We present an algorithm to identify the type of an SN spectrum and to determine its redshift and age. This algorithm, based on the correlation techniques of Tonry & Davis, is implemented in the Supernova Identification (SNID) code. It is used by members of ongoing high-redshift SN searches to distinguish between type Ia and type Ib/c SNe, and to identify "peculiar" SNe Ia. We develop a diagnostic to quantify the quality of a correlation between the input and template spectra, which enables a formal evaluation of the associated redshift error. Furthermore, by comparing the correlation redshifts obtained using SNID with those determined from narrow lines in the SN host galaxy spectrum, we show that accurate redshifts (with a typical error less than 0.01) can be determined for SNe Ia without a spectrum of the host galaxy. Last, the age of an input spectrum is determined with a typical 3-day accuracy, shown here by using high-redshift SNe Ia with well-sampled light curves. The success of the correlation technique confirms the similarity of some SNe Ia at low and high redshifts. The SNID code, which is available to the community, can also be used for comparative studies of SN spectra, as well as comparisons between data and models.
Star clusters provide an excellent opportunity to study the role of environment on determining the frequencies of short period planets. They provide a large sample of stars which can be imaged simultaneously, with a common distance, age and pre-determined physical parameters. This allows the search to be tailor-made for each specific cluster. Several groups are attempting to detect transiting planets in open clusters. Three previous surveys have also targeted the two brightest globular clusters. No cluster survey has yet detected a planet. This contribution presents a brief overview of the field, highlighting the pros and cons of performing such a search, and presents the expected and current results, with implications for planetary frequencies in regions of high stellar density and low metallicity.
Gravity is nearly a universal constant in the cusp of an NFW galaxy halo. Inside this external field an isothermal gas sphere will collapse and trigger a starburst if above a critical central pressure. Thus formed spheroidal stellar systems have Sersic-profile and satisfy the Faber-Jackson relation. The process is consistent with observed starbursts. We also recover the M_BH vs. velocity dispersion relation, if the gas collapse is regulated or resisted by the feedback from radiation from the central BH.
We use deep (~120 ks) XMM-Newton data of the M87 halo to analyze its spatially resolved temperature structure and chemical composition. We focus particularly on the regions of enhanced X-ray brightness associated with the inner radio lobes. Compared to a simple two-temperature fit, we obtain a better and more physical description of the spectra using a model which involves a continuous range of temperatures in each spatial bin. The range of temperatures of the multiphase gas spans between ~0.6-3.2 keV. Such a multiphase structure is only possible if thermal conduction is suppressed by magnetic fields. In the multi-temperature regions, we find a correlation between the amount of cool gas (with a temperature below that of the surrounding X-ray plasma) and the metallicity, and conclude that the cool gas is more metal-rich than the ambient halo. We estimate the Fe abundance of the cool gas to ~2.2 solar. Our results thus point toward the key role of the active galactic nucleus (AGN) in transporting heavy elements into the intracluster medium by uplifting cool, metal-rich gas from the galaxy. However, the abundance ratios of O/Si/S/Fe in and outside the X-ray arms are similar, indicating that the dominant fraction of metals in the gas halo was uplifted by AGN outbursts relatively recently compared to the age of M87. Our best estimate for mass of the cool gas is 5x10^8 Msun, which probably originates from the stellar winds enriched with Type Ia supernova products. ~200 Myr are required to produce the observed mass of cool gas, indicating that the uplift of cool gas by AGN radio bubbles is a rare event. We put upper limits on possible non-thermal X-ray emission from M87 and lower limits of around 0.5-1.0 microG on the magnetic field strength.
The H2 and optical (Ha, [NII]) morphology of NGC 6881 are very different. Here we present a preliminary report of the analysis of new optical (Ha and [NII]) and near-IR (Brg and H2) images and intermediate resolution JHK spectra of this nebula. Our observations confirm the association of the H2 bipolar lobes to NGC 6881 and reveal that H2 is predominantly shock excited in this nebula. We conclude that NGC 6881 has multiple bipolar lobes that formed at different phases of the nebular evolution and that the collimation conditions or even the collimating agent changed from one ejection to the other.
The Solar Wind Around Pluto (SWAP) instrument on New Horizons will measure the interaction between the solar wind and ions created by atmospheric loss from Pluto. These measurements provide a characterization of the total loss rate and allow us to examine the complex plasma interactions at Pluto for the first time. Constrained to fit within minimal resources, SWAP is optimized to make plasma-ion measurements at all rotation angles as the New Horizons spacecraft scans to image Pluto and Charon during the flyby. In order to meet these unique requirements, we combined a cylindrically symmetric retarding potential analyzer (RPA) with small deflectors, a top-hat analyzer, and a redundant/coincidence detection scheme. This configuration allows for highly sensitive measurements and a controllable energy passband at all scan angles of the spacecraft.
We conducted a panoramic spectroscopic campaign with MOSCA at Calar Alto observatory, obtaining low-resolution spectra of more than ~550 objects resulting in 150 member galaxies of six clusters that differ in X-ray luminosities. The wavelength range allows us to quantify the star formation activity by using the [OII] and the Halpha emission lines. This activity is examined on the large-scale environment expressed by the cluster-centric distance of the galaxies as well as on local scales given by the spatial galaxy densities. The general decline of the star formation activity observed in nearby clusters is also seen at z~0.25 and is mainly driven by a significant change in the fraction of active versus passive populations. The global suppression of star formation starts already in the outskirts of clusters (~3Rvir), where the galaxy densities are low and the intra-cluster medium is very shallow. This indicates that global cluster-specific interaction processes are negligible. Star forming galaxies have similar equivalent widths of emission lines independent of local density, suggesting that the processes shutting down star formation act in short timescales. Dwarf galaxies are more affected than giant ones, in particular within 1Rvir, suggesting that transformation processes are mass dependent. The distribution of galaxy types is quite heterogenous among our six clusters. Although there is no general trend with velocity dispersion or X-ray luminosity, each cluster displays a distinct evolutionary status. We also detect a significant population of red star forming galaxies whose colors are consistent with the red sequence of passive galaxies. They seem to be in an intermediate evolutionary stage between active and passive classes. (ABRIDGED)
We present a multiwavelength study of the highly evolved compact galaxy group known as Seyfert's Sextet (HCG79: SS). We interpret SS as a 2-3 Gyr more evolved analog of Stephan's Quintet (HCG92: SQ). We postulate that SS formed by sequential acquisition of 4-5 primarily late-type field galaxies. Four of the five galaxies show an early-type morphology which is likely the result of secular evolution driven by gas stripping. Stellar stripping has produced a massive/luminous halo and embedded galaxies that are overluminous for their size. These are interpreted as remnant bulges of the accreted spirals. H79d could be interpreted as the most recent intruder being the only galaxy with an intact ISM and uncertain evidence for tidal perturbation. In addition to stripping activity we find evidence for past accretion events. H79b (NGC6027) shows a strong counter-rotating emission line component interpreted as an accreted dwarf spiral. H79a shows evidence for an infalling component of gas representing feedback or possible cross fueling by H79d. The biggest challenge to this scenario involves the low gas fraction in the group. If SS formed from normal field spirals then much of the gas is missing. Finally, despite its advanced stage of evolution, we find no evidence for major mergers and infer that SS (and SQ) are telling us that such groups coalesce via slow dissolution.
We present the X-ray grating spectra of the recurrent nova RS Ophiuchi during its 2006 outburst, obtained with the XMM-Newton and Chandra observatories. Two weeks after optical maximum, the X-ray spectrum was hard and dominated by emission lines of H-like and He-like ions. The X-ray luminosity was 2.4 x 10^36 erg s^-1 in the 0.33-10 keV range. The spectra indicate a collisionally dominated plasma with a broad range of temperatures. All the lines are blue-shifted, with the velocity shift increasing with lower ionization state and longer wavelength. Two weeks later, the spectrum was still dominated by emission lines, although the line ratios present indicate cooling. During this observation, a soft X-ray flare occurred in which a new system of higher velocity emission lines appeared in the soft end of the spectrum. The dominant component during the third month was the supersoft continuum with the broad absorption features of a hot white dwarf atmosphere. A preliminary model fit indicates a white dwarf temperature slightly exceeding 800,000 K. The X-ray luminosity reached at least 9 x 10^37 erg s^-1 in the 0.2-1 keV range, while the intrinsic nebular absorption decreased by a factor of five since the first observation. The spectral fits indicate a massive white dwarf, with a mass of at least 1.2 M_\odot. Therefore, RS Oph may be an important type Ia supernova progenitor. We show that the data are consistent with mass loss ending before day 54 after the outburst, and nuclear burning ending around day 69. A rapid decay in X-ray luminosity followed after week 10. The X-ray luminosity 5, 7 and 8 months after optical maximum dropped by more than two orders of magnitude. The spectra do not appear to consistent with emission from an accretion disk.
VERITAS is a new atmospheric Cherenkov imaging telescope array to detect very high energy gamma rays above 100 GeV. The array is located in southern Arizona, USA, at an altitude of 1268m above sea level. The array consists of four 12-m telescopes of Davies-Cotton design and structurally resembling the Whipple 10-m telescope. The four focal plane instruments are equipped with high-resolution (499 pixels) fast photo-multiplier-tube (PMT) cameras covering a 3.5 degree field of view with 0.15 degree pixel separation. Light concentrators reduce the dead-space between PMTs to 25% and shield the PMTs from ambient light. The PMTs are connected to high-speed preamplifiers allowing operation at modest anode current and giving good single photoelectron peaks in situ. Electronics in the focus box provides real-time monitoring of the anode currents for each pixel and ambient environmental conditions. A charge injection subsystem installed in the focus box allows daytime testing of the trigger and data acquisition system by injecting pulses of variable amplitude and length directly into the photomultiplier preamplifiers. A brief description of the full VERITAS focal plane instrument is given in this paper.
Molecular line observations of starless (prestellar) cores combined with a chemical evolution modeling and radiative transfer calculations are a powerful tool to study the earliest stages of star formation. However, conclusions drawn from such a modeling may noticeably depend on the assumed thermal structure of the cores. The assumption of isothermality, which may work well in chemo-dynamical studies, becomes a critical factor in molecular line formation simulations. We argue that even small temperature variations, which are likely to exist in starless cores, can have a non-negligible effect on the interpretation of molecular line data and derived core properties. In particular, ``chemically pristine'' isothermal cores (low depletion) can have centrally peaked C$^{18}$O and C$^{34}$S radial intensity profiles, while having ring-like intensity distributions in models with a colder center and/or warmer envelope assuming the same underlying chemical structure. Therefore, derived molecular abundances based on oversimplified thermal models may lead to a mis-interpretation of the line data.
Ferrario & Wickramasinghe (2006) explored the hypothesis that the magnetic fields of neutron stars are of fossil origin. In this context, they predicted the field distribution of the progenitor OB stars, finding that 5 per cent of main sequence massive stars should have fields in excess of 1kG. We have carried out sensitive ESPaDOnS spectropolarimetric observations to search for direct evidence of such fields in all massive B- and O-type stars in the Orion Nebula Cluster star-forming region. We have detected unambiguous Stokes V Zeeman signatures in spectra of three out of the eight stars observed (38%). Using a new state-of-the-art Bayesian analysis, we infer the presence of strong (kG), organised magnetic fields in their photospheres. For the remaining five stars, we constrain any dipolar fields in the photosphere to be weaker than about 200G. Statistically, the chance of finding three ~kG fields in a sample of eight OB stars is quite low (less than 1%) if the predictions of Ferrario & Wickramasinghe are correct. This implies that either the magnetic fields of neutron stars are not of fossil origin, that the flux-evolution model of Ferrario & Wickramasinghe is incomplete, or that the ONC has unusual magnetic properties. We are undertaking a study of other young star clusters, in order to better explore these possibilities.
The distance to the Large Magellanic Cloud (LMC) has long been of key importance for the distance ladder and the distances to all galaxies, and as such many groups have provided measurements of its distance modulus (\mu) with many methods and various means of calibrating each method. Before the year 2001, the many measures spanned a wide range (roughly 18.1 < \mu < 18.8) with the quoted error bars being substantially smaller than the spread, and hence the consensus conclusion being that many of the measures had their uncertainties being dominated by unrecognized systematic problems. In 2001, the Hubble Space Telescope Key Project (HSTKP) on the distance scale made an extensive analysis of earlier results and adopted the reasonable conclusion that the distance modulus is 18.50+-0.10 mag, and the community has generally accepted this widely popularized value. After 2002, 31 independent papers have reported new distance measures to the LMC, and these cluster tightly around \mu=18.50 mag. Indeed, these measures cluster too tightly around the HSTKP value, with 68% of the measures being within 0.5-sigma of 18.50 mag. A Kolmogorov-Smirnov test proves that this concentration deviates from the expected Gaussian distribution at a >3-sigma probability level. This concentration is a symptom of a worrisome problem. Interpretations considered include correlations between papers, widespread over-estimation of error bars, and band-wagon effects. This note is to alert workers in the field that this is a serious problem that should be addressed.
We report the detection of extended low radio frequency continuum emission beyond the optical disk of the spiral galaxy NGC 4254 using the Giant Metrewave Radio Telescope. NGC 4254, which has an almost face-on orientation, is located in the outskirts of the Virgo cluster. Since such extended emission is uncommon in low inclination galaxies, we believe it is a signature of magnetised plasma pushed out of the disk by ram pressure of the intracluster medium as NGC 4254 falls into the Virgo cluster. The detailed spectral index distribution across NGC 4254 shows that the steepest spectrum alpha < -1 (S propto nu^{alpha}) arises in the gas beyond the optical disk. This lends support to the ram pressure scenario by indicating that the extended emission is not from the disk gas but from matter which has been stripped by ram pressure. The steeper spectrum of the extended emission is reminiscent of haloes in edge-on galaxies. The sharp fall in intensity and enhanced polarization in the south of the galaxy, in addition to enhanced star formation reported by others provide evidence towards the efficacy of ram pressure on this galaxy. HI 21cm observations show that the gas in the north lags in rotation and hence is likely the atomic gas which is carried along with the wind. NGC 4254 is a particularly strong radio emitter with a power of 7x10^{22} Watts/Hz at 240 MHz. We find that the integrated spectrum of the galaxy flattens at lower frequencies and is well explained by an injection spectrum with alpha_0=-0.45+-0.12. We end by comparing published simulation results with our data and conclude that ram pressure stripping is likely to be a significant contributor to evolution of galaxies residing in X-ray poor groups and cluster outskirts.
The Sloan Digital Sky Survey turned out to be very efficient in identifying white dwarf/main sequence binaries (WDMS). The population of WDMS systems consists of wide systems whose stellar components evolve like single stars and - more interesting in the context of close binary evolution - PCEBs. We pursue a large-scale follow-up survey to identify and characterise the PCEBs among the WDMS binaries that have been found with SDSS. We use a two-step strategy with the identification of PCEBs among WDMS in the first and orbital period determinations in the second phase. Here we present first results of our VLT/FORS2 pilot-study that has the target of identifying the PCEBs among the fainter (g>~18.5) SDSS-WDMS. From published SDSS catalogues we selected 25 WDMS targets to be observed with VLT/FORS2. Using a spectral decomposition/fitting technique we determined the white dwarf effective temperatures and surface gravities, masses, and secondary star spectral types for all WDMS in our sample. We used the NaI 8183.27,8194.81 doublet to measure radial velocity variations of our targets and performed additional follow-up spectroscopy using Magellan-Clay/LDSS3 of two systems showing significant radial velocity variations. Among the 25 WDMS systems we find 9 strong PCEB candidates showing clear (>=3sigma) radial velocity variations and we estimate the fraction of PCEBs among SDSS WDMS to be ~36%. We find indications for a dependence of the relative number of PCEBs among SDSS-WDMS on the spectral type of the secondary star. These result are subject to small number statistics and need to be confirmed by additional observations. For two of the identified PCEB candidates, SDSSJ1047+0523 and SDSSJ1414-0132, we measured the orbital periods to be 9.17hrs and 17.45hrs respectively.
The interior of neutron stars contains nuclear matter at very high density for numerous subatomic particles compete with each other. Therefore, confirming the components and properties there is our significant task. Here we summarize the possible methods especial the way of r-mode instability to probe into the neutron star and show our some results. The KHz pulsar in XTE J1739-285 may give a significant implication
We present Very Large Array images of a "Double-Double Radio Galaxy", a class of objects in which two pairs of lobes are aligned either side of the nucleus. In this object, B0925+420, we discover a third pair of lobes, close to the core and again in alignment with the other lobes. This first-known "Triple-Double" object strongly increases the likelihood that these lobes represent mutiple episodes of jet activity, as opposed to knots in an underlying jet. We model the lobes in terms of their dynamical evolution. We find that the inner pair of lobes is consistent with the outer pair having been displaced buoyantly by the ambient medium. The middle pair of lobes is more problematic - to the extent where an alternative model interpreting the middle and inner "lobes" as additional bow shocks within the outer lobes may be more appropriate - and we discuss the implications of this on our understanding of the density of the ambient medium.
This paper is the third in the series of papers published on near-infrared (NIR) stellar spectral library by Ranade et al. (2004 & 2007). The observations were carried out with 1.2 meter Gurushikhar Infrared Telescope (GIRT), at Mt. Abu, India using a NICMOS3 HgCdTe $256 \times 256$ NIR array based spectrometer. In paper I (Ranade et al. 2004), H-band spectra of 135 stars at a resolution of $\sim 16$\AA & paper II (Ranade et al. 2007), K band spectra of 114 stars at a resolution of $\sim 22$\AA were presented. The J-band library being released now consists of 126 stars covering spectral types O5--M8 and luminosity classes I--V. The spectra have a moderate resolution of $\sim 12.5$\AA in the J band and have been continuum shape corrected to their respective effective temperatures. The complete set of library in near-infrared (NIR) will serve as a good database for researchers working in the field of stellar population synthesis. The complete library in J, H & K is available online at: this http URL
We present performance measurements of direct gravitational N -body simulation on the grid, with and without specialized (GRAPE-6) hardware. Our inter-continental virtual organization consists of three sites, one in Tokyo, one in Philadelphia and one in Amsterdam. We run simulations with up to 196608 particles for a variety of topologies. In many cases, high performance simulations over the entire planet are dominated by network bandwidth rather than latency. With this global grid of GRAPEs our calculation time remains dominated by communication over the entire range of N, which was limited due to the use of three sites. Increasing the number of particles will result in a more efficient execution. Based on these timings we construct and calibrate a model to predict the performance of our simulation on any grid infrastructure with or without GRAPE. We apply this model to predict the simulation performance on the Netherlands DAS-3 wide area computer. Equipping the DAS-3 with GRAPE-6Af hardware would achieve break-even between calculation and communication at a few million particles, resulting in a compute time of just over ten hours for 1 N -body time unit. Key words: high-performance computing, grid, N-body simulation, performance modelling
To study the mass distribution of galaxy clusters up to their Virial radius, CL0016+16 seems to be a good candidate,since it is a bright massive cluster, previously considered as being dynamically relaxed. Using XMM-Newton observations of CL0016+16, we performed a careful X-ray background analysis, and we detected convincingly its X-ray emission up to $R_{200}$. We then studied its dynamical state with a detailed 2D temperature and surface brightness analysis of the inner part of the cluster. Using the assumption of both spherical symmetry and hydrostatic equilibrium (HE) we can determine the main cluster parameters: total mass, temperature profile, surface brightness profile and $\beta$-parameter. We also build a temperature map which clearly exhibits departure from spherical symmetry in the centre. To estimate the influence of these perturbations onto our total mass estimate, we also compute the total mass in the framework of the HE approach, but this time with various temperature profiles obtained in different directions. These various total mass estimates are consistent with each other. The temperature perturbations are clear signatures of ongoing merger activity. We also find significant residuals after subtracting the emissivity map by a 2D $\beta$-model fit. We conclude that, although CL0016+16 shows clear signs of merger activity and departure from spherical symmetry in the centre, its X-ray emissivity can be detected up to $R_{200}$ and the corresponding mass $M_{200}$ can be computed directly. It is therefore a good candidate to study cosmological scaling laws as predicted by the theory.
We have developed a time-dependent two-component hydrodynamics code to simulate radiatively-driven stellar winds from hot stars. We use a time-explicit van Leer scheme to solve the hydrodynamic equations of a two-component stellar wind. Dynamical friction due to Coulomb collisions between the passive bulk plasma and the line-scattering ions is treated by a time-implicit, semi-analytic method using a polynomial fit to the Chandrasekhar function. This gives stable results despite the stiffness of the problem. This method was applied to model stars with winds that are both poorly and well-coupled. While for the former case we reproduce the mCAK solution, for the latter case our solution leads to wind decoupling.
We report on an investigation into stellar evolution and nucleosynthesis in the low and extremely low metallicity regime, including models of stars with a pure Big Bang composition (i.e. Z=0). The metallicity range of the extremely metal poor (EMP) models we have calculated is -6.5 < [Fe/H] < -3.0, whilst our models are in the mass range 0.85 < M < 3.0 Msun. Many of the EMP and Z=0 models experience violent evolutionary episodes not seen at higher metallicities. We refer to these events as `Dual Flashes' since they are characterised by peaks in the hydrogen and helium burning luminosities occurring at roughly the same time. Some of the material processed by these events is later dredged up by the convective envelope, causing signifcant surface pollution. These events have been reported by previous studies, so our results reaffirm their occurrence -- at least in 1D stellar models. The novelty of this study is that we have calculated the entire evolution of the Z=0 and EMP models, from the ZAMS to the end of the TPAGB, including detailed nucleosynthesis. We have also calculated the nucleosynthetic yields, which will soon be available in electronic format. Although subject to many uncertainties these are, as far as we are aware, the only yields available in this mass and metallicity range. In this paper we briefy describe some of the results in the context of abundance observations of EMP halo stars. This work formed part of SWC's PhD thesis (completed in March 2007) and a series of subsequent papers will describe the results of the study in more detail.
In this paper we study synchrotron and Self Compton (SSC) emission from internal shocks (IS) during the prompt and X-ray flare phases of Gamma-Ray Bursts (GRBs). The aim is to test the IS model for the flare emission and if GRBs can be GeV sources. We determine the parameters for which the IS model can account for the observed prompt and X-ray flares emission, and study the detectability of the high energy SSC emission by the AGILE and GLAST satellites. We find that the detectability of the SSC emission during the prompt phase of GRBs improves for higher values of the fireball Lorentz factor and of the temporal variability. If IS is the mechanism responsible of the flare emission, the flares light curves must present some substructures with temporal variability of 100 ms much smaller than the average duration of flares, and similar to those observed during the prompt phase of GRBs. An investigation on the substructures of the X-ray flares light curves will allow to corroborate the hypothesis that late IS are responsible of the X-ray flares. We find that higher values of Lorentz factor and variability time favor the detection by AGILE and GLAST of the X-ray flare high energy counterpart.
We consider a situation in which a pulsar (and its nebula) is formed inside or close to a high density regions of a molecular cloud. We apply a recent model for the gamma radiation of pulsar wind nebulae (PWN), which includes not only radiation processes due to injected leptons but also processes due to injection of relativistic hadrons, in order to calculate the expected gamma-ray emission from such interacting PWNe. The example calculations have been performed for two objects of this type from which directions TeV gamma-ray sources have recently been observed (IC443 and W41). We show that the gamma-ray emission below a few TeV can be produced by leptons accelerated in the past in the vicinity of the pulsars. gamma-rays with energies above ~10 TeV can be produced by hadrons interacting with the matter inside the supernova remnant and surrounding dense clouds. In contrary to the low energy TeV emission, this high energy TeV emission should be correlated with the location of dense clouds able to capture hadrons due to their strong magnetic fields.
Context: The current models of stellar pulsation do not predict the presence
of instability strips in the B spectral domain at very low metallicities. As
the metallicity of the SMC is lower than Z=0.005, it constitutes a very
suitable object to test these predictions.
Aims: To investigate the existence of B-type pulsators at low metallicities,
searching for short-term periodic variability in absorption-line B and Be stars
in the SMC. The analysis has been performed in a sample of 313 B and Be stars
with accurately determined fundamental astrophysical parameters.
Methods: Photometric light curves of the MACHO project have been analyzed
using standard Fourier techniques and linear and non-linear least squares
fitting methods. The position of the pulsating stars in the HR diagram has been
used to ascertain their nature and to map the instability regions in the SMC.
Results: We have detected 9 absorption-line B stars showing short-period
variability, two among them being multiperiodic. One star is a beta Cephei
variable and the remaining 8 are SPB stars. The SPB instability strip in the
SMC is shifted towards higher temperatures with respect to the Galaxy. In the
Be star sample, 32 stars are short-period variables, 20 among them
multiperiodic. 4.9% of B stars and 25.3% of Be stars are pulsating stars.
Conclusions: beta Cephei and SPB stars do exist at the SMC metallicity. The
fraction of SPB stars in the SMC is similar or only slightly lower than in the
Galaxy. Conversely, the fraction of pulsating Be stars in the SMC is
significantly lower than in the Galaxy. As in the Galaxy, the fraction of
pulsating Be stars in the SMC is much higher than the fraction of pulsating
absorption-line B stars.
Some part of the relic Dark Matter is distributed in small-scale clumps which survived structure formation in inflation cosmological scenario. The annihilation of DM inside these clumps is a strong source of stable charged particles which can have a substantial density near the clump core. The streaming of the annihilation products from the clump can enhance irregularities in the galactic magnetic field. This can produce small scale variations in diffusion coefficient affecting propagation of Cosmic Rays.
In the average profiles of several radio pulsars, the main pulse is accompanied by the preceding component. This so called precursor is known for its distinctive polarization, spectral, and fluctuation properties. Recent single-pulse observations hint that the sporadic activity at the extreme leading edge of the pulse may be prevalent in pulsars. We for the first time propose a physical mechanism of this phenomenon. It is based on the induced scattering of the main pulse radiation into the background. We show that the scattered component is directed approximately along the ambient magnetic field and, because of rotational aberration in the scattering region, appears in the pulse profile as a precursor to the main pulse. Our model naturally explains high linear polarization of the precursor emission, its spectral and fluctuation peculiarities as well as suggests a specific connection between the precursor and the main pulse at widely spaced frequencies. This is believed to stimulate multifrequency single-pulse studies of intensity modulation in different pulsars.
We consider cosmology in the Einstein-aether theory (the generally covariant theory of gravitation coupled to a dynamical timelike Lorentz-violating vector field) with a linear aether-Lagrangian. The 3+1 spacetime splitting approach is used to derive covariant and gauge invariant perturbation equations which are valid for a general class of Lagrangians. Restricting attention to the parameter space of these theories which is consistent with local gravity experiments, we show that there are tracking behaviors for the aether field, both in the background cosmology and at linear perturbation level. The primordial power-spectrum of scalar perturbations in this model is shown to be the same that predicted by standard general relativity. However, the power-spectrum of tensor perturbation is different from that in general relativity, but has a smaller amplitude and so cannot be detected at present. We also study the implications for late-time cosmology and find that the evolution of photon and neutrino anisotropic stresses can source the aether field perturbation during the radiation and matter dominated epochs, and as a result the CMB and matter power spectra are modified. However these effects are degenerate with respect to other cosmological parameters, such as neutrino masses and the bias parameter in the observed galaxy spectrum.
AIMS: To investigate the very high energy (VHE: >100 GeV) gamma-ray emission
from the high-frequency peaked BL Lac 1ES 0229+200.
METHODS: Observations of 1ES 0229+200 at energies above 580 GeV were
performed with the High Energy Stereoscopic System (HESS) in 2005 and 2006.
RESULTS: 1ES 0229+200 is discovered by HESS to be an emitter of VHE photons.
A signal is detected at the 6.6 sigma level in the HESS observations (41.8 h
live time). The integral flux above 580 GeV is (9.4 +- 1.5 {stat} +- 1.9
{syst}) x 10^{-13} cm^{-2} s^{-1}, corresponding to ~1.8% of the flux observed
from the Crab Nebula. The data show no evidence for significant variability on
any time scale. The observed spectrum is characterized by a hard power law
(Gamma = 2.50 +- 0.19 {stat} +- 0.10 {syst}) from 500 GeV to ~15 TeV.
CONCLUSIONS: The high-energy range and hardness of the observed spectrum,
coupled with the object's relatively large redshift (z=0.1396), enable the
strongest constraints so far on the density of the Extragalactic Background
Light (EBL) in the mid-infrared band. Assuming that the emitted spectrum is not
harder than Gamma_{int} ~ 1.5, the HESS data support an EBL spectrum ~
lambda^{-1} and density close to the lower limit from source counts measured by
Spitzer, confirming the previous indications from the HEGRA data of 1ES
1426+428 (z=0.129). Irrespective of the EBL models used, the intrinsic spectrum
of 1ES 0229+200 is hard, thus locating the high-energy peak of its spectral
energy distribution above a few TeV.
Gravitinos are very promising candidates for the cold dark matter of the Universe. Interestingly, to achieve a sufficiently long gravitino lifetime, R-parity conservation is not required, thus preventing any dangerous cosmological influence of the next-to-lightest supersymmetric particle. When R-parity is violated, gravitinos decay into photons and other particles with a lifetime much longer than the age of the Universe, producing a diffuse gamma ray flux with a characteristic spectrum that could be measured in future experiments, like GLAST, AMS-02 or Cherenkov telescopes. In this letter we compute the energy spectrum of photons from gravitino decay and discuss its main qualitative features.
There is a lot of current astrophysical evidence and interest in intermediate mass black holes, ranging from a few hundred to several thousand solar masses. The active galaxy M82 and the globular cluster in M31, for example, are known to host such objects. Here we discuss several aspects of intermediate mass black holes such as their expected luminosity, spectral nature of radiation, associated jets, etc. We also discuss possible scenarios for their formation including the effects of dynamical friction, gravitational radiation, etc. We also consider their formation in the early universe and also discuss the possibility of supermassive black holes forming from mergers of several intermediate mass black holes and compare the relevant time scales involved with other scenarios.
Very high energy (VHE; >100 GeV) observations of a sample of selected active galactic nuclei (AGN) were performed between January 2005 and April 2007 with the High Energy Stereoscopic System (HESS), an array of imaging atmospheric-Cherenkov telescopes. Significant detections are reported elsewhere for many of these objects. Here, integral flux upper limits for twelve candidate very high energy (VHE; >100 GeV) gamma-ray emitters are presented. In addition, results from HESS observations of four known VHE-bright AGN are given although no significant signal is measured. For three of these AGN (1ES 1101-232, 1ES 1218+304, and Mkn 501) simultaneous data were taken with the Suzaku X-ray satellite.
The majority of the inhomogeneities in the chemical composition of Globular Cluster (GC) stars appear due to primordial enrichment by hot-CNO cycled material processed in stars belonging to a first stellar generation. Either massive AGB envelopes subject to hot bottom burning, or the envelopes of massive fastly rotating stars could be the progenitors. In both cases, the stars showing chemical anomalies must have also enhanced helium abundance, and we have proposed that this higher helium could be at the basis of the many different morphologies of GC horizontal branches (HB) for similar ages and metallicities. The helium variations have been beautifully confirmed by the splitting of the main sequence in the clusters omega Cen and NGC 2808, but this effect can show up only for somewhat extreme helium abundances. Therefore it is important to go on using the HB morphology to infer the number ratio of the first to the second generation in as many clusters as possible. We exemplify how it is possible to infer the presence of a He-rich stellar component in different clusters thanks to different HB features (gaps, RR Lyr periods and period distribution, ratio of blue to red stars, blue tails). In many clusters at least 50% of the stars belong to the second stellar generation, and in some cases we suspect that the stars might all belong to the second generation. We shortly examine the problem of the initial mass function required to achieve the observed number ratios and conclude that: 1) the initial cluster must have been much more massive than today's cluster, and 2) formation of the second stellar generation mainly in the central regions of the cluster may help in obtaining the desired values.
Very high energy (VHE; >100 GeV) gamma-ray observations of PG 1553+113 were made with the High Energy Stereoscopic System (HESS) in 2005 and 2006. A strong signal, ~10 standard deviations, is detected by HESS during the 2 years of observations (24.8 hours live time). The time-averaged energy spectrum, measured between 225 GeV to ~1.3 TeV, is characterized by a very steep power law (photon index of Gamma = (4.5 +- 0.3 {stat} +- 0.1 {syst}). The integral flux above 300 GeV is ~3.4% of the Crab Nebula flux and shows no evidence for any variations, on any time scale. H+K (1.45-2.45 micron) spectroscopy of PG 1553+113 was performed in March 2006 with SINFONI, an integral field spectrometer of the ESO Very Large Telescope (VLT) in Chile. The redshift of PG 1553+113 is still unknown, as no absorption or emission lines were found.
Context: In preparation for the COROT mission, an exhaustive photometric
study of Be stars located in the seismology fields of the COROT mission has
been performed. The very precise and long-time-spanned photometric observations
gathered by the COROT satellite will give important clues of the origin of the
Be phenomenon.
Aims: The aim of this work is to find short-period variable Be stars located
in the seismology fields of COROT and to study and characterise their
pulsational properties.
Methods: Light curves obtained at the Observatorio de Sierra Nevada together
with data from Hipparcos and ASAS-3 of a total of 84 Be stars have been
analysed in order to search for short-term variations. We have applied standard
Fourier techniques and non-linear least-square fitting to the time series.
Results: We have found 7 multiperiodic, 21 mono-periodic and 26 non-variable
Be stars. Short-term variability has been detected in 74% of early-type Be
stars and in 31% of mid- to late-type Be stars. We have shown that non-radial
pulsations are most frequent among Be stars than in slow-rotating B stars of
the same spectral range.
Since 2002 the VHE (>100 GeV) gamma-ray flux of the high-frequency peaked BL Lac PKS 2155-304 has been monitored with the High Energy Stereoscopic System (HESS). An extreme gamma-ray outburst was detected in the early hours of July 28, 2006 (MJD 53944). The average flux above 200 GeV observed during this outburst is ~7 times the flux observed from the Crab Nebula above the same threshold. Peak fluxes are measured with one-minute time scale resolution at more than twice this average value. Variability is seen up to ~600 s in the Fourier power spectrum, and well-resolved bursts varying on time scales of ~200 seconds are observed. There are no strong indications for spectral variability within the data. Assuming the emission region has a size comparable to the Schwarzschild radius of a ~10^9 solar mass black hole, Doppler factors greater than 100 are required to accommodate the observed variability time scales.
Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.
Bulges are a major galaxy component in the nearby universe, and are one of the primary features that differentiates and defines galaxies. The origin of bulges can be directly probed in part by examining distant galaxies to search for high redshift bulges, and to study the properties of bulges in formation. We review the evidence for bulges at high redshift in this article, and how by studying bulges through a variety of approaches, including morphological, colour, and stellar mass selection, we can determine when and how these systems assembled. We argue that the majority of the most massive 'classical' bulges are in place by z ~ 1.5 - 2, and likely formed very early through major mergers. Other, likely lower mass, bulges form through a secular process along with their disks. Direct observations suggest that these two formation processes are occurring, as spheroids are commonly seen at z > 1, as are disks and spiral galaxies in the form of luminous diffuse objects, clump-clusters, and chain galaxies. However, bulge+disk systems are relatively rare until z ~ 1, suggesting that this structural assembly occurred relatively late.
The shell-type supernova remnant RX J0852.0-4622 was detected in 2004 and re-observed between December 2004 and May 2005 with the High Energy Stereoscopic System (H.E.S.S.), an array of four Imaging Cherenkov Telescopes located in Namibia and dedicated to the observations of gamma-rays above 100 GeV. The angular resolution of <0.1 degree and the large field of view of H.E.S.S. (5 degrees diameter) are well adapted to studying the morphology of the object in very high energy gamma-rays, which exhibits a remarkably thin shell very similar to the features observed in the radio range and in X-rays. The spectral analysis of the source from 300 GeV to 20 TeV will be presented. Finally, the possible origins of the very high energy gamma-ray emission (Inverse Compton scattering by electrons or the decay of neutral pions produced by proton interactions) will be discussed, on the basis of morphological and spectral features obtained at different wavelengths.
An X-ray photoelectric polarimeter based on the Gas Pixel Detector has been
proposed to be included in many upcoming space missions to fill the gap of
about 30 years from the first (and to date only) positive measurement of
polarized X-ray emission from an astrophysical source. The estimated
sensitivity of the current prototype peaks at an energy of about 3 keV, but the
lack of readily available polarized sources in this energy range has prevented
the measurement of detector polarimetric performances.
In this paper we present the measurement of the Gas Pixel Detector
polarimetric sensitivity at energies of a few keV and the new, light, compact
and transportable polarized source that was devised and built to this aim.
Polarized photons are produced, from unpolarized radiation generated with an
X-ray tube, by means of Bragg diffraction at nearly 45 degrees.
The employment of mosaic graphite and flat aluminum crystals allow the
production of nearly completely polarized photons at 2.6, 3.7 and 5.2 keV from
the diffraction of unpolarized continuum or line emission. The measured
modulation factor of the Gas Pixel Detector at these energies is in good
agreement with the estimates derived from a Monte Carlo software, which was up
to now employed for driving the development of the instrument and for
estimating its low energy sensitivity. In this paper we present the excellent
polarimetric performance of the Gas Pixel Detector at energies where the peak
sensitivity is expected. These measurements not only support our previous
claims of high sensitivity but confirm the feasibility of astrophysical X-ray
photoelectric polarimetry.
The method of the statistical sample moments was used for the analysis of neutrino events from SN1987A burst in Cherenkov detectors. In particular the coefficients of correlation $Q(E,t)$ between the energies $E$ of electron antineutrinos $\bar \nu_e$ emitted by star and the ejection instants $t$ of $\bar \nu_e$ for neutrino events recorded by Cherenkov water detectors of KII and IMB collaborations were calculated. $Q(E,t)$ values depend on the assumed mass of $\bar \nu_e$. Modern model of the gravitational stellar core collapse with an accretion phase predicts the low level of such correlation $<Q(E,t)>$ averaged with respect to neutrino burst. On condition that empirical $Q(E,t)$ values equal the theoretical model quantities $<Q(E,t)>$ one can obtain $22\pm10 eV/c^{2}$ as an estimate of the nonzero $\bar \nu_e$ mass. The error of this estimate implies that $\bar \nu_e$ mass less than $2 eV/c^2$ is unlikely. The laboratry data of the tritium $\beta$-decay agree adequately with the presented astrophysical estimate provided that the anomalous structure near the end point of $\beta$-spectrum is taken into account.
With a peak luminosity of ~10^47 erg/s, the December 27th 2004 giant flare from SGR1806-20 would have been visible by BATSE (the Burst and Transient Source Experiment) out to ~50 Mpc. It is thus plausible that some fraction of the short duration Gamma-Ray Bursts (sGRBs) in the BATSE catalogue were due to extragalactic magnetar giant flares. According to the most widely accepted current models, the remaining BATSE sGRBs were most likely produced by compact object (neutron star-neutron star or neutron star-black hole) mergers with intrinsically higher luminosities. Previously, by examining correlations on the sky between BATSE sGRBs and galaxies within 155 Mpc, we placed limits on the proportion of nearby sGRBs. Here, we examine the redshift distribution of sGRBs produced by assuming both one and two populations of progenitor with separate Luminosity Functions (LFs). Using the local Galactic SGR giant flare rate and theoretical NS-NS merger rates evolved according to well-known Star Formation Rate parameterisations, we constrain the predicted distributions by BATSE sGRB overall number counts. We show that only a dual population consisting of both SGR giant flares and NS-NS mergers can reproduce the likely local distribution of sGRBs as well as the overall number counts. In addition, the best fit LF parameters of both sub-populations are in good agreement with observed luminosities.
We investigate the star formation history of the central regions of four
Luminous Compact Blue Galaxies (LCBGs). LCBGs are blue (B-V<0.6), compact
(MU_B<21.5 mag arcsec^-2) galaxies with absolute magnitudes M_B brighter than
-17.5. The LCBGs analyzed here are located at 0.436<z<0.525. They are among the
most luminous (M_B < -20.5), blue (B-V < 0.4) and high surface brightness (MU_B
< 19.0 mag arcsec^-2) of this population. The observational data used were
obtained with the HST/STIS spectrograph, the HST/WF/PC-2 camera and the
HST/NICMOS first camera. We find evidence for multiple stellar populations. One
of them is identified as the ionizing population, and the other one corresponds
to the underlying stellar generation.
The estimated masses of the inferred populations are compatible with the
dynamical masses, which are typically 2--10x 10^9 M_sun. Our models also
indicate that the first episodes of star formation the presented LCBGs
underwent happened between 5 and 7 Gyr ago.
We compare the stellar populations found in LCBGs with the stellar
populations present in bright, local HII galaxies, nearby spheroidal systems
and Blue Compact Dwarf Galaxies. It turns out that the underlying stellar
populations of LCBGs are similar yet bluer to those of local HII galaxies. It
is also the case that the passive color evolution of the LCBGs could convert
them into local Spheroidal galaxies if no further episode of star formation
takes place. Our results help to impose constraints on evolutionary scenarios
for the population of LCBGs found commonly at intermediate redshifts.
We provide a new distance estimate to the supernova remnant (SNR) Kes 73 and its associated anomalous X-ray pulsar (AXP) 1E 1841-045. 21 cm HI images and HI absorption/ emission spectra from new VLA observations, and 13CO emission spectra of Kes 73 and two adjacent compact HII regions (G27.276+0.148 and G27.491+0.189) are analyzed. The HI images show prominent absorption features associated with Kes 73 and the HII regions. The absorption appears up to the tangent point velocity giving a lower distance limit to Kes 73 of 7.5 kpc, which has previously been given as the upper limit. Also, G27.276+0.148 and G27.491+0.189 are at the far kinematic distances of their radio recombination line velocities. There is prominent HI emission in the range 80--90 km/s for all three objects. The two HII regions show HI absorption at ~ 84 km/s, but there is no absorption in the Kes 73 absorption spectrum. This implies an upper distance limit of ~ 9.8 kpc to Kes 73. This corrected larger distance to Kes 73/ AXP 1E 1841-045 system leads to a refined age of the SNR of 500 to 1000 yr, and a ~ 50% larger AXP X-ray luminosity.
The initial value problem of metric and Palatini f(R)gravity is studied by using the dynamical equivalence between these theories and Brans-Dicke gravity. The Cauchy problem is well-formulated for metric f(R)gravity in the presence of matter and well-posed in vacuo. For Palatini f(R)gravity, instead, the Cauchy problem is not well-formulated.
Motivated by recent interest in understanding properties of strongly magnetized matter, we study the dynamical electron mass generated through approximate chiral symmetry breaking in QED in a strong magnetic field. We numerically solve the nonperturbative Schwinger-Dyson equation in a consistent truncation within the lowest Landau level approximation. It is shown that the generation of dynamical electron mass in a strong magnetic field is significantly enhanced by the perturbative electron mass that explicitly breaks chiral symmetry in the absence of a magnetic field.
The causal entropic principle has been proposed as a superior alternative to the anthropic principle for understanding the magnitude of the cosmological constant. In this approach, the probability to create observers is assumed to be proportional to the entropy production \Delta S in a maximal causally connected region -- the causal diamond. We improve on the original treatment by better quantifying the entropy production due to stars, using an analytic model for the star formation history which accurately accounts for changes in cosmological parameters. We calculate the dependence of \Delta S on the density contrast Q=\delta\rho/\rho, and find that our universe is much closer to the most probable value of Q than in the usual anthropic approach and that probabilities are relatively weakly dependent on this amplitude. In addition, we make first estimates of the dependence of \Delta S on the baryon fraction and overall matter abundance. Finally, we also explore the possibility that decays of dark matter, suggested by various observed gamma ray excesses, might produce a comparable amount of entropy to stars.
We perform a new and updated analysis of sneutrinos as dark matter candidates, in different classes of supersymmetric models. We extend previous analyses by studying sneutrino phenomenology for full variations of the supersymmetric parameters which define the various models. We first revisit the standard Minimal Supersymmetric Standard Model, concluding that sneutrinos are marginally compatible with existing experimental bounds, including direct detection, provided they compose a subdominant component of dark matter. We then study supersymmetric models with the inclusion of right-handed fields and lepton-number violating terms. Simple versions of the lepton-number-violating models do not lead to phenomenology different from the standard case when the neutrino mass bounds are properly included. On the contrary, models with right-handed fields are perfectly viable: they predict sneutrinos which are compatible with the current direct detection sensitivities, both as subdominant and dominant dark matter components. We also study the indirect detection signals for such successful models: predictions for antiproton, antideuteron and gamma-ray fluxes are provided and compared with existing and future experimental sensitivities. The neutrino flux from the center of the Earth is also analyzed.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0709, /abs, contact, help (Access key information)
The spectral shape of the unresolved emission from different classes of gamma-ray emitters can be used to disentangle the contributions from these populations to the extragalactic gamma-ray background (EGRB). We present a calculation of the unabsorbed spectral shape of the unresolved blazar contribution to the EGRB starting from the spectral index distribution (SID) of resolved EGRET blazars derived through a maximum-likelihood analysis accounting for measurement errors. In addition, we explicitly calculate the uncertainty in this theoretically predicted spectral shape, which enters through the spectral index distribution parameters. We find that: (a) the unresolved blazar emission spectrum is only mildly convex, and thus, even if blazars are shown by GLAST to be a dominant contribution to the ERGB at lower energies, they may be insufficient to explain the EGRB at higher energies; (b) the theoretically predicted unresolved spectral shape involves significant uncertainties due to the limited constraints provided by EGRET data on the SID parameters, which are comparable to the statistical uncertainties of the observed EGRET EGRB at high energies; (c) the increased number statistics which will be provided by GLAST will be sufficient to reduce this uncertainty by at least a factor of three.
We present a study of elemental abundances in a sample of thirteen Blue Compact Dwarf (BCD) galaxies, using the $\sim$10--37$\mu$m high resolution spectra obtained with Spitzer/IRS. We derive the abundances of neon and sulfur for our sample using the infrared fine-structure lines probing regions which may be obscured by dust in the optical and compare our results with similar infrared studies of starburst galaxies from ISO. We find a good correlation between the neon and sulfur abundances, though sulfur is under-abundant relative to neon with respect to the solar value. A comparison of the elemental abundances (neon, sulfur) measured from the infrared data with those derived from the optical (neon, sulfur, oxygen) studies reveals a good overall agreement for sulfur, while the infrared derived neon abundances are slightly higher than the optical values. This indicates that either the metallicities of dust enshrouded regions in BCDs are similar to the optically accessible regions, or that if they are different they do not contribute substantially to the total infrared emission of the host galaxy.
UVES spectra of the very young (~10^7 years) peculiar B-type star HR 6000 were analyzed in the near-UV and visual spectral regions (3050-9460 A) with the aim to extend to other spectral ranges the study made previously in the UV using IUE spectra. Stellar parameters Teff=12850K, logg=4.10, and xi=0km/s, as determined from H_beta, H_gamma, H_delta Balmer profiles and from the Fe I, Fe II ionization equilibrium, were used to compute an individual abundances ATLAS12 model. We identified spectral peculiarities and obtained final stellar abundances by comparing observed and computed equivalent widths and line profiles. The adopted model fails to reproduce the (b-y) and c color indices. The spectral analysis has revealed: the presence of emission lines for Mn II, Cr II, and Fe II; isotopic anomalies for Hg, Ca; the presence of interstellar lines of Na I at lambda lambda 3302.3, 3302.9, 5890, 5896 A, and of K I at 7665, 7699 A; the presence of a huge quantity of unidentified lines, which we presume to be mostly due to Fe II transitions owing to the large Fe overabundance amounting to [+0.7]. The main chemical peculiarities are an extreme overabundance of Xe, followed by those of Hg, P, Y, Mn, Fe, Be, and Ti. The most underabundant element is Si, followed by C, N, Al, S, Mg, V, Sr, Co, Cl, Sc, and Ni. The silicon underabundance [-2.9] is the lowest value for Si ever observed in any HgMn star. The observed lines of He I can not be reproduced by a single value of the He abundance, but they require values ranging from [-0.8] to [-1.6]. Furthermore, when the observed and computed wings of He I lines are fitted, the observed line cores are much weaker than the computed ones. From the present analysis we infer the presence of vertical abundance stratification for He, Mn, and possibly also P.
The Hubble Ultra Deep Field (HUDF) contains a significant number of B, V and
i'-band dropout objects, many of which were recently confirmed to be young
star-forming galaxies at z~4-6. These galaxies are too faint individually to
accurately measure their radial surface brightness profiles. Their average
light profiles are potentially of great interest, since they may contain clues
to the time since the onset of significant galaxy assembly. We separately
co-add V, i' and z'-band HUDF images of sets of z~4,5 and 6 objects,
pre-selected to have nearly identical compact sizes and the roundest shapes.
From these stacked images, we are able to study the averaged radial structure
of these objects at much higher signal-to-noise ratio than possible for an
individual faint object. Here we explore the reliability and usefulness of a
stacking technique of compact objects at z~4-6 in the HUDF. Our results are:
(1) image stacking provides reliable and reproducible average surface
brightness profiles; (2) the shape of the average surface brightness profiles
show that even the faintest z~4-6 objects are resolved; and (3) if late-type
galaxies dominate the population of galaxies at z~4-6, as previous HST studies
have shown, then limits to dynamical age estimates for these galaxies from
their profile shapes are comparable with the SED ages obtained from the
broadband colors. We also present accurate measurements of the sky-background
in the HUDF and its associated 1-sigma uncertainties.
We present observations of 13CO, C18O, HCO+, H13CO+, DCO+ and N2H+ line emission towards the Barnard 68 starless core. The line profiles are interpreted using a chemical network coupled with a radiative transfer code in order to reconstruct the radial velocity profile of the core. Our observations and modeling indicate the presence of complex radial motions, with the inward motions in the outer layers of the core but outward motions in the inner part, suggesting radial oscillations. The presence of such oscillation would imply that B68 is relatively old, typically one order of magnitude older than the age inferred from its chemical evolution and statistical core lifetimes. Our study demonstrates that chemistry can be used as a tool to constrain the radial velocity profiles of starless cores.
Data taken at the Pierre Auger Observatory are used to search for air showers initiated by ultra-high energy (UHE) photons. Results of searches are reported from hybrid observations where events are measured with both fluorescence and array detectors. Additionally, a more stringent test of the photon fluxes predicted with energies above 10^19 eV is made using a larger data set measured using only the surface detectors of the observatory.
Using the OVRO, Nobeyama, and IRAM mm-arrays, we searched for ``disk''-outflow systems in three high-mass (proto)star forming regions: G16.59-0.05, G23.01-0.41, and G28.87+0.07. These were selected from a sample of NH3 cores associated with OH and H2O maser emission and with no or very faint continuum emission. Our imaging of molecular line (including rotational transitions of CH3CN and 3mm dust continuum emission revealed that these are compact, massive, and hot molecular cores (HMCs), that is likely sites of high-mass star formation prior to the appearance of UCHII regions. All three sources turn out to be associated with molecular outflows from CO and/or HCO+ J=1--0 line imaging. In addition, velocity gradients of 10 -- 100 km/s per pc in the innermost densest regions of the G23.01 and G28.87 HMCs are identified along directions roughly perpendicular to the axes of the corresponding outflows. All the results suggest that these cores might be rotating about the outflow axis, although the contribution of rotation to gravitational equilibrium of the HMCs appears to be negligible. Our analysis indicates that the 3 HMCs are close to virial equilibrium due to turbulent pressure support. Comparison with other similar objects where rotating toroids have been identified so far shows that in our case rotation appears to be much less prominent; this can be explained by the combined effect of unfavorable projection, large distance, and limited angular resolution with the current interferometers.
The Wilkinson Microwave Anisotropy Probe (WMAP) three year results are used to constraint non-minimal inflation models. Two different non-minimally coupled scalar field potentials are considered to calculate corresponding slow-roll parameters of non-minimal inflation. The results of numerical analysis of parameter space are compared with WMAP3 data to find appropriate new constraints on the values of the non-minimal coupling. A detailed comparison of our results with previous studies reveals the present status of the non-minimal inflation model after WMAP3.
In seeking a model solving the coincidence problem, the effective Yang-Mills condensate (YMC) is an alternative candidate for dark energy. A study is made for the model up to the 2-loop order of quantum corrections. It is found that, like in the 1-loop model, for generic initial conditions during the radiation era, there is always a desired tracking solution, yielding the current status $\Omega_\Lambda \simeq 0.73$ and $\Omega_m \simeq 0.27$. As the time $t\to \infty$ the dynamics is a stable attractor. Thus the model naturally solves the coincidence problem of dark energy. Moreover, if YMC decays into matter, its equation of state (EoS) crosses -1 and takes $w\sim -1.1$, as indicated by the recent observations.
The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four 12m diameter Imaging Atmospheric Cherenkov Technique (IACT) telescopes operated at the base of Mt. Hopkins in southern Arizona. The four-telescope experiment started operation in April, 2007. GeV and TeV gamma-ray observations of blazars can be used to probe the structure and composition of their jets, and to contribute to our understanding of how supermassive black holes accrete matter. In this contribution, we present first VERITAS blazar results obtained with three and four telescopes.
An 800 sq-arcmin mosaic image of the W3 star forming complex obtained with
the Chandra X-ray Observatory gives a valuable new view of the spatial
structure of its young stellar populations. The Chandra image reveals about
1300 faint X-ray sources, most of which are PMS stars in the cloud. Some, but
not all, of the high-mass stars producing hypercompact and ultracompact H II
(UCHII) regions are also seen, as reported in a previous study.
The Chandra images reveal three dramatically different embedded stellar
populations. The W3 Main cluster extends over 7 pc with about 900 X-ray stars
in a nearly-spherical distribution centered on the well-studied UCHII regions
and high-mass protostars. The cluster surrounding the prototypical UCHII region
W3(OH) shows a much smaller (<0.6 pc), asymmetrical, and clumpy distribution of
about 50 PMS stars. The massive star ionizing the W3 North H II region is
completely isolated without any accompanying PMS stars. In W3 Main, the
inferred ages of the widely distributed PMS stars are significantly older than
the inferred ages of the central OB stars illuminating the UCHIIs. We suggest
that different formation mechanisms are necessary to explain the diversity of
the W3 stellar populations: cluster-wide gravitational collapse with delayed OB
star formation in W3 Main, collect-and-collapse triggering by shock fronts in
W3(OH), and a runaway O star or isolated massive star formation in W3 North.
The big trip can be describe with the help of the Wheeler-DeWitt wave equation ${\hat H}\psi(w,a)=0$. The probability to find the universe after big trip in the state with $w=w_0$ will be maximal if $\partial\psi(w,a)/\partial w|_{w=w_0}=0$ for any values of the scale factor $a$. It is shown that this will be the case if and only if $w_0=-1/3$. This fact allows one to suggest that vast majority of universes in multiverse must be in this state after their big trips.
We have computed the size distribution of silicate grains in the outer radiative region of the envelope of a protoplanet evolving according to the scenario of Pollack et al. (1996). Our computation includes grain growth due to Brownian motion and overtake of smaller grains by larger ones. We also include the input of new grains due to the breakup of planetesimals in the atmosphere. We follow the procedure of Podolak (2003), but have speeded it up significantly. This allows us to test the sensitivity of the code to various parameters. We have also made a more careful estimate of the resulting grain opacity. We find that the grain opacity is of the order of $10^{-2}\ \mathrm{cm^2 g^{-1}}$ throughout most of the outer radiative zone as Hubickyj et al. (2005) assumed for their low opacity case, but near the outer edge of the envelope, the opacity can increase to $\sim{1} \mathrm{cm^2 g^{-1}}$. We discuss the effect of this on the evolution of the models.
We estimate the limiting angular resolution and detection area for an array
of 3 large-aperture Imaging Atmospheric Cherenkov Telescopes. We consider an
idealized IACT system in order to understand the limitations imposed by the
intrinsic nature of the atmospheric showers and geometry of the detector
configuration. The idealization includes the assumptions of a perfect optical
system and the absence of the night sky background with the goal of finding the
optimum camera geometry and array configuration independent of detailed
assumptions about the telescope design.
The showers are simulated using the ALTAI code for the altitude of 2700 m
corresponding to one of possible future sites for a new northern-hemisphere
array. The optimal design depends on the target energy range; for each energy
we vary both the cell length (telescope spacing) and the image processing
parameters in order to maximize the signal-to-noise ratio. We then present the
resulting values of the detection area and the angular resolution for this
energy dependent optimization. We discuss the dependence of these quantities on
the field of view of the telescopes and pixel size of the camera.
Preliminary VLBA polarisation results on 6 ``blazars'' from 6.5-cm to 7-mm are presented here. Observing at several different wavelengths, separated by short and long intervals, enabled reliable information about the magnetic (B) field structure to be obtained and for the effect of Faraday Rotation to be determined and corrected. For all sources the magnitude of the core Rotation Measure (RM) derived from the shorter wavelength data was greater than that derived from the longer wavelength data, consistent with a higher electron density and/or B-field strength closer to the central engine. A transverse RM gradient was detected in the jet of 0954+658, providing evidence for the presence of a helical B-field surrounding the jet. The RM in the core region of 2200+420 (BL Lac) displays sign changes in different wavelength intervals (on different spatial scales); we suggest an explanation for this in terms of modest bends in a helical B-field surrounding the jet.
Assuming the dark matter is made entirely from neutralinos, we re-visit the role of their annihilation on the temperature of diffuse gas in the high redshift universe. We consider neutralinos of particle mass 36 GeV and 100 GeV, respectively. The former is able to produce ~7 electron/positron particles per annihilation through the fremionic channel, and the latter ~53 particles assuming a purely bosonic channel. High energy electron/positron particles up-scatter the Cosmic Microwave Background (CMB) photons into higher energies via the inverse-Compton scattering. The process produces a power-law electron/positron energy spectrum of index -1 in the energy range of interest, independent of the initial energy distribution. The corresponding energy spectrum of the up-scattered photons is a power-law of index -1/2, if absorption by the gas is not included. The scattered photons photo-heat the gas by releasing electrons which deposit a fraction (14%)of their energy as heat into the ambient medium. For uniformly distributed neutralinos the heating is insignificant. The effect is greatly enhanced by the clumping of neutralinos into dense haloes. We use a time-dependent clumping model which takes into account the damping of density fluctuations on mass scales smaller than ~10^{-6}M_sol. With this clumping model, the heating mechanism boosts the gas temperature above that of the CMB after a redshift of z 30. By z\approx 10 the gas temperature is nearly 100 times its temperature when no heating is invoked. Similar increase is obtained for the two neutralino masses considered.
We present multiple epochs of H-alpha spectroscopy for 47 members of the open cluster NGC 3766 to investigate the long term variability of its Be stars. Sixteen of the stars in this sample are Be stars, including one new discovery. Of these, we observe an unprecedented 11 Be stars that undergo disk appearances and/or near disappearances in our H-alpha spectra, making this the most variable population of Be stars known to date. NGC 3766 is therefore an excellent location to study the formation mechanism of Be star disks. From blue optical spectra of 38 cluster members and existing Stromgren photometry of the cluster, we also measure rotational velocities, effective temperatures, and polar surface gravities to investigate the physical and evolutionary factors that may contribute to the Be phenomenon. Our analysis also provides improvements to the reddening and distance of NGC 3766, and we find E(B-V) = 0.22 +/- 0.03 and (V-M_V)_0 = 11.6 +/- 0.2, respectively. The Be stars are not associated with a particular stage of main-sequence evolution, but they are a population of rapidly rotating stars with a velocity distribution generally consistent with rotation at 70-80% of the critical velocity, although systematic effects probably underestimate the true rotational velocities so that the rotation is much closer to critical. Our measurements of the changing disk sizes are consistent with the idea that transitory, nonradial pulsations contribute to the formation of these highly variable disks.
Recent observations of the Galactic center revealed a nuclear disk of young OB stars, in addition to many similar outlying stars with higher eccentricities and/or high inclinations relative to the disk (some of them possibly belonging to a second disk). Binaries in such nuclear disks, if they exist in non-negligible fractions, could have a major role in the evolution of the disks through binary heating of this stellar system. We suggest that interactions with/in binaries may explain some (or all) of the observed outlying young stars in the Galactic center. Such stars could have been formed in a disk, and later on kicked out from it through binary related interactions, similar to ejection of high velocity runaway OB stars in young clusters throughout the galaxy.
Molecules that trace the high-density regions of the interstellar medium have
been observed in (Ultra-)Luminous Infrared Galaxies, in order to initiate
multiple-molecule multiple-transition studies to evaluate the physical and
chemical environment of the nuclear medium and its response to the ongoing
nuclear activity.
The HCN(1-0), HNC(1-0), HCO+(1-0), CN(1-0) and CN(2-1), CO(2-1), and CS(3-2)
transitions were observed in sources covering three decades of infrared
luminosity including sources with known OH megamaser activity. The data for the
molecules that trace the high-density regions have been augmented with data
available in the literature.
The integrated emissions of high-density tracer molecules show a strong
relation to the infrared luminosity. Ratios of integrated line luminosities
have been used for a first order diagnosis of the integrated molecular
environment of the evolving nuclear starbursts. Diagnostic diagrams display
significant differentiation among the sources that relate to initial conditions
and the radiative excitation environment. Initial differentiation has been
introduced between the FUV radiation field in photon-dominated-regions and the
X-ray field in X-ray-dominated-regions. The galaxies displaying OH megamaser
activity have line ratios typical of PDRs.
Two papers recently published in Celestial Mechanics (Krasinsky 2006, and Krasinsky and Vasilyev 2006) have presented a model for Earth-rotation variations, called ERA-2005, based on numerical integration of a new set of equations for the rotation of a deformable Earth followed by a fit of the results of the integration to VLBI data. These papers claimed that this model was superior to any other existing model. The purpose of this Note is to bring to light fundamental errors in the derivation of the basic equations of the new theory, compounded by serious deficiencies in the process of fitting to the data; they make ERA-2005 unsuitable for consideration as a geophysics-based model of nutation and precession.
We present observations of the HCN and HCO+ J=1-0 transitions in the center of the nearby spiral galaxy NGC 6946 made with the BIMA and CARMA interferometers. Using the BIMA SONG CO map, we investigate the change in the I_HCN/I_CO and I_ HCO/I_CO integrated intensity ratios as a function of radius in the central kiloparsec of the galaxy, and find that they are strongly concentrated at the center. We use the 2MASS K_S band image to find the stellar surface density, and then construct a map of the hydrostatic midplane pressure. We apply a PDR model to the observed I_HCN/I_HCO+ integrated intensity ratio to calculate the number density of molecular hydrogen in the dense gas tracer emitting region, and find that it is roughly constant at 10^5 cm^-3 across our map. We explore two hypotheses for the distribution of the dense gas. If the HCN and HCO+ emission comes from self-gravitating density peaks inside of a less dense gas distribution, there is a linear proportionality between the internal velocity dispersion of the dense gas and the size of the density peak. Alternatively, the HCN and HCO+ emission could come from dense gas homogeneously distributed throughout the center and bound by ambient pressure, similar to what is observed toward the center of the Milky Way. We find both of these hypotheses to be plausible. We fit the relationships between I_HCN, I_HCO+, and I_CO. Correlations between the hydrostatic midplane pressure and I_HCN and I_HCO+ are demonstrated, and power law fits are provided. We confirm the validity of a relation found by Blitz & Rosolowsky (2006) between pressure and the molecular to atomic gas ratio in the high hydrostatic midplane pressure regime (10^6-10^8 cm^-3 K).
Using high-resolution N-body simulations, we examine whether a major dry merger mitigate the different radial density distributions of red and blue globular clusters (GCs), since in nearby elliptical galaxies the red GCs have a steeper radial profile than the blue GCs. To this end, we study the relation between the density slope of the GCs in merger progenitors and that in a merger remnant, when the density distribution is described by $n_{GC}\propto r^{-\alpha}$. We also study how our results depend on the merger orbit and the size of the core radius of the initial GC density distribution. We find that a major dry merger makes the GC profile flatter, and as the initial GC profile steepens, the flattening strengthen, especially if the initial slope is steeper than $\alpha\sim3.5$. We conclude that the difference in the slopes between two populations becomes much smaller by dry merging. Therefore, the observed slopes of red and blue GCs can be a diagnostic of the importance of dry merging. The current observational data show that the red and blue GCs have more comparable and shallower slopes in some of luminous galaxies, although the total number of systems studied is still small. This may indicate that dry mergers are more important for luminous galaxies.
Observational and theoretical evidence suggests that coronal heating is impulsive and occurs on very small cross-field spatial scales. A single coronal loop could contain a hundred or more individual strands that are heated quasi-independently by nanoflares. It is therefore an enormous undertaking to model an entire active region or the global corona. Three-dimensional MHD codes have inadequate spatial resolution, and 1D hydro codes are too slow to simulate the many thousands of elemental strands that must be treated in a reasonable representation. Fortunately, thermal conduction and flows tend to smooth out plasma gradients along the magnetic field, so "0D models" are an acceptable alternative. We have developed a highly efficient model called Enthalpy-Based Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of the average temperature, pressure, and density along a coronal strand. It improves significantly upon earlier models of this type--in accuracy, flexibility, and capability. It treats both slowly varying and highly impulsive coronal heating; it provides the differential emission measure distribution, DEM(T), at the transition region footpoints; and there are options for heat flux saturation and nonthermal electron beam heating. EBTEL gives excellent agreement with far more sophisticated 1D hydro simulations despite using four orders of magnitude less computing time. It promises to be a powerful new tool for solar studies.
The present generation of ground-based Very High Energy (VHE) gamma-ray observatories consist of arrays of up to four large (> 12m diameter) light collectors quite similar to those used by R. Hanbury Brown to measure stellar diameters by Intensity Interferometry in the late 60's. VHE gamma-ray observatories to be constructed over the coming decade will involve several tens of telescopes of similar or greater sizes. Used as intensity interferometers, they will provide hundreds of independent baselines. Now is the right time to re-assess the potential of intensity interferometry so that it can be taken into consideration in the design of these large facilities.
I review the evolutionary connection between low-mass X-ray binaries (LMXBs) and pulsars with binary companions (bPSRs) from a stellar binary evolution perspective. I focus on the evolution of stellar binaries with end-states consisting of a pulsar with a low-mass (<1.0 solar mass) companion, starting at the point the companion's progenitor first initiates mass transfer onto the neutron star. Whether this mass transfer is stable and the physics driving ongoing mass transfer partitions the phase space of the companions's initial mass and initial orbital period into five regions. The qualitative nature of the mass-transfer process and the binary's final end-state differ between systems in each region; four of these regions each produce a particular class of LMXBs. I compare the theoretical expectations to the populations of galactic field LMXBs with companion-mass constraints and field bPSRs. I show that the population of accreting millisecond pulsars are all identified with only two of the four LMXB classes and that these systems do not have readily identifiable progeny in the bPSR population. I discuss which sub-populations of bPSRs can be explained by binary evolution theory and those that currently are not. Finally I discuss some outstanding questions in this field.
Intensity interferometry exploits a quantum optical effect in order to measure objects with extremely small angular scales. The first experiment to use this technique was the Narrabri intensity interferometer, which was successfully used in the 1970s to measure 32 stellar diameters at optical wavelengths; some as small as 0.4 milli-arcseconds. The advantage of this technique, in comparison with Michelson interferometers, is that it requires only relatively crude, but large, light collectors equipped with fast (nanosecond) photon detectors. Ground-based gamma-ray telescope arrays have similar specifications, and a number of these observatories are now operating worldwide, with more extensive installations planned for the future. These future instruments (CTA, AGIS, completion 2015) with 30-90 telescopes will provide 400-4000 different baselines that range in length between 50m and a kilometre. Intensity interferometry with such arrays of telescopes attains $50 \mu$-arcsecond resolution for a limiting visual magnitude ~8.5. Phase information can be extracted from the interferometric measurement with phase closure, allowing image reconstruction. This technique opens the possibility of a wide range of studies amongst others, probing the stellar surface activity and the dynamic AU scale circumstellar environment of stars in various crucial evolutionary stages. Here we focuse on the astrophysical potential of an intensity interferometer utilising planned new gamma-ray instrumentation.
The commonality of collisionally replenished debris around main sequence stars suggests that minor bodies are frequent around Sun-like stars. Whether or not debris disks in general are accompanied by planets is yet unknown, but debris disks with large inner cavities - perhaps dynamically cleared - are considered to be prime candidates for hosting large-separation massive giant planets. We present here a high-contrast VLT/NACO angular differential imaging survey for eight such cold debris disks. We investigated the presence of massive giant planets in the range of orbital radii where the inner edge of the dust debris is expected. Our observations are sensitive to planets and brown dwarfs with masses >3 to 7 Jupiter mass, depending on the age and distance of the target star. Our observations did not identify any planet candidates. We compare the derived planet mass upper limits to the minimum planet mass required to dynamically clear the inner disks. While we cannot exclude that single giant planets are responsible for clearing out the inner debris disks, our observations constrain the parameter space available for such planets. The non-detection of massive planets in these evacuated debris disks further reinforces the notion that the giant planet population is confined to the inner disk (<15 AU).
The first steps of planet formation are marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk midplane. In this paper we explore whether the first steps of planet formation are affected by the presence of medium-separation stellar companions. We selected two large samples of disks around single and binary T Tauri stars in Taurus that are thought to have only a modest age spread of a few Myr. The companions of our binary sample are at projected separations between 10 and 450 AU with masses down to about 0.1 solar masses. We used the strength and shape of the 10 micron silicate emission feature as a proxy for grain growth and for crystallization respectively. The degree of dust settling was evaluated from the ratio of fluxes at two different mid-infrared wavelengths. We find no statistically significant difference between the distribution of 10 micron silicate emission features from single and binary systems. In addition, the distribution of disk flaring is indistinguishable between the single and binary system samples. These results show that the first steps of planet formation are not affected by the presence of a companion at tens of AU.
The unified dark energy and dark matter model within the framework of a model of a continuous medium with bulk viscosity (dark fluid) is considered. It is supposed that the bulk viscosity coefficient is an arbitrary function of the Hubble parameter. The choice of this function is carried out under the requirement to satisfy the observational data from recombination ($z\approx 1000$) till present time.
We discuss the large scale properties of standard cold dark matter cosmological models characterizing the main features of the power-spectrum, of the two-point correlation function and of the mass variance. Both the real-space statistics have a very well defined behavior on large enough scales, where their amplitudes become smaller than unity. The correlation function, in the range 0<\xi(r)<1, is characterized by a typical length-scale r_c, at which \xi(r_c)=0, which is fixed by the physics of the early universe: beyond this scale it becomes negative, going to zero with a tail proportional to -(r^{-4}). These anti-correlations represent thus an important observational challenge to verify models in real space. The same length scale r_c characterizes the behavior of the mass variance which decays, for r>r_c, as r^{-4}, the fastest decay for any mass distribution. The length-scale r_c defines the maximum extension of (positively correlated) structures in these models. These are the features expected for the dark matter field: galaxies, which represent a biased field, however may have differences with respect to these behaviors, which we analyze. We then discuss the detectability of these real space features by considering several estimators of the two-point correlation function. By making tests on numerical simulations we emphasize the important role of finite size effects which should always be controlled for careful measurements.
We present high spatial resolution spectroscopic measurements of dynamic fibrils (DFs) in the Ca {\small{II}} 8662 {\AA} line. These data show clear Doppler shifts in the identified DFs, which demonstrates that at least a subset of DFs are actual mass motions in the chromosphere. A statistical analysis of 26 DFs reveals a strong and statistically significant correlation between the maximal velocity and the deceleration. The range of the velocities and the decelerations are substantially lower, about a factor two, in our spectroscopic observations compared to the earlier results based on proper motion in narrow band images. There are fundamental differences in the different observational methods; when DFs are observed spectroscopically the measured Doppler shifts are a result of the atmospheric velocity, weighted with the response function to velocity over an extended height. When the proper motion of DFs is observed in narrow band images, the movement of the top of the DF is observed. This point is sharply defined because of the high contrast between the DF and the surroundings. The observational differences between the two methods are examined by several numerical experiments using both numerical simulations and a time series of narrow band H$\alpha$ images. With basis in the simulations we conclude that the lower maximal velocity is explained by the low formation height of the Ca IR line. We conclude that the present observations support the earlier result that DFs are driven by magneto-acoustic shocks exited by convective flows and p-modes.
We investigate the effects of neutrino-nucleus interactions (the nu-process) on the production of iron-peak elements in Population III core-collapse supernovae. The nu-process and the following proton and neutron capture reactions produce odd-Z iron-peak elements in complete and incomplete Si burning region. This reaction sequence enhances the abundances of Sc, Mn, and Co in the supernova ejecta. The supernova explosion models of 15 M_sol and 25 M_sol stars with the nu-process well reproduce the averaged Mn/Fe ratio observed in extremely metal-poor halo stars. In order to reproduce the observed Mn/Fe ratio, the total neutrino energy in the supernovae should be 3 - 9 x 10^{53} ergs. Stronger neutrino irradiation and other production sites are necessary to reproduce the observed Sc/Fe and Co/Fe ratios, although these ratios increase by the nu-process.
The ANTARES telescope is being built in the Mediterranean Sea. The detector consists of a 3D array of photomultipliers (PMTs) that detects the Cherenkov light induced by the muons produced in neutrino interactions. Other signatures can also be detected. Since the neutrino fluxes from point-like sources are expected to be small, it is of the utmost importance to take advantage of the ANTARES pointing accuracy (angular resolution better than 0.3 degrees for muon events above 10 TeV) to disentangle a possible signal from the unavoidable atmospheric neutrino background. In order to distinguish an excess of neutrino events from the background, several searching algorithms have been developed within the ANTARES collaboration. In this contribution, the discovery potential and sensitivity to point-like sources of the ANTARES neutrino telescope are presented.
The thickness of the equilibrium isothermal gaseous layers and their volume densities \rho_{gas}(R) in the disc midplane are calculated for 7 spiral galaxies (including our Galaxy) in the frame of self-consistent axisymmetric model. Local velocity dispersions of stellar discs were assumed to be close to marginal values necessary for the discs to be in a stable equilibrium state. Under this condition the stellar discs of at least 5 of 7 galaxies reveal a flaring. Their volume densities decrease with R faster than \rho_{gas}, and, as a result, the gas dominates by the density at the disc periphery. Comparison of the azimuthally averaged star formation rate SFR with the gas density shows that there is no universal Schmidt law SFR \rho_{gas}^n, common to all galaxies. Nevertheless, SFR in different galaxies reveals better correlation with the volume gas density than with the column one. Parameter n in the Schmidt law SFR \rho_{gas}^n, formally calculated by the least square method, lies within 0.8-2.4 range and it's mean value is close to 1.5. Values of n calculated for molecular gas only are characterized by large dispersion, but their mean value is close to 1. Hence the smaller \rho_{gas} the less is a fraction of gas actively taking part in the process of star formation.
In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated to a supernova explosion, in the absence of an "external trigger", e.g., an optical observation. We describe how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and electron anti-neutrino intensity at the source.
ANTARES is a large volume neutrino telescope currently under construction off La Seyne-sur-mer, France, at 2475m depth. Neutrino telescopes aim at detecting neutrinos as a new probe for a sky study at energies greater than 1 TeV. The detection principle relies on the observation, using photomultipliers, of the Cherenkov light emitted by charged leptons induced by neutrino interactions in the surrounding detector medium. Since late January 2007, the ANTARES detector consists of 5 lines, comprising 75 optical detectors each, connected to the shore via a 40 km long undersea cable. The data from these lines not only allow an extensive study of the detector properties but also the reconstruction of downward going cosmic ray muons and the search for the first upward going neutrino induced muons.The operation of these lines follows on from that of the ANTARES instrumentation line, which has provided data for more than a year on the detector stability and the environmental conditions. The full 12 line detector is planned to be fully operational early 2008.
A new type of high-energy binary systems has been revealed by the INTEGRAL satellite. These sources are in the course of being unveiled by means of multi-wavelength optical, near- and mid-infrared observations. Among these sources, two distinct classes are appearing: the first one is constituted of intrinsically obscured high-energy sources, of which IGR J16318-4848 seems to be the most extreme example. The second one is populated by the so-called supergiant fast X-ray transients, with IGR J17544-2619 being the archetype. We report here on multi-wavelength optical to mid-infrared observations of these systems. We show that in the case of the obscured sources our observations suggest the presence of absorbing material (dust and/or cold gas) enshrouding the whole binary system. We then discuss the nature of these two different types of systems.
A three fluid system describing the decay of the curvaton is studied by numerical and analytical means. We place constraints on the allowed interaction strengths between the fluids and initial curvaton density by requiring that the curvaton decays before nucleosynthesis while nucleosynthesis, radiation-matter equality and decoupling occur at correct temperatures. We find that with a continuous, time-independent interaction, a small initial curvaton density is naturally preferred along with a low reheating temperature. Allowing for a time-dependent interaction, this constraint can be relaxed. In both cases, a purely adiabatic final state can be generated, but not without fine-tuning. Unlike in the two fluid system, the time-dependent interactions are found to have a small effect on the curvature perturbation itself due to the different nature of the system. The presence of non-gaussianity in the model is discussed.
The channeling effect of low energy ions along the crystallographic axes and planes of NaI(Tl) crystals is discussed in the framework of corollary investigations on WIMP Dark Matter candidates. In fact, the modeling of this existing effect implies a more complex evaluation of the luminosity yield for low energy recoiling Na and I ions. In the present paper related phenomenological arguments are developed and possible implications are discussed at some extent.
A new type of high-energy binary systems has been revealed by the INTEGRAL satellite. These sources are in the course of being unveiled by means of multi-wavelength optical, near- and mid-infrared observations. Among these sources, two distinct classes are appearing: the first one is constituted of intrinsically obscured high-energy sources, of which IGR J16318-4848 seems to be the most extreme example. The second one is populated by the so-called supergiant fast X-ray transients, with IGR J17544-2619 being the archetype. We report here on multi-wavelength optical to mid-infrared observations of a sample of 21 INTEGRAL sources. We show that in the case of the obscured sources our observations suggest the presence of absorbing material (dust and/or cold gas) enshrouding the whole binary system. We finally discuss the nature of these two different types of sources, in the context of high energy binary systems.
The INTEGRAL/IBIS survey was performed collecting all the GPS and GCDE data together with all the available public data . The second catalogue, published in 2006 by Bird et al., is dominated by detection of 113 X-ray binaries, with 38 being high-mass and 67 low-mass. In most systems the compact object is a neutron star, but the sample also contains 4 confirmed Black Holes and 6 LMXB black hole candidates (BHC). There are also, in additional, 6 tentative associations as BHCs based simply on spectral and timing properties. In the sample of 12 sources (BHC and tentatively associated BHC) there are 7 transient sources that went into outbursts during the INTEGRAL survey observations. We present here the monitoring of the time and spectral evolution of these 7 outbursts.
(Abridged) We selected high-z massive galaxies at 5.8 microns, in the SWIRE ELAIS-S1 field (1 sq. deg.). Galaxies with the 1.6 microns stellar peak redshifted into the IRAC bands (z~1-3, called ``IR-peakers'') were identified. Stellar masses were derived by means of spectro-photometric fitting and used to compute the stellar mass function (MF) at z=1-2 and 2-3. A parametric fit to the MF was performed, based on a Bayesian formalism, and the stellar mass density of massive galaxies above z=2 determined. We present the first systematic study of the very-massive tail of the galaxy stellar mass function at high redshift. A total of 326 sources were selected. The majority of these galaxies have stellar masses in excess of 1e11 Msun and lie at z>1.5. The availability of mid-IR data turned out to be a valuable tool to constrain the contribution of young stars to galaxy SEDs, and thus their M(stars)/L ratio. The influence of near-IR data and of the chosen stellar library on the SED fitting are also discussed. A significant evolution is found not only for galaxies with M~1e11 Msun, but also in the highest mass bins considered. The comoving number density of these galaxies was lower by more than a factor of 10 at z=2-3, with respect to the local estimate. SWIRE 5.8 micron peakers more massive than 1.6x1e11 Msun provide 30-50% of the total stellar mass density in galaxies at z=2-3.
We derive probability density functions for the projected axial ratios of the real and mock 2PIGG galaxy groups, and use this data to investigate the intrinsic three dimensional shape of the dark matter ellipsoids that they trace. As well as analysing the raw data for groups of varying multiplicities, a convolution corrected form of the data is also considered which weights the probability density function according to the results of multiple Monte-Carlo realizations of discrete samples from the input spatial distributions. The important effect observed is that the best fit distribution for all the raw data is a prolate ellipsoid with a Gaussian distribution of axial ratios with $\bar{\beta}=0.36$ and $\sigma=0.14$, whilst for the convolved data the best fit solution is that of an oblate ellipsoid $\bar{\beta}=0.22$ and $\sigma=0.1$. Previously only prolate distributions were thought compatible with the data, this being interprated as evidence of filamentary collapse at nodes. We also find that even after allowing for the sampling effects, the corrected data is better fit using separate multiplicity bins, which display a trend towards more spherical halos in higher multiplicity groups. Finally, we find that all results in the real data are in good agreement with the mock data from $\Lambda$CDM simulations, KS tests showing that all comparative data have been drawn from the same distributions within the $1\sigma$ confidence limits.
We present new evolutionary models for Type Ia supernova (SN Ia) progenitors, where we include mass-stripping effect on a main-sequence (MS) or slightly evolved companion star by winds from a mass-accreting white dwarf (WD). The mass-stripping attenuates the rate of mass transfer from the companion to the WD. As a result, quite a massive MS companion can avoid forming a common envelope to increase the WD mass up to the SN Ia explosion. Properly formulating the mass-stripping effect, we follow binary evolutions of the WD + MS systems and obtained a parameter region where SNe Ia are resulted in the initial donor mass - binary orbital period plane. The newly obtained SN Ia region extends to the donor mass up to 6-7 M_\sun, although its extension depends on the efficiency of mass-stripping effect. The stripped matter would mainly be distributed on the orbital plane and form very massive circumbinary matter around the SN Ia progenitor. It can explain the circumstellar matter around SNe Ia/IIn(IIa) 2002ic and 2006gj as well as normal SN Ia 2006X. Our new model suggests the presence of very young (\lesssim 10^8 yr) populations of SN Ia progenitors, being consistent with recent observational indications of young population SNe Ia.
Emission lines in quasars are believed to originate from a photoionized plasma. There are, however, some emission features which appear to be collisionally excited, such as the FeII multiplet bands. Shortward of Ly_alpha, there also are a few permitted lines of species from low to intermediate ionization. Ton 34 (z=1.928) exhibits the steepest far-UV continuum decline known (Fnu propto nu^{-5.3}) shortward of 1050A. This object also emits unusually strong low to intermediate excitation permitted lines shortward of the Lyman limit. Using archive spectra of Ton 34 from HST, IUE and Palomar, we measure the fluxes of all the lines present in the spectra and compare their relative intensities with those observed in composite quasar spectra. Our analysis reveals unusual strengths with respect to Ly_alpha of the following low to intermediate excitation permitted lines: OII+OIII (835A), NIII+OIII (686-703A) and NIII+NIV (765A). We compare the observed line spectrum with both photoionization and shock models. Photoionization cannot reproduce the strengths of these far-UV lines. Shocks with Vs ~ 100 km/s turn out to be extremely efficient emitters of these lines and are favored as excitation mechanism.
The microquasar 1E 1740.7-2942 is one of the most appealing source of the Galactic Centre region. The high energy feature detected once by SIGMA has been searched in the last years by INTEGRAL, but never confirmed. Classified as a persistent source, on 2004 it showed a quiescent-like state. In fact for few month 1E 1740.7-2942 was below the detector sensitivity level. We present the long term temporal behaviour of 1E 1740.7-2942 observed by INTEGRAL and RXTE in 2004 and 2005, as well as preliminary results on possible spectral transitions.
The observational evidence for central black holes in globular clusters has been argued extensively, and their existence has important consequences for both the formation and evolution of the cluster. Most of the evidence comes from dynamical arguments, but the interpretation is difficult, given the short relaxation times and old ages of the clusters. One of the most robust signatures for the existence of a black hole is radio and/or X-ray emission. We observed three globular clusters, NGC6093 (M80), NGC6266 (M62), and NGC7078 (M15), with the VLA in the A and C configuration with a 3-sigma noise of 36, 36 and 25 microJy, respectively. We find no statistically-significant evidence for radio emission from the central region for any of the three clusters. NGC6266 shows a 2-sigma detection. It is difficult to infer a mass from these upper limits due to uncertainty about the central gas density, accretion rate, and accretion model.
We present results of a population synthesis study aimed at examining the role of spin-kick alignment in producing a correlation between the spin period of the first-born neutron star and the orbital eccentricity of observed double neutron star binaries in the Galactic disk. We find spin-kick alignment to be compatible with the observed correlation, but not to alleviate the requirements for low kick velocities suggested in previous population synthesis studies. Our results furthermore suggest low- and high-eccentricity systems may form through two distinct formation channels distinguished by the presence or absence of a stable mass transfer phase before the formation of the second neutron star. The presence of highly eccentric systems in the observed sample of double neutron stars may furthermore support the notion that neutron stars accrete matter when moving through the envelope of a giant companion.
Modern observations and models of various astrophysical objects suggest that many of their physical parameters fluctuate substantially at different spatial scales. The rich variety of the emission processes, including Transition Radiation but not limited to it, arising in such turbulent media constitutes the scope of Stochastic Theory of Radiation. We review general approaches applied in the stochastic theory of radiation and specific methods used to calculate the transition radiation produced by fast particles in the magnetized randomly inhomogeneous plasma. The importance of the theory of transition radiation for astrophysics is illustrated by one example of its detailed application to a solar radio burst, including specially designed algorithms of the spectral forward fitting.
An analytical approximation to periodic orbits in the circular restricted three-body problem is provided. The formulation given in this work is based in calculations known from classical mechanics, but with the addition of the necessary terms to give a fairly good approximation that we compare with simulations, resulting in a simple set of analytical expressions that solve periodic orbits on discs of binary systems without the need of solving the motion equations by numerical integrations.
We explore the cosmological consequences of Modified Gravity (MOG), and find that it provides, using a minimal number of parameters, good fits to data, including CMB temperature anisotropy, galaxy mass power spectrum, and supernova luminosity-distance observations. The MOG cosmology is flat and predicts an age of the universe of ~34 billion years.
In the paper we investigate observational constraints on coupling to gravity constant parameter $\xi$ using distant supernovae SNIa data, Baryon Oscillation Peak (BOP), the CMBR shift parameter, and $H(z)$ data set. We estimate the value of this parameter to constrain the extended quintessence models with non-minimally coupled to gravity phantom scalar field. The combined analysis of observational data favors a value of $\xi$ which lies in close neighborhood of the conformal coupling. The second conclusion is that the oscillatory scenario is favored. In the case of parametrization $w(a)$ we can exclude the monotonic scenario on the $1\sigma$ confidence level.
Combined X-ray synchrotron and inverse-Compton gamma-ray observations of pulsar wind nebulae (PWN) may help to elucidate the processes of acceleration and energy loss in these systems. In particular, such observations provide constraints on the particle injection history and the magnetic field strength in these objects. The newly discovered TeV gamma-ray source HESS J1718-385 has been proposed as the likely PWN of the high spin-down luminosity pulsar PSR J1718-3825. The absence of previous sensitive X-ray measurements of this pulsar, and the unusual energy spectrum of the TeV source, motivated observations of this region with XMM-Newton. The data obtained reveal a hard spectrum X-ray source at the position of PSR 1718-3825 and evidence for diffuse emission in the vicinity of the pulsar. We derive limits on the keV emission from the centroid of HESS J1718-385 and discuss the implications of these findings for the PWN nature of this object.
We compute opacities for the electronic molecular band systems A 6Sigma+ -- X 6Sigma+ of CrH and CrD, and A 2Pi -- X 2Sigma+ of MgH and MgD. The opacities are computed by making use of existing spectroscopic constants for MgH and CrH. These constants are adjusted for the different reduced masses of MgD and CrD. Frank-Condon factors are used to provide intensities for the individual vibronic bands. These results are used in the computation of synthetic spectra between Tef = 1800 and 1200 K with an emphasis on the realisation of ``deuterium test'', first proposed by Bejar et al. (1999) to distinguish brown dwarfs from planetary mass objects. We discuss the possible use of CrD and MgD electronic bands for the "deuterium test". We find CrD to be the more promising of the two deuterides, potentially, the most useful bands of CrH/CrD are the Delta v = +1 and Delta v = -1 at 0.795 and 0.968 micron.
We discuss the cosmological evolution of a braneworld in five dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be space-like as well as time-like. The resulting equations of motion have the form of a cubic equation in the (H^2,(\rho+\sigma)^2) plane, where \sigma is the brane tension and \rho is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated expansion can be phantom-like so that w < -1. At late times, this branch approaches de Sitter space (w = -1) and avoids the big-rip singularities usually present in phantom models. For a time-like extra dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.
We study the cosmological constraints on unparticle interactions and the temperature of the Universe for an unparticle sector with dimensional transmutation scale Lambda_{U} > 1 TeV. By considering thermal background quark decay to unparticles via a scalar operator of dimension d_{U}, we show that the condition that the Universe is not dominated by unparticles at nucleosynthesis imposes a lower bound on the scale of the interaction of the unparticle sector, with M_{U} > 20-2600 TeV for 1.1 < d_{U} < 2.0 and 2 < d_{BZ} < 4. The existence of an unparticle sector also imposes an upper bound on the temperature of the Universe during radiation-domination, which can be as low as a TeV for M_{U} close to its lower bound.
Corrections to solar system gravity are derived for f(G) gravity theories, in which a function of the Gauss-Bonnet curvature term is added to the gravitational action. Their effects on Newton's law, as felt by the planets, and on the frequency shift of signals from the Cassini spacecraft, are both determined. Despite the fact that the Gauss-Bonnet term is quadratic in curvature, the resulting constraints are substantial. It is shown that they practically rule out f(G) as an explanation for the late-time acceleration of the universe, except when it reduces to something very close to a cosmological constant.
We present a new, simple method for calculating the scalar, electromagnetic, and gravitational self forces acting on particles in orbit around a Kerr black hole. The standard ``mode-sum regularization'' approach for self-force calculations relies on a decomposition of the full (retarded) perturbation field into multipole modes, followed by the application of a certain mode-by-mode regularization procedure. In recent years several groups have developed numerical codes for calculating black hole perturbations directly in 2+1 dimensions (i.e., decomposing the azimuthal dependence into $m$-modes, but refraining from a full multipole decomposition). Here we formulate a practical scheme for constructing the self force directly from the 2+1-dimensional $m$-modes. While the standard mode-sum method is serving well in calculations of the self force in Schwarzschild geometry, the new scheme should allow a more efficient treatment of the Kerr problem.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0710, /abs, contact, help (Access key information)
This paper describes the MegaPipe image processing pipeline at the Canadian Astronomical Data Centre. The pipeline combines multiple images from the MegaCam mosaic camera on CFHT and combines them into a single output image. MegaPipe takes as input detrended MegaCam images and does a careful astrometric and photometric calibration on them. The calibrated images are then resampled and combined into image stacks. The astrometric calibration of the output images is accurate to within 0.15 arcseconds relative to external reference frames and 0.04 arcseconds internally. The photometric calibration is good to within 0.03 magnitudes. The stacked images and catalogues derived from these images are available through the CADC website:
One well-known way to constrain the hydrogen neutral fraction, x_H, of the high-redshift intergalactic medium (IGM) is through the shape of the red damping wing of the Lya absorption line. We examine this method's effectiveness in light of recent models showing that the IGM neutral fraction is highly inhomogeneous on large scales during reionization. Using both analytic models and "semi-numeric" simulations, we show that the "picket-fence" absorption typical in reionization models introduces both scatter and a systematic bias to the measurement of x_H. In particular, we show that simple fits to the damping wing tend to overestimate the true neutral fraction in a partially ionized universe, with a fractional error of ~ 30% near the middle of reionization. This bias is generic to any inhomogeneous model. However, the bias is reduced and can even underestimate x_H if the observational sample only probes a subset of the entire halo population, such as quasars with large HII regions. We also find that the damping wing absorption profile is generally steeper than one would naively expect in a homogeneously ionized universe. The profile steepens and the sightline-to-sightline scatter increases as reionization progresses. Of course, the bias and scatter also depend on x_H and so can, at least in principle, be used to constrain it. Damping wing constraints must therefore be interpreted by comparison to theoretical models of inhomogeneous reionization.
We present a sample of 46 galaxy nuclei from 12 nearby (z<4500 km/s) Hickson Compact Groups (HCGs) with a complete suite of 1-24 micron 2MASS+Spitzer nuclear photometry. For all objects in the sample, blue emission from stellar photospheres dominates in the near-IR through the 3.6 micron IRAC band. Twenty-five of 46 (54%) galaxy nuclei show red, mid-IR continua characteristic of hot dust powered by ongoing star formation and/or accretion onto a central black hole. We introduce alpha_{IRAC}, the spectral index of a power-law fit to the 4.5-8.0 micron IRAC data, and demonstrate that it cleanly separates the mid-IR active and non-active HCG nuclei. This parameter is more powerful for identifying low to moderate-luminosity mid-IR activity than other measures which include data at rest-frame lambda<3.6 micron that may be dominated by stellar photospheric emission. While the HCG galaxies clearly have a bimodal distribution in this parameter space, a comparison sample from the Spitzer Nearby Galaxy Survey (SINGS) matched in J-band total galaxy luminosity is continuously distributed. A second diagnostic, the fraction of 24 micron emission in excess of that expected from quiescent galaxies, f_{24D}, reveals an additional 3 nuclei to be active at 24 micron. Comparing these two mid-IR diagnostics of nuclear activity to optical spectroscopic identifications from the literature reveals some discrepancies, and we discuss the challenges of distinguishing the source of ionizing radiation in these and other lower luminosity systems. We find a significant correlation between the fraction of mid-IR active galaxies and the total HI mass in a group, and investigate possible interpretations of these results in light of galaxy evolution in the highly interactive system of a compact group environment.
The physics behind the acceleration of the cosmic expansion can be elucidated through comparison of the predictions of dark energy equations of state to observational data. In seeking to optimize this, we investigate the advantages and disadvantages of using principal component analysis, uncorrelated bandpowers, and the equation of state within redshift bins. We demonstrate that no one technique is a panacea, with tension between clear physical interpretation from localization and from decorrelated errors, as well as model dependence and form dependence. Specific lessons include the critical role of proper treatment of the high redshift expansion history and the lack of a unique, well defined signal-to-noise or figure of merit.
Spider is a long-duration, balloon-borne polarimeter designed to measure large scale Cosmic Microwave Background (CMB) polarization with very high sensitivity and control of systematics. The instrument will map over half the sky with degree angular resolution in I, Q and U Stokes parameters, in four frequency bands from 96 to 275 GHz. Spider's ultimate goal is to detect the primordial gravity wave signal imprinted on the CMB B-mode polarization. One of the challenges in achieving this goal is the minimization of the contamination of B-modes by systematic effects. This paper explores a number of instrument systematics and observing strategies in order to optimize B-mode sensitivity. This is done by injecting realistic-amplitude, time-varying systematics in a set of simulated time-streams. Tests of the impact of detector noise characteristics, pointing jitter, payload pendulations, polarization angle offsets, beam systematics and receiver gain drifts are shown. Spider's default observing strategy is to spin continuously in azimuth, with polarization modulation achieved by either a rapidly spinning half-wave plate or a rapidly spinning gondola and a slowly stepped half-wave plate. Although the latter is more susceptible to systematics, results shown here indicate that either mode of operation can be used by Spider.
Various mechanisms have been proposed to explain the inflated size of HD 209458b after it became clear that it has no companions capable of producing a stellar reflex velocity greater than around 5 m/s. Had there been such a companion, the hypothesis that it forces the eccentricity of the inflated planet thereby tidally heating it may have been readily accepted. Here we summarize a paper by the author which shows that companion planets with masses as low as a fraction of an Earth mass are capable of sustaining a non-zero eccentricity in the observed planet for at least the age of the system. While such companions produce stellar reflex velocities which are fractions of a meter per second and hence are below the stellar jitter limit, they are consistent with recent theoretical work which suggests that the planet migration process often produces low-mass companions to short-period giants.
The evolution of the galaxy stellar mass--star formation rate relationship (M*-SFR) provides key constraints on the stellar mass assembly histories of galaxies. For star-forming galaxies, M*-SFR is observed to be fairly tight with a slope close to unity from z~0-2. Simulations of galaxy formation reproduce these trends owing to the generic dominance of smooth and steady cold accretion in these systems. In contrast, the amplitude of the M*-SFR relation evolves markedly differently than in models. Stated in terms of a star formation activity parameter alpha=(M*/SFR)/(t_H-1 Gyr), models predict a constant alpha~1 out to redshifts z=4+, while the observed M*-SFR relation indicates that alpha increases by X3-4 from z~2 until today. The low alpha at high-z not only conflicts with models, but is also difficult to reconcile with other observations of high-z galaxies. Systematic biases could significantly affect measurements of M* and SFR, but detailed considerations suggest that none are obvious candidates to reconcile the discrepancy. A speculative solution is considered in which the stellar initial mass function (IMF) evolves towards more high-mass star formation at earlier epochs. Following Larson, a model is investigated in which the characteristic mass Mhat where the IMF turns over increases with redshift. The observed and predicted M*-SFR evolution may be brought into agreement if Mhat=0.5(1+z)^2 Mo out to z~2. Such evolution broadly matches observations of cosmic stellar mass growth by Perez-Gonzalez et al, and the resulting z=0 cumulative IMF is similar to the paunchy IMF favored by Fardal et al to reconcile the observed cosmic star formation history with present-day fossil light measures. [abridged]
We present results from a 150 ksec Suzaku observation of the Seyfert 1.5 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with the presence of a low-ionization absorber which has a column density near 5 * 10^{22} cm^{-2} and covers most of the X-ray continuum source (covering fraction 96-100%). A high-ionization absorbing component, which yields a narrow absorption feature consistent with Fe K XXVI, is confirmed. A relativistically broadened Fe K alpha line is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad Fe line. A narrow Fe K alpha emission line has a velocity width consistent with the Broad Line Region. The low-ionization absorber may be responsible for producing the narrow Fe K alpha line, though a contribution from additional material out of the line of sight is possible. We include in our model soft band emission lines from He- and H-like ions of N, O, Ne and Mg, consistent with photo-ionization, though a small contribution from collisionally-ionized emission is possible.
We assess the impact of starburst and AGN feedback-driven winds on the CO emission from galaxy mergers, and, in particular, search for signatures of these winds in the simulated CO morphologies and emission line profiles. We do so by combining a 3D non-LTE molecular line radiative transfer code with smoothed particle hydrodynamics (SPH) simulations of galaxy mergers that include prescriptions for star formation, black hole growth, a multiphase interstellar medium (ISM), and the winds associated with star formation and black hole growth. Our main results are: (1) Galactic winds can drive outflows of masses ~10^8-10^9 Msun which may be imaged via CO emission line mapping. (2) AGN feedback-driven winds are able to drive imageable CO outflows for longer periods of time than starburst-driven winds owing to the greater amount of energy imparted to the ISM by AGN feedback compared to star formation. (3) Galactic winds can control the spatial extent of the CO emission in post-merger galaxies, and may serve as a physical motivation for the sub-kiloparsec scale CO emission radii observed in local advanced mergers. (4) Secondary emission peaks at velocities greater than the circular velocity are seen in the CO emission lines in all models. In models with winds, these high velocity peaks are seen to preferentially correspond to outflowing gas entrained in winds, which is not the case in the model without winds. The high velocity peaks seen in models without winds are typically confined to velocity offsets (from the systemic) < 1.7 times the circular velocity, whereas the models with AGN feedback-driven winds can drive high velocity peaks to ~2.5 times the circular velocity.
In the past decade, surveys of the stellar component of the Galaxy such as SDSS and 2MASS have revealed a number of stellar streams. Current and future observations are rapidly increasing the precision and quantity of data available, raising the possibility of using tidal streams to constrain the distribution of dark matter in the halo. Simulations of hierarchical structure formation in LCDM cosmologies predict that the dark matter halo of a galaxy like the Milky Way contains a smooth component as well as hundreds of subhalos with masses of ~10^8 solar masses and greater, and it has been suggested that the existence of coherent tidal streams is incompatible with the expected abundance of substructure. We investigate the properties of tidal streams arising from the disruption of satellites in a variety of dark matter halo models. In general, we find that the halo shape and the specific orbital path more strongly determine the degree of disruption of the satellite than does the presence or absence of substructure, and that in some scenarios the influence of substructure on the resulting tidal debris is negligible. The presence of substructure typically leads to an increase in the degree of clumpiness of the tidal debris in a sky projection, and differences in the location of the debris compared to the results of the smooth halo model, the latter of which may have important implications for the interpretation and modeling of observed tidal streams. In addition, we identify a unique signature of the presence of substructure in the halo, which should be detectable by current and upcoming surveys. In contrast with the results of previous work, we find that a detection of a coherent tidal stream would not be inconsistent with predicted levels of substructure.
We report 349 radial velocities for 45 metal-poor field red giant and red horizontal branch stars. We have have identified one new spectroscopic binary, HD 4306, and one possible such system, HD 184711. We also report 57 radial velocities for 11 of the 91 stars reported on previously by Carney et al. (2003). As was found in the previous study, radial velocity "jitter" is present in many of the most luminous stars. Excluding stars showing spectroscopic binary orbital motion, all 7 of the red giants with M(V) <= -2.0 display jitter, as well as 3 of the 14 stars with -2.0 <= M(V) <= -1.4. We have also measured line broadening in all of the new spectra, using synthetic spectra as templates. The most luminous red giants show significant line broadening, as do many of the red horizontal branch stars, and we discuss briefly possible causes.
We present moderately deep VI photometry of Bootes II, obtained using the SOAR Telescope. While identified initially as an old, metal-poor, dwarf galaxy, Bootes II appears to be a moderately metal-rich globular cluster with [Fe/H] = -0.7. The slope of the red giant branch suggests that [alpha/Fe] = 0.0, and the turn-off indicates an age of 7 to 9 Gyrs, considerably younger than most globular clusters, but similar to Palomar 12. Like that object, Bootes II lies in the direction of the Sagittarius dwarf's tidal stream, and, with a distance of almost 50 kpc, is probably associated with the more distant portion of the stream, as defined by Belokurov et al. (2006).
Our understanding of Pulsar Wind Nebulae (PWNe), has greatly improved in the last years thanks to unprecedented high resolution images taken from the HUBBLE, CHANDRA and XMM satellites. The discovery of complex but similar inner features, with the presence of unexpected axisymmetric rings and jets, has prompted a new investigation into the dynamics of the interaction of the pulsar winds with the surrounding SNR, which, thanks to the improvement in the computational resources, has let to a better understanding of the properties of these objects. On the other hand the discovery of non-thermal emission from bow shock PWNe, and of systems with a complex interaction between pulsar and SNR, has led to the development of more reliable evolutionary models. I will review the standard theory of PWNe, their evolution, and the current status in the modeling of their emission properties, in particular I will show that our evolutionary models are able to describe the observations, and that the X-ray emission can now be reproduced with sufficient accuracy, to the point that we can use these nebulae to investigate fundamental issues as the properties of relativistic outflows and particle acceleration.
We present the XMM-Newton Medium sensitivity Survey (XMS), including a total of 318 X-ray sources found among the serendipitous content of 25 XMM-Newton target fields. The XMS comprises four largely overlapping source samples selected at soft (0.5-2 keV), intermediate (0.5-4.5 keV), hard (2-10 keV) and ultra-hard (4.5-7.5 keV) bands, the first three of them being flux-limited. We report on the optical identification of the XMS samples, complete to 85-95%. At the intermediate flux levels sampled by the XMS we find that the X-ray sky is largely dominated by Active Galactic Nuclei. The fraction of stars in soft X-ray selected samples is below 10%, and only a few per cent for hard selected samples. We find that the fraction of optically obscured objects in the AGN population stays constant at around 15-20% for soft and intermediate band selected X-ray sources, over 2 decades of flux. The fraction of obscured objects amongst the AGN population is larger (~35-45%) in the hard or ultra-hard selected samples, and constant across a similarly wide flux range. The distribution in X-ray-to-optical flux ratio is a strong function of the selection band, with a larger fraction of sources with high values in hard selected samples. Sources with X-ray-to-optical flux ratios in excess of 10 are dominated by obscured AGN, but with a significant contribution from unobscured AGN.
We report results from a search for massive and evolved galaxies at z>5 in the GOODS southern field. Combining HST ACS, VLT ISAAC and Spitzer IRAC photometric data, we develop a color selection technique to identify candidates for being evolved galaxies at high redshifts. The color selection is primarily based on locating the Balmer-break using the K- and 3.6micron bands. Stellar population synthesis models are fitted to the SEDs of these galaxies to identify the final sample. We find 11 candidates with photometric redshifts in the range 4.9 < z < 6.5, dominated by an old stellar population, with ages 0.2-1.0 Gyr, and stellar masses in the range (0.5 - 5) 10^{11} Msun. The majority of the stars in these galaxies were formed at z > 9. One candidate has a spectroscopically confirmed redshift, in good agreement with our photometric redshift. The galaxies are very compact, with half-light radii in the observed K-band smaller than ~2 kpc. Seven of the 11 candidates are also detected at 24micron with the MIPS instrument on Spitzer. The 24micron emission could be interpreted as PAH emission from a dusty starburst at z~2-3, however, it is also consistent with the presence of an obscured AGN at z>5. We estimate the completeness of the Balmer break galaxy sample to be ~40%. The comoving number density of galaxies with a stellar mass >10^{11} Msun, at an average redshift z=5.2, is 3.9 10^{-5} Mpc^{-3} (no-MIPS sample: 1.4 10^{-5} Mpc^{-3}). The corresponding stellar mass density is 8 10^{6} Msun/Mpc^3 (no-MIPS sample: 6.2 10^6 Msun/Mpc^3).
The ``galactic shocks'' \citep{fujimoto68,roberts69} is investigated using a full three-dimensional hydrodynamic simulations, taking into account self-gravity of the ISM, radiative cooling, and star formation followed by energy feedback from supernovae. This is an essential progress from the previous numerical models, in which 2-D isothermal, non-self-gravitating gas is assumed. We find that the classic galactic shocks appears is unstable and transient, and it shifts to a globally quasi-steady, inhomogeneous pattern due to non-linear development of instabilities in the disk. The spiral patterns consists of many GMC-like dense condensations, but those local structures are not steady, and they evolves into irregular spurs in the inter-arm regions. Energy feedback from supernovae do not destroy the quasi-steady spiral arms, but it mainly contributes to vertical motion and structures of the ISM.
We are investigating mass fractions on the crust of a neutron star which would remain after one year of cooling. We use cooling curves corresponding with various densities, or depths, of the neutron star just after its formation. We assume the modified Urca process dominates the energy budget of the outer layers of the star in order to calculate the temperature of the neutron star as a function of time. Using a nuclear reaction network up to technetium, we calculate how the distribution of nuclei quenches at various depths of the neutron star crust. The initial results indicate that $^{28}$Si is the lightest isotope to be optically thick on the surface after one year of cooling.
A description is given of the algorithms implemented in the AstroBEAR adaptive mesh refinement code for ideal magnetohydrodynamics. The code provides several high resolution, shock capturing schemes which are constructed to maintain conserved quantities of the flow in a finite volume sense. Divergence free magnetic field topologies are maintained to machine precision by collating the components of the magnetic field on a cell-interface staggered grid and utilizing the constrained transport approach for integrating the induction equations. The maintenance of such topologies on adaptive grids is achieved using prolongation and restriction operators which preserve the divergence and curl of the magnetic field across co-located grids of different resolution. The robustness and correctness of the code is demonstrated by comparing the numerical solution of various tests with analytical solutions or previously published numerical solutions obtained by other codes.
We present the results of NICMOS imaging of two massive galaxies photometrically selected to have old stellar populations at z ~ 2.5. Both galaxies are dominated by apparent disks of old stars, although one of them also has a small bulge comprising about 1/3 of the light at rest-frame 4800 A. The presence of massive disks of old stars at high redshift means that at least some massive galaxies in the early universe have formed directly from the dissipative collapse of a large mass of gas. The stars formed in disks like these may have made significant contributions to the stellar populations of massive spheroids at the present epoch.
We examine the ability of a future X-ray observatory to constrain dark energy via measurements of the cluster X-ray gas mass fraction, fgas. We find that fgas measurements for a sample of ~500 hot, X-ray bright, dynamically relaxed clusters, to a precision of ~5 per cent, can be used to constrain dark energy with a Dark Energy Task Force (DETF) figure of merit of 20-50. Such constraints are comparable to those predicted by the DETF for other leading, planned dark energy experiments. A future fgas experiment will be preceded by a large X-ray or SZ survey that will find hot, X-ray luminous clusters out to high redshifts. Short `snapshot' observations with the new X-ray observatory should then be able to identify a sample of ~500 suitably relaxed systems. The redshift, temperature and X-ray luminosity range of interest has already been partially probed by existing X-ray cluster surveys which allow reasonable estimates of the fraction of clusters that will be suitably relaxed for fgas work. Our analysis uses a Markov Chain Monte Carlo method which fully captures the relevant degeneracies between parameters and facilities the incorporation of priors and systematic uncertainties in the analysis. We explore the effects of such uncertainties, for scenarios ranging from optimistic to pessimistic. We conclude that the fgas experiment offers a competitive and complementary approach to the best other planned dark energy experiments. In particular, the fgas experiment will provide tight constraints on the mean matter and dark energy densities, with a peak sensitivity for dark energy work at redshifts midway between those of supernovae and baryon acoustic oscillation/weak lensing/cluster number counts experiments. In combination, these experiments should enable a precise measurement of the evolution of dark energy. (Abridged)
We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy ($\gsim 100$ keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy ($\lsim 100$ keV) HXRs. We interpret these observations in terms of an electron transport model called {\TPP}. We numerically solved the spatially-homogeneous {\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.
We study the propagation of relativistic jets originating from AGNs within the Interstellar/Intergalactic Medium of their host galaxies, and use it to build a model for the suppression of stellar formation within the expanding cocoon.
Massive black holes (MBHs) with a mass below ~ 1e7 Msun are likely to reside at the centre of dense stellar nuclei shaped by 2-body relaxation, close interactions with the MBH and direct collisions. In this contribution, we stress the role of mass segregation of stellar-mass black holes into the innermost tenths of a parsec and point to the importance of hydrodynamical collisions between stars. At the Galactic centre, collisions must affect giant stars and some of the S-stars.
We study the color structure of disk galaxies in the Groth strip at redshifts 0.1<z<1.2. Our aim is to test formation models in which bulges form before/after the disk. We find smooth color distributions with gentle outward blueing across the galaxy image: bulges are not distinctly redder than their disks; and bulge colors strongly correlate with global colors. The results suggest a roughly coeval evolution of bulges and disks. About 50% of the nuclei of galaxies with central light excesses above the outer exponential profile hold passively evolving red populations. The remainder 50% are galaxies with central blue colors similar to their disks. They may be bulges in formation, or the central parts of disks with non-exponential surface brightness profiles.
We aim at getting high spatial resolution information on the dusty core of bipolar planetary nebulae to directly constrain the shaping process. Methods: We present observations of the dusty core of the extreme bipolar planetary nebula Menzel 3 (Mz 3, Hen 2-154, the Ant) taken with the mid-infrared interferometer MIDI/VLTI and the adaptive optics NACO/VLT. The core of Mz 3 is clearly resolved with MIDI in the interferometric mode, whereas it is unresolved from the Ks to the N bands with single dish 8.2 m observations on a scale ranging from 60 to 250 mas. A striking dependence of the dust core size with the PA angle of the baselines is observed, that is highly suggestive of an edge-on disk whose major axis is perpendicular to the axis of the bipolar lobes. The MIDI spectrum and the visibilities of Mz 3 exhibit a clear signature of amorphous silicate, in contrast to the signatures of crystalline silicates detected in binary post-AGB systems, suggesting that the disk might be relatively young. We used radiative-transfer Monte Carlo simulations of a passive disk to constrain its geometrical and physical parameters. Its inclination (74 degrees $\pm$ 3 degrees) and position angle (5 degrees $\pm$ 5 degrees) are in accordance with the values derived from the study of the lobes. The inner radius is 9$\pm$ 1 AU and the disk is relatively flat. The dust mass stored in the disk, estimated as 1 x 10-5Msun, represents only a small fraction of the dust mass found in the lobes and might be a kind of relic of an essentially polar ejection process.
Using a combination of deep MID-IR observations obtained by IRAC, MIPS and IRS on board Spitzer we investigate the MID-IR properties of Lyman Break Galaxies (LBGs) at z~3, establish a better understanding of their nature and attempt a complete characterisation of the population. With deep mid-infrared and optical observations of ~1000 LBGs covered by IRAC/MIPS and from the ground respectively, we extend the spectral energy distributions (SEDs) of the LBGs to mid-infrared. Spitzer data reveal for the first time that the mid-infrared properties of the population are inhomogeneous ranging from those with marginal IRAC detections to those with bright rest-frame near-infrared colors and those detected at 24mu MIPS band revealing the newly discovered population of the Infrared Luminous Lyman Break Galaxies (ILLBGs). To investigate this diversity, we examine the photometric properties of the population and we use stellar population synthesis models to probe the stellar content of these galaxies. We find that a fraction of LBGs have very red colors and large estimated stellar masses M* > 5x10^10Mo. We discuss the link between these LBGs and submm-luminous galaxies and we report the detection of rest frame 6.2 and 7.7mu emission features arising from Polycyclic Aromatic Hydrocarbons (PAH) in the Spitzer/IRS spectrum of an infrared-luminous Lyman break galaxy at z=3.01.
We study the phase-space behaviour of nearby trajectories in integrable potentials. We show that the separation of nearby orbits initially diverges very fast, mimicking a nearly exponential behaviour, while at late times it grows linearly. This initial exponential phase, known as Miller's instability, is commonly found in N-body simulations, and has been attributed to short-term (microscopic) N-body chaos. However we show here analytically that the initial divergence is simply due to the shape of an orbit in phase-space. This result confirms previous suspicions that this transient phenomenon is not related to an instability in the sense of non-integrable behaviour in the dynamics of N-body systems.
After recent systematic optical, IR, and HI surveys, the total number of
known galaxies within 10 Mpc has increased from 179 to 550. About half this
Local Volume (LV) sample is now been imaged with HST, yielding the galaxy
distances with an accuracy of about 8%. For the majority of the LV galaxies we
currently have H-alpha fluxes that allow us to reconstruct the star formation
history of our neighbourhood.
For the late-type LV galaxies their HI masses and angular momentum follow the
linear relation in the range of 4 orders, which is expected for rotating
gaseous disks being near the gravitational instability threshold.
The data obtained on the LV galaxies imply important cosmological parameters,
in particular, the mean local matter density and HI mass density, as well as
SFR density.
Surprisingly, the local Hubble flow around the LV groups is very quiet, with
1D rms deviations of 25 km/s,which is a signature of the Universe
vacuum-dominated on small scales. The cold infall pattern around nearby groups
provides us with a new method to determine the total mass of the groups
independent from virial mass estimates.
The ANTARES Collaboration is deploying a large neutrino detector at a depth of 2475 m in the Mediterranean Sea, 40 km off shore from La Seyne-sur-Mer in South France. The construction of this 12-line detector with 75 phototubes per line will be completed early 2008. Data taking has begun since April 2005 with an instrumentation line also equipped with optical modules. The first 5 detector lines are operational since January 2007. The telescope is aimed to observe high energy cosmic neutrinos through the detection of the Cerenkov light produced by up-going induced muons. Background sources are due to atmospheric neutrinos as well as misreconstructed atmospheric muons. Additional backgrounds inherent to the sea water environment come from 40K decay and marine organisms' luminescence. While the contribution of the former is expected to be constant at a level of about 45 kHz, the bioluminescence has shown large time variations, with periods of very high activity, up to several hundred kHz. Description of these background sources will be reported, and effects on detector performance will be described. Methods recently developed to improve the detection efficiency in high background periods will be described, together with some of the results obtained.
We present the discovery of a silicate disc at the centre of the planetary nebula Mz3 (the Ant). The nebula was observed with MIDI on the Very Large Telescope Interferometer (VLTI). The visibilities obtained at different orientations clearly indicate the presence of a dusty, nearly edge-on disc in the heart of the nebula. An amorphous silicate absorption feature is clearly seen in our mid-IR spectrum and visibility curves. We used radiative transfer Monte Carlo simulations to constrain the geometrical and physical parameters of the disc. We derive an inner radius of 9 AU (~6mas assuming D=1.4kpc). This disc is perpendicular to, but a factor of 10^{3} smaller than the optical bipolar outflow.
We present a model to estimate the synchrotron radio emission generated in microquasar (MQ) jets due to secondary pairs created via decay of charged pions produced in proton-proton collisions between stellar wind ions and jet relativistic protons. Signatures of electrons/positrons are obtained from consistent particle energy distributions that take into account energy losses due to synchrotron and inverse Compton (IC) processes, as well as adiabatic expansion. The space parameter for the model is explored and the corresponding spectral energy distributions (SEDs) are presented. We conclude that secondary leptonic emission represents a significant though hardly dominant contribution to the total radio emission in MQs, with observational consequences that can be used to test some still unknown processes occurring in these objects as well as the nature of the matter outflowing in their jets.
Estimates of velocities from time series of photospheric and/or chromospheric vector magnetograms can be used to determine fluxes of magnetic energy (the Poynting flux) and helicity across the magnetogram layer, and to provide time-dependent boundary conditions for data-driven simulations of the solar atmosphere above this layer. Velocity components perpendicular to the magnetic field are necessary both to compute these transport rates and to derive model boundary conditions. Here, we discuss some possible approaches to estimating perpendicular flows from magnetograms. Since Doppler shifts contain contributions from flows parallel to the magnetic field, perpendicular velocities are not generally recoverable from Doppler shifts alone. The induction equation's vertical component relates evolution in $B_z$ to the perpendicular flow field, but has a finite null space, meaning some ``null'' flows, e.g., motions along contours of normal field, do not affect $B_z$. Consequently, additional information is required to accurately specify the perpendicular flow field. Tracking methods, which analyze $\partial_t B_z$ in a neighborhood, have a long heritage, but other approaches have recently been developed. In a recent paper, several such techniques were tested using synthetic magnetograms from MHD simulations. Here, we use the same test data to characterize: 1) the ability of the induction equation's normal component, by itself, to estimate flows; and 2) a tracking method's ability to recover flow components that are perpendicular to $\mathbf{B}$ and parallel to contours of $B_z$. This work has been supported by NASA Heliophysics Theory grant NNG05G144G.
We present new H-band echelle spectra, obtained with the NIRSPEC spectrograph at Keck II, for the massive star cluster "B" in the nearby dwarf irregular galaxy NGC 1569. From spectral synthesis and equivalent width measurements we obtain abundances and abundance patterns. We derive an Fe abundance of [Fe/H]=-0.63+/-0.08, a super-solar [alpha/Fe] abundance ratio of +0.31+/-0.09, and an O abundance of [O/H]=-0.29+/-0.07. We also measure a low 12C/13C = 5+/-1 isotopic ratio. Using archival imaging from the Advanced Camera for Surveys on board HST, we construct a colour-magnitude diagram (CMD) for the cluster in which we identify about 60 red supergiant (RSG) stars, consistent with the strong RSG features seen in the H-band spectrum. The mean effective temperature of these RSGs, derived from their observed colours and weighted by their estimated H-band luminosities, is 3790 K, in excellent agreement with our spectroscopic estimate of Teff = 3800+/-200 K. From the CMD we derive an age of 15-25 Myr, slightly older than previous estimates based on integrated broad-band colours. We derive a radial velocity of -78+/-3 km/s and a velocity dispersion of 9.6+/-0.3 km/s. In combination with an estimate of the half-light radius of 0.20"+/-0.05" from the HST data, this leads to a dynamical mass of (4.4+/-1.1)E5 Msun. The dynamical mass agrees very well with the mass predicted by simple stellar population models for a cluster of this age and luminosity, assuming a normal stellar IMF. The cluster core radius appears smaller at longer wavelengths, as has previously been found in other extragalactic young star clusters.
Deep F555W and F814W Hubble Space Telescope ACS images are the basis for a study of the present day mass function (PDMF) of NGC346, the largest active star forming region in the Small Magellanic Cloud (SMC). We find a PDMF slope of Gamma=-1.43+/-0.18 in the mass range 0.8-60 Mo, in excellent agreement with the Salpeter Initial Mass Function (IMF) in the solar neighborhood. Caveats on the conversion of the PDMF to the IMF are discussed. The PDMF slope changes, as a function of the radial distance from the center of the NGC 346 star cluster, indicating a segregation of the most massive stars. This segregation is likely primordial considering the young age (~3 Myr) of NGC346, and its clumpy structure which suggests that the cluster has likely not had sufficient time to relax. Comparing our results for NGC346 with those derived for other star clusters in the SMC and the Milky Way (MW), we conclude that, while the star formation process might depend on the local cloud conditions, the IMF does not seem to be affected by general environmental effects such as galaxy type, metallicity, and dust content.
We review the most important findings on AGN physics and cosmological evolution as obtained by extragalactic X-ray surveys and associated multiwavelength observations. We briefly discuss the perspectives for future enterprises and in particular the scientific case for an extremely deep (2-3 Ms) XMM survey.
Several studies have correlated observations of impulsive solar activity -- flares and coronal mass ejections (CMEs) -- with the amount of magnetic flux near strong-field polarity inversion lines (PILs) in active regions' photospheric magnetic fields, as measured in line-of-sight (LOS) magnetograms. Practically, this empirical correlation holds promise as a space weather forecasting tool. Scientifically, however, the mechanisms that generate strong gradients in photospheric magnetic fields remain unknown. Hypotheses include: the (1) emergence of highly twisted or kinked flux ropes, which possess strong, opposite-polarity fields in close proximity; (2) emergence of new flux in close proximity to old flux; and (3) flux cancellation driven by photospheric flows acting fields that have already emerged. If such concentrations of flux near strong gradients are formed by emergence, then increases in unsigned flux near strong gradients should be correlated with increases in total unsigned magnetic flux -- a signature of emergence. Here, we analyze time series of MDI line-of-sight (LOS) magnetograms from several dozen active regions, and conclude that increases in unsigned flux near strong gradients tend to occur during emergence, though strong gradients can arise without flux emergence. We acknowledge support from NSF-ATM 04-51438.
We present new observations of the fundamental ro-vibrational CO spectrum of V1647 Ori, the young star whose recent outburst illuminated McNeil's Nebula. Previous spectra, acquired during outburst in 2004 February and July, had shown the CO emission lines to be broad and centrally peaked-similar to the CO spectrum of a typical classical T Tauri star. In this paper, we present CO spectra acquired shortly after the luminosity of the source returned to its pre-outburst level (2006 February) and roughly one year later (2006 December and 2007 February). The spectrum taken in 2006 February revealed blue-shifted CO absorption lines superimposed on the previously observed CO emission lines. The projected velocity, column density, and temperature of this outflowing gas was 30 km/s, 3^{+2}_{-1}E18 cm^{-2$, and 700^{+300}_{-100} K, respectively. The absorption lines were not observed in the 2006 December and 2007 February data, and so their strengths must have decreased in the interim by a factor of 9 or more. We discuss three mechanisms that could give rise to this unusual outflow.
Aims. We aim to provide observational constraints on diffusion models that
predict peculiar chemical abundances in the atmospheres of Am stars. We also
intend to check if chemical peculiarities and slow rotation can be explained by
the presence of a weak magnetic field.
Methods. We have obtained high resolution, high signal-to-noise ratio spectra
of eight previously-classified Am stars, two normal A-type stars and one Blue
Straggler, considered to be members of the Praesepe cluster. For all of these
stars we have determined fundamental parameters and photospheric abundances for
a large number of chemical elements, with a higher precision than was ever
obtained before for this cluster. For seven of these stars we also obtained
spectra in circular polarization and applied the LSD technique to constrain the
longitudinal magnetic field.
Results. No magnetic field was detected in any of the analysed stars. HD
73666, a Blue Straggler previously considered as an Ap (Si) star, turns out to
have the abundances of a normal A-type star. Am classification is not confirmed
for HD 72942. For HD 73709 we have also calculated synthetic Delta-a photometry
that is in good agreement with the observations. There is a generally good
agreement between abundance predictions of diffusion models and values that we
have obtained for the remaining Am stars. However, the observed Na and S
abundances deviate from the predictions by 0.6 dex and >0.25 dex respectively.
Li appears to be overabundant in three stars of our sample.
We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.
Outflows from active galactic nuclei (AGNs) seem to be common and are thought to be important from a variety of perspectives: as an agent of chemical enhancement of the interstellar and intergalactic media, as an agent of angular momentum removal from the accreting central engine, and as an agent limiting star formation in starbursting systems by blowing out gas and dust from the host galaxy. To understand these processes, we must determine what fraction of AGNs feature outflows and understand what forms they take. We examine recent surveys of quasar absorption lines, reviewing the best means to determine if systems are intrinsic and result from outflowing material, and the limitations of approaches taken to date. The surveys reveal that, while the fraction of specific forms of outflows depends on AGN properties, the overall fraction displaying outflows is fairly constant, approximately 60%, over many orders of magnitude in luminosity. We emphasize some issues concerning classification of outflows driven by data type rather than necessarily the physical nature of outflows, and illustrate how understanding outflows probably requires more a comprehensive approach than has usually been taken in the past.
Large-scale asymmetries in the stellar mass distribution in galaxies are believed to trace non-equilibrium situations in the luminous and/or dark matter component. These may arise in the aftermath of events like mergers, accretion, and tidal interactions. These events are key in the evolution of galaxies. In this paper we quantify the large-scale lopsidedness of light distributions in 25155 galaxies at z < 0.06 from the Sloan Digital Sky Survey Data Release 4 using the m = 1 azimuthal Fourier mode. We show that the lopsided distribution of light is primarily due to a corresponding lopsidedness in the stellar mass distribution. Observational effects, such as seeing, Poisson noise, and inclination, introduce only small errors in lopsidedness for the majority of this sample. We find that lopsidedness correlates strongly with other basic galaxy structural parameters: galaxies with low concentration, stellar mass, and stellar surface mass density tend to be lopsided, while galaxies with high concentration, mass, and density are not. We find that the strongest and most fundamental relationship between lopsidedness and the other structural parameters is with the surface mass density. We also find, in agreement with previous studies, that lopsidedness tends to increase with radius. Both these results may be understood as a consequence of several factors. The outer regions of galaxies and low-density galaxies are more susceptible to tidal perturbations, and they also have longer dynamical times (so lopsidedness will last longer). They are also more likely to be affected by any underlying asymmetries in the dark matter halo.
We use the magnetic butterfly diagram to determine the speed of the magnetic flux transport on the solar surface towards the poles. The manifestation of the flux transport is clearly visible as elongated structures extended from the sunspot belt to the polar regions. The slopes of these structures are measured and interpreted as meridional magnetic flux transport speed. Comparison with the time-distance helioseismology measurements of the mean speed of the meridional flows at the depth of 3.5--12 Mm shows a generally good agreement, but the speeds of the flux transport and the meridional flow are significantly different in areas occupied by the magnetic field. The local circulation flows around active regions, especially the strong equatorward flows on the equatorial side of active regions affect the mean velocity profile derived by helioseismology, but do not influence the magnetic flux transport. The results show that the mean longitudinally averaged meridional flow measurements by helioseismology may not be used directly in solar dynamo models for describing the magnetic flux transport, and that it is necessary to take into account the longitudinal structure of these flows.
We report the first fully sampled maps of the distribution of interstellar CO2 ices, H2O ices and total hydrogen nuclei, as inferred from the 9.7 micron silicate feature, toward the star-forming region Cepheus A East with the IRS instrument onboard the Spitzer Space Telescope. We find that the column density distributions for these solid state features all peak at, and are distributed around, the location of HW2, the protostar believed to power one of the outflows observed in this star-forming region. A correlation between the column density distributions of CO2 and water ice with that of total hydrogen indicates that the solid state features we mapped mostly arise from the same molecular clumps along the probed sight lines. We therefore derive average CO2 ice and water ice abundances with respect to the total hydrogen column density of X(CO2)_ice~1.9x10^-5 and X(H2O)_ice~7.5x10^-5. Within errors, the abundances for both ices are relatively constant over the mapped region exhibiting both ice absorptions. The fraction of CO2 ice with respect to H2O ice is also relatively constant at a value of 22% over that mapped region. A clear triple-peaked structure is seen in the CO2 ice profiles. Fits to those profiles using current laboratory ice analogs suggest the presence of both a low-temperature polar ice mixture and a high-temperature methanol-rich ice mixture along the probed sightlines. Our results further indicate that thermal processing of these ices occurred throughout the sampled region.
We present new details of the structure and morphology of the jets and outflows in HH46/47 as seen in Spitzer infrared images from IRAC and MIPS, reprocessed using the ``HiRes'' deconvolution technique. HiRes improves the visualization of spatial morphology by enhancing resolution (to sub-arcsec levels in IRAC bands) and removing the contaminating side lobes from bright sources. In addition to sharper views of previously reported bow shocks, we have detected: (i) the sharply-delineated cavity walls of the wide-angle biconical outflow, seen in scattered light on both sides of the protostar, (ii) several very narrow jet features at distances 400 AU to 0.1 pc from the star, and, (iii) compact emissions at MIPS 24 micron coincident with the jet heads, tracing the hottest atomic/ionic gas in the bow shocks.
Analyzing archival data of the INTEGRAL observatory we discovered and localized a cosmic gamma-ray burst detected within fields of view of the IBIS/ISGRI and SPI telescopes on April 28, 2006. The burst has not been revealed by the INTEGRAL Burst Alert System (IBAS), so the information on its coordinates has not been distributed in time and search for the afterglow has not been carried out. The burst has been also detected by the KONUS/WIND and RHESSI spacecrafts. Its fluence was 2.3x10^{-6} erg/cm^2 in the 20-200 keV energy band, the maximum flux was 3.6x10^{-7} erg/cm^2/s (3.9 phot/cm^2/s). The burst had a complicated multi-peak profile and was outstanding of the typical bursts by increasing its spectral hardness with time. The emission spectrum near the flux maximum was characterized by the photon index alpha ~ -1.5 and the peak energy Ep ~ 95 keV. The burst lasted ~12 s, then we observed its afterglow at energies 15-45 keV decaying according to a power law with the index ~ -4.5. The spectral hardness decreased substantially during the afterglow.
We describe the status of a project whose main goal is to detect variability along the extreme horizontal branch of the globular cluster NGC 6752. Based on Magellan 6.5m data, preliminary light curves are presented for some candidate variables. By combining our time-series data, we also produce a deep CMD of unprecedented quality for the cluster which reveals a remarkable lack of main sequence binaries, possibly pointing to a low primordial binary fraction.
We describe the discovery of HAT-P-4b, a low-density extrasolar planet transiting BD+36 2593, a V = 11.2 mag slightly evolved metal-rich late F star. The planet's orbital period is 3.056536+/-0.000057 d with a mid-transit epoch of 2,454,245.8154 +/- 0.0003 (HJD). Based on high-precision photometric and spectroscopic data, and by using transit light curve modeling, spectrum analysis and evolutionary models, we derive the following planet parameters: Mp= 0.68 +/- 0.04 MJ, Rp= 1.27 +/- 0.05 RJ, rho = 0.41 +/- 0.06 g cm-3 and a = 0.0446 +/- 0.0012 AU. Because of its relatively large radius, together with its assumed high metallicity of that of its parent star, this planet adds to the theoretical challenges to explain inflated extrasolar planets.
A geometric flow based in the Riemann-Christoffel curvature tensor that in two dimensions has some common features with the usual Ricci flow is presented. For $n$ dimensional spaces this new flow takes into account all the components of the intrinsic curvature. For four dimensional Lorentzian manifolds it is found that the solutions of the Einstein equations associated to a "detonant" sphere of matter, as well, as a Friedman-Roberson-Walker cosmological model are examples of Riemann-Christoffel flows. Possible generalizations are mentioned.
The bulk viscosities of two color-superconducting phases, the color-flavor locked (CFL) phase and the 2SC phase, are computed and compared to the result for unpaired quark matter. In the case of the CFL phase, processes involving kaons and the superfluid mode give the largest contribution to the bulk viscosity since all fermionic modes are gapped. In the case of the 2SC phase, ungapped fermionic modes are present and the process u+d <-> u+s provides the dominant contribution. In both cases, the bulk viscosity can become larger than that of the unpaired phase for sufficiently large temperatures (T >~ 1 MeV for CFL, T >~ 0.1 MeV for 2SC). Bulk viscosity (as well as shear viscosity) is important for the damping of r-modes in compact stars and thus can potentially be used as an indirect signal for the presence or absence of color-superconducting quark matter.
Matter at high density and low temperature is expected to be a color superconductor, which is a degenerate Fermi gas of quarks with a condensate of Cooper pairs near the Fermi surface that induces color Meissner effects. At the highest densities, where the QCD coupling is weak, rigorous calculations are possible, and the ground state is a particularly symmetric state, the color-flavor locked (CFL) phase. The CFL phase is a superfluid, an electromagnetic insulator, and breaks chiral symmetry. The effective theory of the low-energy excitations in the CFL phase is known and can be used, even at more moderate densities, to describe its physical properties. At lower densities the CFL phase may be disfavored by stresses that seek to separate the Fermi surfaces of the different flavors, and comparison with the competing alternative phases, which may break translation and/or rotation invariance, is done using phenomenological models. We review the calculations that underlie these results, and then discuss transport properties of several color-superconducting phases and their consequences for signatures of color superconductivity in neutron stars.
In this paper we use the corrections to the usual Newton-Einstein secular precessions of the perihelia of the inner planets of the Solar System, phenomenologically estimated as solve-for parameters by the Russian astronomer E.V. Pitjeva by fitting almost one century of data with the EPM2004 ephemerides, in order to constrain some long-range models of modified gravity recently put forth to address the dark energy and dark matter problems. The models examined here are the four-dimensional ones obtained with the addition of inverse powers and logarithm of some curvature invariants, and the multidimensional braneworld model by Dvali, Gabadadze and Porrati (DGP). After working out the analytical expressions of the secular perihelion precessions induced by the corrections to the Newtonian potential of such models, we compare them to the estimated corrections to the rates of perihelia by taking their ratio for different pairs of planets instead of using one perihelion at a time for each planet separately, as done so far in literature. As a result, the curvature invariants-based models are ruled out, even by re-scaling by a factor 10 the errors in the planetary orbital parameters estimated by Pitjeva. Less neat is the situation for the DGP model. Only the general relativistic Lense-Thirring effect, not included, as the other exotic models considered here, by Pitjeva in the dynamical force models used in the estimation process, passes such a test. It would be important to repeat the present analysis by using corrections to the precessions of perihelia independently estimated by other teams of astronomers as well, but, at present, such rates are not yet available.
An investigation of the dynamo instability close to the threshold produced by an ABC forced flow is presented. We focus on the on-off intermittency behavior of the dynamo and the counter-effect of the Lorentz force in the non-linear stage of the dynamo. The Lorentz force drastically alters the statistics of the turbulent fluctuations of the flow and reduces their amplitude. As a result much longer burst (on-phases) are observed than what is expected based on the amplitude of the fluctuations in the kinematic regime of the dynamo. For large Reynolds numbers, the duration time of the ``On'' phase follows a power law distribution, while for smaller Reynolds numbers the Lorentz force completely kills the noise and the system transits from a chaotic state into a ``laminar'' time periodic flow. The behavior of the On-Off intermittency as the Reynolds number is increased is also examined. The connections with dynamo experiments and theoretical modeling are discussed.
We present a discussion of the effects induced by bulk viscosity either on
the very early Universe stability and on the dynamics associated to the extreme
gravitational collapse of a gas cloud. In both cases the viscosity coefficient
is related to the energy density $\rho$ via a power-law of the form
$\zeta=\zeta_0 \rho^s$ (where $\zeta_0, s=const.$) and the behavior of the
density contrast in analyzed.
In the first case, matter filling the isotropic and homogeneous background is
described by an ultra-relativistic equation of state. The analytic expression
of the density contrast shows that its growth is suppressed forward in time as
soon as $\zeta_0$ overcomes a critical value. On the other hand, in such a
regime, the asymptotic approach to the initial singularity admits an unstable
collapsing picture.
In the second case, we investigate the top-down fragmentation process of an
uniform and spherically symmetric gas cloud within the framework of a Newtonian
approach, including the negative pressure contribution associated to the bulk
viscous phenomenology. In the extreme regime toward the singularity, we show
that the density contrast associated to an adiabatic-like behavior of the gas
(which is identified by a particular range of the politropic index) acquire,
for sufficiently large viscous contributions, a vanishing behavior which
prevents the formation of sub-structures. Such a feature is not present in the
isothermal-like collapse. We also emphasize that in the adiabatic-like case
bulk viscosity is also responsible for the appearance of a threshold scale
(equivalent to a Jeans length) beyond which perturbations begin to increase.
We present a study of the shear modulus of the crystalline color superconducting phase of quark matter, showing that this phase of dense, but not asymptotically dense, quark matter responds to shear stress as a very rigid solid. This phase is characterized by a gap parameter $\Delta$ that is periodically modulated in space and therefore spontaneously breaks translational invariance. We derive the effective action for the phonon fields that describe space- and time-dependent fluctuations of the crystal structure formed by $\Delta$, and obtain the shear modulus from the coefficients of the spatial derivative terms. Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger than those of neutron star crusts. This phase of matter is thus more rigid than any known material in the universe, but at the same time the crystalline color superconducting phase is also superfluid. These properties raise the possibility that the presence of this phase within neutron stars may have distinct implications for their phenomenology. For example, (some) pulsar glitches may originate in crystalline superconducting neutron star cores.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0710, /abs, contact, help (Access key information)
The large majority of EGRET point sources remain without an identified low-energy counterpart, and a large fraction of these sources are most likely extragalactic. Whatever the nature of the extragalactic EGRET unidentified sources, faint unresolved objects of the same class must have a contribution to the diffuse extragalactic gamma-ray background (EGRB). Understanding this component of the EGRB, along with other guaranteed contributions from known sources, is essential if we are to use this emission to constrain exotic high-energy physics. Here, we follow an empirical approach to estimate whether a potential contribution of unidentified sources to the EGRB is likely to be important, and we find that it is. Additionally, we show how upcoming GLAST observations of EGRET unidentified sources, as well as of their fainter counterparts, can be combined with GLAST observations of the Galactic and extragalactic diffuse backgrounds to shed light on the nature of the EGRET unidentified sources even without any positional association of such sources with low-energy counterparts.
X-ray spectra from stellar coronae are reprocessed by the underlying photosphere through scattering and photoionization events. While reprocessed X-ray spectra reaching a distant observer are at a flux level of only a few percent of that of the corona itself, characteristic lines formed by inner shell photoionization of some abundant elements can be significantly stronger. The emergent photospheric spectra are sensitive to the distance and location of the fluorescing radiation and can provide diagnostics of coronal geometry and abundance. Here we present Monte Carlo simulations of the photospheric Kalpha doublet arising from quasi-neutral Fe irradiated by a coronal X-ray source. Fluorescent line strengths have been computed as a function of the height of the radiation source, the temperature of the ionising X-ray spectrum, and the viewing angle. We also illustrate how the fluorescence efficiencies scale with the photospheric metallicity and the Fe abundance. Based on the results we make three comments: (1) fluorescent Fe lines seen from pre-main sequence stars mostly suggest flared disk geometries and/or super-solar disk Fe abundances; (2) the extreme ~1400 mA line observed from a flare on V1486 Ori can be explained entirely by X-ray fluorescence if the flare itself were partially eclipsed by the limb of the star; and (3) the fluorescent Fe line detected by Swift during a large flare on II Peg is consistent with X-ray excitation and does not require a collisional ionisation contribution. There is no convincing evidence supporting the energetically challenging explanation of electron impact excitation for observed stellar Fe Kalpha lines.
In a previous paper, we modeled the oscillations of a thermally-supported (Bonnor-Ebert) sphere as non-radial, linear perturbations following a standard analysis developed for stellar pulsations. The predicted column density variations and molecular spectral line profiles are similar to those observed in the Bok globule B68 suggesting that the motions in some starless cores may be oscillating perturbations on a thermally supported equilibrium structure. However, the linear analysis is unable to address several questions, among them the stability, and lifetime of the perturbations. In this paper we simulate the oscillations using a three-dimensional numerical hydrodynamic code. We find that the oscillations are damped predominantly by non-linear mode-coupling, and the damping time scale is typically many oscillation periods, corresponding to a few million years, and persisting over the inferred lifetime of gobules.
We discuss three specific modes of accretion disks around rotating magnetized neutron stars which may explain the separations of the kilo Hertz quasi periodic oscillations (QPO) seen in low mass X-ray binaries. The existence of these modes requires that there be a maximum in the angular velocity of the accreting material, and that the fluid is in stable, nearly circular motion near this maximum rather than moving rapidly towards the star or out of the disk plane into funnel flows. It is presently not known if these conditions occur, but we are exploring this with 3D magnetohydrodynamic simulations and will report the results elsewhere. The first mode is a corotation mode which is radially trapped in the vicinity of the maximum of the disk rotation rate and is unstable. The second mode, relevant to relatively slowly rotating stars, is a magnetically driven eccentric ($m=1$) oscillation of the disk excited at a Lindblad radius in the vicinity of the maximum of the disk rotation. The third mode, relevant to rapidly rotating stars, is a magnetically coupled eccentric ($m=1$) and an axisymmetric ($m=0$) radial disk perturbation which has an inner Lindblad radius also in the vicinity of the maximum of the disk rotation. We suggest that the first mode is associated with the upper QPO frequency, $\nu_u$, the second with the lower QPO frequency, $\nu_\ell =\nu_u-\nu_*$, and the third with the lower QPO frequency, $\nu_\ell=\nu_u-\nu_*/2$, where $\nu_*$ is the star's rotation rate.
Some aspects of disk-halo interactions for models of in and out of equilibrium disk galaxies are reviewed. Specifically, we focus on disk-halo resonant interaction without and in the presence of a gas component. Another issue is the disk growth within an assembling triaxial dark matter halo. We argue that while the triaxiality is the result of the merger process and the radial orbit instability, it is the developing chaos that damps the first generation of bars and washes out the halo prolateness. This chaos is triggered by the gravitational quadrupole interaction(s) in the system and supported by a number of other processes which are characteristic of baryons.
We present environmental dependence of the build-up of the colour-magnitude relation (CMR) at z ~ 0.8. It is well established that massive early-type galaxies exhibit a tight CMR in clusters up to at least z ~ 1. The faint end of the relation, however, has been much less explored especially at high redshifts primarily due to limited depths of the data. Some recent papers have reported a deficit of the faint red galaxies on the CMR at 0.8 < z < 1, but this has not been well confirmed yet and is still controversial. Using a deep, multi-colour, panoramic imaging data set of the distant cluster RXJ1716.4+6708 at z=0.81, newly taken with the Prime Focus Camera (Suprime-Cam) on the Subaru Telescope, we carry out an analysis of faint red galaxies with a care for incompleteness. We find that there is a sharp decline in the number of red galaxies toward the faint end of the CMR below M*+2. We compare our result with those for other clusters at z ~ 0.8 taken from the literature, which show or do not show the deficit. We suggest that the "deficit" of faint red galaxies is dependent on the richness or mass of the clusters, in the sense that poorer systems show stronger deficits. This indicates that the evolutionary stage of less massive galaxies depends critically on environment.
We combine high-resolution images in four optical/infra-red bands, obtained with the laser guide star adaptive optics system on the Keck Telescope and with the Hubble Space Telescope, to study the gravitational lens system SDSSJ0737+3216 (lens redshift 0.3223, source redshift 0.5812). We show that (under favorable observing conditions) ground-based images are comparable to those obtained with HST in terms of precision in the determination of the parameters of both the lens mass distribution and the background source. We also quantify the systematic errors associated with both the incomplete knowledge of the PSF, and the uncertain process of lens galaxy light removal, and find that similar accuracy can be achieved with Keck LGSAO as with HST. We then exploit this well-calibrated combination of optical and gravitational telescopes to perform a multi-wavelength study of the source galaxy at 0.01" effective resolution. We find the Sersic index to be indicative of a disk-like object, but the measured half-light radius (0.59+-0.007+-0.1 kpc) and stellar mass (2.0+-1.0+-0.8e9Msun) place it more than three sigma away from the local disk size-mass relation. The SDSSJ0737+3216 source has the characteristics of the most compact faint blue galaxies studied, and has comparable size and mass to dwarf early-type galaxies in the local universe. With the aid of gravitational telescopes to measure individual objects' brightness profiles to 10% accuracy, the study of the high-redshift size-mass relation may be extended by an order of magnitude or more beyond existing surveys at the low-mass end, thus providing a new observational test of galaxy formation models.
We present the analysis of multi-wavelength observations of bright quasar HS1603+3820: the optical data taken with the MMT and Keck telescopes, and X-ray data obtained with the Chandra X-ray Observatory. The optical spectra contain a very large number of absorption lines from numerous heavy elements. We derived X-ray properties of HS1603. The quasar has the optical-to-X-ray slope index alpha_ox of 1.70, which is on the high end of the typical range for radio quiet QSOs. We found 49 individual heavy element absorption clouds, which can be grouped into eleven distinct systems. We determined column densities and redshifts of the individual components. Absorbers from the associated system which is likely spatially closest to the QSO show large CIV to HI column density ratio, reaching ca.20.
The Track Imaging Cerenov Experiment (TrICE) is an air Cerenkov prototype telescope designed to use multi-anode photomultiplier to acheive a high angular resolution for measuring cosmic-ray composition at TeV-PeV energies. The TrICE camera, composed of 16 Hamamatsu R8900 16-channel multi-anode photomultiplier tubes, achieves 0.086 degree angular width per pixel over 1.5 degree wide field of view. We present a description of the TrICE camera design, calibration and performance.
The study of Wolf-Rayet stars plays an important role in evolutionary theories of massive stars. Among these objects, ~ 20% are known to be in binary systems and can therefore be used for the mass determination of these stars. Most of these systems are not spatially resolved and spectral lines can be used to constrain the orbital parameters. However, part of the emission may originate in the interaction zone between the stellar winds, modifying the line profiles and thus challenging us to use different models to interpret them. In this work, we analyzed the HeII4686\AA + CIV4658\AA blended lines of WR30a (WO4+O5) assuming that part of the emission originate in the wind-wind interaction zone. In fact, this line presents a quiescent base profile, attributed to the WO wind, and a superposed excess, which varies with the orbital phase along the 4.6 day period. Under these assumptions, we were able to fit the excess spectral line profile and central velocity for all phases, except for the longest wavelengths, where a spectral line with constant velocity seems to be present. The fit parameters provide the eccentricity and inclination of the binary orbit, from which it is possible to constrain the stellar masses.
The intrinsic anisotropy delta and flattening epsilon of simulated merger remnants is compared with elliptical galaxies that have been observed by the SAURON collaboration, and that were analysed using axisymmetric Schwarzschild models. Collisionless binary mergers of stellar disks and disk mergers with an additional isothermal gas component, neglecting star formation cannot reproduce the observed trend delta = 0.55 epsilon (SAURON relationship). An excellent fit of the SAURON relationship for flattened ellipticals with epsilon >= 0.25 is however found for merger simulations of disks with gas fractions >= 20%, including star formation and stellar energy feedback. Massive black hole feedback does not strongly affect this result. Subsequent dry merging of merger remnants however does not generate the slowly-rotating SAURON ellipticals which are characterized by low ellipticities epsilon < 0.25 and low anisotropies. This indicates that at least some ellipticals on the red galaxy sequence did not form by binary mergers of disks or early-type galaxies. We show that stellar spheroids resulting from multiple, hierarchical mergers of star-bursting subunits in a cosmological context are in excellent agreement with the low ellipticities and anisotropies of the slowly rotating SAURON ellipticals and their observed trend of delta with epsilon. The numerical simulations indicate that the SAURON relation might be a result of strong violent relaxation and phase mixing of multiple, kinematically cold stellar subunits with the angular momentum of the system determining its location on the relation.
Molecular gas has been searched for and found in unexpectedly large quantities in some collisional debris of interacting galaxies: HI-rich tidal tails, bridges and collisional rings. It was so far observed through millimeter observations of the CO line and detected towards or near regions of star-formation associated to dense condensations of the atomic hydrogen. The discovery of cool H2 at distances greater than 50 kpc from the parent (colliding) galaxies, whereas the external disk of spirals is generally considered to be CO-poor, raised question on its origin and favored the hypothesis of a local production out of collapsed HI clouds. However recent observations of a diffuse CO component along tidal debris have challenged this idea. Another recent puzzle is the measurement in the collisional debris of two interacting systems and four recycled objects of a missing mass, whereas no dark matter is expected there. One debated interpretation is that this unseen component is cold, "invisible" molecular gas initially present in the disk of spirals.
We investigate the number and type of pulsars that will be discovered with the low-frequency radio telescope LOFAR. We consider different search strategies for the Galaxy, for globular clusters and for galaxies other than our own. We show an all-sky Galactic survey can be optimally carried out by incoherently combining the LOFAR stations. In a 60-day all-sky Galactic survey LOFAR can find over a thousand pulsars, probing the local pulsar population to a very deep luminosity limit. For targets of smaller angular size, globular clusters and galaxies, the LOFAR stations can be combined coherently, making use of the full sensitivity. Searches of nearby northern-sky globular clusters can find large numbers of low luminosity millisecond pulsars (eg. over 10 new millisecond pulsars in a 10-hour observation of M15). If the pulsar population in nearby galaxies is similar to that of the Milky Way, a 10-hour observation could find the 10 brightest pulsars in M33, or pulsars in other galaxies out to a distance of 1.2Mpc.
A survey of currently known extrasolar planets indicates that close to 20% of their hosting stars are members of binary systems. While the majority of these binaries are wide (i.e., with separations between 250 and 6500 AU), the detection of Jovian-type planets in the three binaries of Gamma Cephei (separation of 18.5 AU), GL 86 (separation of 21 AU), and HD 41004 (separation of 23 AU) have brought to the forefront questions on the formation of giant planets and the possibility of the existence of smaller bodies in moderately close binary star systems. This paper discusses the late stage of the formation of habitable planets in binary systems that host Jovian-type bodies, and reviews the effects of the binary companion on the formation of Earth-like planets in the system's habitable zone. The results of a large survey of the parameter-space of binary-planetary systems in search of regions where habitable planets can form and have long-term stable orbits are also presented.
We have designed a system to stabilize the gain of a submillimeter heterodyne receiver against thermal fluctuations of the mixing element. In the most sensitive heterodyne receivers, the mixer is usually cooled to 4 K using a closed-cycle cryocooler, which can introduce ~1% fluctuations in the physical temperature of the receiver components. We compensate for the resulting mixer conversion gain fluctuations by monitoring the physical temperature of the mixer and adjusting the gain of the intermediate frequency (IF) amplifier that immediately follows the mixer. This IF power stabilization scheme, developed for use at the Submillimeter Array (SMA), a submillimeter interferometer telescope on Mauna Kea in Hawaii, routinely achieves a receiver gain stability of 1 part in 6,000 (rms to mean). This is an order of magnitude improvement over the typical uncorrected stability of 1 part in a few hundred. Our gain stabilization scheme is a useful addition to SIS heterodyne receivers that are cooled using closed-cycle cryocoolers in which the 4 K temperature fluctuations tend to be the leading cause of IF power fluctuations.
The recent discovery of super-Earths (masses less or equal to 10 earth-masses) has initiated a discussion about conditions for habitable worlds. Among these is the mode of convection, which influences a planet's thermal evolution and surface conditions. On Earth, plate tectonics has been proposed as a necessary condition for life. Here we show, that super-Earths will also have plate tectonics. We demonstrate that as planetary mass increases, the shear stress available to overcome resistance to plate motion increases while the plate thickness decreases, thereby enhancing plate weakness. These effects contribute favorably to the subduction of the lithosphere, an essential component of plate tectonics. Moreover, uncertainties in achieving plate tectonics in the one earth-mass regime disappear as mass increases: super-Earths, even if dry, will exhibit plate tectonic behaviour.
We present results of H-alpha imaging for 42 galaxies in the nearby low-density cloud Canes Venatici I populated mainly by late-type objects. Estimates of the H-alpha flux and integrated star formation rate (SFR) are now available for all 78 known members of this scattered system, spanning a large range in luminosity, surface brightness, HI content and SFR. Distributions of the CVnI galaxies versus their SFR, blue absolute magnitude and total hydrogen mass are given in comparison with those for a population of the nearby virialized group around M81. We found no essential correlation between star formation activity in a galaxy and its density environment. A bulk of CVnI galaxies had enough time to generate their baryon mass with the observed SFR. Most of them possess also a supply of gas sufficient to maintain their observed SFR's during the next Hubble time.
We investigate molecular evolution in a star-forming core that is initially a hydrostatic starless core and collapses to form a low-mass protostar. The results of a one-dimensional radiation-hydrodynamics calculation are adopted as a physical model of the core. We first derive radii at which CO and large organic species sublimate. CO sublimation in the central region starts shortly before the formation of the first hydrostatic core. When the protostar is born, the CO sublimation radius extends to 100 AU, and the region inside $\lesssim 10$ AU is hotter than 100 K, at which some large organic species evaporate. We calculate the temporal variation of physical parameters in infalling shells, in which the molecular evolution is solved using an updated gas-grain chemical model to derive the spatial distribution of molecules in a protostellar core. The shells pass through the warm region of $10 -100$ K in several $\times$ $10^4$ yr, and fall into the central star $\sim 100$ yr after they enter the region where $T \gtrsim 100$ K. We find that large organic species are formed mainly via grain-surface reactions at temperatures of $20 -40$ K and then desorbed into the gas-phase at their sublimation temperatures. Carbon-chain species can be formed by a combination of gas-phase reactions and grain-surface reactions following the sublimation of CH$_4$. Our model also predicts that CO$_2$ is more abundant in isolated cores, while gas-phase large organic species are more abundant in cores embedded in ambient clouds.
Gamma-ray burst are thought to be produced by highly relativistic outflows. Although upper and lower limits for the outflow initial Lorentz factor $\Gamma_0$ are available, observational efforts to derive a direct determination of $\Gamma_0$ have so far failed or provided ambiguous results. As a matter of fact, the shape of the early-time afterglow light curve is strongly sensitive on $\Gamma_0$ which determines the time of the afterglow peak, i.e. when the outflow and the shocked circumburst material share a comparable amount of energy. We now comment early-time observations of the near-infrared afterglows of GRB 060418 and GRB 060607A performed by the REM robotic telescope. For both events, the afterglow peak was singled out and allowed us to determine the initial fireball Lorentz, $\Gamma_0\sim 400$.
We investigate the structure of a field around the position of V838 Mon as seen in the lowest CO rotational transitions. We also measure and analyse emission in the same lines at the position of V838 Mon.Observations have primarily been done in the CO J = 2-1 and J = 3-2 lines using the KOSMA telescope. A field of 3.4 squared degrees has been mapped in the on-the-fly mode in these transitions. Longer integration spectra in the on-off mode have been obtained to study the emission at the position of V838 Mon. Selected positions in the field have also been observed in the CO J = 1-0 transition using the Delingha telescope.In the observed field we have identified many molecular clouds. They can be divided into two groups from the point of view of their observed radial velocities. One, having V(LSR) in the range 18-32 km/s, can be identified with the Perseus Galactic arm. The other one, having V(LSR) between 44-57 km/s, probably belongs to the Norma-Cygnus arm. The radial velocity of V838 Mon is within the second range but the object does not seem to be related to any of the observed clouds. We did not find any molecular buble of a 1 degree dimension around the position of V838 Mon claimed in van Loon et al. An emission has been detected at the position of the object in the CO J = 2-1 and J = 3-2 transitions. The emission is very narrow (FWHM ~ 1.2 km/s) and at V(LSR) = 53.3 km/s. Our analysis of the data suggests that the emission is probably extended.
Context: It has been proposed that the origin of the very high-energy photons emitted from high-mass X-ray binaries with jet-like features, so-called microquasars (MQs), is related to hadronic interactions between relativistic protons in the jet and cold protons of the stellar wind. Leptonic secondary emission should be calculated in a complete hadronic model that include the effects of pairs from charged pion decays inside the jets and the emission from pairs generated by gamma-ray absorption in the photosphere of the system. Aims: We aim at predicting the broadband spectrum from a general hadronic microquasar model, taking into account the emission from secondaries created by charged pion decay inside the jet. Methods: The particle energy distribution for secondary leptons injected along the jets is consistently derived taking the energy losses into account. We also compute the spectral energy distribution resulting from these leptons is calculated after assuming different values of the magnetic field inside the jets. The spectrum of the gamma-rays produced by neutral pion-decay and processed by electromagnetic cascades under the stellar photon field. Results: We show that the secondary emission can dominate the spectral energy distribution at low energies (~1 MeV). At high energies, the production spectrum can be significantly distorted by the effect of electromagnetic cascades. These effects are phase-dependent, and some variability modulated by the orbital period is predicted.
Analysis of the hydrodynamic and helioseismic effects in the photosphere during the solar flare of July 23, 2002, observed by Michelson Doppler Imager (MDI) on SOHO, and high-energy images from RHESSI shows that these effects are closely associated with sources of the hard X-ray emission, and that there are no such effects in the centroid region of the flare gamma-ray emission. These results demonstrate that contrary to expectations the hydrodynamic and helioseismic responses (''sunquakes") are more likely to be caused by accelerated electrons than by high-energy protons. A series of multiple impulses of high-energy electrons forms a hydrodynamic source moving in the photosphere with a supersonic speed. The moving source plays a critical role in the formation of the anisotropic wave front of sunquakes.
The star HDE 226868 known as an optical counterpart of the black hole candidate Cyg X-1 has been observed in H_alpha region using spectrograph at Ondrejov 2-m telescope. The orbital parameters are determined from HeI-line by means of the author's method of Fourier disentangling. Preliminary results are also presented of disentangling the H_alpha-line into a P-Cyg profile of the (optical) primary and an emission profile of the circumstellar matter (and a telluric component).
We suggest to use the observationally measured and theoretically justified correlation between size and rotational velocity of galactic discs as a viable method to select a set of high redshift standard rods which may be used to explore the dark energy content of the universe via the classical angular-diameter test. Here we explore a new strategy for an optimal implementation of this test. We propose to use the rotation speed of high redshift galaxies as a standard size indicator and show how high resolution multi-object spectroscopy and ACS/HST high quality spatial images, may be combined to measure the amplitude of the dark energy density parameter, or to constrain the cosmic equation of state parameter for a smooth dark energy component. We evaluate how systematics may affect the proposed tests, and find that a linear standard rod evolution, causing galaxy dimensions to be up to 30% smaller at z=1.5, can be uniquely diagnosed, and will minimally bias the confidence level contours in the [Omega_Q, w] plane. Finally, we show how to derive, without a priori knowing the specific functional form of disc evolution, a cosmology-evolution diagram with which it is possible to establish a mapping between different cosmological models and the amount of galaxy disc/luminosity evolution expected at a given redshift.
This series of papers is dedicated to a new technique to select galaxies that can act as standard rods and standard candles in order to perform geometrical tests on large samples of high redshift galaxies to constrain different cosmological parameters. The goals of this paper are (1) to compare different rotation indicators in order to understand the relation between rotation velocities extracted from observations of the Halpha line and the [OII]3727 line, and (2) determine the scaling relations between physical size, surface brightness and magnitude of galaxies and their rotation velocity using the SFI++, a large catalog of nearby galaxies observed at I-band. A good correlation is observed between the rotation curve-derived velocities of the Halpha and [OII] observations, as well as between those calculated from velocity histograms, justifying the direct comparison of velocities measured from Halpha rotation curves in nearby galaxies and from [OII] line widths at higher redshifts. To provide calibration for the geometrical tests, we give expressions for the different scaling relations between properties of galaxies (size, surface brightness, magnitude) and their rotation speeds. Apart from the Tully-Fisher relation, we derive the size-rotation velocity and surface brightness-rotation velocity relations with unprecedentedly small scatters. We show how the best size-rotation velocity relation is derived when size is estimated not from disc scale lengths but from the isophotal diameter r23.5, once these have been corrected for inclination and extinction effects.
The rotational velocity of distant galaxies, when interpreted as a size (luminosity) indicator, may be used as a tool to select high redshift standard rods (candles) and probe world models and galaxy evolution via the classical angular diameter-redshift or Hubble diagram tests. We implement the proposed testing strategy using a sample of 30 rotators spanning the redshift range 0.2<z<1 with high resolution spectra and images obtained by the VIMOS/VLT Deep Redshift Survey (VVDS) and the Great Observatories Origins Deep Survey (GOODs). We show that by applying at the same time the angular diameter-redshift and Hubble diagrams to the same sample of objects (i.e. velocity selected galactic discs) one can derive a characteristic chart, the cosmology-evolution diagram, mapping the relation between global cosmological parameters and local structural parameters of discs such as size and luminosity. This chart allows to put constraints on cosmological parameters when general prior information about discs evolution is available. In particular, by assuming that equally rotating large discs cannot be less luminous at z=1 than at present (M(z=1) < M(0)), we find that a flat matter dominated cosmology (Omega_m=1) is excluded at a confidence level of 2sigma and an open cosmology with low mass density (Omega_m = 0.3) and no dark energy contribution is excluded at a confidence level greater than 1 sigma. Inversely, by assuming prior knowledge about the cosmological model, the cosmology-evolution diagram can be used to gain useful insights about the redshift evolution of the structural parameters of baryonic discs hosted in dark matter halos of nearly equal masses.
We use low-degree acoustic modes obtained by the BiSON to estimate the main-sequence age $t_\odot$ of the Sun. The calibration is accomplished by linearizing the deviations from a standard solar model the seismic frequencies of which are close to those of the Sun. Formally, we obtain the preliminary value $t_\odot=4.68\pm0.02 $Gy, coupled with an initial heavy-element abundance $Z=0.0169\pm0.0005$. The quoted standard errors, which are not independent, are upper bounds implied under the assumption that the standard errors in the observed frequencies are independent.
Magnetic fluctuations in the solar wind are distributed according to Kolmogorov's power law $f^{-5/3}$ below the ion cyclotron frequency $f_{ci}$. Above this frequency, the observed steeper power law is usually interpreted in two different ways: a dissipative range of the solar wind turbulence or another turbulent cascade, the nature of which is still an open question. Using the Cluster magnetic data we show that after the spectral break the intermittency increases toward higher frequencies, indicating the presence of non-linear interactions inherent to a new inertial range and not to the dissipative range. At the same time the level of compressible fluctuations raises. We show that the energy transfer rate and intermittency are sensitive to the level of compressibility of the magnetic fluctuations within the small scale inertial range. We conjecture that the time needed to establish this inertial range is shorter than the eddy-turnover time, and is related to dispersive effects. A simple phenomenological model, based on the compressible Hall MHD, predicts the magnetic spectrum $\sim k^{-7/3+2\alpha}$, which depends on the degree of plasma compression $\alpha$.
CCD VRI photometry is presented for SN 2002hh from 14 days after the outburst till day 347. SN 2002hh appears to be normal type IIP supernova regarding both luminosity and the shape of the light curve, which is similar to SN 1999gi.
We investigate the possibility that near future observations of ultra-high-energy cosmic rays (UHECRs) can unveil their local source distribution, which reflects the observed local structures if their origins are astrophysical objects. In order to discuss this possibility, we calculate the arrival distribution of UHE protons taking into account their propagation process in intergalactic space i.e. energy losses and deflections by extragalactic magnetic field (EGMF). For a realistic simulation, we construct and adopt a model of a structured EGMF and UHECR source distribution, which reproduce the local structures actually observed around the Milky Way. The arrival distribution is compared statistically to their source distribution using correlation coefficient. We specially find that UHECRs above $10^{19.8}$eV are best indicators to decipher their source distribution within 100 Mpc, and detection of about 500 events on all the sky allows us to unveil the local structure of UHE universe for plausible EGMF strength and the source number density. This number of events can be detected by five years observation by Pierre Auger Observatory.
In the third part of our photometric study of the star-forming region NGC 346/N~66 and its surrounding field in the Small Magellanic Cloud (SMC), we focus on the large number of low-mass pre-main sequence (PMS) stars revealed by the Hubble Space Telescope Observations with the Advanced Camera for Surveys. We investigate the origin of the observed broadening of the pre-main sequence population in the $V-I$, $V$ CMD. The most likely explanations are either the presence of differential reddening or an age spread among the young stars. Assuming the latter, simulations indicate that we cannot exclude the possibility that stars in NGC 346 might have formed in two distinct events occurring about 10 and 5 Myr ago, respectively. We find that the PMS stars are not homogeneously distributed across NGC 346, but instead are grouped in at least five different clusters. On spatial scales from 0.8$''$ to 8$''$ (0.24 to 2.4 pc at the distance of the SMC) the clustering of the PMS stars as computed by a two-point angular correlation function is self-similar with a power law slope $\gamma \approx -0.3$. The clustering properties are quite similar to Milky Way star forming regions like Orion OB or $\rho$ Oph. Thus molecular cloud fragmentation in the SMC seems to proceed on the same spatial scales as in the Milky Way. This is remarkable given the differences in metallicity and hence dust content between SMC and Milky Way star forming regions.
The ultraviolet spectra of all ``weak emission line central stars of planetary nebulae'' (WELS) with available IUE data are presented and discussed. We performed line identifications, equivalent width and flux measurements for several features in their spectra. We found that the WELS can be divided in three different groups regarding their UV: i) Strong P-Cygni profiles (mainly in CIV 1549); ii) Weak P-Cygni features and iii) Absence of P-Cygni profiles. The last group encompasses stars with a featureless UV spectrum or with intense emission lines and a weak continuum, which are most likely of nebular origin. We have measured wind terminal velocities for all objects presenting P-Cygni profiles in N V 1238 and/or C IV 1549. The results obtained were compared to the UV data of the two prototype stars of the [WC]-PG 1159 class, namely, A30 and A78. For WELS presenting P-Cygnis, most of the terminal velocities fall in the range ~1000-1500 km/s, while [WC]-PG 1159 stars possess much higher values, of about 3000 km/s. The [WC]-PG1159 stars are characterized by intense, simultaneous P-Cygni emissions in the 1150-2000A interval of N V 1238, O V 1371 and C IV 1549. In contrast, we found that O V 1371 is very weak or absent in the WELS spectra. On the basis of the ultraviolet spectra alone, our findings indicate that [WC]-PG 1159 stars are distinct from the WELS, contrary to previous claims in the literature.
Chandra and XMM-Newton observations of the Cartwheel galaxy show ~17 bright X-ray sources (>~5x10^38 erg s^-1), all within the gas-rich outer ring. We explore the hypothesis that these X-ray sources are powered by intermediate-mass black holes (IMBHs) accreting gas or undergoing mass-transfer from a stellar companion. To this purpose, we run N-body/SPH simulations of the galaxy interaction which might have led to the formation of Cartwheel, tracking the dynamical evolution of two different IMBH populations: halo and disc IMBHs. Halo IMBHs cannot account for the observed X-ray sources, as only a few of them cross the outer ring. Instead, more than half of the disc IMBHs are pulled in the outer ring as a consequence of the galaxy collision. However, also in the case of disc IMBHs, accretion from surrounding gas clouds cannot account for the high luminosities of the observed sources. Finally, more than 500 disc IMBHs are required to produce <~15 X-ray sources via mass-transfer from very young stellar companions. Such number of IMBHs is very large and implies extreme assumptions. Thus, the hypothesis that all the observed X-ray sources in Cartwheel are associated with IMBHs is hardly consistent with our simulations, even if it is still possible that IMBHs account for the few (<~1-5) brightest ultra-luminous X-ray sources (ULXs).
Spectroscopic modeling of Type II supernovae (SNe) generally assumes steady-state. Following the recent suggestion of Utrobin & Chugai, but using the 1D non-LTE line-blanketed model atmosphere code CMFGEN, we investigate the effects of including time-dependent terms that appear in the statistical and radiative equilibrium equations. We base our discussion on the ejecta properties and the spectroscopic signatures obtained from time-dependent simulations, investigating different ejecta configurations, and covering their evolution from one day to six weeks after shock breakout. Compared to equivalent steady-state models, our time-dependent models produce SN ejecta that are systematically over-ionized, affecting helium at one week after explosion, but ultimately affecting all ions after a few weeks. While the continuum remains essentially unchanged, time-dependence effects on observed spectral lines are large. At the recombination epoch, HI lines and NaID are considerably stronger and broader than in equivalent steady-state models, while CaII8500A is weakened. If time dependence is allowed for, the HeI lines at 5875A and 10830A appear about 3 times stronger at one week, and HeI10830A persists as a blue-shifted absorption feature even at 6 weeks after explosion. Time dependence operates through the energy gain from changes in ionization and excitation, and, perhaps more universally across SN types, from the competition between recombination and expansion, which in-turn, can be affected by optical-depth effects. Our time-dependent models compare well with observations of the low-luminosity low-velocity SN 1999br and the more standard SN 1999em, reproducing the Halpha line strength at the recombination epoch, and without the need for setting unphysical requirements on the magnitude of nickel mixing.
NeXT (New X-ray Telescope) is the next Japanese X-ray astronomical satellite mission after the Suzaku satellite. NeXT aims to perform wide band imaging spectroscopy. Due to the successful development of a multilayer coated mirror, called a supermirror, NeXT can focus X-rays in the energy range from 0.1 keV up to 80 keV. To cover this wide energy range, we are in the process of developing a hybrid X-ray camera, Wideband X-ray Imager (WXI) as a focal plane detector of the supermirror. The WXI consists of X-ray CCDs (SXI) and CdTe pixelized detectors (HXI), which cover the lower and higher X-ray energy bands of 0.1-80 keV, respectively. The X-ray CCDs of the SXI are stacked above the CdTe pixelized detectors of the HXI. The X-ray CCDs of the SXI detect soft X-rays below $\sim$ 10 keV and allow hard X-rays pass into the CdTe detectors of the HXI without loss. Thus, we have been developing a "back-supportless CCD" with a thick depletion layer, a thinned silicon wafer, and a back-supportless structure. In this paper, we report the development and performances of an evaluation model of CCD for the SXI, "CCD-NeXT1". We successfully fabricated two types of CCD-NeXT1, unthinned CCDs with 625-um thick wafer and 150-um thick thinned CCDs. By omitting the polishing process when making the thinned CCDs, we confirmed that the polishing process does not impact the X-ray performance. In addition, we did not find significant differences in the X-ray performance between the two types of CCDs. The energy resolution and readout noise are $\sim$ 140 eV (FWHM) at 5.9 keV and $\sim$5 electrons (RMS), respectively. The estimated thickness of the depletion layer is $\sim$80 um. The performances almost satisfy the requirements of the baseline plan of the SXI.
Context. Water vapor emission at 22 GHz from masers associated with star-forming regions is highly variable. Aims. We present a database of up to 20 years of monitoring of a sample of 43 masers within star-forming regions. The sample covers a large range of luminosities of the associated IRAS source and is representative of the entire population of H2O masers of this type. The database forms a good starting point for any further study of H2O maser variability. Methods. The observations were obtained with the Medicina 32-m radiotelescope, at a rate of 4-5 observations per year. Results. To provide a database that can be easily accessed through the web, we give for each source: plots of the calibrated spectra, the velocity-time-flux density plot, the light curve of the integrated flux, the lower and upper envelopes of the maser emission, the mean spectrum, and the rate of the maser occurrence as a function of velocity. Figures for just one source are given in the text for representative purposes. Figures for all the sources are given in electronic form in the on-line appendix. A discussion of the main properties of the H2O variability in our sample will be presented in a forthcoming paper.
Two aspects of our recent N-body studies of star clusters are presented: (1) What impact does mass segregation and selective mass loss have on integrated photometry? (2) How well compare results from N-body simulations using NBODY4 and STARLAB/KIRA?
We present the result of a photometric and Keck-LRIS spectroscopic study of dwarf galaxies in the core of the Perseus Cluster, down to a magnitude of M_B = -12.5. Spectra were obtained for twenty-three dwarf-galaxy candidates, from which we measure radial velocities and stellar population characteristics from absorption line indices. From radial velocities obtained using these spectra we confirm twelve systems as cluster members, with the remaining eleven as non-members. Using these newly confirmed cluster members, we are able to extend the confirmed colour-magnitude relation for the Perseus Cluster down to M_B = -12.5. We confirm an increase in the scatter about the colour magnitude relationship below M_B = -15.5, but reject the hypothesis that very red dwarfs are cluster members. We measure the faint-end slope of the luminosity function between M_B = -18 and M_B = -12.5, finding alpha = -1.26 \pm 0.06, which is similar to that of the field. This implies that an overabundance of dwarf galaxies does not exist in the core of the Perseus Cluster. By comparing metal and Balmer absorption line indices with alpha-enhanced single stellar population models, we derive ages and metallicities for these newly confirmed cluster members. We find two distinct dwarf elliptical populations: an old, metal poor population with ages ~ 8 Gyr and metallicities [Fe/H] < -0.33, and a young, metal rich population with ages < 5 Gyr and metallicities [Fe/H] > -0.33. Dwarf galaxies in the Perseus Cluster are therefore not a simple homogeneous population, but rather exhibit a range in age and metallicity.
We demonstrate that low resolution CaII triplet (CaT) spectroscopic estimates of the overall metallicity ([Fe/H]) of individual Red Giant Branch (RGB) stars in two nearby dwarf spheroidal galaxies (dSphs) agree to +-0.1-0.2 dex with detailed high resolution spectroscopic determinations for the same stars over the range -2.5 < [Fe/H] < -0.5. For this study we used a sample of 129 stars observed in low and high resolution mode with VLT/FLAMES in the Sculptor and Fornax dSphs. We also present the data reduction steps we used in our low resolution analysis and show that the typical accuracy of our velocity and CaT [Fe/H] measurement is ~2 km/s and 0.1 dex respectively. We conclude that CaT-[Fe/H] relations calibrated on globular clusters can be applied with confidence to RGB stars in composite stellar populations over the range -2.5 < [Fe/H] < -0.5.
Non thermal emission from galaxy clusters demonstrates the existence of relativistic particles and magnetic fields in the Intra Cluster Medium (ICM). Present instruments do not allow to firmly establish the energy associated to these components. In a few years gamma ray observations will put important constraints on the energy content of non thermal hadrons in clusters, while the combination of radio and hard X-ray data will be crucial to measure the energy content in the form of relativistic electrons and magnetic field. SIMBOL-X is expected to drive an important breakthrough in the field also because it is expected to operate in combination with the forthcoming low frequency radio telescopes (LOFAR, LWA). In this contribution we report first estimates of statistical properties of the hard X-ray emission in the framework of the re-acceleration model. This model allows to reproduce present radio data for Radio Halos and to derive expectations for future low frequency radio observations, and thus our calculations provide hints for observational strategies for future radio and hard--X-ray combined observations.
Clusters of galaxies are sites of acceleration of charged particles and sources of non-thermal radiation. We report on new constraints on the population of cosmic rays in the Intra Cluster Medium (ICM) obtained via radio observations of a fairly large sample of massive, X-ray luminous, galaxy clusters in the redshift interval 0.2--0.4. The bulk of the observed galaxy clusters does not show any hint of Mpc scale synchrotron radio emission at the cluster center (Radio Halo). We obtained solid upper limits to the diffuse radio emission and discuss their implications for the models for the origin of Radio Halos. Our measurements allow us to derive also a limit to the content of cosmic ray protons in the ICM. Assuming spectral indices of these protons delta =2.1-2.4 and microG level magnetic fields, as from Rotation Measures, these limits are one order of magnitude deeper than present EGRET upper limits, while they are less stringent for steeper spectra and lower magnetic fields.
The fast rotating star CU Virginis is a magnetic chemically peculiar star with an oblique dipolar magnetic field. The continuum radio emission has been interpreted as gyrosyncrotron emission arising from a thin magnetospheric layer. Previous radio observations at 1.4 GHz showed that a 100% circular polarized and highly directive emission component overlaps to the continuum emission two times per rotation, when the magnetic axis lies in the plane of the sky. This sort of radio lighthouse has been proposed to be due to cyclotron maser emission generated above the magnetic pole and propagating perpendicularly to the magnetic axis. Observations carried out with the Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this discovery show that this radio emission is still present, meaning that the phenomenon responsible for this process is steady on a timescale of years. The emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On the light of recent results on the physics of the magnetosphere of this star, the possibility of plasma radiation is ruled out. The characteristics of this radio lighthouse provides us a good marker of the rotation period, since the peaks are visible at particular rotational phases. After one year, they show a delay of about 15 minutes. This is interpreted as a new abrupt spinning down of the star. Among several possibilities, a quick emptying of the equatorial magnetic belt after reaching the maximum density can account for the magnitude of the breaking.
(abridged) Our project endeavors to obtain a robust view of multiplicity among embedded Class I and Flat Spectrum protostars in a wide array of nearby molecular clouds to disentangle ``universal'' from cloud-dependent processes. We have used near-infrared adaptive optics observations at the VLT through the H, Ks and L' filters to search for tight companions to 45 Class I and Flat Spectrum protostars located in 4 different molecular clouds (Taurus-Auriga, Ophiuchus, Serpens and L1641 in Orion). We complemented these observations with published high-resolution surveys of 13 additional objects in Taurus and Ophiuchus. We found multiplicity rates of 32+/-6% and 47+/-8% over the 45-1400 AU and 14-1400 AU separation ranges, respectively. These rates are in excellent agreement with those previously found among T Tauri stars in Taurus and Ophiuchus, and represent an excess of a factor ~1.7 over the multiplicity rate of solar-type field stars. We found no non-hierarchical triple systems, nor any quadruple or higher-order systems. No significant cloud-to-cloud difference has been found, except for the fact that all companions to low-mass Orion protostars are found within 100 AU of their primaries whereas companions found in other clouds span the whole range probed here. Based on this survey, we conclude that core fragmentation always yields a high initial multiplicity rate, even in giant molecular clouds such as the Orion cloud or in clustered stellar populations as in Serpens, in contrast with predictions of numerical simulations. The lower multiplicity rate observed in clustered Class II and Class III populations can be accounted for by a universal set of properties for young systems and subsequent ejections through close encounters with unrelated cluster members.
Chang et al. (2006) reported millisecond duration dips in the X-ray intensity of Sco X-1 and attributed them to occultations of the source by small trans-Neptunian objects (TNOs). We have found multiple lines of evidence that these dips are not astronomical in origin, but rather the result of high-energy charged particle events in the RXTE PCA detectors. Our analysis of the RXTE data indicates that at most 10% of the observed dips in Sco X-1 could be due to occultations by TNOs, and, furthermore, we find no positive or supporting evidence for any of them being due to TNOs. We therefore believe that it is a mistake to conclude that any TNOs have been detected via occultation of Sco X-1.
We present an analysis of the gas-poor circumstellar material in the HD 113766 binary system (F3/F5, 10 - 16 Myr), recently observed by the Spitzer Space Telescope. For our study we have used the infrared mineralogical model derived from observations of the Deep Impact experiment. We find the dust dominated by warm, fine (~1 um) particles, abundant in Mg-rich olivine, crystalline pyroxenes, amorphous silicates, Fe-rich sulfides, amorphous carbon, and colder water-ice. The warm dust material mix is akin to an inner main belt asteroid of S-type composition. The ~440 K effective temperature of the warm dust implies that the bulk of the observed material is in a narrow belt ~1.8 AU from the 4.4 L_solar central source, in the terrestrial planet-forming region and habitable zone of the system (equivalent to 0.9 AU in the solar system). The icy dust lies in 2 belts, located at 4-9 AU and at 30 - 80 AU. The lower bound of warm dust mass in 0.1 - 20 um, dn/da ~ a^-3.5 particles is very large, at least 3 x 10^20 kg, equivalent to a 320 km radius asteroid of 2.5 g cm^-3 density. Assuming 10m largest particles present, the lower bound of warm dust mass is at least 0.5 M_Mars The dust around HD 113766A originates from catastrophic disruption of terrestrial planet embryo(s) and subsequent grinding of the fragments, or from collisions in a young, extremely dense asteroid belt undergoing aggregation. The persistence of the strong IR excess over the last two decades argues for a mechanism to provide replenishment of the circumstellar material on yearly timescales.
We present a complete set of diagnostic tools aimed at reproducing synthetic non-thermal (synchrotron and/or Inverse Compton, IC) emissivity, integrated flux energy, polarization and spectral index simulated maps in comparison to observations. The time dependent relativistic magnetohydrodynamic (RMHD) equations are solved with a shock capturing code together with the evolution of the maximum particles energy. Applications to Pulsar Wind Nebulae (PWNe) are shown.
The Alpha Magnetic Spectrometer (AMS), to be installed on the International Space Station (ISS) in 2008, is a cosmic ray detector with several subsystems, one of which is a proximity focusing Ring Imaging Cherenkov (RICH) detector. This detector will be equipped with a dual radiator (aerogel+NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers and light guides, enabling precise measurements of particle electric charge and velocity. Combining velocity measurements with data on particle rigidity from the AMS Tracker it is possible to obtain a measurement for particle mass, allowing the separation of isotopes. A Monte Carlo simulation of the RICH detector, based on realistic properties measured at ion beam tests, was performed to evaluate isotope separation capabilities. Results for three elements -- H (Z=1), He (Z=2) and Be (Z=4) -- are presented.
Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neutron stars and should be considered in radio-quiet isolated neutron stars or high magnetic field radio-pulsars.
We discuss oxygen and iron abundance patterns in K and M red-giant members of the Galactic bulge and in the young and massive M-type stars inhabiting the very center of the Milky Way. The abundance results from the different bulge studies in the literature, both in the optical and the infrared, indicate that the [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Based on these elevated values of [O/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a rapid chemical enrichment with perhaps a top-heavy initial mass function. The Galactic Center stars reveal a nearly uniform and slightly elevated (relative to solar) iron abundance for a studied sample which is composed of 10 red giants and supergiants. Perhaps of more significance is the fact that the young Galactic Center M-type stars show abundance patterns that are reminiscent of those observed for the bulge population and contain enhanced abundance ratios of alpha-elements relative to either the Sun or Milky Way disk at near-solar metallicities.
The observed cosmic acceleration presents the physics and cosmology communities with amazing opportunities to make exciting, probably even radical advances in these fields. This topic is highly data driven and many of our opportunities depend on us undertaking an ambitious observational program. Here I outline the case for such a program based on both the exciting science related to the cosmic acceleration and the impressive impact that a strong observational program would have. Along the way, I challenge a number of arguments that skeptics use to question the value of a strong observational commitment to this field.
We analyze the trajectories for multifield DBI inflation, which can arise in brane inflation models, and show that the trajectories are the same as in typical slow roll inflation. We calculate the power spectrum and find that the higher derivative terms of the DBI action lead to a suppression of the contribution from the isocurvature perturbations. We also calculate the bispectrum generated by the isocurvature perturbation, and find that it leads to distinctive features.
Null Energy Condition (NEC) requires the equation of state (EoS) of the universe $w_u$ satisfy $w_u\geq-1$, which implies, for instance in a universe with matter and dark energy dominating $w_u=w_m\Omega_m+w_{de}\Omega_{de}=w_{de}\Omega_{de}\geq-1$. In this paper we study constraints on the dark energy models from the requirement of the NEC. We will show that with $\Omega_{de}\sim0.7$, $w_{de}<-1$ at present epoch is possible. However, NEC excludes the possibility of $w_{de}<-1$ forever as happened in the Phantom model, but if $w_{de}<-1$ stays for a short period of time as predicted in the Quintom theory NEC can be satisfied. We take three examples of Quintom models of dark energy, namely the phenomenological EoS, the two-scalar-field model and the single scalar model with a modified Dirac-Born-Infeld (DBI) lagrangian to show how this happens.
We investigate the so-called superWIMP scenario with gravitino as the lightest supersymmetric particle (LSP) in the context of non-standard cosmology, in particular, brane world cosmology. As a candidate of the next-to-LSP (NLSP), we examine slepton and sneutrino. Brane world cosmological effects dramatically enhance the relic density of the slepton or sneutrino NLSP, so that the NLSP with mass of order 100 GeV can provide the correct abundance of gravitino dark matter through its decay. We find that with an appropriate five dimensional Planck mass, this scenario can be realized consistently with the constraints from Big Bang Nucleosynthesis (BBN) for both NLSP candidates of slepton and sneutrino. The BBN constraints for slepton NLSP are more stringent than that for sneutrino, as the result, the gravitino must be rather warm in the slepton NLSP case. The energy density of gravitino produced by thermal scattering is highly suppressed and negligible due to the brane world cosmological effects.
We reexamined the gravitational time delay for static spherically symmetric spacetimes, allowing for various models of modified gravity. There exists a degeneracy among theoretical models when the time delay along a single light path is measured. In order to break this degeneracy, multiple light paths are required. Measuring the time delays along two different light paths can probe a deviation from general relativity (or the parameterized post-Newtonian gravity). In order to distinguish modified gravity models, three (or more) paths are needed. Experiments by radio signal from a spacecraft such as New Horizons and future space-borne laser interferometric detectors such as LISA and DECIGO could be a probe of modified gravity in the solar system.
The DAMA Collaboration has recently analyzed its data of the extensive WIMP direct search (DAMA/NaI) which detected an annual modulation, by taking into account the channelling effect which occurs when an ion traverses a detector with a crystalline structure. Among possible implications, this Collaboration has considered the case of a coherent WIMP-nucleus interaction and then derived the form of the annual modulation region in the plane of the WIMP-nucleon cross section versus the WIMP mass, using a specific modelling for the channelling effect. In the present paper we first show that light neutralinos fit the annual modulation region also when channelling is taken into account. To discuss the connection with indirect signals consisting in galactic antimatter, in our analysis we pick up a specific galactic model, the cored isothermal-sphere. In this scheme we determine the sets of supersymmetric models selected by the annual modulation regions and then prove that these sets are compatible with the available data on galactic antiprotons. We comment on implications when other galactic distribution functions are employed. Finally, we show that future measurements on galactic antiprotons and antideuterons will be able to shed further light on the populations of light neutralinos singled out by the annual modulation data.
Using lattice techniques we investigate the generation of long range cosmological magnetic fields during a cold electroweak transition. We will show how magnetic fields arise, during bubble collisions, in the form of magnetic strings. We conjecture that these magnetic strings originate from the alignment of magnetic dipoles associated with EW sphaleron-like configurations. We also discuss the early thermalisation of photons and the turbulent behaviour of the scalar fields after tachyonic preheating.
Astronomy provides a laboratory for extreme physics, a window into environments at extremes of distance, temperature and density that often can't be reproduced in Earth laboratories, or at least not right away. A surprising amount of the science we understand today started out solutions to problems in astronomy. Some of this science was key in the development of many technologies which we enjoy today. This paper describes some of these connections between astronomy and technology and their history.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0710, /abs, contact, help (Access key information)
At the time the third EGRET catalog was published, unidentified sources accounted for a substantial fraction of the detections. To this day, the vast majority of these sources have not yet been associated with low-energy counterparts. In addition to known classes of gamma-ray emitters such as pulsars, supernova remnants, and blazars, a number of theoretically motivated candidate emitters have been suggested as the origin of these detections. We take a new approach to evaluate the plausibility of a Galactic population accounting for some or all of the unidentified EGRET sources. Rather than focusing on the properties of a specific candidate emitter, we constrain the abundance and spatial distribution of any objects of Galactic origin which may be among the EGRET unidentified sources by making the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. We find that it is highly improbable that the unidentified EGRET sources contain more than ~20 members of a Galactic halo population (e.g., annihilating dark matter clumps or intermediate mass black holes), but that current observations are consistent with all of these sources being Galactic objects if they reside entirely in the disk and bulge. However, upcoming observations by GLAST have the potential to exclude association of a large number of the unidentified sources with any Galactic source class. We discuss the additional constraints and new insights into the nature of Galactic gamma-ray emitting populations that GLAST is expected to provide.
Theoretical arguments and indirect observational evidence suggest that the stellar initial mass function (IMF) may evolve with time, such that it is more weighted toward high mass stars at higher redshift. Here we test this idea by comparing the rate of luminosity evolution of massive early-type galaxies in clusters at 0.02<z<0.83 to the rate of their color evolution. A combined fit to the rest-frame U-V color evolution and the previously measured evolution of the M/L(B) ratio gives x=-0.3^{+0.4}_{-0.7} in the region around 1 Solar mass, significantly flatter than the present-day value in the Milky Way disk of x=1.3+-0.3. The best-fitting luminosity-weighted formation redshift of the stars in massive cluster galaxies is 3.7^{+2.3}_{-0.8}, and a possible interpretation is that the characteristic mass m_c had a value of ~2 Solar masses at z~4 (compared to m_c~0.1 Solar masses today), in qualitative agreement with models in which the characteristic mass is a function of the Jeans mass in molecular clouds. An evolving IMF has significant implications for the interpretation of measurements of galaxy formation and evolution. Applying a simple form of IMF evolution to literature data, we find that the volume-averaged star formation rate at high redshift may have been overestimated by a factor of 3-4, and the cosmic star formation history may have a fairly well defined peak at z~1.5. The M/L(V) ratios of galaxies are less affected than their star formation rates, and future data on the stellar mass density at z>3 will provide further constraints on IMF evolution. The main uncertainties in the analysis are subtle systematic effects in the data and the limited calibration of stellar population synthesis models in the relevant parameter range.
Using a population synthesis approach, we compute the total merger rate in the local Universe for double neutron stars, double black holes, and black hole -- neutron star binaries. These compact binaries are the prime source candidates for gravitational-wave detection by LIGO and VIRGO. We account for mergers originating from field populations and from dense stellar clusters. For both populations we use the same treatment of stellar evolution. Our results indicate that the merger rates of double neutron stars and black hole -- neutron star binaries are strongly dominated by field populations, while merging black hole binaries are formed much more effectively in dense stellar clusters. The overall merger rate of double compact objects depends sensitively on the (largely unknown) initial mass fraction contained in dense clusters f_cl. For f_cl < 0.0001, the Advanced LIGO detection rate will be dominated by field populations of double neutron star mergers, with a small but significant number of detections ~20 yr^-1. However for a higher mass fraction in clusters, f_cl > 0.001, the detection rate will be dominated by numerous mergers of double black holes originating from dense clusters, and it will be considerably higher, ~25 - 300 yr^-1. In addition, we show that, once mergers of double black holes are detected, it is easy to differentiate between systems formed in the field and in dense clusters, since the chirp mass distributions are strikingly different. Finally, we point out that there may exist a population of merging black hole binaries in intergalactic space.
In a famous paper, Sagan et al.(1993) analyzed a spectrum of the Earth taken
by the Galileo probe, searching for signatures of life. They concluded that the
large amount of O2 and the simultaneous presence of CH4 traces are strongly
suggestive of biology. The detection of a widespread red-absorbing pigment with
no likely mineral origin supports the hypothesis of biophotosynthesis. The
search for signs of life on possibly very different planets implies that we
need to gather as much information as possible in order to understand how the
observed atmosphere physically and chemically works.
The Earth-Sun intensity ratio is about 10^{-7} in the thermal infrared (10
micrometer), and about 10^{-10} in the visible (0.5 micrometer). The
interferometric systems suggested for Darwin and the Terrestrial Planet Finder
Interferometer (TPF-I) mission operates in the mid-IR (5 - 20 micrometer), the
coronagraph suggested for Terrestrial Planet Finder Coronagraph (TPF-C) in the
visible (0.5 - 1 micrometer). For the former it is thus the thermal emission
emanating from the planet that is detected and analyzed while for the later the
reflected stellar flux is measured. The spectrum of the planet can contain
signatures of atmospheric species that are important for habitability, like CO2
and H2O, or result from biological activity (O2, O3, CH4, and N2O). Both
spectral regions contain atmospheric bio-indicators. The presence or absence of
these spectral features will indicate similarities or differences with the
atmospheres of terrestrial planets and are discussed in detail and set into
context with the physical characteristics of a planet in this chapter.
A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millimeter range precision to the moon which should lead to approximately one-order-of-magnitude improvements in the precision of several tests of fundamental properties of gravity. We briefly motivate the scientific goals, and then give a detailed discussion of the APOLLO instrumentation.
We use two-band imaging data from the Advanced Camera for Surveys on board the Hubble Space Telescope for a detailed study of NGC1533, an SB0 galaxy in the Dorado group surrounded by a ring of HI. NGC1533 appears to be completing a transition from late to early type: it is red, but not quite dead. Faint spiral structure becomes visible following galaxy subtraction, and luminous blue stars can be seen in isolated areas of the disk. Dust is visible in the color map in the region around the bar, and there is a linear color gradient throughout the disk. We determine an accurate distance from the surface brightness fluctuations (SBF) method, finding m-M = 31.44\pm0.12 mag, or d = 19.4\pm1.1 Mpc. We then study the globular cluster (GC) colors, sizes, and luminosity function (GCLF). Estimates of the distance from the median of the GC half-light radii and from the peak of the GCLF both agree well with the SBF distance. The GC specific frequency is S_N=1.3\pm0.2, typical for an early-type disk galaxy. The color distribution is bimodal, as commonly observed for bright galaxies. There is a suggestion of the redder GCs having smaller sizes, but the trend is not significant. The sizes do increase significantly with galactocentric radius, in a manner more similar to the Milky Way GC system than to those in Virgo. This difference may be an effect of the steeper density gradients in loose groups as compared to galaxy clusters. Additional studies of early-type galaxies in low density regions can help determine if this is indeed a general environmental trend.
We report the detection of transits by the 3.1 M_Jup companion to the V=8.17 G0V star HD 17156. The transit was observed by three independant observers on Sept. 9/10, 2007 (two in central Italy and one in the Canary Islands), who obtained detections at confidence levels of 3.0 sigma, 5.3 sigma, and 7.9 sigma, respectively. The observations were carried out under the auspices of the Transitsearch.org network, which organizes follow-up photometric transit searches of known planet-bearing stars during the time intervals when transits are expected to possibly occur. Analyses of the 7.9 sigma data set indicates a transit depth d=0.0062+/-0.0004, and a transit duration t=186+/-5 min. These values are consistent with the transit of a Jupiter-sized planet with an impact parameter b=a*cos(i)/R_star ~ 0.8. This planet occupies a unique regime among known transiting extrasolar planets, both as a result of its large orbital eccentricity (e=0.67) and long orbital period (P=21.2 d). The planet receives a 26-fold variation in insolation during the course of its orbit, which will make it a useful object for characterization of exoplanetary atmospheric dynamics.
We investigate how wave propagation is modified by the presence of heat sources and sinks, in the simple 1D, hydrodynamical case, including chromosphere and solar wind. We integrate the time-dependent hydrodynamic equations of the solar wind with spherical symmetry, including conduction, radiative cooling and a prescribed mechanical heat flux. Once a quasi-stationary wind is established, we study the response of the system to pressure oscillations at the photospheric boundary. We use transparent boundary conditions. We find that wavepackets with high enough amplitude propagating upward from the photosphere implode just below the transition region. This implosion is due to the radiative cooling term generating pressure holes close to the wave crests of the wave, which make the wave collapse. In the case where heat sources and sinks are not present in the equations, the wave remains stable whatever the initial wave amplitude, which is compatible with published work. Instability should be observable when and where the TR is high enough above the optically thick regions.
The diffuse interstellar bands (DIBs) probably arise from complex organic molecules whose strength in local galaxies correlates with neutral hydrogen column density, N(HI), and dust reddening, E(B-V). Since CaII absorbers in quasar (QSO) spectra are posited to have high N(HI) and significant E(B-V), they represent promising sites for the detection of DIBs at cosmological distances. Here we present the results from the first search for DIBs in 9 CaII-selected absorbers at 0.07 < z_abs < 0.55. We detect the 5780Ang DIB in one line of sight at z_abs = 0.1556; this is only the second QSO absorber in which a DIB has been detected. Unlike the majority of local DIB sight-lines, both QSO absorbers with detected DIBs show weak 6284Ang absorption compared with the 5780Ang band. This may be indicative of different physical conditions in intermediate redshift QSO absorbers compared with local galaxies. Assuming that local relations between the 5780Ang DIB strength and N(HI) and E(B-V) apply in QSO absorbers, DIB detections and limits can be used to derive N(HI) and E(B-V). For the one absorber in this study with a detected DIB, we derive E(B-V) = 0.23mag and log[N(HI)] >= 20.9, consistent with previous conclusions that CaII systems have high HI column densities and significant reddening. For the remaining 8 CaII-selected absorbers with 5780Ang DIB non-detections, we derive E(B-V) upper limits of 0.1-0.3mag.
This paper explores the quantitative connection between globular clusters and the diffuse stellar population of the galaxies they are associated with. Both NGC 1399 and NGC 4486 (M87) are well suited for this kind of analysis due to their large globular cluster populations. The main assumption of our Monte Carlo based models is that each globular cluster is formed along with a given diffuse stellar mass that shares the same spatial distribution, chemical composition and age. The main globular clusters subpopulations, that determine the observed bimodal colour distribution, are decomposed avoiding a priori parametric (e.g. Gaussian) fits and using a new colour (C-T1)-metallicity relation. The eventual detectability of a blue tilt in the colour magnitude diagrams of the blue globulars subpopulation is also addressed. A successful link between globular clusters and the stellar galaxy halo is established by assuming that the number of globular clusters per associated diffuse stellar mass t is a function of total abundance [Z/H] and behaves as t=gamma*exp(delta[Z/H]) (i.e. increases when abundance decreases).
This paper presents the results of a Spitzer IRAC 3-8 micron photometric search for warm dust orbiting 17 nearby, metal-rich white dwarfs, 15 of which apparently have hydrogen dominated atmospheres (type DAZ). G166-58, G29-38, and GD 362 manifest excess emission in their IRAC fluxes and the latter two are known to harbor dust grains warm enough to radiate detectable emission at near-infrared wavelengths as short as 2 micron. Their IRAC fluxes display differences compatible with a relatively larger amount of cooler dust at GD 362. G166-58 is presently unique in that it appears to exhibit excess flux only at wavelengths longer than about 5 micron. Evidence is presented that this mid-infrared emission is most likely associated with the white dwarf, indicating that G166-58 bears circumstellar dust no warmer than T~400 K. The remaining 14 targets reveal no reliable mid-infrared excess, indicating the majority of DAZ stars do not have warm debris disks sufficiently opaque to be detected by IRAC.
A key parameter of the polar-cap accelerator is a=j/(c rho_GJ), where j is the electric current and rho_GJ is the corotation charge density. The customary model assumed a=1+-epsilon and found epsilon << 1, steady acceleration of particles, and e+- creation. The fine-tuning of a to 1 is not, however, favored by the magnetosphere, and the accelerator with |a-1| > epsilon ~ 0.001 is qualitatively different. For 0<a<1-epsilon, a charge-separated outflow forms at a low voltage, and no e+- pairs are created. For a>1+epsilon, the accelerator is unstable and a high voltage is generated by electrostatic and induction effects. We argue that the pulsar activity is generated by an unsteady gap near the surface that forms if a>1 or a<0. The unsteady voltage implies unsteady rotation of the open magnetic tube and generation of Alfven waves, which are ducted along the tube. Their energy flux can directly feed radio emission as Alfven waves convert to electromagnetic waves.
Aims: To investigate variability and to model the pulsational behaviour of
AGB variables in the intermediate-age LMC cluster NGC 1846.
Methods: Our own photometric monitoring has been combined with data from the
MACHO archive to detect 22 variables among the cluster's AGB stars and to
derive pulsation periods. According to the global parameters of the cluster we
construct pulsation models taking into account the effect of the C/O ratio on
the atmospheric structure. In particular, we have used opacities appropriate
for both O-rich stars and carbon stars in the pulsation calculations.
Results: The observed P-L-diagram of NGC 1846 can be fitted using a mass of
the AGB stars of about 1.8 M$_{\sun}$. We show that the period of pulsation is
increased when an AGB star turns into a carbon star. Using the mass on the AGB
defined by the pulsational behaviour of our sample we derive a cluster age of
$1.4\times10^{9}$ years. This is the first time the age of a cluster has been
derived from the variability of its AGB stars. The carbon stars are shown to be
a mixture of fundamental and first overtone radial pulsators.
AIMS: We present the optical classification and redshift of 348 X-ray
selected sources from the XMM-Newton Bright Serendipitous Survey (XBS) which
contains a total of 400 objects (identification level = 87%). About 240 are new
identifications. In particular, we discuss in detail the classification
criteria adopted for the Active Galactic Nuclei population.
METHODS: By means of systematic spectroscopic campaigns and through the
literature search we have collected an optical spectrum for the large majority
of the sources in the XBS survey and applied a well-defined classification
``flow-chart''.
RESULTS: We find that the AGN represent the most numerous population at the
flux limit of the XBS survey (~10^-13 erg cm^-2 s^-1) constituting 80% of the
XBS sources selected in the 0.5-4.5 keV energy band and 95% of the ``hard''
(4.5-7.5 keV) selected objects. Galactic sources populate significantly the
0.5-4.5 keV sample (17%) and only marginally (3%) the 4.5-7.5 keV sample. The
remaining sources in both samples are clusters/groups of galaxies and normal
galaxies (i.e. probably not powered by an AGN). Furthermore, the percentage of
type2 AGN (i.e. optically absorbed AGNs with A_V>2mag) dramatically increases
going from the 0.5-4.5 keV sample (f=N_AGN2/N_AGN=7%) to the 4.5-7.5 keV sample
(f=32%). We finally propose two simple diagnostic plots that can be easily used
to obtain the spectral classification for relatively low redshift AGNs even if
the quality of the spectrum is not good.
The transient X-ray binary pulsar A0535+262 was observed with Suzaku on 2005 September 14 when the source was in the declining phase of the August-September minor outburst. The ~103 s X-ray pulse profile was strongly energy dependent, a double peaked profile at soft X-ray energy band (<3 keV) and a single peaked smooth profile at hard X-rays. The width of the primary dip is found to be increasing with energy. The broad-band energy spectrum of the pulsar is well described with a Negative and Positive power-law with EXponential (NPEX) continuum model along with a blackbody component for soft excess. A weak iron K_alpha emission line with an equivalent width ~25 eV was detected in the source spectrum. The blackbody component is found to be pulsating over the pulse phase implying the accretion column and/or the inner edge of the accretion disk may be the possible emission site of the soft excess in A0535+262. The higher value of the column density is believed to be the cause of the secondary dip at the soft X-ray energy band. The iron line equivalent width is found to be constant (within errors) over the pulse phase. However, a sinusoidal type of flux variation of iron emission line, in phase with the hard X-ray flux suggests that the inner accretion disk is the possible emission region of the iron fluorescence line.
We use a large suite of carefully controlled full hydrodynamic simulations to study the ram pressure stripping of the hot gaseous halos of galaxies as they fall into massive groups and clusters. The sensitivity of the results to the orbit, total galaxy mass, and galaxy structural properties is explored. For typical structural and orbital parameters, we find that ~30% of the initial hot galactic halo gas can remain in place after 10 Gyr. We propose a physically simple analytic model that describes the stripping seen in the simulations remarkably well. The model is analogous to the original formulation of Gunn & Gott (1972), except that it is appropriate for the case of a spherical (hot) gas distribution (as opposed to a face-on cold disk) and takes into account that stripping is not instantaneous but occurs on a characteristic timescale. The model reproduces the results of the simulations to within approximately 10% at almost all times for all the orbits, mass ratios, and galaxy structural properties we have explored. The one exception involves unlikely systems where the orbit of the galaxy is highly non-radial and its mass exceeds about 10% of the group or cluster into which it is falling (in which case the model under-predicts the stripping following pericentric passage). The proposed model has several interesting applications, including modelling the ram pressure stripping of both observed and cosmologically-simulated galaxies and as a way to improve current semi-analytic models of galaxy formation. One immediate consequence is that the colours and morphologies of satellite galaxies in groups and clusters will differ significantly from those predicted with the standard assumption of complete stripping of the hot coronae.
Gamma-ray binaries, composed of a massive star and compact object, have been
established as a new class of sources of very high energy (VHE) photons. The
gamma-rays are produced by inverse Compton scattering of the stellar light by
VHE electrons accelerated in the vicinity of the compact object. The VHE
emission from LS 5039 displays an orbital modulation.
The inverse Compton spectrum depends on the angle between the incoming and
outgoing photon in the electron rest frame. Since the angle at which an
observer sees the star and electrons changes with the orbit, a phase dependence
of the spectrum is expected. The phase-dependent spectrum of LS 5039 is
calculated, assuming a continuous injection of electrons. The shape of the
electron distribution depends on the injected power-law and on the magnetic
field intensity.
Anisotropic scattering produces hard emission at inferior conjunction, when
attenuation due to pair production of the VHE gamma-rays on star light is
minimum. The computed lightcurve and spectra provide good fits to the HESS and
EGRET observations, except at phases of maximum attenuation where pair cascade
emission may be significant for HESS. Detailed predictions are made for a
modulation in the GLAST energy range. The magnetic field intensity at
periastron is 0.8+-0.2 G.
Anisotropic inverse Compton scattering plays a major role in LS 5039. The
derived magnetic field intensity, injection energy and slope suggest a
rotation-powered pulsar wind nebula. Gamma-ray binaries are promising sources
to study the environment of pulsars on small scales.
We have obtained velocity-resolved spectra of the H_2 v=1-0 S(1) (lambda = 2.1218 micron) emission line at 2 arcsec angular resolution (or 0.08 pc spatial resolution) in four regions within the central 10 pc of the Galaxy where the supernova-like remnant Sgr A East is colliding with molecular clouds. To investigate the kinematic, physical, and positional relationships between the important gaseous components in the center, we compared the H_2 data cube with previously published NH_3 data. The projected interaction-boundary of Sgr A East is determined to be an ellipse with its center offset 1.5 pc from Sgr A* and dimensions of 10.8 pc X 7.6 pc. This H_2 boundary is larger than the synchrotron emission shell but consistent with the dust ring which is believed to trace the shock front of Sgr A East. Since Sgr A East is driving shocks into its nearby molecular clouds, we can determine their positional relationships using the shock directions as indicators. As a result, we suggest a revised model for the three-dimensional structure of the central 10 pc. The actual contact between Sgr A East and all of the surrounding molecular material, including the circum-nuclear disk and the southern streamer, makes the hypothesis of infall into the nucleus and feeding of Sgr A* very likely.
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV, using state-of-the-art particle identification techniques. Following the successful flight of the detector prototype (AMS-01) aboard the space shuttle, AMS-02 is expected to provide a significant improvement on the current knowledge of the elemental and isotopic composition of hadronic cosmic rays due to its long exposure time (minimum of 3 years) and large acceptance (0.5 m^2 sr) which will enable it to collect a total statistics of more than 10^10 nuclei. Detector capabilities for charge, velocity and mass identification, estimated from ion beam tests and detailed Monte Carlo simulations, are presented. Relevant issues in cosmic ray astrophysics addressed by AMS-02, including the test of cosmic ray propagation models, galactic confinement times and the influence of solar cycles on the local cosmic ray flux, are briefly discussed.
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV, using state-of-the art particle identification techniques. It is equipped with several subsystems, one of which is a proximity focusing Ring Imaging Cherenkov (RICH) detector equipped with a dual radiator (aerogel+NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers and light guides, enabling precise measurements of particle electric charge and velocity (Delta beta / beta ~ 10^-3 and 10^-4 for Z=1 and Z=10-20, respectively) at kinetic energies of a few GeV/nucleon. Combining velocity measurements with data on particle rigidity from the AMS-02 Tracker (Delta R / R ~ 2% for R=1-10 GV) it is possible to obtain a reliable measurement for particle mass. One of the main topics of the AMS-02 physics program is the search for indirect signatures of dark matter. Experimental data indicate that dark, non-baryonic matter of unknown composition is much more abundant than baryonic matter, accounting for a large fraction of the energy content of the Universe. Apart from antideuterons produced in cosmic-ray propagation, the annihilation of dark matter will produce additional antideuteron fluxes. Detailed Monte Carlo simulations of AMS-02 have been used to evaluate the detector's performance for mass separation, a key issue for anti-D/anti-p separation. Results of these studies are presented.
We consider the electron-positron plasma generation processes in the magnetospheres of magnetars - neutron stars with strong surface magnetic fields, B = 10^(14) - 10^(15) G. We show that the photon splitting in a magnetic field, which is effective at large field strengths, does not lead to the suppression of plasma multiplication, but manifests itself in a high polarization of gamma-ray photons. A high magnetic field strength does not give rise to the second generation of particles produced by synchrotron photons. However, the density of the first-generation particles produced by curvature photons in the magnetospheres of magnetars can exceed the density of the same particles in the magnetospheres of ordinary radio pulsars. The plasma generation inefficiency can be attributed only to slow magnetar rotation, which causes the energy range of the produced particles to narrow. We have found a boundary in the P - Pdot diagram that defines the plasma generation threshold in a magnetar magnetosphere.
The evolution of single stars at low metallicity has attracted a large
interest, while the effect of metallicity on binary evolution remains still
relatively unexplored. We study the effect of metallicity on the number of
binary systems that undergo different cases of mass transfer. We find that
binaries at low metallicity are more likely to start transferring mass after
the onset of central helium burning, often referred to as case C mass transfer.
In other words, the donor star in a metal poor binary is more likely to have
formed a massive CO core before the onset of mass transfer.
At solar metallicity the range of initial binary separations that result in
case C evolution is very small for massive stars, because they do not expand
much after the ignition of helium and because mass loss from the system by
stellar winds causes the orbit to widen, preventing the primary star to fill
its Roche lobe. This effect is likely to have important consequences for the
metallicity dependence of the formation rate of various objects through binary
evolution channels, such as long GRBs, double neutron stars and double white
dwarfs.
We present a 40 minute time series of filtergrams from the red and the blue wing of the \halpha line in an active region near the solar disk center. From these filtergrams we construct both Dopplergrams and summed ``line center'' images. Several dynamic fibrils (DFs) are identified in the summed images. The data is used to simultaneously measure the proper motion and the Doppler signals in DFs. For calibration of the Doppler signals we use spatially resolved spectrograms of a similar active region. Significant variations in the calibration constant for different solar features are observed, and only regions containing DFs have been used in order to reduce calibration errors. We find a coherent behavior of the Doppler velocity and the proper motion which clearly demonstrates that the evolution of DFs involve plasma motion. The Doppler velocities are found to be a factor 2--3 smaller than velocities derived form proper motions in the image plane. The difference can be explained by the radiative processes involved, the Doppler velocity is a result of the local atmospheric velocity weighted with the response function. As a result the Doppler velocity originates from a wide range in heights in the atmosphere. This is contrasted by the proper motion velocity which is measured from the sharply defined bright tops of the DFs and is therefore a very local velocity measure. The Doppler signal originates from well below the top of the DF. Finally we discuss how this difference together with the lacking spatial resolution of older observations have contributed to some of the confusion about the identity of DFs, spicules and mottles.
We show that near-infrared observations of the red side of the Ly-alpha line from a single gamma ray burst (GRB) afterglow cannot be used to constrain the global neutral fraction of the intergalactic medium (IGM), x_H, at the GRB's redshift to better than ~0.3, because some GRB sight-lines will encounter more neutral hydrogen than others owing to the patchiness of reionization. Consequently, GRBs during the epoch of reionization will often bear no discernible signature of a neutral IGM in their afterglow spectra. We discuss the constraints on x_H from the z = 6.3 burst, GRB050904, and quantify the probability of detecting a neutral IGM using future spectroscopic observations of high-redshift, near-infrared GRB afterglows. Assuming an observation with signal-to-noise similar to the Subaru FOCAS spectrum of GRB050904, that the column density distribution of damped Ly-alpha absorbers is the same as measured at lower redshifts, and that the redshift of the GRB is known, a GRB from an epoch when x_H = 0.5 can be used to detect a partly neutral IGM at 98% confidence level 5 - 10% of the time (and, for an observation with three times the sensitivity, 25-30% of the time).
We test statistically the hypothesis that radio pulsar glitches result from an avalanche process, in which angular momentum is transferred erratically from the flywheel-like superfluid in the star to the slowly decelerating, solid crust via spatially connected chains of local, impulsive, threshold-activated events, so that the system fluctuates around a self-organised critical state. Analysis of the glitch population (currently 285 events from 101 pulsars) demonstrates that the size distribution in individual pulsars is consistent with being scale invariant, as expected for an avalanche process. The waiting-time distribution is consistent with being exponential in seven out of nine pulsars where it can be measured reliably, after adjusting for observational limits on the minimum waiting time, as for a constant-rate Poisson process. PSR J0537$-$6910 and PSR J0835$-$4510 are the exceptions; their waiting-time distributions show evidence of quasiperiodicity. In each object, stationarity requires that the rate $\lambda$ equals $- \epsilon \dot{\nu} / <\Delta\nu>$, where $\dot{\nu}$ is the angular acceleration of the crust, $<\Delta\nu>$ is the mean glitch size, and $\epsilon\dot{\nu}$ is the relative angular acceleration of the crust and superfluid. There is no evidence that $\lambda$ changes monotonically with spin-down age. The rate distribution itself is fitted reasonably well by an exponential for $\lambda \geq 0.25 {\rm yr^{-1}}$. For $\lambda < 0.25 {\rm yr^{-1}}$, its exact form is unknown; the exponential overestimates the number of glitching pulsars observed at low $\lambda$, where the limited total observation time exercises a selection bias.
We report on the discovery of the z=1.016 cluster RzCS 052 using a modified red sequence method, followup spectroscopy and X-ray imaging. This cluster has a velocity dispersion of 710+-150 km/s, a virial mass of 4.0e14 Msol (based on 21 spectroscopically confirmed members) and an X-ray luminosity of (0.68+- 0.47)e44 ergs/s in the [1-4] keV band. This optically selected cluster appears to be of richness class 3 and to follow the known L_X-sigma_v relation for high redshift X-ray selected clusters. Using these data, we find that the halo occupation number for this cluster is only marginally consistent with what expected assuming a self-similar evolution of cluster scaling relations, suggesting perhaps a break of them at z~1. We also rule out a strong galaxy merging activity between z=1 and today. Finally, we present a Bayesian approach to measuring cluster velocity dispersions and X-ray luminosities in the presence of a background: we critically reanalyze recent claims for X-ray underluminous clusters using these techniques and find that the clusters can be accommodated within the existing L_X -sigma_v relation.
We present new spectroscopic observations of the stellar cluster population of region B in the prototype starburst galaxy M82 obtained with the Gillett Gemini-North 8.1-metre telescope. By coupling the spectroscopy with UBVI photometry acquired with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), we derive ages, extinctions and radial velocities for seven young massive clusters (YMCs) in region B. We find the clusters to have ages between 70 and 200 Myr and velocities in the range 230 to 350 km/s, while extinctions Av vary between ~1-2.5 mag. We also find evidence of differential extinction across the faces of some clusters which hinders the photometric determination of ages and extinctions in these cases. The cluster radial velocities indicate that the clusters are located at different depths within the disk, and are on regular disk orbits. Our results overall contradict the findings of previous studies, where region B was thought to be a bound region populated by intermediate-age clusters that formed in an independent, offset starburst episode that commenced 600 Myr-1 Gyr ago. Our findings instead suggest that region B is optically bright because of low extinction patches, and this allows us to view the cluster population of the inner M82 disk, which probably formed as a result of the last encounter with M81. This study forms part of a series of papers aimed at studying the cluster population of M82 using deep optical spectroscopy and multi-band photometry.
We discuss the link between dark matter halos hosting the first PopIII stars formed at redshift z > 40 and the rare, massive, halos that are generally considered to host bright z~6 quasars. We show that within the typical volume occupied by one bright high-z QSO the remnants of the first several thousands PopIII stars formed do not end up in the most massive halos at z~6, but rather live in a large variety of environments. The black hole seeds planted by these very first PopIII stars can easily grow to M > 10^{9.5} Msun by z=6 assuming Eddington accretion with radiative efficiency epsilon~0.1. Therefore quenching of the accretion is crucial to avoid an overabundance of supermassive black holes. We implement a simple feedback model for the growth of the seeds planted by PopIII stars and obtain a z~6 BH mass function consistent with the observed QSO luminosity function.
Turbulent motions in stellar convection zones generate acoustic energy, part
of which is then supplied to normal modes of the star. Their amplitudes result
from a balance between the efficiencies of excitation and damping processes in
the convection zones. We develop a formalism that provides the excitation rates
of non-radial global modes excited by turbulent convection. As a first
application, we estimate the impact of non-radial effects on excitation rates
and amplitudes of high-angular-degree modes which are observed on the Sun. A
model of stochastic excitation by turbulent convection has been developed to
compute the excitation rates, and it has been successfully applied to solar
radial modes (Samadi & Goupil 2001, Belkacem et al. 2006b). We generalize this
approach to the case of non-radial global modes. This enables us to estimate
the energy supplied to high-($\ell$) acoustic modes. Qualitative arguments as
well as numerical calculations are used to illustrate the results. We find that
non-radial effects for $p$ modes are non-negligible:
- for high-$n$ modes (i.e. typically $n > 3$) and for high values of $\ell$;
the power supplied to the oscillations depends on the mode inertia.
- for low-$n$ modes, independent of the value of $\ell$, the excitation is
dominated by the non-diagonal components of the Reynolds stress term. We
carried out a numerical investigation of high-$\ell$ $p$ modes and we find that
the validity of the present formalism is limited to $\ell < 500$ due to the
spatial separation of scale assumption. Thus, a model for very high-$\ell$
$p$-mode excitation rates calls for further theoretical developments, however
the formalism is valid for solar $g$ modes, which will be investigated in a
paper in preparation.
On 4 July 2005 at 05:52 UT, the impactor of NASA's Deep Impact (DI) mission
crashed into comet 9P/Tempel 1 with a velocity of about 10 km/s. The material
ejected by the impact expanded into the normal coma, produced by ordinary
cometary activity.
The characteristics of the non-impact coma and cloud produced by the impact
were studied by observations in the visible wavelengths and in the near-IR. The
scattering characteristics of the "normal" coma of solid particles were studied
by comparing images in various spectral regions, from the UV to the near-IR.
For the non-impact coma, a proxy of the dust production has been measured in
various spectral regions. The presence of sublimating grains has been detected.
Their lifetime was found to be about 11 hours. Regarding the cloud produced by
the impact, the total geometric cross section multiplied by the albedo was
measured as a function of the color and time. The projected velocity appeared
to obey a Gaussian distribution with the average velocity of the order of 115
m/s. By comparing the observations taken about 3 hours after the impact, we
have found a strong decrease in the cross section in J filter, while that in Ks
remained almost constant. This is interpreted as the result of sublimation of
grains dominated by particles of sizes of the order of some microns.
We present the results on an XMM-Newton systematic analysis of a sample of nine Seyfert 1 galaxies. When observed in polarised light, the spectra of the selected sources are similar to those of Seyfert 2 galaxies. This peculiarity strongly suggests that these AGN are viewed with an inclination comparable with the torus opening angle. Our results are consistent with this scenario and, taking advantage of this favourable geometrical condition, we were able to investigate in detail the physical properties and the distribution of the circumnuclear gas in these sources.
In this paper, we report on the gas-phase abundance of singly-ionized iron (Fe II) for 51 lines of sight, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE). Fe II column densities are derived by measuring the equivalent widths of several ultraviolet absorption lines and subsequently fitting those to a curve of growth. Our derivation of Fe II column densities and abundances creates the largest sample of iron abundances in moderately- to highly-reddened lines of sight explored with FUSE, lines of sight that are on average more reddened than lines of sight in previous Copernicus studies. We present three major results. First, we observe the well-established correlation between iron depletion and <n_H> and also find trends between iron depletion and other line of sight parameters (e.g. f(H_2), E_(B-V), and A_V), and examine the significance of these trends. Of note, a few of our lines of sight probe larger densities than previously explored and we do not see significantly enhanced depletion effects. Second, we present two detections of an extremely weak Fe II line at 1901.773 A in the archival STIS spectra of two lines of sight (HD 24534 and HD 93222). We compare these detections to the column densities derived through FUSE spectra and comment on the line's f-value and utility for future studies of Fe II. Lastly, we present strong anecdotal evidence that the Fe II f-values derived empirically through FUSE data are more accurate than previous values that have been theoretically calculated, with the probable exception of f_1112.
In this paper we report on the gas-phase abundance of singly-ionized magnesium (Mg II) in 44 lines of sight, using data from the Hubble Space Telescope (HST). We measure Mg II column densities by analyzing medium- and high-resolution archival STIS spectra of the 1240 A doublet of Mg II. We find that Mg II depletion is correlated with many line of sight parameters (e.g. F(H_2), E_(B-V), E_(B-V)/r, A_V, and A_V/r) in addition to the well-known correlation with <n_H>. These parameters should be more directly related to dust content and thus have more physical significance with regard to the depletion of elements such as magnesium. We examine the significance of these additional correlations as compared to the known correlation between Mg II depletion and <n_H>. While none of the correlations are better predictors of Mg II depletion than <n_H>, some are statistically significant even assuming fixed <n_H>. We discuss the ranges over which these correlations are valid, their strength at fixed <n_H>, and physical interpretations.
We use a semi-analytic circumstellar disk model that considers movement of the snow line through evolution of accretion and the central star to investigate how gas giant frequency changes with stellar mass. The snow line distance changes weakly with stellar mass; thus giant planets form over a wide range of spectral types. The probability that a given star has at least one gas giant increases linearly with stellar mass from 0.4 M_sun to 3 M_sun. Stars more massive than 3 M_sun evolve quickly to the main-sequence, which pushes the snow line to 10-15 AU before protoplanets form and limits the range of disk masses that form giant planet cores. If the frequency of gas giants around solar-mass stars is 6%, we predict occurrence rates of 1% for 0.4 M_sun stars and 10% for 1.5 M_sun stars. This result is largely insensitive to our assumed model parameters. Finally, the movement of the snow line as stars >2.5 M_sun move to the main-sequence may allow the ocean planets suggested by Leger et. al. to form without migration.
We present an analysis of the magnetic-field fluctuations in the magnetoionic medium in front of the radio galaxy 3C 31 derived from rotation-measure (RM) fits to high-resolution polarization images. We first show that the Faraday rotation must be due primarily to a foreground medium. We determine the RM structure functions for different parts of the source and infer that the simplest form for the power spectrum is a power law with a high-frequency cutoff. We also present three-dimensional simulations of RM produced by a tangled magnetic field in the hot plasma surrounding 3C 31, and show that the observed RM distribution is consistent with a spherical plasma distribution in which the radio source has produced a cavity.
(abridged) We utilize existing imaging and spectroscopic data for the galaxy clusters MS2137-23 and Abell 383 to present improved measures of the distribution of dark and baryonic material in the clusters' central regions. Our method, based on the combination of gravitational lensing and dynamical data, is uniquely capable of separating the distribution of dark and baryonic components at scales below 100 kpc. We find a variety of strong lensing models fit the available data, including some with dark matter profiles as steep as expected from recent simulations. However, when combined with stellar velocity dispersion data for the brightest member, shallower inner slopes than predicted by numerical simulations are preferred. For Abell 383, the preferred shallow inner slopes are statistically a good fit only when the multiple image position uncertainties associated with our lens model are assumed to be 0\farcs5, to account for unknown substructure. No statistically satisfactory fit was obtained matching both the multiple image lensing data and the velocity dispersion profile of the brightest cluster galaxy in MS2137-23. This suggests that the mass model we are using, which comprises a pseudo-elliptical generalized NFW profile and a brightest cluster galaxy component may inadequately represent the inner cluster regions. This may plausibly arise due to halo triaxiality or by the gravitational interaction of baryons and dark matter in cluster cores. However, the progress made via this detailed study highlights the key role that complementary observations of lensed features and stellar dynamics offer in understanding the interaction between dark and baryonic matter on non-linear scales in the central regions of clusters.
We determine the ratio of helium- to hydrogen-atmosphere white dwarf stars as a function of effective temperature from a model atmosphere analysis of the infrared photometric data from the Two Micron All Sky Survey combined with available visual magnitudes. Our study surpasses any previous analysis of this kind both in terms of the accuracy of the Teff determinations as well as the size of the sample. We observe that the ratio of helium- to hydrogen-atmosphere white dwarfs increases gradually from a constant value of ~0.25 between Teff = 15,000 K and 10,000 K to a value twice as large in the range 10,000 > Teff > 8000 K, suggesting that convective mixing, which occurs when the bottom of the hydrogen convection zone reaches the underlying convective helium envelope, is responsible for this gradual transition. The comparison of our results with an approximate model used to describe the outcome of this convective mixing process implies hydrogen mass layers in the range log M_H/M_tot = -10 to -8 for about 15% of the DA stars that survived the DA to DB transition near Teff ~ 30,000 K, the remainder having presumably more massive layers above log M_H/M_tot ~ -6.
HCN and CO line diagnostics provide new insight into the OH megamaser (OHM) phenomenon, suggesting a dense gas trigger for OHMs. We identify three physical properties that differentiate OHM hosts from other starburst galaxies: (1) OHMs have the highest mean molecular gas densities among starburst galaxies; nearly all OHM hosts have <n(H2)> = 10^3-10^4 cm^-3 (OH line-emitting clouds likely have n(H2) > 10^4 cm^-3). (2) OHM hosts are a distinct population in the nonlinear part of the IR-CO relation. (3) OHM hosts have exceptionally high dense molecular gas fractions, L(HCN)/L(CO)>0.07, and comprise roughly half of this unusual population. OH absorbers and kilomasers generally follow the linear IR-CO relation and are uniformly distributed in dense gas fraction and L(HCN), demonstrating that OHMs are independent of OH abundance. The fraction of non-OHMs with high mean densities and high dense gas fractions constrains beaming to be a minor effect: OHM emission solid angle must exceed 2 pi steradians. Contrary to conventional wisdom, IR luminosity does not dictate OHM formation; both star formation and OHM activity are consequences of tidal density enhancements accompanying galaxy interactions. The OHM fraction in starbursts is likely due to the fraction of mergers experiencing a temporal spike in tidally driven density enhancement. OHMs are thus signposts marking the most intense, compact, and unusual modes of star formation in the local universe. Future high redshift OHM surveys can now be interpreted in a star formation and galaxy evolution context, indicating both the merging rate of galaxies and the burst contribution to star formation.
A self-consistent extended Einstein-Maxwell model for relativistic non-stationary polarizable-magnetizable anisotropic media is presented. Based on the analogy with relativistic extended irreversible (transient) thermodynamics, the extended constitutive equations for the electrodynamics of continua are formulated phenomenologically, the convective derivatives of the first, second, etc. orders being taken into account. The master equations for the gravity field contain a modified effective (symmetric) stress-energy tensor of the electromagnetic field in a material medium, the use of this tensor being motivated both by historical analogies and direct variational procedure. By way of example we consider the exact solution of the extended Einstein-Maxwell model, describing the isotropic cosmological model with hidden non-vanishing electromagnetic field, electric polarization and magnetization.
Extended Einstein-Maxwell model and its application to the problem of evolution of magnetized Bianchi-I Universe are considered. The evolution of medium magnetization is governed by a relaxation type extended constitutive equation. The series of exact solutions to the extended master equations is obtained and discussed. The anisotropic expansion of the Bianchi-I Universe is shown to become non-monotonic (accelerated/decelerated) in both principal directions (along the magnetic field and orthogonal to it). A specific type of expansion, the so-called evolution with hidden magnetic field, is shown to appear when the magnetization effectively screens the magnetic field and the latter disappears from the equations for gravitational field.
The self-consistent system of master equations describing the kinetics of a relativistic non-Abelian plasma, influenced by curvature interactions, is formulated. Non-minimal (curvature induced) coupling is shown to modify all the subsystems of the model: the gauge field equations, the gravity field equations and the kinetic equation for colored particles.
We present the first constraints on pure-gravity sector Standard-Model Extension (SME) parameters using Lunar Laser Ranging (LLR). LLR measures the round trip travel time of light between the Earth and the Moon. With 34+ years of LLR data, we have constrained six independent linear combinations of SME parameters at the level of $10^{-6}$ to $10^{-11}$. There is no evidence for Lorentz violation in the LLR dataset.
We present constraints on violations of Lorentz Invariance based on Lunar Laser Ranging (LLR) data. LLR measures the Earth-Moon separation by timing the round-trip travel of light between the two bodies, and is currently accurate to a few centimeters (parts in $10^{11}$ of the total distance). By analyzing archival LLR data under the Standard-Model Extension (SME) framework, we derived six observational constraints on dimensionless SME parameters that describe potential Lorentz-violation. We found no evidence for Lorentz violation at the $10^{-6}$ to $10^{-11}$ level in these parameters.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0710, /abs, contact, help (Access key information)