from the low-density gas in the hollow region. From the observations we infer a binary mass ratio q ~ 0.3, a mass for the primary of M1 ~ 2 billion Msun and a semi-major axis of 0.34 pc, corresponding to an orbital period of 370 years. We then estimate the likely-hood of observing SDSSJ092712.65+294344.0 as recoiling BH or as a binary. We find that the binary hypothesis is preferred being one hundred times more probable than the ejection hypothesis.
A modified-gravity theory is considered with a four-form field strength F, a variable gravitational coupling parameter G(F), and a standard matter action. This theory provides a concrete realization of the general vacuum variable q as the four-form amplitude F and allows for a study of its dynamics. The theory gives a flat Friedmann-Robertson-Walker universe with rapid oscillations of the effective vacuum energy density (cosmological "constant"), whose amplitude drops to zero asymptotically. Extrapolating to the present age of the Universe, the order of magnitude of the average vacuum energy density agrees with the observed near-critical vacuum energy density of the present universe. It may even be that this type of oscillating vacuum energy density constitutes a significant part of the so-called cold dark matter in the standard Friedmann-Robertson-Walker framework.
In this work we investigate characteristic modifications of the spectrum of cosmological perturbations and the spectral index due to chain inflation. We find two types of effects. First, modifications of the spectral index depending on interactions between radiation and the vacuum, and on features of the effective vacuum potential of the underlying fundamental theory. Second, a modulation of the spectrum signalling new physics due to bubble nucleation. This effect is similar to those of transplanckian physics. Measurements of such signatures could provide a wealth of information on the fundamental physics at the basis of inflation.
We present updated values for the mass-mixing parameters relevant to neutrino oscillations, with particular attention to emerging hints in favor of theta_13>0. We also discuss the status of absolute neutrino mass observables, and a possible approach to constrain theoretical uncertainties in neutrinoless double beta decay. Desiderata for all these issues are also briefly mentioned.
In core-collapse supernovae, neutrinos and antineutrinos are initially subject to significant self-interactions induced by weak neutral currents, which may induce strong-coupling effects on the flavor evolution (collective transitions). The interpretation of the effects is simplified when self-induced collective transitions are decoupled from ordinary matter oscillations, as for the matter density profile that we discuss. In this case, approximate analytical tools can be used (pendulum analogy, swap of energy spectra). For inverted neutrino mass hierarchy, the sequence of effects involves: synchronization, bipolar oscillations, and spectral split. Our simulations shows that the main features of these regimes are not altered when passing from simplified (angle-averaged) treatments to full, multi-angle numerical experiments.
This article investigates the full Boltzmann equation up to second order in the cosmological perturbations. Describing the distribution of polarized radiation by a tensor valued distribution function, we study the gauge dependence of the distribution function and summarize the construction of the gauge-invariant distribution function. The Liouville operator which describes the free streaming of electrons, and the collision term which describes the scattering of photons on free electrons are computed up to second order. Finally, the remaining dependence in the direction of the photon momentum is handled by expanding in projected symmetric trace-free multipoles and also in the more commonly used normal modes components. The results obtained remain to be used for computing numerically the contribution in the cosmic microwave background bispectrum which arises from the evolution of second order perturbations, in order to disentangle the primordial non-Gaussianity from the one generated by the subsequent non-linear evolution.
We discuss some cosmological implications of extensions of the Standard Model with hidden sector scalars coupled to the Higgs boson. We put special emphasis on the conformal case, in which the electroweak symmetry is broken radiatively with a Higgs mass above the experimental limit. Our refined analysis of the electroweak phase transition in this kind of models strengthens the prediction of a strongly first-order phase transition as required by electroweak baryogenesis. We further study gravitational wave production and the possibility of low-scale inflation as well as a viable dark matter candidate.
Gurzadyan-Xue Dark Energy was derived in 1986 (twenty years before the paper of Gurzadyan-Xue). The paper by the present author, titled The Planck Length as a Cosmological Constant, published in Astrophysics Space Science, Vol. 127, p.133-137, 1986 contains the formula claimed to have been derived by Gurzadyan-Xue (in 2003).
Links to: arXiv, form interface, find, astro-ph, recent, 0809, contact, help (Access key information)
We model the nonlinear saturation of the r-mode instability via three-mode couplings and the effects of the instability on the spin evolution of young neutron stars. We include one mode triplet consisting of the r-mode and two near resonant inertial modes that couple to it. The inertial modes are excited when the r-mode amplitude grows above the parametric instability threshold. We start our evolutions with a star of temperature ~ 10^{10} K and a spin frequency close to the Kepler break-up frequency. The evolution of the star is dynamic and initially dominated by fast neutrino cooling. The outcome of the evolution is determined by when the cooling can be stopped by viscous heating. At first, the r-mode is unstable and its amplitude grows exponentially until it either reaches a large enough amplitude to generate a viscous dissipation that balances the cooling or until it reaches the parametric instability threshold amplitude. If thermal equilibrium is reached first, the star starts spinning down and the evolution can be adequately described by a one-mode model. If parametric instability is reached first, two near-resonant inertial modes that couple to the r-mode are excited. The viscous heating due to the three modes balances the neutrino cooling and the mode amplitudes oscillate around quasi-stationary states that can be determined algebraically. In both cases we find that when the r-mode is unstable the evolution of the temperature and the spin of the star can be approximated by trajectories along sequences of quasi-stationary states. Some of these evolutions lead to gravitational radiation that may be detectable by advanced LIGO if fast spinning young neutron stars exist in our galaxy. Such a detection could yield information on internal dissipation in neutron stars.
Planet-planet scattering is the leading mechanism to explain the large eccentricities of the observed exoplanet population. However, scattering has not been considered important to the production of pairs of planets in mean motion resonances (MMRs). We present results from a large number of numerical simulations of dynamical instabilities in 3-planet systems. We show that MMRs arise naturally in about five percent of cases. The most common resonances we populate are the 2:1 and 3:1 MMRs, although a wide variety of MMRs can occur, including high-order MMRs (up to eleventh order). MMRs are generated preferentially in systems with uneven mass distributions: the smallest planet is typically ejected after a series of close encounters, leaving the remaining, more massive planets in resonance. The distribution of resonant planets is consistent with the phase-space density of resonant orbits, meaning that planets are randomly thrown into MMRs rather than being slowly pulled into them. It may be possible to distinguish between MMRs created by scattering vs. convergent migration in a gaseous disk by considering planetary mass ratios: resonant pairs of planets beyond ~1 AU with more massive outer planets are likely to have formed by scattering. In addition, scattering may be responsible for pairs of planets in high-order MMRs (3:1 and higher) that are not easily populated by migration. The frequency of MMRs from scattering is comparable to the expected survival rate of MMRs in turbulent disks. Thus, planet-planet scattering is likely to be a major contributor to the population of resonant planets.
In this note I study preheating after multi-field inflation to assess the feasibility of parametric resonance. An intuitive argument for the suppression of resonances due to dephasing of fields in generic multi-field models is presented. This effect is absent in effective single field models, rendering them inappropriate for the study of preheating.
While there is plentiful evidence in all fronts of experimental cosmology for the existence of a non-vanishing dark energy (DE) density \rho_D in the Universe, we are still far away from having a fundamental understanding of its ultimate nature or of its current value, not even of the puzzling fact that \rho_D is so close to the matter energy density \rho_M at the present time (i.e. the so-called "cosmic coincidence" problem). The resolution of some of these cosmic conundrums suggests that the DE must have some (mild) dynamical behavior at the present time. In this paper, we examine some general properties of the simultaneous set of matter and DE perturbations (\delta\rho_M, \delta\rho_D) for a multicomponent DE fluid. Next we put these properties to the test within the context of a non-trivial model of dynamical DE (the LXCDM model) which has been previously studied in the literature. By requiring that the coupled system of perturbation equations for \delta\rho_M and \delta\rho_D has a smooth solution throughout the entire cosmological evolution, that the matter power spectrum is consistent with the data on structure formation and that the "coincidence ratio" r=\rho_D/\rho_M stays bounded and not unnaturally high, we are able to determine a well-defined region of the parameter space where the model can solve the cosmic coincidence problem in full compatibility with all known cosmological data.
The precision study of dark matter using weak lensing by large scale structure is strongly constrained by the accuracy with which one can measure galaxy shapes. Several methods have been devised but none have demonstrated the ability to reach the level of precision required by future weak lensing surveys. In this Letter we explore new avenues to the existing Shapelets approach, combining a priori knowledge of the galaxy profile with the power of orthogonal basis function decomposition. This Letter discusses the new issues raised by this matched filter approach and proposes promising alternatives to shape measurement techniques. In particular it appears that the use of a matched filter (e.g. Sersic profile) restricted to elliptical radial basis functions resolves several well known Shapelet issues.
We study the molecular content and chemistry of a circumstellar disk surrounding the Herbig Ae star AB Aur at (sub-)millimeter wavelengths. Our aim is to reconstruct the chemical history and composition of the AB Aur disk and to compare it with disks around low-mass, cooler T Tauri stars. We observe the AB Aur disk with the IRAM Plateau de Bure Interferometer in the C- and D- configurations in rotational lines of CS, HCN, C2H, CH3OH, HCO+, and CO isotopes. Using an iterative minimization technique, observed columns densities and abundances are derived. These values are further compared with results of an advanced chemical model that is based on a steady-state flared disk structure with a vertical temperature gradient, and gas-grain chemical network with surface reactions. We firmly detect HCO+ in the 1--0 transition, tentatively detect HCN, and do not detect CS, C2H, and CH3OH. The observed HCO+ and 13CO column densities as well as the upper limits to the column densities of HCN, CS, C2H, and CH3OH are in good agreement with modeling results and those from previous studies. The AB Aur disk possesses more CO, but is less abundant in other molecular species compared to the DM Tau disk. This is primarily caused by intense UV irradiation from the central Herbig A0 star, which results in a hotter disk where CO freeze out does not occur and thus surface formation of complex CO-bearing molecules might be inhibited.
We identify compact groups of galaxies (CGs) within mock galaxy catalogs from the Millennium Simulation at z=0 with the semi-analytic models of galaxy formation by Croton et al. (C06), Bower et al. (B06) and De Lucia & Blaizot (DLB). CGs are identified using the same 2D criteria as those visually applied by Hickson (1982) to his CGs (HCGs). Half of the CGs identified in projection contain at least 4 accordant velocities (mvCGs). In comparison to mvCGs, the HCGs are only 2% complete, missing CGs either faint, low surface brightness (SB), apparently small, or with a strongly dominant galaxy. We define physically dense mvCGs as those whose maximum real space galaxy separation of their smallest clump of 4 galaxies is below a threshold chosen such that the 3D shapes of these clumps are similar to those of groups selected in real space. Then, 25% of the mvCGs are dense (50% of mvCGs contain a dense triplet), as are 25-50% of the mvCGs resampled according to the HCG completeness functions. The majority of mvCGs are produced by chance alignments of galaxies (CAs), mostly from larger host groups, but a few have galaxies extending a few Mpc beyond the host group. Mock CGs reproduce the anti-correlation of CG M/L and crossing time, and the larger velocity dispersion (VD) for CGs of higher SB. We find no significant trend for the higher VD mock or observed CG quartets to appear rounder in projection. The strong correlation between VD and distance in HCGs appears to be caused by Malmquist bias. Dense mock CGs tend to have much higher SB, and much lower projected radii, crossing time and M/L. With the B06 and C06 [DLB] models, the dense mock HCGs have slightly lower [higher] VDs, hence the observed (spiral-rich and X-ray faint) low-VD HCGs must be preferentially dense and young [CAs].
The eastern tip region of the Carina Nebula was observed with the Suzaku XIS for 77 ks to conduct a high-precision spectral study of extended X-ray emission. XMM-Newton EPIC data of this region were also utilized to detect point sources. The XIS detected strong extended X-ray emission from the entire field-of-view with a 0.2--5 keV flux of $0.7\sim4\times10^{-14}$ erg s$^{-1}$ arcmin$^{-2}$. The emission has a blob-like structure that coincides with an ionized gas filament observed in mid-infrared images. Contributions of astrophysical backgrounds and the detected point sources were insignificant. Thus the emission is diffuse in nature. The X-ray spectrum of the diffuse emission was represented by a two-temperature plasma model with temperatures of 0.3 and 0.6 keV and an absorption column density of 2$\times10^{21}$ cm$^{-1}$. The X-ray emission showed normal nitrogen-to-oxygen abundance ratios and a high iron-to-oxygen abundance ratio. The spectrally deduced parameters, such as temperatures and column densities, are common to the diffuse X-ray emission near $\eta$ Car. Thus, the diffuse X-ray emission in these two fields may have the same origin. The spectral fitting results are discussed to constrain the origin in the context of stellar winds and supernovae.
We study the cosmic velocity-density relation using the spherical collapse model (SCM) as a proxy to non-linear dynamics. Although the dependence of this relation on cosmological parameters is known to be weak, we retain the density parameter Omega_m in SCM equations, in order to study the limit Omega_m -> 0. We show that in this regime the considered relation is strictly linear, for arbitrary values of the density contrast, on the contrary to some claims in the literature. On the other hand, we confirm that for realistic values of Omega_m the exact relation in the SCM is well approximated by the classic formula of Bernardeau (1992), both for voids (delta<0) and for overdensities up to delta ~ 3. Inspired by this fact, we find further analytic approximations to the relation for the whole range delta from -1 to infinity. Our formula for voids accounts for the weak Omega_m-dependence of their maximal rate of expansion, which for Omega_m < 1 is slightly smaller that 3/2. For positive density contrasts, we find a simple relation div v = 3 H_0 (Omega_m)^(0.6) [ (1+delta)^(1/6) - (1+delta)^(1/2) ], that works very well up to the turn-around (i.e. up to delta ~ 13.5 for Omega_m = 0.25 and neglected Omega_Lambda). Having the same second-order expansion as the formula of Bernardeau, it can be regarded as an extension of the latter for higher density contrasts. Moreover, it gives a better fit to results of cosmological numerical simulations.
We discuss the non-adiabatic or entropy perturbation, which controls the evolution of the curvature perturbation in the uniform density gauge, for a scalar field system minimally coupled to gravity with non-canonical action. We highlight the differences between the sound and the phase speed in these systems, and also give general conditions for which the non-adiabatic pressure perturbation vanishes, resulting in the conservation of the curvature perturbation on large scales.
In a previous paper, we have found that the resonance structure of the present Jupiter Trojans swarms could be split up into four different families of resonances. Here, in a first step, we generalize these families in order to describe the resonances occurring in Trojans swarms embedded in a generic planetary system. The location of these families changing under a modification of the fundamental frequencies of the planets, we show how the resonant structure would evolve during a planetary migration. We present a general method, based on the knowledge of the fundamental frequencies of the planets and on those that can be reached by the Trojans, which makes possible the prediction and the localization of the main events arising in the swarms during migration. In particular, we show how the size and stability of the Trojans swarms are affected by the modification of the frequencies of the planets. Finally, we use this method to study the global dynamics of the Jovian Trojans swarms when Saturn migrates outward. Besides the two resonances found by Morbidelli et al (2005) which could have led to the capture of the current population just after the crossing of the 2:1 orbital resonance, we also point out several sequences of chaotic events having been able to influence the Trojan population.
Imaging the vicinity of a black hole is one of the ultimate goals of VLBI astronomy. The closest massive black hole, Sgr A*, located at the Galactic center, is the leading candidate for such observations. Combined with recent VLBI recording technique and submillimeter radio engineering, we now have sufficient sensitivity for the observations. Here we show performance simulations of submillimeter VLBI arrays for imaging Sgr A*. Good images are obtained from submillimeter VLBI arrays in the southern hemisphere composed of more than 10 stations. We also note that even with a small array, we can estimate the shadow size and then the mass of the black hole from visibility analysis. Now, all we need is to construct a submillimeter VLBI array in the southern hemisphere if we wish to unveil the black hole environment of Sgr A*. Key words: black hole, event horizon, Sgr A*, submillimeter
We present results from the Suzaku observations of the dwarf nova SS Cyg in quiescence and outburst in 2005 November. Owing to high sensitivity of the HXD PIN detector and high spectral resolution of the XIS, we have determined parameters of the plasma with unprecedented precision. The maximum temperature of the plasma in quiescence 20.4 +4.0-2.6 (stat.) +/- 3.0 (sys.) keV is significantly higher than that in outburst 6.0 +0.2-1.3 keV. The elemental abundances are close to the solar ones for the medium-Z elements (Si, S, Ar) whereas they decline both in lighter and heavier elements. Those of oxygen and iron are 0.46 and 0.37 solar, respectively. That of carbon is exceptionally high and 2 solar at least. The solid angle of the reflector subtending over the optically thin thermal plasma is Omega/2\pi = 1.7+/-0.2 (stat.) +/-0.1 (sys.) in quiescence. A 6.4 keV iron Ka line is resolved into a narrow and broad components. These facts indicate that both the white dwarf and the accretion disk contribute to the continuum reflection and the 6.4 keV iron Ka line. We consider the standard optically thin boundary layer as the most plausible picture for the plasma configuration in quiescence. The solid angle of the reflector in outburst Omega/2\pi = 0.9 +0.5-0.4 and a broad 6.4 keV iron line indicates that the reflection in outburst originates from the accretion disk and an equatorial accretion belt. From the energy width of the 6.4 keV line, we consider the optically thin thermal plasma in outburst as being distributed on the accretion disk like solar coronae.
It is established that the formation of rotationally supported disks during the main accretion phase of star formation is suppressed by a moderately strong magnetic field in the ideal MHD limit. Non-ideal MHD effects are expected to weaken the magnetic braking, perhaps allowing the disk to reappear. We concentrate on one such effect, ambipolar diffusion, which enables the field lines to slip relative to the bulk neutral matter. We find that the slippage does not sufficiently weaken the braking to allow rotationally supported disks to form for realistic levels of cloud magnetization and cosmic ray ionization rate; in some cases, the magnetic braking is even enhanced. Only in dense cores with both exceptionally weak fields and unreasonably low ionization rate do such disks start to form in our simulations. We conclude that additional processes, such as Ohmic dissipation or Hall effect, are needed to enable disk formation. Alternatively, the disk may form at late times when the massive envelope that anchors the magnetic brake is dissipated, perhaps by a protostellar wind.
In searches for low-mass companions to late-type stars, correlation between radial velocity variations and line bisector slope changes indicates contamination by large starspots. Two young stars demonstrate that this test is not sufficient to rule out starspots as a cause of radial velocity variations. As part of our survey for substellar companions to T Tauri stars, we identified the ~2 Myr old planet host candidates DN Tau and V836 Tau. In both cases, visible light radial velocity modulation appears periodic and is uncorrelated with line bisector span variations, suggesting close companions of several M_Jup in these systems. However, high-resolution, infrared spectroscopy shows that starspots cause the radial velocity variations. We also report unambiguous results for V827 Tau, identified as a spotted star on the basis of both visible light and infrared spectroscopy. Our results suggest that infrared follow up observations are critical for determining the source of radial velocity modulation in young, spotted stars.
Establishing the origin of accretion powered winds from forming stars is critical for understanding angular momentum evolution in the star-disk interaction region. Here, the high velocity component of accretion powered winds is launched and accreting stars are spun down, in defiance of the expected spin-up during magnetospheric accretion. T Tauri stars in the final stage of disk accretion offer a unique opportunity to study the connection between accretion and winds and their relation to stellar spindown. Although spectroscopic indicators of high velocity T Tauri winds have been known for decades, the line of He I 10830 offers a promising new diagnostic to probe the magnetically controlled star-disk interaction and wind-launching region. The high opacity and resonance scattering properties of this line offer a powerful probe of the geometry of both the funnel flow and the inner wind that, together with other atomic and molecular spectral lines covering a wide range of excitation and ionization states, suggests that the magnetic interaction between the star and disk, and the subsequent launching of the inner high velocity wind, is sensitive to the disk accretion rate.
Employing a sample presented by Kaneko et al. (2006) and Kocevski et al. (2003), we select 42 individual tracking pulses (here we defined tracking as the cases in which the hardness follows the same pattern as the flux or count rate time profile) within 36 Gamma-ray Bursts (GRBs) containing 527 time-resolved spectra and investigate the spectral hardness, $E_{peak}$ (where $E_{peak}$ is the maximum of the $\nu F_{\nu}$ spectrum), evolutionary characteristics. The evolution of these pulses follow soft-to-hard-to-soft (the phase of soft-to-hard and hard-to-soft are denoted by rise phase and decay phase, respectively) with time. It is found that the overall characteristics of $E_{peak}$ of our selected sample are: 1) the $E_{peak}$ evolution in the rise phase always start on the high state (the values of $E_{peak}$ are always higher than 50 keV); 2) the spectra of rise phase clearly start at higher energy (the median of $E_{peak}$ are about 300 keV), whereas the spectra of decay phase end at much lower energy (the median of $E_{peak}$ are about 200 keV); 3) the spectra of rise phase are harder than that of the decay phase and the duration of rise phase are much shorter than that of decay phase as well. In other words, for a complete pulse the initial $E_{peak}$ is higher than the final $E_{peak}$ and the duration of initial phase (rise phase) are much shorter than the final phase (decay phase). This results are in good agreement with the predictions of Lu et al. (2007) and current popular view on the production of GRBs. We argue that the spectral evolution of tracking pulses may be relate to both of kinematic and dynamic process even if we currently can not provide further evidences to distinguish which one is dominant. Moreover, our statistical results give some witnesses to constrain the current GRB model.
With the advent of imaging atmospheric Cherenkov telescopes in late 1980's, ground-based observation of TeV gamma-rays came into reality after struggling trials by pioneers for twenty years, and the number of gamma-ray sources detected at TeV energies has increased to be over seventy now. In this review, recent findings from ground-based very-high-energy gamma-ray observations are summarized (as of 2008 March), and up-to-date problems in this research field are presented.
We investigate the cosmic age problem associated with the old high-$z$ quasar APM 08279 + 5255 and the oldest globular cluster M 107, both being difficult to accommodate in $\Lambda$CDM model. By evaluating the age of the Universe in a model that has an extremely phantom like form of dark energy (DE), we show that simply introducing the dark energy alone does not remove the problem, and the interaction between dark matter (DM) and DE need to be taken into account. Next, as examples, we consider two interacting DE models. It is found that both these two interacting DE Models can predict a cosmic age much greater than that of $\Lambda$CDM model at any redshift, and thus substantially alleviate the cosmic age problem. Therefore, the interaction between DM and DE is the crucial factor required to make the predicted cosmic ages consistent with observations.
Supergiant fast X-ray transients are a new class of high mass X-ray binaries recently discovered with INTEGRAL. Hours long outbursts from these sources have been observed on numerous occasions at luminosities of ~1E36-1E37 erg/s, whereas their low level activity at ~1E32-1E34 erg/s has not been deeply investigated yet due to the paucity of long pointed observations with high sensitivity X-ray telescopes. Here we report on the first long (~32 ks) pointed XMM-Newton observation of IGR J16479-4514, a member of this new class. This observation was carried out in March 2008, shortly after an outburst from this source, with the main goal of investigating its low level emission and physical mechanisms that drive the source activity. Results from the timing, spectral and spatial analysis of the EPIC-PN XMM-Newton observation show that the X-ray source IGRJ16479-4514 underwent an episode of sudden obscuration, possibly an X-ray eclipse by the supergiant companion. We also found evidence for a soft X-ray extended halo around the source that is most readily interpreted as due to scattering by dust along the line of sight to IGRJ16479-4514. We discuss this result in the context of the gated accretion scenarios that have been proposed to interpret the behaviour of supergiant fast X-ray transient.
The Serpens cloud has received considerable attention in the last years, in particular the small region known as the Serpens cloud core where a plethora of star formation related phenomena are found. This review summarizes our current observational knowledge of the cloud, with emphasis on the core. Recent results are converging to a distance for the cloud of ~ 230 +- 20 pc, an issue which has been controversial over the years. We present the gas and dust properties of the cloud core and describe its structure and appearance at different wavelengths. The core contains a dense, very young, low mass stellar cluster with more than 300 objects in all evolutionary phases, from collapsing gaseous condensations to pre-main sequence stars. We describe the behaviour and spatial distribution of the different stellar populations (mm cores, Classes 0, I and II sources). The spatial concentration and the fraction number of Class 0/Class I/Class II sources is considerably larger in the Serpens core than in any other low mass star formation region, e.g. Taurus, Ophiuchus or Chamaeleon, as also stated in different works. Appropriate references for coordinates and fluxes of all Serpens objects are given. However, we provide for the first time a unified list of all near-IR sources which have up to now been identified as members of the Serpens core cluster; this list includes some members identified in this review. A cross-reference table of the near-IR objects with optical, mid-IR, submillimeter, radio continuum and X-ray surces is also provided. A simple analysis has allowed us to identify a sample of ~ 60 brown dwarf candidates among the 252 near-IR objects; some of them show near-IR excesses and, therefore, they constitute an attractive sample to study very young substellar objects. (abridged)
The atmospheres of (exo) planets and moons, as well as reflection nebulae, contain in general independently scattering particles in random orientation and are often supposed to be plane-parallel. Relations are presented for the (bidirectional) reflection function and several related functions of such a medium in case the directions of incidence and reflection both tend to horizontal directions. The results are quite general. The medium may be semi-infinite or finite, with or without a reflecting surface underneath, and vertically homogeneous or inhomogeneous. Some approximative formulae for the reflection function of a plane-parallel medium with independently scattering particles in random orientation, including Lambert's law, may be very inaccurate if the directions of incidence and reflection are both nearly horizontal.
The atmospheres of substellar objects contain clouds of oxides, iron, silicates, and other refractory condensates. Water clouds are expected in the coolest objects. The opacity of these `dust' clouds strongly affects both the atmospheric temperature-pressure profile and the emergent flux. Thus any attempt to model the spectra of these atmospheres must incorporate a cloud model. However the diversity of cloud models in atmospheric simulations is large and it is not always clear how the underlying physics of the various models compare. Likewise the observational consequences of different modeling approaches can be masked by other model differences, making objective comparisons challenging. In order to clarify the current state of the modeling approaches, this paper compares five different cloud models in two sets of tests. Test case 1 tests the dust cloud models for a prescribed L, L--T, and T-dwarf atmospheric (temperature T, pressure p, convective velocity vconv)-structures. Test case 2 compares complete model atmosphere results for given (effective temperature Teff, surface gravity log g). All models agree on the global cloud structure but differ in opacity-relevant details like grain size, amount of dust, dust and gas-phase composition. Comparisons of synthetic photometric fluxes translate into an modelling uncertainty in apparent magnitudes for our L-dwarf (T-dwarf) test case of 0.25 < \Delta m < 0.875 (0.1 < \Delta m M 1.375) taking into account the 2MASS, the UKIRT WFCAM, the Spitzer IRAC, and VLT VISIR filters with UKIRT WFCAM being the most challenging for the models. (abr.)
First results from a high-resolution three-dimensional nonlinear numerical study of the kink oscillation are presented. We show in detail the development of a shear instability in an untwisted line-tied magnetic flux tube. The instability produces significant deformations of the tube boundary. An extended transition layer may naturally evolve as a result of the shear instability at a sharp transition between the flux tube and the external medium. We also discuss the possible effects of the instability on the process of resonant absorption when an inhomogeneous layer is included in the model. One of the implications of these results is that the azimuthal component of the magnetic field of a stable flux tube in the solar corona, needed to prevent the shear instability, is probably constrained to be in a very specific range.
The X-ray Imaging Spectrometer (XIS) on board the Suzaku satellite is an X-ray CCD camera system that has superior performance such as a low background, high quantum efficiency, and good energy resolution in the 0.2-12 keV band. Because of the radiation damage in orbit, however, the charge transfer inefficiency (CTI) has increased, and hence the energy scale and resolution of the XIS has been degraded since the launch of July 2005. The CCD has a charge injection structure, and the CTI of each column and the pulse-height dependence of the CTI are precisely measured by a checker flag charge injection (CFCI) technique. Our precise CTI correction improved the energy resolution from 230 eV to 190 eV at 5.9 keV in December 2006. This paper reports the CTI measurements with the CFCI experiments in orbit. Using the CFCI results, we have implemented the time-dependent energy scale and resolution to the Suzaku calibration database.
We present a study of the chemistry of a dense photon-dominated region (PDR) using a time-dependent chemical model. Our major interest is to study the spatial distribution of complex molecules such as hydrocarbons and cyanopolyynes in the cool dense material bordering regions where star formation has taken place. Our standard model uses a homogeneous cloud of density 2x10e4 cm-3 and temperature T=40 K, which is irradiated by a far-ultraviolet radiation field of intermediate intensity, given by X=100. We find that over a range of times unsaturated hydrocarbons (e.g., C2H, C4H, C3H2) have relatively high fractional abundances in the more external layers of the PDR, whereas their abundances in the innermost layers are several orders of magnitudes lower. On the other hand, molecules that are typical of late-time chemistry are usually more abundant in the inner parts of the PDR. We also present results for models with different density, temperature, intensity of the radiation field and initial fractional abundances. Our results are compared with both high- and moderate-angular resolution observations of the Horsehead nebula. Our standard model is partially successful in reproducing the observations. Additional models run with different physical parameters are able to reproduce the abundance of many of the observed molecules, but we do not find a single model that fits all the observations at the same time. We discuss the suitability of a time-dependent model of a dense PDR such as ours as an estimator of the age of a PDR, provided that enough observational data exist.
I review the status of the Radio Cerenkov detection technique in searches for ultra-high energy (UHE) neutrinos of cosmic origin. After outlining the physics motivations for UHE neutrino searches, I give an overview of the status of current and proposed experiments in the field.
Study of astrophysical objects with strong dipolar magnetic fields show that the spectrum of the accelerated charged particles leaving the sources has a power law form with exponent -2.5, where the exponent is calculated on purely geometrical bases and is independent on the particle species.
We investigate the connection between dark energy and fourth order gravity by analyzing the behavior of scalar perturbations around a Friedmann-Robertson-Walker background. The evolution equations for scalar perturbation are derived using the covariant and gauge invariant approach and applied to two widely studied $f(R)$ gravity models. The structure of the general fourth order perturbation equations and the analysis of scalar perturbations lead to the discovery of a characteristic signature of fourth order gravity in the matter power spectrum, the details of which have not seen before in other works in this area. This could provide a crucial test for fourth order gravity on cosmological scales.
Future satellite missions such as GAIA will achieve astrometry measurements with an accuracy of about 10 $\mu$as for bright sources; other satellite proposals aim at 1 $\mu$as. We show in this paper that such refined measurements allow us to detect large-scale deviations from isotropy through real-time observations of changes in the angular separation between sources at cosmic distances. We show that this "cosmic parallax'' effect is a powerful consistency test of Friedmann-Robertson-Walker metric and may set very strong constraints on alternative anisotropic models like Lemaitre-Tolman-Bondi cosmologies with off-center observers.
In the past year, the HiRes and Auger collaborations have reported the discovery of a high-energy cutoff in the ultra-high energy cosmic-ray (UHECR) spectrum, and an apparent clustering of the highest energy events towards nearby active galactic nuclei (AGNs). Consensus is building that such $\sim 10^{19}$--$10^{20}$ eV particles are accelerated within the radio-bright lobes of these sources, but it is not yet clear how this actually happens. In this paper, we report (to our knowledge) the first treatment of stochastic particle acceleration in such environments from first principles, showing that energies $\sim 10^{20}$ eV are reached in $\sim 10^6$ years for protons. However, our findings reopen the question regarding whether the high-energy cutoff is due solely to propagation effects, or whether it does in fact represent the maximum energy permitted by the acceleration process itself.
High resolution spectra of Comet 8P/Tuttle were obtained in the frequency range 3440.6-3462.6 cm-1 on 3 January 2008 UT using CGS4 with echelle grating on UKIRT. In addition to recording strong solar pumped fluorescent (SPF) lines of H2O, the long integration time (152 miutes on target) enabled a number of weaker H2O features to be asigned, most of which had not previously been identified in cometary spectra. These transitions, which are from higher energy upper states are similar in character to the so-called 'SH' lines recorded in the post Deep Impact spectrum of comet Tempel 1, suggesting an alternative production mechanism. We derive an H2O rotational temperature of 62+/- K and a water production rate of (1.4+/-0.3)E28 molecules/s.
We have constructed a thermally compensated field-widened monolithic Michelson interferometer that can be used with a medium-resolution spectrograph to measure precise Doppler radial velocities of stars. Our prototype monolithic fixed-delay interferometer is constructed with off-the-shelf components and assembled using a hydrolysis bonding technique. We installed and tested this interferometer in the Exoplanet Tracker (ET) instrument at the Kitt Peak 2.1m telescope, an instrument built to demonstrate the principles of dispersed fixed delay interferometry. An iodine cell allows the interferometer drift to be accurately calibrated, relaxing the stability requirements on the interferometer itself. When using our monolithic interferometer, the ET instrument has no moving parts (except the iodine cell), greatly simplifying its operation. We demonstrate differential radial velocity precision of a few m s$^{-1}$ on well known radial velocity standards and planet bearing stars when using this interferometer. Such monolithic interferometers will make it possible to build relatively inexpensive instruments that are easy to operate and capable of precision radial velocity measurements. A larger multi-object version of the Exoplanet Tracker will be used to conduct a large scale survey for planetary systems as part of the Sloan Digital Sky Survey III (SDSS III). Variants of the techniques and principles discussed in this paper can be directly applied to build large monolithic interferometers for such applications, enabling the construction of instruments capable of efficiently observing many stars simultaneously at high velocity-precision.
Soft phase lags, in which X-ray pulses in lower energy bands arrive later than pulses in higher energy bands, have been observed in nearly all accretion-powered millisecond pulsars, but their origin remains an open question. In a study of the 2.5 ms accretion-powered pulsar SAX J1808.4-3658, we report that the magnitude of these lags is strongly dependent on the accretion rate. During the brightest stage of the outbursts from this source, the lags increase in magnitude as the accretion rate drops; when the outbursts enter their dimmer flaring-tail stage, the relationship reverses. We evaluate this complex dependence in the context of two theoretical models for the lags, one relying on the scattering of photons by the accretion disk and the other invoking a two-component model for the photon emission. In both cases, the turnover suggests that we are observing the source transitioning into the "propeller" accretion regime.
This paper presents detailed analysis of large-scale peculiar motions derived from a sample of ~ 700 X-ray clusters and cosmic microwave background (CMB) data obtained with WMAP. We use the kinematic Sunyaev-Zeldovich (KSZ) effect combining it into a cumulative statistic which preserves the bulk motion component with the noise integrated down. Such statistic is the dipole of CMB temperature fluctuations evaluated over the pixels of the cluster catalog (Kashlinsky & Atrio-Barandela 2000). To remove the cosmological CMB fluctuations the maps are Wiener-filtered in each of the eight WMAP channels (Q, V, W) which have negligible foreground component. Our findings are as follows: The thermal SZ (TSZ) component of the clusters is described well by the Navarro-Frenk-White profile expected if the hot gas traces the dark matter in the cluster potential wells. Such gas has X-ray temperature decreasing rapidly towards the cluster outskirts, which we demonstrate results in the decrease of the TSZ component as the aperture is increased to encompass the cluster outskirts. We then detect a statistically significant dipole in the CMB pixels at cluster positions. Arising exclusively at the cluster pixels this dipole cannot originate from the foreground or instrument noise emissions and must be produced by the CMB photons which interacted with the hot intracluster gas via the SZ effect. The dipole remains as the monopole component, due to the TSZ effect, vanishes within the small statistical noise out to the maximal aperture where we still detect the TSZ component. We demonstrate with simulations that the mask and cross-talk effects are small for our catalog and contribute negligibly to the measurements. The measured dipole thus arises from the KSZ effect produced by the coherent large scale bulk flow motion.
Peculiar velocities of clusters of galaxies can be measured by studying the fluctuations in the cosmic microwave background (CMB) generated by the scattering of the microwave photons by the hot X-ray emitting gas inside clusters. While for individual clusters such measurements result in large errors, a large statistical sample of clusters allows one to study cumulative quantities dominated by the overall bulk flow of the sample with the statistical errors integrating down. We present results from such a measurement using the largest all-sky X-ray cluster catalog combined to date and the 3-year WMAP CMB data. We find a strong and coherent bulk flow on scales out to at least > 300 h^{-1} Mpc, the limit of our catalog. This flow is difficult to explain by gravitational evolution within the framework of the concordance LCDM model and may be indicative of the tilt exerted across the entire current horizon by far-away pre-inflationary inhomogeneities.
M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2 - 3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.
We present B and V photometry of the outlying SMC star cluster BS196 with the 4.1-m SOAR telescope. The photometry is deep (to V~25) showing ~3 mag below the cluster turnoff point (TO) at Mv=2.5 (1.03 Msun). The cluster is located at the SMC distance. The CMD and isochrone fittings provide a cluster age of 5.0+-0.5 Gyr, indicating that this is one of the 12 oldest clusters so far detected in the SMC. The estimated metallicity is [Fe/H]=-1.68+-0.10. The structural analysis gives by means of King profile fittings a core radius Rc=8.7+-1.1 arcsec (2.66+-0.14 pc) and a tidal radius Rt=69.4+-1.7 arcsec (21.2+-1.2 pc). BS196 is rather loose with a concentration parameter c=0.90. With Mv=-1.89+-0.39, BS196 belongs to the class of intrinsically fainter SMC clusters, as compared to the well-known populous ones, which starts to be explored.
We present an extinction map of a ~1,700 deg sq region that encloses the Ophiuchus, the Lupus, and the Pipe dark complexes using 42 million stars from the Two Micron All Sky Survey (2MASS) point source catalog. The use of a robust and optimal near-infrared method to map dust column density (Nicer, described in Lombardi & Alves 2001) allow us to detect extinction as low as A_K = 0.05 mag with a 2-sigma significance, and still to have a resolution of 3 arcmin on our map. We also present a novel, statistically sound method to characterize the small-scale inhomogeneities in molecular clouds. Finally, we investigate the cloud structure function, and show that significant deviations from the results predicted by turbulent models are observed.
The spectra of the planetary nebulae NGC3242 and NGC6369 are reanalysed using spectral measurements made in the mid-infrared with the Spitzer Space Telescope and the Infrared Space Observatory (ISO). The aim is to determine the chemical composition of these objects. We also make use of International Ultraviolet Explorer (IUE) and ground based spectra. These elliptical PNe are interesting because they are well-studied, nearby, bright objects and therefore allow a reasonably complete comparison of this type of nebulae. Abundances determined from the mid-infrared lines, which are insensitive to electron temperature, are used as the basis for the determination of the composition, which are found to differ somewhat from earlier results. The abundances found, especially the low value of helium and oxygen, indicate that the central star was originally of rather low mass. The abundance of phosphorus has been determined for the first time in NGC3242. The electron temperature in both of these nebulae is roughly constant unlike NGC6302 and NGC2392 where a strong temperature gradient is found. The temperature of the central star is discussed for both nebulae. Finally a comparison of the element abundances in these nebulae with the solar abundance is made. The low abundance of Fe and P is noted and it is suggested that these elements are an important constituent of the nebular dust.
I present results from an optical spectroscopic investigation of the binary system HD 42401 (V1388 Ori; B2.5 IV-V + B3 V). A combined analysis of V-band photometry and radial velocities indicates that the system has an orbital period of 2.18706 +/- 0.00005 days and an inclination of 75.5 +/- 0.2 degrees. This solution yields masses and radii of M1 = 7.42 +/- 0.08 Solar Masses and R1 = 5.60 +/- 0.04 Solar Radii for the primary and M2 = 5.16 +/- 0.03 Solar Masses and R2 = 3.76 +/- 0.03 Solar Radii for the secondary. Based on the position of the two stars plotted on a theoretical H-R diagram, I find that the age of the system is ~25 Myr and that both stars appear overluminous for their masses compared to single star evolutionary tracks. A fit of the spectral energy distribution based on photometry from the literature yields a distance to HD 42401 of 832 +/- 89 parsecs.
The growth of Jovian mass planets during migration in their protoplanetary disks is one of the most important problems that needs to be solved in light of observations of the exosolar planets. Studies of the migration of planets in standard gas disk models routinely show that migration is too fast to form Jovian planets, and that such migrating planetary cores generally plunge into the central stars in less than a Myr. In previous work, we have shown that a poorly ionized, less viscous region in a protoplanetary disk called a dead zone slows down the migration of fixed-mass planets. In this paper, we extend our numerical calculations to include dead zone evolution along with the disk, as well as planet formation via accretion of rocky and gaseous materials. Using our symplectic-integrator-gas dynamics code, we find that dead zones, even in evolving disks wherein migrating planets grow by accretion, still play a fundamental role in saving planetary systems. We demonstrate that Jovian planets form within 2.5 Myr for disks that are ten times more massive than a minimum mass solar nebula (MMSN) with an opacity reduction and without slowing down migration artificially. Our simulations indicate that protoplanetary disks with an initial mass comparable to the MMSN only produce Neptunian mass planets. We also find that planet migration does not help core accretion as much in the oligarchic planetesimal accretion scenario as it was expected in the runaway accretion scenario. Therefore we expect that an opacity reduction (or some other mechanisms) is needed to solve the formation timescale problem even for migrating protoplanets, as long as we consider the oligarchic growth. We also point out a possible role of a dead zone in explaining long-lived, strongly accreting gas disks.
Young massive stars in the central parsec of our Galaxy are best explained by star formation within at least one, and possibly two, massive self-gravitating gaseous discs. With help of numerical simulations, we here consider whether the observed population of young stars could have originated from a large angle collision of two massive gaseous clouds at R approx. 1 parsec from Sgr A*. In all the simulations performed, the post-collision gas flow forms an inner, nearly circular gaseous disc and one or two eccentric outer filaments, consistent with the observations. Furthermore, the radial stellar mass distribution is always very steep, Sigma proportional to R^-2, again consistent with the observations. All of our simulations produce discs that are warped by between 30 to 60 degrees, in accordance with the most recent observations. The 3D velocity structure of the stellar distribution is sensitive to initial conditions (e.g., the impact parameter of the clouds) and gas cooling details. For example, the runs in which the inner disc is fed intermittently with material possessing fluctuating angular momentum result in multiple stellar discs with different orbital orientations, contradicting the observed data. In all the cases the amount of gas accreted by our inner boundary condition is large, enough to allow Sgr A* to radiate near its Eddington limit over approx. 10^5 years. This suggests that a refined model would have physically larger clouds (or a cloud and a disc such as the circumnuclear disc) colliding at a distance of a few parsecs rather than 1 parsec as in our simulations.
Magnetic reconnection plays a crucial role in violent energy conversion occurring in the environments of high electrical conductivity, such as the solar atmosphere, magnetosphere, and fusion devices. We focus on the morphological features of the process in two different environments, the solar atmosphere and the geomagnetic tail. In addition to indirect evidence that indicates reconnection in progress or having just taken place, such as auroral manifestations in the magnetosphere and the flare loop system in the solar atmosphere, more direct evidence of reconnection in the solar and terrestrial environments is being collected. Such evidence includes the reconnection inflow near the reconnecting current sheet, and the outflow along the sheet characterized by a sequence of plasmoids. Both turbulent and unsteady Petschek-type reconnection processes could account for the observations. We also discuss other relevant observational consequences of both mechanisms in these two settings. While on face value, these are two completely different physical environments, there emerge many commonalities, for example, an Alfven speed of the same order of magnitude, a key parameter determining the reconnection rate. This comparative study is meant as a contribution to current efforts aimed at isolating similarities in processes occurring in very different contexts in the heliosphere, and even in the universe.
Deuterated ions are abundant in cold (T=10 K), dense (n=10^5 cm^-3) regions, in which CO is frozen out onto dust grains. In such environments, the deuterium fractionation of such ions can exceed the elemental abundance ratio of D/H by a factor of 10^4. In this paper we use the deuterium fractionation to investigate the evolutionary state of Class 0 protostars. In a sample of 20 protostellar objects, we found a clear correlation between the N2D+/N2H+ ratio and evolutionary tracers. As expected, the coolest, i.e. the youngest, objects show the largest deuterium fractionation. Furthermore, we find that sources with a high N2D+/N2H+ ratio show clear indication for infall.
The idea that we live near the centre of a large, non-linear void has attracted attention recently as an alternative to dark energy or modified gravity. We show that an appropriate void profile can fit both the latest cosmic microwave background and supernova data. However, this requires either a fine-tuned primordial spectrum or a Hubble rate so low as to rule these models out. We also show that measurements of the radial baryon acoustic scale can provide very strong constraints. Our results present a serious challenge to void models of acceleration.
The progenitor mass of type IIP supernova can be determined from either hydrodynamic modeling of the event or pre-explosion observations. To compare these approaches, we determine parameters of the sub-luminous supernova 2005cs and estimate its progenitor mass. We compute the hydrodynamic models of the supernova to describe its light curves and expansion velocity data. We estimate a presupernova mass of 17.3 Msun, an explosion energy of 4.1x10^{50} erg, a presupernova radius of 600 Rsun, and a radioactive Ni-56 mass of 0.0082 Msun. The derived progenitor mass of SN 2005cs is 18.2 Msun, which is in-between those of low-luminosity and normal type IIP supernovae. The obtained progenitor mass of SN 2005cs is higher than derived from pre-explosion images. The masses of four type IIP supernovae estimated by means of hydrodynamic modeling are systematically higher than the average progenitor mass for the 9-25 Msun mass range. This result, if confirmed for a larger sample, would imply that a serious revision of the present-day view on the progenitors of type IIP supernovae is required.
The Magellanic Clouds (MCs) present a rich system of stellar clusters that can be used to probe the dynamical and chemical evolution of these neighboring and interacting irregular galaxies. In particular, these stellar clusters (SCs) present combinations of age and metallicity that are not found for this class of objects in the Milky Way, being therefore very useful templates to test and to calibrate integrated light simple stellar population (SSP) models applied to unresolved distance galaxies. On its turn, the age and metallicity for a cluster can be determined spatially resolving its stars, by means of analysis of its colour-magnitude diagrams (CMDs). In this work we present our method to determine self-consistent physical parameters (age, metallicity, distance modulus and reddening) for a stellar cluster, from CMDs modelling of relatively unstudied SCs in the Small Magellanic Cloud (SMC) imaged in the BVI filters with the 4.1 m SOAR telescope. Our preliminary results confirm our expectations that come from a previous integrated spectra and colour analysis: at least one of them (Lindsay 2) is an intermediate-age stellar cluster with ~ 2.6 Gyr and [Fe/H] ~ -1.3, being therefore a new interesting witness regarding the reactivation of the star formation in the MCs in the last 4 Gyr.
Using modified gravity with non-linear terms of curvature, $R^2$ and $R^{(r +2)}$ (with $r$ being the positive real number and $R$ being the scalar curvature), cosmological scenario,beginning at the Planck scale, is obtained. Here, a unified picture of cosmology is obtained from $f(R)-$ gravity. In this scenario, universe begins with power-law inflation, followed by deceleration and acceleration in the late universe as well as possible collapse of the universe in future. It is different from $f(R)-$ dark energy models with non-linear curvature terms assumed as dark energy. Here, dark energy terms are induced by linear as well as non-linear terms of curvature in Friedmann equation being derived from modified gravity.It is also interesting to see that, in this model, dark radiation and dark matter terms emerge spontaneously from the gravitational sector. It is found that dark energy, obtained here, behaves as quintessence in the early universe and phantom in the late universe. Moreover, analogous to brane-tension in brane-gravity inspired Friedmann equation, a tension term $\lambda$ arises here being called as cosmic tension. It is found that, in the late universe, Friedmann equation (obtained here) contains a term $- \rho^2/2\lambda$ ($\rho$ being the phantom energy density) analogous to a similar term in Friedmann equation with loop quantum effects, if $\lambda > 0$ and brane-gravity correction when $\lambda < 0.$
We present a methodology based on point-like Lambertian sources that enables one to perform a reliable and comprehensive estimate of the overall thermally induced acceleration of the Pioneer 10 and 11 spacecraft. We show, by developing a sensitivity analysis of the several parameters of the model, that one may achieve a valuable insight on the possible thermal origin of the so-called Pioneer anomaly.
We discuss corrections to the Yukawa matrices of the Standard Model (SM) fermions in intersecting D-brane models due to four-point interactions. Recently, an intersecting D-brane model has been found where it is possible to obtain correct masses and mixings for all quarks as well as the tau lepton. However, the masses for the first two charged leptons come close to the right values but are not quite correct. Since the electron and muon are quite light, it is likely that there are additional corrections to their masses which cannot be neglected. With this in mind, we consider contributions to the SM fermion mass matrices from four-point interactions. In an explicit model, we show that it is indeed possible to obtain the SM fermion masses and mixings which are a better match to those resulting from experimental data extrapolated at the unification scale when these corrections are included. These corrections may have broader application to other models.
A methodology based on point-like sources is discussed, enabling a reliable estimate of the acceleration of the Pioneer 10 and 11 probes caused by thermal effects. A sensitivity analysis of the several parameters of the model allows for a clear indication of the possible thermal origin of the so-called Pioneer anomaly.
We investigate the allowed supersymmetry parameter space for the one-parameter model (OPM) and compute the collider signatures which may be observable at the Large Hadron Collider (LHC), taking into account the most recent experimental constraints. We find that in the strict moduli scenario, there are no regions of the parameter space which may satisfy all constraints. However, for the dilaton scenario, there are small regions of the parameter space where all constraints may be satisfied and for which the observed dark matter density may be generated. The model is thus highly predictive and/or falsifiable due to its highly constrained nature. Additionally, we compare the collider signatures of OPM to those of an intersecting $D6$-brane model in Type IIA string theory where the soft terms are non-universal. We find that it may be possible to discriminate between diverse types of string vacua at LHC.
In both the Sun and the early universe, the 3He(alpha,gamma)7Be reaction plays a key role. The rate of this reaction is the least certain nuclear input needed to calculate both the primordial 7Li abundance in big bang nucleosynthesis (BBN) and the solar neutrino flux. Taking advantage of several recent highly precise experiments, we analyse modern 3He(alpha,gamma)7Be data using a robust and minimally model dependent approach capable of handling discrepant data sets dominated by systematic rather than statistical errors. We find S34(0)=0.580 pm 0.043(0.054) keV b at the 68.3(95.4)% confidence level.
Links to: arXiv, form interface, find, astro-ph, recent, 0809, contact, help (Access key information)
(Abridged) We examine the X-ray luminosity scaling relations of 31 nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey (REXCESS). The objects are selected in X-ray luminosity only, optimally sampling the cluster luminosity function; temperatures range from 2 to 9 keV and there is no bias toward any particular morphological type. Pertinent values are extracted in an aperture corresponding to R_500, estimated using the tight correlation between Y_X and total mass. The data exhibit power law relations between bolometric X-ray luminosity and temperature, Y_X and total mass, all with slopes that are significantly steeper than self-similar expectations. We examine the causes for the steepening, finding that the primary driver appears to be a systematic variation of the gas content with mass. Scatter about the relations is dominated in all cases by the presence of cool cores. The logarithmic scatter about the raw X-ray luminosity-temperature relation is approximately 30%, and that about the X-ray luminosity-Y_X relation is 18%. Cool core and morphologically disturbed systems occupy distinct regions in the residual space with respect to the best fitting mean relation, the former lying systematically to the high luminosity side, the latter to the low luminosity side. Exclusion of the central regions serves to reduce the scatter by more than 50%. Luminosity can thus be a reliable mass proxy once the principal cause of the scatter, cool cores, has been suppressed. This has important implications for upcoming all-sky surveys, such as those to be undertaken with Planck and eROSITA.
We present the detection of deuterated molecular hydrogen (HD) in the remote Universe in a damped Lyman-alpha cloud at zabs=2.418 toward the quasar SDSS J143912.04+111740.5. This is a unique system in which H2 and CO molecules are also detected. The chemical enrichment of this gas derived from ZnII and SII is as high as in the Sun. We measure N(HD)/2 N(H2)=1.5+0.6-0.4 x 10^-5, which is significantly higher than the same ratio measured in the Galaxy and close to the primordial D/H ratio estimated from the WMAP constraint on the baryonic matter density Omega_b. This indicates a low astration factor of deuterium that contrasts with the unusually high chemical enrichment of the gas. This can be interpreted as the consequence of an intense infall of primordial gas onto the associated galaxy. Detection of HD molecules at high-z also opens the possibility to obtain an independent constraint on the cosmological-time variability of mu, the proton-to-electron mass ratio.
The Magellanic Clouds were the largest members of a group of dwarf galaxies that entered the Milky Way (MW) halo at late times. This group, dominated by the LMC, contained ~4% of the mass of the Milky Way prior to its accretion and tidal disruption, but ~70% of the known dwarfs orbiting the MW. Our theory addresses many outstanding problems in galaxy formation associated with dwarf galaxies. First, it can explain the planar orbital configuration populated by some dSphs in the MW. Second, it provides a mechanism for lighting up a subset of dwarf galaxies to reproduce the cumulative circular velocity distribution of the satellites in the MW. Finally, our model predicts that most dwarfs will be found in association with other dwarfs. The recent discovery of Leo V (Belokurov et al. 2008), a dwarf spheroidal companion of Leo IV, and the nearby dwarf associations supports our hypothesis.
Ultra high-energy cosmic rays (UHECRs) are believed to be protons accelerated in magnetized plasma outflows of extra-Galactic sources. The acceleration of protons to ~10^{20} eV requires a source power L>10^{47} erg/s. The absence of steady sources of sufficient power within the GZK horizon of 100 Mpc, implies that UHECR sources are transient. We show that UHECR "flares" should be accompanied by strong X-ray and gamma-ray emission, and that X-ray and gamma-ray surveys constrain flares which last less than a decade to satisfy at least one of the following conditions: (i) L>10^{50} erg/s; (ii) the power carried by accelerated electrons is lower by a factor >10^2 than the power carried by magnetic fields or by >10^3 than the power in accelerated protons; or (iii) the sources exist only at low redshifts, z<<1. The implausibility of requirements (ii) and (iii) argue in favor of transient sources with L>10^{50} erg/s.
We use the observed distribution of Eddington ratios as a function of supermassive black hole (BH) mass to constrain models of AGN lifetimes and lightcurves. Given the observed AGN luminosity function, a model for AGN lifetimes (time above a given luminosity) translates directly to a predicted Eddington ratio distribution. Models for self-regulated BH growth, in which feedback produces a 'blowout' decay phase after some peak luminosity (shutting down accretion) make specific predictions for the lifetimes distinct from those expected if AGN are simply gas starved (without feedback) and very different from simple phenomenological 'light bulb' models. Present observations of the Eddington ratio distribution, spanning 5 decades in Eddington ratio, 3 in BH mass, and redshifts z=0-1, agree with the predictions of self-regulated models, and rule out 'light-bulb', pure exponential, and gas starvation models at high significance. We compare the Eddington ratio distributions at fixed BH mass and fixed luminosity (both are consistent, but the latter are much less constraining). We present empirical fits to the lifetime distribution and show how the Eddington ratio distributions place tight limits on AGN lifetimes at various luminosities. We use this to constrain the shape of the typical AGN lightcurve, and provide simple analytic fits. Given independent constraints on episodic lifetimes, most local BHs must have gained their mass in no more than a couple of bright episodes, in agreement with merger-driven fueling models.
We investigate the orientation correlation of giant elliptical galaxies by measuring the intrinsic ellipticity correlation function of 83,773 luminous red galaxies (LRGs) at redshifts 0.16 -- 0.47 from the Sloan Digital Sky Survey. We have accurately determined the correlation up to 30 $h^{-1}$Mpc. Luminosity dependence of the ellipticity correlation is also detected although the error bars are large, while no evidence is found for its redshift evolution between $z=0.2$ and $z=0.4$. Then we use a cosmological $N$-body simulation to examine misalignment between the central LRGs and their parent dark matter halos. Central and satellite galaxies are assigned to simulated halos by employing a halo occupation distribution model for the LRGs. The ellipticity correlation is predicted to have the same shape as but an amplitude about 4 times higher than our observation if the central LRGs are perfectly aligned with their host halos. This indicates that the central LRG galaxies are preferentially but not perfectly aligned with their host halos. With the assumption that there is a misalignment angle between a central LRG and its host halo which follows a Gaussian distribution with a zero mean and a width $\sigma_\theta$, we obtain a tight constraint on the misalignment parameter, $\sigma_\theta={35.4}^{+4.0}_{-3.3}$ degrees. This type of intrinsic ellipticity correlation, if not corrected, can lead to contamination at 10 percent level to the shear power spectrum in weak lensing surveys of limiting magnitude $R_{AB}=24.5$ if the source central galaxies follow the same misalignment distribution as the LRGs.
In alternative theories of gravity, designed to produce cosmic acceleration at the current epoch, the growth of large scale structure can be modified. We study the potential of upcoming and future tomographic surveys such as DES and LSST, with the aid of CMB and supernovae data, to detect departures from the growth of cosmic structure expected within General Relativity. We employ parametric forms to quantify the potential time- and scale-dependent variation of the effective gravitational constant, and the differences between the two Newtonian potentials. We then apply the Fisher matrix technique to forecast the errors on the modified growth parameters from galaxy clustering, weak lensing, CMB, and their cross-correlations across multiple photometric redshift bins. We find that even with conservative assumptions about the data, DES will produce non-trivial constraints on modified growth, and that LSST will do significantly better.
We analyse the radial structure of self-gravitating spheres consisting of multiple interpenetrating fluids, such as the X-ray emitting gas and the dark halo of a galaxy cluster. In these dipolytropic models, adiabatic dark matter sits in equilibrium, while the gas develops a gradual, smooth, quasi-stationary cooling flow. Both affect and respond to the collective gravitational field. We find that all subsonic, radially continuous, steady solutions require a non-zero minimum central point mass. For Mpc-sized halos with 7 to 10 effective degrees of freedom (F2), the minimum central mass is compatible with observations of supermassive black holes. Smaller gas mass influxes enable smaller central masses for wider ranges of F2. The halo comprises a sharp spike around the central mass, embedded within a core of nearly constant density (at 10-10^2.5kpc scales), with outskirts that attenuate and naturally truncate at finite radius (several Mpc). The gas density resembles a broken power law in radius, but the temperature dips and peaks within the dark core. A finite minimum temperature occurs due to gravitational self-warming, without cold mass dropout nor needing regulatory heating. X-ray emission from the intracluster medium mimics a beta-model plus bright compact nucleus. Near-sonic points in the gas flow are bottlenecks to allowed steady solutions; the outermost are at kpc scales. These sites may preferentially develop cold mass dropout during strong perturbations off equilibrium. Within the sonic point, the profile of gas specific entropy is flatter than s r^{1/2}, but this is a shallow ramp and not an isentropic core. When F2 is large, the inner halo spike is only marginally Jeans stable in the central pc, suggesting that a large non-linear disturbance could trigger local dark collapse onto the central object.
We report the 2006-2008 light curves obtained with the REM telescope in VRIJHK bands for the two BL Lac objects PKS 0537-441 and PKS 2155-304
Yan and Lazarian have proposed a new technique through which the magnetic field geometry in the diffuse interstellar medium, or in circumstellar matter, could be determined from the linear polarization of interstellar absorption or fluorescence emission lines from ions pumped by an anisotropic illuminating flux. New long-slit spectroscopic observations of the reflection nebula NGC2023, obtained with the Southern African Large Telescope Robert Stobie Spectrograph (RSS), have detected a number of atomic fluorescence lines of OI, NI, SiII, and FeII for the first time in a neutral medium. A model which predicts these lines and others illustrates which lines would be appropriate targets for an RSS spectropolarimetric investigation of this new diagnostic.
We present the results of a deep (15 ~< r ~< 23), 20 night survey for transiting planets in the intermediate age open cluster M37 (NGC 2099) using the Megacam wide-field mosaic CCD camera on the 6.5m MMT. We do not detect any transiting planets among the ~1450 observed cluster members. We do, however, identify a ~ 1 R_J candidate planet transiting a ~ 0.8 Msun Galactic field star with a period of 0.77 days. The source is faint (V = 19.85 mag) and has an expected velocity semi-amplitude of K ~ 220 m/s (M/M_J). We conduct Monte Carlo transit injection and recovery simulations to calculate the 95% confidence upper limit on the fraction of cluster members and field stars with planets as a function of planetary radius and orbital period. Assuming a uniform logarithmic distribution in orbital period, we find that < 1.1%, < 2.7% and < 8.3% of cluster members have 1.0 R_J planets within Extremely Hot Jupiter (EHJ, 0.4 < T < 1.0 day), Very Hot Jupiter (VHJ, 1.0 < T < 3.0 days) and Hot Jupiter (HJ, 3.0 < T < 5.0 days) period ranges respectively. For 0.5 R_J planets the limits are < 3.2%, and < 21% for EHJ and VHJ period ranges, while for 0.35 R_J planets we can only place an upper limit of < 25% on the EHJ period range. For a sample of 7814 Galactic field stars, consisting primarily of FGKM dwarfs, we place 95% upper limits of < 0.3%, < 0.8% and < 2.7% on the fraction of stars with 1.0 R_J EHJ, VHJ and HJ assuming the candidate planet is not genuine. If the candidate is genuine, the frequency of sim 1.0 R_J planets in the EHJ period range is 0.002% < f_EHJ < 0.5% with 95% confidence. We place limits of < 1.4%, < 8.8% and < 47% for 0.5 R_J planets, and a limit of < 16% on 0.3 R_J planets in the EHJ period range. This is the first transit survey to place limits on the fraction of stars with planets as small as Neptune.
In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing "plunging streams" and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcoming we have added a block-structured "cubed-sphere" grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.
We report total abundances and related parameters for the full sample of the FUSE survey of molecular hydrogen in 38 translucent lines of sight. New results are presented for the "second half" of the survey involving 15 lines of sight to supplement data for the first 23 lines of sight already published. We assess the correlations between molecular hydrogen and various extinction parameters in the full sample, which covers a broader range of conditions than the initial sample. In particular, we are now able to confirm that many, but not all, lines of sight with shallow far-UV extinction curves and large values of the total-to-selective extinction ratio, $R_V$ = $A_V$ / $E(B-V)$ -- characteristic of larger than average dust grains -- are associated with particularly low hydrogen molecular fractions ($f_{\rm H2}$). In the lines of sight with large $R_V$, there is in fact a wide range in molecular fractions, despite the expectation that the larger grains should lead to less H$_2$ formation. However, we see specific evidence that the molecular fractions in this sub-sample are inversely related to the estimated strength of the UV radiation field and thus the latter factor is more important in this regime. We have provided an update to previous values of the gas-to-dust ratio, $N$(H$_{\rm tot}$)/$E(B-V)$, based on direct measurements of $N$(H$_2$) and $N$(H I). Although our value is nearly identical to that found with Copernicus data, it extends the relationship by a factor of 2 in reddening. Finally, as the new lines of sight generally show low to moderate molecular fractions, we still find little evidence for single monolithic "translucent clouds" with $f_{\rm H2}$ $\sim$ 1.
The number density of galaxy clusters provides tight statistical constraints on the matter fluctuation power spectrum normalization, traditionally phrased in terms of sigma_8, the root mean square mass fluctuation in spheres with radius 8 h^-1 Mpc. We present constraints on sigma_8 and the total matter density Omega_m0 from local cluster counts as a function of X-ray temperature, taking care to incorporate and minimize systematic errors that plagued previous work with this method. In particular, we present new determinations of the cluster luminosity - temperature and mass - temperature relations, including their intrinsic scatter, and a determination of the Jenkins mass function parameters for the same mass definition as the mass - temperature calibration. Marginalizing over the 12 uninteresting parameters associated with this method, we find that the local cluster temperature function implies sigma_8 (Omega_m0/0.32)^alpha = 0.86+/-0.04 with alpha = 0.30 (0.41) for Omega_m0 < 0.32 (Omega_mo > 0.32) (68% confidence for two parameters). This result agrees with a wide range of recent independent determinations, and we find no evidence of any additional sources of systematic error for the X-ray cluster temperature function determination of the matter power spectrum normalization. The joint WMAP5 + cluster constraints are: Omega_m0 = 0.30+0.03/-0.02 and sigma_8 = 0.85+0.04/-0.02 (68% confidence for two parameters).
Circularly polarized 3.5 cm continuum emission was detected toward three radio sources in the R CrA region using the Very Large Array. The Class I protostar IRS 5b persistently showed polarized radio emission with a constant helicity over 8 yr, which suggests that its magnetosphere has a stable configuration. There is a good correlation between the Stokes I and Stokes V fluxes, and the fractional polarization is about 0.17. During active phases the fractional polarization is a weakly decreasing function of Stokes I flux, which suggests that IRS 5b is phenomenologically similar to other types of flare stars such as RS CVn binaries. The variability timescale of the polarized flux is about a month, and the magnetosphere of IRS 5b must be very large in size. The Class I protostar IRS 7A was detected once in circularly polarized radio emission, even though IRS 7A drives a thermal radio jet. This detection implies that the radio emission from the magnetosphere of a young protostar can escape the absorption by the partially ionized wind at least once in a while. The properties of IRS 7A and IRS 5b suggests that Class I protostars have organized peristellar magnetic fields of a few kilogauss and that the detectability of magnetospheric emission may depend on the evolutionary status of protostar. Also reported is the detection of circularly polarized radio emission toward the variable radio source B5.
The polarization of light across individual spectral lines contains information about the circumstellar environment on very small spatial scales. We have obtained a large number of high precision, high resolution spectropolarimetric observations of Herbig Ae/Be, Classical Be and other emission-line stars collected on 117 nights of observations with the HiVIS spectropolarimeter at a resolution of R=13000 on the 3.67m AEOS telescope. We also have many observations from the ESPaDOnS spectropolarimeter at a resolution of R=68000 on the 3.6m CFH telescope. In roughly ~2/3 of the so-called "windy" or "disky" Herbig Ae/Be stars, the detected H-alpha linear polarization varies from our typical detection threshold near 0.1% to over 2%. In all but one HAe/Be star the detected polarization effect is not coincident with the H-alpha emission peak but is detected in and around the obvious absorptive part of the line profile. The qu-loops are dominated by the polarization in this absorptive region. In several stars the polarization varies in time mostly in the absorptive component and is not necessarily tied to corresponding variations in intensity. This is a new result not seen at lower resolution. In the Be and emission-line stars, 10 out of a sample of 30 show a typical broad depolarization effect but 4 of these 10 show weaker effects only visible at high resolution. Another 5 of 30 show smaller amplitude, more complex signatures. Six stars of alternate classification showed large amplitude (1-3%) absorptive polarization effects. These detections are largely inconsistent with the traditional disk-scattering and depolarization models.
Aims: In the frame of the search for extrasolar planets and brown dwarfs
around early-type stars, we present the results obtained for the F-type
main-sequence star HD 60532 (F6V) with HARPS.
Methods: Using 147 spectra obtained with HARPS at La Silla on a time baseline
of two years, we study the radial velocities of this star.
Results: HD 60532 radial velocities are periodically variable, and the
variations have a Keplerian origin. This star is surrounded by a planetary
system of two planets with minimum masses of 1 and 2.5 Mjup and orbital
separations of 0.76 and 1.58 AU respectively. We also detect high-frequency,
low-amplitude (10 m/s peak-to-peak) pulsations. Dynamical studies of the system
point toward a possible 3:1 mean-motion resonance which should be confirmed
within the next decade.
(Abriged) The magnetorotational instability (MRI) is believed to be an efficient way to transport angular momentum in accretion discs. It has also been suggested as a way to amplify magnetic fields in discs, the instability acting as a nonlinear dynamo. Recent numerical work has shown that a large-scale magnetic field, which is predominantly azimuthal, can be sustained by motions driven by the MRI of this same field. Following this idea, we present an analytical calculation of the MRI in the presence of an azimuthal field with a non-trivial vertical structure. We find that the mean radial EMF associated to MRI modes tends to reduce the magnetic energy, acting like a turbulent resistivity by mixing the non-uniform azimuthal field. Meanwhile, the azimuthal EMF generates a radial field that, in combination with the Keplerian shear, tends to amplify the azimuthal field and can therefore assist in the dynamo process. This effect, however, is reversed for sufficiently strong azimuthal fields, naturally leading to a saturation of the dynamo and possibly to a cyclic behaviour of the magnetic field, as found in previous numerical works.
We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<~0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm^2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. These observed properties are strongly biased by our type of measurement, unable to detect vortexes except when they are engulfing magnetic BPs.
We present the first attempt to analyse the growth of the bar instability in
stellar-gaseous disks evolving in a fully consistent cosmological scenario. We
explored the role of the cosmology on pure stellar disks with different mass
embedded in a cosmological dark matter halo. We deepened such a study by
analysing the impact of different gas fractions and of the star formation
onset.
We found that in all these cases, the stellar bar arising inside the less
massive disks, i.e., dark matter (DM)-dominated disks, is still living at
redshift zero even if the gas fraction exceeds half of the disk mass. Such a
bar is a genuine product of the cosmology. However, in the most massive disks
there is a threshold value for their gas percentage and lower limit for the
central gas concentration able to destroy the bar when the star formation rate
is switched off. On the other hand in the simulations with star formation the
central mass concentration of gas and of the new stars has a mild action on the
ellipticity of the bar but is not able to destroy it; at z=0 the stellar bar
strength is enhanced by the star formation. Even if our results qualitatively
agree with the classical ones, i.e. with criteria concerning bar instability
derived outside the cosmological framework, the same criteria cannot be
validated for the DM-dominated disks.
A search for a dark matter (DM) annihilation signal into $\gamma$-rays toward the direction of the Canis Major (CMa) overdensity is presented. The nature of CMa is still controversial and one scenario represents it as a dwarf galaxy, making it an interesting candidate for DM annihilation searches. A total of 9.6 hours of high quality data were collected with the H.E.S.S. array of Imaging Atmospheric Cherenkov Telescopes (IACTs) and no evidence for a very high energy $\gamma$-ray signal is found. Upper limits on the CMa dwarf galaxy mass of the order of 10$^{9}$ M$_{\odot}$ are derived at the 95% C.L. assuming neutralino masses in the range 500 GeV - 10 TeV and relatively large annihilation cross-sections. Constraints on the velocity-weighted annihilation cross section $<\sigma v>$, are calculated for specific WIMP scenarios, using a NFW model for the DM halo profile and taking advantage of numerical simulations of hierarchical structure formation. 95% C.L. exclusion limits of the order of 5 $\times$ 10$^{-24}$ cm$^{3}$ s$^{-1}$ are reached in the 500 GeV - 10 TeV DM particle mass interval, assuming a total halo mass of 3 $\times$ 10$^{8}$ M$_{\odot}$.
We investigate coronal transients associated with a GOES M6.7 class flare and a coronal mass ejection (CME) on 13 July 2004. During the rising phase of the flare, a filament eruption, loop expansion, a Moreton wave, and an ejecta were observed. An EIT wave was detected later on. The main features in the radio dynamic spectrum were a frequency-drifting continuum and two type II bursts. Our analysis shows that if the first type II burst was formed in the low corona, the burst heights and speed are close to the projected distances and speed of the Moreton wave (a chromospheric shock wave signature). The frequency-drifting radio continuum, starting above 1 GHz, was formed almost two minutes prior to any shock features becoming visible, and a fast-expanding piston (visible as the continuum) could have launched another shock wave. A possible scenario is that a flare blast overtook the earlier transient, and ignited the first type II burst. The second type II burst may have been formed by the same shock, but only if the shock was propagating at a constant speed. This interpretation also requires that the shock-producing regions were located at different parts of the propagating structure, or that the shock was passing through regions with highly different atmospheric densities. This complex event, with a multitude of radio features and transients at other wavelengths, presents evidence for both blast-wave-related and CME-related radio emissions.
It is known that a relative translational motion between the deflector and the observer affects gravitational lensing. In this paper, a lens equation is obtained to describe such effects on actual lensing observables. Results can be easily interpreted in terms of aberration of light-rays. Both radial and transverse motions with relativistic velocities are considered. The lens equation is derived by first considering geodesic motion of photons in the rest-frame Schwarzschild spacetime of the lens, and, then, light-ray detection in the moving observer's frame. Due to the transverse motion images are displaced and distorted in the observer's celestial sphere, whereas the radial velocity along the line of sight causes an effective re-scaling of the lens mass. The Einstein ring is distorted to an ellipse whereas the caustics in the source plane are still point-like. Either for null transverse motion or up to linear order in velocities, the critical curve is still a circle with its radius corrected by a factor (1+z_d) with respect to the static case, z_d being the relativistic Doppler shift of the deflector. From the observational point of view, the orbital motion of the Earth can cause potentially observable corrections of the order of the microarcsec in lensing towards the super-massive black hole at the Galactic center. On a cosmological scale, tangential peculiar velocities of cluster of galaxies bring about a typical flexion in images of background galaxies in the weak lensing regime but future measurements seem to be too much challenging.
Axisymmetric, orbit-based dynamical models are used to derive dark matter scaling relations for Coma early-type galaxies. From faint to bright galaxies halo core-radii and asymptotic circular velocities increase. Compared to spirals of the same brightness, the majority of Coma early-types -- those with old stellar populations -- have similar halo core-radii but more than 2 times larger asymptotic halo velocities. The average dark matter density inside 2 reff decreases with increasing luminosity and is 6.8 times larger than in disk galaxies of the same B-band luminosity. Compared at the same stellar mass, dark matter densities in ellipticals are 13.5 times higher than in spirals. Different baryon concentrations in ellipticals and spirals cannot explain the higher dark matter density in ellipticals. Instead, the assembly redshift (1+z) of Coma early-type halos is likely about two times larger than of comparably bright spirals. Assuming that local spirals typically assemble at a redshift of one, the majority of bright Coma early-type galaxy halos must have formed around z = 2-3. For about half of our Coma galaxies the assembly redshifts match with constraints derived from stellar populations. We find dark matter densities and estimated assembly redshifts of our observed Coma galaxies in reasonable agreement with recent semi-analytic galaxy formation models.
We investigate the effects of non-Gaussianity in the primordial density field on the reionization history. We rely on a semi-analytic method to describe the processes acting on the intergalactic medium (IGM), relating the distribution of the ionizing sources to that of dark matter haloes. Extending previous work in the literature, we consider models in which the primordial non-Gaussianity is measured by the dimensionless non-linearity parameter f_NL, using the constraints recently obtained from cosmic microwave background data. We predict the ionized fraction and the optical depth at different cosmological epochs assuming two different kinds of non-Gaussianity, characterized by a scale-independent and a scale-dependent f_NL and comparing the results to those for the standard Gaussian scenario. We find that a positive f_NL enhances the formation of high-mass haloes at early epochs, when reionization begins, and, as a consequence, the IGM ionized fraction can grow by a factor up to 5 with respect to the corresponding Gaussian model. The increase of the filling factor has a small impact on the reionization optical depth and is of order ~ 10 per cent if a scale-dependent non-Gaussianity is assumed. Our predictions for non-Gaussian models are in agreement with the latest WMAP results within the error bars, but a higher precision is required to constrain the scale dependence of non-Gaussianity.
The analysis of the spectral energy distribution variability at frequencies from radio to TeV is a powerful tool in the investigation of the dynamics, the physics and the structure evolution occurring in the most exotic flavour of active galaxies, the blazars. In particular, the presence of {\sl Fermi-GST} is providing a unique opportunity for such studies delivering $\gamma$-ray data of unprecedented quality. Here we introduce a monitoring program that has been running at the Effelsberg 100m telescope since January 2007, underpinning a broad multi-frequency collaboration of facilities that cover the band from radio to infrared. Sixty one selected blazars are observed monthly between 2.64 GHz and 43 GHz. The calibration accuracy is better than a few percent as it is demonstrated with some preliminary examples.
Thermonuclear (type Ia) supernovae are explosions in accreting white dwarfs, but the exact scenario leading to these explosions is still unclear. An important step to clarify this point is to understand the behaviour of accreting white dwarfs in close binary systems. The characteristics of the white dwarf (mass, chemical composition, luminosity), the accreted material (chemical composition) and those related with the properties of the binary system (mass accretion rate), are crucial for the further evolution towards the explosion. An analysis of the outcome of accretion and the implications for the growth of the white dwarf towards the Chandrasekhar mass and its thermonuclear explosion is presented.
We investigate inflationary scenarios driven by a class of potentials which are similar in form to those that arise in certain minimal supersymmetric extensions of the standard model. We show that these potentials allow a period of fast roll sandwiched between two stages of slow roll inflation. We find that the modes which exit the Hubble radius during the period of fast roll have lower power when compared to the amplitude of the nearly scale invariant spectrum associated with the modes that leave during the second stage of slow roll inflation. We set the scales such that the drop in the scalar power spectrum occurs at a length scale that corresponds to the Hubble radius today--a feature that seems necessary to explain the lower power observed in the quadrupole moment of the Cosmic Microwave Background (CMB) anisotropies. We perform a Markov Chain Monte Carlo analysis to determine the values of the model parameters that provide the best fit to the recent WMAP 5-year data for the CMB angular power spectrum. We find that an inflationary spectrum with a suppression of power at large scales that we obtain leads to a much better fit (with just one extra parameter, $\chi_{\rm eff}^{2}$ improves by 6.62) of the observed data when compared to the best fit reference $\Lambda$CDM model with a featureless, power law, primordial spectrum.
Turbulent coagulation in protoplanetary disks is known to operate on timescale far shorter than the lifetime of the disk. In the absence of mechanisms that replenish the small dust grain population, protoplanetary disks would rapidly lose their continuum opacity-bearing dust. This is inconsistent with infrared observations of disks around T Tauri stars and Herbig Ae/Be stars, which are usually optically thick at visual wavelengths and show signatures of small (a<~ 3um) grains. A plausible replenishing mechanism of small grains is collisional fragmentation or erosion of large dust aggregates, which model calculations predict to play an important role in protoplanetary disks. If optically thick disks are to be seen as proof for ongoing fragmentation or erosion, then alternative explanations for the existence of optically thick disks must be studied carefully. In this study we explore two scenarios. First, we study the effect of residual, low-level infall of matter onto the disk surface. We find that infall rates as low as 10^{-11} Msun/yr can, in principle, replenish the small grain population to a level that keeps the disk marginally optically thick. However, it remains to be seen if the assumption of such inflow is realistic for star+disk systems at the age of several Myrs, at which winds and jets are expected to have removed any residual envelope. In summary, fragmentation or erosion still appear to be the most promising processes to explain the abundant presence of small grains in old disks.
The Mini-Calorimeter (MCAL) instrument on-board the AGILE satellite is a non-imaging gamma-ray scintillation detector sensitive in the 300keV-100MeV energy range with a total on-axis geometrical area of 1400cm^2. Gamma-Ray Bursts (GRBs) are one of the main scientific targets of the AGILE mission and the MCAL design as an independent self-triggering detector makes it a valuable all-sky monitor for GRBs. Furthermore MCAL is one of the very few operative instruments with microsecond timing capabilities in the MeV range. In this paper the results of GRB detections with MCAL after one year of operation in space are presented and discussed. A flexible trigger logic implemented in the AGILE payload data-handling unit allows the on-board detection of GRBs. For triggered events, energy and timing information are sent to telemetry on a photon-by-photon basis, so that energy and time binning are limited by counting statistics only. When the trigger logic is not active, GRBs can be detected offline in ratemeter data, although with worse energy and time resolution. Between the end of June 2007 and June 2008 MCAL detected 51 GRBs, with a detection rate of about 1 GRB/week, plus several other events at a few milliseconds timescales. Since February 2008 the on-board trigger logic has been fully active. Comparison of MCAL detected events and data provided by other space instruments confirms the sensitivity and effective area estimations. MCAL also joined the 3rd Inter-Planetary Network, to contribute to GRB localization by means of triangulation.
The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.
We present observations of continuum (lambda = 0.7, 1.3, 3.6 and 18 cm) and OH maser (lambda = 18 cm) emission toward the young planetary nebula IRAS 17347-3139, which is one of the three planetary nebulae that are known to harbor water maser emission. From the continuum observations we show that the ionized shell of IRAS 17347-3139 consists of two main structures: one extended (size ~1". 5) with bipolar morphology along PA=-30 degrees, elongated in the same direction as the lobes observed in the near-infrared images, and a central compact structure (size ~0". 25) elongated in the direction perpendicular to the bipolar axis, coinciding with the equatorial dark lane observed in the near-infrared images. Our image at 1.3 cm suggests the presence of dense walls in the ionized bipolar lobes. We estimate for the central compact structure a value of the electron density at least ~5 times higher than in the lobes. A high resolution image of this structure at 0.7 cm shows two peaks separated by about 0". 13 (corresponding to 100-780 AU, using a distance range of 0.8-6 kpc). This emission is interpreted as originating in an ionized equatorial torus-like structure, from whose edges the water maser emission might be arising. We have detected weak OH 1612 MHz maser emission at VLSR ~ -70 km/s associated with IRAS 17347-3139. We derive a 3 sigma upper limit of < 35% for the percentage of circularly polarized emission. Within our primary beam, we detected additional OH 1612 MHz maser emission in the LSR velocity ranges -5 to -24 and -90 to -123 km/s, associated with the sources 2MASS J17380406-3138387 and OH 356.65-0.15, respectively.
We present first results of a pilot project aimed at exploiting the potentiality of ground based adaptive optics imaging in the near infrared to determine the age of stellar clusters in the Galactic Bulge. We have used a combination of high resolution adaptive optics (ESO-VLT NAOS-CONICA) and wide-field (ESO-NTT-SOFI) photometry of the metal rich globular cluster NGC 6440 located towards the inner Bulge, to compute a deep color magnitude diagram from the tip of the Red Giant Branch down to J~22$, two magnitudes below the Main Sequence Turn Off (TO). The magnitude difference between the TO level and the red Horizontal Branch has been used as an age indicator. It is the first time that such a measurement for a bulge globular cluster has been obtained with a ground based telescope. From a direct comparison with 47 Tuc and with a set of theoretical isochrones, we concluded that NGC 6440 is old and likely coeval to 47 Tuc. This result adds a new evidence that the Galactic Bulge is ~2 Gyr younger at most than the pristine, metal poor population of the Galactic Halo.
We report a stochastic mechanism of particle acceleration from first principles in an environment having properties like those of Radio Lobes in AGNs. We show that energies $\sim 10^{20}$ eV are reached in $\sim 10^6$ years for protons. Our results reopen the question regarding the nature of the high-energy cutoff in the observed spectrum: whether it is due solely to propagation effects, or whether it is also affected by the maximum energy permitted by the acceleration process itself.
An iterative approach is used to construct spherically symmetric equilibrium models with an anisotropic velocity distribution. The potentialities of the method have been tested on models with known distribution functions, the Osipkov-Merritt models. It is shown that models that differ significantly from the Osipkov-Merritt models can be constructed. An N-body model of a dark halo with a density distribution that approximates the results of cosmological simulations (the Navarro--Frenk--White model) has been constructed. The anisotropy profile has been taken to be similar to that yielded by cosmological simulations. The constructed models can serve as direct input data for investigating the dynamics and stability of such systems in N-body simulations.
[Abridged] We present the first direct comparison of the distribution of the gas, as traced by the [OI] 6300 AA emission, and the dust, as traced by the 10 micron emission, in the protoplanetary disk around three intermediate-mass stars: HD 101412, HD 135344 B and HD 179218. N-band visibilities were obtained with VLTI/MIDI. Simple geometrical models are used to compare the dust emission to high-resolution optical spectra in the 6300 AA [OI] line of the same targets. The disks around HD 101412 and HD 135344 B appear strongly flared in the gas, but self-shadowed in the dust beyond ~ 2 AU. In both systems, the 10 micron emission is rather compact (< 2 AU) while the [OI] brightness profile shows a double peaked structure. The inner peak is strongest and is consistent with the location of the dust, the outer peak is fainter and is located at 5-10 AU. Spatially extended PAH emission is found in both disks. The disk around HD 179218 is flared in the dust. The 10 micron emission emerges from a double ring-like structure with the first ring peaking at ~ 1 AU and the second at ~ 20 AU. No dust emission is detected between ~ 3 -- 15 AU. The oxygen emission seems also to come from a flared structure, however, the bulk of this emission is produced between ~ 1 -- 10 AU. This could indicate a lack of gas in the outer disk or could be due to chemical effects which reduce the abundance of OH -- the parent molecule of the observed [OI] emission -- further away from the star. The three systems, HD 179218, HD 135344 B and HD 101412, may form an evolutionary sequence: the disk initially flared becomes flat under the combined action of gas-dust decoupling, grain growth and dust settling.
We present high resolution 4.7 micron CO fundamental spectroscopy of V836 Tau, a young star with properties that are between those of classical and weak T Tauri stars and which may be dissipating its circumstellar disk. We find that the CO line profiles of V836 Tau are unusual in that they are markedly double-peaked, even after correcting for stellar photospheric absorption in the spectrum. This suggests that the CO emission arises from a restricted range of disk radii (< 0.5 AU), in contrast to the situation for most classical T Tauri stars where the CO emission extends out to much larger radii (~ 1-2 AU). We discuss whether the outer radius of the emission in V836 Tau results from the physical truncation of the disk or an excitation effect. We also explore how either of these hypotheses may bear on our understanding of disk dissipation in this system.
We present a catalog of 1,172,157 quasar candidates selected from the photometric imaging data of the Sloan Digital Sky Survey (SDSS). The objects are all point sources to a limiting magnitude of i=21.3 from 8417 sq. deg. of imaging from SDSS Data Release 6 (DR6). This sample extends our previous catalog by using the latest SDSS public release data and probing both UV-excess and high-redshift quasars. While the addition of high-redshift candidates reduces the overall efficiency (quasars:quasar candidates) of the catalog to ~80%, it is expected to contain no fewer than 850,000 bona fide quasars -- ~8 times the number of our previous sample, and ~10 times the size of the largest spectroscopic quasar catalog. Cross-matching between our photometric catalog and spectroscopic quasar catalogs from both the SDSS and 2dF Surveys, yields 88,879 spectroscopically confirmed quasars. For judicious selection of the most robust UV-excess sources (~500,000 objects in all), the efficiency is nearly 97% -- more than sufficient for detailed statistical analyses. The catalog's completeness to type 1 (broad-line) quasars is expected to be no worse than 70%, with most missing objects occurring at z<0.7 and 2.5<z<3.0. In addition to classification information, we provide photometric redshift estimates (typically good to Delta z +/- 0.3 [2 sigma]) and cross-matching with radio, X-ray, and proper motion catalogs. Finally, we consider the catalog's utility for determining the optical luminosity function of quasars and are able to confirm the flattening of the bright-end slope of the quasar luminosity function at z~4 as compared to z~2.
Gamma-ray bursts (GRBs) are a mixed class of sources consisting of, at least, the long duration and short-hard subclasses, the X-ray flashes, and the low-luminosity GRBs. In all cases, the release of enormous amounts of energy on a short timescale makes an energetic, relativistic or mildly relativistic fireball that expands until it reaches a coasting Lorentz factor determined by the amount of baryons mixed into the fireball. Radiation is produced when the blast wave interacts with the surrounding medium at an external shock, or when shell collisions dissipate kinetic energy at internal shocks. This series of notes is organized as follows: (1) The observational situation of GRBs is summarized; (2) Progenitor models of GRBs are described; (3) An overview of the the blast-wave physics used to model leptonic emissions is given; (4) GRB physics is applied to hadronic acceleration and ultra-high energy cosmic ray production; (5) Prospects for GRB physics and gamma-ray astronomy with the Fermi Gamma-ray Space Telescope (FGST, formerly GLAST), and space-based and ground-based observatories are considered. Also included are exercises and problems.
The rho Oph molecular cloud is undergoing intermediate-mass star formation. UV radiation from its hottest young stars heats and dissociates exposed layers, but does not ionize hydrogen. Only faint radiation from the Rayleigh-Jeans tail of ~10-100K dust is expected at wavelengths longwards of 3mm. Yet Cosmic Background Imager (CBI) observations reveal that the rho Oph W photo-dissociation region (PDR) is surprisingly bright at centimetre wavelengths. We searched for interpretations consistent with the WMAP radio spectrum, new ISO-LWS parallel mode images and archival Spitzer data. Dust-related emission mechanisms at 1 cm, as proposed by Draine & Lazarian, are a possibility. But a magnetic enhancement of the grain opacity at 1cm is inconsistent with the morphology of the dust column maps Nd and the lack of detected polarization. Spinning dust, or electric-dipole radiation from spinning very small grains (VSGs), comfortably explains the radio spectrum, although not the conspicuous absence from the CBI data of the infrared circumstellar nebulae around the B-type stars S1 and SR~3. Allowing for VSG depletion can marginally reconcile spinning dust with the data. As an alternative interpretation we consider the continuum from residual charges in rho Oph W, where most of carbon should be photoionised by the close binary HD147889 (B2IV, B3IV). Electron densities of ~100 cm^{-3}, or H-nucleus densities n_H > 1E6 cm^{-3}, are required to interpret rho Oph W as the CII Stromgren sphere of HD147889. However the observed steep and positive low-frequency spectral index would then require optically thick emission from an hitherto unobserved ensemble of dense clumps or sheets with a filling factor ~1E-4 and n_H ~ 1E7 cm^{-3}.
Context: The earliest phases of massive star formation are currently much debated. Aims. In an effort to make progress, we took a census of Class0-like protostellar dense cores in the NGC 3576 region, one of the nearest and most luminous embedded sites of high-mass star formation in the Galaxy. Methods: We used the P-ArTeMiS bolometer camera on the APEX telescope to produce the first 450-micron dust continuum map of the filamentary dense clump associated with NGC 3576. Results: Combining our 450-micron observations with existing data at other wavelengths, we have identified seven massive protostellar sources along the NGC 3576 filament and placed them in the M_env - L_bol evolutionary diagram for protostars. Conclusions: Comparison with theoretical evolutionary tracks suggests that these seven protostellar sources will evolve into massive stars with masses M* ~ 15-50 Msun. Four sources are classified as candidate high-mass Class 0 objects, two sources as massive Class I objects, and one source appears to be at an intermediate stage.
HH 262 is a group of emitting knots displaying an "hour-glass" morphology in the Halpha and [SII] lines, located 3.5' to the northeast of the young stellar object L1551-IRS5, in Taurus. We present new results of the kinematics and physical conditions of HH 262 based on Integral Field Spectroscopy covering a field of 1.5'x3', which includes all the bright knots in HH 262. These data show complex kinematics and significant variations in physical conditions over the mapped region of HH 262 on a spatial scale of <3". A new result derived from the IFS data is the weakness of the [NII] emission (below detection limit in most of the mapped region of HH 262), including the brightest central knots. Our data reinforce the association of HH 262 with the redshifted lobe of the evolved molecular outflow L1551-IRS5. The interaction of this outflow with a younger one, powered by L1551 NE, around the position of HH 262 could give rise to the complex morphology and kinematics of HH 262.
The question as to whether the distribution of radio-loudness in active galactic nuclei (AGN) is actually bimodal has been discussed extensively in the literature. Futhermore, there have been claims that radio-loudness depends on black hole mass and Eddington ratio. We investigate these claims using the low redshift broad line AGN sample of Greene & Ho (2007), which consists of 8434 objects at z < 0.35 from the Sloan Digital Sky Survey Fourth Data Release (SDSS DR4). We obtained radio fluxes from the Very Large Array Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey for the SDSS AGN. Out of the 8434 SDSS AGN, 821 have corresponding observed radio fluxes in the FIRST survey. We calculated the radio-loudness parameter (R) for all objects above the FIRST detection limit (1 mJy), and an upper limit to R for the undetected objects. Using these data, the question of radio bimodality is investigated for different subsets of the total sample. We find no clear demarcation between the radio-loud (RL, R > 10) and radio-quiet (RQ, R < 10) objects, but instead fill in a more radio-intermediate population in a continuous fashion for all subsamples. We find that 4.7% of the AGN in the flux-limited subsample are RL based on core radio emission alone. We calculate the radio-loud fraction (RLF) as both a function of black hole mass and Eddington ratio. The RLF decreases (from 13% to 2%) as Eddington ratio increases over 2.5 order of magnitude. The RLF is nearly constant (~5%) over 4 decades in black hole mass, except for an increase at masses greater than 10^8 solar masses. We find for the FIRST detected subsample that 367 of the RL AGN have black hole masses less than 10^8 solar masses, a large enough number to indicate that RL AGN are not a product of only the most massive black holes in the local universe.
The LMC clusters are unique templates of simple stellar population (SSP), being crucial to calibrate models describing the integral light as well as to test the stellar evolution theory. With this in mind we analyzed HST/WFPC2 (V, B--V) colour-magnitude diagrams (CMDs) of 15 populous LMC clusters with ages between ~0.3 Gyr and ~4 Gyr using different stellar evolutionary models (Padova, PEL or Pisa, BaSTI or Teramo). Following the approach described by Kerber, Santiago & Brocato (2007), we determined accurate and self-consistent physical parameters (age, metallicity, distance modulus and reddening) for each cluster by comparing the observed CMDs with synthetic ones. We found significant trends in the physical parameters due to the choice of stellar evolutionary model and treatment of convective core overshooting. In general, models that incorporate overshooting presented more reliable results than those that do not. Comparisons with the results found in the literature demonstrated that our derived metallicities are in good agreement with the ones from the spectroscopy of red giants. We also confirmed that, independent of the adopted stellar evolutionary library, the recovered 3D distribution for these clusters is consistent with a thick disk roughly aligned with the LMC disk as defined by field stars. Finally, we also provide new estimates of distance modulus to the LMC center, that are marginally consistent with the canonical value of 18.50.
MOST (Microvariability & Oscillations of STars) and ASAS (All Sky Automated Survey) observations have been used to characterize photometric variability of TW Hya on time scales from a fraction of a day to 7.5 weeks and from a few days to 8 years, respectively. The two data sets have very different uncertainties and temporal coverage properties and cannot be directly combined, nevertheless, they suggests a global variability spectrum with "flicker noise" properties, i.e. with amplitudes a ~ 1/sqrt(f), over >4 decades in frequency, in the range f = 0.0003 to 10 cycles per day (c/d). A 3.7 d period is clearly present in the continuous 11 day, 0.07 d time resolution, observations by MOST in 2007. Brightness extrema coincide with zero-velocity crossings in periodic (3.56 d) radial velocity variability detected in contemporaneous spectroscopic observations of Setiawan et al. (2008) and interpreted as caused by a planet. The 3.56/3.7 d periodicity was entirely absent in the second, four times longer MOST run in 2008, casting doubt on the planetary explanation. Instead, a spectrum of unstable single periods within the range of 2 - 9 days was observed; the tendency of the periods to progressively shorten was well traced using the wavelet analysis. The evolving periodicities and the overall flicker-noise characteristics of the TW Hya variability suggest a combination of several mechanisms, with the dominant ones probably related to the accretion processes from the disk around the star.
On the Earth, photosynthetic organisms are responsible for the production of nearly all of the oxygen in the atmosphere. On the land, vegetation reflects in the visible, leading to a red edge which has been proposed as a biosignature for life on extrasolar planets. However, in many regions of the Earth, and particularly where surface conditions are extreme, for example in hot and cold deserts, photosynthetic organisms can be driven into and under substrates where light is still sufficient for photosynthesis. These communities exhibit no detectable surface spectral signature. The same is true of the assemblages of photosynthetic organisms at more than a few meters depth in water bodies. These communities are widespread and dominate local photosynthetic productivity. We review known cryptic photosynthetic communities and their productivity. We use a radiative transfer model to link geomicrobiology with observational astronomy and calculate the disk-averaged spectra and identify detectable features that would result from a planet dominated by such a biota. The hypothetical cryptic photosynthesis worlds discussed here are Earth-analogs that would not exhibit a biological surface feature in the disc-averaged spectrum.
We present X-ray observations of the field containing Nova Puppis 1942 (CP
Pup) and Nova Puppis 1991 (V351 Pup), done with ASCA in 1998, and with
XMM-Newton in 2005. The X-ray and UV luminosity of CP Pup seem to have remained
approximately constant since the last X-ray observations of the 1980'ies, while
the optical luminosity has decreased. The X-ray properties of this nova are
explained by a high mass white dwarf accreting at low rate, in agreement with
the nova theory given the large amplitude and other characteristics of the 1942
outburst.
Assuming a distance of 1600 pc, the X-ray luminosity of CP Pup is L=2.2 x
10(33) erg/s in the 0.15-10 keV range covered with EPIC, compatible with a
magnetic system. The RGS grating spectrum shows a few prominent emission lines,
and it is fitted with a cooling flow with mass accretion rate mdot <= 1.6 x
10(-10) msol/year. We detected also the O VII complex at 21.6-21.8 A that does
not arise in the cooling flow. Most likely this feature originates in a wind or
in the nova shell. The RGS and EPIC spectra are fitted only with thermal models
with a very high shock temperature, T>60 keV, indicating a white dwarf with
M>1.1 M(sun). The X-ray flux is modulated with the spectroscopic period of 1.47
hours detected in the optical. Since CP Pup is not an eclipsing system, this is
better understood if magnetic accretion occurs: we discuss this possibility and
its implications in detail. V351 Pup (N Pup 1991) was detected with XMM-Newton,
but not with ASCA. It is a faint, non-super-soft X-ray source with luminosity
L(x) =~ 3 x 10(31) erg/s, a factor of 50 less than measured with ROSAT in 1993.
We study supersymmetric scenarios where the dark matter is the gaugino of an unbroken hidden U(1) which interacts with the visible world only via a small kinetic mixing with the hypercharge. Strong constraints on the parameter space can be derived from avoiding overclosure of the Universe and from requiring successful Big Bang Nucleosynthesis and structure formation. We find that for typical values of the mixing parameter, scenarios with neutralino NLSP are excluded, while scenarios with slepton NLSP are allowed when the mixing parameter lies in the range chi~O(10^(-13) - 10^(-10)). We also show that if the gravitino is the LSP and the hidden U(1) gaugino the NLSP, the bounds on the reheating temperature from long lived charged MSSM relics can be considerably relaxed and we comment on the signatures of these scenarios at future colliders. Finally, we discuss the case of an anomalously small mixing, chi<<10^(-16), where the neutralino becomes a decaying dark matter candidate, and derive constraints from gamma ray experiments.
We deal with a Yukawa-like long-range modified model of gravity (MOG) which recently allowed to successfully accommodate many astrophysical and cosmological features without resorting to dark matter. On Solar System scales MOG predicts retrograde secular precessions of the planetary longitudes of the perihelia \varpi whose existence has been put on the test here by taking the ratios of the observationally estimated Pitjeva's corrections to the standard Newtonian/Einsteinian perihelion precessions for different pairs of planets. It turns out that MOG, in the present form which turned out to be phenomenologically successful on astrophysical scales, is ruled out at more than 3sigma level in the Solar System. If and when other teams of astronomers will independently estimate their own extra-precessions of the perihelia it will be possible to repeat such a test.
The goal of the recently approved space-based LARES mission is to measure the general relativistic Lense-Thirring effect in the gravitational field of the spinning Earth at an about 1% accuracy by combining its node Omega with those of the existing LAGEOS and LAGEOS II laser-ranged satellites. In this paper we show that, in view of the lower altitude of LARES (h=1450 km) with respect to LAGEOS and LAGEOS II (h\approx 6000 km), the cross-coupling between the effect of the atmospheric drag, both neutral and charged, on the inclination of LARES and its classical node precession due to the Earth's oblateness may induce a 3-9% year^-1 systematic bias on the total relativistic precession. Since its extraction from the data will take about 5-10 years, such a perturbing effect may degrade the total accuracy of the test, especially in view of the large uncertainties in modeling the drag force.
We tested the effectiveness on learning of hands-on, night-time laboratories that challenged student misconceptions in a non-major introductory astronomy class at Rensselaer Polytechnic Institute. We present a new assessment examination used to assess learning in this study. We were able to increase learning, at the 8.0 sigma level, on one of the moon phase objectives that was addressed in a cloudy night activity. There is weak evidence of some improvement on a broader range of learning objectives. We show evidence that the overall achievement levels of the four sections of the class is correlated with the amount of clear whether the sections had for observing, even though the learning objectives were addressed primarily in activities that did not require clear skies. This last result should be confirmed with future studies. We describe our first attempt to cycle the students through different activity stations in an attempt to handle 18 students at a time in the laboratories, and lessons learned from this.
We discuss the cosmological consequences of QCD phase transition(s) on the early universe. We argue that our recent knowledge about the transport properties of quark-gluon plasma (QGP) should throw additional lights on the actual time evolution of our universe. Understanding the nature of QCD phase transition(s), which can be studied in lattice gauge theory and verified in heavy ion experiments, provides an explanation for cosmological phenomenon stem from early universe.
Links to: arXiv, form interface, find, astro-ph, recent, 0809, contact, help (Access key information)
Searches for companions of brown dwarfs by direct imaging probe mainly orbital separations > 3-10 AU. On the other hand, previous radial velocity surveys of brown dwarfs are mainly sensitive to separations smaller than 0.6 AU. It has been speculated if the peak of the separation distribution of brown dwarf binaries lies right in the unprobed range. Very recent work for the first time extends high-precision radial velocity surveys of brown dwarfs out to 3 AU (Joergens 2008, A&A). Based on more than six years UVES/VLT spectroscopy the binary frequency of brown dwarfs and (very) low-mass stars (M4.25-M8) in ChaI was determined: it is 18% for the whole sample and 10% for the subsample of ten brown dwarfs and VLMS (M < 0.1 Msun). Two spectroscopic binaries were confirmed, these are the brown dwarf candidate ChaHa8, and the low-mass star CHXR74. Since their orbital separations appear to be 1 AU or greater, the binary frequency at < 1 AU might be less than 10%. Now for the first time companion searches of (young) brown dwarfs cover the whole orbital separation range and the following observational constraints for models of brown dwarf formation can be derived: (i) the frequency of brown dwarf and very low-mass stellar binaries at < 3 AU is not significantly exceeding that at > 3 AU; i.e. direct imaging surveys do not miss a significant fraction of brown dwarf binaries; (ii) the overall binary frequency of brown dwarfs and very low-mass stars is 10-30 %; (iii) the decline of the separation distribution of brown dwarfs towards smaller separations seem to occur between 1 and 3 AU; (iv) the observed continuous decrease of the binary frequency from the stellar to the substellar regime is confirmed at < 3 AU providing further evidence for a continuous formation mechanism from low-mass stars to brown dwarfs.
We perform a global autocorrelation analysis of the Auger data with the aim to constrain the number density $n_s$ of ultrahigh energy cosmic ray (UHECR) sources, estimating at the same time the effect of the bias of UHECR sources and of the systematic energy scale uncertainty on $n_s$. The data show no significant small-scale clustering which may be explained by magnetic deflections over scales of a few degrees. The case of continuous, uniformly distributed sources is disfavored at 99% C.L. and the fit improves if the sources follow the large-scale structure of matter in the universe. The observed clustering starts to restrict the potential mechanisms accelerating UHECRs: Gamma-ray bursts as main UHECR sources are disfavored not only by energy considerations, but also because they require pervasive nG extragalactic magnetic fields to be consistent with the observed clustering, while active galactic nuclei fits well the deduced number density and luminosities.
We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these properties. We also note similar features in the power spectrum of the compressive component of velocity for supersonic MHD turbulence as in the velocity spectrum of an initially-spherical MHD blast wave, implying that the power law form does not rule out shocks, rather than a turbulent cascade, playing a significant role in the regulation of energy transfer between spatial scales.
The Orion Molecular Cloud 2/3 region (hereafter, OMC-2/3) and the reflection nebula NGC 1977 encompass a section of the Orion A molecular cloud undergoing vigorous star forming activity. One of the richest assemblages of protostars in the nearest 500 pc is seen in OMC-2/3, while NGC 1977 contains a cluster of over 100 young stars. In this review, we present a census of the protostars, pre-main sequence stars, and young brown dwarfs in these regions. These are identified through sub-millimeter surveys, far-red to near-infrared imaging and spectroscopy with ground-based telescopes, mid-infrared photometry from the Spitzer Space Telescope, and X-ray observations made with the Chandra X-ray Observatory. We present an overview of the distribution of molecular gas associated with these regions and the rich complex of shock heated nebulae created by the young stars interacting with the molecular gas. Finally, we discuss the relationship of OMC-2/3 and NGC 1977 to the neighboring Orion Nebula Cluster and the Orion OB1 association.
During the final phases of inspiral, a massive black hole (MBH) binary experiences a recoil due to the asymmetric emission of gravitational waves. We use recent results from numerical relativity simulations together with models of the assembly and growth of MBHs in hierarchical cosmologies, to study the dynamics, statistics, and observability of recoling MBHs. We find that, at redshift z<3, kicked non-rotating holes are typically found between 1 and 30 kpc from their galaxy centers, while rapidly rotating ones are typically between 10 and a few hundred kpc. A recoiling hole that carries an accretion disk may shine as an "off-nuclear AGN" while it moves away from the center of its host galaxy. We predict that, depending on the hole spin distribution and the duration of their active phase, a population of off-nuclear AGN may already be detectable at low and intermediate redshifts in present deep Hubble Space Telescope observations. The James Webb Space Telescope may discover tens of wandering AGN per square degree, most of them moving within their host halos on unbound trajectories.
In the CDM scenario, dark matter halos are assembled hierarchically from smaller subunits. A long-standing problem with this picture is that the number of sub-halos predicted by CDM simulations is orders of magnitudes higher than the known number of satellite galaxies in the vicinity of the Milky Way. A plausible way out of this problem could be that the majority of these sub-halos somehow have so far evaded detection. If such "dark galaxies" do indeed exist, gravitational lensing may offer one of the most promising ways to detect them. Dark matter sub-halos in the 1e6 - 1e10 solar mass range should cause strong gravitational lensing on (sub)milliarcsecond scales. We study the feasibility of a strong lensing detection of dark sub-halos by deriving the image separations expected for density profiles favoured by recent simulations and comparing these to the angular resolution of both existing and upcoming observational facilities. We find that there is a reasonable probability to detect sub-halo lensing effects in high resolution observations at radio wavelengths, such as produced by the upcoming VSOP-2 satellite, and thereby test the existence of dark galaxies.
We present an unbiased census of deeply embedded protostars in Perseus, Serpens, and Ophiuchus, assembled by combining large-scale 1.1 mm Bolocam continuum and Spitzer Legacy surveys. We identify protostellar candidates based on their mid-infrared properties, correlate their positions with 1.1 mm core positions, and construct well-sampled SEDs using our extensive wavelength coverage (lam=1.25-1100 micron). Source classification based on the bolometric temperature yields a total of 39 Class 0 and 89 Class I sources in the three cloud sample. We compare to protostellar evolutionary models using the bolometric temperature-luminosity diagram, finding a population of low luminosity Class I sources that are inconsistent with constant or monotonically decreasing mass accretion rates. This result argues strongly for episodic accretion during the Class I phase, with more than 50% of sources in a ``sub-Shu'' (dM/dt < 1e-6 Msun/yr) accretion state. Average spectra are compared to protostellar radiative transfer models, which match the observed spectra fairly well in Stage 0, but predict too much near-IR and too little mid-IR flux in Stage I. Finally, the relative number of Class 0 and Class I sources are used to estimate the lifetime of the Class 0 phase; the three cloud average yields a Class 0 lifetime of 1.7e5 yr, ruling out an extremely rapid early accretion phase. Correcting photometry for extinction results in a somewhat shorter lifetime (1.1e5 yr). In Ophiuchus, however, we find very few Class 0 sources (N(Class0)/N(ClassI)=0.1-0.2), similar to previous studies of that cloud. The observations suggest a consistent picture of nearly constant average accretion rate through the entire embedded phase, with accretion becoming episodic by at least the Class I stage, and possibly earlier.
We present the analysis of the variability of HD 170699, a COROT star showing the characteristics of a non evolutionary Delta Scuti star with high rotational velocity. There is a clear period of 10.45 c/d with 5.29 mmag amplitude in the y filter. From the data, it can be seen that the star shows multi-periodicity and it is necessary to add more frequencies to adjust the observations
We use the Fifth Data Release of the Sloan Digital Sky Survey to search for infall patterns around lower-mass galaxy clusters and to measure cluster mass profiles to large radii. In previous work, we analyzed infall patterns for an X-ray-selected sample of 72 clusters from the ROSAT All-Sky Survey. Here, we extend this approach to a sample of systems with smaller X-ray fluxes selected from the 400 Square Degree serendipitous survey of clusters in ROSAT pointed observations. We identify 16 systems with SDSS DR5 spectroscopy, search for infall patterns, and compute mass profiles out to 2-6 $\Mpc$ from the cluster centers with the caustic technique. No other mass estimation methods are currently available at such large radii for these low-mass systems, because the virial estimate requires dynamical equilibrium and the gravitational lensing signal is too weak. Despite the small masses of these systems, most display recognizable infall patterns. We use caustic and virial mass estimates to measure the scaling relations between different observables, extending these relations to smaller fluxes and luminosities than many previous surveys. Close inspection reveals that three of the systems are subclusters in the outskirts of larger clusters. A fourth system is apparently undergoing a group-group merger. These four merging systems represent the most extreme outliers in the scaling relations. Understanding cluster scaling relations is crucial for measuring cosmological parameters from clusters. The complex environments of our group sample suggest that great care must be taken in determining the properties of low-mass clusters and groups.
We have shown previously that many properties of accretion-powered millisecond pulsars, including the small oscillation amplitudes and nearly sinusoidal waveforms of most and the large, rapid phase variations of several, can be understood if their X-ray emitting areas are near the spin axis but wander as the accretion rate and structure of the inner disk vary. Here we show that this model can also explain the intermittent accretion-powered oscillations detected at the millisecond spin periods of three weakly magnetic accreting neutron stars. We show that movement of such emitting regions $\sim 10\arcdeg$ toward the spin equator can make a previously undetectable oscillation easily detectable, with an amplitude of a few percent. The first overtone of the spin frequency usually would not be detectable, in agreement with observations. This is the case for a wide range of emitting region sizes, beaming patterns, stellar masses and radii, and viewing directions. Intermittently detectable accretion-powered oscillations are more likely in stars that are more compact and rapidly spinning. In addition to explaining the appearance of detectable oscillations for short intervals in some accreting neutron stars with millisecond spin periods, this model explains why accretion-powered oscillations are difficult to detect in such stars and predicts that otherwise persistent accretion-powered oscillations may become undetectable for brief intervals in some stars. It also suggests mechanisms that could cause the appearance of accretion-powered oscillations in association with thermonuclear X-ray bursts.
The primary concern of this contribution is that accreting millisecond pulsars (AMXPs) show a much larger amount of information than is commonly believed. The three questions to be addressed are: 1. Is the apparent spin torque observed in AMXPs real ? 2. Why do we see correlations and anti-correlations between fractional amplitudes and timing residuals in some AMXPs ? 3. Why the timing residuals, the lightcurve and the 1Hz QPO in SAX J1808.4$-$3658 are related ?
We investigate the occurrence of a coronal dimming using a combination of high resolution spectro-polarimetric, spectral and broadband images which span from the deep photosphere into the corona. These observations reinforce the belief that coronal dimmings, or transient coronal holes as they are also known, are indeed the locations of open magnetic flux in the corona resulting from the launch of a CME. We will see that, as open magnetic regions, they must act just as coronal holes and be sources of the fast solar wind, but only temporarily. An inescapable question therefore arises - what impact does this source of fast wind have on the propagation and in-flight characteristics of the CME that initiates the coronal dimming in the first place?
We present the results of an extragalactic point source search using the five-year WMAP 41, 61 and 94 GHz (Q-, V- and W-band) temperature maps. This work is an extension of our point source search in the WMAP maps applying a CMB-free technique. An internal linear combination (ILC) map has been formed from the three-band maps, with the weights chosen to remove the CMB anisotropy signal as well as to favor a selection of flat-spectrum sources. We find 381 sources at the > 5 sigma level outside the WMAP point source detection mask in the ILC map, among which 90 are "new" (i.e., not present in the WMAP catalog). Source fluxes have been calculated and corrected for the Eddington bias. We have solidly identified 367 (96.3%) of our sources. The 1 sigma positional uncertainty is estimated to be 2.0'. The 14 unidentified sources could be either extended radio structure or obscured by Galactic emission. We have also applied the same detection process on simulated maps and found 364+/-21 detections on average. The recovered source distribution N(>S) agrees well with the simulation input, which proves the reliability of this method.
AXTAR is an X-ray observatory mission concept, currently under study in the U.S., that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for submillisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultradense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR's main instrument is a collimated, thick Si pixel detector with 2-50 keV coverage and 8 square meters collecting area. For timing observations of accreting neutron stars and black holes, AXTAR provides at least an order of magnitude improvement in sensitivity over both RXTE and Constellation-X. AXTAR also carries a sensitive sky monitor that acts as a trigger for pointed observations of X-ray transients and also provides continuous monitoring of the X-ray sky with 20 times the sensitivity of the RXTE ASM. AXTAR builds on detector and electronics technology previously developed for other applications and thus has combines high technical readiness and well understood cost.
The spin frequency distribution of accreting millisecond X-ray pulsars cuts off sharply above 730 Hz, well below the breakup spin rate for most neutron star equations of state. I review several different ideas for explaining this cutoff. There is currently considerable interest in the idea that gravitational radiation from rapidly rotating pulsars might act to limit spin up by accretion, possibly allowing eventual direct detection with gravitational wave interferometers. I describe how long-term X-ray timing of fast accreting millisecond pulsars like the 599 Hz source IGR J00291+5934 can test the gravitational wave model for the spin frequency limit.
We investigate the impact of both slow and fast polarization modulation strategies on the science return of upcoming ground-based experiments aimed at measuring the B-mode polarization of the CMB. Using simulations of the Clover experiment, we compare the ability of modulated and un-modulated observations to recover the signature of gravitational waves in the polarized CMB sky in the presence of a number of anticipated systematic effects. The general expectations that fast (but not slow) modulation is helpful in mitigating low-frequency detector noise, and that the additional redundancy in the projection of the instrument's polarization sensitivity directions onto the sky when modulating reduces the impact of instrumental polarization, are borne out by our simulations. Neither low-frequency polarized atmospheric fluctuations nor systematic errors in the polarization sensitivity directions are mitigated by modulation. Additionally, we find no significant reduction in the effect of pointing errors by modulation. For a Clover-like experiment, pointing jitter should be negligible but any systematic mis-calibration of the polarization coordinate reference system results in significant E-B mixing on all angular scales and will require careful control. We also stress the importance of combining data from multiple detectors in order to remove the effects of common-mode systematics (such as 1/f atmospheric noise) on the measured polarization signal. Finally we compare the performance of our simulated experiment with the predicted performance from a Fisher analysis. We find good agreement between the Fisher predictions and the simulations except for the very largest scales where the power spectrum estimator we have used introduces additional variance to the B-mode signal recovered from our simulations.
Peculiar velocity surveys have non-uniform spatial distributions of tracers, so that the bulk flow estimated from them does not correspond to that of a simple volume such as a sphere. Thus bulk flow estimates are generally not strictly comparable between surveys, even those whose effective depths are similar. In addition, the sparseness of typical surveys can lead to aliasing of small scale power into what is meant to be a probe of the largest scales. Here we introduce a new method of calculating bulk flow moments where velocities are weighted to give an optimal estimate of the bulk flow of an idealized survey, with the variance of the difference between the estimate and the actual flow being minimized. These "minimum variance" estimates can be designed to estimate the bulk flow on a particular scale with minimal sensitivity to small scale power, and are comparable between surveys. We compile all major peculiar velocity surveys and apply this new method to them. We find that most surveys we studied are highly consistent with each other. Taken together the data suggest that the bulk flow within a Gaussian window of radius 50 Mpc/h is 407 km/s toward l=287 and b=8. The large-scale bulk motion is consistent with predictions from the local density field. This indicates that there are significant density fluctuations on very large scales. A flow of this amplitude on such a large scale is not expected in the WMAP5-normalized LCDM cosmology, for which the predicted one-dimensional r.m.s. velocity is ~110 km/s. The large amplitude of the observed bulk flow favors the upper values of the WMAP5 error-ellipse, but even the point at the top of the WMAP5 95% confidence ellipse predicts a bulk flow which is too low compared tot hat observed at >98% confidence level.
Motivation: ESAs goal to detect biomarkers in Earth-like exoplanets in the
Habitable Zone requires theoretical groundwork that needs to be done to model
the influence of different parameters on the detectable biomarkers.
We need to model a wide parameter space (chemical composition, pressure,
evolution, interior structure and outgassing, clouds) to generate a grid of
models that inform our detection strategy as well as can help characterize the
spectra of the small rocky planets detected.
Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars or black holes. In the high energy regime of X- and gamma-rays, outbursts with variability time-scales of seconds and faster are routinely observed, e.g. in gamma-ray bursts or Soft Gamma Repeaters. In the optical, flaring activity on such time-scales has never been observed outside the prompt phase of GRBs. This is mostly due to the fact that outbursts with strong, fast flaring usually are discovered in the high-energy regime. Most optical follow-up observations of such transients employ instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the galactic transient SWIFT J195509.6+261406. Flaring of this kind has never previously been reported. Our optical light-curves are phenomenologically similar to high energy light-curves of Soft Gamma Repeaters and Anomalous X-ray Pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests similar emission processes may be at work, but in contrast to the other known magnetars with strong emission in the optical.
We propose to use a simple observable, the fractional area of "hot spots" in weak gravitational lensing mass maps which are detected with high significance, to determine background cosmological parameters. Because these high-convergence regions are directly related to the physical nonlinear structures of the universe, they derive cosmological information mainly from the nonlinear regime of density fluctuations. We show that in combination with future cosmic microwave background anisotropy measurements, this method can place constraints on cosmological parameters that are comparable to those from the redshift distribution of galaxy cluster abundances. The main advantage of the statistic proposed in this paper is that projection effects, normally the main source of uncertainty when determining the presence and the mass of a galaxy cluster, here serve as a source of information.
We present results of a 150 MHz survey of a field centered on Epsilon Eridani, undertaken with the Giant Metrewave Radio Telescope (GMRT). The survey covers an area with a diameter of 2 deg, has a spatial resolution of 30" and a noise level of 3.1 mJy at the pointing centre. These observations provide a deeper and higher resolution view of the 150 MHz radio sky than the 7C survey (although the 7C survey covers a much larger area). A total of 113 sources were detected, most are point-like, but 20 are extended. We present an analysis of these sources, in conjunction with the NVSS (at 1.4 GHz) and VLSS (at 74 MHz). This process allowed us to identify 5 Ultra Steep Spectrum (USS) radio sources that are candidate high redshift radio galaxies (HzRGs). In addition, we have derived the dN/dS distribution for these observations and compare our results with other low frequency radio surveys.
This paper makes the first attempt to determine positions of images by gravitational lensing due to an arbitrary number of coplanar masses without any symmetry on a plane, as a function of source and image positions. For this purpose, a perturbation scheme is formulated under a small mass-ratio approximation. Two main results of this paper are as follows. First, we investigate perturbative structures of a single-complex-variable polynomial, which has commonly used because of being analytic and apparently simple. Image positions are presented explicitly for binary lens systems up to the third order in mass ratios, for triples up to the second order and for arbitrary N point masses at the linear order. Thereby, we show that the single-complex-variable formalism contains not only physical roots but also unphysical ones that do not satisfy the lens equation. This result is consistent with a fact that the degree of the polynomial, namely the number of zeros, exceeds the maximum number of lensed images if N=3 (or more). Secondly, in order to avoid inclusions of unphysical roots, we propose a dual-complex-variables formalism, which is equivalent to the lens equation and thus non-analytic, is more useful at least at perturbative levels than the complex polynomial. Also using this new formalism, we present image positions perturbatively, which clarifies the dependence on parameters. Magnifications are also discussed.
We analyze a new gravitational lens, OAC-GL J1223-1239, serendipitously found in a deep I-band image of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The lens is a L_*, edge-on S0 galaxy at z=0.4656. The gravitational arc has a radius of 0.42 arcsec. We have determined the total mass and the dark matter (DM) fraction within the Einstein radius as a function of the lensed source redshift, which is presently unknown. For z ~ 1.3, which is in the middle of the redshift range plausible for the source according to some external constraints, we find the central velocity dispersion to be ~180 km/s. With this value, close to that obtained by means of the Faber-Jackson relation at the lens redshift, we compute a 30% DM fraction within the Einstein radius (given the uncertainty in the source redshift, the allowed range for the DM fraction is 25-35 % in our lensing model). When compared with the galaxies in the local Universe, the lensing galaxy, OAC-GL J1223-1239 seems to fall in the transition regime between massive DM dominated galaxies and lower-mass, DM deficient systems.
The eclipsing brown-dwarf binary system 2MASS J05352184-0546085 is a case sui generis. For the first time, it allows a detailed analysis of the individual properties of young brown dwarfs, in particular, masses, and radii, and the temperature ratio of the system components can be determined accurately. The system shows a "temperature reversal" with the more massive component being the cooler one, and both components are found to be active. We analyze X-ray images obtained by Chandra and XMM-Newton containing 2MASS J05352184-0546085 in their respective field of view. The Chandra observatory data show a clear X-ray source at the position of 2MASS J05352184-0546085, whereas the XMM-Newton data suffer from contamination from other nearby sources, but are consistent with the Chandra detection. No indications of flaring activity are found in either of the observations (together about 70 ks), and we thus attribute the observed flux to quiescent emission. With an X-ray luminosity of 3*10^{28} erg/s we find an L_X/L_{bol}-ratio close to the saturation limit of 10^{-3} and an L_{X}/L_{H\alpha}-ratio consistent with values obtained from low-mass stars. The X-ray detection of 2MASS J05352184-0546085 reported here provides additional support for the interpretation of the temperature reversal in terms of magnetically suppressed convection, and suggests that the activity phenomena of young brown dwarfs resemble those of their more massive counterparts.
A dynamical classification of the cosmic web is proposed. The large scale
environment is classified into four web types: voids, sheets, filaments and
knots. The classification is based on the evaluation of the deformation tensor,
i.e. the Hessian of the gravitational potential, on a grid. The classification
is based on counting the number of eigenvalues above a certain threshold,
lambda_th at each grid point, where the case of zero, one, two or three such
eigenvalues corresponds to void, sheet, filament or a knot grid point. The
collection of neighboring grid points, friends-of-friends, of the same web
attribute constitutes voids, sheets, filaments and knots as web objects.
A simple dynamical consideration suggests that lambda_th should be
approximately unity, upon an appropriate scaling of the deformation tensor. The
algorithm has been applied and tested against a suite of (dark matter only)
cosmological N-body simulations. In particular, the dependence of the volume
and mass filling fractions on lambda_th and on the resolution has been
calculated for the four web types. Also, the percolation properties of voids
and filaments have been studied.
Our main findings are: (a) Already at lambda_th = 0.1 the resulting web
classification reproduces the visual impression of the cosmic web. (b) Between
0.2 < lambda_th < 0.4, a system of percolated voids coexists with a net of
interconected filaments. This suggests a reasonable choice for lambda_th as the
parameter that defines the cosmic web. (c) The dynamical nature of the
suggested classification provides a robust framework for incorporating
environmental information into galaxy formation models, and in particular the
semi-analytical ones.
We investigate multi-dimensional universe with nonlinear scalar curvature terms to evaluate the probability of creation of primordial black holes. For this we obtain Euclidean instanton solution in two different topologies: (a) $S^{D-1}$ - topology which does not accommodate primordial black holes and (b) $S^1\times S^{D-2}$-topology which accommodates a pair of black holes. The probability for quantum creation of an inflationary universe with a pair of black holes has been evaluated assuming a gravitational action which is described by a polynomial function of scalar curvature with or without a cosmological constant ($\Lambda $) using the framework of semiclassical approximation of Hartle-Hawking boundary conditions. We discuss here a class of new gravitational instantons solution in the $R^4$-theory which are relevant for cosmological model building.
This article summarizes a Splinter Session at the Cool Stars XV conference in St. Andrews with 3 review and 4 contributed talks. The speakers have discussed various approaches to understand the structure and evolution of the gas component in protoplanetary disks. These ranged from observational spectroscopy in the UV, infrared and millimeter, through to chemical and hydrodynamical models. The focus was on disks around low-mass stars, ranging from classical T Tauri stars to transitional disks and debris disks. Emphasis was put on water and organic molecules, the relation to planet formation, and the formation of holes and gaps in the inner regions.
We have imaged the disc of the young star HL Tau using the VLA at 1.3 cm, with 0.08" resolution (as small as the orbit of Jupiter). The disc is around half the stellar mass, assuming a canonical gas-mass conversion from the measured mass in large dust grains. A simulation shows that such discs are gravitationally unstable, and can fragment at radii of a few tens of AU to form planets. The VLA image shows a compact feature in the disc at 65 AU radius (confirming the `nebulosity' of Welch et al. 2004), which is interpreted as a localised surface density enhancement representing a candidate proto-planet in its earliest accretion phase. If correct, this is the first image of a low-mass companion object seen together with the parent disc material out of which it is forming. The object has an inferred gas plus dust mass of approximately 14 M(Jupiter), similar to the mass of a proto-planet formed in the simulation. The disc instability may have been enhanced by a stellar flyby: the proper motion of the nearby star XZ Tau shows it could have recently passed the HL Tau disc as close as ~600 AU.
In real telescopes, the optical parameters evolve with time, and the degradation is often not uniform. This introduces variations in the image profile and therefore photo-centre displacements which, unless corrected, may result in astrometric errors. The effects induced on individual telescopes and interferometric arrays are derived by numerical implementation of a range of cases. The results are evaluated with respect to the potential impact on the most relevant experiments for high precision astrometry in the near future, i.e. Gaia, PRIMA and SIM, and to mitigation techniques applicable from design stage to calibrations.
We initiated digitization of the Moscow collection of astronomical plates using flatbed scanners. Techniques of photographic photometry of the digital images were applied, enabling an effective search for new variable stars. Our search for new variables among 140000 stars in the 10 x 5 degrees northern half of the field centered at 66 Oph, photographed with the Sternberg Institute's 40-cm astrograph in 1976--1995, gave 274 new discoveries, among them: 2 probable Population II Cepheids; 81 eclipsing variables; 5 high-amplitude Delta Scuti stars (HADSs); 82 RR Lyr stars; 62 red irregular variables and 41 red semiregular stars; 1 slow irregular variable not red in color. Light elements were determined for periodic variable stars. We detected about 30 variability suspects for follow-up CCD observations, confirmed 11 stars from the New Catalogue of Suspected Variable Stars, and derived new light elements for 2stars already contained in the General Catalogue of Variable Stars.
To minimize instrumentally induced systematic errors, cosmic microwave background (CMB) anisotropy experiments measure temperature differences across the sky using paires of horn antennas, temperature map is recovered from temperature differences obtained in sky survey through a map-making procedure. To inspect and calibrate residual systematic errors in recovered temperature maps is important as most previous studies of cosmology are based on these maps. By analyzing pixel-ring couping and latitude dependence of CMB temperatures, we find notable systematic deviation from CMB Gaussianity in released Wilkinson Microwave Anisotropy Probe (WMAP) maps. The detected deviation is hard to explain by any process in the early universe and can not be ignored for a precision cosmology study.
We present the results of an archival search for Trans-neptunian objects (TNOs) in an ecliptic field observed with Subaru in 2002. The depth of the search allowed us to find 20 new TNOs with magnitudes between R=24 and 27. We fit a double power law model to the data; the most likely values for the parameters are: alpha_1=0.73_{-0.09}^{+0.08}, alpha_2=0.20_{-0.14}^{+0.12}, sigma_{23}=1.46_{-0.12}^{+0.14} and R_{eq}=25.0_{-0.6}^{+0.8}. This is the most precise measurement of the break in the TNO luminosity function to date. The break in the size distribution corresponds to a diameter of D = 90\pm30 km assuming a 4% albedo.
Infrared-Faint Radio Sources (IFRSs) are a class of source which are bright at radio frequencies, but do not appear in deep infrared images. We report the detection of 14 IFRSs within the Spitzer extragalactic First Look Survey field, eight of which are detected near to the limiting magnitude of a deep R-band image of the region, at R ~ 24.5. Sensitive Spitzer Space Telescope images are stacked in order to place upper limits on their mid-infrared flux densities, and using recent 610-MHz and 1.4-GHz observations we find that they have spectral indices which vary between alpha = 0.05 and 1.38, where we define alpha such that S = S_0 nu^(- alpha), and should not be thought of as a single source population. We place constraints on the luminosity and linear size of these sources, and through comparison with well-studied local objects in the 3CRR catalogue demonstrate that they can be modelled as being compact (< 20 kpc) Fanaroff-Riley Class II (FRII) radio galaxies located at high redshift (z > 4).
We have mapped the \hcn emission from two spiral galaxies, NGC2903 and NGC3504 to study the gas properties in the bars. The HCN(1-0) emission is detected in the center and along the bar of NGC2903. The line ratio HCN(1-0)/CO(1-0) ranges from 0.07 to 0.12 with the lowest value in the center. The enhancement of HCN(1-0) emission along the bar indicates a higher fraction of dense molecular gas in the bar than at the center. The mass of dense molecular gas in the center (2.2x 10^7 Msun) is about 6 times lower than that in the bar (1.2x 10^8 Msun). The total star formation rate (SFR) is estimated to be 1.4 Msun/yr, where the SFR at the center is 1.9 times higher than that in the bar. The time scale of consumption of the dense molecular gas in the center is about 3x 10^7 yr which is much shorter than that in the bar of about 2 to 10 x 10^8 yr. The dynamical time scale of inflow of the gas from the bar to the center is shorter than the consumption time scale in the bar, which suggests that the star formation (SF) activity at the center is not deprived of fuel. In the bar, the fraction of dense molecular gas mass relative to the total molecular gas mass is twice as high along the leading edge than along the central axis of the bar. The \hcn emission has a large velocity dispersion in the bar, which can be attributed partially to the streaming motions indicative of shocks along the bar. In NGC3504, the HCN(2-0) emission is detected only at the center. The fraction of dense molecular gas mass in the center is about 15%. Comparison of the SFR with the predictions from numerical simulations suggest that NGC2903 harbors a young type B bar with a strong inflow of gas toward the center whereas NGC3504 has an older bar and has already passed the phase of inflow of gas toward the center.
We report the results of our project devoted to study the chemical enrichment history of the field population in the Magellanic Clouds using Ca II triplet spectroscopy.
The Cryogenic Dark Matter Search experiment (CDMS) employs low-temperature Ge and Si detectors to detect WIMPs via their elastic scattering interaction with the target nuclei. The current analysis of 397.8 kg-days Ge exposure resulted in zero observed candidate events, setting an upper limit on the spin-independent WIMP-nucleon cross-section of 6.6 x 10^{-44} cm^2 (4.6 x 10^{-44} cm^2, when previous CDMS Soudan data is included) at the 90 % confidence level for a WIMP mass of 60 GeV. To increase the sensitivity, new one inch thick detectors have been developed which will be used in the SuperCDMS phase. SuperCDMS 25kg will be operated at SNOLAB with an expected sensitivity on the spin-independent WIMP-nucleon elastic scattering cross-section of 1 x 10^{-45} cm^2.
In this work we perform the first test of a stellar spectral classification method (Stock & Stock 1999) by applying it to early type stars. The sample of stars are the members of the open cluster IC 2391 that have high-resolution spectra available in the UVES Project of Paranal Observatory. We show that, in general, absolute magnitudes $M_V$ and intrinsic colors $(B-V)_0$ can be recovered within the uncertainties stated in the original calibration ($\sim 0.4$ for the magnitudes and $\sim 0.03$ for the colors). This accuracy allows us to estimate distances and to infer membership of individual stars to obtain an average distance to the cluster of $156\pm 24$ pc, which is in good agreement with previous reported determinations. Finally, we identify and discuss the real strengths and limitations of this method and we suggest how it can be improved for future studies.
In June-September 2006 the Be/X-ray binary EXO 2030+375 experienced the second giant outburst since its discovery. The source was shown to have a complicated pulse-averaged X-ray spectral continuum with possible evidence of cyclotron absorption features. In this paper we present the first pulse-phase resolved analysis of the broad band X-ray spectra of EXO 2030+375 obtained with the INTEGRAL observatory close to the maximum and during the decay phase of the giant outburst. We report a strong variability of the spectrum with pulse phase. Alternative spectral continuum models are discussed. The dependence of the spectral parameters on pulse phase during the maximum of the outburst and the evolution of the pulse profiles with time are qualitatively consistent with the pulsar's emission diagram changing from the fan-beam geometry close to the maximum of the outburst to a combination of pencil and fan beams (of comparable intesities) at the end of the decay phase. Evidence of a cyclotron absorption line around 63 keV at the pulse phase interval preceeding the main peak of the pulse profile is present in the spectrum obtained close to the maximum of the outburst.
We present the first Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog. The catalog contains data from over 64,000 independent UVOT image observations of 229 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), and the Interplanetary Network (IPN). The catalog covers GRBs occurring during the period from 2005 Jan 17 to 2007 Jun 16 and includes ~86% of the bursts detected by the Swift Burst Alert Telescope (BAT). The catalog provides detailed burst positional, temporal, and photometric information extracted from each of the UVOT images. Positions for bursts detected at the 3-sigma-level are provided with a nominal accuracy, relative to the USNO-B1 catalog, of ~0.25 arcseconds. Photometry for each burst is given in three UV bands, three optical bands, and a 'white' or open filter. Upper limits for magnitudes are reported for sources detected below 3-sigma. General properties of the burst sample and light curves, including the filter-dependent temporal slopes, are also provided. The majority of the UVOT light curves, for bursts detected at the 3-sigma-level, can be fit by a single power-law, with a median temporal slope (alpha) of 0.96, beginning several hundred seconds after the burst trigger and ending at ~1x10^5 s. The median UVOT v-band (~5500 Angstroms) magnitude at 2000 s for a sample of "well" detected bursts is 18.02. The UVOT flux interpolated to 2000 s after the burst, shows relatively strong correlations with both the prompt Swift BAT fluence, and the Swift X-ray flux at 11 hours after the trigger.
We are conducting a high-resolution follow-up of candidate EMP stars extracted from the Sloan Digital Sky Survey (SDSS; York et al. 2000) using UVES at the VLT. Three of the programme stars, SDSS J0912+0216, SDSS J1036+1212 and SDSS J1349-0229, where deliberately targetted as CEMP stars since a strong $G$ band was evident from the SDSS spectra and the weakness of the Ca {\sc ii} K line testified their very low metallicity. The UVES high resolution follow-up confirmed the original findings ([Fe/H] $<-2.50$) and allowed a more detailed investigation of their chemical composition. We determined the carbon abundance from molecular lines which form in the outer layers of the stellar atmosphere. It is known that convection in metal-poor stars induces very low temperatures which are not predicted by classical 1D stellar atmospheres. To obtain the correct temperature structure, one needs full 3D hydrodynamical models. 3D carbon abundances were determined for all three stars, using CO$^5$BOLD 3D hydrodynamical model atmospheres. 3D effects on the carbon abundance are found to be quite significant for these stars, with 3D corrections of up to --0.7 dex. Two of the stars, SDSS J0912+0216 and SDSS J1349-0229 exhibit an overabundance of neutron capture elements which classifies them as CEMP-s. Star SDSS J1036+1212, instead belongs to the elusive class of CEMP-no/s stars, with enhanced Ba, but deficient Sr, of which it is the third member discovered to date.
We present a new stellar evolution code and a set of results, demonstrating
its capability at calculating full evolutionary tracks for a wide range of
masses and metallicities. The code is fast and efficient, and is capable of
following through all evolutionary phases, without interruption or human
intervention. It is meant to be used also in the context of modeling the
evolution of dense stellar systems, for performing live calculations for both
normal star models and merger-products.
The code is based on a fully implicit, adaptive-grid numerical scheme that
solves simultaneously for structure, mesh and chemical composition. Full
details are given for the treatment of convection, equation of state, opacity,
nuclear reactions and mass loss.
Results of evolutionary calculations are shown for a solar model that matches
the characteristics of the present sun to an accuracy of better than 1%; a $1
\Msun$ model for a wide range of metallicities; a series of models of stellar
populations I and II, for the mass range 0.25 to $64 \Msun$, followed from
pre-main-sequence to a cool white dwarf or core collapse. An initial final-mass
relationship is derived and compared with previous studies. Finally, we briefly
address the evolution of non-canonical configurations, merger-products of
low-mass main-sequence parents.
By extrapolating from observationally derived surface magnetograms of low-mass stars we construct models of their coronal magnetic fields and compare the 3D field geometry with axial multipoles. AB Dor, which has a radiative core, has a very complex field, whereas V374 Peg, which is completely convective, has a simple dipolar field. We calculate global X-ray emission measures assuming that the plasma trapped along the coronal loops is in hydrostatic equilibrium and compare the differences between assuming isothermal coronae, or by considering a loop temperature profiles. Our preliminary results suggest that the non-isothermal model works well for the complex field of AB Dor, but not for the simple field of V374 Peg.
Models of magnetospheric accretion on to classical T Tauri stars often assume that the stellar magnetic field is a simple dipole. Recent Zeeman-Doppler imaging studies of V2129 Oph and BP Tau have shown however that their magnetic fields are more complex. V2129 Oph is a high mass T Tauri star and despite its young age is believed to have already developed a radiative core. In contrast to this, the lower mass BP Tau is likely to be completely convective. As the internal structure and therefore the magnetic field generation process is different in both stars, it is of particular interest to compare the structure of their magnetic fields obtained by field extrapolation from magnetic surface maps. We compare both field structures to mulitpole magnetic fields, and calculate the disk truncation radius for both systems. We find that by considering magnetic fields with a realistic degree of complexity, the disk is truncated at, or within, the radius obtained for dipole fields.
We explore the implications of the QCD phase transition during the postbounce evolution of core-collapse supernovae. Using the MIT bag model for the description of quark matter and assuming small bag constants, we find that the phase transition occurs during the early postbounce accretion phase. This stage of the evolution can be simulated with general relativistic three-flavor Boltzmann neutrino transport. The phase transition produces a second shock wave that triggers a delayed supernova explosion. If such a phase transition happens in a future galactic supernova, its existence and properties should become observable as a second peak in the neutrino signal that is accompanied by significant changes in the energy of the emitted neutrinos. In contrast to the first neutronization burst, this second neutrino burst is dominated by the emission of anti-neutrinos because the electron-degeneracy is lifted when the second shock passes through the previously neutronized matter.
We study the collective kinklike normal modes of a system of several cylindrical loops using the T-matrix theory. Loops that have similar kink frequencies oscillate collectively with a frequency which is slightly different from that of the individual kink mode. On the other hand, if the kink frequency of a loop is different from that of the others, it oscillates individually with its own frequency. Since the individual kink frequency depends on the loop density but not on its radius for typical 1 MK coronal loops, a coupling between kink oscillations of neighboring loops take place when they have similar densities. The relevance of these results in the interpretation of the oscillations studied by \citet{schrijver2000} and \citet{verwichte2004}, in which transverse collective loop oscillations seem to be detected, is discussed. In the first case, two loops oscillating in antiphase are observed; interpreting this motion as a collective kink mode suggests that their densities are roughly equal. In the second case, there are almost three groups of tubes that oscillate with similar periods and therefore their dynamics can be collective, which again seems to indicate that the loops of each group share a similar density. All the other loops seem to oscillate individually and their densities can be different from the rest.
Soft gamma-ray repeaters (SGRs) are a rare type of gamma-ray transient sources that are ocasionally detected as bursts in the high-energy sky. They are thought to be produced by magnetars, young neutron stars with very strong magnetic fields of the order of 10^(14-15) G. Only three such objects are known in our Galaxy, and a fourth one is associated with the supernova remnant N49 in the Large Magellanic Cloud. In none of these cases has an optical counterpart to either the gamma-ray flares or the quiescent source been identified. Here we present multi-wavelength observations of a puzzling source, SWIFT J195509+261406, for which we detected more than 40 flaring episodes in the optical band over a time span of 3 days, plus a faint infrared flare 11 days later, after which it returned to quiescence. We propose that SWIFT J195509+261406 is a member of a subgroup of SGRs for which the long-term X-ray emission is transient in nature. Furthermore, it is the first SGR for which bursts have been detected in the optical and near-infrared bands and maybe the link between the "persistent" SGRs and the dim isolated neutron stars.
The first metal enrichment in the universe was made by supernova (SN) explosions of population (Pop) III stars. The trace remains in abundance patterns of extremely metal-poor (EMP) stars. We investigate the properties of nucleosynthesis in Pop III SNe by means of comparing their yields with the abundance patterns of the EMP stars. We focus on (1) jet-induced SNe with various energy deposition rates [$\dot{E}_{\rm dep}=(0.3-1500)\times10^{51}{\rm ergs s^{-1}}$], and (2) SNe of stars with various main-sequence masses ($M_{\rm ms}=13-50M_\odot$) and explosion energies [$E=(1-40)\times10^{51}$ergs]. The varieties of Pop III SNe can explain varieties of the EMP stars: (1) higher [C/Fe] for lower [Fe/H] and (2) trends of abundance ratios [X/Fe] against [Fe/H].
We study the acoustic properties of the solar chromosphere in the high-frequency regime using a time sequence of velocity measurements in the chromospheric Ca II 854.2 nm line taken with the Interferometric Bidimensional Spectrometer (IBIS). We concentrate on quiet-Sun behavior, apply Fourier analysis, and characterize the observations in terms of the probability density functions (PDFs) of velocity increments. We confirm the presence of significant oscillatory fluctuation power above the cutoff frequency and find that it obeys a power-law distribution with frequency up to our 25 mHz Nyquist limit. The chromospheric PDFs are non-Gaussian and asymmetric and they differ among network, fibril, and internetwork regions. This suggests that the chromospheric high-frequency power is not simply the result of short-period waves propagating upward from the photosphere but rather is the signature of turbulence generated within the chromosphere from shock oscillations near the cutoff frequency. The presence of this pervasive and broad spectrum of motions in the chromosphere is likely to have implications for the excitation of coronal loop oscillations.
Data from the power output of the radioisotope thermoelectric generators aboard the Cassini spacecraft are used to test the conjecture that small deviations observed in terrestrial measurements of the exponential radioactive decay law are correlated with the Earth-Sun distance. No significant deviations from exponential decay are observed over a range of 0.7 - 1.6 A.U. A 90% Cl upper limit of 0.84 x 10^-4 is set on a term in the decay rate of Pu-238 proportional to 1/R^2 and 0.99 x 10^-4 for a term proportional to 1/R.
[ABRIDGED] We have determined carbon abundances for 51 dwarf stars and
manganese abundances for 95 dwarf stars in two distinct and well defined
stellar populations - the Galactic thin and thick disks. As these two
populations have different chemical histories we have been able to, through a
differential abundance analysis using high-resolution spectra, constrain the
formation sites for carbon and manganese in the Galactic disk(s).
The analysis of carbon is based on the forbidden [C I] line at 872.7 nm which
is an abundance indicator that is insensitive to errors in the stellar
atmosphere parameters. Combining these data with our previously published
oxygen abundances, based on the forbidden [O I] line at 630.0 nm, we can form
very robust [C/O] ratios that we then used to investigate the origin of carbon
and the chemical evolution of the Galactic thin and thick disks..... Our
interpretation of our abundance trends is that the sources that are responsible
for the carbon enrichment in the Galactic thin and thick disks have operated on
a time-scale very similar to those that are responsible for the Fe and Y
enrichment (i.e., SNIa and AGB stars, respectively).
For manganese, when comparing our Mn abundances with O abundances for the
same stars we find that the abundance trends in the stars with kinematics
typical of the thick disk can be explained by metallicity dependent yields from
SN II. Furthermore, the [Mn/O] versus [O/H] trend in the halo is flat. We
conclude that the simplest interpretation of our data is that manganese most
likely is produced in SN II and that the Mn yields for such SNae must be
metallicity dependent.
IC 2144 is a small reflection nebula located in the zone of avoidance near the Galactic anticenter. It has been investigated here largely on the basis of Keck/HIRES optical spectroscopy (R ~ 48,000) and a SpeX spectrogram in the near-IR (R = 2000) obtained at the NASA IRTF. The only star in the nebula that is obvious in the optical or near-IR is the peculiar emission-line object MWC 778 (V = 12.8), which resembles a T Tauri star in some respects. What appear to be F- or G-type absorption features are detectable in its optical region under the very complex emission line spectrum; their radial velocity agrees with the CO velocity of the larger cloud in which IC 2144 is embedded. There are significant differences between the spectrum of the brightest area of the nebula and of MWC 778, the presumed illuminator, an issue discussed in some detail. The distance of IC 2144 is inferred to be about 1.0 kpc by reference to other star-forming regions in the vicinity. The extinction is large, as demonstrated by [Fe II] emission line ratios in the near-IR and by the strength of the diffuse interstellar band spectrum; a provisional value of A_V of 3.0 mag was assumed. The SED of MWC 778 rises steeply beyond about 1 $\mu$m, with a slope characteristic of a Class I source. Integration of the flux distribution leads to an IR luminosity of about 510 L_solar. If MWC 778 is indeed a F- or G-type pre--main-sequence star several magnitudes above the ZAMS, a population of faint emission Halpha stars would be expected in the vicinity. Such a search, like other investigations that are recommended in this paper, has yet to be carried out.
We report on the results of a long term X-ray monitoring campaign of the galactic binary LS I +61 303 performed by the Rossi X-ray Timing Explorer. This dataset consists of 1 ks pointings taken every other day between 2007 August 28 until 2008 February 2. The observations covered six full cycles of the 26.496 day binary period and constitute the largest continuous X-ray monitoring dataset on LS I +61 303 to date with this sensitivity. There is no statistically strong detection of modulation of flux or spectral index with orbital phase; however, we do find a strong correlation between flux and spectral index, with the spectrum becoming harder at higher fluxes. The dataset contains three large flaring episodes, the largest of these reaching a flux level of 7.2(+0.1,-0.2)*10^-11 ergs cm^-2 s^-1 in the 2-10 keV band, which is a factor of three times larger than flux levels typically seen in the system. Analysis of these flares shows the X-ray emission from LS I +61 303 changing by up to a factor of six over timescales of several hundred seconds as well as doubling times as fast as 2 seconds. This is the fastest variability ever observed from LS I +61 303 at this wavelength and places constraints on the size of the X-ray emitting region.
Exoplanetary transit and stellar oscillation surveys require a very high precision photometry. The instrumental noise has therefore to be minimized. First, we perform a semi-analytical model of different noise sources. We show that the noise due the CCD electrodes can be overcome using a Gaussian PSF (Point Spread Function) of full width half maximum larger than 1.6 pixels. We also find that for a PSF size of a few pixels, the photometric aperture has to be at least 2.5 times larger than the PSF full width half maximum. Then, we compare a front- with a back-illuminated CCD through a Monte-Carlo simulation. Both cameras give the same results for a PSF full width half maximum larger than 1.5 pixels. All these simulations are applied to the A STEP (Antarctica Search for Transiting Extrasolar Planets) project. As a result, we choose a front-illuminated camera for A STEP because of its better resolution and lower price, and we will use a PSF larger than 1.6 pixels.
We study gravito-magnetic effects in the Palatini formalism of f(R) gravity. On using the Kerr-de Sitter metric, which is a solution of f(R) field equations, we calculate the impact of f(R) gravity on the gravito-magnetic precession of an orbiting gyroscope. We show that, even though an $f(R)$ contribution is present in principle, its magnitude is negligibly small and far to be detectable in the present (like GP-B) and foreseeable space missions or observational tests around the Earth.
We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the existence of an exactly massless dilaton leads to the evolution of the universe supported by present observations: inflation in the past, followed by the radiation and matter dominated stages and accelerated expansion at present. All mass scales in this type of theories come from one and the same source.
Links to: arXiv, form interface, find, astro-ph, recent, 0809, contact, help (Access key information)
We study three high-redshift galaxies: Lyman break galaxies at z~3 (LBGs), optically selected star-forming galaxies at z~2 (BXs), and distant red galaxies at z~2 (DRGs).Our galaxy formation model simultaneously reproduce the abundances, the redshift distributions and the clustering of all three observed populations. The star formation rates (SFRs) of model LBGs and BXs are lower than those quoted for the real samples, reflecting different initial mass functions and scatter in model dust properties. About 85% of model galaxies selected as DRGs are star-forming, with SFRs ranging up to $\sim10^2M_\odot$/yr. Model LBGs, BXs and DRGs together account for less than half of all star formation over the range 1.5<z<3.2. Model BXs have metallicities which agree roughly with observation, but model LBGs are only slightly more metal-poor, in disagreement with recent observational results. The model galaxies are predominantly disk-dominated. About 30% of model galaxies with $M>10^{11}M_\odot$ are classified as LBGs or BXs at the relevant redshifts, while 65% are classified as DRGs. Almost all model LBGs and BXs are the central galaxies, but about a quarter of DRGs are satellites. Half of all LBG descendants at z=2 would be identified as BX's, but very few as DRGs. Clustering increases with decreasing redshift for descendants of all three populations, becoming stronger than that of $L^*$ galaxies by z=0, when many have become satellite galaxies. Their stellar mass growth is dominated by star formation until z~1 and thereafter by mergers. Most LBGs and DRGs end up as red ellipticals, while BXs have a more varied fate. 99% of local galaxies with $M>10^{11.5}M_\odot$ are predicted to have at least one LBG/BX/DRG progenitor, and over 70% above $10^{11}M_\odot$. (abbreviated)
We present the results of a Spitzer Infrared Spectrograph (IRS) survey of 24um-selected luminous infrared galaxies (LIRGs, L_IR > 10^11 L_sun) in the rich cluster Cl0024+16 at z=0.4. Optically, these LIRGs resemble unremarkable spiral galaxies with e(a)/e(c) spectral classifications and [Oii]-derived star formation rates (SFRs) of <2 M_sun/yr, generally indistinguishable from the 'quiescent' star forming population in the cluster. Our IRS spectra show that the majority of the 24um-detected galaxies exhibit polycyclic aromatic hydrocarbon (PAH) emission with implied SFRs ~30-60 M_sun/yr, with only one (<10%) of the sample displaying unambiguous evidence of an active galactic nucleus in the mid-infrared. This confirms the presence of a large population of obscured starburst galaxies in distant clusters, which comprise the bulk of the star formation occurring in these environments at z~0.5. We suggest that, although several mechanisms could be at play, these dusty starbursts could be the signature of an important evolutionary transition converting gas-rich spiral galaxies in distant clusters into the passive, bulge-dominated lenticular galaxies that become increasingly abundant in the cores of rich clusters in the ~4Gyr to the present day.
The stellar masses, mean ages, metallicities, and star formation histories of galaxies are now commonly estimated via stellar population synthesis (SPS) techniques. SPS relies on stellar evolution calculations from the main sequence to stellar death, stellar spectral libraries, phenomenological dust models, and stellar initial mass functions (IMFs). The present work is the first in a series that explores the impact of uncertainties in key phases of stellar evolution and the IMF on the derived physical properties of galaxies and the expected luminosity evolution for a passively evolving set of stars. A Monte-Carlo Markov-Chain approach is taken to fit near-UV through near-IR photometry of a representative sample of low- and high-redshift galaxies with this new SPS model. Significant results include the following: 1) including uncertainties in stellar evolution, stellar masses at z~0 carry errors of ~0.3 dex at 95% CL with little dependence on luminosity or color, while at z~2, the masses of bright red galaxies are uncertain at the ~0.6 dex level; 2) either current stellar evolution models, current observational stellar libraries, or both, do not adequately characterize the metallicity-dependence of the thermally-pulsating asymptotic giant branch phase; 3) conservative estimates on the uncertainty of the slope of the IMF in the solar neighborhood imply that luminosity evolution per unit redshift is uncertain at the ~0.4 mag level in the K-band, which is a substantial source of uncertainty for interpreting the evolution of galaxy populations across time; 4) The more plausible assumption of a distribution of stellar metallicities, rather than a fixed value as is usually assumed, can have significant effects on the interpretation of colors blueward of the V-band. (ABRIDGED)
Gravitational wave emission by coalescing black holes (BHs) kicks the remnant BH with a typical velocity of hundreds of km/s. This velocity is sufficiently large to remove the remnant BH from a low-mass galaxy but is below the escape velocity from the Milky Way (MW) galaxy. If central BHs were common in the galactic building blocks that merged to make the MW, then numerous BHs that were kicked out of low-mass galaxies should be freely floating in the MW halo today. We use a large statistical sample of possible merger tree histories for the MW to estimate the expected number of recoiled BH remnants present in the MW halo today. We find that hundreds of BHs should remain bound to the MW halo after leaving their parent low-mass galaxies. Each BH carries a compact cluster of old stars that populated the core of its original host galaxy. Using the time-dependent Fokker-Planck equation, we find that present-day clusters are ~<1 pc in size, and their central bright regions should be unresolved in most existing sky surveys. These compact systems are distinguishable from globular clusters by their internal (Keplerian) velocity dispersion greater than one hundred km/s and their high mass-to-light ratio owing to the central BH. An observational discovery of this relic population of star clusters in the MW halo, would constrain the formation history of the MW and the dynamics of BH mergers in the early Universe. A similar population should exist around other galaxies, and may potentially be detectable in M31 and M33.
In HST Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in the Magellanic Clouds centered on background quasars. We used these data to determine the proper motions of the LMC and SMC to better than 5% and 15% respectively. The results had a number of unexpected implications for the Milky Way-LMC-SMC system. The implied three-dimensional velocities were larger than previously believed and close to the escape velocity in a standard 10^12 solar mass Milky Way dark halo, implying that the Clouds may be on their first passage. Also, the relative velocity between the LMC and SMC was larger than expected, leaving open the possibility that the Clouds may not be bound to each other. To further verify and refine our results we requested an additional epoch of data in Cycle 16 which is being executed with WFPC2/PC due to the failure of ACS. We present the results of an ongoing analysis of these WFPC2 data which indicate good consistency with the two-epoch results.
The HST proper motion (PM) measurements of the Clouds have severe implications for their interaction history with the Milky Way (MW) and with each other. The Clouds are likely on their first passage about the MW and the SMC's orbit about the LMC is better described as quasi-periodic rather than circular. Binary L/SMC orbits that satisfy observational constraints on their mutual interaction history (e.g. the formation of the Magellanic Bridge during a collision between the Clouds ~300 Myr ago) can be located within 1 sigma of the mean PMs. However, these binary orbits are not co-located with the Magellanic Stream (MS) when projected on the plane of the sky and the line-of-sight velocity gradient along the LMC's orbit is significantly steeper than that along the MS. These combined results ultimately rule out a purely tidal origin for the MS: tides are ineffective without multiple pericentric passages and can neither decrease the velocity gradient nor explain the offset stream in a polar orbit configuration. Alternatively, ram pressure stripping of an extended gaseous disk may naturally explain the deviation. The offset also suggests that observations of the little-explored region between RA 21h and 23h are crucial for characterizing the full extent of the MS.
We present high resolution (R=25,000-35,000) K-band spectroscopy of two young stars, MWC 480 and V1331 Cyg. Earlier spectrally dispersed (R=230) interferometric observations of MWC 480 indicated the presence of an excess continuum emission interior to the dust sublimation radius, with a spectral shape that was interpreted as evidence for hot water emission from the inner disk of MWC 480. Our spectrum of V1331 Cyg reveals strong emission from CO and hot water vapor, likely arising in a circumstellar disk. In comparison, our spectrum of MWC 480 appears mostly featureless. We discuss possible ways in which strong water emission from MWC 480 might go undetected in our data. If strong water emission is in fact absent from the inner disk, as our data suggest, the continuum excess interior to the dust sublimation radius that is detected in the interferometric data must have another origin. We discuss possible physical origins for the continuum excess.
We review our understanding of the kinematics of the LMC and the SMC, and their orbit around the Milky Way. The line-of-sight velocity fields of both the LMC and SMC have been mapped with high accuracy using thousands of discrete traces, as well as HI gas. The LMC is a rotating disk for which the viewing angles have been well-established using various methods. The disk is elliptical in its disk plane. The disk thickness varies depending on the tracer population, with V/sigma ranging from 2-10 from the oldest to the youngest population. For the SMC, the old stellar population resides in a spheroidal distribution with considerable line-of-sight depth and low V/sigma. Young stars and HI gas reside in a more irregular rotating disk. Mass estimates based on the kinematics indicate that each Cloud is embedded in a dark halo. Proper motion measurements with HST show that both galaxies move significantly more rapidly around the Milky Way than previously believed. This indicates that for a canonical 10^12 solar mass Milky Way the Clouds are only passing by us for the first time. Although a higher Milky Way mass yields a bound orbit, this orbit is still very different from what has been previously assumed in models of the Magellanic Stream. Hence, much of our understanding of the history of the Magellanic System and the formation of the Magellanic Stream may need to be revised. The accuracy of the proper motion data is insufficient to say whether or not the LMC and SMC are bound to each other, but bound orbits do exist within the proper motion error ellipse.
Photometric calibration to 5% accuracy is frequently needed at arbitrary celestial locations; however, existing all-sky astronomical catalogs do not reach this accuracy and time consuming photometric calibration procedures are required. I fit the Hipparcos B_T and V_T magnitudes along with the 2MASS J, H, and K magnitudes of Tycho-2 catalog-stars with stellar spectral templates. From the best fit spectral template derived for each star, I calculate the synthetic SDSS griz magnitudes and constructed an all-sky catalog of griz magnitudes for bright stars (V<12). Testing this method on SDSS photometric telescope observations, I find that the photometric accuracy for a single star is usually about 0.12, 0.12, 0.10 and 0.08 mag (1 sigma), for the g, r, i, and z-bands, respectively. However, by using ~10 such stars, the typical errors per calibrated field (systematic + statistical) can be reduced to about 0.04, 0.03, 0.02, and 0.02,mag, in the g, r, i, and z-bands, respectively. Therefore, in cases for which several calibration stars can be observed in the field of view of an instrument, accurate photometric calibration is possible.
A soft ultraviolet radiation field, 10.2 eV < E <13.6 eV, that permeates neutral intergalactic gas during the Epoch of Reionization (EoR) excites the 2p (directly) and 2s (indirectly) states of atomic hydrogen. Because the 2s state is metastable, the lifetime of atoms in this level is relatively long, which may cause the 2s state to be overpopulated relative to the 2p state. It has recently been proposed that for this reason, neutral intergalactic atomic hydrogen gas may be detected in absorption in its 3-cm fine-structure line (2s_1/2 -> 2p_3/2) against the Cosmic Microwave Background out to very high redshifts. In particular, the optical depth in the fine-structure line through neutral intergalactic gas surrounding bright quasars during the EoR may reach tau~1e-5. The resulting surface brightness temperature of tens of micro K (in absorption) may be detectable with existing radio telescopes. Motivated by this exciting proposal, we perform a detailed analysis of the transfer of Lyman beta,gamma,delta,... radiation, and re-analyze the detectability of the fine-structure line in neutral intergalactic gas surrounding high-redshift quasars. We find that proper radiative transfer modeling causes the fine-structure absorption signature to be reduced tremendously to tau< 1e-10. We therefore conclude that neutral intergalactic gas during the EoR cannot reveal its presence in the 3-cm fine-structure line to existing radio telescopes.
We present results from our X-ray data analysis of the SNR G330.2+1.0 and its CCO, CXOU J160103.1--513353 (J1601). Using our XMM-Newton and Chandra observations, we find that the X-ray spectrum of J1601 can be described by neutron star atmosphere models (T ~ 2.5--3.7 MK). Assuming the distance of d ~ 5 kpc for J1601 as estimated for SNR G330.2+1.0, a small emission region of R ~ 1--2 km is implied. X-ray pulsations previously suggested by Chandra are not confirmed by the XMM-Newton data. However, our timing analysis of the XMM-Newton data is limited by poor photon statistics, and thus pulsations with a relatively low amplitude (i.e., an intrinsic pulsed-fraction < 40%) cannot be ruled out. Our results indicate that J1601 is a CCO similar to that in the Cassiopeia A SNR.X-ray emission from SNR G330.2+1.0 is dominated by power law continuum (Gamma ~ 2.1--2.5) which primarily originates from thin filaments along the boundary shell. This X-ray spectrum implies synchrotron radiation from shock-accelerated electrons with an exponential roll-off frequency ~ 2--3 x 10^17 Hz. For the measured widths of the X-ray filaments (D ~ 0.3 pc) and the estimated shock velocity (v_s ~ a few x 10^3 km s^-1), a downstream magnetic field B ~ 10--50 $\mu$G is derived. The estimated maximum electron energy E_max ~ 27--38 TeV suggests that G330.2+1.0 is a candidate TeV gamma-ray source. We detect faint thermal X-ray emission in G330.2+1.0. We estimate a low preshock density n_0 ~ 0.1 cm^-3, which suggests a dominant contribution from an inverse Compton mechanism (than the proton-proton collision) to the prospective gamma-ray emission. Follow-up deep radio, X-ray, and gamma-ray observations will be essential to reveal the details of the shock parameters and the nature of particle accelerations in this SNR.
Our recent discoveries of magnetic fields in a small number of Herbig Ae/Be (HAeBe) stars, the evolutionary progenitors of main sequence A/B stars, raise new questions about the origin of magnetic fields in the intermediate mass stars. The favoured fossil field hypothesis suggests that a few percent of magnetic pre-main sequence A/B stars should exhibit similar magnetic strengths and topologies to the magnetic Ap/Bp stars. In this talk I will present the methods that we have used to characterise the magnetic fields of the Herbig Ae/Be stars, as well as our first conclusions on the origin of magnetism in intermediate-mass stars.
We investigate the effect of a finite source on the planetary-lensing signals of high-magnification events. From this, we find that the dependency of the finite-source effect on the caustic shape is weak and perturbations survive even when the source is substantially bigger than the caustic. Specifically, we find that perturbations with fractional magnification excess $\geq 5%$ survive when the source star is roughly 4 times bigger than the caustic. We also find characteristic features that commonly appear in the perturbation patterns of planetary lens systems affected by severe finite-source effect and thus can be used for the diagnosis of the existence of a companion. These features form in and around a circle with its center located at the caustic center and a radius corresponding to that of the source star. The light curve of an event where the source crosses these features will exhibit a distinctive signal that is characterized by short-duration perturbations of either positive or negative excess and a flat residual region between these short-duration perturbations.
We report on the discovery of HAT-P-10b, the lowest mass (0.46 +/- 0.03 MJ) transiting extrasolar planet (TEP) discovered to date by transit searches. HAT-P-10b orbits the moderately bright V=11.89 K dwarf GSC 02340-01714, with a period P = 3.7224690 +/- 0.0000067 d, transit epoch Tc = 2454729.90631 +/- 0.00030 (BJD) and duration 0.1100 +/- 0.0015 d. HAT-P-10b has a radius of 1.05 +(0.05)-(0.03) RJ yielding a mean density of 0.498+/-0.064 g cm^-3 . Comparing these observations with recent theoretical models we find that HAT-P-10 is consistent with a ~4.5 Gyr, coreless, pure hydrogen and helium gas giant planet. With an equilibrium temperature of Teq = 1030 +(26)-(19)K, HAT-P-10b is one of the coldest TEPs. Curiously, its Safronov number Theta = 0.047 +/- 0.003 falls close to the dividing line between the two suggested TEP populations.
The science case for FIR/Submm surveys of the extragalactic sky to be carried from Dome C are reviewed. The main questions concerning the formation and evolution of galaxies making up the CIRB are outlined and opportunities to exploit Dome C unique observing conditions through single-dish observations are discussed.
The 16OH/18OH and OD/OH isotope ratios are measured in the Oort-Cloud comet C/2002 T7 (LINEAR) through ground-based observations of the OH ultraviolet bands at 3063 A (0,0) and 3121 A (1,1) secured with the Very Large Telescope (VLT) feeding the Ultraviolet-Visual Echelle Spectrograph (UVES). From the 16OH/18OH ratio, we find 16O/18O = 425 +/- 55, equal within the uncertainties to the terrestrial value and to the ratio measured in other comets, although marginally smaller. We also estimate OD/OH from which we derive D/H = 2.5 +/- 0.7 10-4 in water. This value is compatible with the water D/H ratios evaluated in other comets and marginally higher than the terrestrial value.
The zonal flow in Jupiter's upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of the atmosphere or intrinsic heat fluxes emanating from the deep interior; however, they do not reproduce all large-scale features of Jupiter's jets and thermal structure. Here it is shown that the difficulties in accounting for Jupiter's jets and thermal structure resolve if the effects of differential radiative heating and intrinsic heat fluxes are considered together, and if upper-tropospheric dynamics are linked to a magnetohydrodynamic (MHD) drag that acts deep in the atmosphere. Baroclinic eddies generated by differential radiative heating can account for the off-equatorial jets; meridionally propagating equatorial Rossby waves generated by intrinsic convective heat fluxes can account for the equatorial superrotation. The zonal flow extends deeply into the atmosphere, with its speed changing with depth, up to depths at which the MHD drag acts. The theory is supported by simulations with an energetically consistent general circulation model of Jupiter's outer atmosphere. A simulation that incorporates differential radiative heating and intrinsic heat fluxes reproduces Jupiter's observed jets and thermal structure and makes testable predictions about as-yet unobserved aspects thereof. A control simulation that incorporates only differential radiative heating but not intrinsic heat fluxes produces off-equatorial jets but no equatorial superrotation; another control simulation that incorporates only intrinsic heat fluxes but not differential radiative heating produces equatorial superrotation but no off-equatorial jets.
Supernova remnant (SNR) Kes 69 is morphologically characterized by the brightened radio, infrared, and X-ray emission on the southeastern rim, with the 1720 MHz OH masers detected in northeastern and southeastern regions at various LSR velocities. We have performed a millimeter observation in CO and HCO+ lines toward Kes 69. From the northeastern compact maser region, the 12CO and 13CO emission's peaks around 65 km/s and 85 km/s which are consistent with the masers' LSR velocities are detected. In the southeast, a molecular (12CO) arc is revealed at 77--86 km/s, well coincident with the partial SNR shell detected in the radio continuum and mid-infrared observations. An 85 km/s HCO+ emission is found to arise from a radio peak on the shell. Both the molecular arc and the HCO+ emission at ~85 km/s seem to be consistent with the presence of the extended OH masers along the southeastern boundary of Kes 69. The morphology correspondence between the CO arc and other band emission of the Kes 69 shell provides strong evidence for the association between SNR Kes 69 and the ~85 km/s component of molecular gas. The multiwavelength emissions along the southeastern shell can be accounted for by the impact of the SNR shock on a dense, clumpy patch of molecular gas. This pre-existing gas is likely to be a part of the cooled debris of the material swept up by the progenitor's stellar wind. The association of SNR Kes 69 with the molecular cloud at the systemic velocity ~85 km/s enables us to place the SNR at a kinematic distance of 5.2 kpc.
In our previous paper (Masiero et al. 2007) we presented the design and initial calibrations of the Dual-Beam Imaging Polarimeter (DBIP), a new optical instrument for the University of Hawaii's 2.2 m telescope on the summit of Mauna Kea, Hawaii. In this followup work we discuss our full-Stokes mode commissioning including crosstalk determination and our typical observing methodology.
The masses of star clusters range over seven decades, from ten up to one hundred million solar masses. Remarkably, clusters with masses in the range 10^4 to 10^6 solar mases show no systematic variation of radius with mass. However, recent observations have shown that clusters with masses greater than 3x10^6 solar masses do show an increase in size with increasing mass. We point out that clusters with m>10^6 solar masses were optically thick to far infrared radiation when they formed, and explore the hypothesis that the size of clusters with m> 3x10^6 solar masses is set by a balance between accretion powered radiation pressure and gravity when the clusters formed, yielding a mass-radius relation r~0.3(m/10^6M_\odot)^{3/5} pc. We show that the Jeans mass in optically thick objects increases systematically with cluster mass. We argue, by assuming that the break in the stellar initial mass function is set by the Jeans mass, that optically thick clusters are born with top heavy initial mass functions; it follows that they are over-luminous compared to optically thin clusters when young, and have a higher mass to light ratio Upsilon_V=m/L_V when older than ~1 Gyr. Old, optically thick clusters have Upsilon_V~ mcl^{0.1-0.3}. It follows that L_V~\sigma^{\beta}, where \sigma is the cluster velocity dispersion, and \beta~4. It appears that Upsilon_V is an increasing function of cluster mass for compact clusters and ultra-compact dwarf galaxies. We show that this is unlikely to be due to the presence of non-baryonic dark matter, by comparing clusters to Milky Way satellite galaxies, which are dark matter dominated. The satellite galaxies appear to have a fixed mass inside a fiducial radius, M(r=r_0)=const.
AstraLux is the Lucky Imaging camera for the Calar Alto 2.2-m telescope and
the 3.5-m NTT at La Silla. It allows nearly diffraction limited imaging in the
SDSS i' and z' bands of objects as faint as i'=15.5mag with minimum technical
effort.
One of the ongoing AstraLux observing programs is a binarity survey among
late-type stars with spectral types K7 to M8, covering more than 1000 targets
on the northern and southern hemisphere. The survey is designed to refine
binarity statistics and especially the dependency of binarity fraction on
spectral type. The choice of the SDSS i' and z' filters allows to obtain
spectral type and mass estimates for resolved binaries.
With an observing efficiency of typically 6 targets per hour we expect to
complete the survey in mid-2009. Selected targets will be followed up
astrometrically and photometrically, contributing to the calibration of the
mass-luminosity relation at the red end of the main sequence and at visible
wavelengths.
In this review I briefly describe the latest advances in studies of aperiodic variability of accreting X-ray binaries and outline the model which currently describe the majority of observational appearances of variability of accreting sources in the best way. Then I concentrate on the case of luminous accreting neutron star binaries (in the soft/high spectral state), where study of variability of X-ray emission of sources allowed us to resolve long standing problem of disentangling the contribution of accretion disk and boundary/spreading layer components to the time average spectrum of sources. The obtained knowledge of the shape of the spectrum of the boundary layer allowed us to make estimates of the mass and radii of accreting neutron stars.
One of the fundamental astrobiology questions is how life has formed in our Solar System. In this context the formation and stability of abiotic organic molecules such as CH4, formic acid and amino acids, is important for understanding how organic material has formed and survived shocks and energetic particle impact from winds in the early Solar System. Shock waves have been suggested as a plausible scenario to create chondrules, small meteoritic components that have been completely molten by energetic events such as shocks and high velocity particle impacts. We study here the formation and destruction of certain gas-phase molecules such as methane and water during such shock events and compare the chemical timescales with the timescales for shocks arising from gravitational instabilities in a protosolar nebula.
We present spectroscopic and photometric results of Nova V1280 Sco which was discovered in outburst in early 2007 February. The large number of spectra obtained of the object leads to one of the most extensive, near-infrared spectral studies of a classical nova. The spectra evolve from a P-Cygni phase to an emission-line phase and at a later stage is dominated by emission from the dust that formed in this nova. A detailed model is computed to identify and study characteristics of the spectral lines. Inferences from the model address the vexing question of which novae have the ability to form dust. It is demonstrated, and strikingly corroborated with observations, that the presence of lines in the early spectra of low-ionization species like Na and Mg - indicative of low temperature conditions - appear to be reliable indicators that dust will form in the ejecta. It is theoretically expected that mass loss during a nova outburst is a sustained process. Spectroscopic evidence for such a sustained mass loss, obtained by tracing the evolution of a P-Cygni feature in the Brackett gamma line, is presented here allowing a lower limit of 25-27 days to be set for the mass-loss duration. Photometric data recording the nova's extended 12 day climb to peak brightness after discovery is used to establish an early fireball expansion and also show that the ejection began well before maximum brightness. The JHK light curves indicate the nova had a fairly strong second outburst around 100 days after the first.
We propose to apply an object point process to automatically delineate filaments of the large-scale structure in redshift catalogues. We illustrate the feasibility of the idea on an example of the recent 2dF Galaxy Redshift Survey, describe the procedure, and characterise the results.
XMM-Newton and Chandra have greatly deepened our knowledge of stellar coronae giving access to a variety of new diagnostics such that nowadays a review of stellar X-ray astronomy necessarily must focus on a few selected topics. Attempting to provide a limited but representative overview of recent discoveries I discuss three subjects: the solar-stellar connection, the nature of coronae in limiting regimes of stellar dynamos, and "hot topics" on X-ray emission from pre-main sequence stars.
We used the red clump stars from the photometric data of the Optical Gravitational Lensing Experiment(OGLE II) survey and the Magellanic Cloud Photometric Survey (MCPS) for both the Clouds to estimate the depth.The observed dispersion in the magnitude and colour distribution of red clump stars is used to estimate the depth, after correcting for population effects, internal reddening within the Clouds and photometric errors.The observed dispersion due to the line of sight depth in LMC ranges from a minimum dispersion to 0.45 mag (a depth of 500 pc to 10.4 kpc). In the case of SMC, the dispersion ranges from a minimum to 0.34 magnitude (a depth of 670 pc to 9.53 kpc).The depth profile of the LMC bar indicates that it is flared. The average depth in the bar region is 4.0$\pm$1.4 kpc. The northern disk is found to have depth (4.17$\pm$0.97 kpc) larger than the southern part of the disk (2.63$\pm$0.8 kpc). There is no indication of depth variation between the eastern and the western disk.The average depth for the disk is 3.44$\pm$ 1.16 kpc.In the case of SMC, the bar depth (4.90$\pm$1.23 kpc) and the disk depth (4.23$\pm$1.48 kpc)are found to be within the standard deviations.A prominent feature in the SMC is the increase in depth near the optical center.The large depths estimated for the LMC bar and the northern disk suggest that the LMC might have had minor mergers. The halo of the LMC (using RR Lyrae stars) is found to have larger depth compared to the disk/bar, which supports the existence of an inner halo for the LMC.On the other hand, the estimated depths for the halo (RR Lyrae stars) and disk are found to be similar, for the SMC bar region. Thus, increased depth and enhanced stellar as well as HI density near the optical center suggests that the SMC may have a bulge.
We investigate the evolution of dust formed in Population III supernovae (SNe) by considering its transport and processing by sputtering within the SN remnants (SNRs). We find that the fates of dust grains within SNRs heavily depend on their initial radii $a_{\rm ini}$. For Type II SNRs expanding into the ambient medium with density of $n_{\rm H,0} = 1$ cm$^{-3}$, grains of $a_{\rm ini} < 0.05$ $\mu$m are detained in the shocked hot gas and are completely destroyed, while grains of $a_{\rm ini} > 0.2$ $\mu$m are injected into the surrounding medium without being destroyed significantly. Grains with $a_{\rm ini}$ = 0.05-0.2 $\mu$m are finally trapped in the dense shell behind the forward shock. We show that the grains piled up in the dense shell enrich the gas up to 10$^{-6}-10^{-4}$ $Z_\odot$, high enough to form low-mass stars with 0.1-1 $M_\odot$. In addition, [Fe/H] in the dense shell ranges from -6 to -4.5, which is in good agreement with the ultra-metal-poor stars with [Fe/H] < -4. We suggest that newly formed dust in a Population III SN can have great impacts on the stellar mass and elemental composition of Population II.5 stars formed in the shell of the SNR.
ASTEP South is the first phase of the ASTEP project that aims to determine the quality of Dome C as a site for future photometric searches for transiting exoplanets and discover extrasolar planets from the Concordia base in Antarctica. ASTEP South consists of a front-illuminated 4k x 4k CCD camera, a 10 cm refractor, and a simple mount in a thermalized enclosure. A double-glass window is used to reduce temperature variations and its accompanying turbulence on the optical path. The telescope is fixed and observes a 4 x 4 square degrees field of view centered on the celestial South pole. With this design, A STEP South is very stable and observes with low and constant airmass, both being important issues for photometric precision. We present the project, we show that enough stars are present in our field of view to allow the detection of one to a few transiting giant planets, and that the photometric precision of the instrument should be a few mmag for stars brighter than magnitude 12 and better than 10 mmag for stars of magnitude 14 or less.
Aim: We present new extraction and identification techniques for supernova
(SN) spectra developed within the Supernova Legacy Survey (SNLS) collaboration.
Method: The new spectral extraction method takes full advantage of
photometric information from the Canada-France-Hawai telescope (CFHT) discovery
and reference images by tracing the exact position of the supernova and the
host signals on the spectrogram. When present, the host spatial profile is
measured on deep multi-band reference images and is used to model the host
contribution to the full (supernova + host) signal. The supernova is modelled
as a Gaussian function of width equal to the seeing. A chi-square minimisation
provides the flux of each component in each pixel of the 2D spectrogram. For a
host-supernova separation greater than <~ 1 pixel, the two components are
recovered separately and we do not use a spectral template in contrast to more
standard analyses. This new procedure permits a clean extraction of the
supernova separately from the host in about 70% of the 3rd year ESO/VLT spectra
of the SNLS. A new supernova identification method is also proposed. It uses
the SALT2 spectrophotometric template to combine the photometric and spectral
data. A galaxy template is allowed for spectra for which a separate extraction
of the supernova and the host was not possible.
Result: These new techniques have been tested against more standard
extraction and identification procedures. They permit a secure type and
redshift determination in about 80% of cases. The present paper illustrates
their performances on a few sample spectra.
IGR J18483-0311 is a high-mass X-ray binary recently discovered by INTEGRAL. Its periodic fast X-ray transient activity and its position in the Corbet diagram - although ambiguous - led to the conclusion that the source was a likely Be/X-ray binary (BeXB), even if a supergiant fast X-ray transient (SFXT) nature could not be excluded. We aimed at identifying the companion star of IGR J18483-0311 to discriminate between the BeXB and the SFXT nature of the source. Optical and near-infrared photometry, as well as near-infrared spectroscopy of the companion star were performed to identify its spectral type. We also assembled and fitted its broad-band spectral energy distribution to derive its physical parameters. We show that the companion star of IGR J18483-0311 is an early-B supergiant, likely a B0.5Ia, and that its distance is about 3-4 kpc. The early-B supergiant nature of its companion star, as well as its fast X-ray transient activity point towards an SFXT nature of IGR J18483-0311. Nevertheless, the long duration and the periodicity of its outbursts, as well as its high level of quiescence, are consistent with IGR J18483-0311 being an intermediate SFXT, in between classical supergiant X-ray binaries (SGXBs) characterised by small and circular orbits, and classical SFXTs with large and eccentric orbits.
The Gaia satellite will be launched at the end of 2011. It will observe at least 1 billion stars, and among them several million emission line stars and hot stars. Gaia will provide parallaxes for each star and spectra for stars till V magnitude equal to 17. After a general description of Gaia, we present the codes and methods, which are currently developed by our team. They will provide automatically the astrophysical parameters and spectral classification for the hot and emission line stars in the Milky Way and other close Local Group galaxies such as the Magellanic Clouds.
This document presents the results from our spectroscopic survey of Halpha emitters in galactic and SMC open clusters with the ESO Wide Field Imager in its slitless spectroscopic mode. First of all, for the galactic open cluster NGC6611, in which, the number and the nature of emission line stars is still the object of debates, we show that the number of true circumstellar emission line stars is small. Second, at low metallicity, typically in the Small Magellanic Cloud, B-type stars rotate faster than in the Milky Way and thus it is expected a larger number of Be stars. However, till now, search for Be stars was only performed in a very small number of open clusters in the Magellanic Clouds. Using the ESO/WFI in its slitless spectroscopic mode, we performed a Halpha survey of the Small Magellanic Cloud. 3 million low-resolution spectra centered on Halpha were obtained in the whole SMC. Here, we present the method to exploit the data and first results for 84 open clusters in the SMC about the ratios of Be stars to B stars.
HD 141569, a triple star system, has been intensively observed and studied for its massive debris disk. It was rather regarded as a gravitationally bound triple system but recent measurements of the HD 141569A radial velocity seem to invalidate this hypothesis. The flyby scenario has therefore to be investigated to test its compatibility with the observations. We present a study of the flyby scenario for the HD141569 system, by considering 3 variants: a sole flyby, a flyby associated with one planet and a flyby with two planets. We use analytical calculations and perform N-body numerical simulations of the flyby encounter. The binary orbit is found to be almost fixed by the observational constraint on a edge-on plane with respect to the observers. If the binary has had an influence on the disk structure, it should have a passing time at the periapsis between 5000 and 8000 years ago and a distance at periapsis between 600 and 900 AU. The best scenario for reproducing the disk morphology is a flyby with only 1 planet. For a 2 Mj (resp. 8 Mj) planet, its eccentricity must be around 0.2 (resp. below 0.1). In the two cases, its apoapsis is about 130 AU. Although the global disk shape is reasonably well reproduced, some features cannot be explain by the present model and the likehood of the flyby event remains an issue. Dynamically speaking, HD 141569 is still a puzzling system.
Hydrodynamic models of a young binary system accreting matter from the remnants of a protostellar cloud have been calculated by the SPH method. It is shown that periodic variations in column density in projection onto the primary component take place at low inclinations of the binary plane to the line of sight. They can result in periodic extinction variations. Three periodic components can exist in general case. The first component has a period equal to the orbital one and is attributable to the streams of matter penetrating into the inner regions of the binary. The second component has a period that is a factor of 5-8 longer than the orbital one and is related to the density waves generated in a circumbinary (CB) disk. The third, longest period is attributable to the precession of the inner asymmetric region of CB disk. The relationship between the amplitudes of these cycles depends on the model parameters as well as on the inclination and orientation of the binary in space. We show that at a dust-to-gas ratio of 1:100 and and a mass extinction coefficient of 250 cm$^2$ g$^{-1}$, the amplitude of the brightness variations of the primary component in the V-band can reach $1^m$ at a mass accretion rate onto the binary components of $10^{-8} M_{\odot}$ yr$^{-1}$ and a $10^{\rm o}$ inclination of the binary plane to the line of sight. We discuss possible applications of the model to pre-main-sequence stars.
Mirror dark matter provides a simple framework for which to explain the DAMA/Libra annual modulation signal consistently with the null results of the other direct detection experiments. The simplest possibility involves ordinary matter interacting with mirror dark matter via photon-mirror photon kinetic mixing of strength epsilon ~ 10^(-9). We confirm that photon-mirror photon mixing of this magnitude is consistent with constraints from ordinary BBN as well as the more stringent constraints from CMB and LSS. We also examine the implications of such mixing for mirror Big Bang nucleosynthesis.
We examine hilltop quintessence models, in which the scalar field is rolling near a local maximum in the potential, and w is close to -1. We first derive a general equation for the evolution of the scalar field in the limit where w is close to -1. We solve this equation for the case of hilltop quintessence to derive w as a function of the scale factor; these solutions depend on the curvature of the potential near its maximum. Our general result is in excellent agreement (delta w < 0.5%) with all of the particular cases examined. It works particularly well (delta w < 0.1%) for the pseudo-Nambu-Goldstone Boson potential. Our expression for w(a) reduces to the previously-derived slow-roll result of Sen and Scherrer in the limit where the curvature goes to zero. Except for this limiting case, w(a) is poorly fit by linear evolution in a.
Dynamical properties of two-component galaxy models whose stellar density distribution is described by a gamma-model while the total density distribution has a pure r^(-2) profile, are presented. The orbital structure of the stellar component is described by Osipkov-Merritt anisotropy, while the dark matter halo is isotropic. After a description of minimum halo models, the positivity of the phase-space density (the model consistency) is investigated, and necessary and sufficient conditions for consistency are obtained analytically as a function of the stellar inner density slope gamma and anisotropy radius. The explicit phase-space distribution function is recovered for integer values of gamma, and it is shown that while models with gamma>4/17 are consistent when the anisotropy radius is larger than a critical value (dependent on gamma), the gamma=0 models are unphysical even in the fully isotropic case. The Jeans equations for the stellar component are then solved analytically; in addition, the projected velocity dispersion at the center and at large radii are also obtained analytically for generic values of the anisotropy radius, and it is found that they are given by remarkably simple expressions. The presented models, even though highly idealized, can be useful as starting point for more advanced modeling of the mass distribution of elliptical galaxies in studies combining stellar dynamics and gravitational lensing.
We show that the open cluster Trumpler 20, contrary to the earlier findings, is actually an old Galactic open cluster. New CCD photometry and high-resolution spectroscopy are used to derive the main parameters of this cluster. At [Fe/H]=-0.11 for a single red giant star, the metallicity is slightly subsolar. The best fit to the color-magnitude diagrams is achieved using a 1.3 Gyr isochrone with convective overshoot. The cluster appears to have a significant reddening at E(B-V)=0.46 (for B0 spectral type), although for red giants this high reddening yields the color temperature exceeding the spectroscopic T_eff by about 200 K. Trumpler 20 is a very rich open cluster, containing at least 700 members brighter than M_V=+4. It may extend over the field-of-view available in our study at 20'x20'.
We reconsider the nonlinear second order Abel equation of Stewart and Lyth, which follows from a nonlinear second order slow-roll approximation. We find a new eigenvalue spectrum in the blue regime. Some of the discrete values of the spectral index n_s have consistent fits to the cumulative COBE data as well as to recent ground-base CMB experiments.
We present the results of an observational study of the efficiency of deep mixing in globular cluster red giants as a function of stellar metallicity. We determine [C/Fe] abundances based on low-resolution spectra taken with the Kast spectrograph on the 3m Shane telescope at Lick Observatory. Spectra centered on the 4300 Angstrom CH absorption band were taken for 42 bright red giants in 11 Galactic globular clusters ranging in metallicity from M92 ([Fe/H]=-2.29) to NGC 6712 ([Fe/H]=-1.01). Carbon abundances were derived by comparing values of the CH bandstrength index S2(CH) measured from the data with values measured from a large grid of SSG synthetic spectra. Present-day abundances are combined with theoretical calculations of the time since the onset of mixing, which is also a function of stellar metallicity, to calculate the carbon depletion rate across our metallicity range. We find that the carbon depletion rate is twice as high at a metallicity of [Fe/H]=-2.3 than at [Fe/H]=-1.3, which is a result qualitatively predicted by some theoretical explanations of the deep mixing process.
We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z=0.422 luminous red galaxy (LRG). This system was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of 3.82 +/- 0.03 arcsec or 14.8 +/- 0.1 kpc/h at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 +/- 0.03 x 10^12 M_sun/h, and the magnification factor for the source galaxy is 27 +/- 1. Combining the lens model with our gVriz photometry, we find an (unlensed) star formation rate for the source galaxy of 32 M_sun/h / yr, adopting a fiducial constant star formation rate model with an age of 100 Myr and E(B-V) = 0.25. With an apparent magnitude of r = 19.9, this system is among the very brightest lensed z >= 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy.
Much effort has been invested in recent years, both observationally and theoretically, to understand the interacting processes taking place in planetary systems consisting of a hot Jupiter orbiting its star within 10 stellar radii. Several independent studies have converged on the same scenario: that a short-period planet can induce activity on the photosphere and upper atmosphere of its host star. The growing body of evidence for such magnetic star-planet interactions includes a diverse array of photometric, spectroscopic and spectropolarimetric studies. The nature of which is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both bodies, as well as affecting irradiation and non-thermal and dynamical processes. Tidal interactions are responsible for the circularization of the planet orbit, for the synchronization of the planet rotation with the orbital period, and may also synchronize the outer convective envelope of the star with the planet. Studying such star-planet interactions (SPI) aids our understanding of the formation, migration and evolution of hot Jupiters.
It is fair to say that the deepest mystery in our understanding of nature is the birth of our universe. Much of the dilemma over the last decades comes from the extraordinarily small probability that the universe started with the high energy Big Bang as compared to the chance of nucleating any other event. How can Big Bang cosmology be $10^{10^{123}}$ times less likely than nucleating the present cold universe, while accumulating such exquisite agreement with astrophysical data? Why don't we see the other nucleations that, if left to chance, seem to overwhelmingly outnumber us? Here I discuss the point of view that the selection of the initial conditions can be meaningfully addressed only within the framework of the multiverse and that the reason why Big Bang inflation was preferred over other events lies in the quantum dynamics of the landscape of the initial patches. The out-of-equilibrium dynamics selected the 'survivor' universes be born at high energies and the 'terminal' universes at low energies. I briefly review the testable predictions of this theory, in particular the giant void observed in 2007. The second part focuses on the extended framework, in particular a set of postulates needed for defining the multiverse.
We consider a bound system of two supersymmetric Dirichlet branes of different dimensionality ($p,p'$ with $p'<p$) embedded in a flat non-compactified IIA or IIB type background. We study the decay, via tachyonic condensation, of such unstable bound states leading to a pair of bound D$(p-1)$, D$p'$-branes. We show that only when the gauge fields carried by the D$p$-brane are localised perependicular to the tachyon direction, then tachyon condensation will indeed take place. We perform our analysis by combining both, the Hamiltonian and the Lagrangian approach.
In this note we explore the possibility of measuring the action of the intrinsic gravitomagnetic field of the rotating Earth on the orbital motion of the Moon with the Lunar Laser Ranging (LLR) technique. Indeed, expected improvements in it should push the precision in measuring the Earth-Moon range to the mm level; the present-day Root-Mean-Square (RMS) accuracy in reconstructing the radial component of the lunar orbit is about 2 cm; its periodic terms cna be determined at the mm level. The current uncertainty in measuring the lunar precession rates is about 10^-1 milliarcseconds per year. The Lense-Thirring secular, i.e. averaged over one orbital period, precessions of the node and the perigee of the Moon induced by the Earth's spin angular momentum amount to 10^-3 milliarcseconds per year yielding transverse and normal shifts of 10^-1-10^-2 cm yr^-1. In the radial direction there is only a short-period, i.e. non-averaged over one orbital revolution, oscillation with an amplitude of 10^-5 m. Major limitations come also from some systematic errors induced by orbital perturbations of classical origin like, e.g., the secular precessions induced by the Sun and the oblateness of the Moon whose mismodelled parts are several times larger than the Lense-Thirring signal.
We present thick de Sitter brane solutions which are supported by two interacting {\it phantom} scalar fields in five, six and seven dimensional spacetime. It is shown that for all cases regular solutions with anti-de Sitter asymptotic (5D problem) and a flat asymptotic far from the brane (6D and 7D cases) exist. We also discuss the stability of our solutions.
After a brief non technical introduction of the basic properties of strange quark matter (SQM) in compact stars, we consider some of the late important advances in the field, and discuss some recent astrophysical observational data that could shed new light on the possible presence of SQM in compact stars. We show that above a threshold value of the gravitational mass a neutron star (pure hadronic star) is metastable to the decay (conversion) to an hybrid neutron star or to a strange star. We explore the consequences of the metastability of "massive" neutron stars and of the existence of stable compact "quark" stars (hybrid neutron stars or strange stars) on the concept of limiting mass of compact stars, and we give an extension of this concept with respect to the "classical" one given in 1939 by Oppenheimer and Volkoff.
Links to: arXiv, form interface, find, astro-ph, recent, 0809, contact, help (Access key information)