We propose that the flat decay phase in the first 100-10,000 seconds of the X-ray light curve of Gamma Ray Bursts can be interpreted as prolonged activity of the central engine, producing shells of decreasing bulk Lorentz factors Gamma. The internal dissipation of these late shells produces a continuous and smooth emission, usually dominant in X-rays and sometimes in the optical. When Gamma of the late shells is larger than 1/theta_j, where theta_j is the jet opening angle, we see only a portion of the emitting surface. Eventually, Gamma becomes smaller than 1/theta_j, and the entire emitting surface is visible. When Gamma=1/theta_j there is a break in the light curve, and the plateau ends. During the plateau phase, we see the sum of the "late-prompt" emission (due to late internal dissipation), and the "real afterglow" emission (due to external shocks). A variety of different optical and X-ray light curves is possible, explaining why the X-ray and the optical light curves often do not track each other, and why they often do not have simultaneous breaks.
We present a study of the mass-metallicity (M-Z) relation and H II region physical conditions in a sample of 20 star-forming galaxies at 1.0<z<1.5 drawn from the DEEP2 Galaxy Redshift Survey. Our analysis indicates that the zero point of the M-Z relationship evolves with redshift, in the sense that galaxies at fixed stellar mass become more metal-rich at lower redshift. Measurements of [O III]/H-beta and [N II]/H-alpha emission-line ratios show that, on average, objects in the DEEP2 1.0<z<1.5 sample are significantly offset from the excitation sequence observed in nearby H II regions and SDSS emission-line galaxies. In order to fully understand the causes of this offset, which is also observed in z~2 star-forming galaxies, we examine in detail the small fraction of SDSS galaxies that have similar diagnostic ratios to those of the DEEP2 sample. Some of these galaxies indicate evidence for AGN and/or shock activity, which may give rise to their unusual line ratios, and contribute to Balmer emission lines at the level of ~20%. Others indicate no evidence for AGN or shock excitation, yet are characterized by higher electron densities and temperatures, and therefore, interstellar gas pressures, than typical SDSS star-forming galaxies of similar stellar mass. These anomalous objects also have higher concentrations and star-formation rate surface densities, which are directly connected to higher interstellar pressure. Higher star-formation rate surface densities, interstellar pressures, and HII region ionization parameters may also be common at high-redshift. These effects must be taken into account when using strong-line indicators to understand the evolution of heavy elements in galaxies. When such effects are included, the inferred evolution of the M-Z relation out to z~2 is more significant than previous estimates.
In the solar convection zone, rotation couples with intensely turbulent convection to build global-scale flows of differential rotation and meridional circulation. Our sun must have rotated more rapidly in its past, as is suggested by observations of many rapidly rotating young solar-type stars. Here we explore the effects of more rapid rotation on the patterns of convection in such stars and the global-scale flows which are self-consistently established. The convection in these systems is richly time dependent and in our most rapidly rotating suns a striking pattern of spatially localized convection emerges. Convection near the equator in these systems is dominated by one or two patches of locally enhanced convection, with nearly quiescent streaming flow in between at the highest rotation rates. These active nests of convection maintain a strong differential rotation despite their small size. The structure of differential rotation is similar in all of our more rapidly rotating suns, with fast equators and slower poles. We find that the total shear in differential rotation, as measured by latitudinal angular velocity contrast, Delta_Omega, increases with more rapid rotation while the relative shear, Delta_Omega/Omega, decreases. In contrast, at more rapid rotation the meridional circulations decrease in both energy and peak velocities and break into multiple cells of circulation in both radius and latitude.
We address the origin of the `downsizing' of elliptical galaxies, according to which the stars in more massive galaxies formed earlier and over a shorter period than those in less massive galaxies. We show that this could be the natural result of a shutdown of star formation in dark matter haloes above a critical mass of 10^12MSun. This is demonstrated using a semianalytic simulation of galaxy formation within the standard hierarchical scenario of structure formation. The assumed threshold mass is motivated by the prediction of stable shock heating above this mass and the finding that such a shutdown reproduces the observed distribution of galaxies in luminosity and colour.The shutdown at a critical halo mass introduces a characteristic stellar mass for the transition of galaxies into the `red sequence' of the galaxy colour-magnitude diagram. Central galaxies of haloes that are more massive today have reached this mass earlier and can therefore grow further along the red sequence by dry mergers, ending up more massive and containing older stars. Small galaxies formed in haloes below the critical mass can shutdown late, when they fall into haloes above the critical mass and become satellites. While our semianalytic simulation that incorporates an explicit shutdown reproduces downsizing as inferred from the stellar ages of ellipticals, we explain why it is much harder to detect downsizing using the mass functions of different galaxy types.
We compare recently measured rest-frame V-band luminosity functions (LFs) of galaxies at redshifts 2.0<z<3.3 to predictions of semianalytic models by De Lucia & Blaizot and Bower et al. and hydrodynamic simulations by Dave et al. The models succeed for some luminosity and redshift ranges and fail for others. A notable success is that the Bower et al. model provides a good match to the observed LF at z~3. However, all models predict an increase with time of the rest-frame V-band luminosity density, whereas the observations show a decrease. The models also have difficulty matching the observed rest-frame colors of galaxies. In all models the luminosity density of red galaxies increases sharply from z~3 to z~2.2, whereas it is approximately constant in the observations. Conversely, in the models the luminosity density of blue galaxies is approximately constant, whereas it decreases in the observations. These discrepancies cannot be entirely remedied by changing the treatment of dust and suggest that current models do not yet provide an adequate description of galaxy formation and evolution since z~3.
Measurements of the 21cm line emission by residual cosmic hydrogen after reionization can be used to trace the power spectrum of density perturbations through a significant fraction of the observable volume of the Universe. We discuss a dedicated 21cm observatory (designed as a significantly upgraded version of the planned MWA) that would probe a number of independent modes that is two orders of magnitude larger than available from existing galaxy surveys (such as SDSS-LRG) or microwave background maps (such as WMAP). We show that the resulting precision in the determination of the matter power spectrum at redshifts z<6 could enable a cosmic-variance limited detection of the signature of a neutrino mass ~0.05eV, in the range suggested by atmospheric neutrino data. The evolution of the linear growth factor with redshift could also constrain exotic theories of gravity or dark energy to an unprecedented precision.
We have used extensive libraries of model and empirical galaxy spectra
(assembled respectively from the population synthesis code of Bruzual and
Charlot and the fourth data release of the Sloan Digital Sky Survey) to
interpret some puzzling features seen in the spectra of high redshift
star-forming galaxies. We show that a stellar He II 1640 emission line,
produced in the expanding atmospheres of Of and Wolf-Rayet stars, should be
detectable with an equivalent width of 0.5-1.5AA in the integrated spectra of
star-forming galaxies, provided the metallicity is greater than about half
solar. Our models reproduce the strength of the He II 1640 line measured in the
spectra of Lyman break galaxies for established values of their metallicities.
With better empirical calibrations in local galaxies, this spectral feature has
the potential of becoming a useful diagnostic of massive star winds at high, as
well as low, redshifts.
We also uncover a relationship in SDSS galaxies between their location in the
[O III]/Hb vs. [N II]/Ha diagnostic diagram (the BPT diagram) and their excess
specific star formation rate relative to galaxies of similar mass. We infer
that an elevated ionisation parameter U is at the root of this effect, and
propose that this is also the cause of the offset of high redshift star-forming
galaxies in the BPT diagram compared to local ones. We further speculate that
higher electron densities and escape fractions of hydrogen ionising photons may
be the factors responsible for the systematically higher values of U in the H
II regions of high redshift galaxies. The impact of such differences on
abundance determinations from strong nebular lines are considered and found to
be relatively minor.
Rare types of variable star may give unique insight into short-lived stages of stellar evolution. The systematic monitoring of millions of stars and advanced light curve analysis techniques of microlensing surveys make them ideal for discovering also such rare variable stars. One example is the R Coronae Borealis (RCB) stars, a rare type of evolved carbon-rich supergiant. We have conducted a systematic search of the EROS-2 database for the Galactic catalogue Bulge and spiral arms to find Galactic RCB stars. The light curves of $\sim$100 million stars, monitored for 6.7 years (from July 1996 to February 2003), have been analysed to search for the main signature of RCB stars, large and rapid drops in luminosity. Follow-up spectroscopy has been used to confirm the photometric candidates. We have discovered 14 new RCB stars, all in the direction of the Galactic Bulge, bringing the total number of confirmed Galactic RCB stars to about 51. After reddening correction, the colours and absolute magnitudes of at least 9 of the stars are similar to those of Magellanic RCB stars. This suggests that these stars are in fact located in the Galactic Bulge, making them the first RCB stars discovered in the Bulge. The localisation of the 5 remaining RCBs is more uncertain: 4 are either located behind the Bulge at an estimated maximum distance of 14 kpc or have an unusual thick circumstellar shell; the other is a DY Per RCB which may be located in the Bulge, even if it is fainter than the known Magellanic DY Per. From the small scale height found using the 9 new Bulge RCBs, $61<h^{RCB}_{Bulge}<246$ pc (95% C.L.), we conclude that the RCB stars follow a disk-like distribution inside the Bulge.
We report CCD photometry of the dwarf nova BF Ara throughout fifteen consecutive nights in quiescence. Light curve in this interval is dominated by a large amplitude around 0.8 mag modulation consisting two periods. Higher amplitude signal is characterized by period of 0.082159(4) days, which was increasing at the rate of dotP/Psh = 3.8(3)* 10^{-5}. Weaker and stable signal has period of 0.084176(21) days. Knowing the superhump period of BF Ara determined by Kato et al. (2003) and equal to 0.08797(1) days, the first modulation is interpreted as quiescent negative superhump arising from retrograde precesion of titled accretion disk and the latter one as an orbital period of the binary. The respective period excess and defect are epsilon_+ = 4.51% +/- 0.03% and epsilon_- = -2.44% +/- 0.02%. Thus BF Ara is yet another in-the-gap nova with mass ratio q of around 0.21.
Stellar dynamos are driven by complex couplings between rotation and turbulent convection, which drive global-scale flows and build and rebuild stellar magnetic fields. When stars like our sun are young, they rotate much more rapidly than the current solar rate. Observations generally indicate that more rapid rotation is correlated with stronger magnetic activity and perhaps more effective dynamo action. Here we examine the effects of more rapid rotation on dynamo action in a star like our sun. We find that vigorous dynamo action is realized, with magnetic field generated throughout the bulk of the convection zone. These simulations do not possess a penetrative tachocline of shear where global-scale fields are thought to be organized in our sun, but despite this we find strikingly ordered fields, much like sea-snakes of toroidal field, which are organized on global scales. We believe this to be a novel finding.
We report the discovery of WASP-5b, a Jupiter-mass planet orbiting a 12th-mag G-type star in the Southern hemisphere. The 1.6-d orbital period places WASP-5b in the class of very-hot Jupiters and leads to a predicted equilibrium temperature of 1750 K. WASP-5b is the densest of the very-hot Jupiters, being a factor three denser than planets such as WASP-4b. We present transit photometry and radial-velocity measurements of WASP-5 (= USNO-B1 0487-0799749), from which we derive the mass and radius of the planet: M_P = 1.58 +0.13 -0.08 M_J and R_P = 1.090 +0.094 -0.058 R_J. The orbital period is P = 1.6284296 +0.0000048 -0.0000037 d and the mid-transit epoch is T_C (HJD) = 2454375.62466 +0.00026 -0.00025.
V838 Mon erupted at the beginning of 2002 becoming an extremely luminous star with L=10^6 L_sun. The outburst was followed by the spectacular light echo that revealed that the star is immersed in a diffuse and dusty medium, plausibly interstellar in nature. Low angular resolution observations in the lowest CO rotational transitions revealed a molecular emission from the direction of V838 Mon. The origin of this CO emission has not been established. In this paper we investigate the idea that the molecular emission originates in the material responsible for the optical light echo. We report on observations of 13 positions within the light echo in the two lowest rotational transitions of CO using the IRAM 30 m telescope. Emission in CO J=1-0 and J=2-1 was detected in three positions. In three other positions only weak J=1-0 lines were found. We conclude that the molecular emission from the direction of V838 Mon is extended and has a complex distribution. We identify the emission as arising from diffuse interstellar clouds and suggest that the CO-bearing gas and the echoing dust are collocated in the same interstellar cloud.
We have used archival Chandra and XMM-Newton observations of quasars hosting intrinsic narrow UV absorption lines (intrinsic NALs) to carry out an exploratory survey of their X-ray properties. Our sample consists of three intrinsic-NAL quasars and one "mini-BAL" quasar, plus four quasars without intrinsic absorption lines for comparison. These were drawn in a systematic manner from an optical/UV-selected sample. The X-ray properties of intrinsic-NAL quasars are indistinguishable from those of "normal" quasars. We do not find any excess absorption in quasars with intrinsic NALs, with upper limits of a few times 10^22 cm^-2. We compare the X-ray and UV properties of our sample quasars by plotting the equivalent width and blueshift velocity of the intrinsic NALs and the X-ray spectral index against the "optical-to-X-ray" slope, alpha-ox. When BAL quasars and other AGNs with intrinsic NALs are included, the plots suggest that intrinsic-NAL quasars form an extension of the BAL sequences and tend to bridge the gap between BAL and "normal" quasars. Observations of larger samples of intrinsic-NAL quasars are needed to verify these conclusions. We also test two competing scenarios for the location of the NAL gas in an accretion-disk wind. Our results strongly support a location of the NAL gas at high latitudes above the disk, closer to the disk axis than the dense BAL wind. We detect excess X-ray absorption only in Q0014+8118, which does not host intrinsic NALs. The absorbing medium very likely corresponds to an intervening system at z=1.1, which also produces strong absorption lines in the rest-frame UV spectrum of this quasar. In the appendix we discuss the connection between UV and X-ray attenuation and its effect on alpha-ox.
We present infrared observations of 66 starburst galaxies over a wide range of oxygen abundances, to measure how metallicity affects their dust properties. The data include imaging and spectroscopy from the Spitzer Space Telescope, supplemented by groundbased near-infrared imaging. We confirm a strong correlation of aromatic emission with metallicity, with a threshold at a metallicity [12+log(O/H)]~8. The large scatter in both the metallicity and radiation hardness dependence of this behavior implies that it is not due to a single effect, but to some combination. We show that the far-infrared color temperature of the large dust grains increases towards lower metallicity, peaking at a metallicity of 8 before turning over. We compute dust masses and compare them to HI masses from the literature to derive the gas to dust ratio, which increases by nearly 3 orders of magnitude between solar metallicity and a metallicity of 8, below which it flattens out. The abrupt change in aromatic emission at mid-infrared wavelengths thus appears to be reflected in the far-infrared properties, indicating that metallicity changes affect the composition of the full range of dust grain sizes that dominate the infrared emission. In addition, we find that the ratio L(8 micron)/L(TIR), important for calibrating 24 micron measurements of high redshift galaxies, increases slightly as the metallicity decreases from ~solar to ~50% of solar, and then decreases by an order of magnitude with further decreases in metallicity. Although the great majority of galaxies show similar patterns of behavior as described above, there are three exceptions, SBS 0335-052E, Haro 11, and SHOC 391. Their infrared SEDs are dominated energetically by the mid-IR near 24 micron rather than by the 60 - 200 micron region. (Abridged)
We present a new set of multi-million particle SPH simulations of the formation of disk dominated galaxies in a cosmological context. Some of these galaxies are higher resolution versions of the models already described in Governato et al (2007). To correctly compare simulations with observations we create artificial images of our simulations and from them measure photometric Bulge to Disk (B/D) ratios and disk scale lengths. We show how feedback and high force and mass resolution are necessary ingredients to form galaxies that have flatter rotation curves, larger I band disk scale lengths and smaller B/D ratios. A new simulated disk galaxy has an I-band disk scale length of 9.2 kpc and a B/D flux ratio of 0.64 (face on, dust reddened).
We present observations of the dwarf galaxies Draco and Ursa Minor, the local group galaxies M32 and M33, and the globular cluster M15 conducted with the Whipple 10m gamma-ray telescope to search for the gamma-ray signature of self-annihilating weakly interacting massive particles (WIMPs) which may constitute astrophysical dark matter (DM). We review the motivations for selecting these sources based on their unique astrophysical environments and report the results of the data analysis which produced upper limits on excess rate of gamma rays for each source. We consider models for the DM distribution in each source based on the available observational constraints and discuss possible scenarios for the enhancement of the gamma-ray luminosity. Limits on the thermally averaged product of the total self-annihilation cross section and velocity of the WIMP, <\sigma v>, are derived using conservative estimates for the magnitude of the astrophysical contribution to the gamma-ray flux. Although these limits do not constrain predictions from the currently favored theoretical models of supersymmetry (SUSY), future observations with VERITAS will probe a larger region of the WIMP parameter phase space, <\sigma v> and WIMP particle mass (m_\chi).
We study the dynamical behaviour of the interacting holographic dark energy model whose interaction term is $Q = 3H(\lambda_d\rho_d + \lambda_c\rho_c)$, where $\rho_d$ and $\rho_c$ are the energy density of dark energy and CDM respectively. To satisfy the observational constraints from SNIa, CMB shift parameter and BAO measurement, if $\lambda_c = \lambda_d$ or $\lambda_d$, $\lambda_c >0$, the cosmic evolution reaches the attractor in the future and the ratio $\rho_c/\rho_d$ cannot be slowly varying at present. Since the cosmic attractor can be reached in the future even when the present values of the cosmological parameters do not satisfy the observational constraints, the coincidence problem is hard to be alleviated for this case. However, if $\lambda_c \neq \lambda_d$ and they are allowed to be negative, the ratio $\rho_c/\rho_d$ can be slowly varying at present and the cosmic attractor can be reached near the present epoch. Hence, the coincidence problem is possible to be alleviated for this case.
We report here a study of the long term properties of Quasi Periodic Oscillations (QPO) in an unusual accreting X-ray pulsar, 4U 1626--67. This is a unique accretion powered X-ray pulsar in which we have found the QPOs to be present during all sufficiently long X-ray observations with a wide range of X-ray observatories. In the present spin-down era of this source, the QPO central frequency is found to be decreasing. In the earlier spin-up era of this source, there are only two reports of QPO detections, in 1983 with EXOSAT and 1988 with GINGA with an increasing trend. The QPO frequency evolution in 4U 1626--67 during the last 22 years changed from a positive to a negative trend, somewhat coincident with the torque reversal in this source. In the accretion powered X-ray pulsars, the QPO frequency is directly related to the inner radius of the accretion disk, as per Keplerian Frequency Model (KFM) and Beat Frequency Model (BFM). A gradual depletion of accretion disk is reported earlier from the X-ray spectral, flux and pulse profile measurements. The present QPO frequency evolution study shows that X-ray flux and mass accretion rate may not change by the same factor, hence the simple KFM and BFM are not able to explain the QPO evolution in this source. This is the only X-ray pulsar to show persistent QPOs and is also the first accreting X-ray pulsar in which the QPO history is reported for a long time scale relating it with the long term evolution of the accretion disk.
We exploit a set of high signal-to-noise (~70), low-resolution (R~800) quasar spectra to search for the signature of the so-called proximity effect in the HI Ly alpha forest. Our sample consists of 17 bright quasars in the redshift range 2.7<z<4.1. Analysing the spectra with the flux transmission technique, we detect the proximity effect in the sample at high significance. We use this to estimate the average intensity of the metagalactic UV background, assuming it to be constant over this redshift range. We obtain a value of J = (9+-4)x10^{-22}ergcm^{-2}s^{-1}Hz^{-1}sr^{-1}, in good agreement with previous measurements at similar z. We then apply the same procedure to individual lines of sight, finding a significant deficit in the effective optical depth close to the emission redshift in every single object except one (which by a different line of evidence does nevertheless show a noticeable proximity effect). Thus, we clearly see the proximity effect as a universal phenomenon associated with individual quasars. Using extensive Monte-Carlo simulations to quantify the error budget, we assess the expected statistical scatter in the strength of the proximity effect due to shot noise (cosmic variance). The observed scatter is larger than the predicted one, so that additional sources of scatter are required. We rule out a dispersion of spectral slopes as a significant contributor. Possible effects are long time-scale variability of the quasars and/or gravitational clustering of Ly alpha forest lines. We speculate on the possibility of using the proximity effect as a tool to constrain individual quasar ages, finding that ages between ~10^6 and ~10^8 yrs might produce a characteristic signature in the optical depth profile towards the QSO. We identify one possible candidate for this effect in our sample.
I will present recent theoretical results on the formation and the high redshift assembly of spheroids. These findings have been obtained by utilising different and complementary techniques: chemodynamical models offer great insight in the radial abundance gradients in the stars; while state semi-analytic codes implementing a detailed treatment of the chemical evolution allow an exploration of the role of the galactic mass in shaping many observed relations. The results will be shown by following the path represented by the evolution of the mass-metallicity relation in stars, gas and dust. I will show how, under a few sensible assumptions, it is possible to reproduce a large number of observables ranging from the Xrays to the Infrared. By comparing model predictions with observations, we derive a picture of galaxy formation in which the higher is the mass of the galaxy, the shorter are the infall and the star formation timescales. Therefore, the stellar component of the most massive and luminous galaxies might attain a metallicity Z > Z_sun in only 0.5 Gyr. Each galaxy is created outside-in, i.e. the outermost regions accrete gas, form stars and develop a galactic wind very quickly, compared to the central core in which the star formation can last up to ~ 1.3 Gyr.
Spectroscopic observations of the 2006 outburst of RS Oph at both infrared (IR) and X-ray wavelengths have shown that the blast wave has decelerated at a higher rate than predicted by the standard test-particle adiabatic shock-wave model. The observed blast-wave evolution can be explained, however, by the diffusive shock acceleration of particles at the forward shock and the subsequent escape of the highest energy ions from the acceleration region. Nonlinear particle acceleration can also account for the difference of shock velocities deduced from the IR and X-ray data. We discuss the evolution of the nova remnant in the light of efficient particle acceleration at the blast wave.
The Monte Carlo method of the nominal orbit clonning was applied to the case of 2007 WD5, the asteroid from the Apollo group. Calculations based on 33 observations from the time interval of 2007 11 08 - 2008 01 02 showed that the asteroid will pass near planet Mars at the minimum distance of 10.9\pm 2.9 R_{Mars}, what implies that probability that 2007 WD5 strike the planet decreased to the value of 0.03% from the value of about 3--4% previously announced by NASA. The additional observations taken on January 3--9 reduce further the asteroid's impact chances, effectively to nil: the asteroid will pass near planet Mars at the minimum distance of 8.4\pm 1.1 R_{Mars}.
Nuclear interactions of ions accelerated at the surface of flaring stars can produce fresh isotopes in stellar atmospheres. Although this nucleosynthesis is not significant for the chemical evolution of the Galaxy, it can be important for a number of measurements of "anomalously" high 6-Li and 7-Li abundances. We discuss the possible role of stellar flares to explain the recent report of high 6-Li abundances in metal-poor halo stars and the well-established correlation between Li abundance and stellar activity in young open clusters. We then study the possibility of observing directly Li production during flares of nearby and active dwarfs of spectral type M.
Aims: Investigation of the dense gas, the outflows and the continuum emission from the massive twin cores NGC6334I and I(N) at high spatial resolution. Methods: We imaged the region with the Australia Telescope Compact Array (ATCA) at 3.4mm wavelength in continuum as well as CH3CN(5_K-4_K) and HCN(1-0) spectral line emission. Results: While the continuum emission in NGC6334I mainly traces the UCHII region, toward NGC6334I(N) we detect line emission from four of the previously identified dust continuum condensations that are of protostellar or pre-stellar nature. The CH3CN(5_K-4_K) lines are detected in all K-components up to energies of 128K above ground toward two protostellar condensations in both regions. We find line-width increasing with increasing K for all sources, which indicates a higher degree of internal motions closer to the central protostars. Toward the main mm and CH3CN source in NGC6334I we identify a velocity gradient approximately perpendicular to the large-scale molecular outflow. This may be interpreted as a signature of an accretion disk, although other scenarios, e.g., an unresolved double source, could produce a similar signature as well. No comparable signature is found toward any of the other sources. HCN does not trace the dense gas well but it is dominated by the molecular outflows. While the outflow in NGC6334I exhibits a normal Hubble-law like velocity structure, the data indicate a precessing outflow close to the plane of the sky for NGC6334I(N). Furthermore, we observe a wide (~15.4km/s) HCN absorption line, much broader than the previously observed CH3OH and NH3 absorption lines. Several explanations for the difference are discussed.
High resolution HST/ACS images of the galaxy cluster RX J1347-1145 have enabled us to identify several new multiple image candidates in the cluster, including a 5 image system with a central image. The multiple images allow us to construct an accurate 2-dimensional mass map of the central part of the cluster. The modelling of the cluster mass includes the most prominent cluster galaxies modelled as truncated isothermal spheres and a smooth halo component that is described with 2 parametric profiles. The mass reconstruction is done using a Markov chain Monte Carlo method that provides us with a total projected mass density as well as estimates for the parameters of interest and their respective errors. The mass profile is in reasonable agreement with previous mass estimates based on the X-ray emission from the hot intra-cluster gas, however the X-ray mass estimates are systematically lower than what we obtain with gravitational lensing.
Red supergiants (RSGs) are an evolved stage in the life of intermediate massive stars (than than 25 solar masses). For many years, their location in the H-R diagram was at variance with the evolutionary models. Using the MARCS stellar atmospheres, we have determined new effective temperatures and bolometric luminosities for RSGs in the Milky Way, LMC, and SMC, and our work has resulted in much better agreement with the evolutionary models. We have also found evidence of significant visual extinction due to circumstellar dust. Although in the Milky Way the RSGs contribute only a small fraction (than than 1 percent) of the dust to the interstellar medium (ISM), in starburst galaxies or galaxies at large look-back times, we expect that RSGs may be the main dust source. We are in the process of extending this work now to RSGs of higher and lower metallicities using the galaxies M31 and WLM.
We have measured the bias of QSOs as a function of QSO luminosity at fixed redshift (z<1) by cross-correlating them with LRGs in the same spatial volume, hence breaking the degeneracy between QSO luminosity and redshift. We use three QSO samples from 2SLAQ, 2QZ and SDSS covering a QSO absolute magnitude range, -24.5<M_{b_J}<-21.5, and cross-correlate them with 2SLAQ (z~0.5) and AAOmega (z~0.7) photometric and spectroscopic LRGs in the same redshift ranges. The 2-D and 3-D cross-clustering measurements are generally in good agreement. Our (2SLAQ) QSO-LRG clustering amplitude (r_0=6.8_{-0.3}^{+0.1}h^{-1}Mpc) as measured from the semi-projected cross-correlation function appears similar to the (2SLAQ) LRG-LRG auto-correlation amplitude (r_0=7.45\pm0.35h^{-1}Mpc) and both are higher than the (2QZ+2SLAQ) QSO-QSO amplitude (r_0\simeq5.0h^{-1}Mpc). Our measurements show remarkably little QSO-LRG cross-clustering dependence on QSO luminosity. If anything, the results imply that brighter QSOs may be less highly biased than faint QSOs, the opposite direction expected from simple high peaks biasing models. Assuming a standard LCDM model and values for b_{LRG} measured from LRG autocorrelation analyses, we find b_Q=1.45\pm0.11 at M_{b_J}\approx-24 and b_Q=1.90\pm0.16 at M_{b_J}~-22. We also find consistent results for the QSO bias from a z-space distortion analysis of the QSO-LRG cross-clustering at z~0.55. The dynamical infall results give \beta _Q=0.55\pm0.10, implying b_Q=1.4\pm0.2. Thus both the z-space distortion and the amplitude analyses yield b_Q~1.5 at M_{b_J}~-23. The implied DM halo mass inhabited by QSOs at z~0.55 is \sim10^{13}h^{-1}M_{\sun}, again approximately independent of QSO luminosity.
We present results from an extensive survey of 64 cavities in the X-ray halos of clusters, groups and normal elliptical galaxies. We show that the evolution of the size of the cavities as they rise in the X-ray atmosphere is inconsistent with the standard model of adiabatic expansion of purely hydrodynamic models. We also note that the majority of the observed bubbles should have already been shredded apart by Rayleigh-Taylor instabilities if they were of purely hydrodynamic nature. Instead we find that the data agrees much better with a model where the cavities are magnetically dominated and inflated by a current-dominated magneto-hydrodynamic jet model, recently developed by Li et al. (2006) and Nakamura et al. (2006). We conduct complex Monte-Carlo simulations of the cavity detection process including incompleteness effects to reproduce the cavity sample's characteristics. We find that the current-dominated model agrees within 1sigma, whereas the other models can be excluded at >5sigma confidence. However, this assessment is dependent on our correct understanding of the detectability of cavities in X-ray atmospheres, and will await confirmation when automated cavity detection tools become available in the future. Our results have considerable impact on the energy budget associated with active galactic nucleus feedback.
Nucleosynthesis in early neutrino winds is investigated. Presented is a brief overview of two recent problems of supernova nucleosynthesis. In the first part we investigate the effect of nuclear parameters on the synthesis of Mo92 and Mo94. Based on recent experimental results, we find that the proton rich winds of the model investigated here can not be the source of solar Mo92 and Mo94. In the second part we investigate the nucleosynthesis from neutron rich bubbles and show that they do not contribute to the overall nucleosynthesis.
We present refined values for the physical parameters of transiting exoplanets, based on a self-consistent and uniform analysis of transit light curves and the observable properties of the host stars. Previously it has been difficult to interpret the ensemble properties of transiting exoplanets, because of the widely different methodologies that have been applied in individual cases. Furthermore, previous studies often ignored an important constraint on the mean stellar density that can be derived directly from the light curve. The main contributions of this work are 1) a critical compilation and error assessment of all reported values for the effective temperature and metallicity of the host stars; 2) the application of a consistent methodology and treatment of errors in modeling the transit light curves; and 3) more accurate estimates of the stellar mass and radius based on stellar evolution models, incorporating the photometric constraint on the stellar density. We use our results to revisit some previously proposed patterns and correlations within the ensemble. We confirm the mass-period correlation, and we find evidence for a new pattern within the scatter about this correlation: planets around metal-poor stars are more massive than those around metal-rich stars at a given orbital period. Likewise, we confirm the proposed dichotomy of planets according to their Safronov number, and we find evidence that the systems with small Safronov numbers are more metal-rich on average. Finally, we confirm the trend that led to the suggestion that higher-metallicity stars harbor planets with a greater heavy-element content.
We argue that the energy density of a light scalar field should not be less than $H^4$ in the inflationary Universe. This requirement implies that the non-Gaussianity parameter $f_{NL}$ is bounded by the tensor-scalar ratio $r$ from above, namely $f_{NL}<522\cdot r^{1\over 4}$. If $f_{NL}=10^2$, inflation occurred around the GUT scale.
Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modelled as exponential quintessence, and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.
We show that a discrete symmetry can give rise to realistic dark matter candidates in models with warped extra dimensions. We show how to realize our construction in a variety of models with warped extra dimensions and study in detail a realistic model of Gauge-Higgs Unification/composite Higgs in which the observed amount of dark matter is naturally reproduced. In this model, a realistic pattern of electroweak symmetry breaking typically occurs in a region of parameter space in which the fit to the electroweak precision observables improves, the Higgs is heavier than the experimental bound and new light quark resonances are predicted. We also quantify the fine-tuning of such scenarios, and discuss in which sense Gauge-Higgs-Unification models result in a natural theory of electroweak symmetry breaking.
The prompt nu_e burst from a core-collapse supernova (SN) is subject to both matter-induced flavor conversions and strong neutrino-neutrino refractive effects. For the lowest-mass progenitors, leading to O-Ne-Mg core SNe, the matter density profile can be so shallow that the usual MSW matter effects occur within the dense-neutrino region close to the neutrino sphere. In this case a ``split'' occurs in the emerging spectrum, i.e., the nu_e flavor survival probability shows a step-like feature. We explain this feature analytically as a ``MSW prepared spectral split.'' In a three-flavor treatment, the step-like feature actually consists of two narrowly spaced splits. They are determined by two combinations of flavor-lepton numbers that are conserved under collective oscillations.
We construct a little Higgs model with the most minimal extension of the standard model gauge group by an extra U(1) gauge symmetry. For specific charge assignments of scalars, an approximate U(3) global symmetry appears in the cutoff-squared scalar mass terms generated from gauge bosons at one-loop level. Hence, the Higgs boson, identified as a pseudo-Goldstone boson of the broken global symmetry, has its mass radiatively protected up to scales of 5-10 TeV. In this model, a Z2 symmetry, ensuring the two U(1) gauge groups to be identical, also makes the extra massive neutral gauge boson stable and a viable dark matter candidate with a promising prospect of direct detection.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0801, /abs, contact, help (Access key information)
We present mid-infrared spectra of thirty two high redshift ultraluminous infrared galaxies, selected via the stellar photospheric feature at rest-frame 1.6um, and an observed-frame 24um flux of >500muJy. Nearly all the sample reside in a redshift range of <z>=1.71+/-0.15, and have rest-frame 1-1000um luminosities of 10^12.9 - 10^13.8 Lsun. Most of the spectra exhibit prominent polycyclic aromatic hydrocarbon emission features, and weak silicate absorption, consistent with a starburst origin for the IR emission. Our selection method appears to be a straightforward and efficient way of finding distant, IR-luminous, star-forming galaxies in narrow redshift ranges. There is however evidence that the mid-IR spectra of our sample differ systematically from those of local ULIRGs; our sample have comparable PAH equivalent widths but weaker apparent silicate absorption, and (possibly) enhanced PAH 6.2um/7.7um and 6.2um/11.2um flux ratios. Furthermore, the composite mid-IR spectrum of our sample is almost identical to that of local starbursts with IR luminosities of 10^10-10^11 Lsun rather than that of local ULIRGs. These differences are consistent with a reduced dust column, which can plausibly be obtained via some combination of (1) star formation that is extended over spatial scales of 1-4Kpc, and (2) star formation in unusually gas-rich regions.
Using data from the Sloan Digital Sky Survey (SDSS) it has recently been shown that the red fraction of satellite galaxies increases with stellar mass. Semi-analytical models, however, predict red satellite fractions that are independent of stellar mass, and much higher than observed. It has been argued that this discrepancy owes to the fact that the models assume that satellite galaxies are instantaneously stripped of their hot gas reservoirs at the moment they are accreted into a bigger halo. In this letter we show that the fraction of red satellites can be brought in better agreement with the data by simply decreasing this stripping efficiency. However, this also results in a red fraction of massive centrals that is much too low. This owes to the fact that the massive centrals now accrete satellite galaxies that are bluer and more gas-rich. However, if a significant fraction of low mass satellite galaxies is tidally disrupted before being accreted by their central host galaxy, as suggested by recent studies, the red fractions of both centrals and satellites can be reproduced reasonably well. A problem remains with the red fraction of centrals of intermediate mass, which is likely to reflect an oversimplified treatment of AGN feedback.
(Abridged) We investigate the effect of metallicity calibrations, AGN classification, and aperture covering fraction on the local mass-metallicity (MZ) relation using 27,730 star-forming galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 4. We analyse the SDSS MZ relation with 10 metallicity calibrations, including theoretical and empirical methods. We show that the choice of metallicity calibration has a significant effect on the shape and y-intercept(12+log(O/H)) of the MZ relation. The absolute metallicity scale (y-int) varies up to 0.7 dex, depending on the calibration used, and the change in shape is substantial. These results indicate that it is critical to use the same metallicity calibration when comparing different luminosity-metallicity or mass-metallicity relations. We present new metallicity conversions that allow metallicities that have been derived using different strong-line calibrations to be converted to the same base calibration. These conversions facilitate comparisons between different samples, particularly comparisons between galaxies at different redshifts for which different suites of emission-lines are available.Our new conversions successfully remove the large 0.7 dex discrepancies between the metallicity calibrations, and we reach agreement in the MZ relation to within 0.03 dex on average. We find that different AGN classification methods have negligible effect on the SDSS MZ relation. We compare the SDSS MZ relation with nuclear and global relations from the Nearby Field Galaxy Survey (NFGS). The turn over of the MZ relation depends on aperture covering fraction. We find that a lower redshift limit of z<0.04 is insufficient for avoiding aperture effects in fiber spectra of the highest stellar mass galaxies.
We explore the dependence of the central logarithmic slope of dark matter halo density profiles $\alpha$ on the spectral index $n$ of the linear matter power spectrum $P(k)$ using cosmological $N$-body simulations of scale-free models (i.e. $P(k) \propto k^n$). For each of our simulations we identify samples of well resolved haloes in dynamical equilibrium and we analyse their mass profiles. By parameterising the mass profile using a ``generalised'' Navarro, Frenk & White profile in which the central logarithmic slope $\alpha$ is allowed to vary while preserving the $r^{-3}$ asymptotic form at large radii, we obtain preferred central slopes for haloes in each of our models. There is a strong correlation between $\alpha$ and $n$, such that $\alpha$ becomes shallower as $n$ becomes steeper. However, if we normalise our mass profiles by $r_{-2}$, the radius at which the logarithmic slope of the density profile is -2, we find that these differences are no longer present. We conclude that there is no evidence for convergence to a unique central asymptotic slope, at least on the scales that we can resolve.
We propose that astronomers will be eventually be able to discriminate between extrasolar Earth-like planets with surface oceans and those without using the shape of phase light curves in the visible and near-IR spectrum. We model the visible light curves of planets having Earth-like surfaces, seasons, and optically-thin atmospheres with idealized diffuse-scattering clouds. We show that planets partially covered by water will appear measurably brighter near crescent phase (relative to Lambertian planets) because of the efficient specular reflection (i.e., glint) of starlight incident on their surfaces at a highly oblique angle. Planets on orbits within 30 degrees of edge-on orientation (half of all planets) will show pronounced glint over a sizeable range of orbital longitudes, from quadrature to crescent, all outside the glare of their parent stars. Also, water-covered planets will appear darker than a Lambertian disk near full illumination. Finally, we show that planets with a mixed land/water surface will polarize the reflected signal by as much as 30-70 percent. These results suggest several new ways of directly identifying water on distant planets.
Observations with Spitzer Space Telescope have recently revealed a significant population of high-redshift z~2 dust-obscured galaxies (DOGs) with large mid-IR to UV luminosity ratios. These galaxies have been missed in traditional optical studies of the distant universe. We present a simple method for selecting this high-z population based solely on the ratio of the observed mid-IR 24um to optical R-band flux density. In the 8.6 sq.deg Bootes NDWFS Field, we uncover ~2,600 DOG candidates (= 0.089/sq.arcmin) with 24um flux densities F24>0.3mJy and (R-[24])>14 (i.e., F[24]/F[R] > 1000). These galaxies have no counterparts in the local universe, and become a larger fraction of the population at fainter F24, representing 13% of the sources at 0.3~mJy. DOGs exhibit evidence of both star-formation and AGN activity, with the brighter 24um sources being more AGN- dominated. We have measured spectroscopic redshifts for 86 DOGs, and find a broad z distribution centered at <z>~2.0. Their space density is 2.82E-5 per cubic Mpc, similar to that of bright sub-mm-selected galaxies at z~2. These redshifts imply very large luminosities LIR>~1E12-14 Lsun. DOGs contribute ~45-100% of the IR luminosity density contributed by all z~2 ULIRGs, suggesting that our simple selection criterion identifies the bulk of z~2 ULIRGs. DOGs may be the progenitors of ~4L* present-day galaxies seen undergoing a luminous,short- lived phase of bulge and black hole growth. They may represent a brief evolution phase between SMGs and less obscured quasars or galaxies. [Abridged]
We present the spectral analysis of duration-integrated broadband spectra (in $\sim30 $keV$-200 $MeV) of 15 bright BATSE gamma-ray bursts (GRBs). Some GRB spectra are very hard, with their spectral peak energies being above the BATSE LAD passband limit of $\sim$2 MeV. In such cases, their high-energy spectral parameters (peak energy and high-energy power-law indices) cannot be adequately constrained by BATSE LAD data alone. A few dozen bright BATSE GRBs were also observed with EGRET's calorimeter, TASC, in multi-MeV energy band, with a large effective area and fine energy resolution. Combining the BATSE and TASC data, therefore, affords spectra that span four decades of energy ($30 $keV$-200 $MeV), allowing for a broadband spectral analysis with good statistics. Studying such broadband high-energy spectra of GRB prompt emission is crucial, as they provide key clues to understanding its gamma-ray emission mechanism. Among the 15 GRB spectra, we found two cases with a significant high-energy excess, and another case with a extremely high peak energy (\epeak $\gtrsim$ 170 MeV). There have been very limited number of GRBs observed at MeV energies and above, and only a few instruments have been capable of observing GRBs in this energy band with such high sensitivity. Thus, our analysis results presented here should also help predict GRB observations with current and future high-energy instruments such as AGILE and GLAST, as well as with ground-based very-high-energy telescopes.
The Einstein radius of a cluster provides a relatively model-independent measure of the mass density of a cluster within a projected radius of ~ 150 kpc, large enough to be relatively unaffected by gas physics. We show that the observed Einstein radii of three well-studied massive clusters, for which reliable virial masses are measured, lie well beyond the predicted distribution of Einstein radii in the standard LambdaCDM model. Based on large samples of numerically simulated cluster-sized objects with virial masses ~ 1e15 solar, the predicted Einstein radii are only 15-25'', a factor of two below the observed Einstein radii of these three clusters. This is because the predicted mass profile is too shallow to exceed the critical surface density for lensing at a sizable projected radius. After carefully accounting for measurement errors as well as the biases inherent in the selection of clusters and the projection of mass measured by lensing, we find that the theoretical predictions are excluded at a 4-sigma significance. Since most of the free parameters of the LambdaCDM model now rest on firm empirical ground, this discrepancy may point to an additional mechanism that promotes the collapse of clusters at an earlier time thereby enhancing their central mass density.
The cosmological expansion of the universe affects the behaviour of all physical systems and, in the case of gravitationally bound ones, could correspond to or mimic a time dependent Newton's constant. Here we discuss the case of a locally spherical mass distribution embedded in a generic Robertson Walker universe. Choosing the most appropriate metric tensor for the problem and assuming that the local time scale is much much lower than the cosmic one, we show that G is practically unaffected thus leaving the absolute magnitude of type Ia supernovae unaltered at all epochs.
We show an interesting correlation between the surface brightness and temperature structure of the relaxed clusters RXJ1720.1+2638 and MS1455.0+2232, hosting a pair of cold fronts, and their central core--halo radio source. We discuss the possibility that the origin of this diffuse radio emission may be strictly connected with the gas sloshing mechanism suggested to explain the formation of cold fronts in non major merging clusters. We show that the radiative lifetime of the relativistic electrons is much shorter than the timescale on which they can be transported from the central galaxy up to the radius of the outermost cold front. This strongly indicates that the observed diffuse radio emission is likely produced by electrons re--accelerated via some kind of turbulence generated within the cluster volume limited by the cold fronts during the gas sloshing.
Compact Riemannian solar twisted magnetic flux tube surfaces model are tested against solar extreme ultraviolet (EUV) lines observations, allowing us to compute the diameter and height of solar plasma loops. The relation between magnetic and torsion energies is found for a nonplanar solar twisted (torsioned) loop to be $10^{9}$, which shows that the contribution of torsion energy to the solar loop is extremely weaker than the magnetic energy contribution. In this case solar loops of up $5000 km$ in diameter can be reached. The height of $220.000 km$ is used to obtain an estimate for torsion based on the Riemannian flux tube surface, which yields ${\tau}_{0}=0.9{\times} 10^{-8} m^{-1}$ which coincides with one of the data of $(0.9{\pm}0.4){\times}10^{-8}m^{-1}$ obtained by Lopez-Fuentes et al (2003). This result tells us that the Riemannian flux tube model for plasma solar loops is consistent with experimental results in solar physics. These results are obtained for a homogeneous twisted solar loop. By making use of Moffatt-Ricca theorem for the bounds on torsional energy of unknotted vortex filaments, applied to magnetic topology, one places bounds on the lengths of EUV solar loops. New results as the vorticity of the plasma flow along the tube is also computed in terms of the flux tube twist.
Mean-motion resonances (MMRs) are likely to play an important role both during and after the lifetime of the protostellar gas disk. We study the dynamical evolution and stability of planetary systems containing two initially circular giant planets near 2:1 resonance and closer. We find that in addition to the 2:1, planets can capture into the 5:3 and 3:2. We use direct numerical integrations of approximately 1000 systems in which the planets are placed in one of these resonances and allowed to evolve for up to approximately 10^7 yr. We find that the final eccentricity distribution of those systems which ultimately become unstable gives a good fit to that of the observed planetary systems. Next, we integrate approximately 500 two-planet systems in which the outer planet is driven to migrate inward, resonantly capturing the inner; the systems are evolved until either instability sets in, or the planets reach the star. We find that although the 5:3 resonance rapidly becomes unstable under migration, the 2:1 and 3:2 are very stable. Thus the lack of observed exoplanets in resonances closer than 2:1, if it continues to hold up, may be a primordial signature of the planet formation process.
Red-sequence galaxies record the history of terminated star-formation in the Universe and can thus provide important clues to the mechanisms responsible for this termination. We construct composite samples of published cluster and field galaxy photometry in order to study the build-up of galaxies on the red-sequence, as parameterised by the dwarf-to-giant ratio (DGR). We find that the DGR in clusters is higher than that of the field at all redshifts, implying that the faint end of the red-sequence was established first in clusters. We find that the DGR evolves with redshift for both samples, consistent with the ``down-sizing'' picture of star formation. We examine the predictions of semi-analytic models for the DGR and find that neither the magnitude of its environmental dependence nor its evolution is correctly predicted in the models. Red-sequence DGRs are consistently too high in the models, the most likely explanation being that the strangulation mechanism used to remove hot gas from satellite galaxies is too efficient. Finally we present a simple toy model including a threshold mass, below which galaxies are not strangled, and show that this can predict the observed evolution of the field DGR.
We propose a general framework to scrutinize the performance of semi-analytic codes of galaxy formation. The approach is based on the analysis of the outputs from the model after a series of perturbations in the input parameters controlling the baryonic physics. The perturbations are chosen in a way that they do not change the results in the luminosity function or mass function of the galaxy population. We apply this approach on a particular semi-analytic model called GalICS. We chose to perturb the parameters controlling the efficiency of star formation and the efficiency of supernova feedback. We keep track of the baryonic and observable properties of the central galaxies in a sample of dark matter halos with masses ranging from 10^{10} M_sol to 10^{13} M_sol. We find very different responses depending on the halo mass. For small dark matter halos its central galaxy responds in a highly predictable way to small perturbation in the star formation and feedback efficiency. For massive dark matter halos, minor perturbations in the input parameters can induce large fluctuations on the properties of its central galaxy, at least $\sim 0.1$ in (B-V) color or $\sim 0.5$ mag in U or r filter, in a seemingly random fashion. We quantify this behavior through an objective scalar function we call predictability. We argue that finding the origin of this behavior needs additional information from other approximations and different semi-analytic codes. Furthermore, the implementation of an scalar objective function, such as the predictability, opens the door to quantitative benchmarking of semi-analytic codes based on its numerical performance.
We introduce the contour process to describe the geometrical properties of
merger trees. The contour process produces a one-dimensional object, the
contour walk, which is a translation of the merger tree. We portray the contour
walk through its length and action. The length is proportional to to the number
of progenitors in the tree, and the action can be interpreted as a proxy of the
mean length of a branch in a merger tree.
We obtain the contour walk for merger trees extracted from the public
database of the Millennium Run and also for merger trees constructed with a
public Monte-Carlo code which implements a Markovian algorithm. The trees
correspond to halos of final masses between 10^{11} h^{-1} M_sol and 10^{14}
h^{-1} M_sol. We study how the length and action of the walks evolve with the
mass of the final halo. In all the cases, except for the action measured from
Markovian trees, we find a transitional scale around 3 \times 10^{12} h^{-1}
M_sol. As a general trend the length and action measured from the Markovian
trees show a large scatter in comparison with the case of the Millennium Run
trees.
Continuous observations were obtained of active region 10953 with the Solar Optical Telescope (SOT) on board the \emph{Hinode} satellite during 2007 April 28 to May 9. A prominence was located over the polarity inversion line (PIL) in the south-east of the main sunspot. These observations provided us with a time series of vector magnetic fields on the photosphere under the prominence. We found four features: (1) The abutting opposite-polarity regions on the two sides along the PIL first grew laterally in size and then narrowed. (2) These abutting regions contained vertically-weak, but horizontally-strong magnetic fields. (3) The orientations of the horizontal magnetic fields along the PIL on the photosphere gradually changed with time from a normal-polarity configuration to a inverse-polarity one. (4) The horizontal-magnetic field region was blueshifted. These indicate that helical flux rope was emerging from below the photosphere into the corona along the PIL under the pre-existing prominence. We suggest that this supply of a helical magnetic flux into the corona is associated with evolution and maintenance of active-region prominences.
Solar prominences are cool 10$^4$ Kelvin plasma clouds supported in the surrounding 10$^6$ Kelvin coronal plasma by as-yet undetermined mechanisms. Observations from \emph{Hinode} show fine-scale threadlike structures oscillating in the plane of the sky with periods of several minutes. We suggest these transverse magnetohydrodynamic waves may represent Alfv\'en waves propagating on coronal magnetic field lines and these may play a role in heating the corona.
Observations of protostellar disks indicate the presence of the magnetic field of thermal (or superthermal) strength. In such a strong magnetic field, many MHD instabilities responsible for turbulent transport of the angular momentum are suppressed. We consider the shear-driven instability that can occur in protostellar disks even if the field is superthermal. This instability is caused by the combined influence of shear and compressibility in a magnetized gas and can be an efficient mechanism to generate turbulence in disks. The typical growth time is of the order of several rotation periods.
Halo coronal mass ejections (HCMEs) originating from regions close to the center of the Sun are likely to be responsible for severe geomagnetic storms. It is important to predict geo-effectiveness of HCMEs using observations when they are still near the Sun. Unfortunately, coronagraphic observations do not provide true speeds of CMEs due to the projection effects. In the present paper, we present a new technique allowing estimate the space speed and approximate source location using projected speeds measured at different position angles for a given HCME (velocity asymmetry). We apply this technique to HCMEs observed during 2001-2002 and find that the improved speeds are better correlated with the travel times of HCMEs to Earth and with the magnitudes ensuing geomagnetic storms.
I consider an extented version of Bekenstein's Tensor-Vector-Scalar theory where the action of the vector field is of a general Einstein-Ether form. This work presents the cosmological equations of this theory, both at the background and perturbed level, for scalar, vector and tensor perturbation modes. By solving the background equations in the radiation era analytically, to an excellent approximation, I construct the primordial adiabatic perturbation for a general family of scalar field kinetic functions.
The year 2007 has furnished us with outstanding results about the origin of the most energetic cosmic rays: a flux suppression as expected from the GZK-effect has been observed in the data of the HiRes and Auger experiments and correlations between the positions of nearby AGN and the arrival directions of trans-GZK events have been observed by the Pierre Auger Observatory. The latter finding marks the beginning of ultra high-energy cosmic ray astronomy and is considered a major breakthrough starting to shed first light onto the sources of the most extreme particles in nature. This report summarizes those observations and includes other major advances of the field, mostly presented at the 30th International Cosmic Ray Conference held in Merida, Mexico, in July 2007. With increasing statistics becoming available from current and even terminated experiments, systematic differences amongst different experiments and techniques can be studied in detail which is hoped to improve our understanding of experimental techniques and their limitations.
From the Sloan Digital Sky Survey (SDSS), Data Release 5 (DR5), we extract a sample of 4594 galaxies at redshifts 0.02<z<0.03, complete down to a stellar mass of M=10^10 Msol. We quantify their structure (Sersic index), morphology (Sersic index + `Bumpiness'), and local environment. We show that morphology and structure are intrinsically different galaxy properties, and we demonstrate that this is a physically relevant distinction by showing that these properties depend differently on galaxy mass and environment. Structure mainly depends on galaxy mass whereas morphology mainly depends on environment. This is driven by variations in star-formation activity, as traced by color, which only weakly affects the structure of a galaxy, but strongly affects its morphological appearance. The implication of our results is that the existence of the morphology-density relation is intrinsic and not just due to a combination of more fundamental, underlying relations. Our findings have consequences for high-redshift studies, which often use some measure of structure as a proxy for morphology. A direct comparison with local samples selected through visually classified morphologies may lead to biases in the inferred evolution of the morphological mix of the galaxy population, and misinterpretations in terms of how galaxy evolution depends on mass and environment.
We investigate the scattering and absorption of light by random ballistic aggregates of spherical monomers. We present a general measure for the porosity of an irregular particle. Three different classes of ballistic aggregates are considered, with different degrees of porosity. Scattering and absorption cross sections are calculated, using the discrete dipole approximation (DDA), for grains of three compositions (50% silicate and 50% graphite; 50% silicate and 50% amorphous carbon; and 100% silicate), for wavelengths from 0.1 micron to 4 micron. For fixed particle mass, increased porosity increases the extinction at short wavelengths, but decreases the extinction at wavelengths long compared to the overall aggregate size. Scattering and absorption cross sections are insensitive to monomer size as long as the constituent monomers are small compared with the incident wavelength. We compare our accurate DDA results with two other approximations: the analytical multi-layer sphere (MLS) model and effective medium theory (EMT). For high porosity and/or absorptive materials, the MLS model does not provide a good approximation for scattering and absorption by ballistic aggregates. The EMT method provides a much better approximation than the MLS model for these aggregates, with a typical difference less than 20% in extinction and scattering cross sections compared with DDA results, for all types, compositions and wavelengths probed in this study.
This is the first paper of a series focused on investigating the star formation and evolutionary history of the two early-type galaxies NGC 1407 and NGC 1400. They are the two brightest galaxies of the NGC 1407 (or Eridanus-A) group, one of the 60 groups studied as part of the Group Evolution Multi-wavelength Study (GEMS). Here we present new high signal-to-noise long-slit spectroscopic data obtained at the ESO 3.6m telescope and high-resolution multi-band imaging data from the HST/ACS and wide-field imaging from Subaru Suprime-Cam. We spatially resolved integrated spectra out to 0.6 (NGC 1407) and 1.3 (NGC 1400) effective radii. The radial profiles of the kinematic parameters v(rot), sigma, h3 and h4 are measured. The surface brightness profiles are fitted to different galaxy light models and the colour distributions analysed. The multi-band images are modelled to derive isophotal shape parameters and residual galaxy images. The parameters from the surface brightness profile fitting are used to estimate the mass of the possible central supermassive black hole in NGC 1407. The galaxies are found to be rotationally supported and to have a flat core in the surface brightness profiles. Elliptical isophotes are observed at all radii and no fine structures are detected in the residual galaxy images. From our results we can also discard a possible interaction between NGC 1400, NGC 1407 and the group intergalactic medium. We estimate a mass of 1.03x10^9 M(sun) for the supermassive black hole in NGC 1407 galaxy.
The basic idea of the kd-tree algorithm is to recursively partition a point set P by hyperplanes, and to store the obtained partitioning in a binary tree. Due to its immense popularity, many applications in astronomy have been implemented. The algorithm can been used to solve a near neighbor problem for cross-identification of huge catalogs and realize the classification of astronomical objects. Since kd-tree can speed up query and partition spaces, some approaches based on it have been applied for photometric redshift measurement. We give the case studies of kd-tree in astronomy to show its importance and performance.
We present a possible star formation and chemical evolutionary history for two early-type galaxies NGC 1407 and NGC 1400. They are the two brightest galaxies of the NGC 1407 (or Eridanus-A) group, one of the 60 groups studied as part of the Group Evolution Multi-wavelength Study (GEMS). Our analysis is based on new high signal-to-noise spatially resolved integrated spectra obtained at the ESO 3.6m telescope, out to 0.6 (NGC 1407) and 1.3 (NGC 1400) effective radii. Using Lick/IDS indices we estimate luminosity-weighted ages, metallicities and $\alpha$-element abundance ratios. Colour radial distributions from HST/ACS and Subaru Suprime-Cam multi-band wide-field imaging are compared to colours predicted from spectroscopically determinated ages and metallicities using single stellar population models. The galaxies formed over half of their mass in a single short-lived burst of star formation (> 100 M(sun)/year) at redshift z>5. This likely involved an outside-in mechanism with supernova-driven galactic winds, as suggested by the flatness of the alpha-element radial profiles and the strong negative metallicity gradients. Our results support the predictions of the revised version of the monolithic collapse model for galaxy formation and evolution. We speculate that, since formation the galaxies have evolved quiescently and that we are witnessing the first infall of NGC 1400 in the group.
In this paper, we use the observations of Sunyaev-Zel'dovich effect and X-ray surface brightness to reconstruct the radial profiles of gas temperature and density under the assumption of spherically symmetric distribution of gas. The reconstruction method, firstly raised by \cite{1978ApJ...226L.103S}, is directly dependent on the experimental measurements of Sunyaev-Zel'dovich effect and X-ray surface brightness. There is no need to incorporate additional assumptions such as the equation of state of gas or the hydrostatic equilibrium conditions. The method is applied on the cluster RX J1347.5-1145, which has both the Sunyaev-Zel'dovich effect and X-ray observations with relative high precision. It is shown that it will be an effective method to get the gas distribution information in the galaxy cluster. The statistical errors of the derived temperature and density profiles of gas are estimated according to the observational uncertainties.
SN 2006jc is a peculiar supernova (SN), in which the formation of dust has been confirmed at an early epoch of ~50 days after the explosion. We investigate the possibility of such an earlier formation of dust grains in the expanding ejecta of SN 2006jc, applying the Type Ib SN model that is developed to reproduce the observed light curve. We find that the rapid decrease of the gas temperature in SN 2006jc enables the condensation of C grains in the C-rich layer at 40--60 days after the explosion, which is followed by the condensation of silicate and oxide grains until ~200 days. The average radius of each grain species is confined to be less than 0.01 micron due to the low gas density at the condensation time. The calculated total dust mass reaches to ~1.5 Msun, of which C dust shares 0.7 Msun. On the other hand, based on the calculated dust temperature, we show that the dust species and mass evaluated to reproduce the spectral energy distribution observed by AKARI and MAGNUM at day 200 are different from those obtained by the dust formation calculations; the dust species contributing to the observed flux are hot C and FeS grains with masses of $5.6 \times 10^{-4}$ Msun and $2.0 \times 10^{-3}$ Msun, respectively, though we cannot defy the presence of a large amount of cold dust such as silicate and oxide grains up to 0.5 Msun. One of the physical processes responsible for the difference between calculated and evaluated masses of C and FeS grains could be considered to be the destruction of small-sized clusters by energetic photons and electrons prevailing within the ejecta at the earlier epoch.
Intuitively we might expect dark energy, which gravitationally behaves as repulsive form of matter, will not cluster on large scale. But the observational fact that the matter (dark + baryonic) is distributed inhomogeneously would make the assumption of smooth dark energy distribution inconsistent with the Einstein's equation. In this paper we estimate the amplitude of the perturbations in dark energy at different length scales for a quintessence model with an exponential potential. As a reasonable assumption, we consider the scalar field to be initially homogeneous in the matter dominated epoch. The matter perturbations would then induces perturbations in the scalar field which results in perturbations in the dark energy. The ratio of the dark energy perturbations to the matter perturbations is estimated for different scales at the present epoch. And it was found that for scales $\lambda_{p}< 1000\mathrm{Mpc}$, the perturbation in dark energy can be neglected in comparison with the perturbation in matter. But for scales comparable to Hubble radius at the present epoch, perturbation in dark energy, in general cannot be neglected. As a consequence of dark energy, large scale matter perturbation is suppressed in comparison to $\Lambda$CDM.
The Cesam code is a consistent set of programs and routines which perform calculations of 1D quasi-hydrostatic stellar evolution including microscopic diffusion of chemical species and diffusion of angular momentum. The solution of the quasi-static equilibrium is performed by a collocation method based on piecewise polynomials approximations projected on a B-spline basis; that allows stable and robust calculations, and the exact restitution of the solution, not only at grid points, even for the discontinuous variables. Other advantages are the monitoring by only one parameter of the accuracy and its improvement by super-convergence. An automatic mesh refinement has been designed for adjusting the localisations of grid points according to the changes of unknowns. For standard models, the evolution of the chemical composition is solved by stiffly stable schemes of orders up to four; in the convection zones mixing and evolution of chemical are simultaneous. The solution of the diffusion equation employs the Galerkin finite elements scheme; the mixing of chemicals is then performed by a strong turbulent diffusion. A precise restoration of the atmosphere is allowed for.
The understanding and modeling of the structure and evolution of stars is based on statistical physics as well as on hydrodynamics. Today, a precise identification and proper description of the physical processes at work in stellar interiors are still lacking (one key point being that of transport processes) while the comparison of real stars to model predictions, which implies conversions from the theoretical space to the observational one, suffers from uncertainties in model atmospheres. That results in uncertainties on the prediction of stellar properties needed for galactic studies or cosmology (as stellar ages and masses). In the next decade, progress is expected from the theoretical, experimental and observational sides. I illustrate some of the problems we are faced with when modeling stars and the possible tracks towards their solutions. I discuss how future observational ground-based or spatial programs (in particular those dedicated to micro-arc-second astrometry, asteroseismology and interferometry) will provide precise determinations of the stellar parameters and contribute to a better knowledge of stellar interiors and atmospheres in a wide range of stellar masses, chemical compositions and evolution stages.
I show that extreme beaming factors $b$ are not needed to explain ULXs as stellar--mass binaries. For neutron star accretors one typically requires $b \sim 0.13$, and for black holes almost no beaming ($b \sim 0.8$). The main reason for the high apparent luminosity is the logarithmic increase in the limiting luminosity for super--Eddington accretion. The required accretion rates are explicable in terms of thermal--timescale mass transfer from donor stars of mass $6 - 10\msun$, or possibly transient outbursts. Beaming factors $\la 0.1$ would be needed to explain luminosities significantly above $10^{40}L_{40}$ erg s$^{-1}$, but these requirements are relaxed somewhat if the accreting matter has low hydrogen content.
We discuss the equatorial imaging benefits that arise from the addition of the 25-metre dish at Chilbolton to the e-MERLIN array. Its inclusion considerably enhances the capabilities of e-MERLIN on and below the equator. This will become particularly important in the era of ALMA and other upcoming southern hemisphere facilities. We present simulated observations of point sources in the equatorial region of the sky which is the target area for many existing sky surveys. We find that the additional baselines created by the inclusion of the Chilbolton dish favourably adjust the beam shape of e-MERLIN to a more compact and circular shape, with significantly reduced sidelobe structure. Putting aside the benefits of increased collecting area, the modified beam shape has implications for more rapidly reaching a given completeness limit for equatorial surveys.
Dedicated to spectroscopic and imaging observations of the ultraviolet sky, the World Space Observatory for Ultraviolet Project is a Russia led international collaboration presently involving also China, Germany, Italy, Spain and Ukraine. The mission consists of a 1.7m telescope able to perform: a) high resolution (R greater than 60000) spectroscopy by means of two echelle spectrographs covering the 103-310 nm range; b) long slit (1x75 arcsec) low resolution (R about 1500-2500) spectroscopy using a near-UV channel and a far-UV channel to cover the 102-310nm range; c) deep UV and diffraction limited UV and optical imaging (from 115 to 700 nm). Overall information on the project and on its science objectives are given by other two papers in these proceedings. Here we present the WSO-UV focal plane instruments, their status of implementation, and the expected performances.
We generalize the standard model of particle physics such it displays global scale invariance. The gravitational action is also suitably modified such that it respects this symmetry. This model is interesting since the cosmological constant term is absent in the action. We find that the scale symmetry is broken by the recently introduced cosmological symmetry breaking mechanism. This simultaneously generates all the dimensionful parameters such as the Newton's gravitational constant, the particle masses and the vacuum or dark energy. We find that in its simplest version the model predicts the Higgs mass to be very small, which is ruled out experimentally. We further generalize the model such that it displays local scale invariance. In this case the Higgs particle disappears from the particle spectrum and instead we find a very massive vector boson. Hence the model gives a consistent description of particle physics phenomenology as well as fits the cosmological dark energy.
The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218 associated with supernova SN 2006aj may imply an interesting astronomical picture where a supernova shock breakout locates behind a relativistic GRB jet. Based on this picture, we study neutrino emission for early afterglows of GRB 060218-like GRBs, where neutrinos are expected to be produced from photopion interactions in a GRB blast wave that propagates into a dense wind. Relativistic protons for the interactions are accelerated by an external shock, while target photons are basically provided by the incoming thermal emission from the shock breakout and its inverse-Compton scattered component. Because of a high estimated event rate of low-luminosity GRBs, we would have more opportunities to detect afterglow neutrinos from a single nearby GRB event of this type by IceCube. Such a possible detection could provide evidence for the picture described above.
This paper reports on the current status of the World Space Observatory WSO-UV, a space mission for UV astronomy, planned for launch at the beginning of next decade. It is based on a 1.7 m telescope, with focal plane instruments including high resolution spectrographs, long slit low resolution spectrographs and imaging cameras.
We performed a photometric multicolor survey of the core of the Canis Major over-density at l 244, -8.0, reaching V = 22 and covering 0.3 x 1 degree. The main aim is to unravel the complex mixture of stellar populations toward this Galactic direction, where in the recent past important signatures of an accretion event have been claimed to be detected. While our previous investigations were based on disjointed pointings aimed at revealing the large scale structure of the third Galactic Quadrant, we now focus on a complete coverage of a smaller field centered on the Canis Major over-density. A large wave-length baseline, in the UBVRI bands, allows us to build up a suite of colour colour and colour magnitude diagrams, providing a much better diagnostic tool to disentangle the stellar populations of the region. In fact, the simple use of one colour magnitude diagram, widely employed in all the previous studies defending the existence of the Canis Major galaxy, does not allow one to separate the effects of the different parameters (reddening, age, metallicity, and distance) involved in the interpretation of data, forcing to rely on heavy modeling. In agreement with our previous studies in the same general region of the Milky Way, we recognize a young stellar population compatible with the expected structure and extension of the Local (Orion) and Outer (Norma-Cygnus) spiral arms in the Third Galactic Quadrant. Moreover we interpret the conspicuous intermediate-age metal poor population as belonging to the Galactic thick disk, distorted by the effect of strong disk warping at this latitude, and to the Galactic halo.
We have processed the data accumulated with INTEGRAL SPI during 4 years (~ 51 Ms) to study the Galactic ``diffuse'' emission morphology in the 20 keV to 8 MeV energy range. To achieve this objective, we have derived simultaneously an all-sky census of emitting sources and images of the Galactic Ridge (GR) emission. In the central radian, the resolved point source emission amounts to 88%, 91% and 68% of the total emission in the 25-50, 50-100 and 100-300 keV domains respectively. We have compared the GR emission spatial distribution to those obtained from CO and NIR maps, and quantified our results through latitude and longitude profiles. Below 50 keV, the SPI data are better traced by the latter, supporting a stellar origin for this emission. Furthermore, we found that the GR emission spectrum follows a power law with a photon index ~ 1.55 above 50 keV while an additional component is required below this energy. This component shows a cutoff around 30 keV, reinforcing a stellar origin, as proposed by Krivonos et al. (2007). The annihilation diffuse emission component is extracted simultaneously, leading to the determination of the related parameters (positronium flux and fraction). A specific discussion is devoted to the annihilation line distribution since a significant emission is detected over a region as large as ~80 degrees by ~10 degrees potentially associated with the disk or halo surrounding the central regions of our Galaxy.
We investigate the evolution of accretion luminosity $L_{\rm acc}$ and stellar luminosity ${L_\ast}$ in pre-mainsequence stars. We make the assumption that when the star appears as a Class II object, the major phase of accretion is long past, and the accretion disc has entered its asymptotic phase. We use an approximate stellar evolution scheme for accreting pre-mainsequence stars based on Hartmann, Cassen & Kenyon, 1997. We show that the observed range of values $k = L_{\rm acc}/L_\ast$ between 0.01 and 1 can be reproduced if the values of the disc mass fraction $M_{\rm disc}/M_*$ at the start of the T Tauri phase lie in the range 0.01 -- 0.2, independent of stellar mass. We also show that the observed upper bound of $L_{\rm acc} \sim L_\ast$ is a generic feature of such disc accretion. We conclude that as long as the data uniformly fills the region between this upper bound and observational detection thresholds, then the degeneracies between age, mass and accretion history severely limit the use of this data for constraining possible scalings between disc properties and stellar mass.
We present the first X-ray monitoring observations of the X-ray bright FRI radio galaxy NGC6251 observed with RXTE for 1 year. The primary goal of this study is to shed light on the origin of the X-rays, by investigating the spectral variability with model-independent methods coupled with time-resolved and flux-selected spectroscopy. The main results can be summarized as follows: 1) Throughout the monitoring campaign, NGC6251 was in relatively high-flux state. 2) The flux persistently changed with fluctuations of the order of ~2 on time scales of 20-30 days. 3) When the hardness ratio is plotted against the average count rate, there is evidence for a spectral hardening as the source brightens; this finding is confirmed by a flux-selected spectral analysis. 4) The fractional variability appears to be more pronounced in the hard energy band (5-12 keV) than in the soft one (2.5-5 keV). 5) 2-month averaged and flux-limited energy spectra are adequately fitted by a power law. A Fe Kalpha line is never statistically required, although the presence of a strong iron line cannot be ruled out, due to the high upper limits on the line equivalent width. The inconsistency of the spectral variability behavior of NGC6251 with the typical trend observed in Seyfert galaxies and the similarity with blazars lead support to a jet-dominated scenario during the RXTE monitoring campaign. However, a possible contribution from a disk-corona system cannot be ruled out.
We investigate the orbital evolution of planetesimals in a self-gravitating circumstellar disc in the size regime ($\sim 1-5000$ km) where the planetesimals behave approximately as test particles in the disc's non-axisymmetric potential. We find that the particles respond to the stochastic, regenerative spiral features in the disc by executing large random excursions (up to a factor of two in radius in $\sim 1000$ years), although typical random orbital velocities are of order one tenth of the Keplerian speed. The limited time frame and small number of planetesimals modeled does not permit us to discern any {\it net} direction of planetesimal migration. Our chief conclusion is that the high eccentricities ($\sim 0.1$) induced by interaction with spiral features in the disc is likely to be highly unfavourable to the collisional growth of planetesimals in this size range while the disc is in the self-gravitating regi me. Thus {\it if}, as recently argued by Rice et al 2004, 2006, the production of planetesimals gets under way when the disc is in the self-gravitating regime (either at smaller planetesimal size scales, where gas drag is important, or via gravitational fragmentation of the solid component), then the planetesimals thus produced would not be able to grow collisionally until the disc ceased to be self-gravitating. It is unclear, however,given the large amplitude excursions undergone by planetesimals in the self-gravitating disc, whether they would be retained in the disc throughout this period, or whether they would instead be lost to the central star.
We study the evolution of dwarf (L_H < 10^{9.6} L_Ho) star forming and quiescent galaxies in the Virgo cluster by comparing their UV to radio centimetric properties to the predictions of multizone chemo-spectrophotometric models of galaxy evolution especially tuned to take into account the perturbations induced by the interaction with the cluster intergalactic medium. Our models simulate one or multiple ram pressure stripping events and galaxy starvation. Models predict that all star forming dwarf galaxies entering the cluster for the first time loose most, if not all, of their atomic gas content, quenching on short time scales (< 150 Myr) their activity of star formation. These dwarf galaxies soon become red and quiescent, gas metal-rich objects with spectrophotometric and structural properties similar to those of dwarf ellipticals. Young, low luminosity, high surface brightness star forming galaxies such as late-type spirals and BCDs are probably the progenitors of relatively massive dwarf ellipticals, while it is likely that low surface brightness magellanic irregulars evolve into very low surface brightness quiescent objects hardly detectable in ground based imaging surveys. The small number of dwarf galaxies with physical properties intermediate between those of star forming and quiescent systems is consistent with a rapid (< 1 Gyr) transitional phase between the two dwarf galaxies populations. These results, combined with statistical considerations, are consistent with the idea that most of the dwarf ellipticals dominating the faint end of the Virgo luminosity function were initially star forming systems, accreted by the cluster and stripped of their gas by one or subsequent ram pressure stripping events.
The use of specific tracers of the dense molecular gas phase can help to explore the feedback of activity on the interstellar medium (ISM) in galaxies. This information is a key to any quantitative assessment of the efficiency of the star formation process in galaxies. We present the results of a survey devoted to probe the feedback of activity through the study of the excitation and chemistry of the dense molecular gas in a sample of local universe starbursts and active galactic nuclei (AGNs). Our sample includes also 17 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). From the analysis of the LIRGs/ULIRGs subsample, published in Gracia-Carpio et al.(2007) we find the first clear observational evidence that the star formation efficiency of the dense gas, measured by the L_FIR/L_HCN ratio, is significantly higher in LIRGs and ULIRGs than in normal galaxies. Mounting evidence of overabundant HCN in active environments would even reinforce the reported trend, pointing to a significant turn upward in the Kennicutt-Schmidt law around L_FIR=10^11 L_sun. This result has major implications for the use of HCN as a tracer of the dense gas in local and high-redshift luminous infrared galaxies.
We analyze the distribution of G and K type stars towards the Galactic poles using RAVE and ELODIE radial velocities, 2MASS photometric star counts, and UCAC2 proper motions. The combination of photometric and 3D kinematic data allows us to disentangle and describe the vertical distribution of dwarfs, sub-giants and giants and their kinematics. We identify discontinuities within the kinematics and magnitude counts that separate the thin disk, thick disk and a hotter component. The respective scale heights of the thin disk and thick disk are 225$\pm$10 pc and 1048$\pm$36 pc. We also constrain the luminosity function and the kinematic distribution function. The existence of a kinematic gap between the thin and thick disks is incompatible with the thick disk having formed from the thin disk by a continuous process, such as scattering of stars by spiral arms or molecular clouds. Other mechanisms of formation of the thick disk such as `created on the spot' or smoothly `accreted' remain compatible with our findings.
Self-consistent stellar models including all effects of atomic diffusion and radiative accelerations as well as mass loss are evolved from the pre main sequence for stars of 1.35-1.5, M$_{\odot}$ at solar metallicity (Z=0.02). A mass loss rate similar to the solar mass loss rate is sufficient to reproduce observations of the star $\tau$UMa. We discuss the effect of mass loss on the iron convection zone that naturally appears beneath the main hydrogen convection zone of these stars. We also find that the effects of mass loss can be distinguished from those caused by turbulence, but are nevertheless able to explain the particularities of the AmFm phenomenon.
The understanding of the formation, life, and death of Population III stars, as well as the impact that these objects had on later generations of structure formation, is one of the foremost issues in modern cosmological research and has been an active area of research during the past several years. We summarize the results presented at "First Stars III," a conference sponsored by Los Alamos National Laboratory, the Kavli Institute for Particle Astrophysics and Cosmology, and the Joint Institute for Nuclear Astrophysics. This conference, the third in a series, took place in July 2007 at the La Fonda Hotel in Santa Fe, New Mexico, U.S.A.
We put forward a reconstruction scheme for dark energy which employs a number of observationally motivated geometrical constraints expected to be satisfied by the luminosity-distance relation. This generalises a scheme recently put forward, with the important additional feature that it allows a wider range of possible equations of state to be explored. Applying this scheme to the recent SNLS supernovae data we find a number of interesting results: (i) The LCDM model is compatible with the data within the 2 sigma significance level, but not at the 1 sigma level. (ii) Allowing the dark energy model to have an equation of state which is free to become phantom in the redshift interval [0,1], we find a sharp increase in the degeneracy in the reconstructed equation of state for redshifts greater than $\sim 0.6$, brought about by a sudden widening of the confidence contours. We trace the origin of this enhancement in degeneracy to the fact that in such models the equation of state can diverge. This is important in order to devise strategies to reduce this degeneracy, specially in the light of near future observations. There is, however, no such large degeneracies for dark energy models whose equations of state remain larger than -1 in the redshift interval [0,1]. (iii) There exist reconstructed solutions which fit the data well and show transient acceleration, with a very recent phase of deceleration.
I calculate the action of a satellite, infalling through dynamical friction, on a coplanar gaseous disk of finite radial extent. The disk tides, raised by the infalling satellite, couples the satellite and disk. Dynamical friction acting on the satellite then shrinks the radius of the coupled satellite-disk system. Thus, the gas is ``shepherded'' to smaller radii due to the action of dynamical friction on the satellite. In addition, gas shepherding produces a large surface density enhancement at the disk edge. If the disk edge then becomes gravitationally unstable and fragments, it may give rise to enhanced star formation. On the other hand, if the satellite is sufficiently massive and dense, the gas may be transported from $\sim 100$ pc to inside of a few pc before completely fragmenting into stars. Finally, I briefly discuss various candidates for shepherds and how gas shepherding may help fuel active galaxies and central starbursts.
We study and develop constraint preserving boundary conditions for the Newtonian magnetohydrodynamic equations and analyze the behavior of the numerical solution upon considering different possible options.
Photometric maps, obtained with Spitzer's Infrared Array Camera (IRAC), can provide a valuable probe of warm molecular hydrogen within the interstellar medium. IRAC maps of the supernova remnant IC443, extracted from the Spitzer archive, are strikingly similar to spectral line maps of the H2 pure rotational transitions that we obtained with the Infrared Spectrograph (IRS) instrument on Spitzer. IRS spectroscopy indicates that IRAC Bands 3 and 4 are indeed dominated by the H2 v=0-0 S(5) and S(7) transitions, respectively. Modeling of the H2 excitation suggests that Bands 1 and 2 are dominated by H2 v=1-0 O(5) and v=0-0 S(9). Large maps of the H2 emission in IC433, obtained with IRAC, show band ratios that are inconsistent with the presence of gas at a single temperature. The relative strengths of IRAC Bands 2, 3, and 4 are consistent with pure H2 emission from shocked material with a power-law distribution of gas temperatures. CO vibrational emissions do not contribute significantly to the observed Band 2 intensity. Assuming that the column density of H2 at temperatures T to T+dT is proportional to T raised to the power -b for temperatures up to 4000 K, we obtained a typical estimate of 4.5 for b. The power-law index, b, shows variations over the range 3 to 6 within the set of different sight-lines probed by the maps, with the majority of sight-lines showing b in the range 4 to 5. The observed power-law index is consistent with the predictions of simple models for paraboloidal bow shocks.
Emission-line abundances have been uncertain for more than a decade due to unexplained discrepancies in the relative intensities of the forbidden lines and weak permitted recombination lines in planetary nebulae (PNe) and H II regions. The observed intensities of forbidden and recombination lines originating from the same parent ion differ from their theoretical values by factors of more than an order of magnitude in some of these nebulae. In this study we observe UV resonance line absorption in the central stars of PNe produced by the nebular gas, and from the same ions that emit optical forbidden lines. We then compare the derived absorption column densities with the emission measures determined from ground-based observations of the nebular forbidden lines. We find for our sample of PNe that the collisionally excited forbidden lines yield column densities that are in basic agreement with the column densities derived for the same ions from the UV absorption lines. A similar comparison involving recombination line column densities produces poorer agreement, although near the limits of the formal uncertainties of the analyses. An additional sample of objects with larger abundance discrepancy factors will need to be studied before a stronger statement can be made that recombination line abundances are not correct.
Polarimetric observations are affected by leakage of unpolarized light into the polarization channels, in a way that varies with the angular position of the source relative to the optical axis. The off-axis part of the leakage is often corrected by subtracting from each polarization image the product of the unpolarized map and a leakage map, but it is seldom realized that heterogeneities in the array shift the loci of the leaked radiation in a baseline-dependent fashion. We present here a method to measure and remove the wide-field polarization leakage of a heterogeneous array. The process also maps the complex voltage patterns of each antenna, which can be used to correct all Stokes parameters for imaging errors due to the primary beams.
We present the concomitant decomposition of an (s+2)-dimensional spacetime both with respect to a timelike and a spacelike direction. The formalism we develop is suited for the study of the initial value problem and for canonical gravitational dynamics in brane-world scenarios. The bulk metric is replaced by two sets of variables. The first set consist of one tensorial (the induced metric $g_{ij}$), one vectorial ($M^{i}$) and one scalar ($M$) dynamical quantity, all defined on the s-space. Their time evolutions are related to the second fundamental form (the extrinsic curvature $K_{ij}$), the normal fundamental form ($\mathcal{K}^{i}$) and normal fundamental scalar ($\mathcal{K}$), respectively. The non-dynamical set of variables is given by the lapse function and the shift vector, which however has one component less. The missing component is due to the externally imposed constraint, which states that physical trajectories are confined to the (s+1)-dimensional brane. The pair of dynamical variables ($g_{ij}$, $K_{ij}$), well-known from the ADM-decomposition is supplemented by the pairs ($M^{i}$, $\mathcal{K}^{i}$) and ($M$, $\mathcal{K}$) due to the bulk curvature. We give all projections of the junction condition across the brane and prove that for a perfect fluid brane neither of the dynamical variables has jump across the brane. Finally we complete the set of equations needed for gravitational dynamics by deriving the evolution equations of $K_{ij}$, $\mathcal{K}^{i}$ and $\mathcal{K}$ on a brane with arbitrary matter.
The phase-space volume of regions of regular or trapped motion, for bounded or scattering systems with two degrees of freedom respectively, displays universal properties. In particular, drastic reductions in the volume (gaps) are observed at specific values of a control parameter. Using the stability resonances we show that they, and not the mean-motion resonances, account for the position of these gaps. For more degrees of freedom, exciting these resonances divides the regions of trapped motion. For planetary rings, we demonstrate that this mechanism yields rings with multiple components.
We develop a Hamiltonian formalism of brane-world gravity, which singles out two preferred, mutually orthogonal directions. One is a unit twist-free field of spatial vectors with integral lines intersecting perpendicularly the brane. The other is a temporal vector field with respect to which we perform the Arnowitt-Deser-Misner decomposition of the Einstein-Hilbert Lagrangian. The gravitational variables arise from the projections of the spatial metric and their canonically conjugated momenta as tensorial, vectorial and scalar quantities defined on the family of hypersurfaces containing the brane. They represent the gravitons, a gravi-photon and a gravi-scalar, respectively. From the action we derive the canonical evolution equations and the constraints for these gravitational degrees of freedom both on the brane and outside it. By integrating across the brane, the dynamics also generates the tensorial and scalar projection of the Lanczos equation. The vectorial projection of the Lanczos equation arises in a similar way from the diffeomorphism constraint. Both the graviton and the gravi-scalar are continuous across the brane, however the momentum of the gravi-vector has a jump, related to the energy transport (heat flow) on the brane.
We identify a new superintegrable Hamiltonian in 3 degrees of freedom, obtained as a reduction of pure Keplerian motion in 6 dimensions. The new Hamiltonian is a generalization of the Keplerian one, and has the familiar 1/r potential with three barrier terms preventing the particle crossing the principal planes. In 3 degrees of freedom, there are 5 functionally independent integrals of motion, and all bound, classical trajectories are closed and strictly periodic. The generalisation of the Laplace-Runge-Lenz vector is identified and shown to provide functionally independent isolating integrals. They are quartic in the momenta and do not arise from separability of the Hamilton-Jacobi equation. A formulation of the system in action-angle variables is presented.
In the limit of infinite external magnetic field B the static field of an electric charge is squeezed into a string parallel to B. Near the charge the potential grows like |x_3|(ln |x_3| + const) with the coordinate x_3 along the string. The energy of the string breaking is finite and very close to the effective photon mass.
This paper reviews the theory, phenomenology, and observational constraints on the coupling parameters of Einstein-aether gravity, i.e. General Relativity coupled to a dynamical unit timelike vector field. A discussion of open questions concerning both phenomenology and fundamental issues is included.
We consider linear perturbation equations for long-wavelength scalar metric perturbations in generalised gravity, applicable to non-singular cosmological models including a bounce from collapse to expansion in the very early universe. We present the general form for the perturbation equations which follows from requiring that the inhomogeneous universe on large scales obeys the same local equations as the homogeneous Friedmann-Robertson-Walker background cosmology (the separate universes approach). In a pseudo-longitudinal gauge this becomes a homogeneous second-order differential equation for adiabatic perturbations, which reduces to the usual equation for the longitudinal gauge metric perturbation in general relativity with vanishing anisotropic stress. As an application we show that the scale-invariant spectrum of perturbations in the longitudinal gauge generated during an ekpyrotic collapse are not transfered to the growing mode of adiabatic density perturbations in the expanding phase in a simple bounce model.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0801, /abs, contact, help (Access key information)
Mass estimates of K giants are generally very uncertain. Traditionally, stellar masses of single field stars are determined by comparing their location in the Hertzsprung-Russell diagram with stellar evolutionary models. Applying an additional method to determine the mass is therefore of significant interest for understanding stellar evolution. We present the time series analysis of 11 K giants recently observed with the WIRE satellite. With this comprehensive sample, we report the first confirmation that the characteristic acoustic frequency, nu_max, can be predicted for K giants by scaling from the solar acoustic cut-off frequency. We are further able to utilize our measurements of nu_max to determine an asteroseismic mass for each star with a lower uncertainty compared to the traditional method, for most stars in our sample. This indicates good prospects for the application of our method on the vast amounts of data that will soon come from the COROT and Kepler space missions.
We introduce on/off intermittency into a mean field dynamo model by imposing stochastic fluctuations in either the alpha effect or through the inclusion of a fluctuating electromotive force. Sufficiently strong small scale fluctuations with time scales of the order of 0.3-3 years can produce long term variations in the system on time scales of the order of hundreds of years. However, global suppression of magnetic activity in both hemispheres at once was not observed. The variation of the magnetic field does not resemble that of the sunspot number, but is more reminiscent of the 10 Be record. The interpretation of our results focuses attention on the connection between the level of magnetic activity and the sunspot number, an issue that must be elucidated if long term solar effects are to be well understood.
We show that a large-scale, weak magnetic field threading a turbulent accretion disk tends to be advected inward, contrary to previous suggestions that it will be stopped by outward diffusion. The efficient inward transport is a consequence of the diffuse, magnetically-dominated surface layers of the disk, where the turbulence is suppressed and the conductivity is very high. This structure arises naturally in three-dimensional simulations of magnetorotationally unstable disks, and we demonstrate here that it can easily support inward advection and compression of a weak field. The advected field is anchored in the surface layer but penetrates the main body of the disk, where it can generate strong turbulence and produce values of alpha (i.e., the turbulent stress) large enough to match observational constraints; typical values of the vertical magnetic field merely need to reach a few percent of equipartition for this to occur. Overall, these results have important implications for models of jet formation which require strong, large-scale magnetic fields to exist over a region of the inner accretion disk.
We analyze a high-resolution spectrum of a microlensed G-dwarf in the Galactic bulge, acquired when the star was magnified by a factor of 110. We measure a spectroscopic temperature, derived from the wings of the Balmer lines, that is the same as the photometric temperature, derived using the color determined by standard microlensing techniques. We measure [Fe/H]=0.36 +/-0.18, which places this star at the upper end of the Bulge giant metallicity distribution. In particular, this star is more metal-rich than any bulge M giant with high-resolution abundances. We find that the abundance ratios of alpha and iron-peak elements are similar to those of Bulge giants with the same metallicity. For the first time, we measure the abundances of K and Zn for a star in the Bulge. The [K/Mg] ratio is similar to the value measured in the halo and the disk, suggesting that K production closely tracks alpha production. The [Cu/Fe] and [Zn/Fe] ratios support the theory that those elements are produced in Type II SNe, rather than Type Ia SNe. We also measured the first C and N abundances in the Bulge that have not been affected by first dredge-up. The [C/Fe] and [N/Fe] ratios are close to solar, in agreement with the hypothesis that giants experience only canonical mixing.
We explore the role of AGN in establishing and/or maintaining the bimodal colour distribution of galaxies by quenching their star-formation and hence, causing their transition from the blue to the red cloud. Important tests for this scenario include (i) the X-ray properties of galaxies in the transition zone between the two clouds and (ii) the incidence of AGN in post-starbursts, i.e. systems observed shortly after (<1Gyr) the termination of their star-formation. We perform these tests by combining deep Chandra observations with multiwavelength data from the AEGIS survey. Stacking the X-ray photons at the positions of galaxies (0.4<z<0.9) not individually detected at X-ray wavelengths suggests a population of obscured AGN among sources in the transition zone and in the red cloud. Their mean X-ray and mid-IR properties are consistent with moderately obscured low-luminosity AGN, Compton thick sources or a mix of both. Morphologies show that major mergers are unlikely to drive the evolution of this population but minor interactions may play a role. The incidence of obscured AGN in the red cloud (both direct detections and stacking results) suggests that BH accretion outlives the termination of the star-formation. This is also supported by our finding that post-starburst galaxies at z~0.8 and AGN are associated, in agreement with recent results at low-z. A large fraction of post-starbursts and red cloud galaxies show evidence for at least moderate levels of AGN obscuration. This implies that if AGN outflows cause the colour transformation of galaxies, then some nuclear gas and dust clouds either remain unaffected or relax to the central galaxy regions after the quenching their star-formation.
(abridged) The technique of gravitational microlensing is currently unique in its ability to provide a sample of terrestrial exoplanets around both Galactic disk and bulge stars, allowing to measure their abundance and determine their distribution with respect to mass and orbital separation. In order to achieve these goals in reasonable time, a well-coordinated effort involving a network of either 2m or 4 x 1m telescopes at each site is required. It could lead to the first detection of an Earth-mass planet outside the Solar system, and even planets less massive than Earth could be discovered. From April 2008, ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) is planned to provide a platform for a three-step strategy of survey, follow-up, and anomaly monitoring. As an expert system embedded in eSTAR (e-Science Telescopes for Astronomical Research), ARTEMiS will give advice on the optimal targets to be observed at any given time, and will also alert on deviations from ordinary microlensing light curves by means of the SIGNALMEN anomaly detector. While the use of the VOEvent (Virtual Observatory Event) protocol allows a direct interaction with the telescopes that are part of the HTN (Heterogeneous Telescope Networks) consortium, additional interfaces provide means of communication with all existing microlensing campaigns that rely on human observers. The success of discovering a planet by microlensing critically depends on the availability of a telescope in a suitable location at the right time, which can mean within 10 min. Real-time modelling offers the opportunity of live discovery of extra-solar planets, thereby providing ''Science live to your home''.
Recent data support the idea that the filaments observed in H$\alpha$ emission near the centres of some galaxy clusters were shaped by bulk flows within their intracluster media. We present numerical simulations of evaporated clump material interacting with impinging winds to investigate this possibility. In each simulation, a clump falls due to gravity while the drag of a wind retards the fall of evaporated material leading to elongation of the tail. However, we find that long filaments can only form if the outflowing wind velocity is sufficiently large, $\sim 10^{8} {\rm cm s^{-1}}$. Otherwise, the tail material sinks almost as quickly as the cloud. For reasonable values of parameters, the morphological structure of a tail is qualitatively similar to those observed in clusters. Under certain conditions, the kinematics of the tail resemble those reported in Hatch et al.(2006). A comparison of the observations with the numerical results indicates that the filaments are likely to be a few tens of Myrs old. We also present arguments which suggest that the momentum transfer, from an outflowing wind, in the formation of these filaments is probably significant. As a result, tail formation could play a role in dissipating some of the energy injected by a central AGN close to the cluster centre where it is needed most. The trapping of energy by the cold gas may provide an additional feedback mechanism that helps to regulate the heating of the central regions of galaxy clusters and couple the AGN to the ICM.
We consider a Hartmann layer, stationary flow of a viscose and resistive
fluid between two plates with superimposed transverse magnetic field, in the
limit of gyrotropic plasma, when viscosity across the field is strongly
suppressed. For zero cross-field viscosity, the problem is not well posed,
since viscosity then vanishes on the boundaries and in the middle of the layer,
where there is no longitudinal field. An additional arbitrarily small isotropic
viscosity allows one to find magnetic field and velocity profiles which are
independent of this viscosity floor and different from flows with isotropic
viscosity. Velocity sharply rises in a thin boundary layer, which thickness
depends both on the Hartmann number and on the Lundquist number of the flow.
The implication of the work is that, in simulating ICM dynamics it is
imperative to use numerical schemes which take into account anisotropic
viscosity. Although magnetic fields are dynamically subdominant in the ICM they
do determine its the dissipative properties, stability of embedded structures
and the transition to turbulence.
In this paper, we summarize three recent papers which point out possible non-thermal radio emission arising from the Sgr B region in the Galactic Center. We also present a high-resolution and sensitive image of the Sgr B region at 1.4 GHz made with the VLA. Using this image and a matched-array 327 MHz VLA image, we derive a thermal spectrum for the Sgr B complex and suggest that the radio emission is a mixture of optically thin and optically thick emission over the frequency range discussed here (255 MHz to 1.4 GHz). In addition, we show that the the apparent non-thermal power law slope for the Sgr B2 continuum temperature observed by the GBT is likely determined by source structure and provides limited information about the physical processes in the Sgr B region. While the structure Sgr B region is complex and furthermore confused by the Galactic background, there does not appear to be substantial evidence for a non-thermal component in Sgr B.
We have initiated a survey of MgII 2796, 2803 absorbers near known galaxies at projected distances rho<~100 h^-1 kpc to a background QSO, in order to constrain the extent and covering fraction of Mg^+ ions around galaxies of different luminosity and mass. The current sample consists of 13 galaxy and absorber pairs and 10 galaxies that do not produce MgII absorption lines to within sensitive upper limits. The redshifts of the galaxy and absorber pairs range from z = 0.2067 to 0.892 with a median of z = 0.3818. We find that galaxies at larger impact parameters produce on average weaker MgII absorbers. This anti-correlation is substantially improved when accounting for the intrinsic luminosities of individual galaxies. In addition, there exists a distinct boundary at rho=R_gas, beyond which no MgII absorbers are found. A maximum likelihood analysis shows that the observations are best described by an isothermal density profile and a scaling relation R_gas = 91 x (L_B/L_{B_*})^(0.35 +/- 0.05) h^-1 kpc (or 69 h^-1 kpc at W(2796)=0.3 Ang) with a mean covering factor of <kappa>=80-86%. Together with the scaling relation between halo mass and galaxy luminosity inferred from halo occupation studies, this scaling of R_gas indicates that gas radius is a fixed fraction of the dark matter halo radius. We compare our results with previous studies and discuss the implications of our analysis for constraining the baryon content of galactic halos and for discriminating between competing scenarios for understanding the nature of the extended gas.
We present a Spitzer Space Telescope imaging survey of the most massive Galactic globular cluster, omega Centauri, and investigate stellar mass loss at low metallicity and the intracluster medium (ICM). The survey covers approximately 3.2x the cluster half-mass radius at 3.6, 4.5, 5.8, 8, and 24 microns, resulting in a catalog of over 40,000 point-sources in the cluster. Approximately 140 cluster members ranging 1.5 dex in metallicity show a red excess at 24 microns, indicative of circumstellar dust. If all of the dusty sources are experiencing mass loss, the cumulative rate of loss is estimated at 2.9 - 4.2 x 10^(-7) solar masses per year, 63% -- 66% of which is supplied by three asymptotic giant branch stars at the tip of the Red Giant Branch (RGB). There is little evidence for strong mass loss lower on the RGB. If this material had remained in the cluster center, its dust component (> 1 x 10^(-4) solar masses) would be detectable in our 24 and 70 micron images. While no dust cloud located at the center of omega Cen is apparent, we do see four regions of very faint, diffuse emission beyond two half-mass radii at 24 microns. It is unclear whether these dust clouds are foreground emission or are associated with omega Cen. In the latter case, these clouds may be the ICM in the process of escaping from the cluster.
We show that space-based telescopes such as the proposed Terrestrial Planet Finder Coronagraph will be able to detect the light scattered by the interstellar grains along lines of sight passing near stars in our Galaxy. The relative flux of the scattered light within one arcsecond of a star at 100 pc in a uniform interstellar medium of 0.1 H atoms cm^-3 is about 10^-7. The halo increases in strength with the distance to the star and is unlikely to limit the coronagraphic detection of planets around the nearest stars. Grains passing within 100 AU of Sun-like stars are deflected by radiation, gravity and magnetic forces, leading to features in the scattered light that can potentially reveal the strength of the stellar wind, the orientation of the stellar magnetic field and the relative motion between the star and the surrounding interstellar medium.
Context: The Sun has recently been predicted to be an extended source of gamma-ray emission, produced by inverse-Compton (IC) scattering of cosmic-ray (CR) electrons on the solar radiation field. The emission was predicted to be extended and a confusing foreground for the diffuse extragalactic background even at large angular distances from the Sun. The solar disk is also expected to be a steady gamma-ray source. While these emissions are expected to be readily detectable in the future by GLAST, the situation for available EGRET data is more challenging. Aims: The theory of gamma-ray emission from IC scattering on the solar radiation field by Galactic CR electrons is given in detail. This is used as the basis for detection and model verification using EGRET data. Methods: We present a detailed study of the solar emission using the EGRET database, accounting for the effect of the emission from 3C 279, the moon, and other sources, which interfere with the solar emission. The analysis was performed for 2 energy ranges, above 300 MeV and for 100-300 MeV, as well as for the combination to improve the detection statistics. The technique was tested on the moon signal, with our results consistent with previous work. Results: Analyzing the EGRET database, we find evidence of emission from the solar disk and its halo. The observations are compared with our model for the extended emission. The spectrum of the solar disk emission and the spectrum of the extended emission have been obtained. The spectrum of the moon is also given. Conclusions: The observed intensity distribution and the flux are consistent with the predicted model of IC gamma-rays from the halo around the Sun.
Context: New eclipse minimum timings of the M4.5/M4.5 binary CM Dra were
obtained between the years 2000 and 2007. In combination with published timings
going back to 1977, a clear non-linearity in observed-minus-calculated (O-C)
times has become apparent. Several models are applied to explain the observed
timing behavior.
Aims: Revealing the processes that cause the observed O-C behavior, and
testing the evidence for a third body around the CM Dra system.
Methods: The O-C times of the system were fitted against several functions,
representing different physical origins of the timing variations.
Results: An analysis using model-selection statistics gives about equal
weight to a parabolic and to a sinusoidal fitting function. Attraction from a
third body, either at large distance in a quasi-constant constellation across
the years of observations or from a body on a shorter orbit generating
periodicities in O-C times is the most likely source of the observed O-C times.
The white dwarf GJ 630.1B, a proper motion companion of CM Dra, can however be
rejected as the responsible third body. Also, no further evidence of the
short-periodic planet candidate described by Deeg et al. (2000) is found,
whereas other mechanisms, such as period changes from stellar winds or
Applegate's mechanism can be rejected.
Conclusions: A third body, being either a few-Jupiter-mass object with a
period of 18.5+-4.5 years or an object in the mass range of 1.5M_jup to
0.1M_sun with periods of hundreds to thousands of years is the most likely
origin of the observed minimum timing behavior.
Contect: With the forthcoming launch of a NASA SMEX mission IBEX devoted to imaging of heliospheric interface by in-situ detection of Energetic Neutral Atoms (ENA) an important issue becomes recognizing of transport of these atoms from the termination shock of the solar wind to Earth orbit. Aims: Investigate modifications of energy and of survival probability of the H ENA detectable by IBEX (0.01 -- 6 keV) between the termination shock and Earth orbit taking into account the influence of the variable and anisotropic solar wind and solar EUV radiation. Methods: Energy change of the atoms is calculated by numerical simulations of orbits of the H ENA atoms from ~100 AU from the Sun down to Earth orbit, taking into account solar gravity and Lyman-$\alpha$ radiation pressure, which is variable in time and depends on radial velocity of the atom. To calculate survival probabilities of the atoms against onization, a detailed 3D and time-dependent model of H ENA ionization based on observations of the solar wind and EUV ionizing radiation is constructed, and wth the use of this model probabilities of survival of the atoms are calculated by numerical integration along the previously calculated orbits. Results: Owing to the radiation pressure, H ENA reach the Earth orbit practically without energy and direction change except the atoms with energy lower than 0.1 keV during high solar activity. For a given energy at Earth orbit one expects fluctuations of survival probability from ~20% at 0.01 keV down to just a few percent at 6 keV and a modulation of survival probability as a function of the location at Earth orbit, ecliptic latitude of the arrival direction, and the phase of solar cycle with an amplitude of a few dozen percent for 0.1 keV atoms at solar minimum to a few percent for 6 keV atoms at solar maximum.
The non-thermal 3.6 cm radio continuum emission from the young stars
S1 and DoAr21 in the core of Ophiuchus, has been observed with the
Very Long Baseline Array (VLBA) at 6 and 7 epochs, respectively, between June
2005 and August 2006. The typical separation between successive observations
was 2 to 3 months. Thanks to the remarkably accurate astrometry delivered by
the VLBA, the trajectory described by both stars on the plane of the sky could
be traced very precisely, and modeled as the superposition of their
trigonometric parallax and a uniform proper motion. The best fits yield
distances to S1 and DoAr21 of 116.9$^{+7.2}_{-6.4}$ and 121.9$^{+5.8}_{-5.3}$,
respectively. Combining these results, we estimate the mean distance to the
Ophiuchus core to be 120.0$^{+4.5}_{-4.2}$, a value consistent with several
recent indirect determinations, but with a significantly improved accuracy of
4%. Both S1 and DoAr21 happen to be members of tight binary systems, but our
observations are not frequent enough to properly derive the corresponding
orbital parameters. This could be done with additional data, however, and would
result in a significantly improved accuracy on the distance determination.
We report a comprehensive statistical analysis of the observational data of the cosmic evolution of supernova (SN) rate density, to derive constraints on cosmic star formation history and the nature of type Ia supernova (SN Ia) progenitor. We use all available information of magnitude, SN type, and redshift information of both type Ia and core-collapse (CC) SNe in GOODS and SDF, as well as SN Ia rate densities reported in the literature. Furthermore, we also add 157 SN candidates in the past Subaru/Suprime-Cam data that are newly reported here, to increase the statistics. We find that the current data set of SN rate density evolution already gives a meaningful constraint on the evolution of the cosmic star formation rate (SFR) at z <~ 1, though strong constraints cannot be derived for the delay time distribution (DTD) of SNe Ia. We derive a constraint of the evolutionary index of SFR density alpha ~ 3--4 [(1+z)^alpha at z <~ 1] with an evidence for a significant evolution of mean extinction of CC SNe [E(B-V) ~ 0.5 at z ~ 0.5 compared with ~ 0.2 at z = 0], which does not change significantly within a reasonable range of various DTD models. This result is nicely consistent with the systematic trend of alpha estimates based on galactic SFR indicators in different wavelengths (ultraviolet, H_alpha, and infrared), indicating that there is a strong evolution in mean extinction of star forming regions in galaxies at relatively low redshift range of z <~ 0.5. These results are obtained by a method that is completely independent of galaxy surveys, and especially, there is no detection limit about the host galaxy luminosity in our analysis, giving a strong constraint on the star formation activity in high-z dwarf galaxies or intergalactic space.
Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H {\sc{i}} Ly$\alpha$ and $\beta$ lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H {\sc{i}} Ly$\beta$, are useful for such measurements.
We examine a problem of the dust grains survival in the disk wind in T Tauri stars (TTSs). For consideration we choose the disk wind model described by Garcia et al. (2001), where a gas component of the wind is heated by an ambipolar diffusion up to the temperature of the order of 10$^4$ K. It is shown that the dust grains heating due to collisions with the gas atoms and electrons is inefficient in comparison with heating by the stellar radiation, and thus, dust survives even in the hot wind component. Owing to this, the disk wind may be opaque for the ultraviolet and optical radiation of the star and is capable to absorb its noticeable fraction. Calculations show that at the accretion rate $\dot{M_a} = 10^{-8}-10^{-6} M_\odot$ per year this fraction for TTSs may range from 20% to 40% of a total luminosity of the star correspondingly. This means that the disk wind in TTSs can play the same role as the puffed inner rim considered in the modern models of accretion disks. In Herbig Ae stars (HAEs) inner regions of the disk winds ($r \le 0.5$ AU) are free of dust since there dust grains sublimate under the effect of the radiation of the star. Therefore, in this case a fraction of the absorbed radiation by the disk wind is significantly less, and may be compared with the effect of the "puffed-up inner rim" only at $\dot{M_a} \geq 10^{-6} M_\odot$ yr$^{-1}$. Due to the structural inhomogeneity of the disk wind its optical depth towards an observer may be variable resulting in the photometric activity of the young stars. For the same reason, one can observe moving shadows from the gas and dust streams with the spiral-like structure on the highly resolved circumstellar disk images.
We have carried out an accurate investigation of the Ca isotopic composition and stratification in the atmospheres of 23 magnetic chemically peculiar (Ap) stars of different temperature and magnetic field strength. With the UVES spectrograph at the 8m ESO VLT, we have obtained high-resolution spectra of Ap stars in the wavelength range 3000-10000 A. Using a detailed spectrum synthesis calculations, we have reproduced a variety of Ca lines in the optical and ultraviolet spectral regions, inferring the overall vertical distribution of Ca abundance, then we have deduced the relative isotopic composition and its dependence on height using the profile of the the IR-triplet Ca II line at lambda 8498 A. In 22 out of 23 studied stars, we found that Ca is strongly stratified, being usually overabundant by 1.0-1.5 dex below log tau_5000 ~ -1, and strongly depleted above log tau_5000 = -1.5. The IR-triplet Ca II line at lambda 8498 A reveals a significant contribution of the heavy isotopes 46Ca and 48Ca, which represent less than 1% of the terrestrial Ca isotopic mixture. We confirm our previous finding that the presence of heavy Ca isotopes is generally anticorrelated with the magnetic field strength. Moreover, we discover that in Ap stars with relatively small surface magnetic fields (<=4-5 kG), the light isotope 40Ca is concentrated close to the photosphere, while the heavy isotopes are dominant in the outer atmospheric layers. This vertical isotopic separation, observed for the first time for any metal in a stellar atmosphere, disappears in stars with magnetic field strength above 6-7 kG. We suggest that the overall Ca stratification and depth-dependent isotopic anomaly observed in Ap stars may be attributed to a combined action of the radiatively-driven diffusion and light-induced drift.
We summarize the main properties of the extended UV (XUV) emission found in roughly 30% of the nearby spiral galaxies observed by the GALEX satellite. Two different classes of XUV disks are identified, the Type 1 XUV disks where significant, structured UV-bright features are found beyond the "classical" azimuthally-averaged star-formation threshold, and the Type 2 XUV disks, which are characterized by very extended (seven times the area where most of the stellar mass is found), blue [(FUV-K)<5mag] outer disks. These latter disks are extreme examples of galaxies growing inside-out. The few XUV disks studied in detail to date are rich in HI but relatively poor in molecular gas, have stellar populations with luminosity-weighted ages of ~1 Gyr, and ionized-gas metal abundances of ~Zsun/10. As part of the CAHA-XUV project we are in the process of obtaining deep multi-wavelength imaging and spectroscopy of 65 XUV-disk galaxies so to determine whether or not these properties are common among XUV disks.
We analyse the mass distribution of cores formed in an isothermal, magnetized, turbulent, and self-gravitating nearly critical molecular cloud model. Cores are identified at two density threshold levels. Our main results are that, in the presence of self-gravity, the slopes of the core mass function (CMF) at the high mass end, in agreement with observations, are shallower than those predicted by the theory of turbulent fragmentation. The shallowness of the slope is due to the effects of core coalescence and gas accretion. Secondly, the slope of the CMF at the high mass end steepens when cores are selected at higher density thresholds. Alternatively, if the CMFs are fitted with a log-normal function, the width of the log-normal distribution decreases with increasing threshold. This is due to the fact that gravity plays a more important role in denser structures selected at higher density threshold and leads to the conclusion that the role of gravity is essential in generating a CMF that bears more resemblence with the IMF when cores are selected with an increasing density threshold in the observations.
Gravitational lenses with anomalous flux ratios are often cited as possible evidence for dark matter satellites predicted by simulations of hierarchical merging in cold dark matter cosmogonies. We show that the fraction of quads with anomalous flux ratios depends primarily on the total mass and spatial extent of the satellites, and the characteristic lengthscale R of their distribution. If R is 100 kpc, then for a moderately elliptical galaxy with a line-of-sight velocity dispersion of 250 km/s, a mass of 3 x 10^9 solar masses in highly-concentrated (Plummer model) satellites is needed for 20% of quadruplets to show anomalous flux ratios, rising to 1.25 x 10^10 solar masses for 50%. Several times these masses are required if the satellites have more extended Hernquist profiles. Compared to a typical elliptical, the flux ratios of quads formed by typical edge-on disc galaxies with maximum discs are significantly less susceptible to changes through substructure -- three times the mass in satellite galaxies is needed to affect 50% of the systems. In many of the lens systems with anomalous flux ratios, there is evidence for visible satellites (e.g., B2045+265 or MG0414+0534). We show that optically identified substructure should not be preponderant among lens systems with anomalies. There are two possible resolutions of this difficulty. First, in some cases, visible substructure may be projected within or close to the Einstein radius and wrongly ascribed as the culprit, whereas dark matter substructure is causing the flux anomaly. Second, bright satellites, in which baryon cooling and condensation has taken place, may have higher central densities than dark satellites, rendering them more efficient at causing flux anomalies.
We present the morphological analysis based on HST-NICMOS observations in the F160W filter of a sample of 30 early-type galaxies spectroscopically confirmed at 1.2<z<2. We derive the effective radius R_e and the mean surface brightness mu_e of galaxies in the rest-frame R-band. We find that early-types at z~1.5 are characterized by a surface brightness (SB) much higher then their local counterparts with comparable R_e. In particular, we find that the mean SB of these early-types should get fainter by ~2.5 mag from z~1.5 to z=0 to match the SB of the local early-types with comparable R_e. This evolution exceeds by a factor two the luminosity evolution expected for early-types in this redshift range and more than a factor three the one derived from the observed luminosity function of galaxies. Consequently, an evolution of the effective radius R_e from the epoch of their formation towards z=0 has to be invoked and the hypothesis of fixed size rejected.
The present work provides the results of the first six years of operation of the systematic night-sky monitoring at ESO-Paranal (Chile). The UBVRI night-sky brightness was estimated on about 10,000 VLT-FORS1 archival images, obtained on more than 650 separate nights, distributed over 6 years and covering the descent from maximum to minimum of sunspot cycle n.23. Additionally, a set of about 1,000 low resolution, optical night-sky spectra have been extracted and analyzed. The unprecedented database discussed in this paper has led to the detection of a clear seasonal variation of the broad band night sky brightness in the VRI passbands, similar to the well known semi-annual oscillation of the NaI D doublet. The spectroscopic data demonstrate that this seasonality is common to all spectral features, with the remarkable exception of the OH rotational-vibrational bands. A clear dependency on the solar activity is detected in all passbands and it is particularly pronounced in the U band, where the sky brightness decreased by about 0.6 mag arcsec-2 from maximum to minimum of solar cycle n.23. No correlation is found between solar activity and the intensity of the NaI D doublet and the OH bands. A strong correlation between the intensity of NI 5200A and [OI]6300,6364A is reported here for the first time. The paper addresses also the determination of the correlation timescales with solar activity and the possible connection with the flux of charged particles emitted by the Sun.
The post-starburst region B in M82 and its massive star cluster component have been the focus of multiple studies, with reports that there is a large population of coeval clusters of age ~1 Gyr, which were created with a Gaussian initial mass distribution. This is in disagreement with other studies of young star clusters, which invariably find a featureless power-law mass distribution. Here, we present Gemini-North optical spectra of seven star clusters in M82-B and show that their ages are all between 10 and 300 Myr (a factor of 3-100 younger than previous photometric results) and that their extinctions range between near-zero and 4 mag (Av). Using new HST ACS-HRC U-band observations we age date an additional ~30 clusters whose ages/extinctions agree well with those determined from spectroscopy. Completeness tests show that the reported `turn-over' in the luminosity/mass distributions is most likely an artefact, due to the resolved nature of the clusters. We also show that the radial velocities of the clusters are inconsistent with them belonging to a bound region.
Classical T Tauri stars show a plethora of in- and outflow signatures in a variety of wavelengths bands. In order to constrain gas velocities and temperatures we analyse the emission in the hot ion lines. We use all available archival FUSE spectra of CTTS to measure the line widths, fluxes and shifts and complement this sample with HST/GHRS and HST/STIS data. We present theoretical estimates for temperatures reached in possible emission models like jets, winds, disks and accretion funnels and look for correlations with X-ray lines and absorption properties. We find line shifts in the range from -170 km/s and +100 km/s. Most linewidths exceed the stellar rotational broadening. Those CTTS with blue-shifted lines also show excess absorption in X-rays. CTTS single out from MS stars by their large ratio of the O VII to O VI luminosities. No single emission mechanism can be found for all objects. The properties of those stars with blue-shifted lines are compatible with an origin in a shock-heated dust-depleted outflow.
We present the first mid-infrared Period-Luminosity (PL) relations for Large Magellanic Cloud (LMC) Cepheids. Single-epoch observations of 70 Cepheids were extracted from Spitzer IRAC observations at 3.6, 4.5, 5.8 and 8.0 microns, serendipitously obtained during the SAGE (Surveying the Agents of a Galaxy's Evolution) imaging survey of the LMC. All four mid-infrared PL relations have nearly identical slopes over the period range 6 - 88 days, with a small scatter of only +/-0.16 mag independent of period for all four of these wavelengths. We emphasize that differential reddening is not contributing significantly to the observed scatter, given the nearly two orders of magnitude reduced sensitivity of the mid-IR to extinction compared to the optical. Future observations, filling in the light curves for these Cepheids, should noticeably reduce the residual scatter. These attributes alone suggest that mid-infrared PL relations will provide a practical means of significantly improving the accuracy of Cepheid distances to nearby galaxies.
We present new spectroscopic and photometric data of the type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf-Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf-Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous type Ia event with some resemblance to SN 1991bg.
We present photometric and spectroscopic data of the peculiar SN 2005la, an object which shows an optical light curve with some luminosity fluctuations and spectra with comparably strong narrow hydrogen and helium lines, probably of circumstellar nature. The increasing full-width-half-maximum velocity of these lines is indicative that the circumstellar material is accelerated by the SN ejecta. SN 2005la shows properties which are intermediate between those of a type IIn supernova and a 2006jc-like (type Ibn) event. We propose that the progenitor of SN 2005la was a very young Wolf-Rayet (WN-type) star which was a Luminous Blue Variable shortly before the explosion.
Physical parameters of galaxies (as luminosity, stellar mass, age) are often derived by means of the model templates which best fit their spectro-photometric data. We have performed a quantitative test aimed at exploring the ability of this procedure in recovering the physical parameters of early-type galaxies at 1<z<2. A wide range of simulated SEDs, reproducing those of early-type galaxies at 1<z<2 with assigned age and mass, are used to build mock photometric catalogs with wavelength coverage and photometric uncertainties similar to those of two topical surveys (i.e. VVDS and GOODS). The best fitting analysis of the simulated photometric data allows to study the differences among the recovered parameters and the input ones. Results indicate that the stellar masses measured by means of optical bands are affected by larger uncertainties with respect to those obtained from near-IR bands, and they frequently underestimate the real values. The M/L ratio in the V band results strongly underestimated, even when derived from the recently proposed recipe based on rest-frame optical colours (e.g. (B-V)).
Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.
Neuhaeuser et al. (2005) presented direct imaging evidence for a sub-stellar companion to the young T Tauri star GQ Lup. Common proper motion was highly significant, but no orbital motion was detected. Faint luminosity, low gravity, and a late-M/early-L spectral type indicated that the companion is either a planet or a brown dwarf. We have monitored GQ Lup and its companion in order to detect orbital and parallactic motion and variability in its brightness. We also search for closer and fainter companions. We have taken six more images with the VLT Adaptive Optics instrument NACO from May 2005 to Feb 2007, always with the same calibration binary from Hipparcos for both astrometric and photometric calibration. By adding up all the images taken so far, we search for additional companions. The position of GQ Lup A and its companion compared to a nearby non-moving background object varies as expected for parallactic motion by about one pixel (2 \pi with parallax \pi). We could not find evidence for variability of the GQ Lup companion in the K-band (standard deviation being \pm 0.08 mag), which may be due to large error bars. No additional companions are found with deep imaging. There is now exceedingly high significance for common proper motion of GQ Lup A and its companion. In addition, we see for the first time an indication for orbital motion (about 2 to 3 mas/yr decrease in separation, but no significant change in the position angle), consistent with a near edge-on or highly eccentric orbit. We measured the parallax for GQ Lup A to be \pi = 6.4 \pm 1.9 mas (i.e. 156 \pm 50 pc) and for the GQ Lup companion to be 7.2 \pm 2.1 mas (i.e. 139 \pm 45 pc), both consistent with being in the Lupus I cloud and bound to each other.
Analyzing global starburst properties in various kinds of starburst and post-starburst galaxies and relating them to the properties of the star cluster populations they form, I explore the conditions for the formation of massive, compact, long-lived star clusters. The aim is to find out whether the relative amount of star formation that goes into star cluster formation as opposed to field star formation, and into the formation of massive long-lived clusters in particular, is universal or scales with star formation rate, burst strength, star formation efficiency, galaxy or gas mass, and whether or not there are special conditions or some threshold for the formation of star clusters that merit to be called globular clusters a few gigayears later.
We present the characteristics of the X-ray variability of stars in the cluster NGC2516 as derived from XMM-Newton/EPIC/pn data. The X-ray variations on short (hours), medium (months), and long (years) time scales have been explored. We detected 303 distinct X-ray sources by analysing six EPIC/pn observations; 194 of them are members of the cluster. Stars of all spectral types, from the early-types to the late-M dwarfs, were detected. The Kolmogorov-Smirnov test applied to the X-ray photon time series shows that, on short time scales, only a relatively small fraction (ranging from 6% to 31% for dG and dF, respectively) of the members of NGC2516 are variable with a confidence level $\geq$99%; however, it is possible that the fraction is small only because of the poor statistics. The time X-ray amplitude distribution functions (XAD) of a set of dF7-dK2 stars, derived on short (hours) and medium (months) time scales, seem to suggest that medium-term variations, if present, have a much smaller amplitude than those on short time scales; a similar result is also obtained for dK3-dM stars. The amplitude variations of late-type stars in NGC2516 are consistent with those of the coeval Pleiades stars. Comparing these data with those of ROSAT/PSPC, collected 7-8 years earlier, and of ROSAT/HRI, just 4-5 years earlier, we find no evidence of significant variability on the related time scales, suggesting that long-term variations due to activity cycles similar to the solar cycle are not common among young stars. Indications of spectral variability was found in one star whose spectra at three epochs were available.
We present here some of the first results we have obtained on the study of
the optical spectra of Spitzer/MIPS 24 micron-selected galaxies in the
COSMOS field. This is part of a series of studies we are conducting to
analyse the optical spectral properties of mid-infrared (mid-IR) galaxies with
different
IR luminosities up to high redshifts. The results shown here correspond to
the brightest S(24 micron)>2 mJy IR galaxy population at z<1.
The yellow hypergiants are found in a stage between the massive Red Supergiants and the Wolf-Rayet stars. This review addresses current issues concerning the evolution of massive stars, concentrating on the transitional post-Red Supergiant phase. Few yellow hypergiants are known and even fewer show direct evidence for having evolved off the Red Supergiant branch. Indeed, only two such rare objects with clear evidence for having gone through of a previous mass losing phase are known, IRC +10420 and HD 179821. We will review their properties and present recent results employing near-infrared interferometry, integral field spectroscopy and polarimetry. Finally, their real-time evolution is discussed.
Globular Cluster Systems (GCSs) of most early-type galaxies feature two peaks in their optical colour distributions. Blue-peak GCs are believed to be old and metal-poor, whereas the ages, metallicities, and the origin of the red-peak GCs are still being debated. We obtained deep K-band photometry and combined it with HST observations in g and z to yield a full SED from optical to near-infrared. This now allows us to break the age-metallicity degeneracy. We used our evolutionary synthesis models GALEV for star clusters to compute a large grid of models with different metallicities and a wide range of ages. Comparing these models to our observations revealed a large population of intermediate-age (1-3 Gyr) and metalrich (~ solar metallicity) globular clusters, that will give us further insights into the formation history of this galaxy.
Highlights from the Pierre Auger Observatory are presented. In particular there is a detailed discussion of of the cosmic ray energy spectrum from 0.3 EeV to 100 EeV and of the mass composition above 1 EeV.
Shell galaxies are considered the debris of recent accretion/merging episodes. Their high frequency in low density environments suggest that such episodes could drive the secular evolution for at least some fraction of the early-type galaxy population. We present here the preliminary results of ultraviolet and X-ray data for a sample of three shell galaxies, namely NGC 474, NGC 7070A and ESO 2400100. The Far UV morphology and photometry are derived using the observations obtained with the Galaxy Evolution Explorer and the XMM- Newton Optical Monitor. We aim at investigating the rejuvenation processes in the stellar population using the UV information as well as at gaining information about the possible evolution with time of the X-ray emission due interaction/merging processes.
Shell galaxies are widely considered the debris of recent accretion/merging episodes. Their high frequency in low density environment suggests that such episodes could be among the driver of the early-type galaxy secular evolution. We present far and near UV (FUV and NUV respectively hereafter) GALEX photometric properties of a sample of shell galaxies.
We present integral-field spectroscopy of the ionized gas in the central regions of four galaxies with a low surface brightness disk taken with the Visible Multi Object Spectrograph at the Very Large Telescope and aimed at testing the accuracy in the determination of the central logarithmic slope $\alpha$ of the mass density radial profile $\rho(r) \propto r^\alpha$ in this class of objects. For all the sample galaxies we subtracted from the observed velocity field the best-fit model of gas in circular motions and derived the residuals. Only ESO-LV 5340200 is characterized by a regular velocity field. We extracted the velocity curves of this galaxy along several position angles, in order to estimate the uncertainty in deriving the central gradient of the total mass density from long-slit spectroscopy. We report the detection of strong non-ordered motions of the ionized gas in three out of four sample galaxies. The deviations have velocity amplitudes and spatial scales that make not possible to disentangle between cuspy and core density radial profiles.
The imaging performance of X-ray optics (expressed in terms of HEW, Half-Energy-Width) can be severely affected by X-ray scattering caused by the surface roughness of the mirrors. The impact of X-ray scattering has an increasing relevance for increasing photon energy, and can be the dominant problem in a hard X-ray telescope like SIMBOL-X. In this work we show how, by means of a novel formalism, we can derive a surface roughness tolerance - in terms of its power spectrum - from a specific HEW requirement for the SIMBOL-X optical module.
We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.
Context: L-type ultra-cool dwarfs and brown dwarfs have cloudy atmospheres
that could host weather-like phenomena. The detection of photometric or
spectral variability would provide insight into unresolved atmospheric
heterogeneities, such as holes in a global cloud deck.
Aims: It has been proposed that growth of heterogeneities in the global cloud
deck may account for the L- to T-type transition as brown dwarf photospheres
evolve from cloudy to clear conditions. Such a mechanism is compatible with
variability. We searched for variability in the spectra of five L6 to T6 brown
dwarfs in order to test this hypothesis.
Methods: We obtained spectroscopic time series using VLT/ISAAC, over
0.99-1.13um, and IRTF/SpeX for two of our targets, in J, H and K bands. We
search for statistically variable lines and correlation between those.
Results: High spectral-frequency variations are seen in some objects, but
these detections are marginal and need to be confirmed. We find no evidence for
large amplitude variations in spectral morphology and we place firm upper
limits of 2 to 3% on broad-band variability, on the time scale of a few hours.
The T2 transition brown dwarf SDSS J1254-0122 shows numerous variable features,
but a secure variability diagnosis would require further observations.
Conclusions: Assuming that any variability arises from the rotation of
patterns of large-scale clear and cloudy regions across the surface, we find
that the typical physical scale of cloud cover disruption should be smaller
than 5-8% of the disk area for four of our targets. The possible variations
seen in SDSS J1254-0122 are not strong enough to allow us to confirm the cloud
breaking hypothesis.
We present integrated JHK_s 2MASS photometry and a compilation of integrated-light optical photoelectric measurements for 84 star clusters in the Magellanic Clouds. These clusters range in age from ~200 Myr to >10 Gyr, and have [Fe/H] values from -2.2 to -0.1 dex. We find a spread in the intrinsic colours of clusters with similar ages and metallicities, at least some of which is due to stochastic fluctuations in the number of bright stars residing in low-mass clusters. We use 54 clusters with the most reliable age and metallicity estimates as test particles to evaluate the performance of four widely used SSP models in the optical/NIR colour-colour space. All models reproduce the reddening-corrected colours of the old (>10 Gyr) globular clusters quite well, but model performance varies at younger ages. In order to account for the effects of stochastic fluctuations in individual clusters, we provide composite B-V, B-J, V-J, V-Ks and J-Ks colours for Magellanic Cloud clusters in several different age intervals. The accumulated mass for most composite clusters are higher than that needed to keep luminosity variations due to stochastic fluctuations below the 10% level. The colours of the composite clusters are clearly distinct in optical-NIR colour-colour space for the following intervals of age: >10 Gyr, 2-9 Gyr, 1-2 Gyr, and 200 Myr-1 Gyr. This suggests that a combination of optical plus NIR colours can be used to differentiate clusters of different age and metallicity.
Context: Optical nova lightcurves often have structures, such as rapid declines and recoveries, due to nebular or dusty phases of the ejecta. Nova Cygni 2006 (V2362 Cyg) underwent an unusual brightening after an early rapid decline. The shape of the lightcurve can be compared to that of V1493 Aql, but the whole event in that case was not as bright and only lasted a couple of weeks. V2362 Cyg had a moderately fast decline of t_2 = 9.0 before rebrightening, which lasted 250 days after maximum. Aims: We present an analysis of our own spectroscopic investigations in combination with AAVSO photometric data covering the whole rebrightening phase until the return to the final decline. Methods: We used the medium resolution spectroscopy obtained in ten nights over a period of 79 nights to investigate the change of the velocity structure of the ejecta. The publicly available AAVSO photometry was used to analyze the overall properties and the energy of the brightening. Results: Although the behavior of the main outburst (velocity, outburst magnitude, and decline timescales) resembles a ``normal'' classical nova, the shell clearly underwent a second fast mass ejecting phase, causing the unusual properties. The integrated flux during this event contributes ~ 40 % to the total radiation energy of the outburst. The evolution of the H_alpha profile during the bump event is obtained by subtracting the emission of the detached shells of the main eruption by a simple optically thin model. A distance of D ~ 7.5 {+3.0}{-2.5} kpc and an interstellar extinction E(B-V) = 0.6 +/- 0.1 was also derived.
We analyze the bending of light by galaxies or clusters of galaxies in the presence of the cosmological term. Going over to the Friedmann-Robertson-Walker coordinates, used in fact for the description of actual observations, we demonstrate that the cosmological constant does not influence practically the lensing effect.
We give a closer look at the Central Limit Theorem (CLT) behavior in quasi-stationary states of the Hamiltonian Mean Field model, a paradigmatic one for long-range-interacting classical many-body systems. We present new calculations which show that, following their time evolution, we can observe and classify three kinds of long-standing quasi-stationary states (QSS) with different correlations. The frequency of occurrence of each class depends on the size of the system. The different microsocopic nature of the QSS leads to different dynamical correlations and therefore to different results for the observed CLT behavior.
The generalized Chaplygin gas, which interpolates between a high density relativistic era and a non-relativistic matter phase, is a popular dark energy candidate. We consider a generalization of the Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For different values of the model parameters we consider the evolution of the cosmological parameters (scale factor, energy density, Hubble function, deceleration parameter and luminosity distance, respectively), by using both analytical and numerical methods. In the large time limit the model describes an accelerating universe, with the effective negative pressure induced by the Chaplygin gas and the bulk viscous pressure driving the acceleration. The theoretical predictions of the luminosity distance of our model are compared with the observations of the type Ia supernovae. The model fits well the recent supernova data. From the fitting we determine both the equation of state of the Chaplygin gas, and the parameters characterizing the bulk viscosity. The evolution of the scalar field associated to the viscous Chaplygin fluid is also considered, and the corresponding potential is obtained. Hence the viscous Chaplygin gas model offers an effective dynamical possibility for replacing the cosmological constant, and to explain the recent acceleration of the universe.
Mathisson's spin-gravity coupling and its Larmor-equivalent interaction, namely, the spin-rotation coupling are discussed. The study of the latter leads to a critical examination of the basic role of locality in relativistic physics. The nonlocal theory of accelerated systems is outlined and some of its implications are described.
In this report, we adopt the phenomenological approach of taking the degravitation paradigm seriously as a consistent modification of gravity in the IR, and investigate its consequences for various cosmological scenarios. By considering a one parameter family of resonance graviton degravitation models, we show that slow roll inflation, hybrid inflation and old inflation remain quantitatively unchanged. We also find that the degravitation mechanism inherits a memory of past energy densities in the present epoch in such a way that is likely significant for present cosmological evolution. For example, if the universe underwent inflation in the past due to its being trapped in some false vacuum (as is likely if we live in some sort of a potential landscape), we find that degravitation implies a remnant `afterglow' cosmological constant, whose scale immediately afterwards is parametrically suppressed by the graviton mass ($m$) in Planck units $\Lambda \sim m/M_{pl}$. We discuss this, and other scenarios through which degravitation reasonably yields the presently observed value $\Lambda \sim O(10^{-120})$. In particular, we demonstrate that in a universe still trapped in some false vacuum state, the effects of degravitation under reasonable assumptions can degravitate this energy density over timescales of the order of the age of the universe into a remnant cosmological constant $\Lambda \sim O(10^{-120})$. In this way, we argue that the degravitation has the potential of solving all three aspects of the cosmological constant problem as articulated by Polchinski: why it is not large, why it is not zero, and why it is comparable to the matter density today.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0801, /abs, contact, help (Access key information)
We have conducted a systematic survey for intervening OVI absorbers in available echelle spectra of 16 QSOs at z_QSO = 0.17-0.57. These spectra were obtained using HST/STIS with the E140M grating. Our search uncovered a total of 27 foreground OVI absorbers with rest-frame absorption equivalent width W_r(1031) > 25mA. Ten of these QSOs exhibit strong OVI absorbers in their vicinity. Our OVI survey does not require the known presence of Lya, and the echelle resolution allows us to identify the OVI absorption doublet based on their common line centroid and known flux ratio. We estimate the total redshift survey path, \Delta z, using a series of Monte-Carlo simulations, and find that \Delta z=1.66, 2.18, and 2.42 for absorbers of strength W_r = 30, 50, 80mA, respectively, leading to a number density of dN(W > 50mA)/dz = 6.7 +/- 1.7 and dN(W > 30mA)/dz = 10.4 +/- 2.2. In contrast, we also measure dN/dz = 27 +/- 9 for OVI absorbers of W_r > 50mA at |\Delta v|< 5000 kms from the background QSOs. Using the random sample of OVI absorbers with well characterized survey completeness, we estimate a mean cosmological mass density of the OVI gas \Omega(OVI)h = 1.7 +/- 0.3 x 10^-7. In addition, we show that <5% OVI absorbers originate in underdense regions that do not show a significant trace of HI. Furthermore, we show that the neutral gas column N(HI) associated with these OVI absorbers spans nearly five orders of magnitude, and show moderate correlation with N(OVI). Finally, while the number density of OVI absorbers varies substantially from one sightline to another, it also appears to be inversely correlated with the number density of HI absorbers along individual lines of sight.
We present a complete catalogue of 27 OVI absorbers at low redshift ($0.12 < z < 0.5$) from a blind survey in the HST/STIS data archive. We search for additional transitions associated with these OVI doublets and present their absorption properties. By considering absorption components of different species which are well-aligned in velocity-space, we derive gas temperatures and non-thermal broadening values, b_{nt}. We show that, where this is possible, gas temperatures are well below those expected for OVI in collisional ionisation equilibrium, contrary to what is expected for a WHIM origin. At least half of the absorbers can be explained by a simple photoionisation model. In addition, we find evidence for large variation in gas density/metallicity in some absorbers. Comparisons of multiple associated metal species further show that under the photoionisation models, the absorbing clouds have gas densities $log n_H < -2.9$ and sizes $L > 1kpc$. Finally, we compare our survey with the results of other independent studies.
We present a new XMM-Newton spectrum of the Seyfert 2 nucleus of IC 2560, which hosts H$_{2}$O maser emission from an inclined Keplerian accretion disk. The X-ray spectrum shows soft excess due to multi-temperature ionized plasma, a hard continuum and strong emission features, from Mg, Si, S, Ca, Fe and Ni, mainly due to fluorescence. It is consistent with reflection of the continuum from a mostly neutral medium and obscuration due to a high column density, $>$ 10$^{24}$ cm$^{-2}$. The amplitude of the reflected component may exceed 10% of the central unobscured luminosity. This is higher than the reflected fraction, of a few percent, observed in other Seyfert 2 sources like NGC 4945. We observe an emission line at 6.7 keV, possibly due to FeXXV, undetected in previous Chandra observations. The absorption column density associated with this line is less than 10$^{23}$ cm$^{-2}$, lower than the obscuration of the central source. We hypothesize that this highly ionized Fe line emission originates in warm gas, also responsible for a scattered component of continuum emission that may dominate the spectrum between 1 and 3 keV. We compare X-ray and maser emission characteristics of IC 2560 and other AGN that exhibit water maser emission originating in disk structures around central engines. The temperature for the region of the disk associated with maser action is consistent with the expected 400-1000K range. The clumpiness of disk structures (inferred from the maser distribution) may depend on the unobscured luminosities of the central engines.
In this work we use a sample of 318 radio-quiet quasars (RQQ) to investigate the dependence of the ratio of optical/UV flux to X-ray flux, alpha_ox, and the X-ray photon index, Gamma_X, on black hole mass, UV luminosity relative to Eddington, and X-ray luminosity relative to Eddington. Our sample is drawn from the SDSS, with X-ray data from ROSAT and Chandra, and optical data mostly from the SDSS; 153 of these sources have estimates of Gamma_X from Chandra. We estimate M_BH using standard estimates derived from the Hbeta, Mg II, and C IV broad emission lines. Our sample spans a broad range in black hole mass (10^6 < M_BH / M_Sun < 10^10) and redshift (z < 4.8). We find that alpha_ox increases with increasing M_BH and L_UV / L_Edd, and decreases with increasing L_X / L_Edd. In addition, we confirm the correlation seen in previous studies between Gamma_X and M_BH and both L_UV / L_Edd and L_X / L_Edd; however, we also find evidence that the dependence of Gamma_X of these quantities is not monotonic, changing sign at M_BH ~ 3 x 10^8 M_Sun. We argue that the alpha_ox correlations imply that the fraction of bolometric luminosity emitted by the accretion disk, as compared to the corona, increases with increasing accretion rate relative to Eddington. In addition, we argue that the Gamma_X trends are caused by a dependence of X-ray spectral index on accretion rate. We discuss our results within the context of accretion models with comptonizing corona, and discuss the implications of the alpha_ox correlations for quasar feedback. To date, this is the largest study of the dependence of RQQ X-ray parameters on black hole mass and related quantities, and the first to attempt to correct for the large statistical uncertainty in the broad line mass estimates.
We present the results of a survey for stellar and substellar companions to 82 young stars in the nearby OB association Upper Scorpius. This survey used nonredundant aperture-mask interferometry to achieve typical contrast limits of DeltaK~5-6 at the diffraction limit, revealing 12 new binary companions that lay below the detection limits of traditional high-resolution imaging; we also summarize a complementary snapshot imaging survey that discovered 7 directly resolved companions. The overall frequency of binary companions (~35+5/-4% at separations of 6-435 AU) appears to be equivalent to field stars of similar mass, but companions could be more common among lower-mass stars than for the field. The companion mass function has statistically significant differences compared to several suggested mass functions for the field, and we suggest an alternate log-normal parameterization of the mass-function. Our survey limits encompass the entire brown dwarf mass range, but we only detected a single companion that might be a brown dwarf; this deficit resembles the so-called ``brown dwarf desert'' that has been observed by radial-velocity planet searches. Finally, our survey's deep detection limits extend into the top of the planetary mass function, reaching 8-12 MJup for half of our sample. We have not identified any planetary companions at high confidence (>99.5%), but we have identified four candidate companions at lower confidence (>97.5%) that merit additional followup to confirm or disprove their existence.
We study the nature of faint, red-selected galaxies at z ~ 2-3 using the Hubble Ultra Deep Field (HUDF) and Spitzer IRAC photometry. We detect candidate galaxies to H < 26 mag, probing lower-luminosity (lower mass) galaxies at these redshifts. We identify 32 galaxies satisfying the (J - H) > 1.0 mag color selection, 16 of which have unblended [3.6um] and [4.5um] IRAC photometry. We derive photometric redshifts, masses, and stellar population parameters for these objects. We find that the selected objects span a diverse range of properties over a large range of redshifts, 1 < z < 3.5. A substantial fraction (11/32) appear to be lower-redshift (z < 2.5), heavily obscured dusty galaxies or edge-on spiral galaxies, while others (12/32) appear to be galaxies at 2 < z < 3.5 whose light at rest-frame optical wavelengths is dominated by evolved stellar populations. Interestingly, by including Spitzer data many candidates for galaxies dominated by evolved stellar populations are rejected, and for only a subset of the sample (6/16) do the data favor this interpretation. We place an upper limit on the space and stellar mass density of candidate massive evolved galaxies. The z > 2.5 objects that are dominated by evolved stellar populations have a space density at most one-third that of z ~ 0 red, early-type galaxies. Therefore, at least two-thirds of present-day early-type galaxies assemble or evolve into their current configuration at redshifts below 2.5. We find a dearth of candidates for low-mass galaxies at 1.5 < z < 3 that are dominated by passively evolving stellar populations even though the data should be sensitive to them; thus, at these redshifts, galaxies whose light is dominated by evolved stellar populations are restricted to only those galaxies that have assembled high stellar mass.[Abridged]
A statistical analysis of brightness variability of asteroids reveals how their shapes evolve from elongated to rough spheroidal forms, presumably driven by impact-related phenomena. Based on the Sloan Digital Sky Survey Moving Object Catalog, we determined the shape distribution of 11,735 asteroids, with special emphasis on eight prominent asteroid families. In young families, asteroids have a wide range of shape elongations, implying fragmentation-formation. In older families we see an increasing number of rough spheroids, in agreement with the predictions of an impact-driven evolution. Old families also contain a group of moderately elongated members, which we suggest correspond to higher-density, more impact-resistant cores of former fragmented asteroids that have undergone slow shape erosion. A few percent of asteroids have very elongated shapes, and can either be young fragments or tidally reshaped bodies. Our results confirm that the majority of asteroids are gravitationally bound ``rubble piles''.
We present GALEX near-UV (NUV) and 2MASS J band photometry for red sequence galaxies in local clusters. We define quiescent samples according to a strict emission threshold, removing galaxies with very recent star formation. We analyse the NUV-J colour-magnitude relation (CMR) and find that the intrinsic scatter is an order of magnitude larger than for the analogous optical CMR (~0.35 rather than 0.05 mag), in agreement with previous studies. Comparing the NUV-J colours with spectroscopically-derived stellar population parameters, we find a strong (> 5.5sigma) correlation with metallicity, only a marginal trend with age, and no correlation with the alpha/Fe ratio. We explore the origin of the large scatter and conclude that neither aperture effects nor the UV upturn phenomenon contribute significantly. We show that the scatter could be attributed to simple `frosting' by either a young or a low metallicity subpopulation.
We observed the first known very high energy (VHE) gamma-ray emitting unidentified source, TeV J2032+4130, for 94 hours with the MAGIC telescope. The source was detected with a significance of 5.6 sigma. The flux, position, and angular extension are compatible with the previous ones measured by the HEGRA telescope system five years ago. The integral flux amounts to (4.5+-0.3stat+-0.35sys)x10^{-13} ph cm$^{-2}$ s$^{-1}$ above 1 TeV. The source energy spectrum, obtained with the lowest energy threshold to date, is compatible with a single power law with a hard photon index of Gamma=-2.0+-0.3stat+-0.2sys.
We analyze the absolute magnitude (M_r) and color (u-r) of low redshift (z<0.06) galaxies in the Sloan Digital Sky Survey Data Release 6. galaxies with nearly exponential profiles (Sloan parameter fracDeV < 0.1) fall on the blue sequence of the color - magnitude diagram; if, in addition, these exponential galaxies have M_r < -19, they show a dependence of u-r color on apparent axis ratio q expected for a dusty disk galaxy. By fitting luminosity functions for exponential galaxies with different values of q, we find that the dimming is well described by the relation Delta M_r = 1.27 (log q)^2, rather than the Delta M = C log q law that is frequently assumed. When the absolute magnitudes of bright exponential galaxies are corrected to their "face-on" value, M_r^f = M_r - Delta M_r, the average u-r color is linearly dependent on M_r^f for a given value of q. Nearly face-on exponential galaxies (q > 0.9) have a shallow dependence of mean u-r color on M_r^f (0.096 magnitudes redder for every magnitude brighter). By comparison, nearly edge-on exponential galaxies (q < 0.3) are 0.265 magnitudes redder for every magnitude brighter. When the dimming law Delta M = 1.27 (log q)^2 is used to create an inclination-corrected sample of bright exponential galaxies, their apparent shapes are confirmed to be consistent with a distribution of mildly non-circular disks, with median short-to-long axis ratio gamma = 0.22 and median disk ellipticity epsilon = 0.08.
Though the mediums for visualization are limited, the potential dimensions of a dataset are not. In many areas of scientific study, understanding the correlations between those dimensions and their uncertainties is pivotal to mining useful information from a dataset. Obtaining this insight can necessitate visualizing the many relationships among temporal, spatial, and other dimensionalities of data and its uncertainties. We utilize multiple views for interactive dataset exploration and selection of important features, and we apply those techniques to the unique challenges of cosmological particle datasets. We show how interactivity and incorporation of multiple visualization techniques help overcome the problem of limited visualization dimensions and allow many types of uncertainty to be seen in correlation with other variables.
This paper reports the characterization of hollow metallic waveguides (HMW) to be used as single-mode wavefront filters for nulling interferometry in the 6-20 microns range. The measurements presented here were performed using both single-mode and multimode conductive waveguides at 10.6 microns. We found propagation losses of about 16dB/mm, which are mainly due to the theoretical skin effect absorption in addition to the roughness of the waveguide metallic walls. The input and output coupling efficiency of our samples has been improved by adding tapers to minimize the impedance mismatch. A proper distinction between propagation losses and coupling losses is presented. Despite their elevate propagation losses, HMW show excellent spatial filtering capabilities in a spectral range where photonics technologies are only emerging.
We present a structure finding algorithm designed to identify galaxy groups in photometric redshift data sets: the probability friends-of-friends (pFoF) algorithm. This algorithm is derived by combining the friends-of-friends algorithm in the transverse direction and the photometric redshift probability densities in the radial dimension. The innovative characteristic of our group-finding algorithm is the improvement of redshift estimation via the constraints given by the transversely connected galaxies in a group, based on the assumption that all galaxies in a group have the same redshift. Tests using the Virgo Consortium Millennium Simulation mock catalogs allow us to show that the recovery rate of the pFoF algorithm is larger than 80% for mock groups of at least $2\times10^{13}M_{\sun}$, while the false detection rate is about 10% for pFoF groups containing at least $\sim8$ net members. Applying the algorithm to the CNOC2 group catalogs gives results which are consistent with the mock catalog tests. From all these results, we conclude that our group-finding algorithm offers an effective yet simple way to identify galaxy groups in photometric redshift catalogs.
One of the challenges of the Swift era has been accurately determining Epeak for the prompt GRB emission. RHESSI, which is sensitive from 30 keV to 17 MeV, can extend spectral coverage above the Swift-BAT bandpass. Using the public Swift data, we present results of joint spectral fits for 26 bursts co-observed by RHESSI and Swift-BAT through May 2007. We compare these fits to estimates of Epeak which rely on BAT data alone. A Bayesian Epeak estimator gives better correspondence with our measured results than an estimator relying on correlations with the Swift power law indices.
The combination of a long duration and the absence of any accompanying supernova clearly shows that GRB 060614 can not be grouped into the two conventional classes of gamma-ray bursts, i.e. the long/soft bursts deemed to be collapsars and the short/hard bursts deemed to be merging binary compact stars. A new progenitor model is required for this anomalous gamma-ray burst. We propose that GRB 060614 might be produced through the tidal disruption of a star by an intermediate mass black hole. In this scenario, the long duration and the lack of any associated supernova are naturally expected. The theoretical energy output is also consistent with observations.
Foreground subtraction is the biggest challenge for future redshifted 21 cm observations to probe reionization. We use a short GMRT observation at 153 MHz to characterize the statistical properties of the background radiation across ~ one degree to sub-arcminutes angular scales, and across a frequency band of 5 MHz with 62.5 kHz resolution. The statistic we use is the visibility correlation function, or equivalently the angular power spectrum C_l. We present the results obtained from using relatively unsophisticated, conventional data calibration procedures. We find that even fairly simple minded calibration allows one to estimate the visibility correlation function at a given frequency V_2(U,0). From our observations we find that V_2(U,0) is consistent with foreground model predictions at all angular scales except the largest ones probed by our observations where the the model predictions are somewhat in excess. On the other hand the visibility correlation between different frequencies kappa(U, Delta nu), seems to be much more sensitive to calibration errors. We find a rapid decline in kappa(U, Delta nu), in contrast with the prediction of less than 1 % variation across 2.5 MHz. In this case however, it seems likely that a substantial part of the discrepancy may be due to limitations of data reduction procedures.
We investigate the linear growth and vertical structure of the MRI in protoplanetary discs when dust grains are well mixed with the gas over the entire disc thickness. All the grains have the same radius (a = 0.1, 1 or 3 micron) and constitute 1 % of the total mass of the gas. Solutions are obtained at R = 5 and 10 AU for a minimum-mass solar nebula model and different choices of the initially vertical magnetic field strength (B), configuration of the diffusivity tensor and grain sizes. We find that when no grains are present, or they are > 1 micron, the midplane remains magnetically coupled for B up to a few gauss at both radii. In contrast, when a population of small grains (a = 0.1 micron) is present, the disc is magnetically inactive for z/H < 2 and only B < 50 mG couple to the fluid. At 5 AU, Ohmic diffusion dominates for z/H < 1 when B < a few mG, irrespective of the properties of the grain population. Conversely, at 10 AU this diffusion term is unimportant in all the scenarios studied here. For z/H > 5, ambipolar diffusion is severe and prevents the field from coupling to the gas for all B. Hall diffusion is dominant for a wide range of field strengths at both radii when dust grains are present. The growth rate, wavenumber and range of magnetic field strengths for which MRI-unstable modes exist are all drastically diminished when dust grains are present, particularly when they are small (a ~ 0.1 micron). We conclude that in protoplanetary discs, the magnetic field is able to couple to the gas and shear over a wide range of fluid conditions even when small dust grains are well mixed with the gas. Despite the low magnetic coupling, MRI modes grow for an extended range of magnetic field strengths and Hall diffusion largely determines the properties of the perturbations in the inner regions of the disc (abridged).
The acceleration of the universe can be explained either through dark energy or through the modification of gravity on large scales. In this paper we investigate modified gravity models and compare their observable predictions with dark energy models. Modifications of general relativity are expected to be scale-independent on super-horizon scales and scale-dependent on sub-horizon scales. For scale-independent modifications, utilizing the conservation of the curvature scalar and a parameterized post-Newtonian formulation of cosmological perturbations, we derive results for large scale structure growth, weak gravitational lensing, and cosmic microwave background anisotropy. For scale-dependent modifications, inspired by recent $f(R)$ theories we introduce a parameterization for the gravitational coupling $G$ and the post-Newtonian parameter $\gamma$. These parameterizations provide a convenient formalism for testing general relativity. However, we find that if dark energy is generalized to include both entropy and shear stress perturbations, and the dynamics of dark energy is unknown a priori, then modified gravity cannot in general be distinguished from dark energy using cosmological linear perturbations.
We have performed a joint analysis of prompt emission from four bright short gamma-ray bursts (GRBs) with the Suzaku-WAM and the Konus-Wind experiments. This joint analysis allows us to investigate the spectral properties of short-duration bursts over a wider energy band with a higher accuracy. We find that these bursts have a high E$_{\rm peak}$, around 1 MeV and have a harder power-law component than that of long GRBs. However, we can not determine whether these spectra follow the cut-off power-law model or the Band model. We also investigated the spectral lag, hardness ratio, inferred isotropic radiation energy and existence of a soft emission hump, in order to classify them into short or long GRBs using several criteria, in addition to the burst duration. We find that all criteria, except for the existence of the soft hump, support the fact that our four GRB samples are correctly classified as belonging to the short class. In addition, our broad-band analysis revealed that there is no evidence of GRBs with a very large hardness ratio, as seen in the BATSE short GRB sample, and that the spectral lag of our four short GRBs is consistent with zero, even in the MeV energy band, unlike long GRBs. Although our short GRB samples are still limited, these results suggest that the spectral hardness of short GRBs might not differ significantly from that of long GRBs, and also that the spectral lag at high energies could be a strong criterion for burst classification.
We extend the covariant, parametrized post-Friedmann treatment of cosmic
acceleration from modified gravity to an arbitrary admixture of matter,
radiation, relativistic components and spatial curvature. Explicit expressions
in the comoving, Newtonian and synchronous gauges facilitate the adaptation of
Einstein-Boltzmann codes for solving CMB and matter perturbations in the linear
regime. Using a comoving gauge code, we study the effect of metric evolution on
the CMB through the integrated Sachs-Wolfe effect. Modified gravity can alter
the low multipole spectrum, including lowering the power in the quadrupole.
From a principal component description of the primary metric ratio parameter,
we obtain general constraints from WMAP on modified gravity models of the
acceleration.
We present a calculation of the sedimentation of grains in a giant gaseous protoplanet such as that resulting from a disk instability of the type envisioned by Boss (1998). Boss (1998) has suggested that such protoplanets would form cores through the settling of small grains. We have tested this suggestion by following the sedimentation of small silicate grains as the protoplanet contracts and evolves. We find that during the course of the initial contraction of the protoplanet, which lasts some $4\times 10^5$ years, even very small (> 1 micron) silicate grains can sediment to create a core both for convective and non-convective envelopes, although the sedimentation time is substantially longer if the envelope is convective, and grains are allowed to be carried back up into the envelope by convection. Grains composed of organic material will mostly be evaporated before they get to the core region, while water ice grains will be completely evaporated. These results suggest that if giant planets are formed via the gravitational instability mechanism, a small heavy element core can be formed due to sedimentation of grains, but it will be composed almost entirely of refractory material. Including planetesimal capture, we find core masses between 1 and 10 M$_{\oplus}$, and a total high-Z enhancement of ~40 M$_{\oplus}$. The refractories in the envelope will be mostly water vapor and organic residuals.
The X-ray reflection features of irradiated accretion disks around black holes enable us to probe the effects of strong gravity. We investigate to which precision the reflection signs, i.e. the iron K-line and the Comptonized hump, can be observed with Simbol-X for nearby Seyfert galaxies. The simulations presented include accurate computations of the local reprocessed spectra and modifications due to general relativistic effects in the vicinity of the black hole. We discuss the impact of global black hole parameters and of the irradiation pattern of the disk on the resulting spectra as they will be detected by the Simbol-X mission.
The rich oscillation spectra determined for the two stars, Nu Eridani and 12
Lacertae, present an interesting challenge to stellar modelling. The stars are
hybrid objects showing a number of modes at frequencies typical for Beta Cep
stars but also one mode at frequency typical for SPB stars. We construct
seismic models of these stars considering uncertainties in opacity and element
distribution. We also present estimate of the interior rotation rate and
address the matter of mode excitation.
We use both the OP and OPAL opacity data and find significant difference in
the results. Uncertainty in these data remains a major obstacle in precise
modelling of the objects and, in particular, in estimating the overshooting
distance. We find evidence for significant rotation rate increase between
envelope and core in the two stars.
Instability of low-frequency g-modes was found in seismic models of Nu Eri
built with the OP data, but at frequencies higher than those measured in the
star. No such instability was found in models of 12 Lac. We do not have yet a
satisfactory explanation for low frequency modes. Some enhancement of opacity
in the driving zone is required but we argue that it cannot be achieved by the
iron accumulation, as it has been proposed.
Through photoionization modeling, constraints on the physical conditions of
three z ~ 1.7 single-cloud weak Mg II systems (W_r(2796) < 0.3A) are derived.
Constraints are provided by high resolution R = 45,000, high signal-to-noise
spectra of the three quasars HE0141-3932, HE0429-4091, and HE2243-6031 which we
have obtained from the ESO archive of VLT/UVES. Results are as follows:
(1) The single-cloud weak Mg II absorption in the three z ~ 1.7 systems is
produced by clouds with ionization parameters of -3.8 < logU < -2.0 and sizes
of 1-100 pc.
(2) In addition to the low-ionization phase Mg II clouds, all systems need an
additional 1-3 high-ionization phase C IV clouds within 100 km/s of the Mg II
component. The ionization parameters of the C IV phases range from -1.9 < logU
< -1.0, with sizes of tens of parsecs to kiloparsecs.
(3) Two of the three single-cloud weak Mg II absorbers have near-solar or
super-solar metallicities, if we assume a solar abundance pattern. Although
such large metallicities have been found for z < 1 weak Mg II absorbers, these
are the first high metallicities derived for such systems at higher redshifts.
(4) Two of the three weak Mg II systems also need additional low-metallicity,
broad Lya absorption lines, offset in velocity from the metal-line absorption,
in order to reproduce the full Lya profile.
(5) Metallicity in single-cloud weak Mg II systems are more than an order of
magnitude larger than those in Damped Lya systems at z ~ 1.7. In fact, there
appears to be a gradual decrease in metallicity with increasing N(HI), from
these, the most metal-rich Lya forest clouds, to Lyman limit systems, to
sub-DLAs, and finally to the DLAs.
The magnetar model involves an isolated neutron star with a very high magnetic field (B~10^14-10^15 G), and is invoked to explain the emission processes of two classes of sources, the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-Ray Repeaters (SGRs). Five of them have been recently identified to be persistent sources in the hard X-ray band (20-200 keV). AXPs, in particular, present the hardest known persistent spectra in the hard X/soft gamma-ray energy range. The broad band modeling of their spectra still suffers from the non-simultaneity of the observations and from a lack of sensitivity above 20 keV. We present the Simbol X simulated observations of these objects and show that that this mission could surely help to disentangle the contribution of the different spectral components, and to understand how they contribute to the secular flux variations observed in these sources.
We present results on integral-field optical spectroscopy of five luminous
Blue Compact Dwarf galaxies. The data were obtained using the fiber system
INTEGRAL attached at the William Herschel telescope. The galaxies Mrk 370, Mrk
35, Mrk 297, Mrk 314 and III Zw 102 were observed. The central 33"x29" regions
of the galaxies were mapped with a spatial resolution of 2"/spaxel, except for
Mrk 314, in which we observed the central 16"x12" region with a resolution of
0.9"/spaxel$. We use high-resolution optical images to isolate the star-forming
knots in the objects; line ratios, electron densities and oxygen abundances in
each of these regions are computed. We build continuum and emission-line
intensity maps as well as maps of the most relevant line ratios: [OIII]5007\Hb,
[NII]6584\Ha, and Ha\Hb, which allow us to obtain spatial information on the
ionization structure and mechanisms. We also derive the gas velocity field from
the Ha and [OIII]5007 emission lines.
We find that all the five galaxies are in the high end of the metallicity
range of Blue Compact Dwarf galaxies, with oxygen abundances varying from
Z\sun~0.3 to Z\sun~1.5. The objects show HII-like ionization in the whole field
of view, except the outer regions of IIIZw102 whose large [NII]6584/Ha values
suggest the presence of shocks. The five galaxies display inhomogeneous
extinction patterns, and three of them have high Ha/Hb ratios, indicative of a
large dust content; all galaxies display complex, irregular velocity fields in
their inner regions.
We discuss results of 2D simulations of magnetorotational(MR) mechanism of core collapse supernova explosions. Due to the nonuniform collapse the collapsed core rotates differentially. In the presence of initial poloidal magnetic field its toroidal component appears and grows with time. Increased magnetic pressure leads to foramtion of compression wave which moves outwards. It transforms into the fast MHD shock wave (supernova shock wave). The shape of the MR supernova explosion qualitatively depends on the configuration of the initial magnetic field. For the dipole-like initial magnetic field the supernova explosion develops mainly along rotational axis forming mildly collimated jet. Quadrupole-like initial magnetic field leads to the explosion developing mainly along equatorial plane. Magnetorotational instability was found in our simulations. The supernova explosion energy is growing with increase of the initial core mass and rotational energy of the core, and corresponds to the observational data.
We use 112 N-body/hydrodynamical simulations in the standard Cold Dark Matter universe, to follow the formation of galaxy-sized halos and investigate the chemical enrichment of both the stellar component and the interstellar medium of galaxies, with stellar masses larger than 1e9 Msun. The resulting chemical properties of the simulated galaxies are broadly consistent with the observations. The predicted relationship between the mean metallicity and the galaxy stellar mass for both the stellar and the gaseous components at z=0 are in agreement with the relationships observed locally. The predicted scatter about these relationships, which is traced to the differing merging histories amongst the simulated galaxies with similar final masses, is similar to that observed. The predicted correlations between the total mass and the stellar mass of galaxies in our simulated sample from the present epoch up to z=1 agree with observed ones. The stellar mass versus metallicity relation and its associated scatter are reproduced by the simulations as consequences of the increasing efficiency of the conversion of gas into stars with stellar mass, and the differing merging histories amongst the galaxies with similar masses. The old ages of simulated low mass galaxies at z=0, and the weak level of chemical evolution for massive galaxies suggest however that our modeling of the supernova feedback may be incomplete, or that other feedback processes have been neglected. (Abridged)
Observations of Type Ia supernovae used to map the expansion history of the Universe suffer from systematic uncertainties that need to be propagated into the estimates of cosmological parameters. We propose an iterative Monte-Carlo simulation and cosmology fitting technique (SMOCK) to investigate the impact of sources of error upon fits of the dark energy equation of state. This approach is especially useful to track the impact of non-Gaussian, correlated effects, e.g. reddening correction errors, brightness evolution of the supernovae, K-corrections, gravitational lensing, etc. While the tool is primarily aimed for studies and optimization of future instruments, we use the ``Gold'' data-set in Riess et al. (2007) to show examples of potential systematic uncertainties that could exceed the quoted statistical uncertainties.
Previous studies of elemental abundances in Mercury-Manganese (HgMn) stars have occasionally reported the presence of lines of the ionized rare noble gas Xe II, especially in a few of the hottest stars with Teff ~ 13000--15000 K. A new study of this element has been undertaken using observations from Lick Observatory's Hamilton Echelle Spectrograph. In this work, the spectrum synthesis program UCLSYN has been used to undertake abundance analysis assuming LTE. We find that in the Smith & Dworetsky sample of HgMn stars, Xe is vastly over-abundant in 21 of 22 HgMn stars studied, by factors of 3.1--4.8 dex. There does not appear to be a significant correlation of Xe abundance with Teff. A comparison sample of normal late B stars shows no sign of Xe II lines that could be detected, consistent with the expected weakness of lines at normal abundance. The main reason for the previous lack of widespread detection in HgMn stars is probably due to the strongest lines being at longer wavelengths than the photographic blue. The lines used in this work were 4603.03A, 4844.33A and 5292.22A.
All the Trojan asteroids orbit about the Sun at roughly the same heliocentric distance as Jupiter. Differences in the observed visible reflection spectra range from neutral to red, with no ultra-red objects found so far. Given that the Trojan asteroids are collisionally evolved, a certain degree of variability is expected. Additionally, cosmic radiation and sublimation are important factors in modifying icy surfaces even at those large heliocentric distances. We search for correlations between physical and dynamical properties, we explore relationships between the following four quantities; the normalised visible reflectivity indexes ($S'$), the absolute magnitudes, the observed albedos and the orbital stability of the Trojans. We present here visible spectroscopic spectra of 25 Trojans. This new data increase by a factor of about 5 the size of the sample of visible spectra of Jupiter Trojans on unstable orbits. The observations were carried out at the ESO-NTT telescope (3.5m) at La Silla, Chile, the ING-WHT (4.2m) and NOT (2.5m) at Roque de los Muchachos observatory, La Palma, Spain. We have found a correlation between the size distribution and the orbital stability. The absolute-magnitude distribution of the Trojans in stable orbits is found to be bimodal, while the one of the unstable orbits is unimodal, with a slope similar to that of the small stable Trojans. This supports the hypothesis that the unstable objects are mainly byproducts of physical collisions. The values of $S'$ of both the stable and the unstable Trojans are uniformly distributed over a wide range, from $0 %/1000\AA $ to about $15 %/1000\AA$. The values for the stable Trojans tend to be slightly redder than the unstable ones, but no significant statistical difference is found.
The prototype nova-like variable VY Sculptoris was observed by the IUE during four different optical brightness states of the system. The FUV flux level from the highest state to the lowest state declines by a factor of 28. We have carried out model accretion disk and white dwarf atmosphere fitting to the spectra. The corresponding accretion rates range from $\dot{M}= 8 \times 10^{-9}$M$_{\sun}$ yr$^{-1}$ at the highest FUV flux level down to $\dot{M}= 1.9\times 10^{-10}$M$_{\sun}$ yr$^{-1}$ at the lowest flux level. We report tentative evidence for the detection of the underlying white dwarf with $T_{\rm eff} = 45,000$K in the spectrum with the lowest flux level.
In the framework of nonextensive statistical mechanics, the equilibrium structures of astrophysical self-gravitating systems are stellar polytropes, parameterized by the polytropic index n. By careful comparison to the structures of simulated dark-matter halos we find that the density profiles, as well as other fundamental properties, of stellar polytropes are inconsistent with simulations for any value of n. This result suggests the need to reconsider the applicability of nonextensive statistical mechanics (in its simplest form) to equilibrium self-gravitating systems.
We present GOSSIP (Galaxy Observed-Simulated SED Interactive Program), a new tool developed to perform SED fitting in a simple, user friendly and efficient way. GOSSIP automatically builds-up the observed SED of an object (or a large sample of objects) combining magnitudes in different bands and eventually a spectrum; then it performs a chi-square minimization fitting procedure versus a set of synthetic models. The fitting results are used to estimate a number of physical parameters like the Star Formation History, absolute magnitudes, stellar mass and their Probability Distribution Functions. User defined models can be used, but GOSSIP is also able to load models produced by the most commonly used synthesis population codes. GOSSIP can be used interactively with other visualization tools using the PLASTIC protocol for communications. Moreover, since it has been developed with large data sets applications in mind, it will be extended to operate within the Virtual Observatory framework. GOSSIP is distributed to the astronomical community from the PANDORA group web site (this http URL)
During the course of their evolution, massive stars lose a substantial fraction of their initial mass, both through steady winds and through relatively brief eruptions during their Luminous Blue Variable (LBV) phase. This talk reviews the dynamical driving of this mass loss, contrasting the line-driving of steady winds to the potential role of continuum driving for eruptions during LBV episodes when the star exceeds the Eddington limit. A key theme is to emphasize the inherent limits that self-shadowing places on line-driven mass loss rates, whereas continuum driving can in principle drive mass up to the "photon-tiring" limit, for which the energy to lift the wind becomes equal to the stellar luminosity. We review how the "porosity" of a highly clumped atmosphere can regulate continuum-driven mass loss, but also discuss recent time-dependent simulations of how base mass flux that exceeds the tiring limit can lead to flow stagnation and a complex, time-dependent combination of inflow and outflow regions. A general result is thus that porosity-mediated continuum driving in super-Eddington phases can explain the large, near tiring-limit mass loss inferred for LBV giant eruptions.
The parity doublet model, containing the SU(2) multiplets including the baryons identified as the chiral partners of the nucleons is applied to neutron stars. The maximum mass for the star is calculated for different stages of the cooling taking into account finite temperature/entropy effect, trapped neutrinos and fixed baryon number. Rotation effects are also included.
In this paper we present a study of chemical abundances in six star-forming regions. Stellar parameters and metallicities are derived using high-resolution, high S/N spectra of weak-line T-Tauri stars in each region. The results show that nearby star-forming regions have a very small abundance dispersion (only 0.033dex in [Fe/H]). The average metallicity found is slightly below that of the Sun, although compatible with solar once the errors are taken into account. The derived abundances for Si and Ni show that the observed stars have the abundances typical of Galactic thin disk stars of the same metallicity. The impact of these observations is briefly discussed in the context of the Galactic chemical evolution, local inter-stellar medium abundances, and in the origin of metal-rich stars in the solar neighbourhood (namely, stars more likely to harbour planets). The implication for future planet-search programmes around very young, nearby stars is also discussed.
We investigate the capability of detecting, with Simbol-X, non-thermal emission during stellar flares, and distinguishing it from hot thermal emission. We find that flare non-thermal emission is detectable when at least ~20 cts are detected with the CZT detector in the 20-80 keV band. Therefore Simbol-X will detect the non-thermal emission from some of the X-ray brightest nearby stars, whether the thermal vs. non-thermal relation, derived for solar flares, holds.
We present a new analysis of the diffuse gas in the Magellanic Bridge (RA>3h) based on HST/STIS E140M and FUSE spectra of 2 early-type stars lying within the Bridge and a QSO behind it. We derive the column densities of HI (from Ly\alpha), NI, OI, ArI, SiII, SII, and FeII of the gas in the Bridge. Using the atomic species, we determine the first gas-phase metallicity of the Magellanic Bridge, [Z/H]=-1.02+/-0.07 toward one sightline, and -1.7<[Z/H]<-0.9 toward the other one, a factor 2 or more smaller than the present-day SMC metallicity. Using the metallicity and N(HI), we show that the Bridge gas along our three lines of sight is ~70-90% ionized, despite high HI columns, logN(HI)=19.6-20.1. Possible sources for the ongoing ionization are certainly the hot stars within the Bridge, hot gas (revealed by OVI absorption), and leaking photons from the SMC and LMC. From the analysis of CII*, we deduce that the overall density of the Bridge must be low (<0.03-0.1 cm^-3). We argue that our findings combined with other recent observational results should motivate new models of the evolution of the SMC-LMC-Galaxy system.
Interstellar clouds form the cosmic "ecosystem" through which the Sun moves. Understanding the physical properties of nearby interstellar material, in sufficient detail to evaluate historical variations in the solar galactic environment, requires a survey of ultraviolet interstellar absorption lines towards stars within 20 pc with the STIS spectrometer. A complete survey would yield ionization, temperature, density and velocity for nearby interstellar clouds, and would require a large number of Hubble Space Telescope orbits spaced over several cycles. This note was submitted as a "white paper" to the Space Telescope Science Institute in support of multi-cycle treasury programs.
We solve equations, describing in a simplified way the newtonian dynamics of a selfgravitating nonrotating spheroidal body after loss of stability. We find that contraction to a singularity happens only in a pure spherical collapse, and deviations from the spherical symmetry stop the contraction by the stabilising action of nonlinear nonspherical oscillations. A real collapse happens after damping of the oscillations due to energy losses, shock wave formation or viscosity. Detailed analysis of the nonlinear oscillations is performed using a Poincar\'{e} map construction. Regions of regular and chaotic oscillations are localized on this map.
We investigate the present-day photometric properties of the dwarf spheroidal galaxies in the Local Group. From the analysis of their integrated colours, we consider a possible link between dwarf spheroidals and giant ellipticals. From the analysis of the V vs (B-V) plot, we search for a possible evolutionary link between dwarf spheroidal galaxies (dSphs) and dwarf irregular galaxies (dIrrs). By means of chemical evolution models combined with a spectro-photometric model, we study the evolution of six Local Group dwarf spheroidal galaxies (Carina, Draco, Sagittarius, Sculptor, Sextans and Ursa Minor). The chemical evolution models, which adopt up-to-date nucleosynthesis from low and intermediate mass stars as well as nucleosynthesis and energetic feedback from supernovae type Ia and II, reproduce several observational constraints of these galaxies, such as abundance ratios versus metallicity and the metallicity distributions. The proposed scenario for the evolution of these galaxies is characterised by low star formation rates and high galactic wind efficiencies. Such a scenario allows us to predict integrated colours and magnitudes which agree with observations. Our results strongly suggest that the first few Gyrs of evolution, when the star formation is most active, are crucial to define the luminosities, colours, and other photometric properties as observed today. After the star formation epoch, the galactic wind sweeps away a large fraction of the gas of each galaxy, which then evolves passively. Our results indicate that it is likely that at a certain stage of their evolution, dSphs and dIrrs presented similar photometric properties. However, after that phase, they evolved along different paths, leading them to their currently disparate properties.
We study interstellar dust evolution in various environments by means of chemical evolution models for galaxies of different morphological types. We start from the formalism developed by Dwek (1998) to study dust evolution in the solar neighbourhood and extend it to ellipticals and dwarf irregular galaxies, showing how the evolution of the dust production rates and of the dust fractions depend on the galactic star formation history. The observed dust fractions observed in the solar neighbourhood can be reproduced by assuming that dust destruction depends the condensation temperatures T_c of the elements. In elliptical galaxies, type Ia SNe are the major dust factories in the last 10 Gyr. With our models, we successfully reproduce the dust masses observed in local ellipticals (~10^6 M_sun) by means of recent FIR and SCUBA observations. We show that dust is helpful in solving the iron discrepancy observed in the hot gaseous halos surrounding local ellipticals. In dwarf irregulars, we show how a precise determination of the dust depletion pattern could be useful to put solid constraints on the dust condensation efficiencies. Our results will be helpful to study the spectral properties of dust grains in local and distant galaxies.
I review measurements of star formation in nearby galaxies in the UV-to-FIR wavelength range, and discuss their impact on SFR determinations in intermediate and high redshift galaxy populations. Existing and upcoming facilities will enable precise cross-calibrations among the various indicators, thus bringing them onto a common scale.
Terrestrial planets form in a series of dynamical steps from the solid component of circumstellar disks. First, km-sized planetesimals form likely via a combination of sticky collisions, turbulent concentration of solids, and gravitational collapse from micron-sized dust grains in the thin disk midplane. Second, planetesimals coalesce to form Moon- to Mars-sized protoplanets, also called "planetary embryos". Finally, full-sized terrestrial planets accrete from protoplanets and planetesimals. This final stage of accretion lasts about 10-100 Myr and is strongly affected by gravitational perturbations from any gas giant planets, which are constrained to form more quickly, during the 1-10 Myr lifetime of the gaseous component of the disk. It is during this final stage that the bulk compositions and volatile (e.g., water) contents of terrestrial planets are set, depending on their feeding zones and the amount of radial mixing that occurs. The main factors that influence terrestrial planet formation are the mass and surface density profile of the disk, and the perturbations from giant planets and binary companions if they exist. Simple accretion models predicts that low-mass stars should form small, dry planets in their habitable zones. The migration of a giant planet through a disk of rocky bodies does not completely impede terrestrial planet growth. Rather, "hot Jupiter" systems are likely to also contain exterior, very water-rich Earth-like planets, and also "hot Earths", very close-in rocky planets. Roughly one third of the known systems of extra-solar (giant) planets could allow a terrestrial planet to form in the habitable zone.
This article is a written and modified version of a talk presented at the conference `A Century of Cosmology' held at San Servolo, Venice, Italy, in August 2007. The talk focuses on some of the cosmology history leading to the discovery and exploitation of Cosmic Microwave Background (CMB) Radiation anisotropies. We have made tremendous advances first in the development of the techniques to observe these anisotropies and in observing and interpreting them to extract their contained cosmological information. CMB anisotropies are now a cornerstone in our understanding of the cosmos and our future progress in the field. This is an outcome that Dennis Sciama hoped for and encouraged.
We propose that physical properties for the high temperature superconductors can be addressed by either a two-dimensional planar hole-doping concentration ($P_{pl}$) or an effective three-dimentional hole-doping concentration ($P_{3D}$). We find that superconducting transition temperature ($T_c$) exhibits a universal dome-shaped behavior in the $T_c$ $vs.$ $P_{3D}$ plot with a universal optimal doping concentration at $P_{3D}$ $\sim$ 1.6 $\times$ 10$^{21}$ cm$^{-3}$ for the single-layer high temperature superconductors.
We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.
It is argued that SQCD with N_c colors and N_c<N_F<3N_c flavors, and with small but nonzero current quark masses m_Q\neq 0, is in the diquark-condensate phase, where the colorless chiral quarks pairs condense coherently in the vacuum, <Q\barQ> \neq 0, while quarks alone don't condense, <Q>=<\barQ>=0, so that theory is not higgsed, all gluons remain massless and color is confined. This condensation of diquarks results in formation of dynamical constituent masses of quarks and appearance of light "pions" (similarly to QCD). The mass spectrum of SQCD in this phase is described, and comparison with the Seiberg dual description is performed. It is shown that the direct and dual theories are different (except, possibly, for the perturbative strictly super-conformal regime).
We study the generation of magnetic fields during preheating within an scenario of hybrid inflation at the electroweak (EW) scale. We find that the non-perturbative and strongly out-of-equilibrium process of magnetic field production occurs along the lines predicted by Vachaspati many years ago. The system starts in the false vacuum at the end of inflation, and very quickly the initial quantum fluctuations of the Higgs field get amplified via long wavelength spinodal instabilities. The subsequent nucleation of the random Gaussian Higgs field bubbles (lumps) leads to EW symmetry breaking, and to the creation of $Z$-strings, which soon decay, along with longwave magnetic flux tubes with nontrivial helicity. The intensity and scales in these helical magnetic fields are consistent with their later development into the microgauss fields observed in galaxies and clusters of galaxies.
We have analyzed various characteristic temperatures and energies of hole-doped high-Tc cuprates as a function of a dimensionless hole-doping concentration (pu). Entirely based on the experimental grounds we construct a unified electronic phase diagram (UEPD) where three characteristic temperatures (T*s) and their corresponding energies (E*s) converge as pu increases in the underdoped regime. T*s and E*s merge together with the Tc curve and 3.5kBTc curve at pu ~ 1.1 in the overdoped regime, respectively. They finally go to zero at pu ~ 1.3. The UEPD follows an asymmetric half-bell-shaped Tc-curve in which Tc appears at pu ~ 0.4, reaches a maximum at pu ~ 1, and rapidly goes to zero at pu ~1.3. The asymmetric half-bell-shaped Tc-curve curve is at odds with the well-known symmetric superconducting dome for La2-xSrxCuO4 (SrD-La214) in which two characteristic temperatures and energies converge as pu increases and merge together at pu ~ 1.6, where Tc goes to zero. The UEPD clearly shows that pseudogap phase precedes and coexists with high temperature superconductivity in the underdoped and overdoped regimes, respectively. It is also clearly seen that the upper limit of high-Tc cuprate physics ends at a hole concentration that equals to 1.3 times the optimal doping concentration for almost all high-Tc cuprate materials, and 1.6 times the optimal doping concentration for the the SrD-La214. Our analysis strongly suggests that pseudogap is necessary for high temperature superconductivity and the normal state of both underdoped and overdoped regimes can not be regarded as a conventional Fermi liquid phase.
We consider the potentials of the LHC and a linear e^+e^- collider (LC) for discovering supersymmetric particles in variants of the MSSM with soft supersymmetry-breaking mass parameters constrained to be universal at the GUT scale (CMSSM) or at some lower scale M_{in} (GUT-less models), as may occur in some scenarios with mirage unification. Whereas the LHC should be able to discover squarks and/or gluinos along all the CMSSM coannihilation strip where the relic neutralino LSP density lies within the range favoured for cold dark matter, many GUT-less models could escape LHC detection. In particular, if M_{in} < 10^{11} GeV, the LHC would not detect sparticles if the relic density lies within the favoured range. For any given discovery of supersymmetry at the LHC, in such GUT-less models the lightest neutralino mass and hence the threshold for sparticle pair production at a LC increases as M_{in} decreases, and the CMSSM offers the best prospects for measuring sparticles at a LC. For example, if the LHC discovers sparticles with 1 fb^{-1} of data, within the CMSSM a centre-of-mass energy of 600 GeV would suffice for a LC to to produce pairs of neutralinos, if they provide the cold dark matter, whereas over 1 TeV might be required in a general GUT-less model. These required energies increase to 800 GeV in the CMSSM and 1.4 TeV in GUT-less models if the LHC requires 10 fb^{-1} to discover supersymmetry.
It is well known that the correlation functions of a scalar field in a quasi-de Sitter space exhibit at the loop level cumulative infra-red effects proportional to the total number of e-foldings of inflation. Using the in-in formalism, we explore the behavior of these infra-red effects in the large N limit of an O(N) invariant scalar field theory with quartic self-interactions. By resumming all higher-order loop diagrams non-perturbatively, we show that the infra-red effects disappear and that the connected four-point correlation function, which is a signal of non-Gaussianity, is non-perturbatively enhanced with respect to its tree-level value.
Stochastic inflation describes the global structure of the inflationary universe by modeling the super-Hubble dynamics as a system of matter fields coupled to gravity where the sub-Hubble field fluctuations induce a stochastic force into the equations of motion. The super-Hubble dynamics are ultralocal, allowing us to neglect spatial derivatives and treat each Hubble patch as a separate universe. This provides a natural framework in which to discuss probabilities on the space of solutions and initial conditions. In this article we derive an evolution equation for this probability for an arbitrary class of matter systems, including DBI and k-inflationary models, and discover equilibrium solutions that satisfy detailed balance. At no point do we need to assume slow roll or a quasi-de Sitter geometry, and so our results are directly applicable to models that do not satisfy the usual slow roll conditions. We discuss in general terms the conditions for eternal inflation to set in, and we give explicit numerical solutions of highly stochastic, quasi-stationary trajectories in the relativistic DBI regime. Finally, we show that the probability for stochastic/thermal tunneling can be significantly enhanced relative to the Hawking-Moss instanton result due to relativistic DBI effects.
Inflation may occur while rolling into the metastable supersymmetry-breaking vacuum of massive supersymmetric QCD. We explore the range of parameters in which slow-roll inflation and long-lived metastable supersymmetry breaking may be simultaneously realized. The end of slow-roll inflation in this context coincides with the spontaneous breaking of a global symmetry, which may give rise to significant curvature perturbations via inhomogenous preheating. Such spontaneous symmetry breaking at the end of inflation may give rise to observable non-gaussianities, distinguishing this scenario from more conventional models of supersymmetric hybrid inflation.
We construct a scalar field based cosmological model, possessing a cosmological singularity characterized by a finite value of the cosmological radius and an infinite scalar curvature. Using the methods of the qualitative theory of differential equations, we give a complete description of the cosmological evolutions in the model under consideration. There are four classes of evolutions, two of which have finite lifetimes, while the other two undergo an infinite expansion.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0801, /abs, contact, help (Access key information)
Recent Cherenkov observations of BL Lac objects showed that the TeV flux of PKS 2155-304 changed by a factor 2 in just 3-5 minutes. This fast variability can be accounted for if the emitting region is moving with a bulk Lorentz factor Gamma~50 and a similar relativistic Doppler factor. If this Gamma is adopted, several models can fit the data, but, irrespective of the chosen model, the jet is matter dominated. The required Doppler factor implies viewing angles of the order of 1 degree or less: if the entire jet is as narrow as this, then we have problems with current unification schemes. This suggests that there are small active regions, inside a larger jet, moving faster than the rest of the plasma, occasionally pointing at us. Coordinated X-ray/TeV variability can discriminate between the different scenarios.
We use Chandra observations of 13 nearby groups of galaxies to investigate the hot gas content of their member galaxies. We find that a large fraction of near-IR bright, early-type galaxies in groups have extended X-ray emission, indicating that they retain significant hot gas halos even in these dense environments. In particular, we detect hot gas halos in ~80% of L_K > L_star galaxies. We do not find a significant difference in the L_K-L_X relation for detected group and cluster early-type galaxies. However, we detect X-ray emission from a significantly higher fraction of galaxies brighter than L_star in groups compared to clusters, indicating that a larger fraction of galaxies in clusters experience significant stripping of their hot gas. In addition, group and cluster galaxies appear to be X-ray faint compared to field galaxies, though a Chandra based field sample is needed to confirm this result. The near-IR bright late-types galaxies in clusters and groups appear to follow the L_K-L_X relation for early-type galaxies, while near-IR fainter late-type galaxies are significantly more X-ray luminous than this relation likely due to star formation. Finally, we find individual examples of ongoing gas stripping of group galaxies. One galaxy shows a 40-50 kpc X-ray tail, and two merging galaxy systems show tidal bridges/tails of X-ray emission. Therefore, stripping of hot galactic gas through both ram pressure and tidal forces does occur in groups and clusters, but the frequency or efficiency of such events must be moderate enough to allow hot gas halos in a large fraction of bright galaxies to survive even in group and cluster cores.
We study the constraints which currently planned radiotelescopes could place on the nature of dark energy, dark matter and inflation by studying the gravitational lensing of high redshift 21 cm emission. If the reionization epoch is effectively at z ~ 8 or later, very large amounts of cosmological information will be accessible to telescopes like SKA and LOFAR. We use simple characterizations of reionization history and of proposed telescope designs to investigate how well the two-dimensional convergence power spectrum, the three-dimensional matter power spectrum, the evolution of the linear growth function, and the standard cosmological parameters can be measured from radio data. The power spectra can be measured accurately over a wide range of wavenumbers at z ~ 2, and the evolution in the cosmic energy density can be probed from z ~ 0.5 to z ~ 7. This results in a characterization of the shape of the power spectra (i.e. of the nature of dark matter and of inflationary structure generation) which is potentially more precise than that obtained from galaxy lensing surveys. On the other hand, the dark energy parameters in their conventional parametrization (Omega_Lambda, w_o, w_a) are less well constrained by feasible 21 cm lensing surveys than by an all-sky galaxy lensing survey. This is because dark energy is felt primarily at relatively low redshifts in this model; 21 cm surveys would be more powerful than galaxy surveys for constraining models with ``early'' dark energy. Overall, the best constraints come from combining surveys of the two types. This results in extremely tight constraints on dark matter and inflation, and to dark energy constraints, as judged by the standard figure of merit, more than an order of magnitude better than either survey alone.
The existence of a primordial magnetic field (PMF) would affect both the temperature and polarization anisotropies of the cosmic microwave background (CMB). It also provides a plausible explanation for the possible disparity between observations and theoretical fits to the CMB power spectrum. Here we report on calculations of not only the numerical CMB power spectrum from the PMF, but also the correlations between the CMB power spectrum from the PMF and the primary curvature perturbations. We then deduce a precise estimate of the PMF effect on all modes of perturbations. We find that the PMF affects not only the CMB TT and TE modes on small angular scales, but also on large angular scales. The introduction of a PMF leads to a better fit to the CMB power spectrum for the higher multipoles, and the fit at lowest multipoles can be used to constrain the correlation of the PMF with the density fluctuations for large negative values of the spectral index. Our prediction for the BB mode for a PMF average field strength $|B_\lambda| =4.0$ nG is consistent with the upper limit on the BB mode deduced from the latest CMB observations. We find that the BB mode is dominated by the vector mode of the PMF for higher multipoles. We also show that by fitting the complete power spectrum one can break the degeneracy between the PMF amplitude and its power spectral index.
Variability is a common characteristic of magnetically active stars. Flaring variability is usually interpreted as the observable consequence of transient magnetic reconnection processes happening in the stellar outer atmosphere. Stellar flares have been observed now across 11 decades in wavelength/frequency/energy; such a large span implies that a range of physical processes takes place during such events. Despite the fact that stellar radio flares have long been recognized and studied, key unanswered questions remain. I will highlight what, in my opinion, are some of these questions. I will also describe recent results on stellar flare emissions at radio wavelengths, discussing the nature of coherent and incoherent emissions and the prospects of wide-field radio imaging telescopes for studying such events.
The frequency of microlensing planet detections, particularly in difficult-to-model high-magnification events, is increasing. Their analysis can require tens of thousands of processor hours or more, primarily because of the high density and high precision of measurements whose modeling requires time-consuming finite-source calculations. I show that a large fraction of these measurements, those that lie at least one source diameter from a caustic or cusp, can be modeled using a very simple hexadecapole approximation, which is one to several orders of magnitude faster than full-fledged finite-source calculations. Moreover, by restricting the regions that actually require finite-source calculations to a few isolated "caustic features", the hexadecapole approximation will, for the first time, permit the powerful "magnification-map" approach to be applied to events for which the planet's orbital motion is important.
For extrasolar planets with orbital periods, P>10 days, radial velocity surveys find non-circular orbital eccentricities are common, <e>~0.3. Future surveys for extrasolar planets using the transit technique will also have sensitivity to detect these longer period planets. Orbital eccentricity affects the detection of extrasolar planets using the transit technique in two opposing ways: an enhancement in the probability for the planet to transit near pericenter and a reduction in the detectability of the transit due to a shorter transit duration. For an eccentricity distribution matching the currently known extrasolar planets with P>10 day, the probability for the planet to transit is ~1.25 times higher than the equivalent circular orbit and the average transit duration is ~0.88 times shorter than the equivalent circular orbit. These two opposing effects nearly cancel for an idealized field transit survey with independent photometric measurements that are dominated by Poisson noise. The net effect is a modest ~4% increase in the transiting planet yield compared to assuming all planets have circular orbits. When intrinsic variability of the star or correlated photometric measurements are the dominant source of noise, the transit detectability is independent of the transit duration. In this case the transit yield is ~25% higher than that predicted under the assumption of circular orbits. Since the Kepler search for Earth-sized planets in the habitable zone of a Solar-type star is limited by intrinsic variability, the Kepler mission is expected to have a ~25% higher planet yield than that predicted for circular orbits if the Earth-sized planets have an orbital eccentricity distribution similar to the currently known Jupiter-mass planets.
With the Navy Prototype Optical Interferometer (NPOI), the binary system Theta 1 Orionis C, the most massive member of the Trapezium, was spatially resolved over a time period extending from February 2006 to March 2007. The data show significant orbital motion over the 14 months, and, after combining the NPOI data with previous measurements of the system from the literature, the observations span 10 years of the orbit. Our results indicate that the secondary did not experience an unusually close periastron passage this year, in contradiction to the prediction of a recently published, highly eccentric ~11 year orbit. Future observations of this source will be required to improve the orbital solution. Possible implications of the results in terms of system distance are discussed, although a main conclusion of this work is that a definitive orbit solution will require more time to obtain sufficient phase coverage, and that the interaction effects expected at periastron did not occur in 2007.
The sigma Ori cluster is an unbound aggregate of a few hundred young, low-mass stars centered on the multiple system sigma Ori. This cluster is of great interest because it is at an age when roughly half of the stars have lost their protoplanetary disks, and the cluster has a very large population of brown dwarfs. One of the largest sources of uncertainty in the properties of the cluster is that the distance is not well known. The directly measured Hipparcos distance to sigma Ori AB is 350 (+120,-90) pc. On the other hand, the distance to the Orion OB1b subgroup (of which sigma Ori is thought to be a member), 473+/-40 pc, is far better determined, but it is an indirect estimate of the cluster's distance. Also, Orion OB1b may have a depth of 40 pc along our line of sight. We use main sequence fitting to 9 main sequence cluster members to estimate a best fit distance of 420+/-30 pc, assuming a metallicity of -0.16+/-0.11 or 444 pc assuming solar metallicity. A distance as close as 350 pc is inconsistent with the observed brightnesses of the cluster members. At the best fit distance, the age of the cluster is 2-3 Myrs.
Analysis of ten years of high-precision timing data on the millisecond pulsar PSR J0437-4715 has resulted in a model-independent kinematic distance based on an apparent orbital period derivative, Pbdot, determined at the 1.5% level of precision (Dk = 157.0 +/- 2.4 pc), making it one of the most accurate stellar distance estimates published to date. The discrepancy between this measurement and a previously published parallax distance estimate is attributed to errors in the DE200 Solar System ephemerides. The precise measurement of Pbdot allows a limit on the variation of Newton's gravitational constant, |Gdot/G| < 23 x 10^{-12} 1/yr. We also constrain any anomalous acceleration along the line of sight to the pulsar to |a(Sun)/c| < 1.5 x 10^{-18} 1/s at 95% confidence, and derive a pulsar mass, m(psr) = 1.76 +/- 0.20 M, one of the highest estimates so far obtained.
The discovery of over 200 extrasolar planets with the radial velocity (RV) technique has revealed that many giant planets have large eccentricities, in striking contrast with most of the planets in the solar system and prior theories of planet formation. The realization that many giant planets have large eccentricities raises a fundamental question: ``Do terrestrial-size planets of other stars typically have significantly eccentric orbits or nearly circular orbits like the Earth?'' Here, we demonstrate that photometric observations of transiting planets could be used to characterize the orbital eccentricities for individual transiting planets, as well the eccentricity distribution for various populations of transiting planets (e.g., those with a certain range of orbital periods or physical sizes). Such characterizations can provide valuable constraints on theories for the excitation of eccentricities and tidal dissipation. We outline the future prospects of the technique given the exciting prospects for future transit searches, such as those to be carried out by the CoRoT and Kepler missions.
We use the previously-identified 15 infrared star-cluster counterparts to X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to study the relationship between total cluster mass and X-ray binary number. This significant population of X-Ray/IR associations allows us to perform, for the first time, a statistical study of X-ray point sources and their environments. We define a quantity, \eta, relating the fraction of X-ray sources per unit mass as a function of cluster mass in the Antennae. We compute cluster mass by fitting spectral evolutionary models to K_s luminosity. Considering that this method depends on cluster age, we use four different age distributions to explore the effects of cluster age on the value of \eta and find it varies by less than a factor of four. We find a mean value of \eta for these different distributions of \eta = 1.7 x 10^-8 M_\sun^-1 with \sigma_\eta = 1.2 x 10^-8 M_\sun^-1. Performing a \chi^2 test, we demonstrate \eta could exhibit a positive slope, but that it depends on the assumed distribution in cluster ages. While the estimated uncertainties in \eta are factors of a few, we believe this is the first estimate made of this quantity to ``order of magnitude'' accuracy. We also compare our findings to theoretical models of open and globular cluster evolution, incorporating the X-ray binary fraction per cluster.
We present the SCUBA Legacy Catalogues, two comprehensive sets of continuum maps (and catalogues) using data at 850 microns and 450 microns of the various astronomical objects obtained with the Submillimetre Common User Bolometer Array (SCUBA). The Fundamental Map Dataset contains data only where superior atmospheric opacity calibration data were available. The Extended Map Dataset is comprised of data regardless of the quality of the opacity calibration. Each Dataset contains 1.2 degree x 1.2 degree maps at locations where data existed in the JCMT archive, imaged using the matrix inversion method. The Fundamental Dataset is comprised of 1423 maps at 850 microns and 1357 maps at 450 microns. The Extended Dataset is comprised of 1547 maps at 850 microns. Neither Dataset includes high sensitivity, single chop SCUBA maps of "cosmological fields" nor solar system objects. Each Dataset was used to determine a respective Object Catalogue, consisting of objects identified within the respective 850 micron maps using an automated identification algorithm. The Fundamental and Extended Map Object Catalogues contain 5061 and 6118 objects respectively. Objects are named based on their respective J2000 position of peak 850 micron intensity. The Catalogues provide for each object the respective maximum 850 micron intensity, estimates of total 850 micron flux and size, and tentative identifications from the SIMBAD Database. Where possible, the Catalogues als provide for each object its maximum 450 micron intensity and total 450 micron flux, and flux ratios. (Data products, machine-readable tables and a full version of the paper can be retrieved at this http URL)
Aims. Both the black hole mass and the X-ray luminosity of AGNs have been
found to be anti-correlated with the normalized excess variance ($\sigma_{\rm
rms}^2 $) of the X-ray light curves. We investigate which correlation with
$\sigma_{\rm rms}^2 $ is the intrinsic one.
Methods. We divide a full sample of 33 AGNs (O' Neill et al. 2005) into two
sub-samples. The black hole masses of 17 objects in sub-sample 1 were
determined by the reverberation mapping or the stellar velocity dispersion. The
black hole masses of the remaining 16 objects were estimated from the
relationship between broad line region radius and optical luminosity
(sub-sample 2). Then partial correlation analysis, ordinary least squares
regression and K-S tests are performed on the full sample and the sub-samples,
respectively.
Results. We find that $\sigma_{\rm rms}^2 $ seems to be intrinsically
correlated with the black hole mass in the full sample. However, this seems to
be caused by including the sub-sample 2 into the analysis, which introduces an
extra correlation between the black hole mass and the luminosity and
strengthens any correlation with the black hole mass artificially. Therefore,
the results from the full sample may be misleading. The results from the
sub-sample 1 show that the correlation between $\sigma_{\rm rms}^2 $ and the
X-ray luminosity may be the intrinsic one and therefore the anti-correlation
between $\sigma_{\rm rms}^2 $ and the black hole mass is doubtful.
Pulsar winds shocked in the ambient medium produce spectacular nebulae observable from the radio through gamma-rays. The shape and the spectrum of a pulsar wind nebula (PWN) depend on the angular distribution, magnetization and energy spectrum of the wind streaming from the pulsar magnetosphere, as well as on the pulsar velocity and the properties of the ambient medium. The advent of Chandra, with its unprecedented angular resolution and high sensitivity, has allowed us not only to detect many new PWNe, but also study their spatial and spectral structure and dynamics, which has significantly advanced our understanding of these objects. Here we overview recent observational results on PWNe, with emphasis on Chandra observations.
We report a search for the presence of dust in the intra-cluster medium based on the study of statistical reddening of background galaxies. Armed with the Red Sequence Cluster survey data, from which we extracted (i) a catalog of 458 clusters with z_clust < 0.5 and (ii) a catalog of ~90,000 galaxies with photometric redshift 0.5 < z_ph < 0.8 and photometric redshift uncertainty delta z_ph / (1+z_ph) < 0.06, we have constructed several samples of galaxies according to their projected distances to the cluster centers. No significant color differences [<E(B-R_c)> = 0.005 pm 0.008, and <E(V-z')> = 0.000 pm 0.008] were found for galaxies background to the clusters, compared to the references. Assuming a Galactic extinction law, we derive an average visual extinction of <A_V> = 0.004 pm 0.010 towards the inner 1x R_200 of clusters.
We investigate the tidal interactions of a red giant with a main sequence in the dense stellar core of globular clusters by Smoothed Particle Hydrodynamics method. Two models of $0.8 \msun$ red giant with the surface radii 20 and $85 R_\sun$ are used with 0.6 or $0.8M_\sun$ main sequence star treated as a point mass. We demonstrate that even for the wide encounters that two stars fly apart, the angular momentum of orbital motion can be deposited into the red giant envelope to such an extent as to trigger rotational mixing and to explain the fast rotation observed for the horizontal branch stars, and also that sufficient mass can be accreted on the main sequence stars to disguise their surface convective zone with the matter from the red giant envelope. On the basis of the present results, we discuss the parameter dependence of these transfer characteristics with non-linear effects taken into account, and derive fitting formulae to give the amounts of energy and angular momentum deposited into the red giant and of mass accreted onto the perturber as functions of stellar parameters and the impact parameter of encounter. These formulae are applicable to the encounters not only of the red giants but also of the main sequence stars, and useful in the study of the evolution of stellar systems with the star-star interactions taken into account.
We present a preliminary analysis of ASTRO-F data of a complete sample of ~150 EROs (R-K>5) down to K(Vega)<19, for which reliable photometric redshifts are available, in the range 0.8<z<2, selected over two fields (S7 and S2) of the MUNICS survey. The area covered is about 420 arcmin^2. We have imaged this area with AKARI telescope in N3 (3.4 micron), N60 (65 micron) and WL (150 micron) down to 12 microJy in the N3 filter, in order to detect the rest frame H or K-band emission, thus providing an excellent sampling of the SED of our EROs. From a first analysis we have an identification rate of ~63% in the N3 filter over the S7 field. These data allow us to distinguish starburst from passive early type phenomena, to meseaure the SFR of the starburst component and to constrain the mass assembly of early type galaxies.
We present theoretical evolutionary sequences of intermediate mass stars (M=3-6.5 solar masses) with metallicity Z=0.004. Our goal is to test whether the self-enrichment scenario by massive Asymptotic Giant Branch stars may work for the high metallicity Globular Clusters, after previous works by the same group showed that the theoretical yields by this class of objects can reproduce the observed trends among the abundances of some elements, namely the O-Al and O-Na anticorrelations, at intermediate metallicities, i.e [Fe/H]=-1.3. We find that the increase in the metallicity favours only a modest decrease of the luminosity and the temperature at the bottom of the envelope for the same core mass, and also the efficiency of the third dredge-up is scarcely altered. On the contrary, differences are found in the yields, due to the different impact that processes with the same efficiency have on the overall abundance of envelopes with different metallicities. We expect the same qualitative patterns as in the intermediate metallicity case, but the slopes of some of the relationships among the abundances of some elements are different. We compare the sodium-oxygen anticorrelation for clusters of intermediate metallicity (Z~0.001) and clusters of metallicity large as in these new models. Although the observational data are still too scarce, the models are consistent with the observed trends, provided that only stars of M>5 solar masses contribute to self-enrichment.
We investigate the extinction curves of young galaxies in which dust is supplied from Type II supernovae (SNe II) and/or pair instability supernovae (PISNe). Since at high redshift (z>5), low-mass stars cannot be dominant sources for dust grains, SNe II and PISNe, whose progenitors are massive stars with short lifetimes, should govern the dust production. Here, we theoretically investigate the extinction curves of dust produced by SNe II and PISNe, taking into account reverse shock destruction induced by collision with ambient interstellar medium. We find that the extinction curve is sensitive to the ambient gas density around a SN, since the efficiency of reverse shock destruction strongly depends on it. The destruction is particularly efficient for small-sized grains, leading to a flat extinction curve in the optical and ultraviolet wavelengths. Such a large ambient density as n_H > 1 cm^{-3} produces too flat an extinction curve to be consistent with the observed extinction curve for SDSS J104845.05+463718.3 at z=6.2. Although the extinction curve is highly sensitive to the ambient density, the hypothesis that the dust is predominantly formed by SNe at z~6 is still allowed by the current observational constraints. For further quantification, the ambient density should be obtained by some other methods. Finally we also discuss the importance of our results for observations of high-z galaxies, stressing a possibility of flat extinction curves.
Context: The distance to the Galactic Centre (GC) is of importance for the distance scale in the Universe. The value derived by Eisenhauer et al. (2005) of 7.62 +- 0.32 kpc based on the orbit of one star around the central black hole is shorter than most other distance estimates based on a variety of different methods. Aim: To establish an independent distance to the GC with high accuracy. To this end Population-II Cepheids are used that have been discovered in the OGLE-II and III surveys. Method: Thirty-nine Pop-II Cepheids have been monitored on 4 nights spanning 14 days. Light curves have been fitted using the known periods from the OGLE data to determine the mean K-band magnitude. It so happens that 37 RR Lyrae stars are in the field-of-views and mean K-band magnitudes are derived for this sample as well. Results: The period-luminosity relation of Pop-II Cepheids in the K-band is determined, and the derived slope of -2.24 +- 0.14 is consistent with the value derived by Matsunaga et al. (2006). Fixing the slope to their more accurate value results in a zero point, and implies a distance modulus to the GC of 14.51 +- 0.12, with an additional systematic uncertainty of 0.07 mag. Similarly, from the RR Lyrae K-band PL-relation we derive a value of 14.48 +- 0.17 (random) +- 0.07 (syst.). The two independent determinations are averaged to find 14.50 +- 0.10 (random) +- 0.07 (syst.), or 7.94 +- 0.37 +- 0.26 kpc.
We investigate a wide range of possible evolutionary histories for the recently discovered Bootes dwarf spheroidal galaxy, a Milky Way satellite. By means of N-body simulations we follow the evolution of possible progenitor galaxies of Bootes for a variety of orbits in the gravitational potential of the Milky Way. The progenitors considered cover the range from dark-matter-free star clusters to massive, dark-matter dominated outcomes of cosmological simulations. For each type of progenitor and orbit we compare the observable properties of the remnant after 10 Gyr with those of Bootes observed today. Our study suggests that the progenitor of Bootes must have been, and remains now, dark matter dominated. In general our models are unable to reproduce the observed high velocity dispersion in Bootes without dark matter. Our models do not support time-dependent tidal effects as a mechanism able to inflate significantly the internal velocity dispersion. As none of our initially spherical models is able to reproduce the elongation of Bootes, our results suggest that the progenitor of Bootes may have had some intrinsic flattening. Although the focus of the present paper is the Bootes dwarf spheroidal, these models may be of general relevance to understanding the structure, stability and dark matter content of all dwarf spheroidal galaxies.
Based on the data from the ''Pi of the Sky'' project we made a catalog of the variable stars with periods from 0.1 to 10 days. We used data collected during a period of two years (2004 and 2005) and classified 725 variable stars. Most of the stars in our catalog are eclipsing binaries - 464 (about 64%), while the number of pulsating stars is 125 (about 17%). Our classification is based on the shape of the light curve, as in the GCVS catalog. However, some stars in our catalog were classified as of different type than in the GCVS catalog. We have found periods for 15 stars present in the GCVS catalog with previously unknown period.
We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, Eta Carinae, Zeta Puppis, Gamma Velorum and WR 140.
In many different galactic environments the cluster initial mass function (CIMF) is well described by a power-law with index -2. This implies a linear relation between the mass of the most massive cluster (M_max) and the number of clusters. Assuming a constant cluster formation rate and no disruption of the most massive clusters it also means that M_max increases linearly with age when determining M_max in logarithmic age bins. We observe this increase in five out of the seven galaxies in our sample, suggesting that M_max is determined by the size of the sample. It also means that massive clusters are very stable against disruption, in disagreement with the mass independent disruption (MID) model presented at this conference. For the clusters in M51 and the Antennae galaxies the size-of-sample prediction breaks down around 10^6 M_sun, suggesting that this is a physical upper limit to the masses of star clusters in these galaxies. In this method there is a degeneracy between MID and a CIMF truncation. We show how the cluster luminosity function can serve as a tool to distinguish between the two.
Context: Observation of star occultations is a powerful tool to determine shapes and sizes of asteroids. This is key information necessary for studying the evolution of the asteroid belt and to calibrate indirect methods of size determination, such as the models used to analyze thermal infrared observations. Up to now, the observation of asteroid occultations is an activity essentially secured by amateur astronomers equipped with small, portable equipments. However, the accuracy of the available ephemeris prevents accurate predictions of the occultation events for objects smaller than ~100 km. Aims: We investigate current limits in predictability and observability of asteroid occultations, and we study their possible evolution in the future, when high accuracy asteroid orbits and star positions (such as those expected from the mission Gaia of the European Space Agency) will be available. Methods: We use a simple model for asteroid ephemeris uncertainties and numerical algorithms for estimating the limits imposed by the instruments, assuming realistic CCD performances and asteroid size distribution, to estimate the expected occultation rate under different conditions. Results: We show that high accuracy ephemerides which will be available in the future will extend toward much smaller asteroids the possibility of observing asteroid occultations, greatly increasing the number of events and objects involved. A complete set of size measurements down to ~10 km main belt asteroids could be obtained in a few years, provided that a small network of ground-based 1m telescopes are devoted to occultation studies.
Asteroid shapes and satellites: role of gravitational reaccumulation. Following current evidences, it is widely accepted that many asteroids would be "gravitational aggregates", i.e. bodies lacking internal cohesion. They could mainly be originated during the catastrophic disruption of some parent bodies, through the gravitational reaccumulation of the resulting fragments. The same events produced the dynamical families that we observe. In this work we address the problem of the origin of shapes of gravitational aggregates, that could contain signatures of their origin. We use a N-body code to simulate the collapse of a cloud of fragments, with a variety of initial velocity distributions and total angular momentum. The fragments are treated as inhelastic spheres, that rapidly accumulate to form rotating aggregates. The resulting shapes and rotational properties are compared with theoretical predictions. The results show that only a precise category of shapes (flattened spheroids) are created via this mechanism. This may provide interesting constraints on the evolution of asteroid shapes, in particular for those with one or more satellites.
We present new results with a prototype detector that is being developed by the DMTPC collaboration for the measurement of the direction tag (head-tail) of dark matter wind. We use neutrons from a Cf-252 source to create low-momentum nuclear recoils in elastic scattering with the residual gas nuclei. The recoil track is imaged in low-pressure time-projection chamber with optical readout. We measure the ionization rate along the recoil trajectory, which allows us to determine the direction tag of the incoming neutrons.
We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures.
We evaluate the average expansion rate of a universe which contains a realistic evolving ensemble of non-linear structures. We use the peak model of structure formation to obtain the number density of structures, and take the individual structures to be spherical. We find that the expansion rate increases relative to the FRW value on a timescale of 10-100 billion years. The physical reason is that the volume becomes dominated by fast-expanding voids. However, the increase is not rapid enough to correspond to acceleration. We discuss how to improve our treatment. We also consider various qualitative issues related to backreaction.
Nowadays, compact sources like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be investigated at milli-arcsecond scales only with the VLT in its interferometric mode. We propose a spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe these sources both over spatial and spectral scales in the near-infrared domain. This instrument will provide information complementary to what is obtained at the same time with ALMA at different wavelengths and the extreme large telescopes.
We present the analysis of single epoch long slit spectra of the three brightest images of the gravitationally lensed system J1131-1231. These spectra provide one of the clearest observational evidence for differential micro-lensing of broad emission lines (BELs) in a gravitationally lensed quasar. The micro-lensing effect enables us: (1) to confirm that the width of the emission lines is anti-correlated to the size of the emitting region; (2) to show that the bulk of FeII is emitted in the outer parts of the Broad Line Region (BLR) while another fraction of FeII is produced in a compact region; (3) to derive interesting informations on the origin of the narrow intrinsic MgII absorption doublet observed in that system.
We provide a guideline to interpret the UVCS emission lines (in particular O VI and Si XII) during shock wave propagation in the outer solar corona. We use a numerical MHD model performing a set of simulations of shock waves generated in the corona and from the result we compute the plasma emission for the O VI and Si XII including the effects of NEI. We analyze the radiative and spectral properties of our model with the support of a detailed radiation model including Doppler dimming and an analytical model for shocks, and, finally, we synthesize the expected O VI 1032A line profile. We explain several spectral features of the observations like the absence of discontinuities in the O VI emission during the shock passage, the brightening of Si XII emission and the width of the lines. We use our model also to give very simple and general predictions for the strength of the line wings due to the ions shock heating and on the line shape for Limb CMEs or Halo CMEs. The emission coming from post-shock region in the solar corona roughly agrees with the emission from a simple planar and adiabatic shock, but the effect of thermal conduction and the magnetic field may be important depending on the event parameters. Doppler dimming significantly influences the O VI emission while Si XII line brightens mainly because of the shock compression. Significant shock heating is responsible for the wide and faint component of the O VI line usually observed which may be taken as a shock signature in the solar corona.
The solar magnetic field is key to understanding the physical processes in the solar atmosphere. Nonlinear force-free codes have been shown to be useful in extrapolating the coronal field upward from underlying vector boundary data. However, we can only measure the magnetic field vector routinely with high accuracy in the photosphere, and unfortunately these data do not fulfill the force-free condition. We must therefore apply some transformations to these data before nonlinear force-free extrapolation codes can be self-consistently applied. To this end, we have developed a minimization procedure that yields a more chromosphere-like field, using the measured photospheric field vectors as input. The procedure includes force-free consistency integrals, spatial smoothing, and -- newly included in the version presented here -- an improved match to the field direction as inferred from fibrils as can be observed in, e.g., chromospheric H$\alpha$ images. We test the procedure using a model active-region field that included buoyancy forces at the photospheric level. The proposed preprocessing method allows us to approximate the chromospheric vector field to within a few degrees and the free energy in the coronal field to within one percent.
New candidate variable stars have been identified in the Small Magellanic Cloud cluster NGC121, by applying both the image subtraction technique (ISIS, Alard 2000) and the Welch & Stetson (1993) detection method to HST WFPC2 archive and ACS proprietary images of the cluster. The new candidate variable stars are located from the cluster's Main Sequence up to Red Giant Branch. Twenty-seven of them fall on the cluster Horizontal Branch and are very likely RR Lyrae stars. They include the few RR Lyrae stars already discussed by Walker & Mack (1988). We also detected 20 Dwarf Cepheid candidates in the central region of NGC121. Our results confirm the "true" globular cluster nature of NGC121, a cluster that is at the young end of the Galactic globulars' age range.
We present a model of cosmic ray heating of clusters' cores that reproduces the observed temperature distribution in clusters by using an energy balance condition in which the emitted X-ray energy is supplied by the hadronic cosmic rays, which act as warming rays (WRs). The temperature profile of the IC gas is correlated with the WR pressure distribution and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and magnetic field. The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC gas density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution. The WR model provides other observable features: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature T_{inner}, a correlation of the gamma-ray luminosity with T_{inner}, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters that recovers the observed one, a hard X-ray emission from cool-core clusters that is systematically lower than the observed limits and yet observable with the next generation HXR experiments like Simbol-X. The specific theoretical properties and the multi-frequency distribution of the e.m. signals predicted in the WR model render it quite different from the other models proposed for the heating of clusters' cool-cores. Such differences make it possible to prove or disprove our model as an explanation of the cooling-flow problems on the basis of multi-frequency observations of galaxy clusters.
We present a discussion of the partial Paschen-Back (PB) effect in magnetic Ap stars. An overview of the theory is illustrated with examples of how splittings deviate non-linearly from the simple Zeeman picture; normally forbidden ``ghost lines'' appear in strong fields. Resulting asymmetric stellar Stokes profiles for a dipolar magnetic geometry are shown for the FeII 6149 line and it is established that PB lines may be subject to wavelength shifts. Modelling of Stokes profiles in the PB regime opens exciting new diagnostics.
We present first results of a systematic investigation of the incomplete
Paschen-Back effect in magnetic Ap stars. A short overview of the theory is
followed by a demonstration of how level splittings and component strengths
change with magnetic field strength for some lines of special astrophysical
interest. Requirements are set out for a code which allows the calculation of
full Stokes spectra in the Paschen-Back regime and the behaviour of Stokes I
and V profiles of transitions in the multiplet 74 of FeII is discussed in some
detail. It is shown that the incomplete Paschen-Back effect can lead to
noticeable line shifts which strongly depend on total multiplet strength,
magnetic field strength and field direction. Ghost components (which violate
the normal selection rule on J) show up in strong magnetic fields but are
probably unobservable. Finally it is shown that measurements of the integrated
magnetic field modulus $H_s$ are not adversely affected by the Paschen-Back
effect, and that there is a potential problem in (magnetic) Doppler mapping if
lines in the Paschen-Back regime are treated in the Zeeman approximation.
Coronal Mass ejections or CMEs are large dynamical solar-corona events. The
mass balance and kinematics of a fast limb CME, including its prominence
progenitor and the associated flare, will be compared with computed magnetic
structures to look for their origin and effect.
Multi-wavelength ground-based and space-borne observations are used to study
a fast W-limb CME event of December 2, 2003, taking into account both on and
off disk observations. Its erupting prominence is measured at high cadence with
the Pic du Midi full H-alpha line-flux imaging coronagraph. EUV images from
space instruments are processed including difference imaging. SOHO/LASCO images
are used to study the mass excess and motions. A fast bright expanding coronal
loop is identified in the region recorded slightly later by GOES as a C7.2
flare, followed by a brightening and an acceleration phase of the erupting
material with both cool and hot components. The total coronal radiative flux
dropped by 5 percent in the EUV channels, revealing a large dimming effect at
and above the limb. The typical 3-part structure observed 1 hour later shows a
core shaped similarly to the eruptive filament/prominence. The total measured
mass of the escaping CME (1.5x10to16 g from C2 LASCO observations) definitely
exceeds the estimated mass of the escaping cool prominence material although
assumptions made to analyse the Ha erupting prominence, as well as the
corresponding EUV darkening of the filament observed several days before, made
this evaluation uncertain by a factor of 2. From the current free extrapolation
we discuss the shape of the magnetic neutral surface and a possible scenario
leading to an instability, including the small scale dynamics inside and around
the filament.
We present Very Long Baseline Array (VLBA) observations of the TeV blazars H 1426+428, 1ES 1959+650, and PKS 2155-304 obtained during the years 2001 through 2004. We observed H 1426+428 at four epochs at 8 GHz, and found that its parsec-scale structure consisted of a ~17 mJy core and a single ~3 mJy jet component with an apparent speed of 2.09 +/- 0.53c. The blazar 1ES 1959+650 was observed at three epochs at frequencies of 15 and 22 GHz. Spectral index information from these dual-frequency observations was used to definitively identify the core of the parsec-scale structure. PKS 2155-304 was observed at a single epoch at 15 GHz with dual-circular polarization, and we present the first VLBI polarimetry image of this source. For 1ES 1959+650 and PKS 2155-304, the current observations are combined with the VLBA observations from our earlier paper to yield improved apparent speed measurements for these sources with greatly reduced measurement errors. The new apparent speed measured for component C2 in 1ES 1959+650 is 0.00 +/- 0.04c (stationary), and the new apparent speed measured for component C1 in PKS 2155-304 is 0.93 +/- 0.31c. We combine the new apparent speed measurements from this paper with the apparent speeds measured in TeV blazar jets from our earlier papers to form a current set of apparent speed measurements in TeV HBLs. The mean peak apparent pattern speed in the jets of the TeV HBLs is about 1c. We conclude the paper with a detailed discussion of the interpretation of the collected VLBA data on TeV blazars in the context of current theoretical models for the parsec-scale structure of TeV blazar jets.
We study the turbulent velocity dispersion spectra of the coexistent HCN and HCO+ molecular species as a function of length scale in the M17 star-forming molecular cloud. We show that the observed downward shift of the ion's spectrum relative to that of the neutral is readily explained by the existence of an ambipolar diffusion range within which ion and neutral turbulent energies dissipate differently. We use these observations to evaluate this decoupling scale and show how to estimate the strength of the plane-of-the-sky component of the embedded magnetic field in a completely novel way.
We report the discovery using Spitzers high resolution spectrograph of 7 Active Galactic Nuclei (AGN) in a sample of 32 late-type galaxies that show no definitive signatures of AGN in their optical spectra. Our observations suggest that the AGN detection rate in late-type galaxies is possibly 4 times larger than what optical spectroscopic observations alone suggest. We demonstrate using photoionization models with an input AGN and an extreme EUV-bright starburst ionizing radiation field that the observed mid-infrared line ratios cannot be replicated unless an AGN contribution, in some cases as little as 10% of the total galaxy luminosity, is included. These models show that when the fraction of the total luminosity due to the AGN is low, optical diagnostics are insensitive to the presence of the AGN. In this regime of parameter space, the mid-infrared diagnostics offer a powerful tool for uncovering AGN missed by optical spectroscopy. The AGN bolometric luminosities in our sample range from ~3 X 10^41 - ~2 X 10^43 ergs s^-1, which, based on the Eddington limit, corresponds to a lower mass limit for the black hole that ranges from ~3 X 10^3Mdot to as high as ~1.5 X 10^5Mdot. These lower mass limits however do not put a strain on the well-known relationship between the black hole mass and the host galaxy's stellar velocity dispersion established in predominantly early-type galaxies. Our findings add to the growing evidence that black holes do form and grow in low-bulge environments and that they are significantly more common than optical studies indicate.
Directional detection of dark matter can provide unambiguous observation of dark matter interactions even in the presence of background. This article presents an experimental method to measure the direction tag ("head-tail") of the dark matter wind by detecting the scintillation light created by the elastic nuclear recoils in the scattering of dark matter particles with the detector material. The technique is demonstrated by tagging the direction of the nuclear recoils created in the scattering of low-energy neutrons with CF4 in a low-pressure time-projection chamber that is developed by the DMTPC collaboration. The measurement of the decreasing ionization rate along the recoil trajectory provides the direction tag of the incoming neutrons, and proves that the "head-tail" effect can be observed.
Probabilities in the multiverse can be calculated by assuming that we are typical representatives in a given reference class. But is this class well defined? What should be included in the ensemble in which we are supposed to be typical? There is a widespread belief that this question is inherently vague, and that there are various possible choices for the types of reference objects which should be counted in. Here we argue that the ``ideal'' reference class (for the purpose of making predictions) can be defined unambiguously in a rather precise way, as the set of all observers with identical information content. When the observers in a given class perform an experiment, the class branches into subclasses who learn different information from the outcome of that experiment. The probabilities for the different outcomes are defined as the relative numbers of observers in each subclass. For practical purposes, wider reference classes can be used, where we trace over all information which is uncorrelated to the outcome of the experiment, or whose correlation with it is beyond our current understanding. We argue that, once we have gathered all practically available evidence, the optimal strategy for making predictions is to consider ourselves typical in any reference class we belong to, unless we have evidence to the contrary. In the latter case, the class must be correspondingly narrowed.
We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10^14 eV to 10^17 eV using 5.5 times 10^7 events collected in the period from 2000 November through 2004 October by the Tibet-III air-shower array located at 4300 m above sea level (atmospheric depth of 606 g/cm^2). The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We performed extensive Monte Carlo calculations and discuss the model dependences involved in the final result assuming interaction models of QGSJET01c and SIBYLL2.1 and primary composition models of heavy dominant (HD) and proton dominant (PD) ones. Pure proton and pure iron primary models are also examined as extreme cases. The detector simulation was also made to improve the accuracy of determining the size of the air showers and the energy of the primary particle. We confirmed that the all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other as expected from the characteristics of the experiment at the high altitude, where the air showers of the primary energy around the knee reaches near maximum development and their features are dominated by electromagnetic components leading to the weak dependence on the interaction model or the primary mass. This is the highest-statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.
Standard calculations suggest that the entropy of the universe is dominated by black holes, although they comprise only a tiny fraction of its total energy. We give a physical interpretation of this result. Statistical entropy is the logarithm of the number of microstates consistent with the observed macroscopic properties of a system, hence a measure of uncertainty about its precise state. The largest uncertainty in the present and future state of the universe is due to the (unknown) internal microstates of its black holes. We also discuss the qualitative gap between the entropies of black holes and ordinary matter.
We consider ``dark matter emulators,'' which are stable modified theories of gravity that reproduce galactic rotation curves and the observed amount of weak lensing without dark matter. In any such model gravity waves follow a different geodesic from that of other massless particles. Over cosmological distances this results in an easily detectable and model-independent difference between the arrival times of the pulse of gravity waves from some cosmic event and those of photons or neutrinos. For a repeat of SN 1987a (which took place in the Large Magellanic Cloud) the time lag is in the range of days. For the recent gamma ray burst, GRB 070201 (which seems to have taken place on the edge of the Andromeda galaxy) the time lag would be in the range of about two years.
One interpretation of proton stability is the existence of extra-flat directions of the MSSM, in particular $u^{c}u^{c}d^{c}e^{c}$ and $QQQL$, where the operators lifting the potential are suppressed by a mass scale $\Lambda$ which is much larger than the Planck mass, $ \Lambda \gae 10^{26} \GeV$. Using D-term hybrid inflation as an example, we show that such flat directions can serve as the inflaton in SUSY inflation models. The resulting model is a minimal version of D-term inflation which requires the smallest number of additional fields. In the case where $Q$-balls form from the extra-flat direction condensate after inflation, successful Affleck-Dine baryogenesis is possible if the suppression mass scale is $\gae 10^{31}-10^{35} \GeV$. In this case the reheating temperature from $Q$-ball decay is in the range $3-100 \GeV$, while observable baryon isocurvature perturbations and non-thermal dark matter are possible. In the case of extra-flat directions with a large $t$ squark component, there no $Q$-ball formation and reheating is via conventional condensate decay. In this case the reheating temperature is in the range $1-100 \TeV$, naturally evading thermal gravitino overproduction while allowing sphaleron erasure of any large B-L asymmetry.
Surface effects in strange-quark matter play an important role for certain observables which have been proposed in order to identify strange stars, and color superconductivity can strongly modify these effects. We study the surface of color superconducting strange-quark matter by solving the Hartree-Fock-Bogoliubov equations for finite systems ("strangelets") within the MIT bag model, supplemented with a pairing interaction. Due to the bag-model boundary condition, the strange-quark density is suppressed at the surface. This leads to a positive surface charge, concentrated in a layer of ~1 fm below the surface, even in the color-flavor locked (CFL) phase. However, since in the CFL phase all quarks are paired, this positive charge is compensated by a negative charge, which turns out to be situated in a layer of a few tens of fm below the surface, and the total charge of CFL strangelets is zero. We also study the surface and curvature contributions to the total energy. Due to the strong pairing, the energy as a function of the mass number is very well reproduced by a liquid-drop type formula with curvature term.
Even if nothing but a light Higgs is observed at the LHC, suggesting that the Standard Model is unmodified up to scales far above the weak scale, Higgs physics can yield surprises of fundamental significance for cosmology. As has long been known, the Standard Model vacuum may be metastable for low enough Higgs mass, but a specific value of the decay rate holds special significance: for a very narrow window of parameters, our Universe has not yet decayed but the current inflationary period can not be future eternal. Determining whether we are in this window requires exquisite but achievable experimental precision, with a measurement of the Higgs mass to 0.1 GeV at the LHC, the top mass to 60 MeV at a linear collider, as well as an improved determination of alpha_s by an order of magnitude on the lattice. If the parameters are observed to lie in this special range, particle physics will establish that the future of our Universe is a global big crunch, without harboring pockets of eternal inflation, strongly suggesting that eternal inflation is censored by the fundamental theory. This conclusion could be drawn even more sharply if metastability with the appropriate decay rate is found in the MSSM, where the physics governing the instability can be directly probed at the TeV scale.
Searches for supersymmetry are among the most exciting physics goals at Run II of the Tevatron. In particular, in supersymmetric models with light charginos, neutralinos and sleptons, associated chargino--neutralino production can potentially be observed as multi-lepton events with missing energy. We discuss how, in the generic TeV-scale MSSM, the prospects for these chargino-neutralino searches are impacted by cosmological considerations, namely the neutralino relic abundance and direct detection limits. We also discuss what an observation of chargino-neutralino production at the Tevatron would imply for the prospects of future direct dark matter searches without assuming specific patterns of supersymmetry breaking.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0801, /abs, contact, help (Access key information)