Equivalent widths (EWs) observed in high-redshift Lyman alpha galaxies could be stronger than the EW intrinsic to the stellar population if dust is present residing in clumps in the inter-stellar medium (ISM). In this scenario, continuum photons could be extinguished while the Lyman alpha photons would be resonantly scattered by the clumps, eventually escaping the galaxy. We investigate this radiative transfer scenario with a new sample of six Lyman alpha galaxy candidates in the GOODS CDF-S, selected at z = 4.4 with ground-based narrow-band imaging obtained at CTIO. Grism spectra from the HST PEARS survey confirm that three objects are at z = 4.4, and that another object contains an active galactic nuclei (AGN). If we assume the other five (non-AGN) objects are at z = 4.4, they have rest-frame EWs from 47 -- 190 A. We present results of stellar population studies of these objects, constraining their rest-frame UV with HST and their rest-frame optical with Spitzer. Out of the four objects which we analyzed, three objects were best-fit to contain stellar populations with ages on the order of 1 Myr and stellar masses from 3 - 10 x 10^8 solar masses, with dust in the amount of A_1200 = 0.9 - 1.8 residing in a quasi-homogeneous distribution. However, one object (with a rest EW ~ 150 A) was best fit by an 800 Myr, 6.6 x 10^9 solar mass stellar population with a smaller amount of dust (A_1200 = 0.4) attenuating the continuum only. In this object, the EW was enhanced ~ 50% due to this dust. This suggests that large EW Lyman alpha galaxies are a diverse population. Preferential extinction of the continuum in a clumpy ISM deserves further investigation as a possible cause of the overabundance of large-EW objects that have been seen in narrow-band surveys in recent years.
We present observations of the North Polar Spur (NPS) using the X-ray Imaging Spectrometer (XIS) aboard the Suzaku X-ray satellite. The NPS is a large region of enhanced soft X-ray and radio emission projected above the plane of the Galaxy, likely produced by a series of supernovae and stellar winds from the nearby Sco-Cen OB association. The exceptional sensitivity and spectral resolution of the XIS below 1 keV allow unprecedented probing of low-energy spectral lines, including CVI (0.37 keV) and NVII (0.50 keV), and we have detected highly-ionized nitrogen toward the NPS for the first time. For this single pointing toward the brightest 3/4 keV emission (l = 26.8 deg, b = +22.0 deg), the best-fit NPS emission model implies a hot (kT ~ 0.3 keV), collisional ionization equilibrium (CIE) plasma with depleted C, O, Ne, Mg, and Fe abundances of less than 0.5 solar, but an enhanced N abundance, with N/O = 4.0 +0.4,-0.5 times solar. The temperature and total thermal energy of the gas suggest heating by one or more supernovae, while the enhanced nitrogen abundance is best explained by enrichment from stellar material that has been processed by the CNO cycle. Due to the time required to develop AGB stars, we conclude that this N/O enhancement cannot be caused by the Sco-Cen OB association, but may result from a previous enrichment episode in the solar neighborhood.
Opacity effects in relativistic sources of high-energy gamma-rays, such as gamma-ray bursts (GRBs) or Blazars, can probe the Lorentz factor of the outflow and the distance of the emission site from the source, and thus help constrain the composition of the outflow (protons, pairs, magnetic field) and the emission mechanism. Most previous works consider the opacity in steady state. Here we study time dependent effects of the opacity to pair production ($\gamma\gamma \to e^+e^-$) in impulsive relativistic sources. We present a simple, yet rich, semi-analytic model for the time and energy dependence of the optical depth, $\tau$, where an ultra-relativistic thin spherical shell emits isotropically in its own rest frame over a finite range of radii, $R_0 < R < R_0 + \Delta R$. This is very relevant for GRB internal shocks. We find that in an impulsive source ($\Delta R <~ R_0$), while the instantaneous spectrum has an exponential cutoff above the photon energy $\epsilon_1(T)$ where $\tau = 1$, the time integrated spectrum has a power-law high-energy tail above a photon energy $\epsilon_{1*} \sim \epsilon_1(\Delta T)$ where $\Delta T$ is the duration of the emission episode. Furthermore, photons with $\epsilon > \epsilon_{1*}$ will arrive mainly near the onset of the spike or flare from to the short emission episode, as in impulsive sources it takes time to build-up the (target) photon field, and thus $\tau(\epsilon)$ initially increases with time and $\epsilon_1(T)$ decreases with time, so that photons of energy $\epsilon > \epsilon_{1*}$ are able to escape the source mainly very early on while $\epsilon_1(T) > \epsilon$. As the source approaches a quasi-steady state ($\Delta R >> R_0$), the time integrated spectrum develops an exponential cutoff, while the power-law tail becomes increasingly suppressed.
This paper re-examines the problem of ambipolar diffusion as a mechanism for the production and runaway evolution of centrally condensed molecular cloud cores, a process that has been termed the gravomagneto catastrophe. Our calculation applies in the geometric limit of a highly flattened core and allows for a semi-analytic treatment of the full problem, although physical fixes are required to resolve a poor representation of the central region. A noteworthy feature of the overall formulation is that the solutions for the ambipolar diffusion portion of the evolution for negative times ($t < 0$) match smoothly onto the collapse solutions for positive times ($t > 0$). The treatment shows that the resulting cores display non-zero, but sub-magnetosonic, inward velocities at the end of the diffusion epoch, in agreement with current observations. Another important result is the derivation of an analytic relationship between the dimensionless mass to flux ratio $\lambda_0\equiv f_0^{-1}$ of the central regions produced by runaway core condensation and the dimensionless measure of the rate of ambipolar diffusion $\epsilon$. In conjunction with previous work showing that ambipolar diffusion takes place more quickly in the presence of turbulent fluctuations, i.e., that the effective value of $\epsilon$ can be enhanced by turbulence, the resultant theory provides a viable working hypothesis for the formation of isolated molecular-cloud cores and their subsequent collapse to form stars and planetary systems.
Observing objects in transition from pre- to young Planetary Nebula (PN), when the central star radiation starts to excite the envelope, can help us to understand the evolution of the circumstellar ejecta and their shaping mechanism/s. In our project we have selected a sample of hot post-AGB stars as Transition Phase candidates. Radio observations have led to detect free-free radiation from an ionized shell in about half of our targets, providing us with two sub-samples of ionized and non ionized Transition Objects. We are now using IRAC and IRS on the Spitzer Space Telescope to determine if extended emission is present (IRAC) and to study our targets' chemistry (IRS). In particular, by comparing spectra from the two sub-samples, the IRS observations will enable us to check how the presence of an ionization front effects the circumstellar envelope. The IRAC measurements, combined with previous ones in the literature, will give us information on the extent and physical conditions of the dust components.
We have conducted observations of 22 pulsars at frequencies of 0.7, 1.4 and 3.1 GHz and present their polarization profiles. The observations were carried out for two main purposes. First we compare the orientation of the spin and velocity vectors to verify the proposed alignment of these vectors by Johnston et al. (2005). We find, for the 14 pulsars for which we were able to determine both vectors, that 7 are plausibly aligned, a fraction which is lower than, but consistent with, earlier measurements. Secondly, we use profiles obtained simultaneously at widely spaced frequencies to compute the radio emission heights. We find, similar to other workers in the field, that radiation from the centre of the profile originates from lower in the magnetosphere than the radiation from the outer parts of the profile.
We study the physics of wave propagation in a weakly ionised plasma, as it applies to the formation of multifluid, MHD shock waves. We model the plasma as separate charged and neutral fluids which are coupled by ion-neutral friction. At times much less than the ion-neutral drag time, the fluids are decoupled and so evolve independently. At later times, the evolution is determined by the large inertial mismatch between the charged and neutral particles. The neutral flow continues to evolve independently; the charged flow is driven by and slaved to the neutral flow by friction. We calculate this driven flow analytically by considering the special but realistic case where the charged fluid obeys linearized equations of motion. We carry out an extensive analysis of linear, driven, MHD waves. The physics of driven MHD waves is embodied in certain Green functions which describe wave propagation on short time scales, ambipolar diffusion on long time scales, and transitional behavior at intermediate times. By way of illustration, we give an approximate solution for the formation of a multifluid shock during the collision of two identical interstellar clouds. The collision produces forward- and reverse J shocks in the neutral fluid and a transient in the charged fluid. The latter rapidly evolves into a pair of magnetic precursors on the J shocks, wherein the ions undergo force free motion and the magnetic field grows monotonically with time. The flow appears to be self similar at the time when linear analysis ceases to be valid.
With the availability of multiwavelength, multiscale and multiepoch astronomical catalogues, the number of features to describe astronomical objects has increases. The better features we select to classify objects, the higher the classification accuracy is. In this paper, we have used data sets of stars and quasars from near infrared band and radio band. Then best-first search method was applied to select features. For the data with selected features, the algorithm of decision table was implemented. The classification accuracy is more than 95.9%. As a result, the feature selection method improves the effectiveness and efficiency of the classification method. Moreover the result shows that decision table is robust and effective for discrimination of celestial objects and used for preselecting quasar candidates for large survey projects.
The automated classification of objects from large catalogues or survey projects is an important task in many astronomical surveys. Faced with various classification algorithms, astronomers should select the method according to their requirements. Here we describe several kinds of decision trees for finding active objects by multi-wavelength data, such as REPTree, Random Tree, Decision Stump, Random Forest, J48, NBTree, AdTree. All decision tree approaches investigated are in the WEKA package. The classification performance of the methods is presented. In the process of classification by decision tree methods, the classification rules are easily obtained, moreover these rules are clear and easy to understand for astronomers. As a result, astronomers are inclined to prefer and apply them, thus know which attributes are important to discriminate celestial objects. The experimental results show that when various decision trees are applied in discriminating active objects (quasars, BL Lac objects and active galaxies) from non-active objects (stars and galaxies), ADTree is the best only in terms of accuracy, Decision Stump is the best only considering speed, J48 is the optimal choice considering both accuracy and speed.
The work describes the results of the study of the spherical particles that can be found in the environment and that were often considered as micrometeorites. The results have demonstrated that in the most of cases these spherical particles are the results of the human activity.
VLBI observations of relativistic outflows (jets) in galactic nuclei, complemented with detailed studies made in other spectral domains, have become an effective tool for investigating the physics of nuclear regions in galaxies. High-resolution radio observations access directly the regions where the jets are formed, and trace their evolution and interaction with the nuclear environment. The emission properties, dynamics, and evolution of jets in AGN are intimately connected to the characteristics of the central supermassive black hole, accretion disk, and broad-line region (BLR) in active galaxies. Large VLBI surveys (15GHz VLBA survey, MOJAVE) and dedicated monitoring programmes follow systematically the evolution of several hundreds of relativistic jets. These observations, combined with optical and X-ray studies, yield arguably the most detailed picture of the galactic nuclei. Recent results from studies of the nuclear regions in several active galaxies with prominent outflows are reviewed in this contribution.
The Infrared Camera (IRC) is one of the two instruments on board the AKARI satellite. In addition to deep imaging from 1.8-26.5um for the pointed observation mode of the AKARI, it has a spectroscopic capability in its spectral range. By replacing the imaging filters by transmission-type dispersers on the filter wheels, it provides low-resolution (lambda/d_lambda ~ 20-120) spectroscopy with slits or in a wide imaging field-of-view (approximately 10'X10'). The IRC spectroscopic mode is unique in space infrared missions in that it has the capability to perform sensitive wide-field spectroscopic surveys in the near- and mid-infrared wavelength ranges. This paper describes specifications of the IRC spectrograph and its in-orbit performance.
The nebular evolution is followed from the vicinity of the asymptotic-giant branch across the Hertzsprung-Russell diagram until the white-dwarf domain is reached, using various central-star models coupled to different initial envelope configurations. Along each sequence the relevant line emissions of the nebulae are computed and analysed. Maximum line luminosities in Hbeta and [OIII] 5007A are achieved at stellar effective temperatures of about 65000K and 95000-100000K, respectively, provided the nebula remains optically thick for ionising photons. In the optically thin case, the maximum line emission occurs at or shortly after the thick/thin transition. Our models suggest that most planetary nebulae with hotter (>~ 45000K) central stars are optically thin in the Lyman continuum, and that their [OIII] 5007A emission fails to explain the bright end of the observed planetary nebulae luminosity function. However, sequences with central stars of >~ 0.6 Msun and rather dense initial envelopes remain virtually optically thick and are able to populate the bright end of the luminosity function. Individual luminosity functions depend strongly on the central-star mass and on the variation of the nebular optical depth with time. Hydrodynamical simulations of planetary nebulae are essential for any understanding of the basic physics behind their observed luminosity function. In particular, our models do not support the claim of Marigo et.al (2004) according to which the maximum 5007A luminosity occurs during the recombination phase well beyond 100 000K when the stellar luminosity declines and the nebular models become, at least partially, optically thick. Consequently, there is no need to invoke relatively massive central stars of, say > 0.7 Msun, to account for the bright end of the luminosity function.
Few years ago, Boltzmann neutrino transport led to a new and reliable generation of spherically symmetric models of stellar core collapse and postbounce evolution. After the failure to prove the principles of the supernova explosion mechanism, these sophisticated models continue to illuminate the close interaction between high-density matter under extreme conditions and the transport of leptons and energy in general relativistically curved space-time. We emphasize that very different input physics is likely to be relevant for the different evolutionary phases, e.g. nuclear structure for weak rates in collapse, the equation of state of bulk nuclear matter during bounce, multidimensional plasma dynamics in the postbounce evolution, and neutrino cross sections in the explosive nucleosynthesis. We illustrate the complexity of the dynamics using preliminary 3D MHD high-resolution simulations based on parameterized deleptonization. With established spherically symmetric models we show that typical features of the different phases are reflected in the predicted neutrino signal and that a consistent neutrino flux leads to electron fractions larger than 0.5 in neutrino-driven supernova ejecta.
We obtained 238 spectra of the close orbiting extrasolar giant planet HD 189733b with resolution R ~ 15,000 during one night of observations with the near infrared spectrograph, NIRSPEC, at the Keck II Telescope. We have searched for planetary absorption signatures in the 2.0 - 2.4 micron region where H_2O and CO are expected to be the dominant atmospheric opacities. We employ a phase dependent orbital model and tomographic techniques to search for the planetary absorption signatures in the combined stellar and planetary spectra. Because potential absorption signatures are hidden in the noise of each single exposure, we use a model list of lines to apply a spectral deconvolution. The resulting mean profile possesses a S/N ratio that is 20 times greater than that found in individual lines. Our spectral timeseries thus yields spectral signatures with a mean S/N = 2720. We are unable to detect a planetary signature at a contrast ratio of log_10(F_p/F_*) = -3.40, with 63.8 per cent confidence. Our findings are not consistent with model predictions which nevertheless give a good fit to mid-infrared observations of HD 189733. The 1-sigma result is a factor of 1.7 times less than the predicted 2.185 micron planet/star flux ratio of log_10(F_p/F_*) ~ -3.16.
We want to characterise the emission in the centre of the 24 000 AU large circumstellar disk in M 17. High-resolution JHKLM-band imaging carried out with NAOS/CONICA at the VLT are combined with H$_2$ and [Fe II] narrow-band imaging using SOFI at the NTT. The analysis is supported by Spitzer/GLIMPSE archival data and by SINFONI/VLT Integral Field Spectroscopy data. We resolve the elongated central infrared emission for the first time into a point-source and a jet-like feature that extends to the northeast. We interpret the unresolved point-like emission as to originate from an accreting intermediate to high-mass protostar. In addition, our images reveal a weak and curved southwestern lobe whose morphology resembles that of the previously detected northeastern lobe. We interpret these lobes as the working surfaces of a bipolar jet interacting with the ambient medium at a distance of 1700 AU from the disk centre. In fact, such a jet is strongly suggested by H$_2$ emission emerging toward the southwest from the disk centre and extending 8600 AU along an axis that is almost perpendicular to the disk plane. The large M 17 disk is obviously associated with an intermediate to high-mass protostar that accretes material from the disk and expels part of it through a symmetric bipolar outflow. The protostar is embedded in circumstellar material producing a visual extinction of $A_V \geq 60$. The observed $K_{\rm s}$-band magnitude is equivalent to a main-sequence star having a spectral type of at least B4 that corresponds to a stellar mass of $4 M_{\sun}$.
Blazars are known to display strong and erratic variability at almost all the wavelengths of electromagnetic spectrum. Presently, variability studies at high-energies (hard X-rays, gamma-rays) are hampered by low sensitivity of the instruments. Nevertheless, the latest generation of satellites (INTEGRAL, Swift) have given suggestions not yet fully confirmed of variability on intraday timescales. Some specific cases recently observed are presented and physical implications are discussed (e.g. NRAO 530). The contribution that SIMBOL-X could give in this research topic is also outlined.
(Abridged) The X-ray background can be used to constrain the accretion history of Supermassive Black Holes (SMBHs) in Active Galactic Nuclei (AGN). A knowledge of the hard X-ray bolometric correction, \kappa_{2-10keV} is a vital input into these studies. Variations in the disk emission in the UV have not previously been taken into account in calculating \kappa_{2-10keV}; we show that such variations are important by constructing optical--to--X-ray SEDs for 54 AGN. In particular, we use FUSE UV and X-ray data from the literature to constrain the disk emission as well as possible. Previous work has suggested a dependence of \kappa_{2-10keV} on AGN luminosity, but we find significant spread in \kappa_{2-10keV} with no simple dependence on luminosity. Populations such as Narrow-Line Seyfert 1 nuclei (NLS1s), Radio Loud and X-ray Weak AGN may have values of \kappa_{2-10keV} differing systematically from the rest of the AGN population. Other sources of uncertainty include intrinsic extinction in the optical--UV, X-ray and UV variability and uncertainties in SMBH mass estimates. Our results suggest a more well-defined relationship between \kappa_{2-10keV} and Eddington ratio in AGN, with a transitional region at an Eddington ratio of ~0.1, below which the bolometric correction is typically 15 - 25, and above which it is typically 40 - 70. We consider the potential implied parallels with the low/hard and high/soft states in Galactic Black Hole (GBH) accretion, and present bolometric corrections for the GBH binary GX 339-4 for comparison. Our findings reinforce previous studies proposing a multi-state description of AGN accretion analogous to that for GBH binaries. Future calculations of the SMBH mass density may need to account for the possible dependence of \kappa_{2-10keV} on Eddington ratio.
The EUV Imaging Spectrometer (EIS) on the Hinode satellite is capable of measuring emission line center positions for Gaussian line profiles to a fraction of a spectral pixel, resulting in relative solar Doppler-shift measurements with an accuracy of less than a km/s for strong lines. We show an example of the application of that capability to an active region sit-and-stare observation in which the EIS slit is placed at one location on the Sun and many exposures are taken while the spacecraft tracking keeps the same solar location within the slit. For the active region examined (NOAA 10930), we find that significant intensity and Doppler-shift fluctuations as a function of time are present at a number of locations. These fluctuations appear to be similar to those observed in high-temperature emission lines with other space-borne spectroscopic instruments. With its increased sensitivity over earlier spectrometers and its ability to image many emission lines simultaneously, EIS should provide significant new constraints on Doppler-shift oscillations in the corona.
In order to contribute to the general effort aiming at the improvement of our knowledge about the physical conditions within the Broad Line Region (BLR) of Active Galactic Nuclei (AGN), here we present the results achieved by our analysis of the spectral properties of a sample of 90 broad line emitting sources, collected at the Sloan Digital Sky Survey (SDSS) database. By focusing our attention mainly onto the Balmer series of hydrogen emission lines, which is the dominant feature in the optical wavelength range of many BLR spectra, we extracted several flux and profile measurements, which we related to other source properties, such as optical continuum luminosities, inferred black hole masses, and accretion rates. Using the Boltzmann Plot method to investigate the Balmer line flux ratios as a function of the line profiles, we found that broader line emitting AGN typically have larger H_alpha / H_beta and smaller H_gamma / H_beta and H_delta / H_beta line ratios. With the help of some recent investigations, we model the structure of the BLR and we study the influence of the accretion process on the properties of the BLR plasma.
We present a radio morphological study and spectral analysis for a sample of 13 cD galaxies in rich and poor clusters of galaxies.} Our study is based on new high sensitivity Giant Metrewave Radio Telescope (GMRT) observations at 1.28 GHz, 610 MHz and 235 MHz, and on archival data. From a statistical sample of cluster cD galaxies we selected those sources with little information available in the literature and promising for the detection of aged radio emission. Beyond the high sensitivity images for all 13 radio galaxies, we present also a detailed spectral analysis for 7 of them. We found a variety of morphologies and linear sizes, as typical for radio galaxies in the radio power range sampled here (low to intermediate power radio galaxies). The spectral analysis shows that 10/13 radio galaxies have steep radio spectrum, with spectral index $\alpha \ge 1$. In general, the radiative ages and growth velocities are consistent with previous findings that the evolution of radio galaxies at the cluster centres is affected by the dense external medium (i.e. low growth velocities and old ages. We suggest that the dominant galaxies in A 2622 and MKW 03s are dying radio sources, which at present are not fed by nuclear activity. On the other hand, the spectacular source at the centre of A 2372 might be a very interesting example of restarted radio galaxy. For this source we estimated a life cycle of the order of 10$^6$ yr.
Aims: Stellar activity may complicate the analysis of high-precision radial-velocity spectroscopic data when looking for exoplanets signatures. We aim at quantifying the impact of stellar spots on stars with various spectral types and rotational velocities and comparing the simulations with data obtained with the HARPS spectrograph. Methods: We have developed detailed simulations of stellar spots and estimated their effects on a number of observables commonly used in the analysis of radial-velocity data when looking for extrasolar planets, such as radial-velocity curves, cross-correlation functions, bisector spans and photometric curves. The computed stellar spectra are then analyzed in the same way as when searching for exoplanets. Results: 1) A first grid of simulation results is built for F-K type stars, with different stellar and spot properties. 2) It is shown quantitatively that star spots with typical sizes of 1% can mimic both radial-velocity curves and the bisector behavior of short-period giant planets around G-K type stars with a vsini lower than the spectrograph resolution. For stars with intermediate vsini, smaller spots may produce similar features. In these cases, additional observables (e.g., photometry, spectroscopic diagnostics) are mandatory to confirm the presence of short-period planets. We show that, in some cases, photometric variations may not be enough to clearly rule out spots as explanations of the observed radial-velocity variations. This is particularly important when searching for super-Earth planets. 3) It is also stressed that quantitative values obtained for radial-velocity and bisector span amplitudes depend strongly on the detailed star properties, on the spectrograph used, on the set of lines used, and on the way they are measured.
We review the information that planetary nebulae and their immediate progenitors, the post-AGB objects, can provide to probe the nucleosynthesis and mixing in low and intermediate mass stars. We emphasize new approaches based on high signal-to-noise spectroscopy of planetary nebulae and of their central stars. We mention some of the problems still to overcome. We emphasize that, as found by several authors, planetary nebulae in low metallicity environments cannot be used to probe the oxygen abundance in the interstellar medium out of which their progenitors were formed, because of abundance modification during stellar evolution.
We investigate the possibility of boiling instability of nuclear liquid in the inner core of the proto-neutron star formed in the core collapse of a type II supernova. We derive a simple criterion for boiling to occur. Using this criterion for one of best described equations of state of supernova matter, we find that boiling is quite possible under the conditions realized inside the proto-neutron star. We discuss consequences of this process such as the increase of heat transfer rate and pressure in the boiling region. We expect that taking this effect into account in the conventional neutrino-driven delayed-shock mechanism of type II supernova explosions can increase the explosion energy and reduce the mass of the neutron-star remnant.
We have used the Hubble/STIS and FUSE archives of ultraviolet spectra of
bright AGN to identify intergalactic Lya absorbers in nearby (z < 0.1) voids.
From a parent sample of 651 Lya absorbers, we identified 61 void absorbers
located more than 1.4/h_70 Mpc from the nearest L* or brighter galaxy.
Searching for metal absorption in high-quality (S/N > 10) spectra at the
location of three diagnostic metal lines (O VI 1032, C IV 1548, Si III 1206),
we detected no metal lines in any individual absorber, or in any group of
absorbers using pixel co-addition techniques. The best limits on metal-line
absorption in voids were set using four strong Lya absorbers with N(H I) >
10^{14} cm^-2, with 3-sigma equivalent-width limits ranging from 8 mA (O VI),
7-15 mA (C IV), and 4-10 mA (Si III). Photoionization modeling yields
metallicity limits Z < 10^{-1.8+/-0.4} Z_sun, from non-detections of C IV and O
VI, some 6 times lower than those seen in Lya and OVI absorbers at z < 0.1.
Although the void Lya absorbers could be pristine material, considerably deeper
spectra are required to rule out a universal metallicity floor produced by
bursts of early star formation, with no subsequent star formation in the voids.
The most consistent conclusion derived from these low-z results, and similar
searches at z = 3-5, is that galaxy filaments have increased their mean IGM
metallicity by factors of 30-100 since z = 3.
In cold dark matter cosmological models, the first stars to form are believed to do so within small protogalaxies. We wish to understand how the evolution of these early protogalaxies changes once the gas forming them has been enriched with small quantities of heavy elements, which are produced and dispersed into the intergalactic medium by the first supernovae. Our initial conditions represent protogalaxies forming within a fossil H II region, a previously ionized region that has not yet had time to cool and recombine. We study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics (SPH) simulations that incorporate the effects of the appropriate chemical and thermal processes. Our previous simulations demonstrated that for metallicities Z < 0.001 Z_sun, metal line cooling alters the density and temperature evolution of the gas by less than 1% compared to the metal-free case at densities below 1 cm-3) and temperatures above 2000 K. Here, we present the results of high-resolution simulations using particle splitting to improve resolution in regions of interest. These simulations allow us to address the question of whether there is a critical metallicity above which fine structure cooling from metals allows efficient fragmentation to occur, producing an initial mass function (IMF) resembling the local Salpeter IMF, rather than only high-mass stars.
We examine the prompt and afterglow emission within the context of the Supercritical Pile model for GRBs. For this we have performed self-consistent calculations, by solving three time-dependent kinetic equations for protons, electrons and photons in addition to the usual mass and energy conservation equations. We follow the evolution of the RBW as it sweeps up circumstellar matter and assume that the swept-up electrons and protons have energies equal to the Lorentz factor of the flow. While the electrons radiate their energies through synchrotron and inverse Compton radiation on short timescales, the protons, at least initially, start accumulating without any dissipation. As the accumulated mass of relativistic protons increases, however, they can become supercritical to the `proton-photon pair-production - synchrotron radiation' network, and, as a consequence, they transfer explosively their stored energy to secondary electron-positron pairs and radiation. This results in a burst which has many features similar to the ones observed in GRB prompt emission. We have included in our calculations the radiation drag force exerted on the flow from the scattered radiation of the prompt emission on the circumstellar material. We find that this can decelerate the flow on timescales which are much faster than the ones related to the usual adiabatic/radiative ones. As a result the emission exhibits a steep drop just after the prompt phase, in agreement with the Swift afterglow observations.
Thermohaline mixing has recently been proposed to occur in low mass red giants, with large consequence for the chemical yields of low mass stars. We investigate the role of thermohaline mixing during the evolution of stars between 1 Msun and 3 Msun. We use a stellar evolution code which includes rotational mixing and internal magnetic fields. We confirm that thermohaline mixing has the potential to destroy most of the helium 3 which is produced earlier on the main sequence during the red giant stage, in stars below 1.5Msun. We find this process to continue during core helium burning and beyond. We find rotational and magnetic mixing to be negligible compared to the thermohaline mixing in the relevant layers, even if the interaction of thermohaline motions with the differential rotation may be essential to establish the time scale of thermohaline mixing in red giants.
We present stellar yields calculated from detailed models of low and intermediate-mass asymptotic giant branch (AGB) stars. We evolve models with a range of mass from 1 to 6Msun, and initial metallicities from solar to 1/200th of the solar metallicity. Each model was evolved from the zero age main sequence to near the end of the thermally-pulsing AGB phase, and through all intermediate phases including the core He-flash for stars initially less massive than 2.5Msun. For each mass and metallicity, we provide tables containing structural details of the stellar models during the TP-AGB phase, and tables of the stellar yields for 74 species from hydrogen through to sulphur, and for a small number of iron-group nuclei. All tables are available for download. Our results have many applications including use in population synthesis studies and the chemical evolution of galaxies and stellar systems, and for comparison to the composition of AGB and post-AGB stars and planetary nebulae.
We discuss combining gravitational lensing of galaxies and the cosmic microwave background (CMB) by clusters to measure cosmographic distance ratios, and hence dark energy parameters. Advantages to using the CMB as the second source plane, instead of galaxies, include: a well-determined source distance, a longer lever arm for distance ratios, typically up to an order of magnitude higher sensitivity to dark energy parameters, and a decreased sensitivity to photometric redshift accuracy of the lens and galaxy sources. Disadvantages include: higher statistical errors, potential systematic errors, and the need for disparate surveys that overlap on the sky. Ongoing and planned surveys, such as the South Pol Telescope in conjunction with the Dark Energy Survey, can potentially reach the statistical sensitivity to make interesting consistency tests of the standard cosmological constant model. Future measurements that reach 1% or better precision in the convergences can provide sharp tests for future supernovae distance measurements.
We present high-resolution X-ray spectra of the multiple T Tauri star system Hen 3-600, obtained with the High Energy Transmission Grating Spectrograph on the Chandra X-ray Observatory. Two binary components were detected in the zeroth-order image. Hen 3-600-A, which has a large mid-infrared excess, is a 2-3 times fainter in X-rays than Hen 3-600-B, due to a large flare on B. The dispersed X-ray spectra of the two primary components overlap spatially; spectral analysis was performed on the combined system. Analysis of the individual spectra was limited to regions where the contributions of A and B can be disentangled. This analysis results in two lines of evidence indicating that the X-ray emission from Hen 3-600 is derived from accretion processes: line ratios of O VII indicate that the characteristic density of its X-ray-emitting plasma is large; a significant component of low-temperature plasma is present and is stronger in component A. These results are consistent with results obtained from X-ray gratings spectroscopy of more rapidly accreting systems. All of the signatures of Hen 3-600 that are potential diagnostics of accretion activity -- X-ray emission, UV excess, H-alpha emission, and weak infrared excess -- suggest that its components represent a transition phase between rapidly accreting, classical T Tauri stars and non-accreting, weak-lined T Tauri stars.
The non-thermal 3.6 cm radio continuum emission from the naked T Tauri stars Hubble 4 and HDE 283572 in Taurus has been observed with the Very Long Baseline Array (VLBA) at 6 epochs between September 2004 and December 2005 with a typical separation between successive observations of 3 months. Thanks to the remarkably accurate astrometry delivered by the VLBA, the trajectory described by both stars on the plane of the sky could be traced very precisely, and modeled as the superposition of their trigonometric parallax and uniform proper motion. The best fits yield distances to Hubble 4 and HDE 283572 of 132.8 +/- 0.5 and 128.5 +/- 0.6 pc, respectively. Combining these results with the other two existing VLBI distance determinations in Taurus, we estimate the mean distance to the Taurus association to be 137 pc with a dispersion (most probably reflecting the depth of the complex) of about 20 pc.
IC 4406 is a large (about 100'' x 30'') southern bipolar planetary nebula, composed by two elongated lobes, extending from a bright central region, where there is evidence for the presence of a large torus of gas and dust. In this poster we show new observations of this source performed with IRAC (Spitzer Space Telescope) and the Australia Telescope Compact Array. Although the possibility for faint extended emission to be missing in the radio maps cannot be ruled out, flux from the ionized gas appears to be concentrated in the bright central region. Comparing ATCA to IRAC images, it seems that, like in other planetary nebulae, ionized and neutral components spatially co-exist in IC 4406.
Binary black-hole systems with spins aligned with the orbital angular momentum are of special interest as they may be the preferred end-state of the inspiral of generic binary black-hole systems. In view of this, we have computed the inspiral and merger of a large set of binary systems of equal-mass black holes with spins aligned with the orbital angular momentum but otherwise arbitrary. By least-square fitting the results of these simulations we have constructed two ``spin diagrams'' which provide straightforward information about the recoil velocity |v_kick| and the final black-hole spin a_fin in terms of the dimensionless spins a_1 and a_2 of the two initial black holes. The analytic expressions used to construct the spin diagrams could be easily implemented in N-body simulations of compact stellar systems or in statistical studies on the evolution of binary black holes in massive galaxies, and suggest a maximum recoil velocity of |v_kick| = 441.94 +- 1.56 km/s for systems with a_1=-a_2=1 and maximum final spin a_fin =0.9591 +- 0.0022 for systems with a_1=a_2=1.
We test the accuracy of our recently proposed empirical formula to model the recoil velocity imparted to the merger remnant of spinning, unequal-mass black-hole binaries. We study three families of black-hole binary configurations, all with mass ratio q=3/8 (to maximize the unequal-mass contribution to the kick) and spins aligned (or counter aligned) with the orbital angular momentum, two with spin configurations chosen to minimize the spin-induced tangential and radial accelerations of the trajectories respectively, and a third family where the trajectories are significantly altered by spin-orbit coupling. We find good agreement between the measured and predicted recoil velocities for the first two families, and reasonable agreement for the third. We also re-examine our original generic binary configuration that led to the discovery of extremely large spin-driven recoil velocities and inspired our empirical formula, and find reasonable agreement between the predicted and measured recoil speeds.
We propose an alternative anthropic probability for calculating the probabilities in eternal inflation. This anthropic probability follows naturally from the weak anthropic principle, and does not suffer the freak observer or the typicality problems. The problem that our observed cosmological constant is not at the peak of the usual anthropic probability distribution is also solved using this proposal.
We present a new general mechanism for generating curvature perturbations after inflation. Our model is based on the simple assumption that a field that starts to oscillate after inflation has a potential characterized by an underlying global symmetry that is slightly or badly broken. Inhomogeneous preheating occurs due to the oscillation with the broken symmetry. Unlike the traditional curvaton model, we will not identify the curvaton with the oscillating field. The curvaton is identified with the preheat field that could be either a scalar, vector, or fermionic field. We introduce an explicit mass term for the curvaton, which is important for later evolution and the decay. Our present model represents the simplest example of the hybrid of the curvatons and inhomogeneous preheating.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0709, /abs, contact, help (Access key information)
Attempts to connect string theory with astrophysical observation are hampered
by a jargon barrier, where an intimidating profusion of orientifolds, Kahler
potentials, etc. dissuades cosmologists from attempting to work out the
astrophysical observables of specific string theory solutions from the recent
literature. We attempt to help bridge this gap by giving a pedagogical
exposition with detailed examples, aimed at astrophysicists and high energy
theorists alike, of how to compute predictions for familiar cosmological
parameters when starting with a 10-dimensional string theory action. This is
done by investigating inflation in string theory, since inflation is the
dominant paradigm for how early universe physics determines cosmological
parameters.
We analyze three explicit string models from the recent literature, each
containing an infinite number of "vacuum" solutions. Our numerical
investigation of some natural candidate inflatons, the so-called "moduli
fields", fails to find inflation. We also find in the simplest models that,
after suitable field redefinitions, vast numbers of these vacua differ only in
an overall constant multiplying the effective inflaton potential, a difference
which affects neither the potential's shape nor its ability to support
slow-roll inflation. This illustrates that even having an infinite number of
vacua does not guarantee having inflating ones. This may be an artifact of the
simplicity of the models that we study. Instead, more complicated string theory
models appear to be required, suggesting that explicitly identifying the
inflating subset of the string landscape will be challenging.
A gravitational observatory such as LISA will detect coalescing pairs of massive black holes, accurately measure their luminosity distance and help identify a host galaxy or an electromagnetic counterpart. If dark energy is a manifestation of modified gravity on large scales, gravitational waves from cosmologically-distant spacetime sirens are direct probes of this new physics. For example, a gravitational Hubble diagram based on black hole pair luminosity distances and host galaxy redshifts could reveal a large distance extra-dimensional leakage of gravity. Various additional signatures may be expected in a gravitational signal propagated over cosmological scales.
The observational technique of spectropolarimetry has been used to directly measure the asymmetries of Supernovae (SNe), Gamma-Ray Bursts (GRBs) and X-Ray Flashes (XRFs). We wish to determine if non-axial asymmetries are present in SNe that are associated with GRBs and XRFs, given the particular alignment of the jet axis and axis of symmetry with the line of sight in these cases. We performed spectropolarimetry with the Very Large Telescope (VLT) FORS1 instrument of the Type Ic SN 2006aj, associated with the XRF 060218, at V-band maximum at 9.6 rest frame days after the detection of the XRF. Due to observations at only 3 retarder plate angles, the data were reduced assuming that the instrumental signature correction for the $U$ Stokes parameter was identical to the correction measured for $Q$. We find SN 2006aj to be highly polarized at wavelengths corresponding to the absorption minima of certain spectral lines, particularly strong for O I 7774\AA and Fe II, observed at 4200\AA with a polarization 3%. The value of the Interstellar Polarization is not well constrained by these observations and, considering the low polarization observed between 6000-6500\AA, the global asymmetry of the SN is $\lesssim 15%$. O I and Fe II lines share a polarization angle that differs from Ca II. SN 2006aj exhibits a higher degree of line polarization than other SNe associated with GRBs and XRFs. The polarization associated with spectral lines implies significant asymmetries of these elements with respect to each other and to the line of sight. This is contrary to the standard picture of SNe associated with GRBs/XRFs, where the axis of symmetry of the SN is aligned with the GRB jet axis and the line of sight.
Investigations of two resonant planets orbiting a star or two resonant satellites orbiting a planet often rely on a few resonant and secular terms in order to obtain a representative quantitative description of the system's dynamical evolution. We present a semianalytic model which traces the orbital evolution of any two resonant bodies in a first- through fourth-order eccentricity or inclination-based resonance dominated by the resonant and secular arguments of the user's choosing. By considering the variation of libration width with different orbital parameters, we identify regions of phase space which give rise to different resonant ''depths,'' and propose methods to model libration profiles. We apply the model to the GJ 876 extrasolar planetary system, quantify the relative importance of the relevant resonant and secular contributions, and thereby assess the goodness of the common approximation of representing the system by just the presumably dominant terms. We highlight the danger in using ''order'' as the metric for accuracy in the orbital solution by revealing the unnatural libration centers produced by the second-order, but not first-order, solution, and by demonstrating that the true orbital solution lies somewhere ''in-between'' the third- and fourth-order solutions. We also present formulas used to incorporate perturbations from central-body oblateness and precession, and a protoplanetary or protosatellite thin disk with gaps, into a resonant system. We quantify these contributions to the GJ 876 system, and thereby highlight the conditions which must exist for multi-planet exosystems to be significantly influenced by such factors. We find that massive enough disks may convert resonant libration into circulation; such disk-induced signatures may provide constraints for future studies of exoplanet systems.
The first massive stars may influence the formation of second-generation stars, in part by their metal enrichment of the surrounding gas. We investigate the "critical metallicity", defined as the the value, Z_crit, at which primordial gas cools more efficiently by fine-structure lines of O I (63.18 microns, Si II 34.8 microns, Fe II (25.99 and 35.35 microns), and C II (157.74 microns) than by either H I or H2 line emission. We explore the time-dependent thermodynamics and fragmentation of cooling gas at redshifts z = 10-30, seeded by trace heavy elements expelled from early supernovae. Because different modes of nucleosynthesis (alpha-process, Fe-group) produce abundance ratios far from solar values, these early stellar populations are likely to be influenced by O, Si, and Fe cooling. Our models also include radiative coupling of the fine structure lines and H2 to the cosmic microwave background (CMB), which sets a temperature floor (70-80K at z = 25-30) that may increase the Jeans mass. The H2 forms from catalytic effects of electrons left over from the recombination epoch or produced during virialization. These electrons form the H^- ion (H + e -> H- + gamma), which in turn forms H2 through associative detachment (H- + H -> H2 + e). In virialized halos at z = 10-30, the gas densities (n = 1-100 cm^{-3}) are well below the critical densities, n_cr = 10^{5-6} cm^{-3}, at which (O, Si, Fe) fine-structure lines reach LTE populations and produce their most efficient cooling. Thus, Z_crit may initially exceed 0.01 Z_sun at n = 1-100 cm^{-3}, and then drop to 10^{-3.5} Z_sun at n = 10^6 cm^{-3}, where the Jeans mass may be imprinted on the stellar mass function. Primordial clouds of 10^8 M_sun at 0.01 Z_sun and 200K will produce redshifted fine structure lines, with fluxes between 10^{-22} and 10^{-21} Watts/m^2 at z = 4.
We present a detailed abundance analysis based on high resolution and high signal-to-noise spectra of eight extremely metal poor (EMP) stars with [Fe/H] < -3.5$ dex, four of which are new. Only stars with 4900 < Teff< 5650 K are included. Two stars of the eight are outliers in each of several abundance ratios. The most metal poor star in this sample, HE1424-0241, has [Fe/H] ~ -4 dex and is thus among the most metal poor stars known in the Galaxy. It has highly anomalous abundance ratios unlike those of any other known EMP giant, with very low Si, Ca and Ti relative to Fe, and enhanced Mn and Co, again relative to Fe. Only (low) upper limits for C and N can be derived from the non-detection of the CH and NH molecular bands. HE0132$-$2429, another sample star, has excesses of N and Sc with respect to Fe. The strong outliers in abundance ratios among the Fe-peak elements in these C-normal stars, not found at somewhat higher metallicities, are definitely real. They suggest that at such low metallicities we are beginning to see the anticipated and long sought stochastic effects of individual supernova events contributing to the Fe-peak material within a single star. A detailed comparison of the results of the analysis procedures adopted by our 0Z project compared to those of the First Stars VLT Large Project finds a systematic difference for [Fe/H] of ~0.3 dex, our values always being higher.
We comment on the work by Chandra and Kumthekar (2007, henceforth CK) which is questionable. In the derivation of dispersion relation, CK neither invoke the concept of vector space nor do they follow the basic criterion for the elimination of perturbation terms under which the damped magnetoacoustic waves are derived.
Spectral analysis by means of NLTE model atmospheres has presently arrived at
a high level of sophistication. High-resolution spectra of central stars of
planetary nebulae can be reproduced in detail from the infrared to the X-ray
wavelength range.
In the case of LSV +4621, the exciting star of Sh 2-216, we demonstrate the
state-of-the-art in the determination of photospheric properties like, e.g.,
effective temperature, surface gravity, and abundances of elements from
hydrogen to nickel. From such detailed model atmospheres, we can reliably
predict the ionizing spectrum of a central star which is a necessary input for
the precise analysis of its ambient nebula.
NLTE model-atmosphere spectra, however, are not only accessible for
specialists. In the framework of the German Astrophysical Virtual Observatory
(GAVO), we provide pre-calculated grids of tables with synthetic spectra of
hot, compact stars as well as a tool to calculate individual model-atmosphere
spectra in order to make the use of synthetic stellar spectra as easy as the
use of blackbody flux distributions had been in the last century.
To go into the details about the variability of the double quasar SBS 0909+532, we designed a monitoring programme with the 2 m Liverpool Robotic Telescope in the r Sloan filter, spanning 1.5 years from 2005 January to 2006 June. The r-band light curves of the A and B components, several cross-correlation techniques and a large number of simulations (synthetic light curves) lead to a robust delay of 49 +/- 6 days (1-sigma interval) that agrees with our previous results (the B component is leading). Once the time delay and the magnitude offset are known, the magnitude- and time-shifted light curve of image A is subtracted from the light curve of image B. This difference light curve of SBS 0909+532 is consistent with zero, so any possible extrinsic signal must be very weak, i.e., the observed variability in A and B is basically due to observational noise and intrinsic signal. We then make the combined light curve and analyse its statistical properties (structure functions). The structure function of the intrinsic luminosity is fitted to predictions of simple models of two physical scenarios: accretion disc instabilities and nuclear starbursts. Although no simple model is able to accurately reproduce the observed trend, symmetric triangular flares in an accretion disc seems to be the best option to account for it.
We present an analysis of the Swift BAT and XRT data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type-I X-ray burst) from the surface of an accreting neutron star in a binary system. The X-ray binary nature is further confirmed by the report of a detection of a faint point source at the position of the XRT counterpart of the burst in archival XMM-Newton data approximately 6 years before the burst and in more recent XMM-Newton data obtained at the end of September 2006 (nearly 4 months after the burst). Since the source is very likely not a gamma-ray burst, we rename the source Swift J1749.4-2807, based on the Swift/BAT discovery coordinates. Using the BAT data of the type-I X-ray burst we determined that the source is at most at a distance of 6.7+-1.3 kpc. For a transiently accreting X-ray binary its soft X-ray behaviour is atypical: its 2-10 keV X-ray luminosity (as measured using the Swift/XRT data) decreased by nearly 3 orders of magnitude in about 1 day, much faster than what is usually seen for X-ray transients. If the earlier phases of the outburst also evolved this rapidly, then many similar systems might remain undiscovered because the X-rays are difficult to detect and the type-I X-ray bursts might be missed by all sky surveying instruments. This source might be part of a class of very-fast transient low-mass X-ray binary systems of which there may be a significant population in our Galaxy.
The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to an universal formation mechanism for supermassive black holes.
During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed ~100 m spectral anomalies in km^2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2x10^4 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ~100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.
In the first part of these lecture notes, new high-resolution observations of
small-scale magnetic flux concentrations are presented and compared to results
from new three-dimensional magnetohydrodynamic simulations. Special attention
is paid to the physics of faculae and to new three-dimensional radiation
magnetohydrodynamic simulations of the integral layers from the top of the
convection zone to the mid-chromosphere.
The second part is devoted to a few basic properties of magnetic flux tubes,
which can be considered to be an abstraction of the more complicated flux
concentrations known from observations and numerical simulations. We treat
electrical current sheets, the mechanical equilibrium condition at magnetic
interfaces, the equations for constructing a magnetohydrostatic flux tube
embedded in a gravitationally stratified atmosphere, the condition of radiative
equilibrium, and the condition for interchange stability.
We analyze the Jordan-Brans-Dicke model (JBD) of gravity, where deviations from General Relativity (GR) are described by a scalar field non-minimally coupled to gravity. The theory is characterized by a constant coupling parameter, $\omega_{\rm JBD}$; GR is recovered in the limit $\omega_{\rm JBD} \to \infty$. In such theories, gravity modifications manifest at early times, so that one cannot rely on the usual approach of looking for inconsistencies in the expansion history and perturbations growth in order to discriminate between JBD and GR. However, we show that a similar technique can be successfully applied to early and late times observables instead. Cosmological parameters inferred extrapolating early-time observations to the present will match those recovered from direct late-time observations only if the correct gravity theory is used. We use the primary CMB, as will be seen by the Planck satellite, as the early-time observable; and forthcoming and planned Supernov{\ae}, Baryonic Acoustic Oscillations and Weak Lensing experiments as late-time observables. We find that detection of values of $\omega_{\rm JBD}$ as large as 500 and 1000 is within reach of the upcoming (2010) and next-generation (2020) experiments, respectively.
We propose that the decline in the near-IR flux from the massive binary system Eta Carinae during the spectroscopic event might be explained by accreted mass that absorbs the radiation from the secondary star, and by that reduces the heating of the dust that is responsible for the near-IR emission. This binary system has an orbital period of 2024 days and eccentricity of 0.9. The emission in several bands decline for several weeks near every periastron passage, in what is termed the spectroscopic event. In the accretion model for the spectroscopic event the secondary star accretes mass from the primary wind for ~10 weeks near every periastron passage. The mass is accreted mainly from the equatorial plane. The disk and its wind block the secondary radiation from heating dust that does not reside within narrow cones along the symmetry axis. This, we propose, might explain the decline in the near-IR flux occurring at the beginning of each spectroscopic event. We also argue that the increase in the near-IR prior to the event might be accounted for by enhanced hot (T~1700 K) dust formation in the collision region of the winds from the two stars. This dust resides within ~60 degrees from the equatorial plane, and most of it cannot be heated by the secondary during the accretion phase.
The gas component plays a major role in the dynamics of spiral galaxies, because of its dissipative character, and its ability to exchange angular momentum with stars in the disk. Due to its small velocity dispersion, it triggers gravitational instabilities, and the corresponding non-axisymmetric patterns produce gravity torques, which mediate these angular momentum exchanges. When a srong bar pattern develops with the same pattern speed all over the disk, only gas inside corotation can flow towards the center. But strong bars are not long lived in presence of gas, and multiple-speed spiral patterns can develop between bar phases, and help the galaxy to accrete external gas flowing from cosmic filaments. The gas is then intermittently driven to the galaxy center, to form nuclear starbursts and fuel an active nucleus. The various time-scales of these gaseous flows are described.
For the first time, we have identified NeVIII absorption lines in far-UV spectra of the hottest known (Teff>150,000 K) hydrogen-deficient (pre-) white dwarfs of spectral type PG1159. They are of photospheric origin and can be matched by synthetic non-LTE line profiles. We also show that a number of UV and optical emission lines in these stars can be explained as being photospheric NeVIII features and not, as hitherto suspected, as ultrahigh ionised OVIII lines created along shock-zones in the stellar wind. Consequently, we argue that the long-standing identification of the same emission lines in hot [WR]-type central stars as being due to ultrahigh-ionised species (OVII-VIII, CV-VI) must be revised. These lines can be entirely attributed to thermally excited species (NeVII-VIII, NV, OVI). Photospheric NeVIII lines are also identified in the hottest known He-rich white dwarf KPD0005+5106 some of which were also attributed to OVIII previously. This is a surprise because it must be concluded that KPD0005+5106 is much hotter (Teff=200,000 K) than hitherto assumed (Teff=120,000 K). This is confirmed by a re-assessment of the HeII line spectrum. We speculate that the temperature is high enough to explain the mysterious, hard X-ray emission (1 keV) as being of photospheric origin.
The formation of the first galaxies at redshifts z~10-15 signaled the transition from the simple initial state of the universe to one of ever increasing complexity. We here review recent progress in understanding their assembly process with numerical simulations, starting with cosmological initial conditions and modelling the detailed physics of star formation. In particular, we study the role of HD cooling in ionized primordial gas, the impact of UV radiation produced by the first stars, and the propagation of the supernova blast waves triggered at the end of their brief lives. We conclude by discussing promising observational diagnostics that will allow us to probe the properties of the first galaxies, such as their contribution to reionization and the chemical abundance pattern observed in extremely low-metallicity stars.
We investigate the mass profiles of clusters in MOND for a sample of galaxy groups and clusters with temperatures ranging from 0.7 to 8.9 keV. We confirm that a huge hidden mass component, about 1.5 to 4 times more massive than the total visible mass (at the last measured radii, dropping thereafter), is needed to account for the hydrostatic equilibrium of these clusters. For the massive systems ($T\ga 5$ keV) we show that neutrinos with masses just below the experimentally detectable limit ($m_{\nu}=2eV$) can account for the bulk ($\ga 90%$) of this hidden mass, in agreement with Sanders (2007), and confirming the results of Pointecouteau & Silk (2005) that these neutrinos leave a further minor residual component in the centers (r$\lsim$120kpc) However, the fractional contribution of the residual mass to the total MOND mass increases subtantially with decreasing mass, reaching as high as $\approx 80%$ for MOND masses below $10^{13}M_{\odot}$. In these lowest mass systems this residual mass cannot be explained by simply rescaling the stellar mass profile of the central galaxy. The stellar mass profiles not only have the wrong shape, but they also would require unlikely large K-band mass-to-light ratios between 2 and 11 for the BCG. Therefore, a MOND Universe filled with massive ordinary neutrinos cannot obviate the need for additional (maybe baryonic) dark matter in X-ray bright groups.
We have obtained deep far- (FUV) and near-ultraviolet (NUV) images of the inner region of the dense globular cluster M15 with the Advanced Camera for Surveys on board the Hubble Space Telescope. The FUV-NUV colour-magnitude diagram shows a well defined track of horizontal branch stars, as well as a trail of blue stragglers and white dwarfs. The main sequence turn-off is clearly visible at FUV~23.5 mag and FUV-NUV~3 mag, and the main sequence stars form a prominent track that extends at least two magnitudes below the main sequence turn-off. As such, this is the deepest FUV-NUV colour-magnitude diagram of a globular cluster presented so far. Cataclysmic variable and blue straggler candidates are the most centrally concentrated stellar populations, which might either be an effect of mass segregation or reflect the preferred birthplace in the dense cluster core of such dynamically-formed objects. We find 41 FUV sources that exhibit significant variability. We classify the variables based on an analysis of their UV colours and variability properties. We find four previously known RR Lyrae and 13 further RR Lyrae candidates, one known Cepheid and six further candidates, six cataclysmic variables, one known and one probable SX Phoenicis star, and the well known low-mass X-ray binary AC211. Our analysis represents the first detection of SX Phoenicis pulsations in the FUV. We find that Cepheids, RR Lyraes and SX Phoenicis exhibit massive variability amplitudes in this waveband (several mags).
Recent data and new data analysis methods show that most probably the parameter $w$ in the equation of state of the dark energy is smaller than -1 at low redshifts. We briefly review some of the models with such a property and without violating null energy condition. We investigate the difference between the observables and predictions of these models, and how they can be explored to single out or constrain the origin of dark energy and its properties.
We have used a combination of high resolution (HST ACS-HRC, ACS-WFC, and WFPC2) and wide-field (ESO-WFI) observations of the galactic globular cluster NGC 6388 to derive its center of gravity, projected density profile, and central surface brightness profile. While the overall projected profiles are well fit by a King model with intermediate concentration (c=1.8) and sizable core radius (rc=7"), a significant power law (with slope \alpha=-0.2) deviation from a flat core behavior has been detected within the inner 1 arcsecond. These properties suggest the presence of a central intermediate mass black hole. The observed profiles are well reproduced by a multi-mass isotropic, spherical model including a black hole with a mass of ~5.7x10^3 Msol.
We present new constraints on the mass of warm dark matter (WDM) particles derived from the lya flux power spectrum of 55 high- resolution lya forest spectra at 2.0 < z < 6.4 obtained with the HIRES spectrograph at the Keck telescope. From the HIRES spectra alone, we obtain a lower limit of mwdm > 1.2 keV (2 sigma) if the WDM consists of early decoupled thermal relics and mwdm > 5.6 keV (2 sigma) for sterile neutrinos. This result improves the previous constraints from high-resolution spectra at lower redshift by a factor two. Adding the Sloan Digital Sky Survey lya flux power spectrum at 2.2<z<4.2 from a large sample of low resolution spectra we get mwdm > 4 keV and mwdm > 28 keV (2 sigma) for thermal relics and sterile neutrinos, respectively. This is also a factor two improvement compared to previous combined analysis of high and low-resolution data. The small scale matter power spectrum probed by the high-resolution high-redshift HIRES data is instrumental for this improvement.
Variations in the solar wind density introduce variable delays into pulsar timing observations. Current pulsar timing analysis programs only implement simple models of the solar wind, which not only limit the timing accuracy, but can also affect measurements of pulsar rotational, astrometric and orbital parameters. We describe a new model of the solar wind electron density content which uses observations from the Wilcox Solar Observatory of the solar magnetic field. We have implemented this model into the tempo2 pulsar timing package. We show that this model is more accurate than previous models and that these corrections are necessary for high precision pulsar timing applications.
With an exponentially increasing amount of astronomical data, the complexity and dimension of astronomical data are likewise growing rapidly. Extracting information from such data becomes a critical and challenging problem. For example, some algorithms can only be employed in the low-dimensional spaces, so feature selection and feature extraction become important topics. Here we describe the difference between feature selection and feature extraction methods, and introduce the taxonomy of feature selection methods as well as the characteristics of each method. We present a case study comparing the performance and computational cost of different feature selection methods. For the filter method, ReliefF and fisher filter are adopted; for the wrapper method, improved CHAID, linear discriminant analysis (LDA), Naive Bayes (NB) and C4.5 are taken as learners. Applied on the sample, the result indicates that from the viewpoints of computational cost the filter method is superior to the wrapper method. Moreover, different learning algorithms combined with appropriate feature selection methods may arrive at better performance.
The condensation of matter from a corona to a cool, optically thick inner disk is investigated for black hole X-ray transient systems in the low hard state. A description of a simple model for the exchange of energy and mass between corona and disk originating from thermal conduction is presented, taking into account the effect of Compton cooling of the corona by photons from the underlying disk. It is found that a weak, condensation-fed inner disk can be present in the low hard state of black hole transient systems for a range of luminosities which depend on the magnitude of the viscosity parameter. For $\alpha \sim 0.1-0.4$ an inner disk can exist for luminosities in the range $\sim 0.001- 0.02$ Eddington value. The model is applied to the X-ray observations of the black hole candidate sources GX 339-4 and Swift J1753.5-0127 in their low hard state. It is found that Compton cooling is important in the condensation process, leading to the maintenance of cool inner disks in both systems. As the results of the evaporation/condensation model are independent of the black hole mass, it is suggested that such inner cool disks may contribute to the optical and ultraviolet emission of low luminosity active galactic nuclei.
The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.
The lunar Cherenkov technique, which aims to detect the coherent Cherenkov radiation produced when UHE particles interact in the lunar regolith, was first attempted with the Parkes radio-telescope in 1995, though the theory was not sufficiently developed at this time to calculate a limit on the UHE neutrino flux from the non-observation. Since then, the technique has evolved to include experiments utilising lower frequencies, wider bandwidths, and entire arrays of antenna. We develop a simulation to analyse the full range of experiments, and calculate the UHE neutrino flux limit from the Parkes experiment, including the directional dependence. Our results suggest a methodology for planning future observations, and demonstrate how to utilise all available information on the nature of radio pulses from the Moon for the detection of UHE particles.
The Gamma-Ray Large Area Space Telescope (GLAST), scheduled to be launched in Fall 2007, is a next generation high energy gamma-ray observatory. The Large Area Telescope (LAT) instrument on-board GLAST with a wide field of view ($>$ 2 sr), large effective area and 20 MeV to $>$300 GeV energy range, will provide excellent opportunity for future Dark Matter studies. We present an overview of the GLAST Dark Matter and New Physics Working Group efforts in the study of the LAT capability to detect a gamma-ray flux coming from WIMP pair annihilations in diffuse astrophysical sources. Particular attention will be given to extragalactic diffuse gamma-ray radiation and line searches from annihilation into gamma-gamma and/or gamma-Z final states.
We present the gravitational wave analysis from rotating (model s15g) and nearly non-rotating (model s15h) 3D MHD core collapse supernova simulations at bounce and the first couple of ten milliseconds afterwards. The simulations are launched from realistic progenitor stars and include the most important general relativistic effects. The input physics uses the Lattimer-Swesty equation of state for hot, dense matter and a neutrino parametrisation scheme that is accurate until the first few ms after bounce. The 3D simulations allow us to study features already known from 2D simulations as well as non-axisymmetric effects. We find the generic type I signals at bounce with maximum amplitudes of 566 cm (s15g) and 11 cm (s15h). The corresponding narrow-band spectra peak around 921 Hz (s15g) and 911 Hz (s15h), respectively. Additionally, 'burst-with-memory' signals, caused by convective instabilities in the protoneutron star are present in later stages of the simulation. Beside these results we found that rotation plays an important role in the damping of the equatorial signal in the convective phase. Both core collapse simulations indicate that corresponding events in our Galaxy would be detectable by the LIGO detector.
Integral-field spectroscopy of molecular hydrogen in the optical wavelength region and complementary long-slit near-infrared spectroscopy are presented towards HH91A.The detection of some 200 H_2 lines arising from ro-vibrational levels up to v'=8 ranging between 7700A and 2.3 microns is reported. The emission arises from thermally excited gas where the bulk of the material is at 2750 K and where 1% is at 6000 K. The total column density of shocked gas is N(H_2) = 10^{18} cm^{-2}. Non-thermal excitation scenarios such as UV-fluorescence do not contribute to the excitation of H_2 towards HH91A. The emission is explained in terms of a slow non-dissociative J-shock which propagates into a low-density medium which has been swept-up by previous episodes of outflows which have occurred in the evolved HH90/91 complex.
The dual axion model (DAM), yielding bot DM and DE form a PQ-like scalar field solving the strong CP problem, is known to allow a fair fit of CMB data. Recently, however, it was shown that its transfer function exhibits significant anomalies, causing difficulties to fit deep galaxy sample data. Here we show how DAM can be modified to agree with the latter data set. The modification follows the pattern suggested to reconcile any PQ-like approach with gravity. Modified DAM allows precise predictions which can be testable against future CMB and/or deep sample data.
Early-type galaxies, considered as large bulges, have been found to have had a much-more-than-boring star formation history in recent years by the UV satellite GALEX. The most massive bulges, brightest cluster galaxies, appear to be relatively free of young stars. But smaller bulges, normal ellipticals and lenticulars, often show unambiguous sign of recent star formation in their UV flux. The fraction of such UV-bright bulges in the volume-limited sample climbs up to the staggering 30%. The bulges of spirals follow similar trends but a larger fraction showing signs of current and recent star formation. The implication on the bulge formation and evolution is discussed.
Optical images and spectra both ground-based and taken by the Hubble Space Telescope (HST) of the young, luminous O-rich supernova remnant in the irregular galaxy NGC 4449 are presented. HST images of the remnant and its local region were taken with the ACS/WFC using filters F435W, F555W, F814W (B, V, and I, respectively), F502N ([O III]), F658N (Halpha + [N II]), F660N ([N II]) and F550M (line-free continuum). These images show an unresolved remnant (FWHM < 0.05 arcsec) located within a rich cluster of OB stars which itself is enclosed by a nearly complete interstellar shell seen best in Halpha + [N II] emission approximately 8'' x 6'' (155 x 115 pc) in size. The remnant and its associated OB cluster is isolated from two large nearby H II regions. The ACS [O III] image shows the remnant may be partially surrounded by a clumpy ring of emission approximately 1'' (~20 pc) in diameter. Recent ground-based spectra of the remnant reveal a number of features: 1) The emergence of broad, blue-shifted emission lines of [S II] 6716,6731, [Ar III] 7136, and [Ca II] 7291,7324 which were not observed in spectra taken in 1978-80, 2) Faint emission at 6540-6605 A centered about Halpha and [N II] 6548,6583 with an expansion velocity of 500 +/-100 km/s, and 3) Excess emission around 4600-4700 A suggestive of a Wolf-Rayet population in the remnant's star cluster. We use these new data to re-interpret the origin of the remnant's prolonged and extremely bright luminosity and propose the remnant is strongly interacting with dense, circumstellar wind loss material from a ~20 Msolar progenitor star.
I propose a model for the formation of slow-massive-wide (SMW) jets by accretion disks around compact objects. This study is motivated by claims for the existence of SMW jets in some astrophysical objects such as in planetary nebulae (PNs) and in some active galactic nuclei in galaxies and in cooling flow clusters. In this model the energy still comes from accretion onto a compact object. The accretion disk launches two opposite jets with velocity of the order of the escape velocity from the accreting object and with mass outflow rate of ~1-20% of the accretion rate as in most popular models for jet launching; in the present model these are termed fast-first-stage (FFS) jets. However, the FFS jets encounter surrounding gas that originates in the mass accretion process, and are terminated by strong shocks close to their origin. Two hot bubbles are formed. These bubbles accelerate the surrounding gas to form two SMW jets that are more massive and slower than the FFS jets. There are two conditions for this mechanism to work. Firstly, the surrounding gas should be massive enough to block the free expansion of the FFS jets. Most efficiently this condition is achieved when the surrounding gas is replenished. Secondly, the radiative energy losses must be small.
The non-thermal X-rays from the SN 1006 NE rim present characteristic scale lengths that are interpreted in the context of diffusion of a relativistic electron. The adopted theoretical framework is the mathematical diffusion in 3D, 1D and 1D with drift as well as the Monte Carlo random walk in 1D with drift. The asymmetric random walk with diffusion from a plane can explain the scale widths of 0.04 pc upstream and 0.2 pc downstream in the non thermal intensity of X-ray emission in SN 1006. A mathematical image of the non thermal X-flux from an supernova remnant as well as profiles function of the distance from the center can be simulated. This model provides a reasonable description of both the limbs and the central region of SN 1006. A new method to deduce the magnetic field in supernova remnant is suggested.
We present the results of an archival 54 ks long Chandra observation of the peculiar source Cir X--1 during the phase passage 0.223-0.261. A comparative analysis of X-ray spectra, selected at different flux levels of the source, allows us to distinguish between a very hard state, at a low countrate, and a brighter, softer, highly absorbed spectrum during episodes of flaring activity, when the unabsorbed source luminosity is about three times the value in the hard state. The spectrum of the hard state clearly shows emission lines of highly ionized elements, while, during the flaring state, the spectrum also shows strong resonant absorption lines. The most intense and interesting feature in this latter state is present in the Fe K alpha region: a very broadened absorption line at energies ~ 6.5 keV that could result from a smeared blending of resonant absorption lines of moderately ionized iron ions (Fe XX - Fe XXIV). We also observe strong resonant absorption lines of Fe XXV and Fe XXVI, together with a smeared absorption edge above 7 keV. We argue that the emitting region during the quiescent/hard state is constituted of a purely photo-ionized medium, possibly present above an accretion disk, or of a photo-ionized plasma present in a beamed outflow. During the flaring states the source undergoes enhanced turbulent accretion that modifies both the accretion geometry and the optical depth of the gas surrounding the primary X-ray source.
We review the current state of modeling convective mixing in AGB stars. The focus is on results obtained through multi-dimensional hydrodynamic simulations of AGB convection, both in the envelope and the unstable He-shell. Using two different codes and a wide range of resolutions and modeling assumptions we find that mixing across convective boundaries is significant for He-shell flash convection. We present a preliminary quantitative analysis of this convectively induced extra mixing, based on a sub-set of our simulations. Other non-standard mixing will be discussed briefly.
The host galaxy of the long-duration gamma-ray burst (GRB) 031203 (HG031203) offers a precious opportunity to study in detail the environment of a nearby GRB. The aim is to better characterize this galaxy and analyse the possible evolution with time of the spectroscopic quantities we derive. We analyse HG031203 using a set of optical spectra acquired with the ESO-VLT and Keck telescope. We compare the metallicity, luminosity and star formation properties of this galaxy and of the other supernova-long gamma-ray burst hosts in the local universe (z<0.2) against the KPNO International Spectroscopic Survey. HG031203 is a metal poor, actively star forming galaxy (star formation rate of 12.9+/-2.2 {M_{sun} yr^-1) at z=0.1055. From the emission-line analysis we derive an intrinsic reddening E_{HG}(B-V)\approx 0.4. This parameter doesn't show a compelling evidence of evolution at a month time-scale. We find an interstellar medium temperature of 12500 K and an electronic density of N_{e}=160 cm^-3. After investigating for possible Wolf-Rayet emission features in our spectra, we consider dubious the classification of HG031203 as a Wolf-Rayet galaxy. Long gamma-ray burst (LGRB) and supernova hosts in the local universe (z<0.2) show, on average, specific star formation rates higher than ordinary star forming galaxy at the same redshift. On the other hand, we find that half of the hosts follows the metallicity-luminosity relation found for star-burst galaxies; HG031203 is a clear outlier, with its really low metallicity (12+\log{{O/H}}=8.12+/-0.04).
Very massive primordial stars ($140 M_{\odot} < M < 260 M_{\odot}$) are
supposed to end their lives as pair-instability supernovae. Such an event can
be traced by a typical chemical signature in low metallicity stars, but at the
present time, this signature is lacking in the extremely metal-poor stars we
are able to observe. Does it mean that those very massive objects did not form,
contrarily to the primordial star formation scenarios? Could they avoid this
tragical fate?
We explore the effects of rotation, anisotropic mass loss and magnetic fields
on the core size of a very massive Population III model, in order to check if
its mass is sufficiently modified to prevent the pair instability.
We obtain that a Population III model of $150 M_{\odot}$ with
$\upsilon/\upsilon_{\rm crit}=0.56$ computed with the inclusion of wind
anisotropy and Tayler-Spruit dynamo avoids the pair instability explosion.
To test the dust torus model for active galactic nuclei directly, we study the extent and morphology of the nuclear dust distribution in the Circinus galaxy using high resolution interferometric observations in the mid-infrared with the MIDI instrument at the Very Large Telescope Interferometer. We find that the dust distribution in the nucleus of Circinus can be explained by two components, a dense and warm disk-like component of 0.4 pc size and a slightly cooler, geometrically thick torus component with a size of 2.0 pc. The disk component is oriented perpendicular to the ionisation cone and outflow and seems to show the silicate feature at 10 micron in emission. It coincides with a nuclear maser disk in orientation and size. From the energy needed to heat the dust, we infer a luminosity of the accretion disk corresponding to 20% of the Eddington luminosity of the nuclear black hole. We find that the interferometric data are inconsistent with a simple, smooth and axisymmetric dust emission. The irregular behaviour of the visibilities and the shallow decrease of the dust temperature with radius provide strong evidence for a clumpy or filamentary dust structure. We see no evidence for dust reprocessing, as the silicate absorption profile is consistent with that of standard galactic dust. We argue that the collimation of the ionising radiation must originate in the geometrically thick torus component. Our findings confirm the presence of a geometrically thick, torus-like dust distribution in the nucleus of Circinus, as required in unified schemes of Seyfert galaxies. Several aspects of our data require that this torus is irregular, or "clumpy".
The dynamical friction force experienced by a body moving at relativistic speed in a gaseous medium is examined. This force, which arises due to the gravitational interaction of the body with its own gravitationally-induced wake, is calculated for straight-line and circular motion, generalizing previous results by several authors. Possible applications to the study of extreme mass-ratio inspirals around strongly-accreting supermassive black holes are suggested.
We investigated the thermal evolution of rotating strange stars with the deconfinement heating due to magnetic braking. We consider the stars consisting of either normal quark matter or color-flavor-locked phase. Combining deconfinement heating with magnetic field decay, we find that the thermal evolution curves are identical to pulsar data.
CONTEXT: The chemistry in the inner few thousand AU of accreting envelopes around young stellar objects is predicted to vary greatly with far-UV and X-ray irradiation by the central star. Aim We search for molecular tracers of high-energy irradiation by the protostar in the hot inner envelope. METHODS: The Submillimeter Array (SMA) has observed the high-mass star forming region AFGL 2591 in lines of CS, SO, HCN, HCN(v2=1), and HC15N with 0.6" resolution at 350 GHz probing radial scales of 600-3500 AU for an assumed distance of 1 kpc. The SMA observations are compared with the predictions of a chemical model fitted to previous single-dish observations. RESULTS: The CS and SO main peaks are extended in space at the FWHM level, as predicted in the model assuming protostellar X-rays. However, the main peak sizes are found smaller than modeled by nearly a factor of 2. On the other hand, the lines of CS, HCN, and HC15N, but not SO and HCN(v2=1), show pedestal emissions at radii of about 3500 AU that are not predicted. All lines except SO show a secondary peak within the approaching outflow cone. A dip or null in the visibilities caused by a sharp decrease in abundance with increasing radius is not observed in CS and only tentatively in SO. CONCLUSIONS: The emission of protostellar X-rays is supported by the good fit of the modeled SO and CS amplitude visibilities including an extended main peak in CS. The broad pedestals can be interpreted by far-UV irradiation in a spherically non-symmetric geometry, possibly comprising outflow walls on scales of 3500 -- 7000 AU. The extended CS and SO main peaks suggest sulfur evaporation near the 100 K temperature radius.
Radio pulsars are believed to be neutron stars or strange stars. There are a number of Equations of State for neutron matter and strange quark matter. The surface magnetic field of a pulsar, estimated by equating the spin down luminosity with the dipole radiation power depends on the choice of the Equation of State and differ significantly from the canonical value.
We present the angular distribution of gamma rays produced by proton-proton interactions in parameterized formulae to facilitate calculations in astrophysical environments. The parameterization is derived from Monte Carlo simulations of the up-to-date proton-proton interaction model by Kamae et al. (2005) and its extension by Kamae et al. (2006). This model includes the logarithmically rising inelastic cross section, the diffraction dissociation process and Feynman scaling violation. The extension adds two baryon resonance contributions: one representing the Delta(1232) and the other representing multiple resonances around 1600 MeV/c^2. We demonstrate the use of the formulae by calculating the predicted gamma-ray spectrum for two different cases: the first is a pencil beam of protons following a power law and the second is a fanned proton jet with a Gaussian intensity profile impinging on the surrounding material. In both cases we find that the predicted gamma-ray spectrum to be dependent on the viewing angle.
We investigate the hierarchical build-up of stars in bulges within the standard $\Lambda$-cold dark matter scenario. By separating the population into stars born during starbursts that accompany the formation of spheroids in major mergers ({\it starburst} component), and stars that are previously formed in discs of progenitor galaxies ({\it quiescent} component) and added to the spheroid by dynamical interaction. Our results are summarised as follows: bulges that form early have larger starburst fraction and hence should be smaller than their counter parts that form later. The quiescent fraction in bulges is an increasing function of bulge mass, becoming constant at $M_{\rm{q}}/M_{\rm{bul}} \sim 0.8$, mainly due to the infall of satellite galaxies that contribute disc stars to the bulge. Minor mergers are an order of magnitude more frequent than major mergers and must play a significant role in the evolution of bulges. Above the critical mass $M_{\rm{c}}\sim 3 \times 10^{10}$ M$_{\odot}$ most of the stars in the universe are in spheroids, which at high redshift are exclusively elliptical galaxies and at low redshifts partly bulges. Due to the enhanced evolution of galaxies ending up in high density environments, the starburst fraction and the surface mass densities of bulges below $M_{\rm{c}}$ should be enhanced with respect to field galaxies. Dissipation during the formation of massive bulges in present day early-type spirals is less important than for the formation of present day elliptical galaxies of the same mass thereby explaining the possible difference in phase-space densities between spiral galaxies and elliptical galaxies.
We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. We modify the approximation of Eisenstein & Hu (1998) for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code (this http URL). In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities f_nu=Omega_nu/Omega_m, but also each of the densities independently. We also present a simple fitting formula for the growth factor of perturbations f(z;f_nu,w,Omega_L)= (1-0.815*Omega_L*f_nu+4f_nu^2-10f_nu^3)*Omega_m(z)^alpha, where alpha depends on the dark energy equation of state parameter w. We then discuss two cosmological probes where the f factor directly appears: peculiar velocities and the Intergrated Sachs-Wolfe effect.
We present the largest sample of high-mass star-forming regions observed using submillimetre imaging polarimetry. The data were taken using SCUBA in conjunction with the polarimeter on the JCMT in Hawaii. In total, 16 star forming regions were observed, although some of these contain multiple cores. The polarimetry implies a variety of magnetic field morphologies, with some very ordered fields. We see a decrease in polarisation percentage for 7 of the cores. The magnetic field strengths estimated for 14 of the cores, using the corrected CF method, range from <0.1 mG to almost 6 mG. These magnetic fields are weaker on these large scales when compared to previous Zeeman measurements from maser emission, implying the role of the magnetic field in star formation increases in importance on smaller scales. Analysis of the alignment of the mean field direction and the outflow directions reveal no relation for the whole sample, although direct comparison of the polarimetry maps suggests good alignment (to at least one outflow direction per source) in 7 out of the 15 sources with outflows.
The general problem of the enhanced dissipation of shear-Alfven waves and, in particular, their "phase mixing", resulting from their propagation in inhomogeneous background magnetic fields, is considered from a different view point. It is shown that the dissipative mechanism proceeds essentially as the accelerated diffusion of a passively advected tracer, i.e. its "mixing" by inhomogeneous flows. Therefore, standard "phase mixing" corresponds to the effect of an "Alfvenic" shear flow while enhanced dissipation at a magnetic X-point corresponds to mixing by an "Alfvenic" strain flow. An eikonal formulation of the problem is adopted which means that the evolution of the global wave perturbation is supposed to result from the dynamics of a superposition of wave packets. Since shear-Alfven wave packets experience continuous shearing/straining while advected by the Alfvenic flow $\mathbf{V}_{A}$, their mixing process is also equivalent to a cascade of wave energy in $k$-space. This gradual creation of smaller scales in physical space eventually leads to steady state balance between the electromechanical source of energy and plasma heating in the dissipative scale region. The wave energy spectrum, which naturally encapsulates key features of the background magnetic geometry, is determined for the special case of waves propagating along chaotic magnetic field lines. The latter is found to follow a $k^{-1}$ power-law, in the energy conserving range, in $k$ space, continued by a sharp Gaussian fall-off in the dissipative region.
We present a power spectral analysis of a 100 ksec XMM-Newton observation of the narrow line Seyfert 1 galaxy Ark~564. When combined with earlier RXTE and ASCA observations, these data produce a power spectrum covering seven decades of frequency which is well described by a power law with two very clear breaks. This shape is unlike the power spectra of almost all other AGN observed so far, which have only one detected break, and resemble Galactic binary systems in a soft state. The power spectrum can also be well described by the sum of two Lorentzian-shaped components, the one at higher frequencies having a hard spectrum, similar to those seen in Galactic binary systems. Previously we have demonstrated that the lag of the hard band variations relative to the soft band in Ark 564 is dependent on variability time-scale, as seen in Galactic binary sources. Here we show that the time-scale dependence of the lags can be described well using the same two-Lorentzian model which describes the power spectrum, assuming that each Lorentzian component has a distinct time lag. Thus all X-ray timing evidence points strongly to two discrete, localised, regions as the origin of most of the variability. Similar behaviour is seen in Galactic X-ray binary systems in most states other than the soft state, i.e. in the low-hard and intermediate/very high states. Given the very high accretion rate of Ark 564 the closest analogy is with the very high (intermediate) state rather than the low-hard state. We therefore strengthen the comparison between AGN and Galactic binary sources beyond previous studies by extending it to the previously poorly studied very high accretion rate regime.
Unipolar induction (UI) is a fundamental physical process, which occurs when a conducting body transverses a magnetic field. It has been suggested that UI is operating in RX J0806+15 and RX J1914+24, which are believed to be ultra-compact binaries with orbital periods of 5.4 min and 9.6 min respectively. The UI model predicts that those two sources may be electron cyclotron maser sources at radio wavelengths. Other systems in which UI has been predicted to occur are short period extra-solar terrestrial planets with conducting cores. If UI is present, circularly polarised radio emission is predicted to be emitted. We have searched for this predicted radio emission from short period binaries using the VLA and ATCA. In one epoch we find evidence for a radio source, coincident in position with the optical position of RX J0806+15. Although we cannot completely exclude that this is a chance alignment between the position of RX J0806+15 and an artifact in the data reduction process, the fact that it was detected at a significance level of 5.8 sigma and found to be transient, suggests that it is more likely that RX J0806+15 is a transient radio source. We find an upper limit on the degree of circular polarisation to be ~50%. The inferred brightness temperature exceeds 10^18 K, which is too high for any known incoherent process, but is consistent with maser emission and UI being the driving mechanism. We did not detect radio emission from ES Cet, RX J1914+24 or Gliese 876.
The X-ray spectra of accreting stellar-mass black hole systems exhibit spectral features due to reflection, especially broad iron K alpha emission lines. We investigate the reflection by the accretion disc that can be expected in the high/soft state of such a system. First, we perform a self-consistent calculation of the reflection that results from illumination of a hot, inner portion of the disc with its atmosphere in hydrostatic equilibrium. Then we present reflection spectra for a range of illumination strengths and disc temperatures under the assumption of a constant-density atmosphere. Reflection by a hot accretion disc differs in important ways from that of a much cooler disc, such as that expected in an active galactic nucleus.
We computed the chemical evolution of Seyfert galaxies, residing in spiral bulges, based on an updated model for the Milky Way bulge with updated calculations of the Galactic potential and of the feedback from the central supermassive black hole (BH) in a spherical approximation. We followed the evolution of bulges of masses $2\times 10^{9}-10^{11}M_{\odot}$ by scaling the star-formation efficiency and the bulge scalelenght as in the inverse-wind scenario for ellipticals. We successfully reproduced the observed relation between the BH mass and that of the host bulge, and the observed peak nuclear bolometric luminosity. The observed metal overabundances are easily achieved, as well as the constancy of chemical abundances with the redshift.
We use a diffusive model for the propagation of Galactic cosmic rays to estimate the charged pion production in interactions with protons of the interstellar medium. Cosmic ray nuclei from proton to iron are considered and the corresponding contribution to the neutrino secondary flux produced as a result of spallation is also estimated.
We consider a scenario where keV sterile neutrinos constitute all of the currently inferred dark matter abundance, whose radiative decays could potentially account for the flux contributions to the X-ray background attributed to unresolved sources. Here we apply integrated flux methods to results from the observations of the North and South Chandra deep fields in order to deduce constraints on the sterile neutrino mass-mixing parameters.
We present an asteroseismological study on PG 0122+200, the coolest known pulsating PG1159 (GW Vir) star. Our results are based on an augmented set of the full PG1159 evolutionary models recently presented by Miller Bertolami & Althaus (2006). We perform extensive computations of adiabatic g-mode pulsation periods on PG1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 Msun. We derive a stellar mass of 0.626 Msun from a comparison between the observed period spacing and the computed asymptotic period spacing, and a stellar mass of 0.567 Msun by comparing the observed period spacing with the average of the computed period spacing. We also find, on the basis of a period-fit procedure, an asteroseismological model representative of PG 0122+200 which is able to reproduce the observed period pattern with an average of the period differences of 0.88 s. The model has an effective temperature of 81500 K, a stellar mass of 0.556 Msun, a surface gravity log g= 7.65, a stellar luminosity and radius of log(L/Lsun)= 1.14 and log(R/Rsun)= -1.73, respectively, and a He-rich envelope thickness of Menv= 0.019 Msun. We derive a seismic distance of about 614 pc and a parallax of about 1.6 mas. The results of the period-fit analysis carried out in this work suggest that the asteroseismological mass of PG 0122+200 could be 6-20 % lower than thought hitherto and in closer agreement (to within 5 %) with the spectroscopic mass. This result suggests that a reasonable consistency between the stellar mass values obtained from spectroscopy and asteroseismology can be expected when detailed PG1159 evolutionary models are considered.
We construct non-Abelian global string solutions in the U(N)_L x U(N)_R linear sigma model. These strings are the most fundamental objects which are expected to form during the chiral phase transitions, because the Abelian eta' string is marginally decomposed into N of them. We point out Nambu-Goldstone modes of CP^{N-1} for breaking of U(N)_V arise around a non-Abelian vortex.
Non-Abelian global strings are expected to form during the chiral phase transition. They have orientational zero modes in the internal space, associated with the vector-like symmetry SU(N)_{L+R} broken in the presence of strings. The interaction among two parallel non-Abelian global strings is derived for general relative orientational zero modes, giving a non-Abelian generalization of the Magnus force. It is shown that when the orientations of the strings are the same, the repulsive force reaches the maximum, whereas when the relative orientation becomes the maximum, no force exists between the strings. For the Abelian case we find a finite volume correction to the known result. The marginal instability of the previously known Abelian eta' strings is discussed.
The most fundamental strings in high density color superconductivity are the non-Abelian semi-superfluid strings which have color gauge flux tube but behave as superfluid vortices in the energetic point of view. We show that in addition to the usual translational zero modes, these vortices have normalizable orientational zero modes in the internal space, associated with the color-flavor locking symmetry broken in the presence of the strings. The interaction among two parallel non-Abelian semi-superfluid strings is derived for general relative orientational zero modes to show the universal repulsion. This implies that the previously known superfluid vortices, formed by spontaneously broken U(1)_B, are unstable to decay. Moreover, our result proves the stability of color superconductors in the presence of external color gauge fields.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0709, /abs, contact, help (Access key information)
When averaged over large scales, star formation in galaxies is observed to follow the empirical Kennicutt-Schmidt (KS) law for surface densities above a constant threshold. While the observed law involves surface densities, theoretical models and simulations generally work with volume density laws (i.e. Schmidt laws). We derive analytic relations between star formation laws expressed in terms of surface densities, volume densities, and pressures. We show how the relation between the Schmidt and KS laws depends on parameters such as the effective equation of state of the multiphase interstellar medium. We provide a method for implementing surface density laws into numerical simulations and test our theoretical framework using high-resolution simulations of isolated disc galaxies. We are able to reproduce the star formation threshold and both the slope and the normalisation of arbitrary input KS laws without any free parameters and with very little scatter, even for unstable galaxies and even if we use poor numerical resolution. While this success enables simulations of galaxies to bypass our current inability to simulate the formation of stars, it also means that simulations that lack the physics and/or resolution to simulate the multiphase interstellar medium can only provide limited insight into the origin of the observed star formation laws.
We quantify the slow-roll corrections to primordial density perturbations arising from inflation driven by a four-dimensional scalar field with a monomial potential in a five-dimensional non-compact bulk spacetime. Although the difference between the classical brane-world solutions and standard four-dimensional solutions is large at early times, the change to the amplitude at late times of perturbations generated from quantum fluctuations is first-order in slow-roll parameters, leading to second-order slow-roll corrections to the spectral index. This confirms that the leading-order effects are correctly given by previous work in the literature.
We study the evolution of linear perturbations in metric f(R) models of gravity and identify a potentially observable characteristic scale-dependent pattern in the behavior of cosmological structures. While at the background level viable f(R) models must closely mimic LCDM, the differences in their prediction for the growth of large scale structures can be sufficiently large to be seen with future weak lensing surveys. While working in the Jordan frame, we perform an analytical study of the growth of structures in the Einstein frame, demonstrating the equivalence of the dynamics in the two frames. We also provide a physical interpretation of the results in terms of the dynamics of an effective dark energy fluid with a non-zero shear. We find that the growth of structure in f(R) is enhanced, but that there are no small scale instabilities associated with the additional attractive "fifth force". We then briefly consider some recently proposed observational tests of modified gravity and their utility for detecting the f(R) pattern of structure growth.
Context: Many current and future surveys aim to detect the highest redshift
(z >~ 7) sources through their Lyman-alpha (Ly-alpha) emission, using the
narrow-band imaging method. However, to date the surveys have only yielded
non-detections and upper limits as no survey has reached the necessary
combination of depth and area to detect these very young star forming galaxies.
Aims: We aim to calculate model luminosity functions and mock surveys of
Ly-alpha emitters at z >~ 7 based on a variety of approaches.
Methods: We calculate model luminosity functions at different redshifts based
on three different approaches: a semi-analytical model based on CDM, a simple
phenomenological model, and an extrapolation of observed Schechter functions at
lower redshifts. The results of the first two models are compared with
observations made at redshifts z ~ 5.7 and z ~ 6.5, and they are then
extrapolated to higher redshift.
Results: We present model luminosity functions for redshifts between z = 7 -
12.5 and give specific number predictions for future planned or possible
narrow-band surveys for Ly-alpha emitters. We also investigate what constraints
future observations will be able to place on the Ly-alpha luminosity function
at very high redshift.
Conclusion: It should be possible to observe z = 7 - 10 Ly-alpha emitters
with present or near-future instruments if enough observing time is allocated.
In particular, large area surveys such as ELVIS (Emission Line galaxies with
VISTA Survey) will be useful in collecting a large sample. However, to get a
large enough sample to constrain well the z >= 10 Ly-alpha luminosity function,
instruments further in the future, such as an ELT, will be necessary.
(Abridged) We apply Principal Component Analysis (PCA) to a sample of early-type galaxies from the Sloan Digital Sky Survey (SDSS) in order to infer differences in their star formation histories. Out of the first few principal components (PC), we study four which give information about stellar populations and velocity dispersion. We construct two parameters (eta and zeta) as linear combinations of PC1 and PC2. We find zeta to be most sensitive to recent episodes of star formation, and eta to be strongly dependent on the average age of the stellar populations. The distribution of the eta component of the composites appear to be indistinguishable between high and low density regions, whereas the distribution of zeta parameters have a significant skew towards lower values for galaxies in low density regions. This result suggests that galaxies in lower density environments are less likely to present weak episodes of recent star formation. In contrast, a significant number of galaxies from our high density subsample -- which includes clusters (both outer regions and centres) and groups -- underwent small but detectable recent star formation at high metallicity, in agreement with recent estimates targeting elliptical galaxies in Hickson Compact Groups and in the field (Ferreras et al.).
We present unfiltered photometric observations with ROTSE-III and optical spectroscopic follow-up with the HET and Keck of the most luminous supernova yet identified, SN 2005ap. The spectra taken about 3 days before and 6 days after maximum light show narrow emission lines (likely originating in the dwarf host) and absorption lines at a redshift of z=0.2832, which puts the peak unfiltered magnitude at -22.7 +/- 0.1 absolute. Broad P-Cygni features corresponding to H-alpha, CIII, NIII, and OIII, are further detected with a photospheric velocity of ~20,000 km/s. Unlike other highly luminous supernovae such as 2006gy and 2006tf that show slow photometric evolution, the light curve of SN 2005ap indicates a 1-3 week rise to peak followed by a relatively rapid decay. The spectra also lack the distinct emission peaks from moderately broadened (FWHM ~ 2,000 km/s) Balmer lines seen in SN 2006gy and SN 2006tf. We briefly discuss the origin of the extraordinary luminosity from a strong interaction as may be expected from a pair instability eruption or a GRB-like engine encased in a H/He envelope.
Theoretical differences in the growth of structure offer the possibility that we might distinguish between modified gravity theories of dark energy and \LambdaCDM. A significant impediment to applying current and prospective large scale galaxy and weak lensing surveys to this problem is that, while the mildly non-linear regime is important, there is a lack of numerical simulations of non-linear growth in modified gravity theories. A major question exists as to whether existing analytical fits, created using simulations of standard gravity, can be confidently applied. In this paper we address this, presenting results of N-body simulations of a variety of models where gravity is altered including the Dvali, Gabadadze and Porrati model. We consider modifications that alter the Poisson equation and also consider the presence of anisotropic shear stress that alters how particles respond to the gravitational potential gradient. We establish how well analytical fits of the matter power spectrum by Peacock and Dodds and Smith et. al. are able to predict the non-linear growth found in the simulations from z=50 up to today, and also consider implications for the weak lensing convergence power spectrum. We find that the analytical fits provide remarkably good agreement with the simulations, being within 1 \sigma of the simulation results for cases with and without anisotropic stress and for scale dependent and independent modifications of the Poisson equation. No strong preference for either analytical fit is found.
A phaenomenological DM-DE coupling could indicate their common origin. Various constraint however exist to such coupling; here we outline that it can suppress Meszaros' effect, yielding transfered spectra with a softer bending above k_{hor,eq}. It could be therefore hard to reconcile these models with both CMB and deep sample data, using a constant spectral index.
A recent study has revealed SDSS J1257+3419 is either a faint and small dwarf galaxy or a faint and widely extended globular cluster. In this Letter, the author suggests this stellar system is a dwarf spheroidal (dSph). Adopting an observational relation between binding energy and mass of old stellar systems, we derive a relation between mass and size of dSphs by assuming that they are dark matter dominated and virialized objects. Letting half-light radius represent size of SDSS J1257+3419, we find that its mass is $\sim 7\times 10^6$ solar mass. This indicates mass-to-light ratio ($M/L$) of SDSS J1257+3419 is about 1000 in the solar unit. This large $M/L$ is expected from a Mateo plot of dSphs. Thus, we insist SDSS J1257+3419 is a dSph.
The collisional family of Kuiper belt object (KBO) 2003 EL61 opens the possibility for many interesting new studies of processes important in the formation and evolution of the outer solar system. As the first family in the Kuiper belt, it can be studied using techniques developed for studying asteroid families, although some modifications are necessary. Applying these modified techniques allows for a dynamical study of the 2003 EL61 family. The velocity required to change orbits is used to quantitatively identify objects near the collision. A method for identifying family members that have potentially diffused in resonances (like 2003 EL61) is also developed. Known family members are among the very closest KBOs to the collision and two new likely family members are identified: 2003 UZ117 and 1999 OY3. We also give tables of candidate family members which require future observations to confirm membership. We estimate that a minimum of ~1 GYr is needed for resonance diffusion to produce the current position of 2003 EL61, implying that the family is likely primordial. Future refinement of the age estimate is possible once (many) more resonant objects are identified. The ancient nature of the collision contrasts with the seemingly fresh surfaces of known family members, suggesting that our understanding of outer solar system surfaces is incomplete.
We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the contribution of a self consistent representation of the disk's self gravity. Nevertheless, type III migration cannot be completely suppressed and its onset requires finite amplitude perturbations such as that induced by planet-planet interaction. We determine the radial extent of type III migration as a function of the disk's self gravity.
A thin, bright dust cloud, which is associated with the Rosetta mission
target object (67P/Churyumov-Gerasimenko), was observed after the 2002
perihelion passage. The neckline structure or dust trail nature of this cloud
is controversial. In this paper, we definitively identify the dust trail and
the neckline structure using a wide-field CCD camera attached to the Kiso
1.05-m Schmidt telescope. The dust trail of 67P/Churyumov-Gerasimenko was
evident as scattered sunlight in all images taken between September 9, 2002 and
February 1, 2003, whereas the neckline structure became obvious only after late
2002.
We compared our images with a semi-analytical dynamic model of dust grains
emitted from the nucleus. A fading of the surface brightness of the dust trail
near the nucleus enabled us to determine the typical maximum size of the
grains. Assuming spherical compact particles with a mass density of 103 kg m-3
and an albedo of 0.04, we deduced that the maximum diameter of the dust
particles was approximately 1 cm. We found that the mass-loss rate of the comet
at the perihelion was 180 +/- 50 kg s-1 on or before the 1996 apparition, while
the mass-loss rate averaged over the orbit reached 20 +/- 6 kg s-1. The result
is consistent with the studies of the dust cloud emitted in the 2002/2003
return. Therefore, we can infer that the activity of 67P/Churyumov-Gerasimenko
has showed no major change over the past dozen years or so, and the largest
grains are cyclically injected into the dust tube lying along the cometary
orbit.
We present near-infrared (H- and K-band) SINFONI integral-field observations of the circumnuclear star formation rings in five nearby spiral galaxies. We made use of the relative intensities of different emission lines (i.e. [FeII], HeI, Brg) to age date the stellar clusters present along the rings. This qualitative, yet robust, method allows us to discriminate between two distinct scenarios that describe how star formation progresses along the rings. Our findings favour a model where star formation is triggered predominantly at the intersection between the bar major axis and the inner Lindblad resonance and then passively evolves as the clusters rotate around the ring ('Pearls on a string' scenario), although models of stochastically distributed star formation ('Popcorn' model) cannot be completely ruled out.
The study of the atmosphere of red supergiant stars in general and of Betelgeuse (alpha Orionis) in particular is of prime importance to understand dust formation and how mass is lost to the interstellar medium in evolved massive stars. A molecular shell, the MOLsphere (Tsuji, 2000a), in the atmosphere of Betelgeuse has been proposed to account for the near- and mid-infrared spectroscopic observations of Betelgeuse. The goal is to further test this hypothesis and to identify some of the molecules in this MOLsphere. We report on measurements taken with the mid-infrared two-telescope beam combiner of the VLTI, MIDI, operated between 7.5 and 13.5 $\mu$m. The data are compared to a simple geometric model of a photosphere surrounded by a warm absorbing and emitting shell. Physical characteristics of the shell are derived: size, temperature and optical depth. The chemical constituents are determined with an analysis consistent with available infrared spectra and interferometric data. We are able to account for the measured optical depth of the shell in the N band, the ISO-SWS spectrum and K and L band interferometric data with a shell whose inner and outer radii are given by the above range and with the following species: H2O, SiO and Al2O3. These results confirm the MOLsphere model. We bring evidence for more constituents and for the presence of species participating in the formation of dust grains in the atmosphere of the star, i.e. well below the distance at which the dust shell is detected. We believe these results bring key elements to the understanding of mass loss in Betelgeuse and red supergiants in general and bring support to the dust-driven scenario.
In this proceeding we make use of the two-dimensional stellar kinematics of a representative sample of E and S0 galaxies obtained with the SAURON integral-field spectrograph to reveal that early-type galaxies appear in two broad flavours, depending on whether they exhibit clear large-scale rotation or not. We measure the level of rotation via a new parameter LambdaR and use it as a basis for a new kinematic classification that separates early-type galaxies into slow and fast rotators. With the aid of broad-band imaging we will reinforce this finding by comparing our kinematic results to the photometric properties of these two classes.
In this proceeding we look at the relationship between the photometric nuclear properties of early-type galaxies from Hubble Space Telescope imaging and their overall kinematics as observed with the SAURON integral-field spectrograph. We compare the inner slope of their photometric profiles and the Slow/Fast rotator classes, defined by the amplitude of a newly defined LambdaR parameter, to show that slow rotators tend to be more massive systems and display shallower inner profiles and fast rotators steper ones. It is important to remark, however, that there is not a one-to-one relationship between the two photometric and kinematic groups.
We have analyzed the phase space distribution of a sample of about 900 non--kinematically selected low metallicity stars in the solar vicinity. The stars primarily represent the thick disk and halo populations of the Milky Way. We aim to identify overdensely populated regions in phase space, which we interpret as signatures of star streams passing close to the Sun. The search was conducted in a space constructed from the angular momenta and eccentricities of the stellar orbits. Besides recovering all well known star streams in the thick disk, we isolated four statistically significant phase space overdensities amongst halo stars. One of them is associated with a previously known halo star stream, but three of them are novel features, which we propose be also considered as genuine halo streams.
The association of long gamma-ray bursts with the deaths of massive stars naturally suggests that the cosmic GRB rate should trace the star formation history. Finding otherwise would provide important clues for the further development of our views concerning these rare, curious phenomena. Making use of a sample of 44 luminous Swift GRBs with redshifts in the range z=0-4, we find evidence of enhanced evolution in the GRB rate, with ~4 times as many GRBs being observed at z~4 than expected from star formation measurements. We discuss the origins of this observed trend, including several progenitor populations that the GRBs may actually be tracing.
Dwarf nova outbursts result from enhanced mass transport through the
accretion disc of a cataclysmic variable system.
We assess the question of whether these outbursts are caused by an enhanced
mass transfer from the late-type main sequence star onto the white dwarf
(so-called mass transfer instability model, MTI) or by a thermal instability in
the accretion disc (disc instability model, DIM).
We compute non-LTE models and spectra of accretion discs in quiescence and
outburst and construct spectral time sequences for discs over a complete
outburst cycle. We then compare our spectra to published optical spectroscopy
of the dwarf nova SS Cygni. In particular, we investigate the hydrogen and
helium line profiles that are turning from emission into absorption during the
rise to outburst.
The evolution of the hydrogen and helium line profiles during the rise to
outburst and decline clearly favour the disc-instability model. Our spectral
model sequences allow us to distinguish inside-out and outside-in moving
heating waves in the disc of SS Cygni, which can be related to symmetric and
asymmetric outburst light curves, respectively.
There are conflicting statements in the literature about the gravitational Faraday rotation of the plane of polarization of polarized electromagnetic radiation travelling through a gravitational wave. This issue is reconsidered using a simple formalism describing the rotation of the plane of polarization in a gravitational field, in the geometric optics approximation. It is shown that, to first order in the gravitational wave amplitude, the rotation angle is a boundary effect which vanishes for localized (astrophysically generated) gravitational waves and is non-zero, but nevertheless negligible, for cosmological gravitational waves.
Mass loss is a very important aspect of the life of massive stars. After
briefly reviewing its importance, we discuss the impact of the recently
proposed downward revision of mass loss rates due to clumping (difficulty to
form Wolf-Rayet stars and production of critically rotating stars). Although a
small reduction might be allowed, large reduction factors around ten are
disfavoured.
We then discuss the possibility of significant mass loss at very low
metallicity due to stars reaching break-up velocities and especially due to the
metal enrichment of the surface of the star via rotational and convective
mixing. This significant mass loss may help the first very massive stars avoid
the fate of pair-creation supernova, the chemical signature of which is not
observed in extremely metal poor stars. The chemical composition of the very
low metallicity winds is very similar to that of the most metal poor star known
to date, HE1327-2326 and offer an interesting explanation for the origin of the
metals in this star.
We also discuss the importance of mass loss in the context of long and soft
gamma-ray bursts and pair-creation supernovae. Finally, we would like to stress
that mass loss in cooler parts of the HR-diagram (luminous blue variable and
yellow and red supergiant stages) are much more uncertain than in the hot part.
More work needs to be done in these areas to better constrain the evolution of
the most massive stars.
Observations of transition region emission in solar active regions represent a powerful tool for determining the properties of hot coronal loops. In this Letter we present the analysis of new observations of active region moss taken with the Extreme Ultraviolet Imaging Spectrometer (EIS) on the \textit{Hinode} mission. We find that the intensities predicted by steady, uniformly heated loop models are too intense relative to the observations, consistent with previous work. To bring the model into agreement with the observations a filling factor of about 16% is required. Furthermore, our analysis indicates that the filling factor in the moss is nonuniform and varies inversely with the loop pressure.
We present the results of recent long-term BVRcIc photometric monitoring of the type II Cepheid prototype W Virginis. These new observations, made during the 2006 and 2007 observing season, represent the longest homogeneous, multicolor light curve of W Vir to date. The BVRcIc light and color curves show conclusively that W Vir exhibits modest but detectable cycle-to-cycle variations, the cause of which appears to be multiperiodicity rather than nonlinearity. We combined our V-band data with the five available years of ASAS-3 V-band photometry to obtain a 6.5-year light curve that we then analyzed to obtain the pulsation spectrum of W Vir. We find a best-fit period P(0) = 17.27134 d; along with this period and its integer harmonics, we clearly detect two additional periods, P(1) and P(low), that are close to but not exactly 2P(0)/3 and 2P(0), respectively. The former, P(1) = 11.52562 d, we interpret to be the first overtone mode; the latter, P(low) = 34.59760 d is close to the beat period of P(0) and P(1), as well as to the value of 2P(0). We interpret the previously reported but thus far unconfirmed descriptions of alternating minima as manifestations of this multiperiodicity. Finally, we use the period derived from the V-band light curve to define a new ephemeris: HJD(max) = 2452758.172 + 17.27134E. The resulting (O-C) diagram using 75 years of data from 1932 to 2007 yields a period change term for the ephemeris of -9.9 times 10(-7) E^(2), indicating a period decrease.
In this article we study the possibility that, due to non-linear couplings, unstable g-modes associated to convective motions excite stable oscillating g-modes. This problem is of particular interest, since gravitational waves emitted by a newly born proto-neutron star pulsating in its stable g-modes would be in the bandwidth of VIRGO and LIGO. Our results indicate that nonlinear saturation of unstable modes occurs at relatively low amplitudes, and therefore, even if there exists a coupling between stable and unstable modes, it does not seem to be sufficiently effective to explain, alone, the excitation of the oscillating g-modes found in hydrodynamical simulations.
AA Tau was observed for about 5h per XMM orbit (2 days) over 8 successive orbits, which covers two optical eclipse periods (8.2 days). The XMM optical/UV monitor simultaneously provided UV photometry with a ~15 min sampling rate. Some V-band photometry was also obtained from the ground during this period in order to determine the dates of the eclipses. Two X-ray and UV measurements were secured close to the center of the eclipse. The UV flux is the highest just before the eclipse starts and the lowest towards the end of it. We model the UV flux variations with a weekly modulation (inner disk eclipse), plus a daily modulation, which suggests a non-steady accretion. No eclipses are detected in X-rays. For one measurement, the X-ray count rate was nearly 50 times stronger than the minimum observed level, and the plasma temperature reached 60 MK, i.e., a factor of 2-3 higher than in the other observations. This X-ray event, observed close to the center of the optical eclipse, is interpreted as an X-ray flare. We identify the variable column density with the low-density accretion funnel flows blanketing the magnetosphere. The lack of X-ray eclipses indicates that X-ray emitting regions are located at high latitudes. Furthermore, the occurrence of a strong X-ray flare near the center of the optical eclipse suggests that the magnetically active areas are closely associated with the base of the high-density accretion funnel flow. We speculate that the impact of this free falling accretion flow onto the strong magnetic field of the stellar corona may boost the X-ray emission (abridged).
We present the first high-redshift galaxy cluster candidate sample from the HIROCS survey found in the COSMOS field. It results from a combination of public COSMOS with proprietary H-band data on a 0.66 square degree part of the COSMOS field and comprises 12 candidates in the redshift range 1.23 < z < 1.55. We find an increasing fraction of blue cluster members with increasing redshift. Many of the blue and even some of the reddest member galaxies exhibit disturbed morphologies as well as signs of interaction.
Recent observations of r-process-enriched metal-poor star abundances reveal a non-uniform abundance pattern for elements $Z\leq47$. Based on non-correlation trends between elemental abundances as a function of Eu-richness in a large sample of metal-poor stars, it is shown that the mixing of a consistent and robust light element primary process (LEPP) and the r-process pattern found in r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we derive the abundance pattern of the LEPP from observation and show that it is consistent with a missing component in the solar abundances when using a recent s-process model. As the astrophysical site of the LEPP is not known, we explore the possibility of a neutron capture process within a site-independent approach. It is suggested that scenarios with neutron densities $n_{n}\leq10^{13}$ $cm^{-3}$ or in the range $n_{n}\geq10^{24}$ $cm^{-3}$ best explain the observations.
Spatially resolving the innermost torus in AGN is one of the main goals of its high-spatial-resolution studies. This could be done in the near-IR observations of Type 1 AGNs where we see directly the hottest dust grains in the torus. We discuss two critical issues in such studies. Firstly, we examine the nuclear point sources in the HST/NICMOS images of nearby Type 1 AGNs, to evaluate the possible contribution from the central putative accretion disk. After a careful subtraction of host bulge flux, we show that near-IR colors of the point sources appear quite interpretable simply as a composite of a black-body-like spectrum and a relatively blue distinct component as expected for a torus and an accretion disk, respectively. Our radiative transfer models for clumpy tori also support this simple two-component interpretation. The observed near-IR colors suggest a fractional accretion disk contribution of ~25% or less at 2.2 micron. Secondly, we show that the innermost torus radii as indicated by the recent near-IR reverberation measurements are systematically smaller by a factor of ~3 than the predicted dust sublimation radius with a reasonable assumption for graphite grains of sublimation temperature 1500 K and size 0.05 micron in radius. The discrepancy might indicate a much higher sublimation temperature or a typical grain size being much larger in the innermost tori, though the former case appears to be disfavored by the observed colors of the HST point sources studied above. The near-IR interferometry with a baseline of ~100 m should be able to provide the important, independent size measurements, based on the low accretion disk contribution obtained above.
In this paper we reconsider a series expansion for a dark matter distribution function in the spherically symmetric anisotropic limit. We show here that the expansion may be renormalized so that the series does converge in time to an estimate of the steady state distribution function in the central regions. Subsequently we use this distribution function to discuss the nature of the central equilibrium and, by invoking stationarity of Boltzmann's H function as a measure of (thermodynamic) relaxation, we calculate the adiabatic variation in the local logarithmic slope of the mass density. Similarly the pseudo (phase-space) density variation with radius is calculated. These are compared to empirical fitting functions. There is general agreement on the inner part of the logarithmic slope of the density and of the inner profile of the pseudo-density power law, but coincident continuity with the outer power-laws is not yet achieved. Finally some suggestions are made regarding the actual microphysics acting during the non-equilibrium approach to relaxation. In particular a cascade regime is identified.
Magnetic fields are usually considered dynamically important in star formation when the dimensionless mass-to-flux ratio is close to, or less than, unity (lambda<~1). We show that, in disk formation, the requirement is far less stringent. This conclusion is drawn from a set of 2D (axisymmetric) simulations of the collapse of rotating, magnetized, singular isothermal cores. We find that a weak field corresponding to 1ambda~100 can begin to disrupt the rotationally supported disk through magnetic braking, by creating regions of rapid, supersonic collapse in the disk. These regions are separated by one or more centrifugal barriers, where the rapid infall is temporarily halted. The number of centrifugal barriers increases with lambda. When lambda>~100, they merge together to form a more or less contiguous, rotationally supported disk. Even though the magnetic field in such a case is extremely weak on the scale of dense cores, it is amplified by collapse and differential rotation, to the extent that its pressure dominates the thermal pressure in both the disk and its surrounding region. For relatively strongly magnetized cores with lambda<~10, the disk formation is suppressed completely, as found previously. A new feature is that the mass accretion is highly episodic, due to reconnection of the accumulated magnetic field lines. For rotationally supported disks to appear during the protostellar mass accretion phase of star formation in dense cores with realistic field strengths, the powerful magnetic brake must be weakened, perhaps through nonideal MHD effects and/or protostellar winds. We discuss the possibility of observing a generic product of the magnetic braking, an extended circumstellar region that is supported by a combination of toroidal magnetic field and rotation - a "magnetogyrosphere".
We study the magnetic Rayleigh-Taylor instability in three dimensions, with focus on the nonlinear structure and evolution that results from different initial field configurations. We study strong fields in the sense that the critical wavelength l_c at which perturbations along the field are stable is a large fraction of the size of the computational domain. We consider magnetic fields which are initially parallel to the interface, but have a variety of configurations, including uniform everywhere, uniform in the light fluid only, and fields which change direction at the interface. Strong magnetic fields do not suppress instability, in fact by inhibiting secondary shear instabilities, they reduce mixing between the heavy and light fluid, and cause the rate of growth of bubbles and fingers to increase in comparison to hydrodynamics. Fields parallel to, but whose direction changes at, the interface produce long, isolated fingers separated by the critical wavelength l_c, which may be relevant to the morphology of the optical filaments in the Crab nebula.
The ACS Virgo cluster survey by Cote' and collaborators shows the presence of compact nuclei at the photocenters of many early-type galaxies. It is argued that they are the low-mass counterparts of nuclei hosting Super Massive Black Holes (SBHs) detected in the bright galaxies. If this view is correct, then one should think in terms of central massive objects, either SBHs or Compact Stellar Clusters (CSCs), that accompany the formation of almost all early-type galaxies. In this observational frame, the hypothesis that galactic nuclei may be the remains of globular clusters driven inward to the galactic center by dynamical friction and there merged, finds an exciting possible confirm. In this short paper we report of our recent results on globular cluster mergers obtained by mean of detailed N-body simulations.
We introduce an alternative hypothesis to explain the very low luminosity of the cool (L-type) companion to the ~25 M_Jup ~8 Myr-old brown dwarf 2M1207A. Recently, Mohanty et al. (2007) found that effective temperature estimates for 2M1207B (1600 +- 100 K) are grossly inconsistent with its lying on the same isochrone as the primary, being a factor of ~10 underluminous at all bands between I (0.8 um) and L' (3.6 um). Mohanty et al. explain this discrepency by suggesting that 2M1207B is an 8 M_Jup object surrounded by an edge-on disk comprised of large dust grains producing 2.5^m of achromatic extinction. We offer an alternative explanation: the apparent flux reflects the actual source luminosity. Given the temperature, we infer a small radius (~49,000 km), and for a range of plausible densities, we estimate a mass < M_Jup. We suggest that 2M1207B is a hot protoplanet collision afterglow and show that the radiative timescale for such an object is >~1% the age of the system. If our hypothesis is correct, the surface gravity of 2M1207B should be an order of magnitude lower than predicted by Mohanty et al. (2007).
Coupling efficiencies of an electromagnetic field with a Kolmogorov phase statistics into a step-index fiber in its monomode regime of wavelengths are computed from the overlap integral between the phase screens and the far-field of the monomode at infrared wavelengths. The phase screens are composed from Karhunen-Loeve basis functions, optionally cutting off some of the eigenmodes of largest eigenvalue as if Adaptive Optics had corrected for some of the perturbations. The examples are given for telescope diameters of 1 and 1.8 m, and Fried parameters of 10 and 20 cm. The wavelength of the stellar light is in the J, H, or K band of atmospheric transmission, where the fiber core diameter is tailored to move the cutoff wavelength of the monomode regime to the edges of these bands.
We present the results of detailed N-body simulations of clusters moving in a realistic Milky Way (MW) potential. The strong interaction with the bulge and the disk of the Galaxy leads to the formation of tidal tails, emanating from opposite sides of the cluster. Their orientation and morphology may be interpreted easily in terms of a comoving frame of coordinates.
We describe a theoretical procedure for analyzing astronomical phased arrays with overlapping beams, and apply the procedure to simulate a simple example. We demonstrate the effect of overlapping beams on the number of degrees of freedom of the array, and on the ability of the array to recover a source. We show that the best images are obtained using overlapping beams, contrary to common practise, and show how the dynamic range of a phased array directly affects the image quality.
We have constructed realistic, self-consistent models of triaxial elliptical galaxies embedded in triaxial dark matter halos. Self-consistent solutions by means of the standard orbital superposition technique introduced by Schwarzschild were found in each of the three cases studied. Chaotic orbits were found to be important in all of the models, and their presence was shown to imply a possible slow evolution of the shapes of the halos. The equilibrium velocity distribution is reproduced by a Lorentzian function better than by a Gaussian. Our results demonstrate for the first time that triaxial dark matter halos can co-exist with triaxial galaxies.
Continuing our work from Paper I (Southworth et al., 2006) we present medium-resolution spectroscopy and broad-band photometry of seven cataclysmic variables (CVs) discovered by the SDSS. For six of these objects we derive accurate orbital periods, all which are measured for the first time. For SDSS J013132.39+090122.2, which contains a non-radially pulsating white dwarf, we find an orbital period of 81.54 +/- 0.13 min and a low radial velocity variation amplitude indicative of an extreme mass ratio. For SDSS J205914.87+061220.4, we find a period of 107.52 +/- 0.14 min. This object is a dwarf nova and was fading from its first recorded outburst throughout our observations. INT photometry of SDSS J155531.99-001055.0 shows that this system undergoes total eclipses which are 1.5 mag deep and occur on a period of 113.54 +/- 0.03 min. A NOT light curve of SDSS J075443.01+500729.2 shows that this system is also eclipsing, on a period of 205.965 +/- 0.014 min, but here the eclipses are V-shaped and only 0.5 mag deep. Its low emission-line strengths, orbital period and V-shaped eclipse unambiguously mark it as a novalike object. WHT photometry of SDSS J005050.88+000912.6 and SDSS J210449.94+010545.8 yields periods of 80.3 +/- 2.2 and 103.62 +/- 0.12 min, respectively. Photometry of the seventh and final system, SDSS J165658.12+212139.3, shows only flickering. Our results strengthen the conclusion that the faint magnitude limit of the SDSS spectroscopic database implies that the sample of CVs contained in it has quite different characteristics to previously studied samples of these objects. Five of the six orbital periods measured here are shorter than the observed 2-3 hr CV period gap. Two systems have periods very close to the minimum orbital period for hydrogen-rich CVs.
Dirac showed that the existence of one magnetic pole in the universe could offer an explanation of the discrete nature of the electric charge. Magnetic poles appear naturally in most grand unified theories. Their discovery would be of greatest importance for particle physics and cosmology. The intense experimental search carried thus far has not met with success. I proposed a universe with magnetic poles which are not observed free because they hide in deeply bound monopole--anti-monopole states named monopolium. I discuss the realization of this proposal and its consistency with known cosmological features. I furthermore analyze its implications and the experimental signatures that confirm the scenario.
The Egg Nebula has been regarded as the archetype of bipolar proto-planetary nebulae, yet we lack a coherent model that can explain the morphology and kinematics of the nebular and dusty components observed at high-spatial and spectral resolution. Here, we report on two sets of observations obtained with the Keck Adaptive Optics Laser Guide Star: H to M-band NIRC2 imaging, and narrow bandpath K-band OSIRIS 3-D imaging-spectroscopy (through the H2 2.121micron emission line). While the central star or engine remains un-detected at all bands, we clearly resolve the dusty components in the central region and confirm that peak A is not a companion star. The spatially-resolved spectral analysis provide kinematic information of the H_2 emission regions in the eastern and central parts of the nebula and show projected velocities for the H_2 emission higher than 100 km/s. We discuss these observations against a possible formation scenario for the nebular components.
Turbulent motions in the interior of a star play an important role in its evolution, since they transport chemical species, thermal energy and angular momentum. Our overall goal is to construct a practical turbulent closure model for convective transport that can be used in a multi-dimensional stellar evolution calculation including the effects of rotation, shear and magnetic fields. Here, we focus on the first step of this task: capturing the well-known transition from radiative heat transport to turbulent convection with and without rotation, as well as the asymptotic relationship between turbulent and radiative transport in the limit of large Rayleigh number. We extend the closure model developed by Ogilvie (2003) and Garaud and Ogilvie (2005) to include heat transport and compare it with experimental results of Rayleigh-Benard convection.
(abbreviated) We consider how tight binaries consisting of a super-massive black hole of mass $M=10^{3}-10^{4}M_{\odot}$ and a white dwarf can be formed in a globular cluster. We point out that a major fraction of white dwarfs tidally captured by the black hole may be destroyed by tidal inflation during ongoing circularisation, and the formation of tight binaries is inhibited. However, some stars may survive being spun up to high rotation rates. Then the energy loss through gravitational wave emission induced by tidally excited pulsation modes and dissipation through non linear effects may compete with the increase of pulsation energy due to dynamic tides. The semi-major axes of these stars can be decreased below a 'critical' value where dynamic tides are not effective because pulsation modes retain phase coherence between successive pericentre passages. The rate of formation of such circularising stars is estimated assuming that they can be modelled as $n=1.5$ polytropes and that results of the tidal theory for slow rotators can be extrapolated to fast rotators. We estimate the total capture rate as $\sim \dot N\sim 2.5\cdot 10^{-8}M_{4}^{1.3}r_{0.1}^{-2.1}yr^{-1}$, where $M_{4}=M/10^4M_{\odot}$ and $r_{0.1}$ is the radius of influence of the black hole in units $0.1pc$. We find that the formation rate of tight pairs is approximately 10 times smaller than the total capture rate. It is used to estimate the probability of detection of gravitational waves coming from such tight binaries by LISA. We conclude that LISA may detect such binaries provided that the fraction of globular clusters with black holes in the mass range of interest is substantial and that the dispersion velocity of the cluster stars near the radius of influence of the black hole exceeds $\sim 20km/s$.
We have used the Very Long Baseline Array to measure the trigonometric parallax of several member stars of the Orion Nebula Cluster showing non-thermal radio emission. We have determined the distance to the cluster to be 414 +/- 7 pc. Our distance determination allows for an improved calibration of luminosities and ages of young stars. We have also measured the proper motions of four cluster stars which, when accurate radial velocities are measured, will put strong constraints on the origin of the cluster.
Cosmic infrared background (CIB) contains emission from epochs inaccessible to current telescopic studies, such as the era of the first stars. We discuss theoretical expectations for the CIB contributions from the early population of massive stars. We then present the latest results from the ongoing project by our team (Kashlinsky, Arendt, Mather & Moseley 2005,2007a,b,c,) to measure CIB fluctuations from early epochs using deep Spitzer data. The results show the existence of significant CIB fluctuations at the IRAC wavelengths (3.6 to 8 mic) which remain after removing galaxies down to very faint levels. These fluctuations must arise from populations that have a significant clustering component, but only low levels of the shot noise. Furthermore, there are no correlations between the source-subtracted IRAC maps and the corresponding fields observed with the HST ACS at optical wavelengths. Taken together, these data imply that 1) the sources producing the CIB fluctuations are individually faint with flux < a few nJy at 3.6 and 4.5 mic; 2) are located within the first 0.7 Gyr (unless these fluctuations can somehow be produced by - so far unobserved - local galaxies of extremely low luminosity and with the unusual for local populations clustering pattern), 3) they produce contribution to the net CIB flux of at least 1-2 nW/m^2/sr at 3.6 and 4.5 mic and must have mass-to-light ratio significantly below the present-day populations, and 4) they have angular density of ~ a few per arcsec^2 and are in the confusion of the present day instruments, but can be individually observable with JWST.
We present 5 - 40 micron spectroscopy of 41 planetary nebulae (PNe) in the
Magellanic Clouds, observed with the Infrared Spectrograph on board the Spitzer
Space Telescope. The spectra show the presence of a combination of nebular
emission lines and solid-state features from dust, superimposed on the thermal
IR continuum.
By analyzing the 25 LMC and 16 SMC PNe in our sample we found that the IR
spectra of 14 LMC and 4 SMC PNe are dominated by nebular emission lines, while
the other spectra show solid-state features. We observed that the solid-state
features are compatible with carbon-rich dust grains (SiC, polycyclic aromatic
hydrocarbons (PAHs), etc.) in most cases, except in three PNe showing
oxygen-rich dust features. The frequency of carbonaceous dust features is
generally higher in LMC than in SMC PNe.
The spectral analysis allowed the correlations of the dust characteristics
with the gas composition and morphology, and the properties of the central
stars. We found that: 1) all PNe with carbonaceous dust features have C/O>1,
none of these being bipolar or otherwise highly asymmetric; 2) all PNe with
oxygen-rich dust features have C/O<1, with probable high mass progenitors if
derived from single-star evolution (these PNe are either bipolar or highly
asymmetric); 3) the dust temperature tracks the nebular and stellar evolution;
and 4) the dust production efficiency depends on metallicity, with low
metallicity environments not favoring dust production.
We present hydrodynamical models for Corotating Interaction Regions, which were used by Lobel (2007) to model the Discrete Absorption Components in HD 64760. We also discuss our failure to model the rotational modulations seen in the same star.
During a core-collapse supernova, absorption of anti-nu_e emitted from the proto-neutron star by protons in the hydrogen envelope produces neutrons and positrons. Neutron capture on protons and positron annihilation then produce gamma rays of 2.22 and 0.511 MeV, respectively. We calculate the fluxes of these gamma rays expected from a supernova with an 11 M_sun progenitor. The flux from neutron capture on protons exponentially decays on a timescale of 564 s, which is determined by neutron decay and capture on protons and 3He nuclei. The peak flux is 2.38x10^{-7}/cm^2/s for a supernova at a distance of 1 kpc. In contrast, the gamma-ray flux from positron annihilation follows the time evolution of the anti-nu_e luminosity and lasts for ~10 s. The peak flux in this case is 6.8x10^{-5}/cm^2/s for a supernova at a distance of 1 kpc. Detection of the above gamma-ray fluxes is beyond the capability of current instruments, and perhaps even those planned for the near future. However, if such fluxes can be detected, they not only constitute a new kind of signals that occur during the gap of several hours between the neutrino signals and the optical display of a supernova, but may also provide a useful probe of the conditions in the surface layers of the supernova progenitor.
The Ophiuchus molecular cloud complex has produced in Lynds 1688 the richest known embedded cluster within ~300 pc of the Sun. Unfortunately, distance estimates to the Oph complex vary by nearly ~40% (~120-165 pc). Here I calculate a new independent distance estimate of 135 +- 8 pc to this benchmark star-forming region based on Hipparcos trigonometric parallaxes to stars illuminating reflection nebulosity in close proximity to Lynds 1688. Combining this value with recent distance estimates from reddening studies suggests a consensus distance of 139 +- 6 pc (4% error), situating it within ~11 pc of the centroid of the ~5 Myr old Upper Sco OB subgroup of Sco OB2 (145 pc). The velocity vectors for Oph and Upper Sco are statistically indistinguishable within ~1 km/s in each vector component. Both Oph and Upper Sco have negligible motion (<1 km/s) in the Galactic vertical direction with respect to the Local Standard of Rest, which is inconsistent with the young stellar groups having formed via the high velocity cloud impact scenario.
We present a weak lensing analysis of the Coma Cluster using the Sloan Digital Sky Survey (SDSS) Data Release Five. Complete imaging of a ~ 200 square degree region is used to measure the tangential shear of this cluster. The shear is fit to an NFW model and we find a virial radius of r_{200}=1.99_{-0.22}^{+0.21}h^{-1}Mpc which corresponds to a virial mass of M_{200}=1.88_{-0.56}^{+0.65}\times10^{15}h^{-1}M_{\odot}. We additionally compare our weak lensing measurement to the virial mass derived using dynamical techniques, and find they are in agreement. This is the lowest redshift, largest angle weak lensing measurement of an individual cluster to date.
The gauge usually adopted for extracting the reduced Hamiltonian of a thin spherical shell of matter in general relativity, becomes singular when dealing with two or more intersecting shells. We introduce here a more general class of gauges which is apt for dealing with intersecting shells. As an application we give the hamiltonian treatment of two intersecting shells, both massive and massless. Such a formulation is applied to the computation of the semiclassical tunneling probability of two shells. The probability for the emission of two shells is simply the product of the separate probabilities thus showing no correlation in the emission probabilities in this model.
The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.
We compute the non-Gaussianity of the curvature perturbation generated by ekpyrotic collapse with multiple fields. The transition from the multi-field scaling solution to a single-field dominated regime converts initial isocurvature field perturbations to an almost scale-invariant comoving curvature perturbation. In the specific model of two fields, $\phi_1$ and $\phi_2$, with exponential potentials, $-V_i \exp (-c_i \phi_i)$, we calculate the bispectrum of the resulting curvature perturbation. We find that the non-Gaussianity is dominated by non-linear evolution on super-Hubble scales and hence is of the local form. The non-linear parameter of the curvature perturbation is given by $f_{NL} = 5 c_j^2 /12$, where $c_j$ is the exponent of the potential for the field which becomes sub-dominant at late times. Since $c_j^2$ must be large, in order to generate an almost scale invariant spectrum, the non-Gaussianity is inevitably large. Thus, the model is strongly constrained by observational bounds on the spectral index and non-Gaussianity.
We consider the behavior of the tangential velocity of test particles moving in stable circular orbits in f(R) modified theories of gravity. A large number of observations at the galactic scale have shown that the rotational velocities of massive test particles (hydrogen clouds) tend towards constant values at large distances from the galactic center. We analyze the vacuum gravitational field equations in f(R) models in the constant velocity region, and the general form of the metric tensor is derived in a closed form. The resulting modification of the Einstein-Hilbert Lagrangian is of the form R^{1+n}, with the parameter n expressed in terms of the tangential velocity. Therefore we find that to explain the motion of test particles around galaxies requires only very mild deviations from classical general relativity, and that modified gravity can explain the galactic dynamics without the need of introducing dark matter.
We show how the introduction of a finite baryon density may trigger spontaneous parity violation in QCD. This is possible because a CP non-invariant background allows to bypass the conditions of the well-known theorem that prevents the possibility of spontaneous parity breaking in vector-like theories. The analysis is done using a low-energy effective realization that retain the lowest two scalar and pseudoscalar multiplets. We expect that our approach would be relevant for dense nuclear matter in an intermediate regime $(\varrho_B\simeq 5\div 12 \varrho_{nuclear})$ where quark percolation does not yet play a significant role.
We examine how the binding of light ($A\leq 8$) nuclei depends on possible variations of hadronic masses, including meson, nucleon, and nucleon-resonance masses. Small variations in hadronic masses may have occurred over time; the present results can help evaluate the consequences for big bang nucleosynthesis. Larger variations may be relevant to current attempts to extrapolate properties of nucleon-nucleon interactions from lattice QCD calculations. Results are presented as derivatives of the energy with respect to the different masses so they can be combined with different predictions of the hadronic mass-dependence on the underlying current-quark mass $m_q$. As an example, we employ a particular set of relations obtained from a study of hadron masses and sigma terms based on Dyson-Schwinger equations and a Poincar\'{e}-covariant Faddeev equation for confined quarks and diquarks. We find that nuclear binding decreases moderately rapidly as the quark mass increases, with the deuteron becoming unbound when the pion mass is increased by $\sim$60% (corresponding to an increase in $X_q=m_q/\Lambda_{QCD}$ of 2.5). In the other direction, the dineutron becomes bound if the pion mass is decreased by $\sim$15% (corresponding to a reduction of $X_q$ by $\sim$30%). If we interpret the disagreement between big bang nucleosynthesis calculations and measurements to be the result of variation in $X_q$, we obtain an estimate $\delta X_q/X_q=K \cdot (0.013 \pm 0.002)$ where $K \sim 1$ (the expected accuracy in $K$ is about a factor of 2). The result is dominated by $^7$Li data.
We study the emission of scalars into the bulk from a higher-dimensional rotating black hole. We obtain an analytic solution to the field equation by employing matching techniques on expressions valid in the near-horizon and far-field regimes. Both analytic and numerical results for the absorption probability, in the low-energy and low-angular momentum limit, are derived and found to be in excellent agreement. We also compute the energy emission rate, and show that the brane-to-bulk ratio of the energy emission rates for scalar fields remains always larger than unity in the aforementioned regime.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0709, /abs, contact, help (Access key information)
The peak star formation intensity in starburst galaxies does not vary significantly from the local universe to redshift z~6. We arrive at this conclusion through new surface brightness measurements of 47 starburst galaxies at z~5-6, doubling the redshift range for such observations. These galaxies are spectroscopically confirmed in the Hubble Ultra Deep Field (HUDF) through the GRism ACS program for Extragalactic Science (GRAPES) project. The starburst intensity limit for galaxies at z~5-6 agree with those at z~3-4 and z~0 to within a factor of a few, after correcting for cosmological surface brightness dimming and for dust. The most natural interpretation of this constancy over cosmic time is that the same physical mechanisms limit starburst intensity at all redshifts up to z~6 (be they galactic winds, gravitational instability, or something else). We do see two trends with redshift: First, the UV spectral slope of galaxies at z~5-6 is bluer than that of z~3 galaxies, suggesting an increase in dust content over time. Second, the galaxy sizes from z~3 to z~6 scale approximately as the Hubble parameter 1/H(z). Thus, galaxies at z~6 are high redshift starbursts, much like their local analogs except for slightly bluer colors, smaller physical sizes, and correspondingly lower overall luminosities. If we now take the constancy of star formation intensity as a given, our observations provide a basis for a strong Tolman test: We should expect the observed surface brightness of z~6 galaxies to differ by factors of ~7^3 ~ 300 between a standard expanding cosmology and alternatives such as ``tired light''.
We present molecular-line observations of 94 dark cloud cores identified in the Pipe nebula through near-IR extinction mapping. Using the Arizona Radio Observatory 12m telescope, we obtained spectra of these cores in the J=1-0 transition of C18O. We use the measured core parameters, i.e., antenna temperature, linewidth, radial velocity, radius and mass, to explore the internal kinematics of these cores as well as their radial motions through the larger molecular cloud. We find that the vast majority of the dark extinction cores are true cloud cores rather than the superposition of unrelated filaments. While we identify no significant correlations between the core's internal gas motions and the cores' other physical parameters, we identify spatially correlated radial velocity variations that outline two main kinematic components of the cloud. The largest is a 15pc long filament that is surprisingly narrow both in spatial dimensions and in radial velocity. Beginning in the Stem of the Pipe, this filament displays uniformly small C18O linewidths (dv~0.4kms-1) as well as core to core motions only slightly in excess of the gas sound speed. The second component outlines what appears to be part of a large (2pc; 1000 solar mass) ring-like structure. Cores associated with this component display both larger linewidths and core to core motions than in the main cloud. The Pipe Molecular Ring may represent a primordial structure related to the formation of this cloud.
We investigate the effect of non-evaporating primordial black holes (PBHs) on the ionization and thermal history of the universe. X-rays emitted by gas accretion onto PBHs modify the cosmic recombination history, producing measurable effects on the spectrum and anisotropies of the Cosmic Microwave Background (CMB). Using the third-year WMAP data and FIRAS data we improve existing upper limits on the abundance of PBHs with masses >0.1 Msun by several orders of magnitude. Fitting WMAP3 data with cosmological models that do not allow for non-standard recombination histories, as produced by PBHs or other early energy sources, may lead to an underestimate of the best-fit values of the amplitude of linear density fluctuations (sigma_8) and the scalar spectral index (n_s). Cosmological parameter estimates are affected because models with PBHs allow for larger values of the Thomson scattering optical depth, whose correlation with other parameters may not be correctly taken into account when PBHs are ignored. Values of tau_e=0.2, n_s=1 and sigma_8=0.9 are allowed at 95% CF. This result that may relieve recent tension between WMAP3 data and clusters data on the value of sigma_8. PBHs may increase the primordial molecular hydrogen abundance by up to two orders of magnitude, this promoting cooling and star formation. The suppression of galaxy formation due to X-ray heating is negligible for models consistent with the CMB data. Thus, the formation rate of the first galaxies and stars would be enhanced by a population of PBHs.
We report the discovery of a new gravitationally lensed quasar, SDSS J131339.98+515128.3, at a redshift of 1.875 with an image separation of 1.24". The lensing galaxy is clearly detected in visible-light follow-up observations. We also identify three absorption-line doublets in the spectra of the lensed quasar images, from which we measure the lens redshift to be 0.194. Like several other known lenses, the lensed quasar images have different continuum slopes. This difference is probably the result of reddening and microlensing in the lensing galaxy. The lensed quasar was selected by correlating Sloan Digital Sky Survey (SDSS) spectroscopic quasars with Two Micron All Sky Survey (2MASS) sources and choosing quasars that show near-infrared (IR) excess. The near-IR excess can originate, for example, from the contribution of the lensing galaxy at near-IR wavelengths. We show that the near-IR excess technique is indeed an efficient method to identify lensed systems from a large sample of quasars.
We highlight the unexpected impact of nucleosynthesis and other early universe constraints on the detectability of tracking quintessence dynamics at late times, showing that such dynamics may well be invisible until the unveiling of the Stage-IV dark energy experiments (DUNE, JDEM, LSST, SKA). Nucleosynthesis forces |w'(0)| < 0.2 for the models we consider and strongly limits potential deviations from LCDM. Surprisingly, the standard CPL parametrisation, w(z) = w_0 + w_a z/(1+z), cannot match the nucleosynthesis bound for minimally coupled tracking scalar fields. Given that such models are arguably the best-motivated alternatives to a cosmological constant these results may significantly impact future cosmological survey design and imply that dark energy may well be dynamical even if we do not detect any dynamics in the next decade.
We investigate the evolution of high redshift seed black hole masses at late times and their observational signatures. The massive black hole seeds studied here form at extremely high redshifts from the direct collapse of pre-galactic gas discs. Populating dark matter halos with seeds formed in this way, we follow the mass assembly of these black holes to the present time using a Monte-Carlo merger tree. Using this machinery we predict the black hole mass function at high redshifts and at the present time; the integrated mass density of black holes and the luminosity function of accreting black holes as a function of redshift. These predictions are made for a set of three seed models with varying black hole formation efficiency. Given the accuracy of current observational constraints, all 3 models can be adequately fit. Discrimination between the models appears predominantly at the low mass end of the present day black hole mass function which is not observationally well constrained. However, all our models predict that low surface brightness, bulgeless galaxies with large discs are least likely to be sites for the formation of massive seed black holes at high redshifts. The efficiency of seed formation at high redshifts has a direct influence on the black hole occupation fraction in galaxies at z=0. This effect is more pronounced for low mass galaxies. This is the key discriminant between the models studied here and the Population III remnant seed model. We find that there exists a population of low mass galaxies that do not host nuclear black holes, in excellent agreement with the recent observational census of low mass galaxies in the Virgo cluster.
Wolf-Rayet (WR) stars near solar metallicity are believed to be driven by radiation pressure on the UV spectral lines of metal ions. As the metallicity decreases so does the line opacity, therefore the mass-loss rate. However, since the composition of a WR atmosphere is determined by the burn products of the core, there is a lower limit on the line opacity -- and therefore the mass-loss rate -- of a WR star, even in a star with zero initial metallicity. This presentation is the result of attempt to calculate the mass-loss rate of a Population III-type WO star using a modified version of the CAK approximation. I find that n_e greater than or equal to 10^{13} cm^{-3} and Gamma between 0.5 and 0.7 give the most plausible results, with the resulting mass-loss rate between 2x10^{-9} M_sun yr^{-1} and 3x10^{-8} M_sun yr^{-1}.
The overwhelming evidence that the core collapse supernova mechanism is inherently multidimensional, the complexity of the physical processes involved, and the increasing evidence from simulations that the explosion is marginal presents great computational challenges for the realistic modeling of this event, particularly in 3 spatial dimensions. We have developed a code which is scalable to computations in 3 dimensions which couples PPM Lagrangian with remap hydrodynamics [1], multigroup, flux-limited diffusion neutrino transport [2], with many improvements), and a nuclear network [3]. The neutrino transport is performed in a ray-by-ray plus approximation wherein all the lateral effects of neutrinos are included (e.g., pressure, velocity corrections, advection) except the transport. A moving radial grid option permits the evolution to be carried out from initial core collapse with only modest demands on the number of radial zones. The inner part of the core is evolved after collapse along with the rest of the core and mantle by subcycling the lateral evolution near the center as demanded by the small Courant times. We present results of 2-D simulations of a symmetric and an asymmetric collapse of both a 15 and an 11 M progenitor. In each of these simulations we have discovered that once the oxygen rich material reaches the shock there is a synergistic interplay between the reduced ram pressure, the energy released by the burning of the shock heated oxygen rich material, and the neutrino energy deposition which leads to a revival of the shock and an explosion.
We discuss the implications of rapid (few-minute) variability in the TeV flux of blazars, which has been observed recently with the HESS and MAGIC telescopes. The variability timescales seen in PKS 2155-304 and Mrk 501 are much shorter than inferred light-crossing times at the black hole horizon, suggesting that the variability involves enhanced emission in a small region within an outflowing jet. The enhancement could be triggered by dissipation in part of the black hole's magnetosphere at the base of the outflow, or else by instabilities in the jet itself. By considering the energetics of the observed flares, along with the requirement that TeV photons escape without producing pairs, we deduce that the bulk Lorentz factors in the jets must be >50. The distance of the emission region from the central black hole is less well-constrained. We discuss possible consequences for multi-wavelength observations.
We present the first detection of complex aldehydes and isomers in three
typical molecular clouds located within 200pc of the center of our Galaxy.
We find very large abundances of these complex organic molecules (COMs) in
the central molecular zone (CMZ), which we attribute to the ejection of COMs
from grain mantles by shocks. The relative abundances of the different COMs
with respect to that of CH3OH are strikingly similar for the three sources,
located in very different environments in the CMZ. The similar relative
abundances point toward a unique grain mantle composition in the CMZ. Studying
the Galactic center clouds and objects in the Galactic disk having large
abundances of COMs, we find that more saturated molecules are more abundant
than the non-saturated ones. We also find differences between the relative
abundance between COMs in the CMZ and the Galactic disk, suggesting different
chemical histories of the grain mantles between the two regions in the Galaxy
for the complex aldehydes. Different possibilities for the grain chemistry on
the icy mantles in the GC clouds are briefly discussed. Cosmic rays can play an
important role in the grain chemistry. With these new detections, the molecular
clouds in the Galactic center appear to be one of the best laboratories for
studying the formation of COMs in the Galaxy.
The X-ray binary system GX301-2 consists of a neutron star in an eccentric orbit accreting from the massive early-type star WRAY 977. It has previously been shown that the X-ray orbital light curve is consistent with existence of a gas stream flowing out from Wray 977 in addition to its strong stellar wind. Here, X-ray monitoring observations by the Rossi X-ray Timing Explorer (RXTE)/ All-Sky-Monitor (ASM) and pointed observations by the RXTE/ Proportional Counter Array (PCA) over the past decade are analyzed. We analyze both the flux and column density dependence on orbital phase. The wind and stream dynamics are calculated for various system inclinations, companion rotation rates and wind velocities, as well as parametrized by the stream width and density. These calculations are used as inputs to determine both the expected accretion luminosity and the column density along the line-of-sight to the neutron star. The model luminosity and column density are compared to observed flux and column density vs. orbital phase, to constrain the properties of the stellar wind and the gas stream. We find that the change between bright and medium intensity levels is primarily due to decreased mass loss in the stellar wind, but the change between medium and dim intensity levels is primarily due to decreased stream density. The mass-loss rate in the stream exceeds that in the stellar wind by a factor of 2.5. The quality of the model fits is significantly better for lower inclinations, favoring a mass for WRAY 977 of 53 to 62 Msun.
Rapid infall of gas in the nuclei of galaxies could lead to the formation of black holes by direct collapse, without first forming stars. Black holes formed in this way would have initial masses of a few solar masses, but would be embedded in massive envelopes that would allow them to grow at a highly super-Eddington rate. Thus, seed black holes as large as 10^3-10^4 solar masses could form very rapidly. I will sketch the basic physics of the direct collapse process and the properties of the accreting envelopes.
The On-The-Fly (OTF) imaging technique enables single-dish radio telescopes to construct images of small areas of the sky with greater efficiency and accuracy. This paper describes the practical application of the OTF imaging technique. By way of example the implementation of the OTF imaging technique at the NRAO 12 Meter Telescope is described. Specific requirements for data sampling, image formation, and Doppler correction are discussed.
We consider imbalanced, or cross-helical MHD Alfvenic turbulence where the waves traveling in one direction have higher amplitudes than the opposite waves. This paper is dedicated to so-called strong turbulence, which cannot be treated perturbatively. Our main result is that the anisotropy of the weak waves is stronger than the anisotropy of a strong waves. This seemingly contradicts the conventional interpretation of so-called critical balance (Goldreich, Sridhar 1995). We propose that critical balance, that was originally conceived as a causality argument, has to be amended by what we call a propagation argument. This revised formulation is consistent with the old one in the balanced case, and is able to include the imbalanced case. We also provide phenomenological model of energy cascading and discuss possibility of self-similar solutions in a realistic setup of driven turbulence.
Exploiting high-resolution observations made by the Solar Optical Telescope onboard Hinode, we investigate the spatial distribution of power spectral density of oscillatory signal in and around NOAA active region 10935. The G-band data show that in the umbra the oscillatory power is suppressed in all frequency ranges. On the other hand, in Ca II H intensity maps oscillations in the umbra, so-called umbral flashes, are clearly seen with the power peaking around 5.5 mHz. The Ca II H power distribution shows the enhanced elements with the spatial scale of the umbral flashes over most of the umbra but there is a region with suppressed power at the center of the umbra. The origin and property of this node-like feature remain unexplained.
We study an acceleration of electrons and positrons in the relativistic magnetic field reconnection using a 2.5-D particle-in-cell electromagnetic relativistic code. We consider the model with two current sheets and periodic boundary conditions. The electrons and positrons are very effectively accelerated during the tearing and coalescence processes of the reconnection. We found that near the X-points of the reconnection the positions of electrons and positrons differ. This separation process is in agreement with those studied in the previous papers analytically or by test particle simulations. We expect that in dependence on the magnetic field connectivity this local separation can lead to global spatial separation of the accelerated electrons and positrons. A similar simulation in the electron-proton plasma with the proton-electron mass ratio m_i/m_e = 16 is made.
We present Spitzer Space Telescope observations of the extrasolar planet HD189733b primary transit, obtained simultaneously at 3.6 and 5.8 microns with the Infrared Array Camera. The system parameters, including planetary radius, stellar radius, and impact parameter are derived from fits to the transit light curves at both wavelengths. We measure two consistent planet-to-star radius ratios, (Rp/Rs)[3.6$\mu$m] = 0.1560 +/- 0.0008(stat) +/- 0.0002(syst) and (Rp/Rs)[5.8$\mu$m] = 0.1541 +/- 0.0009(stat) +/- 0.0009(syst), which include both the random and systematic errors in the transit baseline. Although planet radii are determined at 1%-accuracy, if all uncertainties are taken into account the resulting error bars are still too large to allow for the detection of atmospheric constituants like water vapour. This illustrates the need to observe multiple transits with the longest possible out-of-transit baseline, in order to achieve the precision required by transmission spectroscopy of giant extrasolar planets.
In addition to fitting the data of 233 extra-solar planets with power laws, we construct a correlated mass-period distribution function of extrasolar planets, as the first time in this field. The algorithm to generate a pair of positively correlated beta-distributed random variables is introduced and used for the construction of correlated distribution functions. We investigate the mass-period correlations of extrasolar planets both in the linear and logarithm spaces, determine the confidence intervals of the correlation coefficients, and confirm that there is a positive mass-period correlation for the extrasolar planets. In addition to the paucity of massive close-in planets, which makes the main contribution on this correlation, there are other fine structures for the data in the mass-period plane.
The largest galaxies, and in particular central galaxies in clusters, offer unique insight into understanding the mechanism for the growth of nuclear black holes. We present Hubble Space Telescope kinematics for NGC1399, the central galaxy in Fornax. We find the best-fit model contains a black hole of 5.1 +-0.7 x 10^8 Msun (at a distance of 21.1 Mpc), a factor of over 2 below the correlation of black hole mass and velocity dispersion. We also find a dramatic signature for central tangential anisotropy. The velocity profiles on adjacent sides 0.5" away from the nucleus show strong bimodality, and the central spectrum shows a large drop in the dispersion. Both of these observations point to an orbital distribution that is tangentially biased. The best-fit orbital model suggests a ratio of the tangential to radial internal velocity dispersions of three. This ratio is the largest seen in any galaxy to date and will provide an important measure for the mode by which the central black hole has grown.
We conducted sub-arcsecond near-infrared imaging observations of RNO91 with CIAO mounted on the SUBARU 8.2 m telescope. We present our JHK band data along with optical images, which when considered together reveal a complex circumstellar structure. We examined the colors of associated nebula and compared the geometry of the outflow/disk system suggested by our data with that already proposed on the basis of previous studies. Our K-band image shows bright circumstellar nebulosity detected within 2"(300AU) around the central source while it is less conspicuous at shorter wavelengths such as J and optical. P.A. and size of this red color nebulosity in our H-K color image agree with those of the previously detected polarization disk. These data agreement indicate that this bright circumstellar nebulosity region which follows the reddening law might be attributed to a disk-like structure. At J and optical wavelengths, several blue knot-like structures are detected around and beyond the bright circumstellar nebulosity. We suggest that these knotty reflection nebulae may represent disintegrating fragments of an infalling envelope. The three-color composite image has an appearance of arc-shaped nebulosity extending to the north and to the east through the central source. On the other end of this arc-shaped structure, the nebula appears to become more extended (2."3 long) to the southwest. We interpret these structures as roots of bipolar cavities opening to the northeast and southwest. The complex distribution of reflection nebulosity seen around RNO91 appears to confirm the interpretation of this source as an object dispersing its molecular envelope while transitioning from protostar to T Tauri star.
[abridged] Inversion techniques are the most powerful methods to obtain information about the thermodynamical and magnetic properties of solar and stellar atmospheres. In the last years, we have witnessed the development of highly sophisticated inversion codes that are now widely applied to spectro-polarimetric observations. The majority of these inversion codes are based on the optimization of a complicated non-linear merit function. However, no reliable and statistically well-defined confidence intervals can be obtained for the parameters inferred from the inversions. A correct estimation of the confidence intervals for all the parameters that describe the model is mandatory. Additionally, it is fundamental to apply efficient techniques to assess the ability of models to reproduce the observations and to what extent the models have to be refined or can be simplified. Bayesian techniques are applied to analyze the performance of the model to fit a given observed Stokes vector. The posterior distribution, is efficiently sampled using a Markov Chain Monte Carlo method. For simplicity, we focus on the Milne-Eddington approximate solution of the radiative transfer equation and we only take into account the generation of polarization through the Zeeman effect. However, the method is extremely general and other more complex forward models can be applied. We illustrate the ability of the method with the aid of academic and realistic examples. We show that the information provided by the posterior distribution turns out to be fundamental to understand and determine the amount of information available in the Stokes profiles in these particular cases.
MERLIN observations of 6.668-GHz methanol and both 6.031- and 6.035-GHz hydroxyl (OH) emission from the massive star-formation region ON1 are presented. These are the first methanol observations made in full polarization using 5 antennas of MERLIN, giving high resolution and sensitivity to extended emission. Maser features are found to lie at the southern edge of the ultra-compact HII region, following the known distribution of ground-state OH masers. The masers cover a region ~1 arcsec in extent, lying perpendicular to the H13CO+ bipolar outflow. Excited-state OH emission demonstrates consistent polarization angles across the strongest linearly polarized features which are parallel to the overall distribution. The linear polarizations vary between 10.0 and 18.5 per cent, with an average polarization angle of -60 deg +/- 28 deg. The strongest 6.668-GHz methanol features provide an upper limit to linear polarization of ~1 per cent. Zeeman splitting of OH shows magnetic fields between -1.1 to -5.8 mG, and a tentative methanol magnetic field strength of -18 mG is measured.
A brief survey is presented of new science that will emerge during the decades ahead from direct detection of gravitational radiation. Interferometers on earth and in space will probe the universe in an entirely new way by directly sensing motions of distant matter over a range of more than a million in frequency. The most powerful sources of gravitational (or indeed any form of) energy in the universe are inspiralling and merging binary black holes; with LISA data, they will become the most distant, most completely and precisely modeled, and most accurately measured systems in astronomy outside the solar system. Other sources range from already known and named nearby Galactic binary stars, to compact objects being swallowed by massive black holes, to possible effects of new physics: phase transitions and superstrings from the early universe, or holographic noise from quantum fluctuations of local spacetime.
The most massive haloes at high redshift are expected, according to hierarchical cosmologies, to reside in the most biased density fields. If powerful active galactic nuclei (AGN) are expected to exist anywhere in the early Universe (z>5), it is within these massive haloes. The most luminous of these AGN, powered by supermassive black holes (SMBHs) ~10^9Msun, thereby present an opportunity to test models of galaxy formation. Here, we present submillimetre (submm) continuum images of the fields of three luminous quasars at z>5, obtained at 850 and 450um using the Submm Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT). N-body simulations predict that such quasars evolve to become the central dominant galaxies of massive clusters at z=0, but at z=5-6 they are actively forming stars and surrounded by a rich proto-filamentary structure of young galaxies. Our images show evidence of extended emission on a scale of ~100kpc from at least one quasar - indicative of a partially resolved merger or a colossal host galaxy. In addition, at >3sigma significance we detect 12 (5) submm galaxies (SMGs) at 850um (450um) in the surrounding fields. Number counts of these SMGs are systematically overabundant relative to blank-field submm surveys. Whilst the redshift-sensitive 850um/450um and 850um/1.4GHz flux density ratios indicate that some of these SMGs are likely foreground objects, the counts suggest that many probably lie in the same large-scale structures as the quasars.
A theory is developed to describe the nonlocal effect of spacetime quantization on position measurements transverse to macroscopic separations. Spacetime quantum states close to a classical null trajectory are approximated by plane wavefunctions of Planck wavelength (l_P) reference beams; these are used to connect transverse position operators at macroscopically separated events. Transverse positions of events with null spacetime separation, but separated by macroscopic spatial distance $L$, are shown to be quantum conjugate observables, leading to holographic indeterminacy and a new uncertainty principle, a lower bound on the standard deviation of relative transverse position \Delta x_\perp > \sqrt{l_PL} or angular orientation \Delta\theta > \sqrt{l_P/L}. The resulting limit on the number of independent degrees of freedom is shown to agree quantitatively with holographic covariant entropy bounds derived from black hole physics and string theory. The theory predicts a universal ``holographic noise'' of spacetime, appearing as shear perturbations with a frequency-independent power spectral density S_H=l_P/c, or in equivalent metric perturbation units, h_{H,rms} \sqrt{l_P/c} = 2.3 \times 10^{-22} /\sqrt{Hz}. If this description of holographic phenomenology is valid, interferometers with current technology could undertake direct quantitative studies of quantum gravity.
Landauer's principle is applied to a very simple model of the classical information in the universe. We find that before star formation started the information energy density fell rapidly with an information equation of state, wi=+0.25. Once star formation began, increasing stellar temperatures combined with expansion to provide a nearly constant information energy density. The information equation of state was close to the dark energy value, w ~ -1, over a wide range of redshifts, 10> z >0.8, a major fraction of cosmic time. A time varying equation of state with a direct link between dark energy and matter is clearly relevant to the cosmic coincidence problem.
In the inner parts of the Galaxy the Infrared Dark Clouds (IRDCs) are presently believed to be the progenitors of massive stars and star clusters. Many of them are predominantly devoid of active star formation and for now they represent the earliest observed stages of massive star formation. Their Outer Galaxy counterparts, if present, are not easily identified because of a low or absent mid-IR background. We characterize the ambient conditions in the Outer Galaxy IRDC candidate G111.80+0.58, a relatively quiescent molecular core complex in the vicinity of NGC7538. We conduct molecular line observations on a number of dense cores and analyze the data in terms of excitation temperature, column and volume density, mass and stability. The temperatures (15-20K) are higher than expected from only cosmic ray heating, but comparable to those found in massive cores. Star forming activity could be present in some cores, as indicated by the presence of warm gas and YSO candidates. The observed super-thermal line-widths are typical for star forming regions. The velocity dispersion is consistent with a turbulent energy cascade over the observed size scales. We do not find a correlation between the gas temperature and the line-width. The LTE masses we find are much larger than the thermal Jeans mass and fragmentation is expected. In that case the observed lines represent the combined emission of multiple unresolved components. We conclude that G111.80+0.58 is a molecular core complex with bulk properties very similar to IRDCs in an early, but not pristine, star forming state. The individual cores are close to virial equilibrium and some contain sufficient material to form massive stars and star clusters. The ambient conditions suggest that turbulence is involved in supporting the cores against gravitational collapse.
Using the combined capabilities of the large near-infrared Palomar/DEEP-2 survey, and the superb resolution of the ACS HST camera, we explore the size evolution of 831 very massive galaxies (M*>10^{11}h_{70}^{-2}M_sun) since z~2. We split our sample according to their light concentration using the Sersic index n. At a given stellar mass, both low (n<2.5) and high (n>2.5) concentrated objects were much smaller in the past than their local massive counterparts. This evolution is particularly strong for the highly concentrated (spheroid-like) objects. At z~1.5, massive spheroid-like objects were a factor of 4(+-0.4) smaller (i.e. almost two orders of magnitudes denser) than those we see today. These small sized, high mass galaxies do not exist in the nearby Universe, suggesting that this population merged with other galaxies over several billion years to form the largest galaxies we see today.
Shortened version: The fate of IS clouds embedded in a hot tenuous medium depends on whether the clouds suffer from evaporation or whether material condensates onto them. Analytical solutions for the rate of evaporative mass loss from an isolated spherical cloud embedded in a hot tenuous gas are deduced by Cowie & McKee (1977). In order to test the validity of the analytical results for more realistic IS conditions the full hydrodynamical equations must be treated. Therefore, 2D numerical simulations of the evolution of IS clouds %are performed with different internal density structures and surrounded by a hot plasma reservoir. Self-gravity, interstellar heating and cooling effects and heat conduction by electrons are added. Classical thermal conductivity of a fully ionized hydrogen plasma and saturated heat flux are considered. Using pure hydrodynamics and classical heat flux we can reproduce the analytical results. Heat flux saturation reduces the evaporation rate by one order of magnitude below the analytical value. The evolution changes totally for more realistic conditions when interstellar heating and cooling effects stabilize the self-gravity. Evaporation then turns into condensation, because the additional energy by heat conduction can be transported away from the interface and radiated off efficiently from the cloud's inner parts. I.e. that the saturated heat flux consideration is inevitable for IS clouds embedded in hot tenuous gas. Various consequences are discussed in the paper.
Here results of numerical radiation hydrodynamical simulations are presented which explore the energetic impact of massive stars on the interstellar medium. We study the evolution of the ambient gas around isolated massive stars in the mass range between 15 and 85 Msun in order to analyze the formation of structures and further the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the stars explode as a supernovae. The derived energy transfer efficiencies are much smaller than analytically estimated and should be inserted into chemo-dynamical evolutionary models of galaxies as appropriate parameter values. As an additional issue the element release in the Wolf-Rayet phases and its detectability have been investigated for comparison with observations.
The first INTEGRAL observations of the Small Magellanic Cloud (carried out in 2003) are reported in which two sources are clearly detected. The first source, SMC X-1, shows a hard X-ray eclipse and measurements of its pulse period indicate a continuation of the long-term spin-up now covering ~30 years. The second source is likely to be a high mass X-ray binary, and shows a potential periodicity of 6.8s in the IBIS lightcurve. An exact X-ray or optical counterpart cannot be designated, but a number of proposed counterparts are discussed. One of these possible counterparts shows a strong coherent optical modulation at ~2.7d, which, together with the measured hard X-ray pulse period, would lead to this INTEGRAL source being classified as the fourth known high mass Roche lobe overflow system.
By a few but important examples as models of combined radiative and wind-driven HII regions and galactic winds we demonstrate the importance of refined small-to-medium scale studies of chemo-dynamical effects. These processes determine the internal dynamics and energetic of the ISM and affect its observational signatures, e.g. by abundance contributions, but are not yet reliably and satisfactorily explored.
We present a homogeneous photometric and spectroscopic analysis of 18 stars along the evolutionary sequence of the metal-poor globular cluster NGC 6397 ([Fe/H] = -2), from the main-sequence turnoff point to red giants below the bump. The spectroscopic stellar parameters, in particular stellar-parameter differences between groups of stars, are in good agreement with broad-band and Stroemgren photometry calibrated on the infrared-flux method. The spectroscopic abundance analysis reveals, for the first time, systematic trends of iron abundance with evolutionary stage. Iron is found to be 31% less abundant in the turnoff-point stars than in the red giants. An abundance difference in lithium is seen between the turnoff-point and warm subgiant stars. The impact of potential systematic errors on these abundance trends (stellar parameters, the hydrostatic and LTE approximations) is quantitatively evaluated and found not to alter our conclusions significantly. Trends for various elements (Li, Mg, Ca, Ti and Fe) are compared with stellar-structure models including the effects of atomic diffusion and radiative acceleration. Such models are found to describe the observed element-specific trends well, if extra (turbulent) mixing just below the convection zone is introduced. It is concluded that atomic diffusion and turbulent mixing are largely responsible for the sub-primordial stellar lithium abundances of warm halo stars. Other consequences of atomic diffusion in old metal-poor stars are also discussed.
We report the detection of a substellar companion orbiting the intermediate-mass giant star 11 Com (G8 III). Precise Doppler measurements of the star from Xinglong station and Okayama Astrophysical Observatory (OAO) revealed Keplerian velocity variations with an orbital period of 326.03 +/- 0.32 days, a semiamplitude of 302.8 +/- 2.6 m/s, and an eccentricity of 0.231 +/- 0.005. Adopting a stellar mass of 2.7 +/- 0.3 M_solar, the minimum mass of the companion is 19.4 +/- 1.5 M_Jup, well above the deuterium burning limit, and the semimajor axis is 1.29 +/- 0.05 AU. This is the first result from the joint planet search program between China and Japan aiming at revealing statistics of substellar companions around intermediate-mass giants. 11 Com b emerged from 300 targets of the planet search program at OAO. The current detection rate of a brown dwarf candidate seems to be comparable to that around solar-type stars within orbital separations of $\sim$3 AU.
(Shortened) The Swift and HETE-2 discovery of an afterglow associated possibly with short GRBs opened the new problematic of their nature and classification. This has been further enhanced by the GRB060614 observation and by a re-analysis of the BATSE catalog leading to the identification of a new GRB class with "an occasional softer extended emission lasting tenths of seconds after an initial spikelike emission". We plan: a) to fit this new class of "hybrid" sources within our "canonical GRB" scenario, where all GRBs are generated by a "common engine" (i.e. the gravitational collapse to a black hole); b) to propose GRB970228 as the prototype of the such a class. We analyze BeppoSAX data on GRB970228 in the 40-700 keV and 2-26 keV energy bands within the "fireshell" model. We find that GRB970228 is a "canonical GRB", like e.g. GRB050315, with the main peculiarity of a particularly low CircumBurst Medium (CBM) average density n_{cbm}~10^{-3} #/cm^3. We also simulate the light curve corresponding to a rescaled CBM density profile with n_{cbm}=1 #/cm^3. From such a comparison it follows that the total time-integrated luminosity is a faithful indicator of the GRB nature, contrary to the peak luminosity which is merely a function of the CBM density. We call attention on discriminating the short GRBs between the "genuine" and the "fake" ones. The "genuine" ones are intrinsically short, with baryon loading B \la 10^{-5}, as stated in our original classification. The "fake" ones, characterized by an initial spikelike emission followed by an extended emission lasting tenths of seconds, have a baryon loading 10^{-4} \la B \leq 10^{-2}. They are observed as such only due to an underdense CBM consistent with a galactic halo environment which deflates the afterglow intensity.
We present a new method to directly map the neutral-hydrogen distribution during the reionization epoch and to constrain the emission properties of the highest-redshift quasars (QSOs). As a tracer of HI, we propose to use the Ly-alpha radiation produced by quasar ionization fronts (I-fronts) that expand in the partially ionized intergalactic medium (IGM) before reionization is complete. These Ly-alpha photons are mainly generated by collisional excitations of hydrogen atoms in the boundary of the rapidly expanding HII region. The observable signal is produced by the part of the I-front that lies behind the QSO with respect to the observer. Combining two radiative transfer models (one for the QSO ionizing radiation and one for the Ly-alpha photons), we estimate the expected Ly-alpha spectral shape and surface brightness (SB) for a large number of configurations where we varied both the properties of the ionizing QSO and of the surrounding medium. We find that the expected signal is observable as a single (broad) emission line with a characteristic width of 100-200 km/s. The expected SB produced at redshift z~6.5 within a fully neutral region (at mean density) by a typical QSO I-front lies in the range $10^{-21}-10^{-20}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ and decreases proportionally to $(1+z)^2$ for a given QSO age. QSOs with harder spectra may produce a significantly brighter emission at early phases. The signal may cover up to a few hundred square arcmin on the sky and should be already detectable with current facilities by means of moderate/high resolution spectroscopy. The detection of this Ly-alpha emission can shed new light on the reionization history, the age and the emission properties of the highest-redshift QSOs. (abridged)
We present a new class of hydrodynamical models for the formation of bulges (either massive elliptical galaxies or classical bulges in spirals) in which we implement detailed prescriptions for the chemical evolution of H, He, O and Fe. Our results hint toward an outside-in formation in the context of the supernovae-driven wind scenario. The build-up of the chemical properties of the stellar populations inhabiting the galactic core is very fast. Therefore we predict a non significant evolution of both the mass-metallicity and the mass-[alpha/Fe] relations after the first 0.5 - 1 Gyr. In this framework we explain how the observed slopes, either positive or negative, in the radial gradient of the mean stellar [alpha/Fe], and their apparent lack of any correlation with all the other observables, can arise as a consequence of the interplay between star formation and metal-enhanced internal gas flows.
The presence of a diffuse stellar component in galaxy clusters has been established by a number of observational works in recent years. In this contribution I summarize our results (Zibetti et al. 2005) obtained by stacking SDSS images of 683 clusters, selected with the maxBCG algorithm at 0.2< z <0.3. Thanks to our large sample and the advantages of image stacking applied to SDSS images, we are able to measure the systematic properties of the intracluster light (ICL) with very high accuracy. We find that the average surface brightness of the ICL ranges between 26 and 32 mag/arcsec^2, and constantly declines from 70 kpc cluster-centric distance (i.e. distance from the BCG) to 700 kpc. The fraction of diffuse light over the total light (including galaxies), monotonically declines from ~50 to <~5% over the same range of distances, thus showing that the ICL is more easily produced close to the bottom of a cluster's potential well. Clusters lacking a bright BCG hardly build up a large amount of intracluster stellar component. The link between the growth of the BCG and the ICL is also suggested by the strong degree of alignment between these two components which is observed in clusters where the BCG displays a significant elongation. With the additional fact that the colors of the ICL are consistent with those of galaxies, all this appears to be evidence for IC stars being stripped from galaxies that suffer very strong tidal interactions in the center of clusters and eventually merge into the BCG. Our measurements also show that IC stars are a minor component of a cluster's baryonic budget, representing only ~10% of the total optical emission within 500 kpc. Finally, we discuss some open issues that emerge from a comparison of the present results with other observations and recent theoretical modeling.
Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the sub-stellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarfs of mass 0.05M_{\odot}, our models predict a maximum planetary mass of ~5M_{\oplus}, orbiting with semi-major axis ~1AU. However, we note that the predictions for the mass - semi-major axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the sub-stellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasise the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type-II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.
Dynamical models for 17 Coma early-type galaxies are presented. The galaxy sample consists of flattened, rotating as well as non-rotating early-types including cD and S0 galaxies with luminosities between M=-18.79 and M=-22.56. Kinematical long-slit observations cover at least the major and minor axis and extend to 1-4 effective radii. Axisymmetric Schwarzschild models are used to derive stellar mass-to-light ratios and dark halo parameters. In every galaxy models with a dark matter halo match the data better than models without. The statistical significance is over 95 percent for 8 galaxies, around 90 percent for 5 galaxies and for four galaxies it is not significant. For the highly significant cases systematic deviations between observed and modelled kinematics are clearly seen; for the remaining galaxies differences are more statistical in nature. Best-fit models contain 10-50 percent dark matter inside the half-light radius. The central dark matter density is at least one order of magnitude lower than the luminous mass density. The central phase-space density of dark matter is often orders of magnitude lower than in the luminous component, especially when the halo core radius is large. The orbital system of the stars along the major-axis is slightly dominated by radial motions. Some galaxies show tangential anisotropy along the minor-axis, which is correlated with the minor-axis Gauss-Hermite coefficient H4. Changing the balance between data-fit and regularisation constraints does not change the reconstructed mass structure significantly. Model anisotropies tend to strengthen if the weight on regularisation is reduced, but the general property of a galaxy to be radially or tangentially anisotropic, respectively, does not change. (abridged)
We introduce a new Rigid-Field Hydrodynamics approach to modeling the
magnetospheres of massive stars in the limit of very-strong magnetic fields.
Treating the field lines as effectively rigid, we develop hydrodynamical
equations describing the 1-dimensional flow along each, subject to pressure,
radiative, gravitational, and centrifugal forces. We solve these equations
numerically for a large ensemble of field lines, to build up a 3-dimensional
time-dependent simulation of a model star with parameters similar to the
archetypal Bp star sigma Ori E. Since the flow along each field line can be
solved for independently of other field lines, the computational cost of this
approach is a fraction of an equivalent magnetohydrodynamical treatment.
The simulations confirm many of the predictions of previous analytical and
numerical studies. Collisions between wind streams from opposing magnetic
hemispheres lead to strong shock heating. The post-shock plasma cools initially
via X-ray emission, and eventually accumulates into a warped, rigidly rotating
disk defined by the locus of minima of the effective (gravitational plus
centrifugal) potential. But a number of novel results also emerge. For field
lines extending far from the star, the rapid area divergence enhances the
radiative acceleration of the wind, resulting in high shock velocities (up to
~3,000 km/s) and hard X-rays. Moreover, the release of centrifugal potential
energy continues to heat the wind plasma after the shocks, up to temperatures
around twice those achieved at the shocks themselves. Finally, in some
circumstances the cool plasma in the accumulating disk can oscillate about its
equilibrium position, possibly due to radiative cooling instabilities in the
adjacent post-shock regions.
In recent years, ground-based gamma-ray observatories have made a number of important astrophysical discoveries which have attracted the attention of the wider scientific community. The Division of Astrophysics of the American Physical Society has requested the preparation of a white paper on the status and future of ground-based gamma-ray astronomy to define the science goals of the future observatory, to determine the performance specifications, and to identify the areas of necessary technology development. In this contribution we give a brief overview of the activities of the current white paper team and invite the international community to contribute to the white paper.
In this paper we present a re-analysis of the criteria used to characterize the Peimbert classes I, IIa, IIb, III and IV, through a statistical study of a large sample of planetary nebulae previously classified according to these groups. In the original classification, it is usual to find planetary nebulae that cannot be associated with a single type; these most likely have dubious classifications into two or three types. Statistical methods can greatly contribute in providing a better characterization of planetary nebulae groups. We use the Bayes Theorem to calculate the posterior probabilities for an object to be member of each of the types I, IIa, IIb, III and IV. This calculation is particularly important for planetary nebulae that are ambiguously classified in the traditional method. The posterior probabilities are defined from the probability density function of classificatory parameters of a well-defined sample, composed only by planetary nebulae unambiguously fitted into the Peimbert types. Because the probabilities depend on the available observational data, they are conditional probabilities, and, as new observational data are added to the sample, the classification of the nebula can be improved, to take into account this new information. This method differs from the original classificatory scheme, because it provides a quantitative result of the representativity of the object within its group. Also, through the use of marginal distributions it is possible to extend the Peimbert classification even to those objects for which only a few classificatory parameters are known.
We propose a simple model where a {\it gauge invariant inflaton} is responsible for cosmic inflation and generates the seed for structure formation, while its relic {\it thermal} abundance explains the missing matter of the universe in the form of cold dark matter. The inflaton self-coupling also explains the observed neutrino masses. All the virtues can be attained in a minimal extension of the Standard Model gauge group around the TeV scale. We can also unveil these properties of an inflaton in forthcoming space and ground based experiments.
We compute the full O(alpha_s) SUSY-QCD corrections to dark matter annihilation in the Higgs-funnel, resumming potentially large mu tan beta and A_b contributions and keeping all finite O(m_b,s,1/tan^2 beta) terms. We demonstrate numerically that these corrections strongly influence the extraction of SUSY mass parameters from cosmological data and must therefore be included in common analysis tools such as DarkSUSY or micrOMEGAs.
In this letter we point out that the massive gravity theory with a graviton ghost mode in de Sitter background cannot possess a de Sitter invariant vacuum state. In order to avoid a negative norm state, we must associate the creation operator of the ghost mode with a negative-energy mode function instead of a positive-energy one as the mode function. Namely, we have to adopt a different procedure of quantization for a ghost. When a theory has a symmetry mixing a ghost mode with ordinary non-ghost modes, the choice of a ghost mode is not unique. However, quantization of a ghost is impossible without specifying a choice of ghost mode, which breaks the symmetry. For this reason, the vacuum state cannot respect the symmetry. In the massive gravity theory with a graviton ghost mode in de Sitter background, the ghost is the helicity-0 mode of the graviton. This ghost mode is mixed with the other helicity graviton modes under the action of de Sitter symmetry. Therefore, there is no de Sitter invariant vacuum in such models. This leads to an interesting possibility that non-covariant cutoff of the low energy effective theory may naturally arise. As a result, the instability due to the pair production of a ghost and normal non-ghost particles gets much milder and that the model may escape from being rejected.
We study the effective field theory of inflation, i.e. the most general theory describing the fluctuations around a quasi de Sitter background, in the case of single field models. The scalar mode can be eaten by the metric by going to unitary gauge. In this gauge, the most general theory is built with the lowest dimension operators invariant under spatial diffeomorphisms, like g^{00} and K_{mu nu}, the extrinsic curvature of constant time surfaces. This approach allows us to characterize all the possible high energy corrections to simple slow-roll inflation, whose sizes are constrained by experiments. Also, it describes in a common language all single field models, including those with a small speed of sound and Ghost Inflation, and it makes explicit the implications of having a quasi de Sitter background. The non-linear realization of time diffeomorphisms forces correlation among different observables, like a reduced speed of sound and an enhanced level of non-Gaussianity.
The consistency relation for the 3-point function of the CMB is a very powerful observational signature which is believed to be true for every inflationary model in which there is only one dynamical degree of freedom. Its importance relies on the fact that deviations from it might be detected in next generation experiments, allowing us to rule out all single field inflationary models. After making more precise the already existing proof of the consistency relation, we use a recently developed effective field theory for inflationary perturbations to provide an alternative and very explicit proof valid at leading non trivial order in slow roll parameters.
Neutralino dark matter is well motivated, but also suffers from two shortcomings: it requires gravity-mediated supersymmetry breaking, which generically violates low energy precision constraints, and the neutralino thermal relic density is typically too large. We propose a simple solution to both problems: neutralinos freezeout with would-be relic densities of \Omega ~10-100, but then decay to ~1 GeV gravitinos, which are light enough to satisfy low energy constraints, but also heavy enough to be all of dark matter. This scenario is naturally implemented in models with high-scale gauge-mediated supersymmetry breaking, may ameliorate small scale strucutre problems, and implies that ``cosmologically excluded'' models may, in fact, be cosmologically viable and preferred.
The Anthropic Principle is claimed by many to provide a possible explanation for the observed smallness of the cosmological constant. However, correlations between the value of the cosmological constant and the existence of life can be demonstrated only under quite restrictive assumptions. Even allowing for a possible correlation, we demonstrate here that suggesting any such correlation is in fact causative is a much more subtle issue, and in general this latter claim will not be implied by the former.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0709, /abs, contact, help (Access key information)
We use a new stacking technique to obtain mean mid IR and far IR to far UV flux ratios over the rest near-UV/near-IR color-magnitude diagram. We employ COMBO-17 redshifts and COMBO-17 optical, GALEX far and near UV, Spitzer IRAC and MIPS Mid IR photometry. This technique permits us to probe infrared excess (IRX), the ratio of far IR to far UV luminosity, and specific star formation rate (SSFR) and their co-evolution over two orders of magnitude of stellar mass and redshift 0.1<z<1.2. We find that the SSFR and the characteristic mass (M_0) above which the SSFR drops increase with redshift (downsizing). At any given epoch, IRX is an increasing function of mass up to M_0. Above this mass IRX falls, suggesting gas exhaustion. In a given mass bin below M_0 IRX increases with time in a fashion consistent with enrichment. We interpret these trends using a simple model with a Schmidt-Kennicutt law and extinction that tracks gas density and enrichment. We find that the average IRX and SSFR follows a galaxy age parameter which is determined mainly by the galaxy mass and time since formation. We conclude that blue sequence galaxies have properties which show simple, systematic trends with mass and time such as the steady build-up of heavy elements in the interstellar media of evolving galaxies and the exhaustion of gas in galaxies that are evolving off the blue sequence. The IRX represents a tool for selecting galaxies at various stages of evolution.
We report the discovery of the Narrow-Line Seyfert 1 galaxy Mkn 335 in an extremely low X-ray state. A comparison of Swift observations obtained in May and June/July 2007 with all previous X-ray observations between 1971 to 2006 show the AGN to have diminished in flux by a factor of more than 30, the lowest X-ray flux Mkn 335 has ever been observed in. The Swift observations show an extremely hard X-ray spectrum at energies above 2 keV. Possible interpretations include partial covering absorption or X-ray reflection from the disk. In this letter we consider the partial covering interpretation. The Swift observations can be well fit by a strong partial covering absorber with varying absorption column density N_H= 1-4 x 10^{23} cm-2 and a covering fraction f_c=0.9 - 1. When corrected for intrinsic absorption, the X-ray flux of Mkn 335 varies by only factors of 4-6. In the UV Mkn 335 shows variability in the order of 0.2 mag. We discuss the similarity of Mkn 335 with the highly variable NLS1 WPVS007, and speculate about a possible link between NLS1 galaxies and broad-absorption line quasars.
The Pierre Auger Observatory (PAO) has measured the spectrum and composition of the ultrahigh energy cosmic rays with unprecedented precision. We use these measurements to constrain their spectrum and composition as injected from their sources and, in turn, use these results to estimate the spectrum of cosmogenic neutrinos generated in their propagation through intergalactic space. We find that the PAO measurements can be well fit if the injected cosmic rays consist entirely of nuclei with masses in the intermediate (C, N, O) to heavy (Fe, Si) range. A mixture of protons and heavier species is also acceptable but (on the basis of existing hadronic interaction models) injection of pure light nuclei (p, He) results in unacceptable fits to the new elongation rate data. The expected spectrum of cosmogenic neutrinos can vary considerably, depending on the precise spectrum and chemical composition injected from the cosmic ray sources. In the models where heavy nuclei dominate the cosmic ray spectrum and few dissociated protons exceed GZK energies, the cosmogenic neutrino flux can be suppressed by up to two orders of magnitude relative to the all-proton prediction, making its detection beyond the reach of current and planned neutrino telescopes. Other models consistent with the data, however, are proton-dominated with only a small (1-10%) admixture of heavy nuclei and predict an associated cosmogenic flux within the reach of upcoming experiments. Thus a detection or non-detection of cosmogenic neutrinos can assist in discriminating between these possibilities.
We present a mechanism to create vortices in a plasma via gravitational dragging behind rotating cosmic string loops. The vortical motions create magnetic fields by means of the Harrison-Rees mechanism; the fields are further enhanced through galactic collapse and dynamo amplification. Employing the Velocity dependent One Scale model (VOS) for the string network and incorporating loop dynamics, we compute the magnetic fields generated around the time of decoupling: these are just strong and coherent enough to account for presently observed magnetic fields in spiral galaxies if efficient dynamos with $\Gamma_{dy}^{-1}\approx 0.3$ Gyr are present.
It is shown that above the temperature of maximum abundance, recombination rates into the excited states of He-like ions that are calculated using earlier, more approximate methods differ markedly from rates obtained from recent distorted-wave and R-Matrix calculations (unified recombination rate coefficients) for Ca, Fe, and Ni. The present rates lead to G ratios that are greatly lower than those resulting from the more approximate rates in previous works, by up to a factor of six at high electron temperatures. Excellent agreement between the distorted-wave and the R-Matrix rates, as well as excellent agreement in the G ratios calculated from them, provides support for the accuracy of these new values which have a broad applicability to the modelling and interpreting of X-ray spectra from a variety of astrophysical and laboratory sources.
Wang and White (2007) have discussed some problems with N-body simulation methods. These problems are a special case of a more general problem which has been largely unacknowledged for approximately 25 years, and affects results of all dark matter simulations on small scales (the definition of 'small' varying with time). Extensive numerical experiments with multiple types of N-body codes have demonstrated that spurious fluctuations due to particle discreteness grow rapidly even in the presence of substantial small-scale power from the intended model spectrum, and modify the results on scales smaller than the mean comoving interparticle separation. This implies that the spatial resolution of such simulations is typically limited not by the force softening length, often referred to as the 'resolution', and not by the particle density in halos. Instead it is approximately N^-1/3, where N is the mean particle density, and of course depends on and improves very slowly with increased number of particles. This calls into question many results on smaller scales over more than two decades.
This study establishes that SMC, LMC and Milky Way extinction curves obey the same extinction law which depends on the 2200A bump size and one parameter, and generalizes the Cardelli, Clayton and Mathis (1989) relationship. This suggests that extinction in all three galaxies is of the same nature. The role of linear reddening laws over all the visible/UV wavelength range, particularly important in the SMC but also present in the LMC and in the Milky Way, is also highlighted and discussed.
Astronomy began as a visual science, first through careful observations of the sky using either an eyepiece or the naked eye, then on to the preservation of those images with photographic media and finally the digital encoding of that information via CCDs. This last step has enabled astronomy to move into a fully automated era -- where data is recorded, analyzed and interpreted often without any direct visual inspection. Sky in Google Earth completes that circle by providing an intuitive visual interface to some of the largest astronomical imaging surveys covering the full sky. By streaming imagery, catalogs, time domain data, and ancillary information directly to a user, Sky can provide the general public as well as professional and amateur astronomers alike with a wealth of information for use in education and research. We provide here a brief introduction to Sky in Google Earth, focusing on its extensible environment, how it may be integrated into the research process and how it can bring astronomical research to a broader community. With an open interface available on Linux, Mac OS X and Windows, applications developed within Sky are accessible not just within the Google framework but through any visual browser that supports the Keyhole Markup Language. We present Sky as the embodiment of a virtual telescope.
We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is ~85% complete and over 90% pure for clusters with masses above 1.0*10^{14} h^{-1} M_solar and redshifts up to z=0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensity of Delta=200, we find the derived cluster richness Lambda_{200} a roughly linear indicator of its virial mass M_{200}, which well recovers the relation between total luminosity and cluster mass of the input simulation.
To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.
The Pierre Auger Collaboration intends to extend the energy range of its southern observatory in Argentina for high quality data from 0.1 to 3 EeV. The extensions, described in accompanying papers, include three additional fluorescence telescopes with a more elevated field of view (HEAT) and a nested surface array with 750 and 433 m spacing respectively and additional muon detection capabilities (AMIGA). The enhancement of the detector will allow measurement of cosmic rays, using the same techniques, from below the second knee up to the highest energies observed. The evolution of the spectrum through the second knee and ankle, and corresponding predicted changes in composition, are crucial to the understanding of the end of Galactic confinement and the effects of propagation on the lower energy portion of the extragalactic flux. The latter is strongly related to the cosmological distribution of sources and to the composition of the injected spectrum. We discuss the science motivation behind these enhancements as well as the impact of combined HEAT and AMIGA information on the assessment of shower simulations and reconstruction techniques.
Context: X-ray surveys of Active Galactic Nuclei (AGN) indicate `cosmic downsizing', with the comoving number density of high-luminosity objects peaking at higher redshifts (z about 2) than low-luminosity AGN (z<1). Aims: We test whether downsizing is caused by activity shifting towards low-mass black holes accreting at near-Eddington rates, or by a change in the average rate of accretion onto supermassive black holes. We estimate the black hole masses and Eddington ratios of an X-ray selected sample of AGN in the Chandra Deep Field South at z<1, probing the epoch where AGN cosmic downsizing has been reported. Methods: Black hole masses are estimated both from host galaxy stellar masses, which are estimated from fitting to published optical and near-infrared photometry, and from near-infrared luminosities, applying established correlations between black hole mass and host galaxy properties. Both methods give consistent results. Comparison and calibration of possible redshift-dependent effects is also made using published faint host galaxy velocity dispersion measurements. Results: The Eddington ratios in our sample span the range 10^{-5} to 1, with median log(L_bol/L_Edd)=-2.87, and with typical black hole masses about 10^{8} solar masses. The broad distribution of Eddington ratios is consistent with that expected for AGN samples at low and moderate luminosity. We find no evidence that the CDF-S AGN population is dominated by low-mass black holes accreting at near-Eddington ratios and the results suggest that diminishing accretion rates onto average-sized black holes are responsible for the reported AGN downsizing at redshifts below unity.
We address the question of an appropriate choice of basis functions for the self-consistent field (SCF) method of simulation of the N-body problem. Our criterion is based on a comparison of the orbits found in N-body realizations of analytical potential-density models of triaxial galaxies, in which the potential is fitted by the SCF method using a variety of basis sets, with those of the original models. Our tests refer to maximally triaxial Dehnen gamma-models for values of $\gamma$ in the range 0<=gamma<=1. When an N-body realization of a model is fitted by the SCF method, the choice of radial basis functions affects significantly the way the potential, forces, or derivatives of the forces are reproduced, especially in the central regions of the system. We find that this results in serious discrepancies in the relative amounts of chaotic versus regular orbits, or in the distributions of the Lyapunov characteristic exponents, as found by different basis sets. Numerical tests include the Clutton-Brock and the Hernquist-Ostriker (HO) basis sets, as well as a family of numerical basis sets which are `close' to the HO basis set. The family of numerical basis sets is parametrized in terms of a quantity $\epsilon$ which appears in the kernel functions of the Sturm-Liouville (SL) equation defining each basis set. The HO basis set is the $\epsilon=0$ member of the family. We demonstrate that grid solutions of the SL equation yielding numerical basis sets introduce large errors in the variational equations of motion. We propose a quantum-mechanical method of solution of the SL equation which overcomes these errors. We finally give criteria for a choice of optimal value of $\epsilon$ and calculate the latter as a function of the value of gamma.
We combine deep UBVRIzJK photometry from the Multiwavelength Survey by Yale-Chile (MUSYC) with redshifts from the COMBO-17 survey to perform a large-scale study of the rest-frame ultraviolet (UV) properties of 674 high-redshift (0.5<z<1) early-type galaxies, drawn from the Extended Chandra Deep Field South (E-CDFS). Galaxy morphologies are determined through visual inspection of Hubble Space Telescope (HST) images taken from the GEMS survey. We harness the sensitivity of the UV to young (<1 Gyr old) stars to quantify the recent star formation history of early-type galaxies across a range of luminosities (-23.5 < M(V) < -18). Comparisons to simple stellar populations forming at high redshift indicate that only ~1.1 percent of early-types in this sample are consistent with purely passive ageing since z=2. Parametrising the recent star formation (RSF) in terms of the mass fraction of stars less than a Gyr old, we find that the early-type population as a whole shows a typical RSF between 5 and 13% in the redshift range 0.5<z<1. Early-types on the UV red sequence show RSF values less than 5% while the reddest early-types are virtually quiescent with RSF values of ~1%. We find compelling evidence that early-types of all luminosities form stars over the lifetime of the Universe, although the bulk of their star formation is already complete at high redshift. This tail-end of star formation is measurable and not negligible, with luminous (-23<M(V)<-20.5) early-types potentially forming 10-15% of their mass since z=1, with their less luminous (M(V)>-20.5) counterparts potentially forming 30-60 percent of their mass in the same redshift range. (abridged)
Based on spectral simulations, I show how focusing of the X-ray radiations above 10 keV will open a new window for the study of microquasars. With simulations of soft and hard state spectra of Galactic sources, I discuss how SIMBOL-X can help to precisely measure the spin of black holes. Spectral study on short ~1 s time scales will also allow the accretion-ejection connections to be accessed, and the formation of jets possibly witnessed in X-rays. I then turn to external galaxies, and demonstrate that spectral studies of hard sources will be possible up to at least ~1 Mpc. For such sources, subtle spectral signatures (e.g. a reflection bump) will clearly be detected. I finally discuss the implications that these original results will bring on the physics of microquasars and black holes.
We put theoretical constraints on the presence and survival of icy grains in debris discs. Particular attention is paid to UV sputtering of water ice, which has so far not been studied in detail in this context. We present a photosputtering model based on available experimental and theoretical studies. We quantitatively estimate the erosion rate of icy and ice-silicate grains, under the influence of both sublimation and photosputtering, as a function of grain size, composition and distance from the star. The effect of erosion on the grain's location is investigated through numerical simulations coupling the grain size to its dynamical evolution. Our model predicts that photodesorption efficiently destroy ice in optically thin discs, even far beyond the sublimation snow line. For the reference case of beta Pictoris, we find that only > 5mm grains can keep their icy component for the age of the system in the 50-150AU region. When taking into account the collisional reprocessing of grains, we show that the water ice survival on grains improves (grains down to ~ 20 um might be partially icy). However, estimates of the amount of gas photosputtering would produce on such a hypothetical population of big icy grains lead to values for the OI column density that strongly exceed observational constraints for beta Pic, thus ruling out the presence of a significant amount of icy grains in this system. Erosion rates and icy grains survival timescales are also given for a set of 11 other debris disc systems. We show that, with the possible exception of M stars, photosputtering cannot be neglected in calculations of icy grain lifetimes.
We present a characterization of the main properties of the night-sky at the
Calar Alto observatory for the time period between 2004 and 2007. We use
optical spectrophotometric data, photometric calibrated images taken in
moonless observing periods, together with the observing conditions regularly
monitored at the observatory, such as atmospheric extinction and seeing. We
derive, for the first time, the typical moonless night-sky optical spectrum for
the observatory. The spectrum shows a strong contamination by different
pollution lines, in particular from Mercury lines, which contribution to the
sky-brightness in the different bands is of the order of ~0.09 mag, ~0.16 mag
and ~0.10 mag in B, V and R respectively. The zenith-corrected values of the
moonless night-sky surface brightness are 22.39, 22.86, 22.01, 21.36 and 19.25
mag arcsec^-2 in U, B, V, R and I, which indicates that Calar Alto is a
particularly dark site for optical observations up to the I-band. The fraction
of astronomical useful nights at the observatory is ~70%, with a ~30% of
photometric nights. The typical extinction at the observatory is k_V~0.15 mag
in the Winter season, with little dispersion. In summer the extinction has a
wider range of values, although it does not reach the extreme peaks observed at
other sites. The median seeing for the last two years (2005-6) was ~0.90",
being smaller in the Summer (~0.87") than in the Winter (~0.96"). We conclude
in general that after 26 years of operations Calar Alto is still a good
astronomical site, being a natural candidate for future large aperture optical
telescopes.
Many barred galaxies show a set of symmetric enhancements at the ends of the stellar bar, called {\it ansae}, or the ``handles'' of the bar. The ansa bars have been in the literature for some decades, but their origin has still not been specifically addressed, although, they could be related to the growth process of bars. But even though ansae have been known for a long time, no statistical analysis of their relative frequency of occurrence has been performed yet. Similarly, there has been no study of the varieties in morphology of ansae even though significant morphological variations are known to characterise the features. In this paper, we make a quantitative analysis of the occurrence of ansae in barred galaxies, making use of {\it The de Vaucouleurs Atlas of Galaxies} by Buta and coworkers. We find that $\sim 40%$ of SB0's show ansae in their bars, thus confirming that ansae are common features in barred lenticulars. The ansa frequency decreases dramatically with later types, and hardly any ansae are found in galaxies of type Sb or later. The bars in galaxies with ansae are stronger in the median than those in galaxies without ansae, but the presence of inner and outer rings is not related to the presence of ansae. Implications of these results and theories for the possible origin of ansae are discussed briefly.
We have implemented a chemical evolution model on the parallel AP3M+SPH DEVA code which we use to perform high resolution simulations of spiral galaxy formation. It includes feedback by SNII and SNIa using the Qij matrix formalism. We also include a diffusion mechanism that spreads newly introduced metals. The gas cooling rate depends on its specific composition. We study the stellar populations of the resulting bulges finding a potential scenario where they seem to be composed of two populations: an old, metal poor, $\alpha$-enriched population, formed in a multiclump scenario at the beginning of the simulation and a younger one, formed by slow accretion of satellites or gas, possibly from the disk due to instabilities.
We have performed high-precision astrometry of H2O maser sources in Galactic star forming region Sharpless 269 (S269) with VERA. We have successfully detected a trigonometric parallax of 189+/-8 micro-arcsec, corresponding to the source distance of 5.28 +0.24/-0.22 kpc. This is the smallest parallax ever measured, and the first one detected beyond 5 kpc. The source distance as well as proper motions are used to constrain the outer rotation curve of the Galaxy, demonstrating that the difference of rotation velocities at the Sun and at S269 (which is 13.1 kpc away from the Galaxy's center) is less than 3%. This gives the strongest constraint on the flatness of the outer rotation curve and provides a direct confirmation on the existence of large amount of dark matter in the Galaxy's outer disk.
We conduct 2D axisymmetrical hydrodynamical simulations to investigate the interaction of a collimated fast wind (CFW; wide jets) with a spherical AGB wind. The code includes radiative cooling. We find that the shape of the planetary nebula (PN) is sensitive to the exact mass loss history of the AGB wind, and the opening angle of the CFW. Some typical PN morphologies are obtained, but many other observed morphologies seem to require more ingredients than what we assume in our present simulations, e.g., equatorial AGB wind, and ionization and fast wind during the PN phase. The hot bipolar bubble formed by the jets is an X-ray source.
The hypothesis of an extended red emission (ERE) in diffuse Galactic light (DGL) has been put forward in 1998 by Gordon, Witt and Friedmann who found that scattered starlight was not enough to explain the amount of DGL in the R band, in some high Galactic latitude directions. This paper re-investigates, for high Galactic latitudes, the brightnesses and colours of DGL, integrated star and galaxy light (ISGL), and of the total extrasolar light (ISGL+DGL) measured by Pioneer. Under the traditional assumption that DGL is forward scattering of background starlight by interstellar dust on the line of sight, ISGL and Pioneer have very close colours, as it is found by Gordon, Witt and Friedmann. Pioneer observations at high |b| thus accept an alternative and simple interpretation, with no involvement of ERE in DGL.
The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution; the latter had previously been shown to provide collapsars below a certain metallicity threshold for single stars. The binary channel presented here may provide a means for massive stars to obtain the high rotation rates required to evolve quasi-chemically homogeneous and fulfill the collapsar scenario. Moreover, it suggests that a possibly large fraction of long gamma-ray bursts occurs in runaway stars.
This paper presents SPLASH, a publicly available interactive visualisation tool for Smoothed Particle Hydrodynamics (SPH) simulations. Visualisation of SPH data is more complicated than for grid-based codes because the data is defined on a set of irregular points and therefore requires a mapping procedure to a two dimensional pixel array. This means that, in practise, many authors simply produce particle plots which offer a rather crude representation of the simulation output. Here we describe the techniques and algorithms which are utilised in SPLASH in order to provide the user with a fast, interactive and meaningful visualisation of one, two and three dimensional SPH results.
The formalism of the simple model of galactic chemical evolution (GCE) and its main ingredients (stellar properties, initial mass function, star formation rate and gas flows) are presented in this tutorial. It is stressed that GCE is not (yet) an astrophysical theory, but it merely provides a framework in which the large body of data concerning the chemical composition of stars and gas in galaxies may be intrepreted. A few examples illustrating those concepts are provided, through studies of the Solar neighborhood and of the Milky Way's halo.
The propagation of compressional MHD waves is studied for an externally driven system. It is assumed that the combined action of the external sources and sinks of the entropy results in the harmonic oscillation of the entropy (and temperature) in the system. It is found that with the appropriate resonant conditions fast and slow waves get amplified due to the phenomenon of parametric resonance. Besides, it is shown that the considered waves are mutually coupled as a consequence of the nonequilibrium state of the background medium. The coupling is strongest when the plasma $\beta \approx 1$. The proposed formalism is sufficiently general and can be applied for many dynamical systems, both under terrestrial and astrophysical conditions.
Aims: We present a quantitative study of a new data set of high redshift Type Ia supernovae spectra, observed at the Gemini telescopes during the first 34 months of the Supernova Legacy Survey. During this time 123 supernovae candidates were observed, of which 87 have been identified as SNe Ia at a median redshift of z=0.720. Spectra from the entire second year of the survey and part of the third year (59 total SNe candidates with 46 confirmed SNe Ia) are published here for the first time. The spectroscopic measurements made on this data set are used determine if these distant SNe comprise a population similar to those observed locally. Methods: Rest-frame equivalent width and ejection velocity measurements are made on four spectroscopic features. Corresponding measurements are presented for a set of 167 spectra from 24 low-z SNe Ia from the literature. Results: We show that there exists a sample at high redshift with properties similar to nearby SNe. No significant difference was found between the distributions of measurements at low and high redsift for three of the features. The fourth feature displays a possible difference that should be investigated further. Correlations between Type Ia SNe properties and host galaxy morphology were also found to be similar at low and high z, and within each host galaxy class we see no evidence for redshift-evolution in SN properties. A new correlation between SNe Ia peak magnitude and the equivalent width of SiII absorption is presented. We demonstrate that this correlation reduces the scatter in SNe Ia luminosity distances in a manner consistent with the lightcurve shape-luminosity corrections that are used for Type Ia SNe cosmology. Conclusions: We show that this new sample of SNLS SNe Ia has spectroscopic properties similar to nearby objects. (Abridged)
In this contribution, I discuss some basic techniques that can be used to simulate radiative transfer through porous media. As specific examples, I consider scattering transfer through a clumped slab, and X-ray emission line formation in a clumped wind.
The properties of their hosts provide important clues to the progenitors of different classes of gamma-ray bursts (GRBs). The hosts themselves also constitute a sample of high-redshift star-forming galaxies which, unlike most other methods, is not selected on the luminosities of the galaxies themselves. We discuss what we have learnt from and about GRB host galaxies to date.
Instrumental projects that will improve the direct optical finding and
characterisation of exoplanets have advanced sufficiently to trigger organized
investigation and development of corresponding signal processing algorithms.
The first step is the availability of field-of-view (FOV) models. These can
then be submitted to various instrumental models, which in turn produce
simulated data, enabling the testing of processing algorithms. We aim to set
the specifications of a physical model for typical FOVs of these instruments.
The dynamic in resolution and flux between the various sources present in
such a FOV imposes a multiscale, independent layer approach. From review of
current literature and through extrapolations from currently available data and
models, we derive the features of each source-type in the field of view likely
to pass the instrumental filter at exo-Earth level.
Stellar limb darkening is shown to cause bias in leakage calibration if
unaccounted for. Occurrence of perturbing background stars or galaxies in the
typical FOV is unlikely. We extract galactic interstellar medium background
emissions for current target lists. Galactic background can be considered
uniform over the FOV, and it should show no significant drift with parallax.
Our model specifications have been embedded into a Java simulator, soon to be
made open-source. We have also designed an associated FITS input/output format
standard that we present here.
The growth of supermassive black holes (SMBHs) appears to be closely linked with the formation of spheroids. There is a pressing need to acquire better statistics on SMBH masses, since the existing samples are preferentially weighted toward early-type galaxies with very massive SMBHs. With this motivation we started a project aimed at measuring upper limits on the mass of the SMBHs that can be present in the center of all the nearby galaxies (D<100 Mpc) for which STIS/G750M spectra are available in the HST archive. These upper limits will be derived by modeling the central emission-line widths ([NII], H_alpha and [SII]) observed over an aperture of ~0.1" (R<50 pc). Here we present our preliminary results for a subsample of 76 bulges.
The VLT-Flames Survey for Massive Stars (Evans05,Evans06) provides recise measurements of rotational velocities and nitrogen surface abundances of massive stars in the Magellanic Clouds. Specifically, for the first time, such abundances have been estimated for stars with significant rotational velocities. This extraordinary data set gives us the unique possibility to calibrate rotationally and magnetically induced mixing processes. Therefore, we have computed a grid of stellar evolution models varying in mass, initial rotational velocity and chemical composition. In our models we find that although magnetic fields generated by the Spruit-Taylor dynamo are essential to understand the internal angular momentum transport (and hence the rotational behavior), the corresponding chemical mixing must be neglected to reproduce the observations. Further we show that for low metallicities detailed initial abundances are of prime importance, as solar-scaled abundances may result in significant calibration errors.
We report the detection of comet 67P/Churyumov-Gerasimenko's dust trail and nucleus in 24 micron Spitzer Space Telescope images taken February 2004. The dust trail is not found in optical Palomar images taken June 2003. Both the optical and infrared images show a distinct neck-line tail structure, offset from the projected orbit of the comet. We compare our observations to simulated images using a Monte Carlo approach and a dynamical model for comet dust. We estimate the trail to be at least one orbit old (6.6 years) and consist of particles of size >~100 micron. The neck-line is composed of similar sized particles, particles of size but younger in age. Together, our observations and simulations suggest grains 100 micron and larger in size dominate the total mass ejected from the comet. The radiometric effective radius of the nucleus is 1.87 +/- 0.08 km, derived from the Spitzer observation. The Rosetta spacecraft is expected to arrive at and orbit this comet in 2014. Assuming the trail is comprised solely of 1 mm radius grains, we compute a low probability (~10^-3) of a trail grain impacting with Rosetta during approach and orbit insertion.
We study an anomaly in the X-ray flux (or luminosity) ratio between the OVII 21.6-22.1A triplet and the OVIII Lya line seen in classical T Tauri stars (CTTS). This ratio is unusually high when compared with ratios for main-sequence and non-accreting T Tauri stars (Telleschi et al. 2007). We compare these samples to identify the source of the excess. A sample of recently discovered X-ray stars with a soft component attributed to jet emission is also considered. We discuss data obtained from the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST) project, complemented by data from the published literature. We also present data from the CTTS RU Lup. All CTTS in the sample show an anomalous OVII/OVIII flux ratio when compared with WTTS or MS stars. The anomaly is due to an excess of cool, OVII emitting material rather than a deficiency of hotter plasma. The excess plasma must therefore have temperatures of <~2 MK. This soft excess does not correlate with UV excesses of CTTS, but seems to be related with the stellar X-ray luminosity. The spectra of the jet-driving TTS do not fit into this picture. The soft excess depends both on the presence of accretion streams in CTTS and on magnetic activity. The gas may be shock-heated near the surface, although it may also be heated in the magnetospheric accretion funnels. The soft component of the jet-driving sources is unlikely to be due to the same process.
In the Cosmic Microwave Background (CMB) temperature maps obtained at the Wilkinson Microwave Anisotropy Probe (WMAP) three year measurements, we have found an anomaly in the distribution of the excursion sets (anisotropy spots). The anomaly is centered at the antipodes with galactic coordinates l=92^\circ, b=30^\circ and l=275^\circ, b=-31^\circ. The scale and the substructure, i.e. 30^\circ-radius rings and voids in the distribution of the excursion sets around the antipodes, reveal features of mirroring which cannot be explained either via global (integrated Sachs-Wolf effect) or local inhomogeneities of matter. The anomaly is also not close to the apex of the CMB dipole. This mirroring effect can be the first empirical signature of a Universe with compact topology, potentially of either curvature.
Ongoing deep surveys of galaxy luminosity functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the universe. This procedure can be reversed by looking for sharp cutoffs in the spectra of extragalactic gamma-ray sources at high redshifts in the multi-GeV energy range with GLAST. Determining the cutoff energies of sources with known redshifts and little intrinsic absorption can enable a more precise determination of the past intergalactic photon density and thus allow a better determination of the past history of the total star formation rate, including that from galaxies too faint to be observed. Conversely, observations of sharp high energy cutoffs in the gamma-ray spectra of blazars at unknown redshifts can be used instead of spectral lines to give a measure of their redshifts. Also, given a knowledge photon densities, one can derive the intrinsic gamma-ray spectra and luminosities of blazars over a range of redshifts and look for possible trends in blazar evolution. I present some evidence hinting that TeV blazars with flatter spectra have higher intrinsic TeV gamma-ray luminosities and that there may be a correlation of flatness and luminosity with redshift. (abridged)
We present sensitive 5.5 to 7.6 micron spectra of comet C/2003 K4 (LINEAR) obtained on 16 July 2004 (r_{h} = 1.760 AU, Delta_{Spitzer} = 1.409 AU, phase angle 35.4 degrees) with the Spitzer Space Telescope. The nu_{2} vibrational band of water is detected with a high signal-to-noise ratio (> 50). Model fitting to the best spectrum yields a water ortho-to-para ratio of 2.47 +/- 0.27, which corresponds to a spin temperature of 28.5^{+6.5}_{-3.5} K. Spectra acquired at different offset positions show that the rotational temperature decreases with increasing distance from the nucleus, which is consistent with evolution from thermal to fluorescence equilibrium. The inferred water production rate is (2.43 +/- 0.25) \times 10^{29} molec. s^{-1}. The spectra do not show any evidence for emission from PAHs and carbonate minerals, in contrast to results reported for comets 9P/Tempel 1 and C/1995 O1 (Hale-Bopp). However, residual emission is observed near 7.3 micron the origin of which remains unidentified.
We present new Spitzer Space Telescope observations of two fields in the Orion OB1 association. We report here IRAC/MIPS observations for 115 confirmed members and 41 photometric candidates of the ~10 Myr 25 Orionis aggregate in the OB1a subassociation, and 106 confirmed members and 65 photometric candidates of the 5 Myr region located in the OB1b subassociation. The 25 Orionis aggregate shows a disk frequency of 6% while the field in the OB1b subassociation shows a disk frequency of 13%. Combining IRAC, MIPS and 2MASS photometry we place stars bearing disks in several classes: stars with optically thick disks (class II systems), stars with an inner transitional disks (transitional disk candidates) and stars with "evolved disks"; the last exhibit smaller IRAC/MIPS excesses than class II systems. In all, we identify 1 transitional disk candidate in the 25 Orionis aggregate and 3 in the OB1b field; this represents ~10% of the disk bearing stars, indicating that the transitional disk phase can be relatively fast. We find that the frequency of disks is a function of the stellar mass, suggesting a maximum around stars with spectral type M0. Comparing the infrared excess in the IRAC bands among several stellar groups we find that inner disk emission decays with stellar age, showing a correlation with the respective disk frequencies. The disk emission at the IRAC and MIPS bands in several stellar groups indicates that disk dissipation takes place faster in the inner region of the disks. Comparison with models of irradiated accretion disks, computed with several degrees of settling, suggests that the decrease in the overall accretion rate observed in young stellar groups is not sufficient to explain the weak disk emission observed in the IRAC bands for disk bearing stars with ages 5 Myr or older.
We investigate the intermediate-age asymptotic giant branch stellar population of two Local Group dwarf irregular galaxies to characterize their carbon star population in near-infrared (IR). Our work is based on J and K-band SOFI near-IR photometry complemented with optical ground based and HST photometry. We show that near-IR photometry is a very powerful tool for carbon star detection. We recovered two out of three previously-known carbon stars in DDO 210 and discovered six additional objects in this galaxy which have optical and near-IR colors consistent with carbon giants. This brings the total number of bona-fide C-star candidates in DDO 210 to nine. We detected a large population of C-star candidates in SagDIG, 18 of which were previously identified in Demers & Battinelli (2002) and Cook (1987), and six new bona-fide carbon stars. We present their optical and near-IR colors and use their luminosity function to put constraints on the star formation history (SFH) in this dwarf irregular galaxy.
We report measurements of centripetal accelerations of maser spectral components of NGC 4258 for 51 epochs spanning 1994 to 2004. This is the second paper of a series, in which the goal is determination of a new geometric maser distance to NGC 4258 accurate to possibly ~3%. We measure accelerations using a formal analysis method that involves simultaneous decomposition of maser spectra for all epochs into multiple, Gaussian components. Components are coupled between epochs by linear drifts (accelerations) from their centroid velocities at a reference epoch. For high-velocity emission, accelerations lie in the range -0.7 to +0.7 km/s/yr indicating an origin within 13 degrees of the disk midline (the perpendicular to the line-of-sight to the black hole). Comparison of high-velocity emission projected positions in VLBI images, with those derived from acceleration data, provides evidence that masers trace real gas dynamics. High-velocity emission accelerations do not support a model of trailing shocks associated with spiral arms in the disk. However, we find strengthened evidence for spatial periodicity in high-velocity emission, of wavelength 0.75 mas. This supports suggestions of spiral structure due to density waves in the nuclear accretion disk of an active galaxy. Accelerations of low-velocity (systemic) emission lie in the range 7.7 to 8.9 km/s/yr, consistent with emission originating from a concavity where the thin, warped disk is tangent to the line-of-sight. A trend in accelerations of low-velocity emission as a function of Doppler velocity may be associated with disk geometry and orientation, or with the presence of spiral structure.
We develop a mixture-based approach to robust density modeling and outlier detection for experimental multivariate data that includes measurement error information. Our model is designed to infer atypical measurements that are not due to errors, aiming to retrieve potentially interesting peculiar objects. Since exact inference is not possible in this model, we develop a tree-structured variational EM solution. This compares favorably against a fully factorial approximation scheme, approaching the accuracy of a Markov-Chain-EM, while maintaining computational simplicity. We demonstrate the benefits of including measurement errors in the model, in terms of improved outlier detection rates in varying measurement uncertainty conditions. We then use this approach in detecting peculiar quasars from an astrophysical survey, given photometric measurements with errors.
A class of generalized Randall-Sundrum type II (RS) brane-world models with Weyl fluid are confronted with the Gold supernovae data set and BBN constraints. We consider three models with different evolutionary history of the Weyl fluid, characterized by the parameter $\alpha$. For $\alpha=0$ the Weyl curvature of the bulk appears as dark radiation on the brane, while for $\alpha =2$ and 3 the brane radiates, leaving a Weyl fluid on the brane with energy density decreasing slower than that of (dark) matter. In each case the contribution $\Omega_d$ of the Weyl fluid represents but a few percent of the energy content of the Universe. All models fit reasonably well the Gold2006 data. The best fit model for $\alpha =0$ is for $\Omega_d=0.04$. In order to obey BBN constraints in this model however, the brane had to radiate at earlier times.
We derive constraints on the tensor to scalar ratio and on the background charge of the warped throat for DBI inflation driven by D5- and D7-branes wrapped over cycles of the throat. It is shown that the background charge well beyond the known maximal value is required in most cases for DBI inflation to generate cosmological observables compatible with the WMAP3 data. Most of the results derived in this paper are insensitive to the details of the inflaton potential, and could be applied to generic warped throats.
We compute the one loop corrections from quantum gravity to the self-mass-squared of a massless, minimally coupled scalar on a locally de Sitter background. The calculation was done using dimensional regularization and renormalized by subtracting fourth order BPHZ counterterms. Our result should determine whether quantum gravitational loop corrections can significantly alter the dynamics of a scalar inflaton.
We consider inhomogeneous preheating in multi-field models of cosmological perturbation. After preheating, two fields are trapped at an enhanced symmetric point. One field is an oscillating field and the other is a light field that plays an important role in generating perturbation. In this presentation, we consider two types of potential for the light field.
The 1919 Eclipse Expedition to test the light-bending prediction of General Relativity remains one of the most famous physics experiments of the 20th century. However, in recent decades it has been increasingly often alleged that the data-analysis of the expedition's leaders was faulty and biased in favor of Einstein's theory. Arthur Stanley Eddington is particularly alleged to have been prejudiced in favor of general relativity. Specifically it is claimed that some of the data, which would have favored the so-called Newtonian prediction, was thrown out on dubious grounds. This paper argues that a close examination of the views of the expedition's organizers, and of their data analysis, suggests that they had good grounds for acting as they did, and that the key people involved, in particular the astronomer Frank Watson Dyson, were not biased in favor of Einstein. It also draws attention to a modern re-analysis of the most important eclipse plates which, though overlooked until now, tends to strongly support the thesis of this paper.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0709, /abs, contact, help (Access key information)