We report moderate magnetic flux of 450G < Bf < 750G (3sigma) on the nearby M5.5 flare star Proxima Centauri. A high resolution UVES spectrum was used to measure magnetic flux from Zeeman broadening in absorption lines of molecular FeH around 1mu. The magnetic flux we find is relatively weak compared with classical strong flare stars, but so are Proxima's flaring rates and actual emission levels. We compare what is known about the rotation rate, Rossby number, and activity levels in this star to relations between these quantities that have been recently being developed more generally for M dwarfs. We conclude that the magnetic flux is higher than the best estimates of the Rossby number from period measurements. On the other hand, the activity levels on Proxima Centauri are at the high end of what could be expected based on the measured field, but not so high as to exceed the natural scatter in these relations (other stars lie along this high envelope as well).
The shape of the primordial matter power spectrum Plin(k) encodes critical information on cosmological parameters. At large scales, the observable galaxy power spectrum Pobs(k) is expected to follow the shape of Plin(k), but on smaller scales the effects of nonlinearity and galaxy bias make the ratio Pobs(k)/Plin(k) scale-dependent. We develop a method that can extend the dynamic range of the Plin(k) recovery by incorporating constraints on the galaxy halo occupation distribution (HOD) from the projected galaxy correlation function wp. We devise an analytic model to calculate Pobs(k) in real-space and redshift-space. Once HOD parameters are determined by matching wp for a given cosmological model, galaxy bias is completely specified, and our analytic model predicts both the shape and normalization of Pobs(k). Applying our method to SDSS main galaxy samples, we find that the real-space Pobs(k) follows the shape of the nonlinear matter power spectrum at the 1-2% level up to k=0.2 h/Mpc. When we apply our method to SDSS LRG samples, the linear bias approximation is accurate to 5% at k<0.08 h/Mpc, but the scale-dependence of LRG bias prevents the use of linear theory at k>0.08 h/Mpc. Our HOD model prediction is in good agreement with the recent SDSS LRG Pobs(k) measurements at all measured scales (k<0.2 h/Mpc), naturally explaining the shape of Pobs(k). The "Q-model" prescription is a poor description of galaxy bias for the LRG samples, and it can lead to biased cosmological parameter estimates when measurements at k>0.1 h/Mpc are included in the analysis. We quantify the potential bias and constraints on cosmological parameters that arise from applying linear theory and Q-model fitting, and we demonstrate the utility of HOD modeling of future high precision measurements of Pobs(k) on quasi-linear scales.
Only ~10% of baryons in the universe are in the form of stars, yet most models of luminous structure formation have concentrated on the properties of the luminous stellar matter. In this paper we focus on the "flip side" of galaxy formation and investigate the properties of the material that is not presently locked up in galaxies. This "by-product" of galaxy formation can be observed as an X-ray emitting plasma (the intracluster medium, hereafter ICM) in groups and clusters, and we present a version of the Durham semi-analytic galaxy formation model GALFORM that allows us to investigate the properties of the ICM. As we would expect on the basis of gravitational scaling arguments, the previous model (presented in Bower et al. 2006) fails to reproduce even the most basic observed properties of the ICM; however, we present a simple modification to the model to allow for heat input into the ICM from the AGN "radio mode" feedback. This heating acts to expel gas from the X-ray luminous central regions of the host halo. With this modification, the model reproduces the observed gas mass fractions and luminosity-temperature relation of groups and clusters. Introducing the heating process into the model requires changes to a number of model parameters in order to retain a good match to the observed galaxy properties. With the revised parameters, the best fitting luminosity function is comparable to that presented in Bower et al. (2006). The new model makes a fundamental step forward, providing a unified model of galaxy and cluster ICM formation. However, the detailed comparison with the data is not completely satisfactory, and we highlight key areas for improvement.
In this introductory review presented at the IAU Symposium 253 "Transiting Planets", I summarize the path from the initial 1995 radial-velocity discovery of hot Jupiters to the current rich panoply of investigations that are afforded when such objects are observed to transit their parent stars. Forty transiting exoplanets are now known, and the time for that population to double has dropped below one year. It is only for these objects that we have direct estimates of their masses and radii, and for which (at the current time) we can undertake direct studies of the chemistries and dynamics of their atmospheres. Informed by the successes of hot Jupiter studies, I outline a path for the spectroscopic study of certain habitable exoplanets that obviates the need for direct imaging.
Extremely red objects, identified in the early Spitzer Space Telescope observations of the bright-rimmed globule IC 1396A and photometrically classified as Class I protostars Class II T Tauri stars based on their mid-infrared colors, were observed spectroscopically at 5.5 to 38 microns (IRS), at the 22 GHz water maser frequency (GBT), and in the optical (Palomar). The sources photometrically identified as Class I are confirmed as objects dominated by accretion luminosity from dense envelopes, with accretion rates 1e-5 to 1e-6 Msun/yr. The ice/silicate absorption ratio in the envelope is exceptionally low for the IC 1396A protostars, compared to those in nearby star-forming regions, suggesting the envelope chemistry is altered by the radiation field or globule pressure. Only one 22 GHz water maser was detected in IC 1396A; its infrared counterpart has luminosity <0.1 Lsun, the first H2O maser from such a low-luminosity object. The objects photometrically classified as Class II are confirmed as classical T Tauri stars with warm, luminous disks. The disk properties change significantly with source luminosity: low-mass (G-K) stars have prominent 9-11 micron emission features due to amorphous silicates while higher-mass (A-F) stars have weaker features requiring abundant crystalline silicates. The distribution of Class I sources is concentrated within the molecular globule, while the Class II sources are more widely scattered. Combined with the spectral results, this suggests two phases of star formation, the first (4 Myr ago) leading to the widespread Class II sources and the central O star of IC 1396, and the second (<1 Myr ago) occurring within the globule.
A microlensing lensing zone refers to the range of planet-star separations where the probability of detecting a planetary signal is high. Its conventional definition as the range between $\sim 0.6$ and 1.6 Einstein radii of the primary lens is based on the criterion that a major caustic induced by a planet should be located within the Einstein ring of the primary. However, current planetary lensing searches focus on high-magnification events to detect perturbations induced by another caustic located always within the Einstein ring very close to the primary lens (stellar caustic) and thus a new definition of a lensing zone is needed. In this paper, we determine this lensing zone. By applying a criterion that detectable planets should produce signals $\geq 5%$, we find that the new lensing zone varies depending on the planet/star mass ratio unlike the fixed range of the classical zone regardless of the mass ratio. The lensing zone is equivalent to the classical zone for a planet with a planet/star mass ratio $q\sim 3\times 10^{-4}$ and it becomes wider for heavier planets. For a Jupiter-mass planet, the lensing zone ranges from 0.25 to 3.9 Einstein radii, corresponding to a physical range between $\sim 0.5$ AU and 7.4 AU for a typical Galactic event. The wider lensing zone of central perturbations for giant planets implies that the microlensing method provides an important tool to detect planetary systems composed of multiple ice-giant planets.
We observed an area of 10 deg^2 of the Large Magellanic Cloud using the Infrared Camera on board AKARI. The observations were carried out using five imaging filters (3, 7, 11, 15, and 24 micron) and a dispersion prism (2 -- 5 micron, $\lambda / \Delta\lambda$ $\sim$ 20) equipped in the IRC. This paper describes the outline of our survey project and presents some initial results using the imaging data that detected over 5.9x10^5 near-infrared and 6.4x10^4 mid-infrared point sources. The 10 $\sigma$ detection limits of our survey are about 16.5, 14.0, 12.3, 10.8, and 9.2 in Vega-magnitude at 3, 7, 11, 15, and 24 micron, respectively. The 11 and 15 micron data, which are unique to AKARI IRC, allow us to construct color-magnitude diagrams that are useful to identify stars with circumstellar dust. We found a new sequence in the color-magnitude diagram, which is attributed to red giants with luminosity fainter than that of the tip of the first red giant branch. We suggest that this sequence is likely to be related to the broad emission feature of aluminium oxide at 11.5 micron. The 11 and 15 micron data also indicate that the ([11] - [15]) micron color of both oxygen-rich and carbon-rich red giants once becomes blue and then turns red again in the course of their evolution, probably due to the change in the flux ratio of the silicate or silicon carbide emission feature at 10 or 11.3 micron to the 15 micron flux.
We re-examine the correlation between the colors and the inclinations of the Classical Kuiper Belt Objects (CKBOs) with an enlarged sample of optical measurements. The correlation is strong (rho=-0.7) and highly significant (>8 sigma) in the range 0-34 deg. Nonetheless, the optical colors are independent of inclination below ~12 deg, showing no evidence for a break at the reported boundary between the so-called dynamically "hot" and "cold" populations near ~5 deg. The commonly accepted parity between the dynamically cold CKBOs and the red CKBOs is observationally unsubstantiated, since the group of red CKBOs extends to higher inclinations. Our data suggest, however, the existence of a different color break. We find that the functional form of the color-inclination relation is most satisfactorily described by a non-linear and stepwise behavior with a color break at ~12 deg. Objects with inclinations >12 deg show bluish colors which are either weakly correlated with inclination or are simply homogeneously blue, whereas objects with inclinations <12 deg are homogeneously red.
In the unification scheme of Seyfert galaxies, a dusty torus blocks the continuum source and broad line region in Seyfert 2 galaxies. However it is not clear whether or not and to what extent the torus affects the narrow line spectra. In this paper, we show that Seyfert 1 and Seyfert 2 galaxies have different distributions on the [OIII]/H$\beta $ vs [NII]/H$\alpha$ diagram (BPT diagram) for narrow lines. Seyfert 2 galaxies display a clear left boundary on the BPT diagram and only 7.3% of them lie on the left. By contrast, Seyfert 1 galaxies do not show such a cutoff and 33.0% of them stand on the left side of the boundary. Among Seyfert 1 galaxies, the distribution varies with the extinction to broad lines. As the extinction increases, the distribution on BPT diagram moves to larger [NII]/H$\alpha$ value. We interpret this as an evidence for the obscuration of inner dense narrow line region by the dusty torus. We also demonstrate that the [OIII] and broad line luminosity correlation depends on the extinction of broad lines in the way that high extinction objects have lower uncorrected [OIII] luminosities, suggesting that [OIII] is partially obscured in these objects. Therefore, using [OIII] as an indicator for the nuclear luminosity will systematically under-estimate the nuclear luminosity of Seyfert 2 galaxies.
Here I discuss possible relations between free precession of neutron stars, Tkachenko waves inside them and glitches. I note that the proposed precession period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is consistent with the period of Tkachenko waves for the spin period 8.4s. Based on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al. 2007), I propose a simple model, in which long period precession is powered by Tkachenko waves generated by a glitch. The period of free precession, determined by a NS oblateness, should be equal to the standing Tkachenko wave period for effective energy transfer from the standing wave to the precession motion. A similar scenario can be applicable also in the case of the PSR B1828-11.
There are many unknowns in the formation of subdwarf B stars. Different
formation channels are considered to be possible and to lead to a variety of
helium-burning subdwarfs. All seismic models to date, however, assume that a
subdwarf B star is a post-helium-flash-core surrounded by a thin inert layer of
hydrogen. We examine an alternative formation channel, in which the subdwarf B
star originates from a massive (>~2 Msun) red giant with a non-degenerate
helium-core. Although these subdwarfs may evolve through the same region of the
log g-Teff diagram as the canonical post-flash subdwarfs, their interior
structure is rather different. We examine how this difference affects their
pulsation modes and whether it can be observed.
Using detailed stellar evolution calculations we construct subdwarf B models
from both formation channels. The iron accumulation in the driving region due
to diffusion, which causes the excitation of the modes, is approximated by a
Gaussian function. The pulsation modes and frequencies are calculated with a
non-adiabatic pulsation code. A detailed comparison of two subdwarf B models
from different channels, but with the same log g and Teff, shows that their
mode excitation is different. The excited frequencies are lower for the
post-flash than for the post-non-degenerate subdwarf B star. This is mainly due
to the differing chemical composition of the stellar envelope. A more general
comparison between two grids of models shows that the excited frequencies of
most post-non-degenerate subdwarfs cannot be well-matched with the frequencies
of post-flash subdwarfs. In the rare event that an acceptable seismic match is
found, additional information, such as mode identification and log g and Teff
determinations, allows us to distinguish between the two formation channels.
Future missions such as Solar Orbiter (SO), InterHelioprobe, or Solar Probe
aim at approaching the Sun closer than ever before, with on board some high
resolution imagers (HRI) having a subsecond cadence and a pixel area of about
$(80km)^2$ at the Sun during perihelion. In order to guarantee their scientific
success, it is necessary to evaluate if the photon counts available at these
resolution and cadence will provide a sufficient signal-to-noise ratio (SNR).
We perform a first step in this direction by analyzing and characterizing the
spatial intermittency of Quiet Sun images thanks to a multifractal analysis.
We identify the parameters that specify the scale-invariance behavior. This
identification allows next to select a family of multifractal processes, namely
the Compound Poisson Cascades, that can synthesize artificial images having
some of the scale-invariance properties observed on the recorded images.
The prevalence of self-similarity in Quiet Sun coronal images makes it
relevant to study the ratio between the SNR present at SoHO/EIT images and in
coarsened images. SoHO/EIT images thus play the role of 'high resolution'
images, whereas the 'low-resolution' coarsened images are rebinned so as to
simulate a smaller angular resolution and/or a larger distance to the Sun. For
a fixed difference in angular resolution and in Spacecraft-Sun distance, we
determine the proportion of pixels having a SNR preserved at high resolution
given a particular increase in effective area. If scale-invariance continues to
prevail at smaller scales, the conclusion reached with SoHO/EIT images can be
transposed to the situation where the resolution is increased from SoHO/EIT to
SO/HRI resolution at perihelion.
IGR J17544-2619 and XTE J1739-302 are considered the prototypical sources of the new class of High Mass X-ray Binaries, the Supergiant Fast X-ray Transients (SFXTs).These sources were observed during bright outbursts on 2008 March 31 and 2008 April 8, respectively, thanks to an on-going monitoring campaign we are performing with Swift, started in October 2007. Simultaneous observations with XRT and BAT allowed us to perform for the first time a broad band spectroscopy of their outbursts. The X-ray emission is well reproduced with absorbed cutoff powerlaws, similar to the typical spectral shape from accreting pulsars. IGR J17544-2619 shows a significantly harder spectrum during the bright flare (where a luminosity in excess of 1E36 erg/s is reached) than during the long-term low level flaring activity (1E33-1E34 erg/s), while XTE J1739-302 displayed the same spectral shape, within the uncertainties, and a higher column density during the flare than in the low level activity. The light curves of these two SFXTs during the bright flare look similar to those observed during recent flares from other two SFXTs, IGRJ11215-5952 and IGRJ16479-4514, reinforcing the connection among the members of this class of X-ray sources.
Disk galaxies with a spheroidal component are known to host Supermassive Black Holes (SMBHs) in their center. Unequal-mass galaxy mergers have been rarely studied despite the fact that they are the large majority of merging events by number and they are associated with the typical targets of gravitational wave experiments such as LISA. We performed N-body/SPH simulations of disk galaxy mergers with mass ratios 1:4 and 1:10 at redshifts z=0 and z=3. They have the highest resolution achieved so far for merging galaxies, and include star formation and supernova feedback. Gas dissipation is found to be necessary for the pairing of SMBHs in these minor mergers. Still, 1:10 mergers with gas allow an efficient pairing only at high z when orbital times are short enough compared to the Hubble time.
Temporal and energy characteristics of the very-high-energy gamma-ray bursts from evaporating primordial black holes have been calculated by assuming that the photospheric and chromospheric effects are negligible. The technique of searching for such bursts on shower arrays is described. We show that the burst time profile and the array dead time should be taken into account to interpret experimental data. Based on data from the Andyrchy array of the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences), we have obtained an upper limit on the number density of evaporating primordial black holes in a local region of space with a scale size of ~10^{-3} pc. Comparison with the results of previous experiments is made.
Aims: Investigate/Study de-charging of solar wind C, N, O, Mg, Si and S ions and assess fluxes of resulting ENA in the heliosphere. Methods: The model treats the heavy ions as test particles convected by (and in a particular case also diffusing through) a hydrodynamically calculated background plasma flow, from 1 AU to the termination shock (TS), to heliosheath (HS) and finally to heliospheric tail (HT). The ions undergo radiative and dielectronic recombinations, charge exchanges, photo- and electron impact ionizations with plasma particles, interstellar neutral atoms (calculated on a Monte-Carlo model) and solar photons. Results: Highly-charged heavy coronal ions flowing with the solar wind undergo successive de-ionizations, mainly in the heliosheath, leading to charge-states much lower than in the supersonic solar wind. If Coulomb scattering is the main ion energy loss mechanism, the end product of these deionizations are fluxes of ENA of ~1 keV/nucleon originating in the upwind heliosheath that for C, Mg, Si and S may constitute sources of pickup ions (PUI) significantly exceeding the interstellar supply. Conclusions: Discussed processes result in (i) distinct difference of ion charge q in the supersonic solar wind (approximately q >= +Z/2, Z = atomic number) compared to that in the HS (approximately 0 <= q <= +Z/2)), (ii) probable concentration of singly ionized atoms (q = +1) in the heliosheath towards the heliopause (HP) and in the HT, (iii) possible significant production of ENA in the HS offering natural explanation for production of PUI, and -- after acceleration at the TS -- anomalous cosmic rays (ACR) of species (like C, Mg, Si, S) unable to enter the heliospheric cavity from outside because of their total ionization in the local interstellar medium.
Recent observations of carbon, sulphur, and titanium isotopes at redshifts z~1 and in the local stellar disc and halo have opened a new window into the study of isotopic abundance patterns and the origin of the chemical elements. Using our Galactic chemical evolution code GEtool, we have examined the evolution of these isotopes within the framework of a Milky Way-like system. We have three aims in this work: first, to test the claim that novae are required, in order to explain the carbon isotope patterns in the Milky Way; second, to test the claim that sulphur isotope patterns at high-redshift require an initial mass function biased towards massive stars; and third, to test extant chemical evolution models against new observations of titanium isotopes that suggest an anti-correlation between trace-to-dominant isotopes with metallicity. Based upon our dual-infall galactic chemical evolution modelling of a Milky Way-like system, and the subsequent comparison with these new and unique datasets, we conclude the following: novae are not required to understand the evolution of 12C/13C in the solar neighbourhood; a massive star-biased initial mass function is consistent with the low ratios of 12C/13C and 32S/34S seen in one high-redshift late-type spiral, but the consequent super-solar metallicity prediction for the interstellar medium in this system seems highly unlikely; and deficient isotopes of titanium are predicted to correlate positively with metallicity, in apparent disagreement with the new datasets; if confirmed, classical chemical evolution models of the Milky Way (and the associated supernovae nucleosynthetic yields) may need a substantial overhaul to be made consistent.
HH 30 is an edge-on disk around a young stellar object. Previous imaging with the Hubble Space Telescope has show morphological variability that is possibly related to the rotation of the star or the disk. We report the results of two terrestrial observing campaigns to monitor the integrated magnitude of HH 30. We use the Lomb-Scargle periodogram to look for periodic modulation with periods between 2 days and almost 90 days in these two data sets and in a third, previously published, data set. We develop a method to deal with short-term correlations in the data. Our results indicate that none of the data sets shows evidence for significant periodic photometric modulation.
We have developed a new two-dimensional hydrostatically-balanced isobaric hydrodynamic model for use in simulation of exoplanetary atmospheres. We apply this model to the infrared photosphere of the hot Jupiter HD 189733 b, for which an excellent 8-micron light curve has been obtained. For reasonable parameter choices, the results of our model are consistent with these observations. In our simulations, strongly turbulent supersonic flow develops, with wind speeds of approximately 5 km/s. This flow geometry causes chaotic variation of the temperature distribution, leading to observable variations in the light curve from one orbit to the next.
Dark energy models with a single scalar field cannot cross the equation of state divide set by a cosmological constant. More general models that allow crossing require additional degrees of freedom to ensure gravitational stability. We show that a parameterized post-Friedmann description of cosmic acceleration provides a simple but accurate description of multiple scalar field crossing models. Moreover the prescription provides a well controlled approximation for a wide range of "smooth" dark energy models. It conserves energy and momentum and is exact in the metric evolution on scales well above and below the transition scale to relative smoothness. It allows standard linear perturbation tools to be used in studies of the dark energy involving cosmological structure out to the horizon scale.
This work deals with defect structures in models described by scalar fields. The investigations focus on generalized models, with the kinetic term modified to allow for a diversity of possibilities. We develop a new framework, in which we search for first-order differential equations which solve the equations of motion. The main issue concerns the introduction of a new function, which works like the superpotential usually considered in the standard situation. We investigate the problem in the general case, with an arbitrary number of fields, and we present several explicit examples in the case of a single real scalar field.
Using standard quantum field theory, we discuss several theoretical aspects of the possible running of the cosmological constant (CC) term in Einstein's equations. The basic motivation for the present work is to emphasize that this possibility should also be taken into account when considering dynamical models for the dark energy (DE), which are nowadays mainly focused on identifying the DE with the energy density associated to one or more ad hoc scalar fields. At the same time, we address some recent criticisms that have been published (or privately communicated to us) attempting to cast doubts on the fundamental possibility of such running. In this work, we argue that while there is no comprehensive proof of the CC running, there is no rigorous proof of the non-running either. In particular, some purported "non-running theorem" recently adduced in the literature is, in our opinion, completely insubstantial and formally incorrect. The way to the CC running is, therefore, still open and we take here the opportunity to present a pedagogical review of the present state of the art in this field, including a a brief historical account.
We review the present status of three-flavour neutrino oscillations, taking into account the latest available neutrino oscillation data presented at the Neutrino 2008 Conference. This includes the data released this summer by the MINOS collaboration, the data of the neutral current counter phase of the SNO solar neutrino experiment, as well as the latest KamLAND and Borexino data. We give the updated determinations of the leading 'solar' and 'atmospheric' oscillation parameters. We find from global data that the mixing angle $\theta_{13}$ is consistent with zero within $0.9\sigma$ and we derive an upper bound of $\sin^2\theta_{13} < 0.035 (0.056)$ at 90% CL (3$\sigma$).
In arXiv:0711.1597 and arXiv:0712.3938, it was shown that the effective cosmological constant on each of the two orbifold branes can be easily lowered to its current observational value, by using the large extra dimensions in the framework of both M-Theory and string theory on $S^{1}/Z_{2}$. In these models the radion is stable. In this paper, we address two other questions in the framework of string theory on $S^{1}/Z_{2}$: The hierarchy problem, and the 4-dimensional Newtonian potential and its high order Yukawa corrections. We show explicitly how one can connect the TeV scale of string theory to the 4-dimensional Planck scale, by combining the large extra dimension and warped factor mechanisms. We also show that gravity is localized in the TeV brane, and the spectrum of the Kaluza-Klein towers is discrete with a mass gap in the order of TeV. The high order Yukawa corrections are exponentially supressed.
We present a powerful method for exploring various processes in the presence of strong external fields and matter. The method implies utilization of the exact solutions of the modified Dirac equations which contain the effective potentials accounting for the influences of external electromagnetic fields and matter on particles. We briefly discuss the basics of the method and its applications to studies of different processes, including a recently proposed new mechanism of radiation by neutrinos and electrons moving in matter (the spin light of the neutrino and electron). In view of a recent "prediction" of an order-of-magnitude change of the muon lifetime under the influence of an electromagnetic field of a CO$_2$ laser, we revisit the issue and show that such claims are nonrealistic.
Links to: arXiv, form interface, find, astro-ph, recent, 0808, contact, help (Access key information)
In April 2009, NASA will launch the Kepler satellite -- a mission designed to discover habitable Earth-like planets around distant Sun-like stars. The method that Kepler will use to detect distant worlds will only reveal the size of the planet relative to the size of the host star, so part of the mission is devoted to characterizing other suns using asteroseismology. In this proceedings, I give a broad overview of the Kepler mission and the data that it will produce, with a special emphasis on how it could improve our understanding of solar and stellar dynamos. I conclude with an update on the development of a stellar modeling pipeline for interpreting asteroseismic observations.
It is well known that flavor oscillations in the early universe roughly equalize possible primordial neutrino-antineutrino asymmetries, so the restrictive BBN bound on the nu_e anti-nu_e asymmetry applies to all flavors. However, oscillations driven by Delta m^2_sol begin only when neutrino interactions freeze out (temperature of a few MeV) and equilibrated densities and spectra are not guaranteed. Including for the first time collisions and pair processes in the kinetic equations for mixed neutrinos we find approximate equilibrium only if the mixing angle theta_13 is not too small. Otherwise an excess radiation density can survive that may show up in future cosmological precision data.
We present a coherent theoretical framework for computing gravitational lensing effects and redshift-space distortions in an inhomogeneous universe and investigate their impacts on galaxy two-point statistics. Adopting the linearized FRW metric, we derive the gravitational lensing and the generalized Sachs-Wolfe effects that include the weak lensing distortion, magnification, and time delay effects, and the redshift-space distortion, Sachs-Wolfe, and integrated Sachs-Wolfe effects, respectively. Based on this framework, we first compute their effects on observed source fluctuations, separating them as two physically distinct origins: the volume effect that involves the change of volume and is always present in galaxy two-point statistics, and the source effect that depends on the intrinsic properties of source populations. Then we identify several terms that are either ignored or missed in the standard method, and we compute the observed galaxy two-point statistics, an ensemble average of all the combinations of the intrinsic source fluctuations and the additional contributions from the gravitational lensing and the generalized Sachs-Wolfe effects. This unified treatment of galaxy two-point statistics clarifies the relation of the gravitational lensing and the generalized Sachs-Wolfe effects to the metric perturbations and the underlying matter fluctuations. For near future dark energy surveys, we compute additional contributions to the observed galaxy two-point statistics and analyze their impact on the anisotropic structure. Thorough theoretical modeling of galaxy two-point statistics would be not only necessary to analyze precision measurements from upcoming dark energy surveys, but also provide further discriminatory power in understanding the underlying physical mechanisms.
We have studied the uJy radio properties of K-selected galaxies detected in the Ultra-Deep Survey portion of UKIDSS using 610- and 1,400-MHz images from the VLA and GMRT. These deep radio mosaics, combined with the largest and deepest K image currently available, allow high-S/N detections of many K-selected sub-populations, including sBzK and pBzK star-forming and passive galaxies. We find a strong correlation between the radio and K fluxes and a linear relationship between SFR and K luminosity. We find no evidence, from either radio spectral indices or a comparison with submm-derived SFRs, that the full sample is strongly contaminated by AGN. The sBzK and pBzK galaxies have similar levels of radio flux, SFR and specific SFR (SSFR) at z < 1.4, suggesting there is strong contamination of the pBzK sample by star-forming galaxies. At z > 1.4, pBzK galaxies become difficult to detect in the radio stack, though the implied SFRs are still much higher than expected for passively evolving galaxies. Their radio emission may come from low-luminosity AGN. EROs straddle the passive and star-forming regions of the BzK diagram and also straddle the two groups in terms of their radio properties. K-bright ERO samples are dominated by passive galaxies and faint ERO samples contain more star-forming galaxies. The star-formation history (SFH) from stacking all K sources in the UDS agrees well with that derived for other wavebands and other radio surveys, at least out to z ~ 2. The radio-derived SFH then appears to fall more steeply than that measured at other wavelengths. The SSFR for K-selected sources rises strongly with redshift at all stellar masses, and shows a weak dependence on stellar mass. High- and low-mass galaxies show a similar decline in SSFR since z ~ 2 (abridged).
Numerical simulation of magnetohydrodynamic (MHD) turbulence makes it possible to study accretion dynamics in detail. However, special effort is required to connect inflow dynamics (dependent largely on angular momentum transport) to radiation (dependent largely on thermodynamics and photon diffusion). To this end we extend the flux-conservative, general relativistic MHD code HARM from axisymmetry to full 3D. The use of an energy conserving algorithm allows the energy dissipated in the course of relativistic accretion to be captured as heat. The inclusion of a simple optically thin cooling function permits explicit control of the simulated disk's geometric thickness as well as a direct calculation of both the amplitude and location of the radiative cooling associated with the accretion stresses. Fully relativistic ray-tracing is used to compute the luminosity received by distant observers. For a disk with aspect ratio H/r ~ 0.1 accreting onto a black hole with spin parameter a/M = 0.9, we find that there is significant dissipation beyond that predicted by the classical Novikov-Thorne model. However, much of it occurs deep in the potential, where photon capture and gravitational redshifting can strongly limit the net photon energy escaping to infinity. In addition, with these parameters and this radiation model, significant thermal and magnetic energy remains with the gas and is accreted by the black hole. In our model, the net luminosi ty reaching infinity is 6% greater than the Novikov-Thorne prediction. If the accreted thermal energy were wholly radiated, the total luminosity of the accretion flow would be ~20% greater than the Novikov-Thorne value.
We report on Suzaku observations of four unidentified sources from the INTEGRAL and Swift BAT Galactic plane surveys. All the sources have a large neutral hydrogen column density and are likely members of an emerging class of heavily absorbed high mass X-ray binary (HMXB) first identified in INTEGRAL observations. Two of the sources in our sample are approximately constant flux sources, one source shows periodic variation and one source exhibited a short, bright X-ray outburst. The periodicity is transient, suggesting it is produced by a neutron star in an elliptical orbit around a stellar wind source. We analyze the flaring source in several segments to look for spectral variation and discuss the implications of the findings for the nature of the source. We conclude that all four sources in our sample can be identified with the emerging class of highly absorbed HMXBs, that one is a newly identified transient X-ray pulsar and that at least one is a newly identified supergiant fast X-ray transient (SFXT).
We show that the mass-segregation solution for the steady state distribution of stars around a massive black hole (MBH) has two branches: the known weak segregation solution (Bahcall & Wolf 1977), and a newly discovered strong segregation solution, presented here. The nature of the solution depends on the heavy-to-light stellar mass ratio M_H/M_L and on the unbound population number ratio N_H/N_L, through the relaxational coupling parameter \Delta=4 N_H M_H^2 /[N_L M_L^2(3+M_H/M_L)]. When the heavy stars are relatively common (\Delta>>1), they scatter frequently on each other. This efficient self-coupling leads to weak mass segregation, where the stars form n \propto r^{-\alpha_M} mass-dependent cusps near the MBH, with indices \alpha_H=7/4 for the heavy stars and 3/2<\alpha_L<7/4 for the light stars (i.e. \max(\alpha_H-\alpha_L)~=1/4). However, when the heavy stars are relatively rare (\Delta<<1), they scatter mostly on light stars, sink to the center by dynamical friction and settle into a much steeper cusp with 2~<\alpha_H<11/4, while the light stars form a 3/2<\alpha_L<7/4 cusp, resulting in strong segregation (i.e. \max(\alpha_H-\alpha_L)~=1). We show that the present-day mass function of evolved stellar populations (coeval or continuously star forming) with a universal initial mass function, separate into two distinct mass scales, ~1 Mo of main sequence and compact dwarfs, and ~10 Mo of stellar black holes (SBHs), and have \Delta<0.1. We conclude that it is likely that many relaxed galactic nuclei are strongly segregated. We review indications of strong segregation in observations of the Galactic Center and in results of numeric simulations, and briefly list some possible implications of a very high central concentration of SBHs around a MBH.
Using a large sample of optical spectra of late-type dwarfs, we identify a subset of late-M through L field dwarfs that, because of the presence of low-gravity features in their spectra, are believed to be unusually young. From a combined sample of 303 field L dwarfs, we find observationally that 7.6+/-1.6% are younger than 100 Myr. This percentage is in agreement with theoretical predictions once observing biases are taken into account. We find that these young L dwarfs tend to fall in the southern hemisphere (Dec < 0 deg) and may be previously unrecognized, low-mass members of nearby, young associations like Tucana-Horologium, TW Hydrae, beta Pictoris, and AB Doradus. We use a homogeneously observed sample of roughly one hundred and fifty 6300-10000 Angstrom spectra of L and T dwarfs taken with the Low-Resolution Imaging Spectrometer at the W. M. Keck Observatory to examine the strength of the 6708-A Li I line as a function of spectral type and further corroborate the trends noted by Kirkpatrick et al. (2000). We use our low-gravity spectra to investigate the strength of the Li I line as a function of age. The data weakly suggest that for early- to mid-L dwarfs the line strength reaches a maximum for a few 100 Myr, whereas for much older (few Gyr) and much younger (<100 Myr) L dwarfs the line is weaker or undetectable. We show that a weakening of lithium at lower gravities is predicted by model atmosphere calculations, an effect partially corroborated by existing observational data. Larger samples containing L dwarfs of well determined ages are needed to further test this empirically. If verified, this result would reinforce the caveat first cited in Kirkpatrick et al. (2006) that the lithium test should be used with caution when attempting to confirm the substellar nature of the youngest brown dwarfs.
Recently, Jenkins, et al. have reported the detection of correlations between fluctuations in nuclear decay rates and Earth-Sun distance, which suggest that nuclear decay rates can be affected by solar activity. In this paper, we report the detection of a significant decrease in the decay of 54Mn during the solar flare of 13 December 2006, whose x-rays were first recorded at 02:37 UT (21:37 EST on 12 December). Our detector was a 1 uCi sample of 54Mn, whose decay rate exhibited a dip coincident in time with spikes in both the x-ray and proton fluxes recorded by the GOES-10 and 11 satellites. A secondary peak in the x-ray and proton fluxes on 17 December at 12:40 EST was also accompanied by a coincident dip in the 54Mn decay rate. These observations support the claim by Jenkins, et al. that nuclear decay rates vary with Earth-Sun distance.
The W40 complex is a nearby site of recent massive star formation composed of a dense molecular cloud adjacent to an HII region that contains an embedded OB star cluster. The HII region is beginning to blister out and break free from its envelope of molecular gas, but our line of sight to the central stars is largely obscured by intervening dust. Several bright OB stars in W40 - visible at optical, infrared, or cm wavelengths - are providing the ionizing flux that heats the HII region. The known stellar component of W40 is dominated by a small number of partly or fully embedded OB stars which have been studied at various wavelengths, but the lower mass stellar population remains largely unexamined. Despite its modest optical appearance, at 600pc W40 is one of the nearest massive star forming regions, and with a UV flux of about 1/10th of the Orion Nebula Cluster, this neglected region deserves detailed investigation.
The detection and quantification of narrow emission lines in X-ray spectra is a challenging statistical task. The Poisson nature of the photon counts leads to local random fluctuations in the observed spectrum that often results in excess emission in a narrow band of energy resembling a weak narrow line. From a formal statistical perspective, this leads to a (sometimes highly) multimodal likelihood. Many standard statistical procedures are based on (asymptotic) Gaussian approximations to the likelihood and simply cannot be used in such settings. Bayesian methods offer a more direct paradigm for accounting for such complicated likelihood functions but even here multimodal likelihoods pose significant computational challenges. The new Markov chain Monte Carlo (MCMC) methods developed in 2008 by van Dyk and Park, however, are able to fully explore the complex posterior distribution of the location of a narrow line, and thus provide valid statistical inference. Even with these computational tools, standard statistical quantities such as means and standard deviations cannot adequately summarize inference and standard testing procedures cannot be used to test for emission lines. In this paper, we use new efficient MCMC algorithms to fit the location of narrow emission lines, we develop new statistical strategies for summarizing highly multimodal distributions and quantifying valid statistical inference, and we extend the method of posterior predictive p-values proposed by Protassov et al. (2002) to test for the presence of narrow emission lines in X-ray spectra. We illustrate and validate our methods using simulation studies and apply them to the Chandra observations of the high redshift quasar PG1634+706.
We extend a method for modeling synchrotron and synchrotron self-Compton radiations in blazar jets to include external Compton processes. The basic model assumption is that the blazar radio through soft X-ray flux is nonthermal synchrotron radiation emitted by isotropically-distributed electrons in the randomly directed magnetic field of outflowing relativistic blazar jet plasma. Thus the electron distribution is given by the synchrotron spectrum, depending only on the Doppler factor and mean magnetic field, given that the comoving emission region size scale. Generalizing the approach of Georganopoulos, Kirk, and Mastichiadis (2001) to arbitrary anisotropic target radiation fields, we use the electron spectrum implied by the synchrotron component to derive accurate Compton-scattered $\gamma$-ray spectra throughout the Thomson and Klein-Nishina regimes for external Compton scattering (ECS) processes. We derive and calculate accurate $\gamma$-ray spectra produced by relativistic electrons that Compton-scatter (i) a point source of radiation located radially behind the jet, (ii) photons from a thermal Shakura-Sunyaev accretion disk and (iii) target photons from the central source scattered by a spherically-symmetric shell of broad line region (BLR) gas. Calculations of broadband spectral energy distributions from the radio through $\gamma$-ray regimes are presented. Application of this baseline flat spectrum radio/$\gamma$-ray quasar model is considered in view of data from GLAST, ground-based $\gamma$-ray telescopes, and contemporaneous multi-wavelength campaigns.
Our knowledge of the Universe remains discovery-led: in the absence of adequate physics-based theory, interpretation of new results requires a scientific methodology. Commonly, scientific progress in astrophysics is motivated by the empirical success of the "Copernican Principle", that the simplest and most objective analysis of observation leads to progress. A complementary approach tests the prediction of models against observation. In practise, astrophysics has few real theories, and has little control over what we can observe. Compromise is unavoidable. Advances in understanding complex non-linear situations, such as galaxy formation, require that models attempt to isolate key physical properties, rather than trying to reproduce complexity. A specific example is discussed, where substantial progress in fundamental physics could be made with an ambitious approach to modelling: simulating the spectrum of perturbations on small scales.
We present sensitive Very Large Array observations with an angular resolution of a few arcseconds of the $J= 1 - 0$ line of SiO in the $v$=1 and 2 vibrationally excited states toward a sample of 60 Galactic regions in which stars of high or intermediate mass are currently forming and/or have recently formed. We report the detection of SiO maser emission in \textit{both} vibrationally excited transitions toward only three very luminous regions: Orion-KL, W51N and Sgr B2(M). Toward all three, SiO maser emission had previously been reported, in Orion-KL in both lines, in W51N only in the $v=2$ line and in Sgr B2(M) only in the $v=1$ line. Our work confirms that SiO maser emission in star-forming regions is a rare phenomenon, indeed, that requires special, probably extreme, physical and chemical conditions not commonly found. In addition to this SiO maser survey, we also present images of the simultaneously observed 7 mm continuum emission from a subset of our sample of star-forming regions where such emission was detected. This is in most cases likely to be free-free emission from compact- and ultracompact-HII regions.
The solar corona is a typical example of a plasma with strongly anisotropic transport processes. The main dissipative mechanisms in the solar corona acting on slow magnetoacoustic waves are the anisotropic thermal conductivity and viscosity. Ballai et al. [Phys. Plasmas 5, 252 (1998)] developed the nonlinear theory of driven slow resonant waves in such a regime. In the present paper the nonlinear behaviour of driven magnetohydrodynamic waves in the slow dissipative layer in plasmas with strongly anisotropic viscosity and thermal conductivity is expanded by considering dispersive effects due to Hall currents. The nonlinear governing equation describing the dynamics of nonlinear resonant slow waves is supplemented by a term which describes nonlinear dispersion and is of the same order of magnitude as nonlinearity and dissipation. The connection formulae are found to be similar to their non-dispersive counterparts.
Electrostatic behavior of a collisionless plasma in the foot region of high Mach number perpendicular shocks is investigated through the two-dimensional linear analysis and electrostatic particle-in-cell (PIC) simulation. The simulations are double periodic and taken as a proxy for the situation in the foot. The linear analysis for relatively cold unmagnetized plasmas with a reflected proton beam shows that obliquely propagating Buneman instability is strongly excited. We also found that when the electron temperature is much higher than the proton temperature, the most unstable mode is the highly obliquely propagating ion two-stream instability excited through the resonance between ion plasma oscillations of the background protons and of the beam protons, rather than the ion acoustic instability that is dominant for parallel propagation. To investigate nonlinear behavior of the ion two-stream instability, we have made PIC simulations for the shock foot region in which the initial state satisfies the Buneman instability condition. In the first phase, electrostatic waves grow two-dimensionally by the Buneman instability to heat electrons. In the second phase, highly oblique ion two-stream instability grows to heat mainly ions. This result is in contrast to previous studies based on one-dimensional simulations, for which ion acoustic instability further heats electrons. The present result implies that overheating problem of electrons for shocks in supernova remnants is resolved by considering ion two-stream instability propagating highly obliquely to the shock normal and that multi-dimensional analysis is crucial to understand the particle heating and acceleration processes in shocks.
We present sensitive, high angular resolution ($0\rlap.{''}05$) VLA continuum observations made at 7 mm of the core of the HH 111/121 quadrupolar outflow. We estimate that at this wavelength the continuum emission is dominated by dust, although a significant free-free contribution ($\sim$30%) is still present. The observed structure is formed by two overlapping, elongated sources approximately perpendicular to each other as viewed from Earth. We interpret this structure as either tracing two circumstellar disks that exist around each of the protostars of the close binary source at the core of this quadrupolar outflow or a disk and a jet perpendicular to it. Both interpretations have advantages and disadvantages, and future high angular resolution spectroscopic millimeter observations are required to favor one of them in a more conclusive way.
The dark clouds in the constellation of Chamaeleon have distances of 160-180 pc from the Sun and a total mass of ~5000 M_sun. The three main clouds, Cha I, II, and III, have angular sizes of a few square degrees and maximum extinctions of A_V=5-10. Most of the star formation in these clouds is occurring in Cha I, with the remainder in Cha II. The current census of Cha I contains 237 known members, 33 of which have spectral types indicative of brown dwarfs (>M6). Approximately 50 members of Cha II have been identified, including a few brown dwarfs. When interpreted with the evolutionary models of Chabrier and Baraffe, the H-R diagram for Cha I exhibits a median age of ~2 Myr, making it coeval with IC 348 and slightly older than Taurus (~1 Myr). The IMF of Cha I reaches a maximum at a mass of 0.1-0.15 M_sun, and thus closely resembles the IMFs in IC 348 and the Orion Nebula Cluster. The disk fraction in Cha I is roughly constant at ~50% from 0.01 to 0.3 M_sun and increases to ~65% at higher masses. In comparison, IC 348 has a similar disk fraction at low masses but a much lower disk fraction at M>1 M_sun, indicating that solar-type stars have longer disk lifetimes in Cha I.
Various studies have established that the dynamical M/L ratios of ultra-compact dwarf galaxies (UCDs) tend to be at the limit or beyond the range explicable by standard stellar populations with canonical IMF. We discuss how IMF variations may account for these high M/L ratios and how observational approaches may in the future allow to discriminate between those possibilities. We also briefly discuss the possibility of dark matter in UCDs.
The precise localization of short/hard (Type I) gamma-ray bursts (GRBs) in recent years has answered many questions but raised even more. I present some results of a systematic study of the optical afterglows of long/soft (Type II) and short/hard (Type I) GRBs, focusing on the optical luminosity as another puzzle piece in the classification of GRBs.
We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.
We present a spectral line survey of the C-rich envelope CIT 6 in the 2mm and 1.3mm bands carried out with the Arizona Radio Observatory (ARO) 12m telescope and the Heinrich Hertz Submillimeter Telescope (SMT). The observations cover the frequency ranges of 131--160 GHz, 219--244 GHz, and 252--268 GHz with typical sensitivity limit of T_R<10 mK. A total of 74 individual emission features are detected, of which 69 are identified to arise from 21 molecular species and isotopologues, with 5 faint lines remaining unidentified. Two new molecules (C4H and CH3CN) and seven new isotopologues (C17O, 29SiC2, 29SiO, 30SiO, 13CS, C33S, and CS) are detected in this object for the first time. The column densities, excitation temperatures, and fractional abundances of the detected molecules are determined using rotation diagram analysis. Comparison of the spectra of CIT 6 to that of IRC+10216 suggests that the spectral properties of CIT 6 are generally consistent with those of IRC+10216. For most of the molecular species, the intensity ratios of the lines detected in the two objects are in good agreement with each other. Nevertheless, there is evidence suggesting enhanced emission from CN and HC3N and depleted emission from HCN, SiS, and C4H in CIT 6. Based on their far-IR spectra, we find that CIT 6 probably has a lower dust-to-molecular gas ratio than IRC+10216. To investigate the chemical evolution of evolved stars, we compare the molecular abundances in the AGB envelopes CIT 6 and IRC+10216 and those in the bright proto-planetary nebula CRL 618. The implication on the circumstellar chemistry is discussed.
Previous solar observations have shown that coronal loops near 1 MK are difficult to reconcile with simple heating models. These loops have lifetimes that are long relative to a radiative cooling time, suggesting quasi-steady heating. The electron densities in these loops, however, are too high to be consistent with thermodynamic equilibrium. Models proposed to explain these properties generally rely on the existence of smaller scale filaments within the loop that are in various stages of heating and cooling. Such a framework implies that there should be a distribution of temperatures within a coronal loop. In this paper we analyze new observations from the EUV Imaging Spectrometer (EIS) on \textit{Hinode}. EIS is capable of observing active regions over a wide range of temperatures (\ion{Fe}{8}--\ion{Fe}{17}) at relatively high spatial resolution (1\arcsec). We find that most isolated coronal loops that are bright in \ion{Fe}{12} generally have very narrow temperature distributions ($\sigma_T \lesssim 3\times10^5$ K), but are not isothermal. We also derive volumetric filling factors in these loops of approximately 10%. Both results lend support to the filament models.
Self-gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and frag-ments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC on 0.03 Mpc galaxy accretion disks. Star deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates produce white dwarfs that evaporate surrounding gas planets by spin-radiation to form planetary nebulae before Supernova Ia events, dimming some events to give systematic distance errors misinterpreted as the dark energy hypothesis and overestimates of the universe age. Failures of standard LCDM cosmological models reflect not only obsolete Jeans 1902 fluid mechanical assumptions, but also failures of standard turbulence models that claim the cascade of turbulent kinetic energy is from large scales to small. Because turbulence is always driven at all scales by inertial-vortex forces the turbulence cascade is always from small scales to large.
We study the impact of cosmological parameters' uncertainties on estimates of the primordial NG parameter f_NL in local and equilateral models of non-Gaussianity. We show that propagating these errors increases the f_NL relative uncertainty by 16% for WMAP and 5 % for Planck in the local case, whereas for equilateral configurations the correction term are 14% and 4%, respectively. If we assume for local f_NL a central value of order 60, according to recent WMAP 5-years estimates, we obtain for Planck a final correction \Delta f_NL = 3. Although not dramatic, this correction is at the level of the expected estimator uncertainty for Planck, and should then be taken into account when quoting the significance of an eventual future detection. In current estimates of f_NL the cosmological parameters are held fixed at their best-fit values. We finally note that the impact of uncertainties in the cosmological parameters on the final f_NL error bar would become totally negligible if the parameters were allowed to vary in the analysis and then marginalized over.
The exchange of meteorites among the terrestrial planets of our Solar System is a well established phenomenon that has triggered discussion of lithopanspermia within the Solar System. Similarly, could solid material be transferred across planetary systems? To address this question, we explore the dynamics of the transfer of small bodies between planetary systems. In particular, we examine a dynamical process that yields very low escape velocities using nearly parabolic trajectories, and the reverse process that allows for low velocity capture. These processes are chaotic and provide a mechanism for minimal energy transfer that yield an increased transfer probability compared to that of previously studied mechanisms that have invoked hyperbolic trajectories. We estimate the transfer probability in a stellar cluster as a function of stellar mass and cluster size. We find that significant amounts of solid material could potentially have been transferred from the early Solar System to our nearest neighbor stars. While this low velocity mechanism improves the odds for interstellar lithopanspermia, the exchange of biologically active materials across stellar systems depends greatly upon the highly uncertain viability of organisms over the timescales for transfer, typically millions of years.
One Population III dud supernova produces enough oxygen to enable ten million solar masses of primordial gas to bind into M dwarfs. This is possible because radiation from other Population III stars implodes the mixture of oxygen ejecta and primordial gas into a globular cluster. Model atmosphere calculations for oxygen dwarfs show that water blocks most of the infrared flux. The flux is redistributed into the visible to produce an unfamiliar, distinctive energy distribution. One million dud supernovae in a large protogalaxy are sufficient to produce the "dark matter" halo.
Unexplained periodic fluctuations in the decay rates of Si-32 and Ra-226 have been reported by groups at Brookhaven National Laboratory (Si-32), and at the Physikalisch-Technische-Bundesandstalt in Germany (Ra-226). We show from an analysis of the raw data in these experiments that the observed fluctuations are strongly correlated in time, not only with each other, but also with the distance between the Earth and the Sun. Some implications of these results are also discussed, including the suggestion that discrepancies in published half-life determinations for these and other nuclides may be attributable in part to differences in solar activity during the course of the various experiments, or to seasonal variations in fundamental constants.
We present images and initial results from our extensive Spitzer Space Telescope imaging survey of the W5 H II region with the Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS). We detect dense clusters of stars, centered on the O stars: HD 18326, BD +60 586, HD 17505 and HD 17520. At 24 microns substantial extended emission is visible, presumably from heated dust grains that survive in the strongly ionizing environment of the H {\sc ii} region. With photometry of more than 18000 point sources, we analyze the clustering properties of objects classified as young stars by their IR spectral energy distributions (a total of 2064 sources) across the region using a minimal-spanning-tree algorithm. We find ~40--70% of infrared excess sources belong to clusters with >10 members. We find that within the evacuated cavities of the H II regions that make up W5, the ratio of Class II to Class I sources is ~7 times higher than for objects coincident with molecular gas as traced by 12CO emission and near-IR extinction maps. We attribute this contrast to an age difference between the two locations, and postulate that at least two distinct generations of star formation are visible across W5. Our preliminary analysis shows that triggering is a plausible mechanism to explain the multiple generations of star formation in W5, and merits further investigation.
Using archival imaging from the Wide Field Planetary Camera 2 aboard the Hubble Space Telescope, we investigate the stellar populations of the Local Group dwarf spheroidal Andromeda V - a companion satellite galaxy of M31. The color-magnitude diagram (CMD) extends from above the first ascent red giant branch (RGB) tip to approximately one magnitude below the horizontal branch (HB). The steep well-defined RGB is indicative of a metal-poor system while the HB is populated predominantly redward of the RR Lyrae instability strip. Utilizing Galactic globular cluster fiducial sequences as a reference, we calculate a mean metallicity of [Fe/H] = -2.20 +/- 0.15 and a distance of (m-M)0 = 24.57 +/- 0.04 after adopting a reddening of E(B-V) = 0.16. This metal abundance places And V squarely in the absolute magnitude - metallicity diagram for dwarf spheroidal galaxies. In addition, if we attribute the entire error-corrected color spread of the RGB stars to an abundance spread, we estimate a range of ~0.5 dex in the metallicities of And V stars. Our analysis of the variable star population of And V reveals the presence of 28 potential variables. Of these, at least 10 are almost certainly RR Lyrae stars based on their time sequence photometry.
Tidal tails of star clusters are not homogeneous but show well defined clumps in observations as well as in numerical simulations. Recently an epicyclic theory for the formation of these clumps was presented. A quantitative analysis was still missing. We present a quantitative derivation of the angular momentum and energy distribution of escaping stars from a star cluster in the tidal field of the Milky Way and derive the connection to the position and width of the clumps. For the numerical realization we use star-by-star $N$-body simulations. We find a very good agreement of theory and models. We show that the radial offset of the tidal arms scales with the tidal radius, which is a function of cluster mass and the rotation curve at the cluster orbit. The mean radial offset is 2.77 times the tidal radius in the outer disc. Near the Galactic centre the circumstances are more complicated, but to lowest order the theory still applies. We have also measured the Jacobi energy distribution of bound stars and showed that there is a large fraction of stars (about 35%) above the critical Jacobi energy at all times, which can potentially leave the cluster. This is a hint that the mass loss is dominated by a self-regulating process of increasing Jacobi energy due to the weakening of the potential well of the star cluster, which is induced by the mass loss itself.
Results of a 3D MHD simulation of a sunspot with a photospheric size of about 20 Mm are presented. The simulation covers a time span of about 12h and has been carried out with the MURaM code, which includes a realistic equation of state with partial ionization and radiative transfer along many ray directions. The largely relaxed state of the sunspot shows a division in a central dark umbral region with bright dots and a penumbra showing bright filaments of about 3 to 4 Mm length with central dark lanes. By a process similar to the formation of umbral dots, the penumbral filaments result from magneto-convection in the form of upflow plumes, which become elongated by the presence of an inclined magnetic field. The simulated penumbral structure corresponds well to the observationally inferred interlocking-comb structure of the magnetic field with Evershed outflows along dark-laned filaments with nearly horizontal magnetic field and roll-type perpendicular motion, which are embedded in a background of stronger and less inclined field.
Five planets are known to orbit the star 55 Cancri. The recently-discovered planet f at 0.78 AU (Fischer et al. 2008) is located at the inner edge of a previously-identified stable zone that separates the three close-in planets from planet d at 5.9 AU. Here we map the stability of the orbital space between planets f and d using a suite of n-body integrations that include an additional, yet-to-be-discovered planet g with a radial velocity amplitude of 5 m/s (planet mass = 0.5-1.2 Saturn masses). We find a large stable zone extending from 0.9 to 3.8 AU at eccentricities below 0.4. For each system we quantify the probability of detecting planets b-f on their current orbits given perturbations from hypothetical planet g, in order to further constrain the mass and orbit of an additional planet. We find that large perturbations are associated with specific mean motion resonances (MMRs) with planets f and d. We show that two MMRs, 3f:1g (the 1:3 MMR between planets g and f) and 4g:1d cannot contain a planet g. The 2f:1g MMR is unlikely to contain a planet more massive than about 20 Earth masses. The 3g:1d and 5g:2d MMRs could contain a resonant planet but the resonant location is strongly confined. The 3f:2g, 2g:1d and 3g:2d MMRs exert a stabilizing influence and could contain a resonant planet. Furthermore, we show that the stable zone may in fact contain 2-3 additional planets, if they are ~50 Earth masses each. Finally, we show that any planets exterior to planet d must reside beyond 10 AU.
We determine the most likely dark-matter fraction in the elliptical galaxy quadruply lensing the quasar PG1115+080 based on analyses of the X-ray fluxes of the individual images in 2000 and 2008. Between the two epochs, the A2 image of PG1115+080 brightened relative to the other images by a factor of six in X-rays. We argue that the A2 image had been highly demagnified in 2000 by stellar microlensing in the intervening galaxy and has recently crossed a caustic, thereby creating a new pair of micro-images and brightening in the process. Over the same period, the A2 image has brightened by a factor of only 1.2 in the optical. The most likely ratio of smooth material (dark matter) to clumpy material (stars) in the lensing galaxy to explain the observations is ~90% of the matter in a smooth dark-matter component and ~10% in stars.
In this paper, we review some of the properties of dense molecular cloud cores. The results presented here rely on three-dimensional numerical simulations of isothermal, magnetized, turbulent, and self-gravitating molecular clouds (MCs) in which dense core form as a consequence of the gravo-turbulent fragmentation of the clouds. In particular we discuss issues related to the mass spectrum of the cores, their lifetimes and their virial balance.
We present a possible scenario for the ejection of a superluminal component in the jet of the Broad Line Radio Galaxy 3C111 in early 1996. VLBI observations at 15 GHz discovered the presence of two jet features on scales smaller than one parsec. The first component evolves downstream, whereas the second one fades out after 1 parsec. We propose the injection of a perturbation of dense material followed by a decrease in the injection rate of material in the jet as a plausible explanation. This scenario is supported by 1D relativistic hydrodynamics and emission simulations. The perturbation is modeled as an increase in the jet density, without modifying the original Lorentz factor in the initial conditions. We show that an increase of the Lorentz factor in the material of the perturbation fails to reproduce the observed evolution of this flare. We are able to estimate the lifetime of the ejection event in 3C111 to be 36\pm7 days.
We report on the discovery of a Cepheid population in the Sculptor Group spiral galaxy NGC 247 for the first time. On the basis of wide-field images collected in photometric surveys in V and I bands which were conducted with three different telescopes and cameras, 23 Cepheid variables were discovered with periods ranging from 17 to 131 days. We have constructed the period-luminosity relations from these data and obtain distance moduli to NGC 247 of 28.20 $\pm$ 0.05 mag (internal error) in V, 28.04 $\pm$ 0.06 mag in I, and 27.80 $\pm$ 0.09 mag in the reddening-independent Wesenheit index. From our optical data we have determined the total mean reddening of the Cepheids in NGC 247 as E(B-V)=0.13 mag, which brings the true distance modulus determinations from the V and I bands into excellent agreement with the distance determination in the Wesenheit index. The best estimate for the true distance modulus of NGC 247 from our optical Cepheid photometry is 27.80 $\pm$0.09 (internal error) $\pm$ 0.09 mag (systematic error) which is in excellent agreement with other recent distance determinations for NGC 247 from the Tip of the Red Giant branch method, and from the Tully-Fisher relation. The distance for NGC 247 places this galaxy at twice the distance of two other Sculptor Group galaxies, NGC 300 and NGC 55, yielding supporting evidence for the filament-like structure of this group of galaxies. The reported distance value is tied to an assumed LMC distance modulus of 18.50 mag.
A novel method of using hard X-rays as a diagnostic for chromospheric density and magnetic structures is developed to infer sub-arcsecond vertical variation of magnetic flux tube size and neutral gas density.Using Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data and the newly developed X-ray visibilities forward fitting technique we find the FWHM and centroid positions of hard X-ray sources with sub-arcsecond resolution ($\sim 0.2"$) for a solar limb flare. We show that the height variations of the chromospheric density and the magnetic flux densities can be found with unprecedented vertical resolution of $\sim$ 150 km by mapping 18-250 keV X-ray emission of energetic electrons propagating in the loop at chromospheric heights of 400-1500 km. Our observations suggest that the density of the neutral gas is in good agreement with hydrostatic models with a scale height of around $140\pm 30$ km. FWHM sizes of the X-ray sources decrease with energy suggesting the expansion (fanning out) of magnetic flux tube in the chromosphere with height. The magnetic scale height $B(z)(dB/dz)^{-1}$ is found to be of the order of 300 km and strong horizontal magnetic field is associated with noticeable flux tube expansion at a height of $\sim$ 900 km.
We present the atlas of protoplanetary disks in the Orion Nebula based on the ACS/WFC images obtained for the HST Treasury Program on the Orion Nebula Cluster. The observations have been carried out in 5 photometric filters nearly equivalent to the standard B, V, Halpha, I, and z passbands. Our master catalog lists 178 externally ionized proto-planetary disks (proplyds), 28 disks seen only in absorption against the bright nebular background (silhouette disks), 8 disks seen only as dark lanes at the midplane of extended polar emission (bipolar nebulae or reflection nebulae) and 5 sources showing jet emission with no evidence of neither external ionized gas emission nor dark silhouette disks. Many of these disks are associated with jets seen in Halpha and circumstellar material detected through reflection emission in our broad-band filters; approximately 2/3 have identified counterparts in x-rays. A total of 47 objects (29 proplyds, 7 silhouette disks, 6 bipolar nebulae, 5 jets with no evidence of proplyd emission or silhouette disk) are new detections with HST. We include in our list 4 objects previously reported as circumstellar disks which have not been detected in our HST/ACS images either because they are hidden by the bleeding trails of a nearby saturated bright star or because of their location out of the HST/ACS Treasury Program field. Other 31 sources previously reported as extended objects do not harbor a stellar source in our HST/ACS images. We also report on the detection of 16 red, elongated sources. Their location at the edges of the field, far from the Trapezium Cluster core (> 10'), suggests that these are probably background galaxies observed through low extinction regions of the Orion Molecular Cloud OMC-1.
In order to choose a numerical method for solving the time dependent equations of radiative transport, we obtain an exact solution for the time dependent radiation field in a one dimensional infinite medium with monochromatic, isotropic scattering for sources with an arbitrary spatial distribution and an arbitrary time variation of their power. The Lax-Wendroff method seems to be the most suitable. Because it is assumed that radiation delay is caused by the finite speed of light, the following difficulty arises when the numerical method is used: the region of variation of the variables (dimensionless coordinate \tau and time t) is triangular (the inequality \tau< t). This difficulty is overcome by expanding the unknown functions in series in terms of small values of the time and coordinate. By comparing the numerical and exact solutions for a point source with a given time dependence for its power and with pure scattering, the steps in the variables required to obtain a desired accuracy are estimated. This numerical method can be used to calculate the intensity and polarization of the radiation from sources in the early universe during epochs close to the recombination epoch.
Context : The peculiar hot star Theta Car in the open cluster IC2602 is a blue straggler as well as a single-line binary of short period (2.2d). Aims : Its high-energy properties are not well known, though X-rays can provide useful constraints on the energetic processes at work in binaries as well as in peculiar, single objects. Methods : We present the analysis of a 50ks exposure taken with the XMM-Newton observatory. It provides medium as well as high-resolution spectroscopy. Results : Our high-resolution spectroscopy analysis reveals a very soft spectrum with multiple temperature components (1--6MK) and an X-ray flux slightly below the `canonical' value (log[L_X(0.1-10.)/L_{BOL}] ~ -7). The X-ray lines appear surprisingly narrow and unshifted, reminiscent of those of beta Cru and tau Sco. Their relative intensities confirm the anomalous abundances detected in the optical domain (C strongly depleted, N strongly enriched, O slightly depleted). In addition, the X-ray data favor a slight depletion in neon and iron, but they are less conclusive for the magnesium abundance (solar-like?). While no significant changes occur during the XMM-Newton observation, variability in the X-ray domain is detected on the long-term range. The formation radius of the X-ray emission is loosely constrained to <5 R_sol, which allows for a range of models (wind-shock, corona, magnetic confinement,...) though not all of them can be reconciled with the softness of the spectrum and the narrowness of the lines.
We present large scale 870 micron maps of the nearby starburst galaxies NGC253, NGC4945 and the nearest giant elliptical radio galaxy Centaurus A (NGC 5128) obtained with the newly commissioned Large Apex Bolometer Camera (LABOCA) operated at the APEX telescope. Our continuum images reveal for the first time the distribution of cold dust at a angular resolution of 20" across the entire optical disks of NGC253 and NGC4945 out to a radial distance of 10' (7.5 kpc). In NGC5128 our LABOCA image also shows, for the first time at submillimeter wavelengths, the synchrotron emission associated with the radio jet and the inner radio lobes. From an analysis of the 870 micron emission in conjunction with ISO-LWS, IRAS and long wavelengths radio data we find temperatures for the cold dust in the disks of all three galaxies of 17-20 K, comparable to the dust temperatures in the disk of the Milky Way. The total gas mass in the three galaxies is determined to be 2.1, 4.2 and 2.8 x 10^9 solar masses for NGC253, NGC4945 and NGC5128, respectively. A detailed comparison between the gas masses derived from the dust continuum and the integrated CO(1-0) intensity in NGC253 suggests that changes of the CO luminosity to molecular mass conversion factor are mainly driven by a metallicity gradient and only to a lesser degree by variations of the CO excitation. An analysis of the synchrotron spectrum in the northern radio lobe of NGC5128 shows that the synchrotron emission from radio to the ultraviolet wavelengths is well described by a broken power law and that the break frequency is a function of the distance from the radio core as expected for aging electrons. We derive an outflow speed of ~0.5c at a distance of 2.6kpc from the center, consistent with the speed derived in the vicinity of the nucleus.
A significant population of stars with ages younger than the Pleiades exists in the solar neighborhood. They are grouped in loose young associations, sharing similar kinematical and physical properties, but, due to their vicinity to the Sun, they are dispersed in the sky, and hard to identify. Their strong stellar coronal activity, causing enhanced X-ray emission, allows them to be identified as counterparts of X-ray sources. The analysis presented here is based mainly on the SACY project, aimed to survey in a systematic way counterparts of ROSAT all-sky X-ray sources in the Southern Hemisphere for which proper motions are known. We give the definition, main properties, and lists of high-probability members of nine confirmed loose young associations that do not belong directly to the well-known Oph-Sco-Cen complex. The youth and vicinity of many members of these new associations make them ideal targets for follow-up studies, specifically geared towards the understanding of planetary system formation. Searches for very low-mass and brown dwarf companions are ongoing, and it will be promising to search for planetary companions with next generation instruments.
The relevance of storage-ring electron-ion recombination experiments for astrophysics is outlined. In particular, the role of low-energy dielectronic-recombination resonances is discussed. A bibliographic compilation of electron-ion recombination measurements with cosmically abundant ions is provided.
At a distance of about 130 pc, the Corona Australis molecular cloud complex is one of the nearest regions with ongoing and/or recent star formation. It is a region with highly variable extinction of up to AV~45 mag, containing, at its core, the Coronet protostar cluster. There are now 55 known optically detected members, starting at late B spectral types. At the opposite end of the mass spectrum, there are two confirmed brown dwarf members and seven more candidate brown dwarfs. The CrA region has been most widely surveyed at infrared wavelengths, in X-rays, and in the millimeter continuum, while follow-up observations from centimeter radio to X-rays have focused on the Coronet cluster.
United classification of gamma-ray bursts and their counterparts is established on the basis of measured characteristics: photon energy E and emission duration T. The founded interrelation between the mentioned characteristics of events consists in that, as the energy increases, the duration decreases (and vice versa). The given interrelation reflects the nature of the phenomenon and forms the E-T diagram, which represents a natural classification of all observed events in the energy range from 10E9 to 10E-6 eV and in the corresponding interval of durations from about 10E-2 up to 10E8 s. The proposed classification results in the consequences, which are principal for the theory and practical study of the phenomenon.
We use Swift/BAT Earth occultation data at different geomagnetic latitudes to derive a sensitive measurement of the Cosmic X-ray background (CXB) and of the Earth albedo emission in the 15--200 keV band. We compare our CXB spectrum with recent (INTEGRAL, BeppoSAX) and past results (HEAO-1) and find good agreement. Using an independent measurement of the CXB spectrum we are able to confirm our results. This study shows that the BAT CXB spectrum has a normalization ~8(+/-3)% larger than the HEAO-1 measurement. The BAT accurate Earth albedo spectrum can be used to predict the level of photon background for satellites in low Earth and mid inclination orbits.
Turbulent viscosity is frequently used in accretion disk theory to replace the microphysical viscosity in order to accomodate the observational need for in- stabilities in disks that lead to enhanced transport. However, simply replacing the microphysical transport coefficient by a single turbulent transport coeffi- cient hides the fact that the procedure should formally arise as part of a closure in which the hydrodynamic or magnetohydrodynamic equations are averaged, and correlations of turbulent fluctuations are replaced by transport coefficients. Here we show how a mean field approach leads quite naturally two transport coefficients, not one, that govern mass and angular momentum transport. In particular, we highlight that the conventional approach suffers from a seemingly inconsistent neglect of turbulent diffusion in the surface density equation. We constrain these new transport coefficients for specific cases of inward, outward, and zero net mass transport. In addition, we find that one of the new transport terms can lead to oscillations in the mean surface density which then requires a constant or small inverse Rossby number for disks to maintain a monotonic power-law surface density.
The Ara OB1a association is one of the closest sites where triggered star formation is visible for multiple generations of massive stars. At about 1.3 kpc distance, it contains complex environments including cleared young clusters, embedded infrared clusters, CO clouds with no evidence of star formation, and clouds with evidence of ongoing star formation. In this review we discuss the research on this region spanning the last half-century. It has been proposed that the current configuration is the result of an expanding wave of neutral gas set in motion between 10--40 million years ago in combination with photoionization from the current epoch.
RCW~38 is a uniquely young ($<$1 Myr), embedded ($A_V \sim 10$) stellar cluster surrounding a pair of early O stars ($\sim$O5.5) and is one of the few regions within 2 kpc other than Orion to contain over 1000 members. X-ray and deep near-infrared observations reveal a dense cluster with over 200 X-ray sources and 400 infrared sources embedded in a diffuse hot plasma within a 1 pc diameter. The central O star has evacuated its immediate surroundings of dust, creating a wind bubble $\sim$0.1 pc in radius that is confined by the surrounding molecular cloud, as traced by millimeter continuum and molecular line emission. The interface between the bubble and cloud is a region of warm dust and ionized gas, which shows evidence for ongoing star formation. Extended warm dust is found throughout a 2--3 pc region and coincides with extended X-ray plasma. This is evidence that the influence of the massive stars reaches beyond the confines of the O star bubble. RCW~38 appears similar in structure to RCW~49 and M~20 but is at an earlier evolutionary phase. RCW~38 appears to be a blister compact H{\small II} region lying just inside the edge of a giant molecular cloud.
Correlation studies of prompt and afterglow emissions from gamma-ray bursts (GRBs) between different spectral bands has been difficult to do in the past because few bursts had comprehensive and intercomparable afterglow measurements. In this paper we present a large and uniform data set for correlation analysis based on bursts detected by the Swift mission. For the first time, short and long bursts can be analyzed and compared. It is found for both classes that the optical, X-ray and gamma-ray emissions are linearly correlated, but with a large spread about the correlation line; stronger bursts tend to have brighter afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Short bursts are, on average, weaker in both prompt and afterglow emissions. No short bursts are seen with extremely low optical to X-ray ratio as occurs for "dark" long bursts. Although statistics are still poor for short bursts, there is no evidence yet for a subgroup of short bursts with high extinction as there is for long bursts. Long bursts are detected in the dark category at the same fraction as for pre-Swift bursts. Interesting cases are discovered of long bursts that are detected in the optical, and yet have low enough optical to X-ray ratio to be classified as dark. For the prompt emission, short and long bursts have different average tracks on flux vs fluence plots. In Swift, GRB detections tend to be fluence limited for short bursts and flux limited for long events.
We have observed a large sample of spectroscopic binary stars in the Hyades Cluster, using high resolution infrared spectroscopy to detect low mass companions. We combine our double-lined infrared measurements with well constrained orbital parameters from visible light single-lined observations to derive dynamical mass ratios. Using these results, along with photometry and theoretical mass-luminosity relationships, we estimate the masses of the individual components in our binaries. In this paper we present double-lined solutions for 25 binaries in our sample, with mass ratios from ~0.1-0.8. This corresponds to secondary masses as small as ~0.15 Msun. We include here our preliminary detection of the companion to vB 142, with a very small mass ratio of q=0.06+-0.04; this indicates that the companion may be a brown dwarf. This paper is an initial step in a program to produce distributions of mass ratio and secondary mass for Hyades cluster binaries with a wide range of periods, in order to better understand binary star formation. As such, our emphasis is on measuring these distributions, not on measuring precise orbital parameters for individual binaries.
This paper presents an analytic perturbation approach to the dynamics of a classical spinning particle, according to the Mathisson-Papapetrou-Dixon (MPD) equations of motion, with a direct application to circular motion around a Kerr black hole. The formalism is established in terms of a power series expansion with respect to the particle's spin magnitude, where the particle's kinematic and dynamical degrees are expressed in a completely general form that can be constructed to infinite order in the expansion parameter. It is further shown that the particle's squared mass and spin magnitude can shift due to a classical analogue of radiative corrections that arise from spin-curvature coupling. Explicit expressions are determined for the case of circular motion near the event horizon a Kerr black hole, where the mass and spin shift contributions are dependent on the initial conditions of the particle's spin orientation. A preliminary analysis of the stability properties of the orbital motion in the Kerr background due to spin-curvature interactions is explored and briefly discussed.
This paper describes an application of the MPD equations in analytic perturbation form to the case of circular motion around a radially accreting or radiating black hole described by the Vaidya metric. Based on the formalism presented earlier, this paper explores the effects of mass accretion or loss of the central body on the overall dynamics of the orbiting spinning particle. This includes changes to its squared mass and spin magnitude due to the classical analog of radiative corrections from spin-curvature coupling. Various quantitative consequences are explored when considering orbital motion near the black hole's event horizon. An analysis on the orbital stability properties due to spin-curvature interactions is examined briefly, with conclusions in general agreement with previous work performed for the case of circular motion around a Kerr black hole.
We interpret the well known fact that the equations for light rays in the Kottler or Schwarzschild-de Sitter metric are independent of the cosmological constant in terms of the projective equivalence of the optical metric for any value of \Lambda. We explain why this does not imply that lensing phenomena are independent of \Lambda. Motivated by this example, we find a large collection of one-parameter families of projectively equivalent metrics including both the Kottler optical geometry and the constant curvature metrics as special cases. Using standard constructions for geodesically equivalent metrics we find classical and quantum conserved quantities and relate these to known quantities.
Theory and simulations are used to study collisionless relaxation of a gravitational $N$-body system. It is shown that when the initial one particle distribution function satisfies the virial condition -- potential energy is minus twice the kinetic energy -- the system quickly relaxes to a metastable state described {\it quantitatively} by the Lynden-Bell distribution with a cutoff. If the initial distribution function does not meet the virial requirement, the system undergoes violent oscillations, resulting in a partial evaporation of mass. The leftover particles phase separate into a core-halo structure. The theory presented allows us to quantitatively predict the amount and the distribution of mass left in the central core, without any adjustable parameters. On a longer time scale $\tau_G \sim N$ collisionless relaxation leads to a gravothermal collapse.
Links to: arXiv, form interface, find, astro-ph, recent, 0808, contact, help (Access key information)
We present a framework for analyzing weak gravitational lensing survey data, including lensing and source-density observables, plus spectroscopic redshift calibration data. All two-point observables are predicted in terms of parameters of a perturbed Robertson-Walker metric, making the framework independent of the models for gravity, dark energy, or galaxy properties. For Gaussian fluctuations the 2-point model determines the survey likelihood function and allows Fisher-matrix forecasting. The framework includes nuisance terms for the major systematic errors: shear measurement errors, magnification bias and redshift calibration errors, intrinsic galaxy alignments, and inaccurate theoretical predictions. We propose flexible parameterizations of the many nuisance parameters related to galaxy bias and intrinsic alignment. For the first time we can integrate many different observables and systematic errors into a single analysis. As a first application of this framework, we demonstrate that: uncertainties in power-spectrum theory cause very minor degradation to cosmological information content; nearly all useful information (excepting baryon oscillations) is extracted with ~3 bins per decade of angular scale; and the rate at which galaxy bias varies with redshift substantially influences the strength of cosmological inference. The framework will permit careful study of the interplay between numerous observables, systematic errors, and spectroscopic calibration data for large weak-lensing surveys.
The abundance and structure of dark matter subhalos has been analyzed extensively in recent studies of dark matter-only simulations, but comparatively little is known about the impact of baryonic physics on halo substructures. We here extend the SUBFIND algorithm for substructure identification such that it can be reliably applied to dissipative hydrodynamical simulations that include star formation. This allows, in particular, the identification of galaxies as substructures in simulations of clusters of galaxies, and a determination of their content of gravitationally bound stars, dark matter, and hot and cold gas. Using a large set of cosmological cluster simulations, we present a detailed analysis of halo substructures in hydrodynamical simulations of galaxy clusters, focusing in particular on the influence both of radiative and non-radiative gas physics, and of non-standard physics such as thermal conduction and feedback by galactic outflows. We also examine the impact of numerical nuisance parameters such as artificial viscosity parameterizations. We find that diffuse hot gas is efficiently stripped from subhalos when they enter the highly pressurized cluster atmosphere. This has the side-effect of making the remaining dark matter subhalo more fragile against tidal disruption, thus decreasing the subhalo mass function relative to a corresponding dark matter-only simulation. These effects are mitigated in radiative runs, where baryons condense in the central subhalo regions and form compact stellar cores. However, in all cases, only a very small fraction, of the order of one percent, of subhalos within the cluster virial radii preserve a gravitationally bound hot gaseous atmosphere. (abridged)
We investigate the close environment of 203 Spitzer 24 micron-selected sources at 0.6<z<1.0 using zCOSMOS-bright redshifts and spectra of I<22.5 AB mag galaxies, over 1.5 sq. deg. of the COSMOS field. We quantify the degree of passivity of the LIRG and ULIRG environments by analysing the fraction of close neighbours with Dn(4000)>1.4. We find that LIRGs at 0.6<z<0.8 live in more passive environments than those of other optical galaxies that have the same stellar mass distribution. Instead, ULIRGs inhabit more active regions (e.g. LIRGs and ULIRGs at 0.6<z<0.8 have, respectively, (42.0 +/- 4.9)% and (24.5 +/- 5.9)% of neighbours with Dn (4000)>1.4 within 1 Mpc and +/- 500 km/s). The contrast between the activities of the close environments of LIRGs and ULIRGs appears especially enhanced in the COSMOS field density peak at z~0.67, because LIRGs on this peak have a larger fraction of passive neighbours, while ULIRGs have as active close environments as those outside the large-scale structure. The differential environmental activity is related to the differences in the distributions of stellar mass ratios between LIRGs/ULIRGs and their close neighbours, as well as in the general local density fields. At 0.8<z<1.0, instead, we find no differences in the environment densities of ULIRGs and other similarly massive galaxies, in spite of the differential activities. We discuss a possible scenario to explain these findings.
A set of 41 nearby stars (closer than 25 pc) is investigated which have very wide binary and common proper motion (CPM) companions at projected separations between 1000 and $200 000$ AU. These companions are identified by astrometric positions and proper motions from the NOMAD catalog. Based mainly on measures of chromospheric and X-ray activity, age estimation is obtained for most of 85 identified companions. Color -- absolute magnitude diagrams are constructed to test if CPM companions are physically related to the primary nearby stars and have the same age. Our carefully selected sample includes three remote white dwarf companions to main sequence stars and two systems (55 Cnc and GJ 777A) of multiple planets and distant stellar companions. Ten new CPM companions, including three of extreme separations, are found. Multiple hierarchical systems are abundant; more than 25% of CPM components are spectroscopic or astrometric binaries or multiples themselves. Two new astrometric binaries are discovered among nearby CPM companions, GJ 264 and HIP 59000 and preliminary orbital solutions are presented. The Hyades kinematic group (or stream) is presented broadly in the sample, but we find few possible thick disk objects and none halo stars. It follows from our investigation that moderately young (age $\lesssim 1$ Gyr) thin disk dwarfs are the dominating species in the near CPM systems, in general agreement with the premises of the dynamical survival paradigm. Some of the multiple stellar systems with remote CPM companions probably undergo the dynamical evolution on non-coplanar orbits, known as the Kozai cycle.
We study dynamics of bars in models of disk galaxies embeded in realistic dark matter halos. We find that disk thickness plays an important, if not dominant, role in the evolution and structure of the bars. We also make extensive numerical tests of different N-body codes used to study bar dynamics. Models with thick disks typically used in this type of modeling (height-to-length ratio hz/Rd=0.2) produce slowly rotating, and very long, bars. In contrast, more realistic thin disks with the same parameters as in our Galaxy (hz/Rd= 0.1) produce bars with normal length Rbar approx R_d, which rotate quickly with the ratio of the corotation radius to the bar radius 1.2-1.4 compatible with observations. Bars in these models do not show a tendency to slow down, and may lose as little as 2-3 percent of their angular momentum due to dynamical friction with the dark matter over cosmological time. We attribute the differences between the models to a combined effect of high phase-space density and smaller Jeans mass in the thin disk models, which result in the formation of a dense central bulge. Special attention is paid to numerical effects such as the accuracy of orbital integration, force and mass resolution. Using three N-body codes -- Gadget, ART, and Pkdgrav -- we find that numerical effects are very important and, if not carefully treated, may produce incorrect and misleading results. Once the simulations are performed with sufficiently small time-steps and with adequate force and mass resolution, all the codes produce nearly the same results: we do not find any systematic deviations between the results obtained with TREE codes (Gadget and Pkdgrav) and with the Adaptive-Mesh-Refinement (ART) code.
Next generation probes of dark matter and dark energy require high precision reconstruction of faint galaxy shapes from hundreds of dithered exposures. Current practice is to stack the images. While valuable for many applications, this stack is a highly compressed version of the data. Future weak lensing studies will require analysis of the full dataset using the stack and its associated catalog only as a starting point. We describe a "Multi-Fit" algorithm which simultaneously fits individual galaxy exposures to a common profile model convolved with each exposure's point spread function at that position in the image. This technique leads to an enhancement of the number of usable small galaxies at high redshift and, more significantly, a decrease in systematic shear error.
We observed the brightest part of HESS J1825-137 with the Suzaku XIS, and found diffuse X-rays extending at least up to 15' (~ 17 pc) from the pulsar PSR J1826-1334. The spectra have no emission line, and are fitted with an absorbed power-law model. The X-rays, therefore, are likely due to synchrotron emission from a pulsar wind nebula. The photon index near at the pulsar (r<1.5') is 1.7 while those in r=1.5-16 are nearly constant at Gamma=2.0. The spectral energy distribution of the Suzaku and H.E.S.S. results are naturally explained by a combined process; synchrotron X-rays and gamma-rays by the inverse Compton of the cosmic microwave photons by high-energy electrons in a magnetic field of 7 micro G. If the electrons are accelerated at the pulsar, the electrons must be transported over 17 pc in the synchrotron life time of 1900 yr, with a velocity of > 8.8 times 10^3 km s^{-1}.
We present the results from arcsecond resolution observations of various line transitions at 1.3 mm toward hypercompact HII region G28.20-0.04N. With the SMA data, we have detected and mapped the transitions in the CH$_{3}$CN, CO, $^{13}$CO, SO$_{2}$, OCS, and CH$_{3}$OH molecular lines as well as the radio recombination line H30$\alpha$. The observations and analysis indicate a hot core associated with G28.20-0.04N. The outflow and possible rotation are detected in this region.
This paper reports on the results of a numerical investigation designed to address how the initially anisotropic appearance of a GRB remnant is modified by the character of the circumburst medium and by the possible presence of an accompanying supernova (SN). Axisymmetric hydrodynamical calculations of light, impulsive jets propagating in both uniform and inhomogeneous external media are presented, which show that the resulting dynamics of their remnants since the onset of the non-relativistic phase is different from the standard self-similar solutions. Because massive star progenitors are expected to have their close-in surroundings modified by the progenitor winds, we consider both free winds and shocked winds as possible external media for GRB remnant evolution. Abundant confirmation is provided here of the important notion that the morphology and visibility of GRB remnants are determined largely by their circumstellar environments. For this reason, their detectability is highly biased in favor of those with massive star progenitors; although, in this class of models, the beamed component may be difficult to identify because the GRB ejecta is eventually swept up by the accompanying SN. The number density of asymmetric GRB remnants in the local Universe could be, however, far larger if they expand in a tenuous interstellar medium, as expected for some short GRB progenitor models. In these sources, the late size of the observable, asymmetric remnant could extend over a wide, possibly resolvable angle and may be easier to constrain directly.
We test the proposal by El-Zant et al that the dark matter density of halos could be reduced through dynamical friction acting on heavy baryonic clumps in the early stages of galaxy formation. Using N-body simulations, we confirm that the inner halo density cusp is flattened to 0.2 of the halo break radius by the settling of a single clump of mass \ga 0.5% of the halo mass. We also find that an ensemble of 50 clumps each having masses \ga 0.2% can flatten the cusp to almost the halo break radius on a time scale of \sim9 Gyr, for an NFW halo of concentration 15. We summarize some of the difficulties that need to be overcome if this mechanism is to resolve the apparent conflict between the observed inner densities of galaxy halos and the predictions of LCDM.
AIMS. While observational evidence shows that most of the decline in a star's X-ray activity occurs between the age of the Hyades (~8 x 10^8 yrs) and that of the Sun, very little is known about the evolution of stellar activity between these ages. To gain information on the typical level of coronal activity at a star's intermediate age, we studied the X-ray emission from stars in the 1.9 Gyr old open cluster NGC 752. METHODS. We analysed a ~140 ks Chandra observation of NGC 752 and a ~50 ks XMM-Newton observation of the same cluster. We detected 262 X-ray sources in the Chandra data and 145 sources in the XMM-Newton observation. Around 90% of the catalogued cluster members within Chandra's field-of-view are detected in the X-ray. The X-ray luminosity of all observed cluster members (28 stars) and of 11 cluster member candidates was derived. RESULTS. Our data indicate that, at an age of 1.9 Gyr, the typical X-ray luminosity of the cluster members with M=0.8-1.2 Msun is Lx = 1.3 x 10^28 erg s^-1, so approximately a factor of 6 less intense than that observed in the younger Hyades. Given that Lx is proportional to the square of a star's rotational rate, the median Lx of NGC 752 is consistent, for t > 1 Gyr, to a decaying rate in rotational velocities v_rot ~ t^-alpha with alpha ~ 0.75, steeper than the Skumanich relation (alpha ~ 0.5) and significantly steeper than observed between the Pleiades and the Hyades (where alpha < 0.3), suggesting that a change in the rotational regimes of the stellar interiors is taking place at t ~ 1 Gyr.
We present a CCD BV photometry of the possible binary open star cluster NGC 7031/NGC 7086. The aim is to confirm or disprove their common nature on the grounds of their age and distance. An age of 224 $\pm$ 25 Myr and distance 831 $\pm$ 72 pc was determined for NGC 7031 and 178 $\pm$ 25 Myr, 955 $\pm$ 84 pc for NGC 7086, respectively. Based on these differences in age and distance we conclude that the two clusters are most likely not formed together from one and the same Giant Molecular Cloud and thus are not a true binary cluster.
An oscillating, homogeneous and isotropic Universe which arises from Scalar-Tensor gravity is discussed in the linearized approach, showing that some observative evidences like the Hubble Law and the Cosmological Redshift are in agreement with the model. In this context Dark Energy appears like a pure curvature effect arising by the scalar field.
We present the AGILE gamma-ray observations of the field containing the puzzling gamma-ray source 3EG J1835+5918. This source is one of the most remarkable unidentified EGRET sources. An unprecedentedly long AGILE monitoring of this source yields important information on the positional error box, flux evolution, and spectrum. 3EG J1835+5918 has been in the AGILE field of view several times in 2007 and 2008 for a total observing time of 138 days from 2007 Sept 04 to 2008 June 30 encompassing several weeks of continuous coverage. With an exposure time approximately twice that of EGRET, AGILE confirms the existence of a prominent gamma-ray source (AGL J1836+5926) at a position consistent with that of EGRET, although with a remarkably lower average flux value for photon energies greater than 100 MeV. A 5-day bin temporal analysis of the whole data set of AGL J1836+5926 shows some evidence for variability of the gamma-ray flux. The source spectrum between 100 MeV and 1 GeV can be fitted with a power law with photon index in the range 1.6-1.7, fully consistent with the EGRET value. The faint X-ray source RX J1836.2+5925 that has been proposed as a possible counterpart of 3EG J1835+5918 is well within the AGILE error box. Future continuous monitoring (both by AGILE and GLAST) is needed to confirm the gamma-ray flux variability and to unveil the source origin, a subject that is currently being pursued through a multiwavelength search for counterparts.
We consider the role of deuterium as a potential marker of location and ambient conditions during the formation of small bodies in our Solar system. We concentrate in particular on the formation of the regular icy satellites of Jupiter and the other giant planets, but include a discussion of the implications for the Trojan asteroids and the irregular satellites. We examine in detail the formation of regular planetary satellites within the paradigm of a circum-Jovian subnebula. Particular attention is paid to the two extreme potential subnebulae - "hot" and "cold". In particular, we show that, for the case of the "hot" subnebula model, the D:H ratio in water ice measured from the regular satellites would be expected to be near-Solar. In contrast, satellites which formed in a "cold" subnebula would be expected to display a D:H ratio that is distinctly over-Solar. We then compare the results obtained with the enrichment regimes which could be expected for other families of icy small bodies in the outer Solar system - the Trojan asteroids and the irregular satellites. In doing so, we demonstrate how measurements by Laplace, the James Webb Space Telescope, HERSCHEL and ALMA will play an important role in determining the true formation locations and mechanisms of these objects.
The dynamics of small global perturbations in the form of linear combination of a finite number of non-axisymmetric eigenmodes is studied in two-dimensional approximation. The background flow is assumed to be an axisymmetric perfect fluid with the adiabatic index $\gamma=5/3$ rotating with power law angular velocity distribution $\Omega \propto r^{-q}$, $1.5<q<2.0$, confined by free boundaries in the radial direction. The substantial transient growth of acoustic energy of optimized perturbations is discovered. An optimal energy growth $G$ is calculated numerically for a variety of parameters. Its value depends essentially on the perturbation azimuthal wavenumber $m$ and increases for higher values of $m$. The closer the rotation profile to the Keplerian law, the larger growth factors can be obtained but over a longer time. The highest acoustic energy increase found numerically is of order $\sim 10^2$ over $\sim 6$ typical Keplerian periods. Slow neutral eigenmodes with corotation radius beyond the outer boundary mostly contribute to the transient growth. The revealed linear temporal behaviour of perturbations may play an important role in angular momentum transfer in toroidal flows near compact relativistic objects.
At a collapse of an object into the gravitational singularity, the potential energy of its surface layer decreases to a negative value below all limits. The energy-conservation law requires an appearance of a positive-valued energy to balance the decrease. We derive the internal-state properties of the ideal neutron gas situated in an extremely strong, ultra-relativistic gravitational field and suggest to apply our result to an object which is more compact than the neutron stars. We find that the extreme attraction of the gravity is accompanied with an extremely high internal kinetic-type energy, when the radius of the object approaches the Schwarzschild gravitational radius. The internal energy is reflected in a high gas-pressure gradient, which can compete with the gravity. The object appears to be stable, i.e. neither collapsing nor expanding, when its radius is identical to the gravitational radius. For this radius, the gravitational singularity is balanced with an oppositely oriented singularity originating from the pressure gradient. This could allow an escape of a matter from the gravitational singularity. As well, the surface of the compact object is likely not always perfectly smooth, therefore a radiation can be emitted from spikes occurring above the gravitational radius.
Basic ideas about the torques on the neutron star and the existence of an equilibrium rotation period followed from the recognition that most X-ray binaries contain accretion powered neutron stars. The evolution of binaries through a phase of accretion onto the neutron star, eventually leading to a post-accretion radio pulsar phase, was initially discussed as a way to understand the scarcity of binaries among the radio pulsars and the relatively short rotation periods of the first discovered binary radio pulsars in terms of magnetic fields that would be smaller than the familiar $10^{12} G$ range. The discovery of the millisecond pulsars made us realize that the fields can be much lower in a new class of radio pulsars that have been spun up by accretion in LMXBs. The predicted spin-down rates of the millisecond pulsar was soon confirmed. The observers' search for millisecond X-ray periods was on, leading first to the discovery of QPOs, and eventually to the discovery of the X-ray millisecond pulsars. The theorists' quest for explanations of why X-ray millisecond pulsations are not observed from LMXBs also started right away.
We summarise the X-ray temporal and spectral variability properties of GRBs as observed using the Swift satellite. Despite much individual complexity, the flux and spectral variability can be reasonably well described by a combination of two components - which we denote as the prompt and the afterglow. The first, prompt component consists of the burst and its initial decay while the second, afterglow component fits the X-ray plateau phase and subsequent decline observed in the majority of GRBs. When strong spectral variability occurs it is associated with the prompt component while the X-ray plateau and later emission shows little if any spectral variability. We briefly compare the observations with some of the proposed models. Any model for the early or late emission must explain the differences in both temporal and spectral behaviour.
This paper reports on the Suzaku results of thermal and non-thermal features of 30 Dor C, a supernova remnant (SNR) in a superbubble of the Large Magellanic Cloud (LMC). The west rim exhibits a non-thermal X-ray spectrum with no thermal component. A single power-law model is rejected but a power-law model with spectral cutoff is accepted. The cutoff frequency of $(3-7)\times 10^{17}$ Hz is the highest among the shell type SNRs like SN 1006 ($\sim 6\times 10^{16}$ Hz), and hence 30 Dor C would be the site of the highest energy accelerator of the SNR shock. The southeast (SE) and northeast (NE) rims have both the thermal and non-thermal components. The thin-thermal plasmas in the both rims are in collisional ionization equilibrium state. The electron temperature of the plasma in the SE rim ($kT_e \sim 0.7$ keV) is found to be higher than the previously reported value. The power-law index from SE is nearly the same as, while that from the NE is larger than that of the West rim. The SNR age would be in the range of $(4-20)\times 10^3$ yr. Thus, 30 Dor C is likely to be the oldest shell-like SNR with non-thermal emission.
During the gravitational core collapse of a massive progenitor star which may give rise to at least a class of gamma-ray bursts (GRBs) associated with supernovae, a stellar core rapidly passes through a short yet important phase of neutronization, producing a huge amount of energetic neutrinos and photons which contribute to the total pressure within the progenitor core. The collection of neutrinos, photons and gas materials together may be approximated as a fluid with a polytropic index $\gamma=4/3$ under the action of self-gravity. With a substantial generalization and using analytical and numerical methods (Lou & Cao 2008), we recently constructed and examined various self-similar solutions to describe collapses, rebound shocks and flows systematically in a $\gamma=4/3$ polytropic gas mixture with spherical symmetry, and compare our results with those of Goldreich & Weber (1980). It is also possible to construct central void solutions without or with shocks. Various features and characteristics of this nonlinear relativistically hot gas dynamics, including asymptotic and exact solutions, are presented. This more general polytropic model analysis provides the dynamic basis of understanding the evolution of rebound shocks in supernovae (SNs) and the results may be also utilized to benchmark hydrodynamic simulations.
(Abridged) Aims: We obtained VLT/FLAMES+UVES high-resolution, fibre-fed spectroscopy (FFS) of five young massive clusters in M83 (NGC 5236). This forms the basis of a pilot study testing the feasibility of using FFS to measure the velocity dispersions of several clusters simultaneously, in order to determine their dynamical masses; Methods: We adopted two methods for determining the velocity dispersion of the star clusters: cross-correlating the cluster spectrum with the template spectra and minimising a chi^2 value between the cluster spectrum and the broadened template spectra. Cluster 805 in M83 was chosen as a control to test the reliability of the method, through a comparison with the results obtained from a standard echelle VLT/UVES spectrum obtained by Larsen & Richtler; Results: We find no dependence of the velocity dispersions measured for a cluster on the choice of red giant versus red supergiant templates, nor on the method adopted. We measure a velocity dispersion of sigma_los = 10.2+/-1.1 km/s for cluster 805 from our FFS. Our FLAMES+UVES velocity dispersion measurement gives M_vir = (6.6+/-1.7)e5 M_sun, consistent with previous results. This is a factor of ~3 greater than the cluster's photometric mass, indicating a lack of virial equilibrium. However, based on its effective star formation efficiency, the cluster is likely to virialise, and may survive for a Hubble time, in the absence of external disruptive forces; Conclusions: We find that reliable velocity dispersions can be determined from FFS. The advantages of observing several clusters simultaneously outweighs the difficulty of accurate galaxy background subtraction, providing that the targets are chosen to provide sufficient S/N ratios, and are much brighter than the galaxy background.
We present observations for three star clusters, Kron 11, Kron 63 and NGC 121, in the Small Magellanic Cloud. We have studied their structure and derived their fundamental parameters by means of their luminosity functions, their color magnitude diagrams and the Padova suite of isochrones. NGC 121 is a well studied object, for which we confirm previous evidence about its old age and low metal content, and have found that it is undergoing mass segregation. Kron 11 and Kron 63 are poorly populated clusters which had never been studied so far. Kron 11 is several gigayears younger than NGC 121, while Kron 63 is basically a very young star aggregate. Both clusters are immersed in dense stellar fields which share the same population properties, suggesting that in their cases, cluster ages are consistent with typical ages of field stars.
During the OGLE-2 operation, Soszynski et al. (2003) found 3 LMC candidates for an RR Lyr-type component in an eclipsing binary system. Two of those have orbital periods that are too short to be physically plausible and hence have to be optical blends. For the third, OGLE052218.07-692827.4, we developed a model of the binary that could host the observed RR Lyr star. After being granted HST/WFPC2 time, however, we were able to resolve 5 distinct sources within a 1.3" region that is typical of OGLE resolution, proving that OGLE052218.07-692827.4 is also an optical blend. Moreover, the putative eclipsing binary signature found in the OGLE data does not seem to correspond to a physically plausible system; the source is likely another background RR Lyr star. There are still no RR Lyr stars discovered so far in an eclipsing binary system.
The stellar asymmetry of faint thick disk/inner halo stars in the first quadrant first reported by Larsen & Humphreys (1996) and investigated further by Parker et al. (2003, 2004) has been recently confirmed by SDSS (Juric et al. 2008). Their interpretation of the excess in the star counts as a ringlike structure, however, is not supported by critical complimentary data in the fourth quadrant not covered by SDSS. We present stellar density maps from the Minnesota Automated Plate Scanner (MAPS) Catalog of the POSS I showing that the overdensity does not extend into the fourth quadrant. The overdensity is most probably not a ring. It could be due to interaction with the disk bar, evidence for a triaxial thick disk, or a merger remnant/stream. We call this feature the Hercules Thick Disk Cloud.
The discovery of partially ionized, diffuse gas and dust clouds at kiloparsec scale distances above the central planes of edge-on galaxy discs was unexpected. Further observations showing that this gas has rotation velocities approximately 10-20% lower than those in the central plane were even more surprising. Simple thermal support and ballistic fountain models have failed to explain these mysteries. Here we present results of hydrodynamic models, with cooling and heating from star formation. We find that in models with star formation generated stochastically across the disc an extraplanar gas layer is generated as long as the star formation is sufficiently strong. However, this gas rotates at nearly the same speed as the mid-plane gas. We then studied models with imposed spiral or bar waves in the disc. EDIG (extended or extraplanar diffuse interstellar gas) layers were also generated in these models, but primarily over the wave regions, not over the entire disc. Because of this partial coverage, the EDIG gas is able to move radially, as well as vertically, with the result that observed kinematic anomalies are reproduced. In these models the EDIG gas is dynamic and can evolve rapidly in response to changes in the underlying disc, with observable consequences.
In order to understand the influence of magnetic fields on the propagation properties of waves, as derived from different local helioseismology techniques, forward modeling of waves is required. Such calculations need a model in magnetohydrostatic equilibrium as initial atmosphere to propagate oscillations through it. We provide a method to construct such a model in equilibrium for a wide range of parameters to be used for simulations of artificial helioseismologic data. The method combine the advantages of self-similar solutions and current-distributed models. A set of models is developed by numerical integration of magnetohydrostatic equations from the sub-photospheric to chromospheric layers.
Near-infrared (hereafter NIR) data may provide complementary information to the traditional optical population synthesis analysis of unresolved stellar populations because the spectral energy distribution of the galaxies in the 1-2.5\mum range is dominated by different types of stars than at optical wavelengths. Furthermore, NIR data are subjected to less absorption and hence could constrain the stellar populations in dust-obscured galaxies. We want to develop observational constraints on the stellar populations of unresolved stellar systems in the NIR. To achieve this goal we need a benchmark sample of NIR spectra of ``simple'' early-type galaxies, to be used for testing and calibrating the outputs of population synthesis models. We obtained low-resolution (R~1000) long-slit spectra between 1.5 and 2.4\mum for 14 nearby early-type galaxies using SofI at NTT and higher resolution (R~3000) long-slit spectra, centered at the MgI at ~1.51\mum for a heterogeneous sample of 5 nearby galaxies observed with ISAAC at VLT. We defined spectral indices for CO, NaI, CaI and MgI features and measured the strengths of these features in the sample galaxies. We defined a new global NIR metallicity index, suitable for abundance measurements in low-resolution spectra. Finally, we present an average NIR spectrum of an early-type galaxy, built from a homogenized subset of our sample. The NIR spectra of the sample galaxies show great similarity and the strength of some features does correlate with the iron abundance [Fe/H] and optical metal features of the galaxies. The data suggest that the NIR metal features, in combination with a hydrogen absorption feature may be able to break the age-metallicity degeneracy just like the Mg and Fe features in the optical wavelength range.
We investigated domain wall networks as a possible candidate to explain the present accelerated expansion of the universe. We discuss various requirements that any stable lattice of frustrated walls must obey and propose a class of `ideal' model (in terms of its potential to lead to network frustration). By using the results of the largest and most accurate three-dimensional field theory simulations of domain wall networks with junctions, we find compelling evidence for a gradual approach to scaling. We conjecture that, even though one can build (by hand) lattices that would be stable, no such lattices will ever come out of realistic domain wall forming cosmological phase transitions. We consider cosmic strings and magnetic monopoles in Bekenstein-type models and show that there is a class of models of this type for which the classical Nielsen-Olesen vortex and 't Hooft-Polyakov monopoles are still valid solutions. We show that Equivalence Principle constraints impose tight limits on the allowed variations of $\alpha$ induced by string networks on cosmological scales. We show that the results obtained using the spherical infall model for an infinite wavelength inhomogeneity are inconsistent with the results of a local linearized gravity study and we argue in favor of the second approach. We also criticize the claim that the value of $\alpha$ inside collapsed regions could be significantly different from the background one on the basis of these findings.
In this paper, we study the physical properties and characteristics of matter forming thin accretion disks in static and spherically symmetric wormhole spacetimes. In particular, the time averaged energy flux, the disk temperature and the emission spectra of the accretion disks are obtained for these exotic geometries, and are compared with the Schwarzschild solution. It is shown that more energy is emitted from the disk in a wormhole geometry than in the case of the Schwarzschild potential and the conversion efficiency of the accreted mass into radiation is more than a factor of two higher for the wormholes than for static black holes. These effects in the disk radiation are confirmed in the radial profiles of temperature corresponding to the flux distributions, and in the emission spectrum \omega L(\omega) of the accretion disks. We conclude that specific signatures appear in the electromagnetic spectrum, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.
The asymmetric time dependence and various statistical properties of polarity reversals of the Earth's magnetic field are utilized to infer some of the most essential parameters of the geodynamo, among them the effective (turbulent) magnetic diffusivity, the degree of supercriticality, and the relative strength of the periodic forcing which is believed to result from the Milankovic cycle of the Earth's orbit eccentricity. A time-stepped spherically symmetric alpha^2-dynamo model is used as the kernel of an inverse problem solver in form of a downhill simplex method which converges to solutions that yield a stunning correspondence with paleomagnetic data.
Links to: arXiv, form interface, find, astro-ph, recent, 0808, contact, help (Access key information)
We introduce a new code for computing time-dependent continuum radiative transfer and non-equilibrium ionization states in static density fields with periodic boundaries. Our code solves the moments of the radiative transfer equation, closed by an Eddingtion tensor computed using a long characteristics method. We show that pure (i.e., not source-centered) short characteristics and the optically-thin approximation are inappropriate for computing Eddington factors for the problem of cosmological reionization. We evolve the non-equilibrium ionization field via an efficient and accurate (errors <1%) technique that switches between fully implicit or explicit finite-differencing depending on whether the local timescales are long or short compared to the timestep. We tailor our code for the problem of cosmological reionization. In tests, the code conserves photons, accurately treats cosmological effects, and reproduces analytic Stromgren sphere solutions. Its chief weakness is that the computation time for the long characteristics calculation scales relatively poorly compared to other techniques (t_{LC} \propto N_{cells}^1.5); however, we mitigate this by only recomputing the Eddington tensor when the radiation field changes substantially. Our technique makes almost no physical approximations, so it provides a way to benchmark faster but more approximate techniques. It can readily be extended to evolve multiple frequencies, though we do not do so here. Finally, we note that our method is generally applicable to any problem involving the transfer of continuum radiation through a periodic volume.
Hydromagnetic stresses in accretion discs have been the subject of intense theoretical research over the past one and a half decades. Most of the disc simulations have assumed a small initial magnetic field and studied the turbulence that arises from the magnetorotational instability. However, gaseous discs in galactic nuclei and in some binary systems are likely to have significant initial magnetisation. Motivated by this, we performed ideal magnetohydrodynamic simulations of strongly magnetised, vertically stratified discs in a Keplerian potential. Our initial equilibrium configuration, which has an azimuthal magnetic field in equipartion with thermal pressure, is unstable to the Parker instability. This leads to the expelling of magnetic field arcs, anchored in the midplane of the disc, to around five scale heights from the midplane. Transition to turbulence happens primarily through magnetorotational instability in the resulting vertical fields, although magnetorotational shear instability in the unperturbed azimuthal field plays a significant role as well, especially in the midplane where buoyancy is weak. High magnetic and hydrodynamical stresses arise, yielding an effective $\alpha$-value of around 0.1 in our highest resolution run. Azimuthal magnetic field expelled by magnetic buoyancy from the disc is continuously replenished by the stretching of a radial field created as gas parcels slide in the linear gravity field along inclined magnetic field lines. This dynamo process, where the bending of field lines by the Parker instability leads to re-creation of the azimuthal field, implies that highly magnetised discs are astrophysically viable and that they have high accretion rates.
We present 1D numerical simulations aimed at studying the Hot-Flasher
scenario for the formation of He-rich subdwarf stars. Sequences have been
calculated for a wide range of metallicities and physical assumptions, like the
stellar mass at the moment of the helium core flash. This allows us to study
the two previously proposed flavors of the Hot-Flasher scenario ("deep" and
"shallow" mixing cases) and to identify a third transition type. Our sequences
are calculated by simultaneously solving the mixing and burning equations
within a diffusive convection picture, in the context of the standard mixing
length theory. This allows us to follow the chemical evolution during deep
mixing events where hydrogen is violently burnt and to present a homogeneous
set of abundances for different metallicities and all kinds of Hot-Flashers. We
extend the scope of our work by analyzing the effects of non-standard
assumptions such as the effect of chemical gradients, extra-mixing at
convective boundaries, possible reductions in convective velocities or the
interplay between difussion and mass loss. Particular emphasis is put on the
predicted surface properties of the models.
We find that the hot-flasher scenario is a viable explanation for the
formation and surface properties of He-sdO stars. Also, our results show that,
during the early He-core burning stage, element diffusion may produce the
transformation of (post Hot-flasher) He-rich atmospheres into He-deficient
ones. If this is so, then we find that He-sdO stars would be the progenitors of
some of the hottest sdB stars.
We present the first detection and mapping of the HD 32297 debris disk at 1.3 mm with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). With a sub-arcsecond beam, this detection represents the highest angular resolution (sub)mm debris disk observation made to date. Our model fits to the spectral energy distribution from the CARMA flux and new Spitzer MIPS photometry support the earlier suggestion that at least two, possibly three, distinct grain populations are traced by the current data. The observed millimeter map shows an asymmetry between the northeast and southwest disk lobes, suggesting large grains may be trapped in resonance with an unseen exoplanet. Alternatively, the observed morphology could result from the recent breakup of a massive planetesimal. A similar-scale asymmetry is also observed in scattered light but not in the mid-infrared. This contrast between asymmetry at short and long wavelengths and symmetry at intermediate wavelengths is in qualitative agreement with predictions of resonant debris disk models. With resolved observations in several bands spanning over three decades in wavelength, HD 32297 provides a unique testbed for theories of grain and planetary dynamics, and could potentially provide strong multi-wavelength evidence for an exoplanetary system.
We estimate cluster ages from lithium depletion in five pre-main-sequence groups found within 100 pc of the Sun: TW Hydrae Association, Eta Chamaeleontis Cluster, Beta Pictoris Moving Group, Tucanae-Horologium Association and AB Doradus Moving Group. We determine surface gravities, effective temperatures and lithium abundances for over 900 spectra through least squares fitting to model-atmosphere spectra. For each group, we compare the dependence of lithium abundance on temperature with isochrones from pre-main-sequence evolutionary tracks to obtain model dependent ages. We find that the Eta Chamaelontis Cluster and the TW Hydrae Association are the youngest, with ages of 12+/-6 Myr and 12+/-8 Myr, respectively, followed by the Beta Pictoris Moving Group at 21+/-9 Myr, the Tucanae-Horologium Association at 27+/-11 Myr, and the AB Doradus Moving Group at an age of at least 45 Myr (where we can only set a lower limit since the models -- unlike real stars -- do not show much lithium depletion beyond this age). Here, the ordering is robust, but the precise ages depend on our choice of both atmospheric and evolutionary models. As a result, while our ages are consistent with estimates based on Hertzsprung-Russell isochrone fitting and dynamical expansion, they are not yet more precise. Our observations do show that with improved models, much stronger constraints should be feasible: the intrinsic uncertainties, as measured from the scatter between measurements from different spectra of the same star, are very low: around 10 K in effective temperature, 0.05 dex in surface gravity, and 0.03 dex in lithium abundance.
We investigate the dependence of the luminosity-diameter relation of galaxies on the environment. This study is based on a comparison between the 80 galaxies in the Shapley-Ames Catalog that are located within a distance of 10 Mpc, and the luminosity-diameter relation for galaxies in great clusters such as Virgo and Coma. A relatively tight linear correlation is observed between the absolute magnitudes and the logarithms of the linear diameters of galaxies located within 10 Mpc. Surprisingly this observed power-law relationship appears to be almost independent of environment and local mass density as defined by Karachentsev & Malakov. However, at a given luminosity, early-type galaxies are (on average) slightly more compact than are objects of a later type. Unexpectedly the present results appear to indicate that the luminosity-diameter relation for the galaxies within 10 Mpc is indistinguishable from what is observed in the much denser Virgo cluster. Galaxies appear to form an almost one-dimensional family in parameter space. It remains a mystery why the luminosity-diameter relation for galaxies is so insensitive to environment.
The young system RX J0529.3+1210 was initially identified as a single-lined spectroscopic binary. Using high-resolution infrared spectra, acquired with NIR-SPEC on Keck II, we measured radial velocities for the secondary. The method of using the infrared regime to convert single-lined spectra into double-lined spectra, and derive the mass ratio for the binary system, has been successfully used for a number of young, low-mass binaries. For RX J0529.3+1210, a long-period (463 days) and highly eccentric (0.91) binary system, we determine the mass ratio to be 0.93 +/- 0.13 using the infrared double-lined data alone, and 0.80 +/- 0.48 combining visible light and infrared data in a full orbital solution. It is possible that the secondary was not identified in visible light because the stars do not have a large velocity separation during most of their ~1.3 year orbit. For the case of a mass ratio close to unity, we explore several scenarios consistent with a color difference in the two stars, such as one heavily spotted component, higher order multiplicity, or a unique evolutionary stage, favoring detection of only the primary star in visible light. Although RX J0529.3+1210 exhibits no excess at near-infrared wavelengths, a small 24 micron excess is detected, consistent with circumbinary dust. The properties of this binary and its membership in Lambda Ori versus a new nearby stellar moving group at ~90 pc are discussed. We speculate on the origin of this unusual system and on the impact of such high eccentricity, the largest observed in a pre-main sequence double-lined system to date, on the potential for planet formation.
Temporal variations of the subsurface meridional flow with the solar cycle have been reported by several authors. The measurements are typically averaged over periods of time during which surface magnetic activity existed in the regions were the velocities are calculated. The present work examines the possible contamination of these measurements due to the extra velocity fields associated with active regions plus the uncertainties in the data obtained where strong magnetic fields are present. We perform a systematic analysis of more than five years of GONG data and compare meridional flows obtained by ring-diagram analysis before and after removing the areas of strong magnetic field. The overall trend of increased amplitude of the meridional flow towards solar minimum remains after removal of large areas associated with surface activity. We also find residual circulation toward the active belts that persist even after the removal of the surface magnetic activity, suggesting the existence of a global pattern or longitudinally-located organized flows.
The DAMA/NaI and DAMA/LIBRA annual modulation data, which may be interpreted as a signal for the existence of weakly interacting dark matter (WIMPs) in our galactic halo, are examined in light of null results from other experiments. We use the energy spectrum of the combined DAMA modulation data given in 36 bins, and include the effect of channeling. Several statistical tools are implemented in our study: likelihood ratio with a global fit and with raster scans in the WIMP mass and goodness-of-fit (g.o.f.). These approaches allow us to differentiate between the preferred (global fit) and allowed (g.o.f.) parameter regions. For spin-independent (SI) interactions, the preferred DAMA regions are ruled out to the 3$\sigma$ C.L., even with channeling taken into account. However, for WIMP masses of ~10 GeV some parameters outside these regions still yield a reasonable fit to the DAMA data and are compatible with all 90% C.L. upper limits from negative searches, when channeling is included. For spin-dependent (SD) interactions with neutron-only couplings we find parameters within the 3$\sigma$ C.L. allowed DAMA region for 7-9 GeV WIMP masses that satisfy other experimental constraints when channeling is included. For SD proton-only couplings, a range of masses below 10 GeV is compatible with DAMA and other experiments, with and without channeling, when Super-Kamiokande (SuperK) indirect detection constraints are included; without the SuperK constraints, masses as high as 70 GeV are compatible. Mixed SD couplings are examined: e.g. ~10 GeV mass WIMPs with an = +/- ap are found to be consistent with all experiments. In short, there are surviving regions at low mass for both SI and SD interactions; if indirect detection limits are relaxed, some SD proton-only couplings at high masses also survive.
Using the 100-m radio telescope at Effelsberg, we mapped a large area around the Andromeda Galaxy in the 21-cm line emission of neutral hydrogen to search for high-velocity clouds (HVCs) out to large projected distances in excess of 100 kpc. Our 3-sigma HI mass sensitivity for the warm neutral medium is 8x10^4 solar masses. We can confirm the existence of a population of HVCs with typical HI masses of a few times 10^5 solar masses near the disc of M31. However, we did not detect any HVCs beyond a projected distance of about 50 kpc from M31, suggesting that HVCs are generally found in proximity of large spiral galaxies at typical distances of a few 10 kpc. Comparison with CDM-based models and simulations suggests that only a few of the detected HVCs could be associated with primordial dark-matter satellites, whereas others are most likely the result of tidal stripping. The lack of clouds beyond a projected distance of 50 kpc from M31 is also in conflict with the predictions of recent CDM structure formation simulations. A possible solution to this problem could be ionisation of the HVCs as a result of decreasing pressure of the ambient coronal gas at larger distances from M31. A consequence of this scenario would be the presence of hundreds of mainly ionised or pure dark-matter satellites around large spiral galaxies like the Milky Way and M31.
We examine the possibility to extend leap second extrapolation for a near future based on some periodic terms in the Earth's rotation changes. The IERS data, covering the interval from 1962.15 to 2006.95, are analyzed. The difference $\Delta T$ is extrapolated till to 2035 and compared with the IERS extrapolated values to the 2012. It can be seen that for the interval from 2006 to 2024 only 1 leap seconds (negative) will be operated.
We provide a brief overview of some key issues that came out of the IAU 256 symposium on the Magellanic System (this http URL)
We investigate the direct contribution of strong, sunspot-like magnetic fields to helioseismic wave travel time shifts via two numerical forward models, a 3D ideal MHD solver and MHD ray theory. Two measurement geometries are employed in estimating the travel-time inhomogeneities, namely single-skip centre-to-annulus and common mid-point deep-focusing, the latter chosen so as to avoid oscillation signals inside strong field regions. We confirm some existing ideas and bring forth new ones: (i) that the observed travel time shifts in the vicinity of sunspots are overwhelmingly governed by MHD physics and not reflective of the underlying thermal structure, (ii) the travel time shifts are sensitively dependent on frequency and phase speed filter parameters and the background power below the $p_1$ mode, (iii) the striking similarity of the time shifts derived from simulations and observations indicates that the time-distance wave statistics may be relatively insensitive to subtle aspects of the flux tube structure, (iv) the enormous magnitude of the perturbation suggests that the time shifts are affected in a distinctly non-linear manner, (v) deep-focus time shifts and their apparent sensitivity to frequency filtering suggest a deeper extension for wave-speed perturbation than previously thought, and finally, (vi) despite its seeming limitations, ray theory succeeds in capturing the essence of the travel-time variations as derived from the MHD simulations.
We present results of a periodicity search of 20 intra-day variable optical light curves of the blazar S5 0716+714, selected from a database of 102 light curves spanning over three years. We use a wavelet analysis technique along with a randomization test and find strong candidates for nearly periodic variations in eight light curves, with probabilities ranging from 95% to >99%. This is the first good evidence for periodic, or more-precisely, quasi-periodic, components in the optical intra-day variable light curves of any blazar. Such periodic flux changes support the idea that some active galactic nuclei variability, even in blazars, is based on accretion disk fluctuations or oscillations. These intra-day variability time scales are used to estimate that the central black hole of the blazar S5 0716+714 has a mass > 2.5 \times 10^6$ M$_{\odot}$. As we did not find any correlations between the flux levels and intra-day variability time scales, it appears that more than one emission mechanism is at work in this blazar.
We discuss the possibility that high-frequency QPOs in neutron-star binary systems may result from forced resonant oscillations of matter in the innermost parts of the accretion disc, excited by gravitational perturbations coming from asymmetries of the neutron star or from the companion star. We find that neutron-star asymmetries could, in principle, be effective for inducing both radial and vertical oscillations of relevant amplitude while the binary companion might possibly produce significant radial oscillations but not vertical ones. Misaligned neutron-star quadrupole moments of a size advocated elsewhere for explaining limiting neutron star periods could be large enough also for the present purpose.
We present results on a survey to find extremely dust-reddened Type-1 Quasars. Combining the FIRST radio survey, the 2MASS Infrared Survey and the Sloan Digital Sky Survey, we have selected a candidate list of 122 potential red quasars. With more than 80% spectroscopically identified objects, well over 50% are classified as dust-reddened Type 1 quasars, whose reddenings (E(B-V)) range from approximately 0.1 to 1.5 magnitudes. They lie well off the color selection windows usually used to detect quasars and many fall within the stellar locus, which would have made it impossible to find these objects with traditional color selection techniques. The reddenings found are much more consistent with obscuration happening in the host galaxy rather than stemming from the dust torus. We find an unusually high fraction of Broad Absorption Line (BAL) quasars at high redshift, all but one of them belonging to the Low Ionization BAL (LoBAL) class and many also showing absorption the metastable FeII line (FeLoBAL). The discovery of further examples of dust-reddened LoBAL quasars provides more support for the hypothesis that BAL quasars (at least LoBAL quasars) represent an early stage in the lifetime of the quasar. The fact that we see such a high fraction of BALs could indicate that the quasar is in a young phase in which quasar feedback from the BAL winds is suppressing star formation in the host galaxy.
A Roche model for describing uniformly rotating rings is presented and the results are compared with numerical solutions to the full problem for polytropic rings. In the thin ring limit, the surfaces of constant pressure including the surface of the ring itself are given in analytic terms, even in the mass-shedding case.
We report the gamma-ray activity from the Intermediate BL Lac S5 0716+714 during 2007 September-October observations by the AGILE satellite, coincident with a period of intense optical activity of the source monitored by GASP-WEBT. AGILE observed the source with its two co-aligned imagers, the Gamma-Ray Imaging Detector (GRID) and the hard X-ray imager (Super-AGILE) sensitive in the energy range 30 MeV-50 GeV and 18-60 keV respectively, in two different periods: the first between 4 and 23 September 2007, the second between 24 October and 1 November 2007. Over the period 7-12 September, AGILE detected gamma-ray emission from the source at a significance level of 9.6-sigma with an average flux (E>100 MeV) of (97+/-15) x 10^{-8} photons cm^{-2} s^{-1}, increasing by a factor of at least four within three days. No emission was detected by Super-AGILE in the energy range 18-60 keV, with a 3-sigma upper limit of 10 mCrab in 335 ksec. The gamma-ray flux of S5 0716+714 detected by AGILE is the highest ever detected for this blazar and one of the most intense gamma-ray fluxes detected from a BL Lac object. The Spectral Energy Distribution (SED) of mid-September seems to be consistent with the synchrotron self-Compton (SSC) emission model, but only by including two SSC components with different variability. In October 2007 AGILE repointed toward S5 0716+714 following an intense optical flare, measuring an average flux of (47+/-11) x 10^{-8} photons cm^{-2} s^{-1} at a significance level of 6.0-sigma. The gamma-ray flux during both AGILE pointings appears to be highly variable on timescales of 1 day.
We present a novel method to estimate the average star formation rate per unit stellar mass (SSFR) of a stacked population of galaxies. We combine the spectra of 600-1000 galaxies with similar stellar masses and parameterise the star formation history of this stacked population using a set of exponentially declining functions. The strength of the Hydrogen Balmer absorption line series in the rest-frame wavelength range 3750-4150\AA is used to constrain the SSFR by comparing with a library of models generated using the BC03 stellar population code. Our method can be applied in a consistent way to spectra drawn from local galaxy surveys and from surveys at $z \sim 1$, and is only weakly influenced by attenuation due to dust. We apply our method to galaxy samples drawn from SDSS and DEEP2 to study mass-dependent growth of galaxies from $z \sim 1$ to $z \sim 0$. We find that, (1) high mass galaxies have lower SSFRs than low mass galaxies; (2) the average SSFR has decreased from $z=1$ to $z=0$ by a factor of $\sim 3-4$, independent of galaxy mass. Additionally, at $z \sim 1$ our average SSFRs are a factor of $2-2.5$ lower than those derived from multi-wavelength photometry using similar datasets. We then compute the average time (in units of the Hubble time, $t_{\rm H}(z)$) needed by galaxies of a given mass to form their stars at their current rate. At both $z=0$ and at $z=1$, this timescale decreases strongly with stellar mass from values close to unity for galaxies with masses $\sim 10^{10} M_{\odot}$, to more than ten for galaxies more massive than $ 10^{11} M_{\odot}$. Our results are in good agreement with models in which AGN feedback is more efficient at preventing gas from cooling and forming stars in high mass galaxies.
Recent analyses of the WMAP 5-year data constrain possible non-adiabatic contributions to the initial conditions of CMB anisotropies. Depending upon the early dynamics of the plasma, the amplitude of the entropic modes can experience a different suppression by the time of photon decoupling. Explicit examples of the latter observation are presented both analytically and numerically when the post-inflationary dynamics is dominated by a stiff contribution.
We run adiabatic N-body/hydrodynamical simulations of isolated self-gravitating gas clouds to test whether conformal gravity, an alternative theory to General Relativity, is able to explain the properties of X-ray galaxy clusters without resorting to dark matter. We show that the gas clouds rapidly reach equilibrium with a density profile which is well fit by a beta-model whose normalization and slope are in approximate agreement with observations. However, conformal gravity fails to yield the observed thermal properties of the gas cloud: (i) the mean temperature is at least an order of magnitude larger than observed; (ii) the temperature profiles increase with the square of the distance from the cluster center, in clear disagreement with real X-ray clusters. These results depend on a gravitational potential whose parameters reproduce the velocity rotation curves of spiral galaxies. However, this parametrization stands on an arbitrarily chosen conformal factor. It remains to be seen whether a different conformal factor, specified by a spontaneous breaking of the conformal symmetry, can reconcile this theory with observations.
Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet Finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors in that respect. In this paper, we investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Besides their main scientific goal (characterising hot giant extrasolar planets), Pegase and FKSI are very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars. They are capable of detecting exozodiacal discs respectively 5 and 1 time as dense as the solar zodiacal cloud and they outperform any ground-based instrument. Unlike Pegase, FKSI can achieve this sensitivity for most targets of the Darwin/TPF catalogue thanks to an appropriate combination of baseline length and observing wavelength. The sensitivity of Pegase could, however, be significantly boosted by considering a shorter interferometric baseline length. These space-based interferometers would be complementary to Antarctica-based instruments in terms of sky coverage and would be ideal instruments for preparing future life-finding space missions.
We present a system of X-ray photometry for the Chandra satellite. X-ray photometry can be a powerful tool to obtain flux estimates, hardness ratios, and colors unbiased by assumptions about spectral shape and independent of temporal and spatial changes in instrument characteristics. The system we have developed relies on our knowledge of effective area and the energy-to-channel conversion to construct filters similar to photometric filters in the optical bandpass. We show that the filters are well behaved functions of energy and that this X-ray photometric system is able to reconstruct fluxes to within about 20%, without color corrections, for non-pathological spectra. Even in the worst cases it is better than 50%. Our method also treats errors in a consistent manner, both statistical as well as systematic.
To understand the environment and extended structure of the host galactic gas whose molecular absorption line chemistry, we previously observed along the microscopic line of sight to the blazar/radiocontinuum source NRAO150 (aka B0355+508), we used the IRAM 30m Telescope and Plateau de Bure Interferometer to make two series of images of the host gas: i) 22.5 arcsec resolution single-dish maps of 12CO J=1-0 and 2-1 emission over a 220 arcsec by 220 arcsec field; ii) a hybrid (interferometer+singledish) aperture synthesis mosaic of 12CO J=1-0 emission at 5.8 arcsec resolution over a 90 arcsec-diameter region. CO components that are observed in absorption at a moderate optical depth (0.5) and are undetected in emission at 1 arcmin resolution toward NRAO 150 remain undetected at 6 arcsec resolution. This implies that they are not a previously-hidden large-scale molecular component revealed in absorption, but they do highlight the robustness of the chemistry into regions where the density and column density are too low to produce much rotational excitation, even in CO. Bright CO lines around NRAO150 most probably reflect the variation of a chemical process, i.e. the C+-CO conversion. However, the ultimate cause of the variations of this chemical process in such a limited field of view remains uncertain.
Massive stars played a key role in the early evolution of the Universe. They formed with the first halos and started the re-ionisation. It is therefore very important to understand their evolution. In this paper, we describe the strong impact of rotation induced mixing and mass loss at very low $Z$. The strong mixing leads to a significant production of primary nitrogen 14, carbon 13 and neon 22. Mass loss during the red supergiant stage allows the production of Wolf-Rayet stars, type Ib,c supernovae and possibly gamma-ray bursts (GRBs) down to almost Z=0 for stars more massive than 60 solar masses. Galactic chemical evolution models calculated with models of rotating stars better reproduce the early evolution of N/O, C/O and C12/C13. We calculated the weak s-process production induced by the primary neon 22 and obtain overproduction factors (relative to the initial composition, Z=1.e-6) between 100-1000 in the mass range 60-90.
Strong tidal interaction with the central star can circularize the orbits of close-in planets. With the standard tidal quality factor Q of our solar system, estimated circularization times for close-in extrasolar planets are typically shorter than the ages of the host stars. While most extrasolar planets with orbital radii a < 0.1 AU indeed have circular orbits, some close-in planets with substantial orbital eccentricities have recently been discovered. This new class of eccentric close-in planets implies that either their tidal Q factor is considerably higher, or circularization is prevented by an external perturbation. Here we constrain the tidal Q factor for transiting extrasolar planets by comparing their circularization times with accurately determined stellar ages. Using estimated secular perturbation timescales, we also provide constraints on the properties of hypothetical second planets exterior to the known ones.
The space-borne antimatter experiment PAMELA has recently reported a surprising rise in the positron to electron ratio at high energies. It has also recently been found that electromagnetic radiative corrections in some cases may boost the gamma-ray yield from supersymmetric dark matter annihilations in the galactic halo by up to three or four orders of magnitude, providing distinct spectral signatures for indirect dark matter searches to look for. Here, we investigate whether the same type of corrections can also lead to sizeable enhancements in the positron yield. We find that this is indeed the case, albeit for a smaller region of parameter space than for gamma rays; selecting models with a small mass difference between the neutralino and sleptons, like in the stau coannihilation region in mSUGRA, the effect becomes more pronounced. The resulting, rather hard positron spectrum with a relatively sharp cutoff may potentially fit the rising positron ratio measured by the PAMELA satellite. To do so, however, as seems also to be the case for most other dark matter models, very large "boost factors" have to be invoked that are not expected in current models of halo structure. If the predicted cutoff would also be confirmed by later PAMELA data or upcoming experiments, one could either assume non-thermal production in the early universe or non-standard halo formation to explain such a spectral feature as an effect of dark matter annihilation. At the end of the paper, we briefly comment on the impact of radiative corrections on other annihilation channels, in particular antiprotons and neutrinos.
In interstellar dust grains, internal processes dissipate rotational kinetic energy. The dissipation is accompanied by thermal fluctuations, which transfer energy from the vibrational modes to rotation. Together, these processes are known as internal relaxation. For the past several years, internal relaxation has been thought to give rise to thermal flipping, with profound consequences for grain alignment theory. I show that thermal flipping is not possible in the limit that the inertia tensor does not vary with time.
The high-lights of ground-based very-high-energy (VHE, $E>100$ GeV) gamma-ray astronomy are reviewed. The summary covers both Galactic and extra-galactic sources. A total of at least 70 sources are currently known. Implications for our understanding of the non-thermal Universe are discussed. The next generation of ground based gamma-ray instruments aims to cover the entire accessible energy range from as low as $\approx 10$ GeV up to $10^5$ GeV and to improve the sensitivity by an order of magnitude in comparison with current instruments.
A new class of particle physics models of inflation based on the phase transition associated with the spontaneous breaking of family symmetry is proposed. The Higgs fields responsible for the breaking of family symmetry, the flavons, are natural inflaton candidates or waterfall fields in hybrid inflation. This opens up a rich vein of possible inflation models, all linked to the physics of flavour, with several interesting cosmological implications.
The equation of state (EoS) of dark energy $w$ remains elusive despite
enormous experimental efforts to pin down its value and its time variation. Yet
it is the single most important handle we have in our understanding of one of
the most mysterious puzzle in nature, dark energy. This letter proposes a new
method for measuring the EoS of dark energy by using the gravitational waves
(GW) of black hole binaries. The method described here offers an alternative to
the standard way of large scale surveys.
It is well known that the mass of a black hole changes due to the accretion
of dark energy but at an extremely slow rate. However, a binary of supermassive
black holes (SBH) radiates gravitational waves with a power proportional to the
masses of these accreting stars and thereby carries information on dark energy.
These waves can propagate through the vastness of structure in the universe
unimpeded. The orbital changes of the binary, induced by the energy loss from
gravitational radiation, receive a large contribution from dark energy
accretion. This contribution is directly proportional to $(1+w)$ and is
dominant for SBH binaries with separation $R \ge 1000$ parsec, thereby
accelerating the merging process for $w > -1$ or ripping the stars apart for
phantom dark energy with $w < -1$. Such orbital changes, therefore $w$, can be
detected with LIGO and LISA near merging time, or with X-ray and radio
measurements of Chandra and VLBA experiments.
Some verses of Dante Alighieri suggest his astrological sign and his probable date of birth. This leads us to reflect on the different methods, increasingly divergent, with which sciences as opposed to beliefs approach reality.
Links to: arXiv, form interface, find, astro-ph, recent, 0808, contact, help (Access key information)
We carry out a comprehensive theoretical examination of the relationship between the spatial distribution of optical transients and the properties of their progenitor stars. By constructing analytic models of star-forming galaxies and the evolution of stellar populations within them, we are able to place constraints on candidate progenitors for core-collapse supernovae (SNe), long-duration gamma ray bursts, and supernovae Ia. In particular we first construct models of spiral galaxies that reproduce observations of core-collapse SNe, and we use these models to constrain the minimum mass for SNe Ic progenitors to approximately 25 solar masses. Secondly, we lay out the parameters of a dwarf irregular galaxy model, which we use to show that the progenitors of long-duration gamma-ray bursts are likely to have masses above approximately 43 solar masses. Finally, we introduce a new method for constraining the time scale associated with SNe Ia and apply it to our spiral galaxy models to show how observations can better be analyzed to discriminate between the leading progenitor models for these objects.
We investigate the angular two-point correlation function of temperature in the WMAP maps. Updating and extending earlier results, we confirm the lack of correlations outside the Galaxy on angular scales greater than about 60 degrees at a level that would occur in 0.025 per cent of realizations of the concordance model. This represents a dramatic increase in significance from the original observations by the COBE-DMR and a marked increase in significance from the first-year WMAP maps. Given the rest of the reported angular power spectrum C_\ell, the lack of large-angle correlations that one infers outside the plane of the Galaxy requires covariance among the C_\ell up to \ell=5. Alternately, it requires both the unusually small (5 per cent of realizations) full-sky large-angle correlations, and an unusual coincidence of alignment of the Galaxy with the pattern of cosmological fluctuations (less than 2 per cent of those 5 per cent). We argue that unless there is some undiscovered systematic error in their collection or reduction, the data point towards a violation of statistical isotropy. The near-vanishing of the large-angle correlations in the cut-sky maps, together with their disagreement with results inferred from full-sky maps, remain open problems, and are very difficult to understand within the concordance model.
The uniformity of the helium-to-hydrogen abundance ratio in X-ray emitting intracluster medium (ICM) is one of the commonly adopted assumptions in X-ray analyses of galaxy clusters and cosmological constraints derived from these measurements. In this work, we investigate the effect of He sedimentation on X-ray measurements of galaxy clusters in order to assess this assumption and associated systematic uncertainties. By solving a set of flow equations for a H-He plasma, we show that observed temperature drops both in the inner and outer regions dramatically reduce the efficiency of He sedimentation in X-ray clusters, compared to the isothermal case. We show that the effect of He sedimentation is negligibly small in cluster outskirts, but it introduces increasing larger biases in the inner regions of clusters. We show that these biases also introduce an apparent evolution in the observed gas mass fractions of X-ray luminous, dynamically relaxed clusters and hence biases in observational constraints on the dark energy equation of state parameter, w, derived from the cluster distance-redshift relation. The Hubble parameter derived from the combination of X-ray and Sunyaev-Zel'dovich effect (SZE) measurements is affected by the He sedimentation process as well. Future measurements aiming to constrain w or H_0 to better than 10% may need to take into account the effect of He sedimentation. We propose that the evolution of gas mass fraction in the inner regions of clusters should provide unique observational diagnostics of the He sedimentation process.
We present analyses of a 50 ks observation of the supergiant X-ray binary system Cygnus X-1/HDE 226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). Cyg X-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for Cyg X-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe Kalpha line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect two plasma components with velocities and densities consistent with the base of the spherical wind and a focused wind. A simple simulation of the photoionization zone suggests that large parts of the spherical wind outside of the focused stream are completely ionized, which is consistent with the low velocities (<200 km/s) observed in the absorption lines, as the position of absorbers in a spherical wind at low projected velocity is well constrained. Our observations provide input for models that couple the wind activity of HDE 226868 to the properties of the accretion flow onto the black hole.
The Milky Way has at least twenty-three known satellite galaxies that shine with luminosities ranging from about a thousand to a billion times that of the Sun. Half of these galaxies were discovered in the past few years in the Sloan Digital Sky Survey, and they are among the least luminous galaxies in the known Universe. A determination of the mass of these galaxies provides a test of galaxy formation at the smallest scales and probes the nature of the dark matter that dominates the mass density of the Universe. Here we use new measurements of the velocities of the stars in these galaxies to show that they are consistent with them having a common mass of about 10^7 M_\odot within their central 300 parsecs. This result demonstrates that the faintest of the Milky Way satellites are the most dark matter-dominated galaxies known, and could be a hint of a new scale in galaxy formation or a characteristic scale for the clustering of dark matter.
We present high-resolution Very Large Array imaging of the molecular gas in the host galaxy of the high redshift quasar BRI 1335-0417 (z=4.41). Our CO(2-1) observations have a linear resolution of 0.15" (1.0 kpc) and resolve the molecular gas emission both spatially and in velocity. The molecular gas in BRI 1335-0417 is extended on scales of 5 kpc, and shows a complex structure. At least three distinct components encompassing about two thirds of the total molecular mass of 9.2 x 10^10 M_sun are identified in velocity space, which are embedded in a structure that harbors about one third of the total molecular mass in the system. The brightest CO(2-1) line emission region has a peak brightness temperature of 61+/-9 K within 1 kpc diameter, which is comparable to the kinetic gas temperature as predicted from the CO line excitation. This is also comparable to the gas temperatures found in the central regions of nearby ultra-luminous infrared galaxies, which are however much more compact than 1 kpc. The spatial and velocity structure of the molecular reservoir in BRI 1335-0417 is inconsistent with a simple gravitationally bound disk, but resembles a merging system. Our observations are consistent with a major, gas-rich (`wet') merger that both feeds an accreting supermassive black hole (causing the bright quasar activity), and fuels a massive starburst that builds up the stellar bulge in this galaxy. Our study of this z>4 quasar host galaxy may thus be the most direct observational evidence that `wet' mergers at high redshift are related to AGN activity.
Growth of massive black holes (MBHs) in galactic centers comes mainly from gas accretion during their QSO/AGN phases. In this paper we apply an extended Soltan argument, connecting the local MBH mass function with the time-integral of the QSO luminosity function, to the demography of MBHs and QSOs from recent optical and X-ray surveys, and obtain robust constraints on the luminosity evolution (or mass growth history) of individual QSOs (or MBHs). We find that the luminosity evolution probably involves two phases: an initial exponentially increasing phase set by the Eddington limit and a following phase in which the luminosity declines with time as a power law (with a slope of -1.2--1.3) set by a self-similar long-term evolution of disk accretion. Neither an evolution involving only the increasing phase with a single Eddington ratio nor an exponentially declining pattern in the second phase is likely. The period of a QSO radiating at a luminosity higher than 10% of its peak value is about (2-3)x10^8 yr, during which the MBH obtains ~80% of its mass. The mass-to-energy conversion efficiency is $0.16\pm0.04 ^{+0.05}_{-0}$, with the latter error accounting for the maximum uncertainty due to Compton-thick AGNs. The expected Eddington ratios in QSOs from the constrained luminosity evolution cluster around a single value close to 0.5-1 for high-luminosity QSOs and extend to a wide range of lower values for low-luminosity ones. The Eddington ratios for high luminosity QSOs appear to conflict with those estimated from observations (~0.25) by using some virial mass estimators for MBHs in QSOs unless the estimators systematically over-estimate MBH masses by a factor of 2-4. We also infer the fraction of optically obscured QSOs ~60-80%. Further applications of the luminosity evolution of individual QSOs are also discussed.
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
The apparent spectral evolution observed in the steep decay phase of many GRB early afterglows raises a great concern of the high-latitude ``curvature effect'' interpretation of this phase. However, previous curvature effect models only invoked a simple power law spectrum upon the cessation of the prompt internal emission. We investigate a model that invokes the ``curvature effect'' of a more general non-power-law spectrum and test this model with the Swift/XRT data of some GRBs. By comparing the simulated lightcurves/spectra with the observed ones, we show that one can reproduce both the observed lightcurve and the apparent spectral evolution of several GRBs using a model invoking a cut-off power-law spectrum. GRB 050814 is presented as an example. This suggests that at least for some GRBs, the fast spectral evolution in the steep-decay phase can be explained by the curvature effect invoking a non-power-law spectrum.
In an attempt of clarifying the connection between the photospheric abundance anomalies and the stellar rotation as well as of exploring the nature of "normal A" stars, the abundances of seven elements (C, O, Si, Ca, Ti, Fe, and Ba) and the projected rotational velocity for 46 A-type field stars were determined by applying the spectrum-fitting method to the high-dispersion spectral data obtained with BOES at BOAO. We found that the peculiarities (underabundances of C, O, and Ca; an overabundance of Ba) seen in slow rotators efficiently decrease with an increase of rotation, which almost disappear at v_e sin i > 100 km s^-1. This further suggests that stars with sufficiently large rotational velocity may retain the original composition at the surface without being altered. Considering the subsolar tendency (by several tenths dex below) exhibited by the elemental abundances of such rapidly-rotating (supposedly normal) A stars, we suspect that the gas metallicity may have decreased since our Sun was born, contrary to the common picture of galactic chemical evolution.
The shape of the main arc formed by the Canis Major clouds has been suggested to result from a supernova explosion possibly triggering the recent star formation activity. The presence of dozens of OB stars and reflection nebulae forms the CMa OB1/R1 associations. More than a hundred emission line stars are found in this region, including the famous Z CMa, a binary system containing a Herbig Be star and a FUor companion. Several embedded infrared clusters with different ages are associated with the CMa clouds. The main characteristics of the region in terms of cloud structure, stellar content, age of associated young clusters, distance, and X-ray emission are presented in this chapter. Some of the arguments in favor and against the hypothesis of induced star formation are discussed in the last section.
We present the first results of a MOS campaign to follow up cluster candidates located via weak lensing. Our main goals are to search for spatial concentrations of galaxies that are plausible optical counterparts of the weak lensing signals, and to determine the cluster redshifts from those of member galaxies. Around each of 36 targeted cluster candidates, we obtain 15-32 galaxy redshifts. For 28 of these targets, we confirm a secure cluster identification. This includes three cases where two clusters at different redshifts are projected along the same line-of-sight. In 6 of the 8 unconfirmed targets, we find multiple small galaxy concentrations at different redshifts. In both the remaining two targets, a single small galaxy concentration is found. We evaluate the weak lensing mass of confirmed clusters. For a subsample of our most cleanly measured clusters, we investigate the statistical relation between their weak lensing mass and the velocity dispersion of their member galaxies, comparing our sample with optically and X-ray selected samples from the literature. Our lensing-selected clusters are consistent with sigma_v=sigma_sis, with a similar scatter to the optically and X-ray selected clusters. We thus find no evidence of selection bias compared to these other techniques. We also derive an empirical relation between the cluster mass and the galaxy velocity dispersion, which is in reasonable agreement with the prediction of N-body simulations in the LCDM cosmology.
NGC 2362 is a richly populated Galactic cluster, devoid of natal molecular gas and dust. The cluster represents the final product of the star forming process and hosts an unobscured and near-complete initial mass function. NGC 2362 is dominated by the O9 Ib multiple star, tau CMa, as well as several dozen unevolved B-type stars. Distributed throughout the cluster are several hundred suspected intermediate and low-mass pre-main sequence members. Various post-main sequence evolutionary models have been used to infer an age of 5 Myr for the one evolved member, tau CMa. These estimates are in close agreement with the ages derived by fitting pre-main sequence isochrones to the contracting, low-mass stellar population of the cluster. The extremely narrow sequence of stars, which extends more than 9 mag in the optical color-magnitude diagram, suggests that star formation within the cluster occurred rapidly and coevally across the full mass spectrum. Ground-based near infrared and H-alpha emission surveys of NGC 2362 concluded that most (~90%) of the low-mass members have already dissipated their optically-thick, inner(< 1 AU) circumstellar disks. Spitzer IRAC observations of the cluster have confirmed these results, placing an upper limit on the primordial, optically thick disk fraction of the cluster at 7(+/-)2%. The presence of circumstellar disks among candidate members of NGC 2362 is also strongly mass-dependent, such that no stars more massive than 1.2 Msun exhibit significant infrared excess shortward of 8 microns. The well-defined upper main sequence of NGC 2362, its large population of low-mass stars, and the narrow age spread evident in the color-magnitude diagram ensure its role as a standard model of cluster as well as stellar evolution.
Extrasolar planets observation and characterization by high contrast imaging instruments is set to be a very important subject in observational astronomy. Dedicated instruments are being developed to achieve this goal with very high efficiency. In particular, full spectroscopic characterization of low temperature planetary companions is an extremely important milestone. We present a new data analysis method for long slit spectroscopy (LSS) with coronagraphy, which allows characterization of planetary companions of low effective temperature. In a speckle-limited regime, this method allows an accurate estimation and subtraction of the scattered starlight, to extract a clean spectrum of the planetary companion. We performed intensive LSS simulations with IDL/CAOS to obtain realistic spectra of low (R=35) and medium (R=400) resolution in the J, H, and K bands. The simulated spectra were used to test our method and estimate its performance in terms of contrast reduction and extracted spectra quality. Our simulations are based on a software package dedicated to the development of SPHERE, a second generation instrument for the ESO-VLT. Our method allows a contrast reduction of 0.5 to 2.0 magnitudes compared to the coronagraphic observations. For M0 and G0 stars located at 10 pc, we show that it would lead to the characterization of companions with Teff of 600 K and 900 K respectively, at angular separations of 1.0 as. We also show that errors in the wavelength calibration can produce significant errors in the characterization, and must therefore be minimized as much as possible.
We present new proper motions from the 10 m Keck telescopes for a puzzling population of massive, young stars located within 3.5" (0.14 pc) of the supermassive black hole at the Galactic Center. Our proper motion measurements have uncertainties of only 0.07 mas/yr (3 km/s), which is ~7 times better than previous proper motion measurements for these stars, and enables us to measure accelerations as low as 0.2 mas/yr^2 (7 km/s/yr). Using these measurements, line-of-sight velocities from the literature, and 3D velocities for additional young stars in the central parsec, we constrain the true orbit of each individual star and directly test the hypothesis that the massive stars reside in two stellar disks as has been previously proposed. Analysis of the stellar orbits reveals only one of the previously proposed disks of young stars using a method that is capable of detecting disks containing at least 7 stars. The detected disk contains 50% of the young stars, is inclined by ~115 deg from the plane of the sky, and is oriented at a position angle of ~100 deg East of North. Additionally, the on-disk and off-disk populations have similar K-band luminosity functions and radial distributions that decrease at larger projected radii as \propto r^-2. The disk has an out-of-the-disk velocity dispersion of 28 +/- 6 km/s, which corresponds to a half-opening angle of 7 +/- 2 deg, and several candidate disk members have eccentricities greater than 0.2. Our findings suggest that the young stars may have formed in situ but in a more complex geometry than a simple, thin circular disk.
Precession in an accretion-powered pulsar is expected to produce characteristic variations in the pulse properties. Assuming surface intensity maps with one and two hotspots, we compute theoretically the periodic modulation of the mean flux, pulse-phase residuals and fractional amplitudes of the first and second harmonic of the pulse profiles. These quantities are characterised in terms of their relative precession phase offsets. We then search for these signatures in 37 days of X-ray timing data from the accreting millisecond pulsar XTE J1814-338. We analyse a 12.2-d modulation observed previously and show that it is consistent with a freely precessing neutron star only if the inclination angle is < 0.1 degrees, an a priori unlikely orientation. We conclude that if the observed flux variations are due to precession, our model incompletely describes the relative precession phase offsets (e.g. the surface intensity map is over-simplified). We are still able to place an upper limit on \epsilon of 3.0 x 10^{-9} independently of our model, and estimate the phase-independent tilt angle \theta; to lie roughly between 5 and 10 degrees. On the other hand, if the observed flux variations are not due to precession, the detected signal serves as a firm upper limit for any underlying precession signal. We then place an upper limit on the product \epsilon cos(\theta) of \leq 9.9 x 10^{-10}. The first scenario translates into a maximum gravitational wave strain of 10^{-27} from XTE J1814-338 (assuming a distance of 8 kpc), and a corresponding signal-to-noise ratio of \leq 10^{-3} (for a 120 day integration time) for the advanced LIGO ground-based gravitational wave detector.
NGC 2264 is a young Galactic cluster and the dominant component of the Mon OB1 association lying approximately 760 pc distant within the local spiral arm. The cluster is hierarchically structured, with subclusters of suspected members spread across several parsecs. Associated with the cluster is an extensive molecular cloud complex spanning more than two degrees on the sky. Star formation is ongoing within the region as evidenced by the presence of numerous embedded clusters of protostars, molecular outflows, and Herbig-Haro objects. The stellar population of NGC 2264 is dominated by the O7 V multiple star, S Mon, and several dozen B-type zero-age main sequence stars. X-ray imaging surveys, H-alpha emission surveys, and photometric variability studies have identified more than 600 intermediate and low-mass members distributed throughout the molecular cloud complex, but concentrated within two densely populated areas between S Mon and the Cone Nebula. Estimates for the total stellar population of the cluster range as high as 1000 members and limited deep photometric surveys have identified 230 substellar mass candidates. The median age of NGC 2264 is estimated to be 3 Myr, but an apparent age dispersion of at least 5 Myr can be inferred from the broadened sequence of suspected members. Infrared and millimeter observations of the cluster have identified two prominent sites of star formation activity centered near NGC 2264 IRS1, a deeply embedded early-type star, and IRS2, a star forming core and associated protostellar cluster. Given its relative proximity, well-defined stellar population, and low foreground extinction, the cluster will remain a prime candidate for star formation studies throughout the foreseeable future.
Radio observations from decimetric to submillimetric wavelengths are now a basic tool for the investigation of comets. Spectroscopic observations allow us i) to monitor the gas production rate of the comets, by directly observing the water molecule, or by observing secondary products (e.g., the OH radical) or minor species (e.g., HCN); ii) to investigate the chemical composition of comets; iii) to probe the physical conditions of cometary atmospheres: kinetic temperature and expansion velocity. Continuum observations probe large-size dust particles and (for the largest objects) cometary nuclei. Comets are classified from their orbital characteristics into two separate classes: i) nearly-isotropic, mainly long-period comets and ii) ecliptic, short-period comets, the so-called Jupiter-family comets. These two classes apparently come from two different reservoirs, respectively the Oort cloud and the trans-Neptunian scattered disc. Due to their different history and - possibly - their different origin, they may have different chemical and physical properties that are worth being investigated. The present article reviews the contribution of radio observations to our knowledge of the Jupiter-family comets (JFCs). The difficulty of such a study is the commonly low gas and dust productions of these comets. Long-period, nearly-isotropic comets from the Oort cloud are better known from Earth-based observations. On the other hand, Jupiter-family comets are more easily accessed by space missions. However, unique opportunities to observe Jupiter-family comets are offered when these objects come by chance close to the Earth. About a dozen JFCs were successfully observed by radio techniques up to now. No obvious evidence for different properties between JFCs and other families of comets is found.
Spectral and timing studies of Suzaku ToO observations of two SGRs, 1900+14 and 1806-20, are presented. The X-ray quiescent emission spectra were well fitted by a two blackbody function or a blackbody plus a power law model. The non-thermal hard component discovered by INTEGRAL was detected by the PIN diodes and its spectrum was reproduced by the power law model reported by INTEGRAL. The XIS detected periodicity P = 5.1998+/-0.0002 s for SGR 1900+14 and P = 7.6022+/-0.0007 s for SGR 1806-20. The pulsed fraction was related to the burst activity for SGR 1900+14.
The dynamics of stars in the inner regions of nearby globular clusters (GCs) such as M15 and G1 indicate the presence of central concentrated dark masses, and one would like to know whether these are indeed intermediate mass black holes (IMBHs). As the number of surrounding stars, and their motions, are roughly known, the capture rate can be estimated; the question then arises of whether the apparent quiescence of the nuclei of these GCs is compatible with the IMBH's presence. The role of debris from disrupted stars in activating quiescent nuclei of GCs is studied here employing three-dimensional hydrodynamics simulations. It is argued that when individual stars are disrupted, the bulk of the debris would be swallowed or expelled rapidly compared with the interval between successive disruptions. Only a small fraction of the tightly bound mass is likely to be swallowed, yielding radiation with high efficiency, the surplus being expelled in a radiation-driven wind. A transient (predominantly of soft X-ray emission) signal could persist steadily with L ~ L_Edd =10^{41}(M_h/10^3M_sun) erg/s for at most tens of years; thereafter the flare would rapidly fade. While the infall rate declines as t^{-5/3}, some material may be stored for a longer time in an accretion disk. The IMBH luminosity could then remain as high as L_X > 10^{39} erg/s for several hundreds of years after disruption. In a given object, this ultraluminous X-ray activity would have a duty cycle of order 10^{-4}. Stellar disruption is therefore a relatively short-lived phase in the life of a GC and is unlikely to contribute to the growth of the IMBH unless the bulk of tightly bound debris is swallowed with an unreasonably low radiative efficiency. (abridged)
We present a catalogue of 12CO(J=1-0) and 13CO(J=1-0) molecular clouds in the spatio-velocity range of the Carina Flare supershell, GSH 287+04-17. The data cover a region of ~66 square degrees and were taken with the NANTEN 4m telescope, at spatial and velocity resolutions of 2.6' and 0.1 km/s. Decomposition of the emission results in the identification of 156 12CO clouds and 60 13CO clouds, for which we provide observational and physical parameters. Previous work suggests the majority of the detected mass forms part of a comoving molecular cloud complex that is physically associated with the expanding shell. The cloud internal velocity dispersions, degree of virialization and size-linewidth relations are found to be consistent with those of other Galactic samples. However, the vertical distribution is heavily skewed towards high-altitudes. The robust association of high-z molecular clouds with a known supershell provides some observational backing for the theory that expanding shells contribute to the support of a high-altitude molecular layer.
We present Minimal Dark Matter and its univocal predictions for Dark Matter observables. During the idm2008 conference, PAMELA presented preliminary results showing an excess in the positron fraction: we find a good agreement, with a modest astrophysical boost factor.
Warps in the outer gaseous disks of galaxies are a ubiquitous phenomenon, but it is unclear what generates them. One theory is that warps are generated internally through spontaneous bending instabilities. Other theories suggest that they result from the interaction of the outer disk with accreting extragalactic material. In this case, we expect to find cases where the circular velocity of the warp gas is poorly correlated with the rotational velocity of the galaxy disk at the same radius. Optical spectroscopy presents itself as an interesting alternative to 21-cm observations for testing this prediction, because (i) separating the kinematics of the warp from those of the disk requires a spatial resolution that is higher than what is achieved at 21 cm at low HI column density; (ii) optical spectroscopy also provides important information on star formation rates, gas excitation, and chemical abundances, which provide clues to the origin of the gas in warps. We present here preliminary results of a study of the kinematics of gas in the outer-disk warps of seven edge-on galaxies, using multi-hour VLT/FORS2 spectroscopy.
The Medusa (NGC 4194) is a well-studied nearby galaxy with the disturbed appearance of a merger and evidence for ongoing star formation. In order to test whether it could be the result of an interaction between a gas-rich disk-like galaxy and a larger elliptical, we have carried out optical and radio observations of the stars and the gas in the Medusa, and performed $N$-body numerical simulations of the evolution of such a system. We used the Nordic Optical Telescope to obtain a deep V-band image and the Westerbork Radio Synthesis Telescope to map the large-scale distribution and kinematics of atomic hydrogen. A single HI tail was found to the South of the Medusa with a projected length of 56 kpc (5') and a gas mass of 7* 10^8 M_sun, thus harbouring about one third of the total HI mass of the system. HI was also detected in absorption toward the continuum in the center. HI was detected in a small nearby galaxy to the North-West of the Medusa at a projected distance of 91 kpc. It is, however, unlikely that this galaxy has had a significant influence on the evolution of the Medusa. The simulations of the slightly prograde infall of a gas-rich disk galaxy on an larger, four time more massive elliptical (spherical) galaxy reproduce most of the observed features of the Medusa.Thus, the Medusa is an ideal object to study the merger-induced star formation contribution from the small galaxy of a minor merger.
We review the properties of the very young (2 Myr) open cluster NGC6383. The cluster is dominated by the massive binary HD159176 (O7V + O7V). The distance to NGC6383 is consistently found to be 1.3 +- 0.1 kpc and the average reddening is determined to be E(B-V) = 0.32 +- 0.02. Several pre-main sequence candidates have been identified using different criteria relying on the detection of emission lines, infrared excesses, photometric variability and X-ray emission.
Nearby young clusters are privileged places to study the star formation
history. Over the last decade, the sigma-Orionis cluster has been a prime
location for the study of young very low mass stars, substellar and isolated
planetary mass objects and the determination of the initial mass function.
To extend previous studies of this association to its core, we searched for
ultracool members and new multiple systems within the 1.5'x1.5' central region
of the cluster.
We obtained deep multi-conjugate adaptive optics (MCAO) images of the core of
the sigma-Orionis cluster with the prototype MCAO facility MAD at the VLT using
the H and Ks filters. These images allow us to reach Delta H~5mag as close as
0.2" on a typical source with H=14.5mag. These images were complemented by
archival SofI Ks-band images and Spitzer IRAC and MIPS mid-infrared images.
We report the detection of 2 new visual multiple systems, one being a
candidate binary proplyd and the other one a low mass companion to the massive
star sigma Ori E. Of the 36 sources detected in the images, 25 have a H-band
luminosity lower than the expected planetary mass limit for members, and H-Ks
color consistent with the latest theoretical isochrones. Nine objects have
additional Spitzer photometry and spectral energy distribution consistent with
them being cluster members. One of them has a spectral energy distribution from
H to 3.6micron consistent with that of a 5.5 MJup cluster member. Complementary
NTT/SofI and Spitzer photometry allow us to confirm the nature and membership
of two L-dwarf planetary mass candidates.
We have studied the kinematics traced by the water masers located at the centre of the planetary nebula (PN) K3-35, using data from previous Very Large Array (VLA) observations. An analysis of the spatial distribution and line-of-sight velocities of the maser spots allows us to identify typical patterns of a rotating and expanding ring in the position-velocity diagrams, according to our kinematical model. We find that the distribution of the masers is compatible with tracing a circular ring with a ~0.021 arcsec (~100 AU) radius, observed with an inclination angle with respect to the line of sight of 55 degrees. We derive expansion and rotation velocities of 1.4 and 3.1 km/s, respectively. The orientation of the ring projected on the plane of the sky, at PA 158 degrees, is almost orthogonal to the direction of the innermost region of the jet observed in K3-35, suggesting the presence of a disc or torus that may be related to the collimation of the outflow.
We study an accretion disk in which three different regions may coexist: MHD turbulent regions, dead zones and gravitationally unstable regions. Although the dead zones are stable, there is some transport due to the Reynolds stress associated with waves emitted from the turbulent layers. We model the transport in each of the different regions by its own $\alpha$ parameter, this being 10 to $10^{3}$ times smaller in dead zones than in active layers. In gravitationally unstable regions, $\alpha$ is determined by the fact that the disk self-adjusts to a state of marginal stability. We construct steady-state models of such disks. We find that for uniform mass flow, the disk has to be more massive, hotter and thicker at the radii where there is a dead zone. In disks in which the dead zone is very massive, gravitational instabilities are present. Whether such models are realistic or not depends on whether hydrodynamical fluctuations driven by the turbulent layers can penetrate all the way inside the dead zone. This may be more easily achieved when the ratio of the mass of the active layer to that of the dead zone is relatively large, which in our models corresponds to $\alpha$ in the dead zone being about 10% of $\alpha$ in the active layers. If the disk is at some stage of its evolution not in steady-state, then the surface density will evolve toward the steady-state solution. However, if $\alpha$ in the dead zone is much smaller than in the active zone, the timescale for the parts of the disk beyond a few AU to reach steady-state may become longer than the disk lifetime. Steady-state disks with dead zones are a more favorable environment for planet formation than standard disks, since the dead zone is typically 10 times more massive than a corresponding turbulent zone at the same location.
Cosmological simulations consistently predict specific properties of dark matter halos, but these have not yet led to a physical understanding that is generally accepted. This is especially true for the central regions of these structures. Recently two major themes have emerged. In one, the dark matter halo is primarily a result of the sequential accretion of primordial structure (ie `Nature'); while in the other, dynamical relaxation (ie `Nurture') dominates at least in the central regions. Some relaxation is however required in either mechanism. In this paper we accept the recently established scale-free sub-structure of halos as an essential part of both mechanisms. Consequently; a simple model for the central relaxation based on a self-similar cascade of tidal interactions, is contrasted with a model based on the accretion of adiabatically self-similar, primordial structure. We conclude that a weak form of this relaxation is present in the simulations, but that is normally described as the radial orbit instability.
We present an accurate characterisation of the high-resolution X-ray spectrum of the Narrow Line Seyfert 1 galaxy Arakelian 564 and put it in to context with other objects of its type by making a detailed comparison of their spectra. The best fit to the data identifies five significant emission lines at 18.9, 22.1, 24.7, 29.0 and 33.5A due O VIII Ly alpha, O VII(f), N VII Ly alpha, N VI(i) and C VI Ly alpha respectively. These have an RMS velocity of ~1100km/s and a flow velocity of ~-600km/s, except for the O VII(f) emission line, which has a flow velocity consistent with zero. Two separate emitting regions are identified. Three separate phases of photoionized, X-ray absorbing gas are included in the fit with ionization parameters log xi=-0.86, 0.87, 2.56 and column densities N_H=0.89, 2.41, 6.03*10^20cm^-2 respectively. All three phases show this to be an unusually low velocity outflow (-10pm100km/s) for a narrow line Seyfert 1. We present the hypothesis that the BLR is the source of the NLR and warm absorber, and examine optical and UV images from the XMM-Newton Optical Monitor to relate our findings to the characteristics of the host galaxy.
With a self-similar magnetohydrodynamic (MHD) model of an exploding progenitor star and an outgoing rebound shock and with the thermal bremsstrahlung as the major radiation mechanism in X-ray bands, we reproduce the early X-ray light curve observed for the recent event of XRO 080109/SN 2008D association. The X-ray light curve consists of a fast rise, as the shock travels into the "visible layer" in the stellar envelope, and a subsequent power-law decay, as the plasma cools in a self-similar evolution. The observed spectral softening is naturally expected in our rebound MHD shock scenario. We propose to attribute the "non-thermal spectrum" observed to be a superposition of different thermal spectra produced at different layers of the stellar envelope.
We apply the joint lensing and dynamics code for the analysis of early-type galaxies, CAULDRON, to a rotating N-body stellar system with dark matter halo which significantly violates the two major assumptions of the method, i.e. axial symmetry supported by a two-integral distribution function. The goal is to study how CAULDRON performs in an extreme case, and to determine which galaxy properties can still be robustly recovered. Three data sets, corresponding to orthogonal lines of sight, are generated from the N-body system and analysed with the identical procedure followed in the study of real lens galaxies, adopting an axisymmetric power-law total density distribution. We find that several global properties of the N-body system are recovered with remarkable accuracy, despite the fact that the adopted power-law model is too simple to account for the lack of symmetry and the complex substructure of the true density distribution. In particular, the logarithmic slope of the total density distribution is robustly recovered to within less than 10% (with the exception of the ill-constrained very inner regions), the inferred angle-averaged radial profile of the total mass closely follows the true distribution, and the dark matter fraction of the system (inside the effective radius) is correctly determined within ~ 10% of the total mass. Unless the line of sight direction is almost parallel to the total angular momentum vector of the system, reliably recovered quantities also include the angular momentum, the V/sigma ratio, and the anisotropy parameter delta. We conclude that the CAULDRON code can be safely and effectively applied to real early-type lens galaxies, providing reliable information also for systems which depart significantly from the method's assumptions.
Israelian et al. (2004) reported that exoplanet host stars are lithium depleted compared to solar-type stars without detected massive planets, a result recently confirmed by Gonzalez (2008). We investigate whether enhanced lithium depletion in exoplanet host stars may result from their rotational history. We develop rotational evolution models for slow and fast solar-type rotators from the pre-main sequence (PMS) to the age of the Sun and compare them to the distribution of rotational periods observed for solar-type stars between 1 Myr and 5 Gyr. We show that slow rotators develop a large degree of differential rotation between the radiative core and the convective envelope, while fast rotators evolve with little core-envelope decoupling. We suggest that strong differential rotation at the base of the convective envelope is responsible for enhanced lithium depletion in slow rotators. We conclude that Li-depleted exoplanet host stars were slow rotators on the zero-age main sequence (ZAMS) and argue that slow rotation results from a long-lasting star-disk interaction during the PMS. Altogether, this suggests that long-lived disks (> 5 Myr) may be a necessary condition for massive planet formation/migration.
I discuss current theoretical expectations of how primordial, Pop III.1 stars form. Lack of direct observational constraints makes this a challenging task. In particular predicting the mass of these stars requires solving a series of problems, which all affect, perhaps drastically, the final outcome. While there is general agreement on the initial conditions, H_2-cooled gas at the center of dark matter minihalos, the subsequent evolution is more uncertain. In particular, I describe the potential effects of dark matter annihilation heating, fragmentation within the minihalo, magnetic field amplification, and protostellar ionizing feedback. After these considerations, one expects that the first stars are massive >~100Msun, with dark matter annihilation heating having the potential to raise this scale by large factors. Higher accretion rates in later-forming minihalos may cause the Pop III.1 initial mass function to evolve to higher masses.
In the study of stars, the high energy domain occupies a place of choice, since it is the only one able to directly probe the most violent phenomena: indeed, young pre-main sequence objects, hot massive stars, or X-ray binaries are best revealed in X-rays. However, previously available X-ray observatories often provided only crude information on individual objects in the Magellanic Clouds. The advent of the highly efficient X-ray facilities XMM-Newton and Chandra has now dramatically increased the sensitivity and the spatial resolution available to X-ray astronomers, thus enabling a fairly easy determination of the properties of individual sources in the LMC.
Context. Nanoflares are small impulsive bursts of energy that blend with and
possibly make up much of the solar background emission. Determining their
frequency and energy input is central to understanding the heating of the solar
corona. One method is to extrapolate the energy frequency distribution of
larger individually observed flares to lower energies. Only if the power law
exponent is greater than 2, is it considered possible that nanoflares
contribute significantly to the energy input.
Aims. Time sequences of ultraviolet line radiances observed in the corona of
an active region are modelled with the aim of determining the power law
exponent of the nanoflare energy distribution.
Methods. A simple nanoflare model based on three key parameters (the flare
rate, the flare duration time, and the power law exponent of the flare energy
frequency distribution) is used to simulate emission line radiances from the
ions Fe XIX, Ca XIII, and Si iii, observed by SUMER in the corona of an active
region as it rotates around the east limb of the Sun. Light curve pattern
recognition by an Artificial Neural Network (ANN) scheme is used to determine
the values.
Results. The power law exponents, alpha 2.8, 2.8, and 2.6 for Fe XIX, Ca
XIII, and Si iii respectively.
Conclusions. The light curve simulations imply a power law exponent greater
than the critical value of 2 for all ion species. This implies that if the
energy of flare-like events is extrapolated to low energies, nanoflares could
provide a significant contribution to the heating of active region coronae.
The magnetospheric plasma distribution in the vicinity of a pulsar at various inclination angles is investigated using a new relativistic, parallel 3D Particle-In-Cell (PIC) code DYMPHNA3D. DYMPHNA3D uses a superposition of the electromagnetic fields associated with a rotating magnetised conducting sphere in a vacuum (the pulsar fields) and the electromagnetic fields due to the presence of the magnetospheric plasma surrounding the pulsar (the plasma fields), as the total fields. The plasma is moved self-consistently through the magnetosphere using the PIC methodology. Our initial simulation results are presented here. These show similar solutions to those obtained from previous numerical simulations, which show the fundamental plasma distribution in the vicinity of an aligned rotating neutron star to consist of two polar domes and an equatorial torus of trapped non-neutral plasma of opposite sign. The aligned case being the case in which the inclination angle between the magnetic dipole moment and the rotation axis of the star is zero. Furthermore, our code allows for off-axis simulations and we have found that this plasma distribution collapses into a Quad-Lobe charge-separated non-neutral magnetospheric plasma distribution in the case of an orthogonal rotator, i.e., the case in which the magnetic dipole moment is oriented at right angles to the rotation axis of the neutron star, with the plasma remaining trapped close to the stellar surface by the force-free surfaces. We find that if initialised with a Goldreich-Julian type distribution, the system is seen to collapse rapidly into these stable Dome-Torus structures.
XTE J1701-407 is a new transient X-ray source discovered on June 8th, 2008. More than one month later it showed a rare type of thermonuclear explosion: a long type I X-ray burst. We report herein the results of our study of the spectral and flux evolution during this burst, as well as the analysis of the outburst in which it took place. We find an upper limit on the distance to the source of 6.2 kpc by considering the maximum luminosity reached by the burst. We measure a total fluence of 3.5*10^{-6} erg/cm^2 throughout the ~20 minutes burst duration and a fluence of 2.6*10^{-3} erg/cm^2 during the first two months of the outburst. We show that the flux decay is best fitted by a power law (index ~1.6) along the tail of the burst. Finally, we discuss the implications of the long burst properties, and the presence of a second and shorter burst detected by Swift ten days later, for the composition of the accreted material and the heating of the burning layer.
Measuring g-mode pulsations of isolated white dwarfs can reveal their interior properties to high precision. With a spectroscopic mass of ~0.51 M_{\odot} (log g = 7.82), the DAV white dwarf HS 1824+6000 is near the transition between carbon/oxygen core and helium core white dwarfs, motivating our photometric search for additional pulsations from the Palomar 60-inch telescope. We confirmed (with much greater precision) the three frequencies: 2.751190 +/- 0.000010 mHz (363.479 sec), 3.116709 +/- 0.000006 mHz (320.851 sec), 3.495113 +/- 0.000009 mHz (286.114 sec), previously found by B. Voss and collaborators, and found an additional pulsation at 4.443120 +/- 0.000012 mHz (225.067 sec). These observed frequencies are similar to those found in other ZZ Ceti white dwarfs of comparable mass (e.g. log g < 8). We hope that future observations of much lower mass ZZ Ceti stars (< 0.4 M_{\odot}) will reveal pulsational differences attributable to a hydrogen covered helium core.
The Herschel Space Observatory is a corner stone mission of the European
Space Agency (ESA) scientific program. With its spatial resolution, sensitivity
and spectral range (60 to 670 microns) Herschel will provide astronomers with
unique opportunities to decipher many aspects of star formation mecanisms and
galaxy evolution.
Among the many research institutes involved in the development and
exploitation of this challenging observatory, the Commissariat a l'Energie
Atomique (CEA) designed a novel type of bolometric detectors to equip the
photometer of the PACS instrument on-board the Herschel satellite.
In this thesis, I present the basics of infrared astronomy and past and
present developments in cryogenic bolometers, emphasising on new concepts
introduced by CEA, that is the collective manufacturing of bolometer arrays,
the high impedance thermometers, the cold multiplexing and the use of a
resonant cavity to optimize absorption of electromagnetic radiation. I follow
with an in-depth explanation of the working principles of CEA bolometer arrays,
a prerequisite to grasp the strategy of the characterisation procedure that we
developed. I then expose and analyse thoroughly the results that we obtained
during the calibration campaign of the PACS photometer. Finally, I express
detector performances in terms of "observational" performances that future PACS
users can comprehend (time constant -> PSF smearing, NEP -> sensitivity, etc.).
A multi-target detection system XAX, comprising concentric 10 ton targets of 136Xe and 129/131Xe, together with a geometrically similar or larger target of liquid Ar, is described. Each is configured as a two-phase scintillation/ionization TPC detector, enhanced by a full 4pi array of ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing the conventional photomultipliers for detection of scintillation light. It is shown that background levels in XAX can be reduced to the level required for dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross section, with single-event sensitivity below 10^-11 pb. The use of multiple target elements allows for confirmation of the A^2 dependence of a coherent cross section, and the different Xe isotopes provide information on the spin-dependence of the dark matter interaction. The event rates observed by Xe and Ar would modulate annually with opposite phases from each other for WIMP mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of background reduction allow neutrinoless double beta decay to be observed with lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass range 0.01-0.1 eV, the most likely range from observed neutrino mass differences. The use of a 136Xe-depleted 129/131Xe target will also allow measurement of the pp solar neutrino spectrum to a precision of 1-2%.
Despite compelling arguments that significant discoveries of physics beyond the standard model are likely to be made at the Large Hadron Collider, it remains possible that this machine will make no such discoveries, or will make no discoveries directly relevant to the dark matter problem. In this article, we study the ability of astrophysical experiments to deduce the nature of dark matter in such a scenario. In most dark matter studies, the relic abundance and detection prospects are evaluated within the context of some specific particle physics model or models (e.g. supersymmetry). Here, we attempt to develop a model-independent approach toward the phenomenology of weakly interacting massive particles in the absence of any discoveries at the Large Hadron Collider. In particular, we consider generic fermionic or scalar dark matter particles with a variety of interaction forms, and calculate the corresponding constraints from and sensitivity of direct and indirect detection experiments. The results may provide some guidance in disentangling information from future direct and indirect detection experiments.
Lemaitre-Tolman-Bondi (LTB) solutions are used frequently to describe the collapse or expansion of spherically symmetric inhomogeneous mass distributions in the Universe. These exact solutions are obtained in the synchronous gauge where nonlinear dynamics (with respect to the FLRW background) induce large deviations from the FLRW metric. In this paper we show explicitly that this is a gauge artefact (for realistic sub-horizon inhomogeneities). We write down the nonlinear gauge transformation from synchronous to Newtonian gauge for a general LTB solution using the fact that the peculiar velocities are small. In the latter gauge we recover the solution in the form of a weakly perturbed FLRW metric that is assumed in standard cosmology. Furthermore we show how to obtain the LTB solutions directly in Newtonian gauge and illustrate how the Newtonian approximation remains valid in the nonlinear regime where cosmological perturbation theory breaks down. Finally we discuss the implications of our results for the backreaction scenario.
Nucleosynthesis processes involve reactions on several thousand nuclei, both close to and far off stability. The preparation of reaction rates to be used in astrophysical investigations requires experimental and theoretical input. In this context, two interesting aspects are discussed: (i) the relevant gamma transition energies in astrophysical capture reactions, and (ii) the newly discovered Coulomb suppression of the stellar enhancement factor. The latter makes a number of reactions with negative Q value more favorable for experimental investigation than their inverse reactions, contrary to common belief.
Links to: arXiv, form interface, find, astro-ph, recent, 0808, contact, help (Access key information)